
A NEW HYBRID LEARNING ALGORITHM FOR

DRIFTING ENVIRONMENTS

THESIS

Presented to the Graduate Council

of Texas State University-San Marcos

m Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Enumulapally Anil Kumar, B.E

San Marcos, Texas

August2005

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to Dr. Khosrow Kaikhah. Without his

invaluable knowledge and patience I could not have accomplished this. His

encouragement and involvement have been extremely helpful in completing this

thesis. His mathematical skills and in-depth knowledge in neural networks have

been priceless in this research.

My thanks and gratitude also go to Dr. Carol Hazlewood for her patience, advice

and encouragement. I appreciate Dr. Hazlewood extending her cooperation in

meeting the deadline for the research, even under tough family conditions.

I thank Dr. Moonis Ali for his support and his valuable time.

I would also like to thank my friends Chandu, Kishore, Narsi, Naveen and Nazir

for their support, enthusiasm and belief in my abilities.

I express my special gratitude to my mother Surekha and my brother

Ramakrishna for their love, care and support. I also appreciate their patience and

enduring me and all that comes with me, through this thesis.

Above all I convey my prayers to Sri Saibaba and His Holiness Sri Sri Ravi

Shankar for their grace and love.

This manuscript was submitted on July 28, 2005.

111

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... Ill

LIST OF FIGURES .. VII

ABSTRACT .. IX

CHAPTER 1 INTRODUCTION .. 1

1.1 INTRODUCTION OF THE PROBLEM .. I
1.2 ARTIFICIAL NEURAL NETWORKS .. , 2
1.3 LEARNING IN ARTIFICIAL NEURAL NETWORKS ... 2

1.3.1 Supervised Learning .. 2
1.3.2 Unsupervised Learning .. 3

1.4 GENETIC ALGORITHMS .. .4
1.5 PROBLEM DESCRIPTION ... 6
1.6 SOLUTION STRATEGY .. 7

1.5.1 Ojjline Learning .. 8
1.5.2 Online Learning .. 9

CHAPTER 2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS 10

OVERVIEW ··lO
2.1 ARTIFICIAL NEURAL NETWORKS ... 10

2.1.1 Biological Inspiration ... 11
2.1.2 Architecture of Artificial Neural Networks ... 12

2.2 LEARNING IN ARTIFICIAL NEURAL NETWORKS .. 13
2.2.1 Supervised Learning ... 13
2.2.2 Online Learning and Ojjline Learning ... 17

2.3 GENETIC ALGORITHMS .. 18
2.3.1 Biological Motivation ... 18
2.3.2 A Prototypical Genetic Algorithm ... 20
2.3.3 Chromosome Representation .. 21
2.3.4 Genetic Operators ... 22

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS

···25

OVERVIEW ··25
3.1 lNTRODUCTION .. 25
3.2 COMBINING ANNs AND GAs .. 26
3.3 EVOLUTIONARY DESIGN OF NEURAL NETWORKS .. 26

3.3.1 Evolution of Connection Weights: .. 27
3.3.2 Evolution of Architectures .. 30
3.3.3 Simultaneous Evolution of Architectures and Connection Weights .. 33
3.3.4 Evolution of Learning Rules ... 34

IV

CHAPTER 4 RELATED RESEARCH ... 37

OVERVIEW .. 37

4.1 EVOLUTIONARY DESIGN OF NEURAL NETWORKS37
4.1.1 EPNet .. 37
4.1.2 NEAT (Neuro Evolution of Augmenting Topologies) .. 39

4.2 ONLINE ADAPTIVE ALGORITHMS .. 41
4.2.1 Online Learning for Drifting Environments ... 41

4.3 HYBRID ONLINE ADAPTIVE ALGORITHM .. .42
4.3.1 Evolution of Learning: An Experiment in Genetic Connectionism .. .42
4.3.2 Learning to Adapt to Changing Environments in Evolving ANN .. 43
4.3.3 Evolutionary Algorithm for Online Learning .. 44

4.4 ONLINE INTERACTIVE LEARNING .. .46

CHAPTER 5 HYBRID LEARNING ALGORITHM ... 49

OVERVIEW49
5 .1 INTRODUCTION49
5.2 THE FRAMEWORK OF THE ALGORITHM ... 50
5.3 REQUIREMENTS FOR THE PROPOSED ALGORITHM .. .52

5.3.1 Representation ofGenotype .. 52
5.3.2 Population Size ... 52
5.3.3 Genetic Operators ... 52
5.3.4 Diversity ... 53

5 .4 OFFLINE ST AGE .. .54
5.5 ONLINE STAGE .. 59

5.5.1 Learning Phase .. 60
5.5.2 Evolutionary Phase ... 64

CHAPTER 6 APPLICATION ANALYSIS ... 68

OVERVIEW .. 68
6.l lNTRODUCTION .. 68
6.2 ARCHITECTURE oF ANNs ... 69

6.2.1 Obstacle Avoidance .. 69
6.2.2 Environment Exploration .. 71
6.2.3 Outputs .. 72

6.3 OURFRAMEWORK ... 74
6.3.1 Ojjline Learning Stage .. 75
6.3.2 Online Stage .. 80
6.3.3 Pe,formance Parameters .. 84

CHAPTER 7 ANALYSIS OF RESULTS .. 86

OVERVIEW .. 86
7.l lNTRODUCTION .. 86
7 .2 How Do WE ANALYZE? ... 87
7.3 ONLY GENETIC ALGORITHMS .. 88

V

7.3.1 Analysis of Performance with Only Evolutionary (Genetic) Algorithms 89
7.4 OFFLINE LEARNING AND EVOLUTIONARY (GENETIC) ALGORITHMS ... 90

7.4.1 Analysis of Performance with Ojjline Learning and GAs: .. 91
7.5 OFFLINE LEARNING WITH ONLINE LEARNING (LEARNING PHASE AND EVOLUTIONARY PHASE) 92

7.5.1 Analysis of Performance with Ojjline Learning and Online Learning: 93
7 .6 ONLY ONLINE LEARNING (LEARNING PHASE AND EVOLUTIONARY PHASE)•....................... 94

7.6.1 Analysis of Performance with Online Learning Alone .. 95
7.7 ANALYSIS OF OFFLINE LEARNING ...•.........•....•.••. 95
7 .8 COMPARISONS BETWEEN DIFFERENT APPROACHES ...•.........•...••.... 95
7 .9 THE FACTORS THAT INFLUENCE THE PERFORMANCE OF APPLICATION•.....•........•.....•. l 03

CHAPTER 8. CONCLUSIONS AND FUTURE WORK ... 105

OVERVIEW .. 105
8.1 CONCLUSION ... 105
8.2 FUTURE WORK .. 107

APPENDIX ... 108

REFERENCES ... 235

WEB REFERENCES ... 237

Vl

List of Figures

CHAPTER-2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS

Figure 2 1 Schematic of biological neuron

Figure 2.2 A typical neuron with incoming and outgoing connections

Figure 2 3 A typical feedforward neural network

Figure 2 4 Flow chart representation of the algorithm.

Figure 2 5 Depicting the operators with examples (Machine Learning, Tom Mitchell)

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC
ALGORITHMS

Figure 3 1 a An ANN with connection weights

Figure 3 1.b: Binary representation of connection weights

Figure 3 2 a: An ANN with connection weights

Figure 3.2 b: Binary representation of connection weights

Figure 3 3: An example of the direct encoding of a feed forward ANN

Figure 3 4: An example of the direct encoding of a recurrent ANN

CHAPTER 4 RELATED RESEARCH

11

12

14

21

24

28

28

29

29

31

32

Figure 4.1 The main structure of EPNet 38

Figure 4.2 a Peon's neural net with inputs and outputs. 46

Figure 4.2 b Configuration of a peon's eyes. 46

Figure 4 3 a Average performance over all scenarios of a population that is allowed to evolve

online compared to one that Is not (Offline) 47

Figure 4 3 b A population started with random weights that evolves online will outperform the

population trained offline when given enough time 47

Figure 4 3 c Even after the population has adapted to Scenario 5, 1t has no trouble adapting

to a sudden change to Scenario 11 47

Figure 4 3 d The improvement is even clearer when the new scenario Is the novel Scenano 17. 4 7

CHAPTER 5 HYBRID LEARNING ALGORITHM

Figure 5 1 Frame work of the algorithm

Figure 5 2 a Forward link

Figure 5 2 b Feedback link

Figure 5 2 c Recurrent hnk

Figure 5 3 Before and after adding a neuron 'D' between neurons 'A' and 'C'

vii

53
57

57

57

57

Figure 5.4 The sigmoid function for different values of controller variable (c)

Figure 5 5 Frame work of ONLINE stage

Figure 5 6 Illustration of Global Learning

Figure 5 7 Flowchart of ONLINE stage

CHAPTER 6 APPLICATION ANALYSIS

Figure 6 1 The demo program in action

Figure 6 2 A mine sweeper with sensors

Figure 6.3 A mine sweeper seeing the obstacle through its sensor readings

58

60

62

67

69

70

71

Figure 6.4 The memory readings help the mine sweeper to explore unvisited cells in the environment. 71

Figure 6 5 Two networks with their chromosomes using node-based encoding. 73

Figure 6.6 The neuron and link genes' parameters and their description 73

Figure 6. 7 Program flow for the mine sweeper application 74

CHAPTER 7 ANALYSIS OF RESULTS

Figure 7.1 (a) A screen shot showing the mine sweepers exploring the environment 88

Figure 7.1 (b) A screen shot showing previous generations best four networks 88

Figure 7.2 The fitness of intelligent agents with only GAs 89

Figure 7.3 The fitness of intelligent agents when offline learning is combined with GAs 91

Figure 7 4 The fitness of intelligent agents when offline learning and online learning combined 93

Figure 7.5 The fitness of intelligent agents Online Learning (local online with delta rule in

learning phase and evolutionary phase) 94

Figure 7 .6 The fitness of intelligent agents when global online with delta rule of

learning phase, evolutionary phase and offline learning are combined 96

Figure 7.7 The fitness of intelligent agents when global online with delta rule of learning phase and

evolutionary phase 97

Figure 7 .8 The fitness of intelligent agents when global online with rule evolution of learning phase,

evolutionary phase and offline learning are combined 98

Figure 7.9 The fitness of intelligent agents when local online with rule evolution of learning phase,

evolutionary phase and offlme learning are combined 99

Figure 7 .10 The fitness of intelligent agents when global online with rule evolution of

learning phase and evolutionary phase 100

Figure 7 11 The fitness of intelligent agents when local online with rule evolution of

learning phase and evolutionary phase

Figure 7 .12 A sample run of "GAs Only" showing the complex architectures generated

Figure 7.13 A sample run of "Only Online Learning" showing the simple architectures

generated even after 4000 generations.

Figure 7.14 The fitness of intelligent agents with online learning and simple fitness criteria

Vlll

101

102

102

104

ABSTRACT

A NEW HYBRID LEARNING ALGORITHM FOR DRIFTING ENVIRONMENTS

by

Anil Kumar Enumulapally

Texas State University-San Marcos

August2005

SUPERVISING PROFESSOR: KHOSROW KAIKHAH

An adaptive algorithm for dnfting environments is proposed and tested in simulated

environments. Two simple but powerful problem solving technologies - Neural Networks and

Genetic Algorithms with Online Learning, help the artificially intelligent agents to adapt to a

changing environment. Neural networks and genetic algorithms are combined to evolve weights,

architecture, and learning rules for the generation of efficient networks. Online learning helps

these networks to capture the dynamics of a changing environment efficiently. Supervised

learning 1s achieved using a variation of regular backpropagation that works on dynamic random

networks.

Our algorithm proposes two types of online learning, namely local online learning which requires

a pre-defined training set and global online learning which does not It is shown that both types of

online learning improve the performance of networks to capture subtleties of the varying

environments.

The algorithm's efficiency is demonstrated using a mine sweeper application. Different learning

technologies have been compared. The results establish that online learning within the

evolutionary process is the most significant factor for adaptation and 1s far superior to

evolutionary algorithms alone. The evolution and learning work in a co-operating fashion to

produce excellent results in short time. Offline learning is observed to increase the average

fitness of whole population. It is also demonstrated that online learning is self sufficient and can

achieve results without any pre-training stage. When mine sweepers are able to learn online, their

performance in the drifting environment is significantly improved.

IX

CHAPTER 1 INTRODUCTION

1.1 Introduction of the Problem

The objective of Artificial Intelligence is to support the notion that an intelligent system can

demonstrate learning and respond like a human. In other words the program has to pass the

"Turing test". Most of the intelligent agents do not adapt to the changes in the environment, as

they are designed for a particular scenario and expect few deviations from 1t. These conditions

do not exist in real time dynamic environments. The best solution for intelligent systems in real

time drifting environments is to design and apply technologies such as Neural Networks and

Genetic Algonthms that m1m1c the nature. Artificial neural networks and genetic algorithms are

two relatively young research areas. Neural networks are massively parallel distributed

processors that perform data mapping efficiently. Genetic algorithms attempt to apply

evolutionary concepts to the function optimization capabilities of neural networks and are useful in

searching large and complex environments. In recent times much research has been undertaken

to combine these two important and distinct areas (Yao, 1999).

Evolution and learning are the two most fundamental processes of adaptation and the

environment 1s a vital component of the adaptation process. If the environment were relatively

static, there might be little need for learning to evolve. But in real time systems, generally,

environments are dynamic and individuals need general adaptive mechanisms to cope with

arbitrary environments. In this way, a diverse environment encourages the evolution of learning.

Our algorithm mimics human evolution and development. We have successfully implemented

complete evolution and onhne learning to achieve effective design automation of neural networks

with the ability to adapt to the dnfting environments. Our experimental results demonstrate the

ab1hty of our algorithm to evolve efficient neural networks with simple architectures in few

hundreds of generations.

1

2

1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are highly s1mplif1ed models of the brain. They consist of a

combination of neurons and synaptic connections, which are capable of passing data through

layers. ANNs posses a generalization property and are tolerant to noise in datasets. Neural

networks have been successfully applied to perform regression, classification, control and

pred1ct1on tasks in a variety of scenanos and architectures.

ANNs can be classified into two categories depending on their connectivity.

• Feedforward ANNs

• Feedback ANNs

Feedforward ANNs allow signals to travel one way only; from input to output. There is no

feedback (loops), i.e. the output of any layer does not affect the same layer. Feedforward ANNs

end to be straightforward networks that associate inputs to outputs. Feedback ANNs can have

signals traveling in both directions by introducing loops in the network. Feedback networks are

very powerful and can get extremely complicated. Feedback networks are dynamic, and the

state of a network is continuously changing until it reaches equilibrium.

Neural networks, with their remarkable ability to work with complicated or imprecise data, can be

used to extract patterns and detect trends that are too complex to be noticed by either humans or

other computer techniques.

1.3 Learning in Artificial Neural Networks

Learning in ANNs is accomplished by adapting the synaptic strengths to the environment. Once

a network has been designed for a particular appllcat1on, 1t 1s ready to learn. To start the learning

process the initial weights are chosen randomly. Artificial neural network learning algorithms are

primarily divided into supervised and unsupervised.

1.3.1 Supervised Learning
In supervised learning, the training data consist of many pairs of input/output training

patterns. Therefore, the learning will benefit from the assistance of the teacher (the desired

output). The most widely used supervised learning algorithm is Backpropagation. In the

training stage of the network, each input pattern is presented to the network, and fed forward

through all the layers to the output layer. The actual output is then compared with the desired

output corresponding to the input so that an error is computed and propagated backwards

3

through the layers for the adjustments of the weights and thresholds. The process is

repeated for all inpuUoutput patterns until the mean squared error for all patterns is less than
'

a specified value. After the training phase is complete, it can recall the stored patterns, given

an input pattern with a certain level of noise.

1.3.2 Unsupervised Leaming

In unsupervised learning, the training set consists of input patterns only. Therefore, the network

is trained without benefit of any teacher. Unsupervised neural networks "learn" from correlations

of the input. Hebbian learning and adaptive learning are unsupervised.

As an example of adaptive learning, if a new pattern is determined to belong to a previously

recognized cluster, then the inclusion of the new pattern into that cluster will affect the

representation (e.g., the centroid) of the cluster. This will, in turn, change the weights

characterizing the classification network. If the new pattern is determined to belong to none of

the previously recognized clusters, then (the structure and the weights of) the neural network will

be adjusted to accommodate the new class (cluster).

Training algorithms for ANNs can be broadly classified into two types.

a. Batch or Offline

b. Stochastic or Online

The batch training of ANNs is considered as the classical machine learning approach: a set of

examples is used for learning an approximation function, before the network is used in the

application. Batch learning can be viewed as the minimization of an error function E, to find a set

of weights W such that W=minweR E (w) where the function E is defined as the sum of the

squared error over the entire training set.

In online training, the function E is pattern based and is defined as the instantaneous mean

squared error function with respect to the currently presented training example. In this case, the

ANN weights are updated after the presentation of each training example, which may be sampled

with or without repetition. Online learning is appropriate for either problems with large training

sets or tasks that slowly vary with respect to time. It helps escaping local minima and provides a

more natural approach for learning by continuously adopting in a changing environment.

4

1.4 Genetic Algorithms

Genetic Algorithms (GAs) are modeled loosely on the principles of evolution via natural selection.

These algorithms encode a potential solution to a problem on a simple chromosome-like data

structure and apply genetic operators to these chromosomes to preserve critical information.

GAs are widely used as function optimizers and can also be applied to a broad range of

applications.

The traditional theory of GAs (Holland, 1975) assumes that, at a very general level of description,

GAs work by discovering, emphasizing, and recombining good "building blocks" of solutions in a

highly parallel fashion. The idea here is that good solutions tend to be made up of good building

blocks-combinations of bit values that confer higher fitness on the strings in which they are

present.

An implementation of a genetic algorithm begins with a population of random chromosomes and

members of current population and gives rise to the next generation population by means of

reproduction, mutation, or crossover, which are patterned after processes in biological evolution.

At each step the chromosomes in the current population are evaluated relative to a given

numerical measure called fitness. The most fit chromosomes are selected probabilistically as

seeds for producing the next generation. Chromosomes in GAs are often represented by bit

strings, so that they can be manipulated easily by genetic operators.

The popularity of GAs is motivated by the following:

• Evolution is known to be a successful, robust method for adaptation within biological

systems.

• GAs can search spaces of hypotheses containing complex interacting parts, where the

impact of each part on overall hypothesis fitness may be difficult to model.

• GAs are easily parallelized.

• GAs are very efficient at optimizing functions.

5

A genetic algorithm must contain five components

I. Representation:

Chromosomal representation of solutions is problem dependent Representation is a key

issue because GAs directly manipulate coded representations of problems

II. Evaluation Function:

Evaluation function is problem dependent. Evaluation functions provide a measure of

individual's performance.

Ill. Population:

Choosing an appropriate size for population of 1rntial solutions is very important and also a

difficult task. Very large and very small population sizes have disadvantages. Generally,

population is chosen at random.

IV. Genetic Operators:
The three primary operators are Selection, Crossover and Mutation. The effectiveness of a

GA depends on the combination and appropnate use of these operators.

a. Selection (Reproduction):

This operator selects the solutions for next generation from the current generation.

Sometimes other operators are applied before we form the next generation. In such

cases the population reproduced is called the intermediate population.

b. Crossover:

The crossover operator produces two new offspring from two parent strings by copying

selected bits from each parent. The bit at position i in each offspring is copied from the

bit position 'I' m one of the two parents.

Depending on the crossover mask, it can be divided into the following:

i. Single point crossover

ii. Two-pomt crossover

iii. Uniform crossover

c. Mutation:

By modifying one or more of an existing individual's gene values, mutation creates new

individuals to increase variety in the population. The mutation ensures that the

probability of reaching any point in the search space is never zero

6

V. Parameters:

Executing a genetic algorithm requires setting a number of parameter values. Finding ideal

settings for a problem is a difficult task Some of the parameters are crossover rate, mutation

rate, and population size and selection strategy.

1.5 Problem Description

Learning and evolution are two fundamental forms of adaptation. Neural networks are inefficient

when dealing with large complex problems that generate many local optima. Genetic algorithms

deal with complex problems efficiently. However, they are very poor at fine-tuning the solution

where the ANN algorithms perform the best. Obviously these two strategies have their own

strengths and weaknesses. One possible way of constructing an efficient algorithm is to allow

these two strategies to complement each other. These approaches can be combined to achieve

a more flexible network that can perform better in varying situations.

There are different approaches one can take in combining the ANNs with GAs. In the supportive

approach, ANNs and GAs are applied at different stages. GAs are commonly used to reduce the

dimensionality of data space. In the collaborative approach, GAs and ANNs are integrated into a

single system in which population of ANNs is evolved. But designing a hybrid system is not

sufficient for the drifting environments. In standard hybrid algorithms, a population of networks is

evolved to perform a task, and the best fit network is found. This network is fixed and is used for

future instances of the problem. Networks evolved this way do not handle dynamic environments

very well.

Living organisms not only evolve but also learn in their lifetime and change according to the

changes in the surroundings and their needs. So the true adaptation to the surroundings must

include life-long (online) learning. Without online learning the process of adaptation to the

environment, m dnfting environments, 1s incomplete. Onhne learning 1s generally used in

applications where there are very large and redundant training sets, or where the environment

changes slowly over time. Moreover, online learning helps escaping local minima and provides a

more natural approach for learning time varying functions and adapting to a continuously

changing environment. Sutton pointed out, "Online learning is essential if we want to obtain

learning systems as opposed to merely learned ones". Hence, hybrid algorithms that employ

online learning are required to achieve the task of true adaptation. Despite the abundance of

methods for learning from examples, there are only few that can be used effectively for online

learning. In a majority of approaches evolutionary principles are used in conjunction with ANN

training to formulate the problem as finding weights of a fixed architecture.

7

This approach leads to the following major sources of noise

• Due to the random initialization of weights the same genotype (the ANN without any

weight information) may have quite different fitness.

• Different training algorithms may produce different training results even from the same

set of initial weights.

To alleviate these problems, we need to evolve the ANN architectures and weights

simultaneously. We propose an algorithm which not only uses the best principles of learning and

evolution but also employs online learning for the agents.

1.6 Solution Strategy

The evolution of artificial neural networks can be class1f1ed according to the goals of evolution.

There are three basic approaches by which we can combine learning with evolution.

• Evolution of weights

• Evolution of architectures

• Evolution of learning rules or transfer functions

As evolution of weights, architectures, or learning rules alone do not yield required performance,

all three approaches must be combined to design a truly flexible network This also reduces the

human intervention in the network design. Combining all three evolutionary approaches with

online learning result in the adaptation. By combining evolutionary approaches with online

learning, we have developed a hybrid algorithm that can adapt to the changing environments.

In our approach, the artificial intelligent agent is equipped with a neural network brain which

learns in two different stages:

• Offline Learning

• Online Learning

In the offline learning stage, we integrate network learning process with evolution. In this stage

learning is used as one of the genetic operators. We use the modified backpropagation algorithm

with all three operators of GAs on the population. The genetic operators are used only if they are

needed.

In the online learning stage, network learning and evolution are applied at different stages. Online

gradient descent method is used for learning and GA operators are used to produce a better

population for learning process. Learning and evolution are applied to the entire population.

8

In each stage, GAs are used to evolve the weights and the architecture. Online gradient descent

and backpropagat1on use adaptive step size to evolve the learning rule.

1.5.1 Offline Learning

Step 1: Represent the networks in chromosome form where weight and network evolutions

are easily performed.

Step 2: Generate a population of minimal genomes with and without hidden neurons. As
our networks are random, we do not have hidden layers.

Step 3. Generate phenotypes or actual networks with all nodes, synapses, and their

connections.

Step4: Train the networks using modified backpropagation algorithm by applying the

sample data sets for fixed number of iterations.

Step 5: Use genetic operators (mutation and crossover) on the population to create the

better networks for population.

Step 6: Evaluate the fitness of each network. Better fit networks are included in the

population, which is passed to the next stage. All the other networks are

discarded

Step 7: Group the networks into different species. This 1s required to avoid the "Crowding"

effect.

Step 8: Select the best fit 'N' networks for the Online Phase.

This is a onetime process for a network and is applied only when one 1s generated. Offline

learning uses a stepwise approach in which learning, crossover, and mutation may be used if

required. Learning involves the modified backpropagation algorithm. A few examples from

drfferent environments are applied to the network for a fixed number of loops. Crossover is

performed using innovation numbers for the connections and neurons. Innovation number

works as an identifier for the synapses and neurons among all networks. Mutation is used to

add a link or node, or to delete a link or node

1.5.2 Online Learning

Step1: The 'N' networks from the offline stage are trained.

Step 2: The agent Is equipped with sensors, a number of vectors that collect information

from the environment. Using these sensors the agent gets the inputs from the

environment.

Step 3: The agent uses the online gradient descent method to learn the environment and

modifies network weights. This helps in adapting to the varying surroundings

Step 4: After a fixed number of time units the networks are modified using genetic

operators and a more fit population is generated from the current population of

networks for the next generation.

Steps 5: The steps from 2 to 4 are applied repeatedly. The agent gets smarter and the

result is achieved.

9

This stage has two different phases that toggle, I.e. evolution and learning. Genetic

operators are applied if the mutation or crossover rate constant is less than a certain

threshold generated. The agent uses the onhne gradient descent method to learn the

environment. We employ a history sensitivity function that decreases the amount of learning

as the time elapses. We designed an onhne gradient descent method for evolved networks

with hidden nodes.

CHAPTER-2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS

Overview

This chapter provides the basis for the underlying concepts of the proposed algorithm. It provides

information about Art1f1cial Neural Networks and their learning algorithms, and Genetic Algorithms

and their operators in detail.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the

way biological nervous systems, such as the brain, process information. The key element of this

paradigm is the novel structure of the information processing system. It is composed of a large

number of highly interconnected processing elements (neurons) working in unison to solve

specific problems. ANNs, like people, learn by example. They resemble the brain in two

respects:

i. Network acquires knowledge through a learning process.

ii. Inter-neuron connection strengths known as synaptic weights are used to store the

knowledge.

According to the DARPA Neural Network Study (AFCEA International Press, 1998),

an artificial neural network is a system composed of many simple processing elements operating

in parallel whose function Is deterrmned by network structure, connection strengths, and the

processing performed at computing elements or nodes.

According to Haykin, S. (Neural Networks: A Comprehensive Foundation, 1998) ANNs have been

applied to an increasing number of real-world problems of considerable complexity. Their most

important advantage is in solving problems that are too complex for conventional technologies -­

problems that do not have an algorithmic solution or for which an algorithmic solution is too

complex to be found. In general, because of their abstraction from the biological brain, ANNs are

well suited to problems that people are good at solving, but for which computers are not. These

problems include pattern recognition and forecasting (which requires the recognition of trends in

data).

10

11

2.1.1 Biological Inspiration

The study of ANNs has been inspired by biological learning systems that are built from very

complex webs of interconnected neurons. The human brain contains a very large number

(approximately 1011
) of neurons that are massively interconnected with other neurons. Each

neuron is a specialized cell which can propagate an electrochemical signal. The basic

computational unit in the nervous system is the nerve cell , or neuron. A neuron has:

• Dendrites (inputs)

• Cell body

• Axon (output)

Figure 2.1 Schematic of biological neuron

The neuron has a branching input structure (the dendrites), a cell body, and a branching output

structure (the axon). The axons of one cell connect to the dendrites of another via a synapse. A

neuron receives input from other neurons (typically many thousands) . Once the sum of all inputs

exceeds a critical level , the neuron discharges a spike, an electrical pulse that travels from the

body, down the axon , to the next neuron(s) (or other receptors) . This structure indicates that the

information processing capabilities of biological neural systems are the result of highly parallel

processes that are distributed over many neurons. Motivation for ANNs is to capture this kind of

highly parallel computation based on distributed representations. While ANNs are loosely

inspired by biological neural systems, there are many complexities of biological neural systems

that are not modeled by ANNs.

12

2.1.2 Architecture of Artificial Neural Networks

There many different types of artificial neural network structures, each of which has very different

computational properties. An art1fic1al neural network is composed of a number of neurons or

nodes connected through links or synapses. The structure of the network depends on the way

the neurons or nodes are connected to each other. The general structure of a neuron Is shown in

Figure 3.2

Xl

X2

INPUTS OUTPUT

~
TEACHING INPUT

Figure 2.2 A typical neuron with mcoming and outgoing connections

Each neuron has one or more incoming synapses and single output value. Each link has a

numeric value called weight associated with It. Each neuron performs a simple task of summing

the product of input and weights, called weighted inputs, from all input synapses. The neuron

fires if the net excitation (summed value) exceeds its inhIbItIon i.e. the threshold of the neuron.

the input vector

the weight vector for the j1h node

b . = f cw! .A+ w .0 x 0 .)
J J J J

or
n

b . = f ((I, w .. x a .) + w ·o x 0 .)
J i=l jl J J J

dot product pomt-wise

b j is the output of r node.

f(x) is the activation function such as f (x) = 1 / (1+e•x).

0 j is the threshold for the j'h node

13

The general structure of the ANNs consists of layers of neurons:

Input Layer:

Each network must have one or more input neurons. Input neurons do not process the input

hence produce output equal to their input. Input neurons are connected to hidden layer neurons,

if any, or to output layer neurons.

Output Layer:

The network should contain one or more output neurons. Output layer neurons produce an output

to the environment based on the activation function. Output neurons receive inputs from either

hidden layer neurons, if any, or from the input layer neurons.

Hidden Layer.

A network may contain zero or more hidden layers. Hidden neurons are typically used as feature

extractors and sometimes may be present in more than one layer. The hidden layers are

bounded by input and output layers and do not interact with the environment directly.

2.2 Learning in Artificial Neural Networks

Leaming in ANNs refers to the modification of internal network parameters, so as to bring the

mapping from input to output as close as possible to a desired mapping between them.

Therefore, any change in the memory or weight space, W, is considered as learning for the

network.

dW /dt-::t:-0

Leaming may also be defined as optimization of the parameter set with respect to a set of training

examples. Two important types of learning algorithms are:

• Supervised Leaming

• Unsupervised Leaming

2.2.1 Supervised Leaming

Supervised learning is the most widely used technique. The term supervised originates from the

fact that the desired signals on individual output nodes are provided by an external teacher. We

14

collect many examples to serve as the training set. Each example in this training set comprises

of all inputs and the desired outputs for these inputs. A supervised learning algorithm consists of

the following steps:

• Present the training input to the input layer, one at a time.

• Calculate the error between the output produced by the network and the desired output.

• Update the network parameters so as to reduce the error.

• Repeat these steps until the error is zero or less than the desired error tolerance.

Back-propagation (BP) algorithm is by far the most popular supervised learning algorithm. The

elementary backpropagation network is a three-layer, hetero associative ANN , with feedforward

connections.

Figure 2.3 A typical feedforward neural network

15

2.2.1.1 Backpropagation Algorithm:

1. Assign random values in the range [+1, -1] to all the Input to hidden layer connections, vh"

all the hidden to output layer connections w11 , to each hidden neuron threshold, 0 ,, and to

each output neuron threshold, lj/ J

2. For each pattern pair (Ac ,Ck), k = 1,2, ... ,m, do the following:

a) Transfer Ac's values to the input neurons, filter the input neuron activation through

V and calculate the new hidden neuron values, using the following:

n
bi= f((h~l ahvhi)-0i) tor all i= 1,2, ... ,p

where b, is the activation value of the fh hidden neuron, 0 1 Is the fh hidden

neuron's threshold value, and f() 1s the sigmoid threshold function:

f(X): (1 + e·Xrf

b) Filter the hidden activation through_ W to output using the equation:

p
c. = /((I, b.w ..)-lf/ .)

l i=I l 1J J
For allj = 1,2, ... ,q

Where cJ is the activation value of the l' output neuron and lj/ J is the l'
output neuron's threshold value.

c) Compute the discrepancy (error) between the computed and desired output

neuron values using the equation:

~ = 0 (1 - cJ)(c/ - cJ) For all j = 1,2, ... ,q

Where ~ Is the l' output neuron's computed error.

d) Calculate the error of each hidden neuron relative to each ~ with the equation:

q
e. =b.(l-b.) I, w .. d.

l l l j=I lJ J
For all i = 1,2, ... ,p

Where e, is the fh hidden neuron's computed error.

e) Adjust the hidden to output connections:

L1Wq = a (b, dJ For all ; = 1,2, ... ,p and all j = 1,2, ... ,q

Where L1Wq is the amount of change made to the connection from the ith

hidden neuron to the t output neuron, and a is a positive constant

controlling the learning rate.

16

f) Adjust the output thresholds:

Alf/ 1 = a~ For all j = 1,2, ... ,q

Where LI If/ 1 is the amount of change to the j'h output neuron's threshold value.

g) Adjust the input to hidden connections.

Avh, = P (ah e,) for all h = 1,2, ... ,n and all;= 1,2, ... ,p

Where Llvh, is the amount of change made to the connection from the Hh

input and /h hidden neuron, and p is a positive constant controlling the

learning rate.

h) Adjust the hidden thresholds:

Ll0, = fie, for all i = 1,2, ... ,p

Where LI 0 1 is the amount of change to the /h hidden neuron's threshold

value.

3. Repeat step (2) until the error correction value ~. for each j = 1,2, ... ,q, and each training

set k = 1,2, ... ,m, is either sufficiently low or zero.

q 1s the number of neurons in the output layer, and

m is the number of input/output pairs.

To summarize backpropagation, the weights leading into an output node are adjusted in

proportion to the difference between its actual value and its desired value. Weights leading into

hidden nodes are adjusted in proportion to their contributions to error

17

2.2.2 Online Learning and Offline Learning

An art1f1c1al neural network can learn in one of two ways

• Offhne or Batch learning

• Online or Stochastic learning

In offline or batch learning, optimization of network parameters is performed with respect to the

entire training set and it is an iterative process. In batch learning the network learns using training

datasets and with this knowledge network tnes to recall near optimal results for the noisy inputs

from the field. The swift computation of such an optim1zat1on is a d1ff1cult task, because generally,

the dimension of parameter space is high. The network parameters (weights) are fixed in the

operation or testing mode. Although batch learning may be faster for small or medium datasets

and networks, it is more prone to problems like overtraining and local minima, and hence is

inefficient in case of training large networks and for large training sets. The backpropagation

algonthm presented above is an example of offline learning.

In online or stochastic learning, network parameters are updated after the presentation of each

training example. Unlike the offline training, the networks can modify its parameters when it is in

operation or testing mode. In the online learning scenario, only one example is given at a time

and discarded after learning. Hence it consumes less memory and fits well into more natural

learning, where user or agent receives new information at every moment and should adapt to it.

Online learning 1s a more natural approach for learning non-stationary tasks, where batch

learning needs retraining on the dynamically changing datasets. Apart from easier feas1b1lity and

data handling the most important advantage of online learning 1s its ability to adapt to changing

environments. With batch learning these subtle changes go undetected as we average the error

over several training examples. Onhne learning of continuous functions, using gradient based

methods on a differentiable error measure 1s one of the most powerful and commonly used

approaches for training non-stationary tasks in particular.

We can obtain the elementary online gradient descent algorithm by dropping the average

operation in the batch gradient descent algol'lthm.

Consider an infinite sequence of independent examples

(X1,Y1).(X2,Y2),

The purpose of learning is to obtain a network with parameter w which can represent the rules

inherent to this data.

In online learning the ANNs modify their parameter Wt at time t to w1+1 using next example

(x1+1, Yt+1). But this may result in loosing the pre-learned information. To avoid this, we introduce a

loss function (l<x,y;w>) to evaluate the performance of the network with parameter w. The best

network is the network that has minimum l<x,y;w> value.

18

We use the following parameter updating rule (Amari, 1967 and Rumelhart et al., 1986):

Wt+1=wrf/tC(Wt)8/ aw l(Xt+1,Yt+1:Wt),

Where f/1 Is the learning rate that depends on t and C(wJ is a positive definitive matrix that

depends on w1 .

If f/1 =cit, the where c is a constant, w converges tow· (the parameter of best network) locally

(Sompolinsky et al, 1995).

On the other hand online training suffers from the following drawbacks

• The main difficulty is the sensitivity of learning methods to the parameters. This

dependence may slowdown the learning.

• Most advanced optimization methods like conJugate gradient, rely on a fixed error surface

where in online learning task we need to deal with inherently stochastic error surface.

2.3 Genetic Algorithms

Genetic algorithms are best at solving problems for which little information is available. A genetic

algorithm is an iterative procedure that consists of a constant-size population of individuals, each

represented by a finite string of symbols, known as the genome. The genome encodes a possible

solution in a given problem space. This problem space, referred to as the search space,

comprises of all possible solutions to the problem at hand. Genetic algorithms use the principles

of selection and evolution to produce several solutions to a given problem. Genetic algorithms

tend to thrive in an environment in which there is a very large set of candidate solutions and in

which the search space is uneven and has many hills and valleys.

2.3. 1 Biological Motivation

The search performed by GAs is based on an analogy to biological evolution. At the turn of the

century, it was unclear whether Darwin's or Lamarck's theory better explained evolution. Lamarck

believed in direct inheritance of charactenstics acquired by individuals during their lifetime.

Darwin proposed that natural selection coupled with diversity could largely explain evolution.

Darwin himself believed that Lamarckian evolution might play a small role in life, but most

Darwinians rejected Lamarckism. One potentially verifiable difference between the two theories

was that Darwinians were committed to gradualism (evolution in small, incremental steps), while

Lamarckians expected occasional rapid change. One of the most interesting characteristics of

natural evolution process is its robustness. The process is not dependent on external support and

has a very high degree of fault tolerance. Holland's aim in devising computer models based on

natural evolution was primarily to obtain this robustness, badly lacking in the existing systems.

Search techniques postulated in Artificial Intelligence research are largely local. Look-ahead is

expensive Without look-ahead, chances ot the search getting stuck at local maxima is high,

19

because the optimum values at the distance are not visible to the local search techniques. Pure

random search has a higher chance of avoiding local peaks, but 1s not sufficient for effective

exploration of large search spaces.

All living organisms consist of cells In each cell there is the same set of chromosomes.

Chromosomes are strings of DNA that serve as a model for the whole organism. A chromosome's

characteristic is determined by the genes. Each gene has several forms or alternatives which are

called alleles. These alleles produce differences in the set of chromosomes called the genotype.

Each genotype maps to a phenotype (the individual) with a certain fitness.

The basic notions of natural evolution are as follows:

• New children are created from existing parents. The children inherit many of the

characteristics of the parents.

• Each individual has a set of chromosomes consisting of one or more genes. The

chromosomes (called the genotype) form the only genetically significant component for

evolution. The genes directly control the external behavior and capabilities (called the

phenotype) of the individuals. Changes in the phenotype can be realized by making

changes in the genes.

• Natural selection works on the fitness of individuals. By the point above, fitness becomes

a direct function of an individual's gene layout, i.e., the chromosome. Therefore, natural

selection directly controls the selection of chromosomes for propagation.

• Chromosomes are relevant only at the point of reproduction, where suitably modified

chromosomes for the children are created based on the chromosomes of the parents.

• There 1s no domain knowledge guiding the evolution process. The fitness-based rate of

survival is the only guiding factor.

GAs work on the Darwinian principle of natural selection where stronger ind1v1duals are likely the

winners in a competing environment. Darwinian model of evolution can be visualized as a

sophisticated generate and test strategy. The natural selection based on fitness slowly discards

potentially bad solutions from the population. The combining of chromosomes in the genetic

reproduction process provides an opportunity to exploit already discovered regularities among the

different members of the population.

20

2.3.2 A Prototypical Genetic Algorithm

The basic principles of GAs were first proposed by Holland. GAs presume that potential solution

of any problem is a chromosome and can be represented by a set of parameters. These

parameters are regarded as genes of a chromosome and can be structured by a string of values.

A positive value is used to reflect the degree of fitness of the chromosomes for the problem which

would be highly related with its objective value. Although different implementations vary in their

details they typically share the same basic structure. The algorithm operates by iteratively

updating a population of chromosomes. In every generation members of the population are

evaluated according to the degree of fitness. We then select the fittest chromosomes of old

population for the next generation without any change. Other solutions or chromosomes, based

on their fitness, are used as the source for creating new offspring individuals by applying genetic

operators such as crossover and mutation.

The following is a pseudo-code for general genetic algorithm approach:

0. [Representation] Define a genetic representation of the system.

1. [Start] Generate random population of n ~hromosomes (suitable solutions for the problem)

2. [Fitness] Evaluate the fitness of each chromosome in the population

3. [New population] Create a new population by repeating following steps until the new

population is complete.

3.1. [Selection] Select two parent chromosomes from a population according to their fitness

(the better fitness, the bigger chance to be selected)

3.2. [Crossover] With a crossover probability, cross over the parents to form a new offspring

(children). If no crossover was performed, offspring is an exact copy of

parents.

3.3. [Mutation] With a mutation probability, mutate new offspring at each locus (position in

chromosome).

3.4. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current population

6. [Loop] Go to step 2

21

Gcnciatc lrutial l'opulauon

Assess lrutJal l'opulatron

Sclcd J'opulatlon

Kcoo.11,bmc New Population

t
MWate New J'opulatlon

Assess New l'opulauon

No

Figure 2.4 Flow chart representation of the algorithm

2.3.3 Chromosome Representation

The coding of chromosome representation may vary with the type of the problem at hand.

Generally bit string encoding is used for the benefits of easy manipulation. The chromosomes or

solutions represented with bit strings can be very complex. Using Gray code to represent the

solutions works better than binary coding (Hollstein,R.B, 1971). Problems with real parameters

cannot be solved efficiently with bit strings. Hence we use real value chromosomes for faster

computation and high accuracy. The real encoding of solutions require specialized genetic

operators. Although real encoding suits the practical problems it does not guarantee good results

in all situations. Generally we use fixed length binary strings to represent real values. This

approach may result in loss of accuracy but is easier to manipulate.

22

2.3.4 Genetic Operators

The generation of successors in a genetic algorithm is determined by a set of operators that

recombine and mutate selected members of the current population. Typical genetic algorithm

operators for manipulating the chromosomes are as follows.

• Selection

• Crossover

• Mutation

i. Selection:

The Selection operator selects the fittest chromosomes in the population for reproduction based

on the rule that the fitter the chromosome, the more hkely it is to be selected to reproduce.

According to Darwin's evolution theory the best chromosomes should survive and create new

offspring. There are many methods for selecting the best chromosomes, for example roulette

wheel selection, Boltzman selection, tournament selection, rank selection, and steady state

selection. Two of these approaches are explained below:

a) Roulette Wheel Selection: Parents are selected according to their fitness. The better

the chromosomes are, the more chances they have to be selected. Imagine a roulette

wheel (pie chart) where all chromosomes in the population are placed m according to

their normalized fitness. Then a random number is generated which decides the

chromosome to be selected. Chromosomes with better fitness values will be selected

more times since they occupy more space on the pie.

b) Rank Selection: Roulette wheel selection is not efficient when the fitness of

chromosomes is widely spread over a range of values. For example, if the best

chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will

have very few chances to be selected. Rank selection first ranks the population and then

every chromosome 1s assigned new fitness values from its rankings. The worst

chromosome will have fitness 1, second worst 2 etc. and the best will have fitness N

(number of chromosomes in population). After the new fitness allocation, all the

chromosomes have a chance to be selected But this method can lead to slower

convergence, because best chromosomes are generally s1m1lar and do not differ much

from one other.

ii. Crossover:

A crossover operator manipulates a pair of individuals, called parents, to produce new

individuals, called offspring, by interchanging segments from the parents' coding. By

interchanging information between two parents, the crossover operator provides a powerful

exploration capability of the solution search space. The bit at position i in each offspring 1s copied

23

from the bit at position i in one of the two parents. The choice of which parent contributes the bit

for posItIon i is determined by an addItIonal string called the crossover mask.

In single point crossover, the crossover mask is constructed with contiguous 1 's followed by O's to

complete the string This results in offspring in which the first n bits are contributed by one parent

and remaining bits by the second parent. Each time single point crossover operator Is applied, the

crossover point 'n' is randomly chosen, and then crossover mask Is created and applled. The

mask contains 'n' 1 's followed by necessary number of O's to complete the string.

In two-point crossover, the offspring are created by substituting intermediate segments of one

parent into the middle of the second parent string. The cross over mask is a string beginning with

no zeros followed by contiguous string of n1 1 's, followed by necessary number of O's to complete

the string. For two point crossover operator, the mask is generated by randomly choosing the

integers n0 and n1.

Uniform crossover combines bits sampled uniformly from two parents. Here crossover mask is

generated as a random bit string with each bit chosen at random and independent of others.

iii. Mutation:

Mutation operator generates offspring from a single parent. Mutation is originally designed for

binary represented chromosomes. Mutation operator produces small random changes to the bit

string by choosing a single bit at random. As a population evolves, there is a tendency for genes

to become predominant until they have spread to all members. Without mutation, these genes will

be fixed for ever, since crossover alone cannot introduce new gene values. If the fixed value of

the gene is not the value required at the global maximum, the GA will fail to optimize properly.

Mutation is, therefore, important to 'loosen up' genes which would otherwise become fixed, but if

the mutation rate is too high, the selection pressure on genes resulting from breeding with fitter

individuals may produce bad results. A common value for the mutation rate Is to change one

gene in every thousand.

iv. Objective Function:

An obJect1ve function is a measuring mechanism that is used to evaluate the status of a

chromosome. This function is generally referred to as either evaluation function or fitness

function. The notion of evaluation function and fitness function are used interchangeably.

However, It Is important to distinguish between the evaluation function and fitness function.

Evaluation function provides a measure of an individual's performance, where as fitness function

provides a measure of individual's reproduction opportunities.

Single-point crasmver;

Two-point crossover:

Uniform crrusover:

Point mlllation:

Initial strings Crossover Mask

11101001000 ~ 11101010101

00001010101 ~ 00001001000

11101001000 ~ 11001011000

00001010101 ~ 00101000101

111.Q10Q1000 ~ 10001000100

O0001Q1Q!01 ~ 01101011001

111O1O..Q.1O00 ---------1► 111010.11000

Figure 2.5 Depictmg the operators with examples (Machme Leaming, Tom Mitchell)

24

GAs illustrate how learning can be viewed as a special case of optimization. Particularly the

learning task is to find the optimal solution according to the pre defined objective function. Like

neural networks, genetic algorithms are easy to apply to a wide range of problems The results

can be very effective on some problems. As Denker pointed out "Neural networks are the second

best way of doing Just about anything" and has extended his remark with "and genetic algorithms

are the third".

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS

Overview

This chapter discusses the issues concerning with combining the two powerful technologies

ANNs and GAs. This chapter gives brief account of the basic techniques of applying evolution to

ANNs and assists in understanding our proposed algorithm design concepts.

3.1 Introduction

In the recent years two areas of adaptation, namely ANNs and GAs, captured the imagination of

researchers all over the world. Both of these technologies are computational abstractions of

b1olog1cal information processing systems. In general, ANNs are used as learning systems and

GAs as optimization systems ANNs are of particular interest because of their robustness, their

parallelism, and their learning ab1lit1es. GAs are very powerful general learning methods that are

based on natural evolution. However, both of these prominent technologies suffer from

shortcomings.

ANNs are to a large extent based on

• Trial and Error

• Training examples or past experience

• Lack of sound design principles

Design of ANNs is critically dependent on the choice of prim1t1ves such as network architecture

and parameters. Generally architectures are manually designed for the desired application and

such a task requires lots of expertise and time on the part of the designer.

GAs are inefficient in the fine-tuning local search and may need vast amount of time to converge

to a solution. Designing a suitable fitness function for real world applications may be hard. GAs

also have weak theoretical basis, require tuning of many parameters for good performance, and

sometimes computationally expensive.

The ANNs and GAs are capable of complimenting each other to get beyond their inefficiencies.

They provide an extremely rich basis for contrast and hybridization. Hence, the combination

results in highly successful adaptive systems (Yao, 1999). Features of these hybrid networks

include adaptability to the environment, less human intervention, and more efficiency.

25

26

3.2 Combining ANNs and GAs

Researchers have combined ANNs and GAs in a number of different ways. Schaffer et al., have

noted that these combinations can be classified into one of two general types - supportive

combinations m which the ANNs and GAs are applied sequentially, and collaborative

combinations in which they are applied simultaneously.

In a supportive approach, the GAs and the ANNs are applied to two different stages of the

problem. The most common combination is to use a GA to pre-process the data

set that is used to tram an ANN. For instance, the GAs may be used to reduce the

dimensionality of the data space by eliminating redundant or unnecessary features.

In supportive combinations the GAs and ANNs are used independent of each other. Some other

possible combinations include using an ANN to select the starting population for the GAs;

using a GA to analyze the representations of an ANN; and using a GA and ANN to solve the

same problem and integrating their responses using a voting scheme (Schaffer et al.).

Alternatively, m a collaborative approach, the GAs and ANNs are integrated into a single

system m which a population of neural networks Is evolved. In other words, the goal of

the system is to find the optimal neural network solution. Such collaborative approaches are

possible since neural network learning algorithms and genetic algorithms are search algorithms.

A neural network learning rule performs a highly constrained search to optimize the

network's structure, while a genetic algorithm performs a very general population-based

search to find an optimally fit gene. Both are examples of biased search techniques, and "any

algorithm that employs a bias to guide its future samples can be mislead in a search

space with the right structure. There 1s always an Achilles heal." (Schaffer et al) The primary

reason researchers have looked at integrating ANNs and GAs is the belief that they may

compensate for each other's search weaknesses.

3.3 Evolutionary Design of Neural Networks

We can introduce evolution into ANNs primarily in three different levels: connection weights;

architectures; and learning rules as noted by Yao. The evolution of connection weights

introduces an adaptive and global approach to training, especially in the reinforcement

learning and recurrent network learning paradigm where gradient-based training algorithms

often experience great difficulties. The evolution of architectures enables ANNs to adapt

their topologies to different tasks without human intervention and thus provides an

approach to automatic ANN design as both ANN connection weights and structures can be

27

evolved. The evolution of learning rules can be regarded as a process of "learning to learn" in

ANNs where the adaptation of learning rules Is achieved through evolution. It can also be

regarded as an adaptive process of automatic discovery of novel learning rules.

3.3.1 Evolution of Connection Weights:

This Is the basic level where we can incorporate genetic operators into neural networks.

Generally, the weights of the connections are modified in order to optimize evaluation function

such as mean square error To formulate the training process as the evolution of connection

weights, we require two phases.

• Representation of connection weights

• Evolutionary process to apply

Genetic operators are efficient and easy to use with binary strings. The most important stage in

evolution of weights is to decide on a suitable representation for connection weights, i.e. either we

represent them as binary strings or not In the second phase we choose the evolutionary process

simulated by a genetic algorithm, in which search operators such as crossover and mutation

have to be decided in conjunction with the representation scheme. The training performance

depends on the representation scheme we choose.

3.3.1.1 Binary Representation:

Genetic algonthms, in general, use binary strings to encode the population of solutions which are

also called chromosomes. In the binary representation scheme, each connection weight is

represented by a number of bits with certain length. An ANN is encoded by concatenation of all

the connection weights of the network in the chromosome. A heuristic for the order of the

concatenation of connection weights in a chromosome Is to append all the binary connection

weights coming from input nodes to each hidden neuron in the hidden layer from left to right and

append all binary connection weights coming from hidden nodes to each output node in the

output layer from left to write. Hidden nodes in ANNs are in essence feature extractors and

detectors. The above heuristic is based on the fact that separating connection weights from

different input nodes to the same hidden node, apart in the chromosome representation This

would increase the difficulty of constructing useful feature detectors because these feature

detectors, found during the evolutionary process, might be destroyed by crossover.

Figure 3.1.a and Figure 3.1.b provide an example for the binary representation of an ANN

whose architecture is predefined. Each connection weight in the ANN is represented by 4 bits, the

whole ANN is represented by 24 bits where weight 0000 indicates no connection between two

nodes.

28

Node 1 Node2 0100 1010 0010 0000 0111 0011

a b

Figure 3.1.a: An ANN with connecb.on weights Figure 3.1.b. Bmary representab.on of connecb.on weights

Binary encoding has its advantages and disadvantages

Advantages:

The advantages of binary representation are simplicity of design, generality of representation,

and straightforward application of genetic operators such as crossover and mutation. It does not

need any complex or tailored operators. Also binary representation facilitates digital hardware

implementation of ANNs as weights are represented with O's and 1 's with limited precision in the

hardware.

Disadvantages:

Real world applications generally need real number representation of weights. But some

combinations of real valued connection weights cannot be approximated with sufficient

accuracy by binary values. If too many bits are used, chromosomes representing large ANNs

will become extremely long and the evolution in tum will become very inefficient. If too few

bits are used to represent each connection weight, training might fail because some combinations

of real-valued connection weights cannot be approximated with sufficient accuracy by discrete

values. So a tradeoff between representation precision and the length of chromosome often

has to be made.

29

Node2 Node 1 0010 000001001010 00110111

10

b
a

Figure 3.2.a: An ANN with connection weights Figure 3.2.b: Bmary representation of connection weights

An important concern for the evolutionary approach to neural network is the competing

conventions problem. It is also called permutation problem. It is caused by the many-to-one

mapping from the representation(genotype) to the actual ANN(phenotype) since two ANNs that

order their hidden nodes differently in their chromosomes will still be equivalent functionally.

For example, ANNs shown in Figure 3.1.a and Figure 3.2.a are functionally equivalent but are

represented by different chromosomes as shown in Figure 3.1.b and Figure 3.2.b. The

permutation problem makes crossover operator very inefficient and ineffective in producing good

offspring.

3.3.1.2 Real Number Representation:

Real numbers represent the reality better than binary numbers. Figure 3.1.a can be represented

by real numbers as the following real vector.

{4.0, 10.0, 2.0, 0.0, 7.0, 3.0}.

As connection weights are represented by real numbers, each individual in an evolving

population will be a real vector. Traditional genetic operators no longer work with this

representation. Real representation needs more complex genetic operators to be designed.

Advantages:

Real values are suitable for most of the problems and can represent values with great accuracy.

Evolutionary Algorithms (EAs), which are different from Genetic Algorithms in their primary

operator being mutation rather than crossover, work well with real number representation. When

used with EAs, this representation tends to reduce the negative impact of permutation problem.

30

Disadvantages:

As traditional operators are no longer applicable on real valued representation, we need to define

special operators. Designing these operators is no easy task. Real valued representation also

suffers from permutation problem.

A typical cycle of the evolution of connection weights is shown in the following algorithm.

1. Decode each individual genotype in the current generation into a

set of connection weights and construct corresponding ANNs with

the weights.

2. Evaluate each ANN by computing its total mean square error

between actual and desired outputs, or use any general error

function. The fitness of an individual is determined by the

error. The optimal mapping from error to the fitness is problem

dependent.

3. Select the parents for reproduction based on their fitness.

4. Apply genetic operators such as crossover (recombination) and/or

mutation to parents to generate offspring and then selection on

these offspring to form the next generation.

Repeat the above steps until the fitness is greater than a predefined value or the population has

converged (Yao, 1999).

3.3.2 Evolution of Architectures

For a long time the task of designing the architecture of a neural network has been manual and

required expertise in the field. Automating design of ANN architectures for applications is always

an important issue. The design of neural networks architectures does not have any mathematical

basis; hence architecture design requires a tedious trial and error method. There were several

attempts, such as constructive and destructive algorithms, to automate the designing process.

However, they were only partially successful.

Design of the optimal architecture for an ANN can be formulated as a search problem in

the architecture space where each point represents an architecture. Given some performance

(optimality) criteria, e.g., lowest training error, lowest network complexity, etc., about

architectures, the performance level of all architectures forms a discrete surface in the

space. The optimal architecture design is equivalent to finding the highest point on this surface.

This kind of vast search space is suitable for applying GAs. Hence evolution of architectures finds

near optimal architecture given sufficient time.

31

As with the evolution of weights, there are two maJor evolution phases of architectures.

• The representation or encoding of the network

• Genetic operators used to evolve the architecture

There are several encoding schemes based on how much information we want to incorporate into

the representation.

3.3.2.1 Direct Encoding Scheme:

In this scheme all the details about the architecture, i.e. every connection and node of an

architecture, can be incorporated into the chromosome. In this scheme each connection of

architecture is directly specified by its binary representation For example, an matrix can

represent an ANN architecture with N nodes, where indicates presence or absence of the

connection from node i to node j . We can use to indicate a connection and to indicate no

connection.

Each matrix 'C' has a direct one-to-one mapping to the corresponding ANN

architecture. The binary string representing an architecture is the concatenation of rows

(or columns) of the matrix. Constraints on architectures being explored can easily be

incorporated into such a representation scheme by imposing constraints on the matrix, e.g.

a feedforward ANN will have nonzero entries only in the upper-right triangle of the matrix.

Figure 3.3 and Figure 3 4 are two examples of the direct encoding scheme of ANN architectures.

It is obvious that such an encoding scheme can handle both feedforward and recurrent

ANNs.

4

2

a

>

0 0 1 1 0
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

b

0110101011

C

Figure 3.3: An example of the direct encodmg ofa feed forward ANN (a), (b), and (c) show the archttectttre, its
connectivity matnx, and its bmary stnng representation, respectively

4

2

a

0 0 1 1 0
0 0 1 0 0
1 0 0 0 1
0 0 0 0 1
0 1 0 0 0

b

32

I 0011 o 001 oo 10001 00001 01 ooo

C

Figure 3 4. An example of the drrect encodmg of a recurrent ANN. (a), (b), and (c) show the arclntecture,
its connecttvity matnx, and its bmruy stnng representatton, respecttvely.

The direct encoding 1s quite straightforward to implement. It is very suitable for the precise

and fine tuned search of a compact ANN architecture, since a single connection can be

added or removed from the ANN easily. It may facilitate rapid generation and optimization of

tightly pruned new designs. The maJor disadvantage of this encoding scheme 1s scalability. A

large neural network would result in a very large string, hence making the evolutionary process

inefficient.

3.3.2.2 Indirect Encoding:

To overcome the scalability problem of direct encoding, indirect encoding scheme is commonly

used. In the indirect encoding scheme we encode only important characteristics of architecture,

rather than encoding all details, into the chromosome. The details about each connection in an

ANN is either predefined according to prior knowledge or spec1f1ed by a set of deterministic

developmental rules. The indirect encoding scheme can produce more compact genotype

representation of ANN architectures, but 1t may not be very good at finding a compact ANN with

good generalization ability. The following are few indirect encoding schemes and their details

i. Parametric Indirect Encoding Scheme:

ANN architectures may be specified by a set of parameters such as the number of hidden

layers, the number of hidden nodes in each layer, the number of connections between two layers,

etc. These parameters can be encoded in various forms in a chromosome. This scheme is

proposed and developed by Harp et al.

Although this representation considerably reduces the length of the binary string, the GAs can

33

only search a subset of the whole search space. Hence it is suitable for the problems where we

know what kind of architectures we are trying to find.

ii. Developmental Rule Representation Scheme:

In this method, we encode developmental rules which are later used to build architecture into

chromosomes. This scheme results in even more compact genotype representation and also

increases the efficiency of crossover operator as it saves the details of promising architectures.

A developmental rule is usually described by a recursive equation or a generation rule similar to a

production rule in a production system with a left-hand side (LHS) and a right-hand side (RHS).

The connectivity pattern of the architecture in the form of a matrix is constructed from a basis, i.e.

a single-element matrix, by repetitively applying suitable developmental rules to non-terminal

elements in the current matrix until the matrix contains only terminal elements which indicate

the presence or absence of a connection, that is, until a connectivity pattern is fully specified.

The following algorithm by Yao, represents evolutionary development of learning rules

1. Decode each individual genotype in the current generation into

architecture. If the indirect encoding scheme is used, further

detail of architecture is specified by some developmental rules

or a training process.

2. Train each ANN with the decoded architecture by a predefined

learning rule, starting from different sets of random initial

weights and if any, learning parameters.

3. Calculate the fitness of each individual (encoded architecture)

according to the above training result and other performance

criteria such as complexity of architecture.

4. Select the parents for reproduction based on their fitness.

5. Apply genetic operators such as crossover (recombination) and/or

mutation to parents to generate offspring and then selection on

these offspring to form the next generation.

Repeat the above steps until the fitness is greater than a predefined value or the population has

converged.

3.3.3 Simultaneous Evolution of Architectures and Connection Weights

The above evolutionary methods either keep architecture intact or fine tune the weights after near

optimal architecture is found. Both these methods introduce noise and generate less efficient

systems. One major problem with the evolution of architectures without evolution of connection

weights is noisy fitness evaluation as phenotype's (i.e., an ANN with a full set of weights)

fitness was used to approximate its genotype's (i.e., an ANN without any weight information)

fitness.

There are two maJor sources of noise.

• Due to the random initialization of weights, the same genotype (the ANN without any

weight information) may have quite different fitness.

• Different training algorithms may produce different training results even from the same

set of initial weights.

34

Hence evolution of architectures without any weight information has difficulties in evaluating

fitness accurately. As a result, the evolution would be very inefficient. To alleviate these problems

and to build more efficient systems we need to evolve the connection weights and architectures

simultaneously.

3.3.4 Evolution of Leaming Rules

An ANN training algorithm may yield different performance when applied to different

architectures. The design of training algorithms, more fundamentally the learning rules used to

adjust connection weights, depends on the type of architectures under invest1gat1on. Different

vanants of the Hebbian learning rule have been proposed to deal with different architectures.

However, designing an optimal learning rule becomes very difficult when there is little prior

knowledge about the ANNs architecture, which is often the case in practice. It is desirable

to develop an automatic and systematic way to adapt the learning rule to an architecture and

the task to be performed. Often evolution of learning rules is application specific i.e. it is almost

impossible to find a general rule that can be applied to all structures.

what is needed from an ANN is its ability to adjust its learning rule adaptively according to its

architecture and the task to be performed. In other words, an ANN should learn its

learning rule dynamically rather than have it designed and fixed manually.

Unlike the evolution of connection weights and architectures which only deal with static

objects in an ANN, i.e. weights and architectures, the evolution of learning rules has to

work on the dynamic behavior of an ANN. The key issue here 1s how to encode the dynamic

behavior of a learning rule into static chromosomes. Trying to develop a universal representation

scheme which can specify any kind of dynamic behaviors is impractical, since it requires a very

long computation time to search such a large learning rule space. So to keep the

representations simple with a short search space, we impose lim1tat1ons on the type of dynamic

behaviors.

Two basic assumptions which have often been made on learning rules are:

1. Weight updating depends only on local information such as the activation of the

input node, the activation of the output node, the current connection weight, etc.,

2. The learning rule is the same for all connections in an ANN. A learning rule is assumed to

be a linear function of these local variables and their products.

35

The following illustrate the basic methods of evolving learning rules.

3.3.4.1 Developing Algorithmic Parameters:

The adaptive adjustment of back propagation (BP) parameters (such as the learning rate and

momentum) through evolution could be considered as the first attempt to the evolution of learning

rules. Harp et al encoded BP's parameters in chromosomes together with ANN architecture. This

evolutionary approach is different from the non-evolutionary approach. Because the simultaneous

evolution of both algorithmic parameters and architectures facilitates exploration of interactions

between the learning algorithm and architectures such that a near optimal combination of BP with

an architecture can be found.

3.3.4.2 Developing Learning Rules:

The above method serves as the fundamental development of learning rules. There are three

major issues involved in the evolution of learning rules:

• Determination of a subset of terms described

• Representation of their real-valued coefficients as chromosomes

• The EA used to evolve these chromosomes.

There is a lot of research going on today to develop this method, since this stands for the true

evolution of learning rules. Adapting a learning rule through evolution is expected to enhance

ANN adaptivity greatly in a dynamic environment.

The following algorithm by Yao represents evolutionary development of learning rules

1. Decode each individual genotype in the current generation into a

learning rule.

2. Construct a set of ANNs with randomly generated architectures and

initial connection weights, and train them using the decoded

learning rule.

3. Calculate the fitness of each individual (encoded learning rule)

according to the above training result.

4. Select the parents for reproduction based on their fitness.

5. Apply genetic operators such as crossover (recombination) and/or

mutation to parents to generate offspring and then selection on

these offspring to form the next generation.

36

Repeat the above steps until the fitness 1s greater than a predefined value or the population has

converged.

As Genetic Algorithms tend to be computationally intensive, we need to use them with prior

knowledge or with some heuristic to assist the search. With the increasing power of parallel

computers, the evolution of large ANNs becomes feasible. Not only evolution can discover

possible new ANN architectures and learning rules, but 1t also offers a way to model the

creative process as a result of ANN adaptation to a dynamic environment.

CHAPTER 4 RELATED RESEARCH

Overview

There has been a lot of research in hybrid algorithms and online learning. This chapter gives

details about the research done in the relative fields.

4.1 Evolutionary Design of Neural Networks

4.1.1 EPNet

EPNet (Yao and Liu, 1996) describes an evolutionary system for evolving feedforward ANNs

Unlike the other evolutionary algorithms, it tnes to evolve the behavior of ANNs. EPNet combines

architectural evolution with modification of weights. This simultaneous evolution of weights and

architecture reduce the noise in the fitness evaluations.

EPNet is based on evolutionary programming; hence mutation is its only operator. EPNet

encourages parsimony of evolved ANNs by attempting different mutations sequentially only if

they are needed.

A number of techniques have been adopted in EPNet to maintain a close behavior between

parents and their offspring. Partial training is always employed after each architectural mutation in

order to reduce the behavioral disruption to an individual. Each indIvIdual in a population evolved

by EPNet is an ANN with weights. The evolution simulated by EPNet is closer to Lamarck1an than

Darwinian It relies on five mutation operators to produce better offspring. The five mutations are:

• Hybrid training

• Node deletion

• Connection deletion

• Connection addition

• Node addItIon

EPNet starts with a population of networks, sorted on the fitness criteria, in the 1nit1al partial

training. Then the five mutations are applied sequentially. If one mutation leads to a better

offspring, It Is regarded as successful. No further mutations are applied, otherwise, next mutation

37

38

is attempted. A hidden node 1s not added to existing architecture at random, but through splitting

an existing node. This process ensures the compact architectures without loosing their ability to

generalize.

EPNet uses direct encoding scheme and works only for feedforward networks. Selection

mechanism used in EPNet is based on the error generated. Only if other mutations fail to improve
l

the fitness hidden node deletion, connection deletion, and node addition are performed in the

proposed order. After each stage a partial training is applied and ANNs are tested for the

success. Only on failure of current stage further stages are applied, otherwise training skips the

other mutation stages for the next step. The following flowchart explains EPNET training process.

Figure 4.1: The mam structure ofEPNet

39

Results:

The data sets used for the experiments were partitioned into three sets for training, vahdat1on,

and testing.

The EPNet was tested on 4 medical problems

1. Breast cancer: data set contained 349 training, 175 validation, and 175 testing examples

2. Diabetes: data set contained 384 training, 192 validation, and 192 testing examples

3. Heart disease: data set contained 134 training, 68 validation, and 68 testing examples

4. Thyroid: data set contained 2518 training, 1254 validation, and 3428 testing examples

The results showed that evolved ANNs have very small sizes as well as low error rates.

Our algorithm is similar to EPNet in the following areas.

• Supervised training approach is considered to train the ANNs

• A variation of backpropagation 1s used as training algorithm

• Evolution of connection weights and architectures earned out simultaneously

Our algorithm differs in several ways from EPNet algorithm.

• EPNet does not use crossover operator

• The networks can only be trained offline in EPNet

• EPNet cannot be applied to recurrent or feedback networks

• Evolution of learning rules is not implemented in EPNet

4.1.2 NEAT (Neuro Evolution of Augmenting Topologies)

NEAT (Kenneth Stanley et al, 2000) proposes a new design for simultaneous architecture and

weight evolutions. In the NEAT each Genome represents network connect1v1ty and contains

connection genes and node genes. A new concept of innovation number 1s introduced to avoid

the competing conventions problem with crossover operator. Each connection gene 1s given an

innovation number which is unique for the whole population. Mutation in NEAT can change both

connection weights and network structure.

NEAT works by starting with a minimal structured network and incrementally adding neurons

and/or connections. They claim the resulting architecture to be the optimal structure. NEAT uses

four genetic operators in topology evolution.

40

Genetic operators used in NEAT algorithm are:
• Mutation of connection weights.

• Mutation by adding neurons

• Mutation by adding connections

• Crossover

Using a global innovation number, NEAT can track the historical origins with very little

computation. This algorithm offers a solution, through historical markings, to the competing

conventions problem in a population of diverse topologies. NEAT uses spec1ation to protect

slowly maturing Genomes.

Results:

NEAT was tested with XOR problem and pole balancing task.

For XOR problem on 100 runs, the NEAT system finds a solution structure in an average of 32

generations. NEAT was able to evolve near optimal network for the task.

In the pole balancing task two poles are connected to a moving cart by a hinge and the neural

network must apply force to the cart to keep the poles balanced for as long as possible without

going beyond the boundaries of the track.

The criterion for success was to balance the poles for 100,000 time units. Results show that

NEAT took fewest evaluations to complete the task. The standard deviation for the NEAT

evaluations 1s 2704. The performance was far better than most of the existing evolutionary

algorithms.

Our algorithm has some common features with NEAT algorithm.

• The unique numbering scheme, called innovation number in NEAT, is used to avoid

competing conventions problem

• Node based direct encoding scheme is used to encode the ANNs

Our algorithm differs from NEAT in several characteristics.

• Our algorithm provides an online learning mechanism which is not present in NEAT

• NEAT algorithm can evolve weights and architectures simultaneously but does not evolve

learning rules. Our algorithm evolves the learning rules

While EPNet claims that Lamarck1an method works best, the NEAT supports Baldwin effect.

4.2 Online Adaptive Algorithms

Leaming may be viewed as an optimization of the internal parameters. This optimization is

carried out using a learning rule, which depends on the application. There are two learning

paradigms.

1) Offline Learning

2) Online Leaming

41

In Offline Leaming, the network parameters are updated after presenting the entire training set.

This is repeated several times until all the characteristics of the training set are incorporated in

the network.

In Online Learning, the network parameters are updated for each training pattern. The most

important advantage of online learning is its ability to adapt to changing environment.

It is also shown that online algorithms are asymptotically as effective as Offline Leaming (Robbins

and Monro, 1951)

4.2.1 Online Learning for Drifting Environments

An environment that changes over time and is dynamic is called a drifting environment. Klans et

al proposed a pure neural network online algorithm that can learn to adopt. They employed

supervised approach and used Stochastic Gradient Algorithm with an adaptive learning rate. The

idea of adaptively changing the learning rate is called learning of learning rule (Somplinskey et al

1995). Klans et al extended the adaptive learning rate idea to differential loss functions. In their

approach when the error is large then learning rate takes large value and if error is small then

learning rate also decreases. They use Hessian matrix of the expected loss function in their

algorithm. This algorithm applies to feedforward networks and provides a learning strategy where

continuous functions are to be learned when no explicit loss function is available.

Results:

Their experiments showed that they could separate original mixed and unmixed artificial signals

in less than 500 iterations. Good quality results were observed from 200 iterations only.

Our algorithm is similar to this algorithm (Klans et al) in the following

• Both of the algorithms try to develop neural networks to adapt to dynamic environments

• Both algorithms use a variation of back propagation to train neural networks online

42

Our algorithm differs from this algorithm (Klans et al) in several ways, they are:

• Their algorithm uses Hessian functions to approximate

• Unlike our algorithm, their algorithm doesn't evolve the architecture

• Their algorithm does not provide offline learning

4.3 Hybrid Online Adaptive Algorithm

4.3.1 Evolution of Leaming: An Experiment in Genetic Connectionism

David J Chalmers (1990) proposed a basic framework for evolution of learning in neural

networks. Chalmers proposed that a Genome encodes the dynamic properties of weight space

dynamics of connectiornst system. Here a number of networks are created and placed in different

environments for specified amounts of time This helps in determining the fitness of a learning

procedure. Each network's final stage is determined by its interaction with the learning procedure

and the environment. The fitness of the network is determined by how well It has adapted to the

environment in the specified time period. The algorithm claims that from a population of

essentially ineffective learning procedures, it can produce learning rules that enable better

adoption. This algonthm uses supervised approach because of its simplicity. The evolution of

connection weights and architectures is not pursued here. Hence a single layer of fixed and fully

connected network is used in the algonthm. The changes to the weight of any connection should

only be dependent on the information local to that connection. The algonthm makes use of ten

variables and one scale variable to evolve learning rules. The general rule uses these ten

variables as coefficients of network and algorithmic parameters and the scale variable to increase

or decrease the amount of change. All vanables are represented by fixed number of binary digits.

Results:

Chalmers conducted several experiments over 8 tasks. For each task, a network was presented

with a number of training examples each consisting of an input pattern and associated output

pattern. The results show fitness improvement from 60% to 90% after 1000 generations.

Our algorithm shares some common features with this algonthm (Chalmers, 1990)

• Both of these algorithms use a general linear equation to evolve learning rules

• Both of the algorithms use supervised learning procedure

• Both of the algorithms provide learning for evolved networks

43

Our algorithm has several features that are different from Chalmers' algonthm

• Unlike this algorithm, our algorithm implements evolution of architectures

• Chalmers algorithm uses single layer fixed and fully connected networks, whereas our

algorithm uses dynamic architectures

• Chalmer's algorithm is designed only for feed-forward networks

• The learning rule variables are represented with binary values in Chalmers proposed

algorithm. Our algorithm uses real variables in learning rule evolution

4.3.2 Learning to Adapt to Changing Environments in Evolving ANN

From the Institute of Psychology-Rome, Stefano Nolfi et al (1996) proposed their methodology

"Learning to adapt to changing environments in evolving ANNs". They used a genetic algorithm to

simulate the evolution of a population of neural networks each controlling the behavior of a small

mobile robot that must explore an environment surrounded by walls. The environment changes

from one generation to another. Their methodology was proposed to overcome the limitations of

the simulated aquatic environment set up by Todd-Miller in 1991. Todd and Miller (1991)

developed creatures that live m one of the two patches in the environment. Stefano Nolfi et al

proposed the evolutionary method to develop a creature, which is able to reach a target area

containing food in its environment. The creature should explore the arena as efficiently as

possible while avoiding collisions with wall. They have used a feedforward neural network with

four input sensors in the input layer, which are connected to four output units in the output layer.

The neural network has two distinct sub-networks that share the same inputs but have separate

outputs. The first network determines the creatures moving actions while the second network

determines updating of connection weights of the standard network. The teaching network's

connection weights never change.

Results:

Experiments began with 100 random networks with random weights for standard and teaching

sub-networks. Each generation lives for 10 epochs, each epoch containing 500 input/output

cycles. The results proved that the networks that learn achieve higher fitness than those that do

not learn.

Our algorithm is similar to this algorithm in some aspects. They are:

• Both incorporate learning after evolution

• Both algorithms address architectural evolutions

• Both algorithms are applicable to fast changing environments

44

Our algorithm differs considerably from this algorithm (Stefano Nolfi et al, 1996) in the following

areas.

• It (Stefano Nolfi et al, 1996) addresses only feedforward neural networks

• It does not use hidden layers

• It does not evolve learning rules

• It does not employ simultaneous evolution of structure and weights

4.3.3 Evolutionary Algorithm for Online Leaming

Magoulus et al (2001) have proposed a novel hybrid evolutionary approach for online training. As

classic batch training algorithms cannot handle non-stationary data, the need for online learning

arises. Their Lamarckian inspired hybrid evolutionary algorithm basically consists of two stages.

In the first stage, they provide online training using stochastic gradient descent with adaptive step

size. In the second stage, differential evolution strategies proposed by R.stom et al (1997) are

used as online retraining. The second stage assumes that the SGD in the first stage has

produced a good solution. The second stage directly incorporates the solutions produced in the

first stage into the genes of off-spring. They have employed a memory based calculation of step

size, in the first stage, which considers the previous information to adapt the step size for the next

pattern presentation. They claim that the SGD algorithm has low storage requirements and needs

less computation. In the second stage, the DE strategy is used for re-training. They perform

evolutionary operations on the weight vector. The primary DE operator used is mutation. For each

weight vector wP., a new mutant vector is generator using the following relation:

Mutant Vector= wP 1+ ~ (WbesrWPi) + ~(w r1-W r2),

Where Wbest is the best member of previous generation, ~>O is a real parameter called mutation

constant, W r 1 and W r 2 are two random weight vectors.

Stage 1 - "Leaming"

Step Oa: Initialize the weights w0 , Ile and the meta-stepsize K.

Step la: Repeat for each pattern p.

Step 2a :Calculate E(wP) and then rE(wP).

Step 3a: Update the weights:

wP+l = wP-!')PrE (wP) .

Step 4a: Calculate the stepsize to be used with the next pattern

p + l: Ilp+l = !')P + K rE (wP-1), rE (wP)

Step Sa: Until the termination condition is met.

Step 6a: Return the final weights wP+l to the Stage 2.

Stage 2 - "Evolution"

Step Ob: Initialize the DE population in the neighborhood of wp+i_

Step lb: Repeat for each input pattern p.

Step 2b: For i = 1 to NP

Step 3b: MUTATION(wPi) - Mutant Vector.

Step 4b: CROSSOVER(Mutant Vector) - Trial Vector.

Step Sb: If E(Trial Vector) 6 E(wPi), accept Trial Vector for

the next generation.

Step 6b: EndFor

Step 7b: Until the termination condition is met.

Algorithm 4.1: Genenc Model of the Hybrid On-hne Trammg Algonthm

45

To further increase the diversity, they used crossover operator. Based on a crossover constant

they decide whether to select a bit or not into the target vector.

Results:

They have tested the algonthm with two experiments. The first expenment was to train an ANN

online to classify among 12 texture images. The results show that it performed better than batch

propagation. The second expenment was to train an ANN online to detect suspicious regions in

colonoscopic video sequences. The algorithm provided better results over algorithm without

evolution.

Our algorithm 1s similar to this hybrid algorithm (Magoulus et al, 2001) in some aspects. They are:

• Both have two training stages namely, offline and onhne

• In both algorithms evolution makes use of mutation and crossover

• Both can be used in slowly varying environments

Our algorithm differs in several ways from this algorithm (Magoulus et al, 2001)

• In this algorithm the architecture 1s fixed and they only evolve weight vectors

• In this algorithm learning is employed only once and only evolution 1s repeated until

terminating criterion 1s met

• It does not use spec1ation and cannot have global online learning

46

4.4 Online Interactive Learning

Adrian Agogino et al (1999) have built a system based on online neuro evolution. There are only

few systems that are capable of online evolution. Agogino et al have proposed to evolve

feedforward ANNs to create the agents that improve their performance through real time

interaction. Typically the system has two stages:

1. Offline evolution

2. Online evolution

This approach is demonstrated in a game world where ANN controlled agents play against

humans. Through offline evolution the agents are trained for various conflicting goals. Then the

prepared population is allowed to evolve online.

Each agent has a feedforward ANN as its brain. The outputs from this network guide the agent in

the given environment at each time step. The inputs to the network are collected through eight

sensors. Four of them provide enemy information and the other four supply mine location

information.

A

Figure 4.2 (A) Peon's neural net with mputs and outputs. The sensor mformatlon 1s sent to the mput layer of
the feedforward network. The two output nodes mdlcate where the peon should go m terms of latitude and longitude
distance from the current location. (B) Configuration ofa peon's eyes Four of the eyes return the average distances to

gold mmes in each quadrant and the other four eyes return the average distance of the enemy.

When an agent is killed it is replaced with either a best fit agent or an agent from crossover

operation on two better fit agents.

The agents are ranked on their rate of productivity based on the following formula:

Fitness= (Mines found* V-C)/ Age,

Where V is a constant, which is awarded for finding a mine.

C is a constant that indicates the initial cost of being born.

This measure rewards finding mines quickly, but also awards longevity.

47

Average Over All Scenarios
Evolving Population St.Hting Fro m Sc ratch

vs. Pre-evolved Popu lati on

90

80

70

60

50 +-,i--+-+--+-+--f--+-+--+-+--,f--+--l

2 3 4 5 6 7 8 9 10 11 2 13 4

Game Pla y ing Time (- se co nds)

A

Scenar io 5 .ind 11

10,----------~

80

60

40

- ~ ~ ~ ~ ~ ? ~ ~ ~

Ga me Pl ayin g Time (- · se co nd s)

C

- Off+ On line

- Offline

- Off + Online

- Offii e

10,----------~

20 0 __________

~ ~ ~ ! ~ ~ ~
Game Playi ng Time I - seconds I

B

Scenario 5 .ind 17

- ~ ~ ~ ~ ~ ~ ~ ~ ~

Game Play in g Tim e (- se co nds)

D

- Onli e Only

- o line

- 0 , + Online

- Offline

Figure 4.3 : (A) Average performance over all scenarios of a population that is allowed to evolve on line compared to
one that is not (Offiine). (B) A population started with random weights that evolves online will outperform the

population trained oftline when given enough time.

(C) Even after the population has adapted to Scenario 5, it has no trouble adapting to a sudden change to Scenario 11.
(D) The improvement is even clearer when the new scenario is !he novel Scenario 17.

Results:

They have tested the algorithm with 16 different game scenarios. They evaluated the

performance of offline and online evolution combined versus offline evolution . The results show

that online evolution significantly improved the performance. When tested with a new scenario,

online evolution performed better than offline evolution. They even claim that given sufficient time,

online evolution can outperform offline evolution. They have suggested that online evolution can

be used in the domains such as search engines, where evolution was not considered before.

There are some similarities between this algorithm and our algorithm:

► Both aim to achieve adaptation to dynamic environments

► Both algorithms try to fine tune the offl ine evolved networks in the environment

48

Our algorithm differs from this algorithm in several ways, they are:

► In this algorithm, online evolution is used to adapt to the change in the environment,

whereas our algorithm uses ANN learning algorithms for the same purpose.

► This algorithm considers only feedforward networks, whereas our algorithm can handle

recurrent networks.

► In this algorithm, architectural evolution 1s not implemented.

► In this algonthm, the role of ANNs is very limited.

CHAPTER 5 HYBRID LEARNING ALGORITHM

Overview

This chapter presents a Hybrid learning system for drifting environments This chapter discusses

the details of the core algorithm. The approach presented in this chapter improves the

performance of neural networks in drifting environments.

5.1 Introduction

Evolution and learning are the most fundamental processes of adaptation. Evolution itself has an

ability to adapt to the internal characteristics or regularities of an environment and this area is well

explored with successful results (EPNet by Yao 1999, NEAT by Kenneth Stanley et al) Hence

evolution serves as the primary adaptive process. From an evolutionary point of view, learning

has at least three adaptive functions (Miller & Todd, 1990)

• It can help and guide evolution

• It allows adaptation to the environmental changes, which are too fast for the evolution to

track.

• It helps to overcome the size lim1tat1ons of genotype by exploiting the regularities of the

environment.

Hence learning helps the agent to partially control the input from the environment by developing

the agents' behavior. Evolution can only optimize the performance of the agents for the next

generation. But when an environment changes from one generation to another generation, the

agents may not perform well in the present environment as optimization is made using the

performance in the last generation's environment that is different from the present. By bemg

sensitive to environmental conditions that could not be anticipated by evolution, learning can

incorporate them in the agents' behavior (Stefano Nolfi et. al, 1995).

When combined with evolution, learning can use the regularities of the environment to build more

complex phenotypes. Hence, learning is considered as a secondary adaptation process that

49

50

provides a continuous active development due to its sensitivity to the dynamics of the

environment

5.2 The framework of the algorithm

This algorithm is inspired by the ways living organisms evolve. Over the generations, living

organisms employed mutations and crossover to produce better offspring. This process of

Darwinian principle is effectively used in the existing algonthms for better results. But in real life

the environment surrounding the generations is not static, and if the organisms do not adapt to

the current changes in their lifetime they will be extinct in a few generations. The organisms not

only change from generation to generation but learn to adapt to the changing surroundings in

their lifetime. Lamarck1an learning proposes the similar idea that the organisms pass on the

learned knowledge, over their lifetime, to the next generations that in turn produce better

offspring. For a static environment, we may choose to exclude the lifelong learning since its

benefits are limited and can also be achieved without including lifelong learning. But this is not

true for dnfting environments. To survive in dynamic environments, the art1fic1al intelligence

agents need to learn in their lifetime.

Adaptation is defined (Nikola Kasbov, 2002) as:

1. A set of parameters that are subject to change during the interaction with the

environment.

2. An incoming continuous flow of information.

3. A goal that is applied to optimize the software performance over time.

For a system to adapt to an environment, it should have the following components.

1. Data acquisition

2. Mechanism to provide general and adaptable frame work.

3. Knowledge acquisition.

As human beings are provided with sensors like eyes and ears to sense the surroundings, in our

system, agents are equipped with sensors to acquire required information from the environment.

Since evolution of human beings depended on both crossover and mutation of their

chromosomes, we use a general framework that includes Genetic Algorithms (Gas) due to the

51

availability of mutation and crossover operators. GAs are used to create a population of networks

for every generation. The GA algorithm is influenced by the following issues:

a) Encoding

b) Population size

c) Genetic operators

d) Diversity

The knowledge is acquired through Genetic algorithms and ANN learning methods. GAs can

acquire knowledge over generations and produce a collection of better-fit networks. When human

beings are born, they are born with some knowledge encoded in their chromosomes. Although

this knowledge provides basic abilities, in this ever changing world human beings have to learn in

their lifetime to live better in the changing surroundings. For life long learning humans have to

collect the signals or inputs from the surroundings and process them in the brain using their

accumulated knowledge or experience to gather new experience from the resultant actions. We

have used ANNs as agents' brains and by changing the dynamics of these ANNs with the help of

learning rule, we make the agents learn to adapt to the environment.

When humans migrate to an unknown place, they use their basic knowledge to understand the

surroundings and gather knowledge to adapt. This newly acquired knowledge is passed to their

offspring either in written or oral form. This helps the offspring to adapt to the new surroundings

quickly and efficiently. This initial knowledge is collected by placing some basic agents in a

simulated environment that resembles actual environments. We let the evolution work on the

agents over a number of generations recording the inputs from the environment, to the better

performing agents, and their corresponding output values. To make use of these facts we divided

our algorithm into two stages called offline and online. Both of these stages use the initial

knowledge. The offline stage plays the role of first training the offspring and is used to provide a

better platform for online stage. Also it attempts to accelerate the online process. Both stages

combine evolution with learning but in different approaches. The Offline stage uses the

collaborative approach where the learning of GAs and ANNs is integrated into a single system.

The online stage uses the supportive approach where GAs and ANNs learning are applied at

different stages. In large-scale applications, the offline stage can be removed, as it may prove

computationally expensive.

52

5.3 Requirements for the Proposed Algorithm

5.3.1 Representation of Genotype

Representation or encoding plays an important role in evolution and affects the ease of

conversion and details in mapping from genotype to phenotype. Representation influences other

factors that affect the GAs and their applicability.

Real value encoding is more natural and closely represents a problem space. Often real world

problems have vanables that are continuous over a domain rather than discrete. Hence, for our

algorithm we require real valued encoding of genotypes for the agents in drifting environments.

The proposed algorithm attempts to combine basic types of evolutions on neural networks.

Hence, the representation should be able to allow these combinations of evolution. It can be

direct or indirect encoding as long as 1t satisfies the above requirements and allows all genetic

operators to be present in the evolutionary process.

5.3.2 Population Size

The size of the population affects the performance of evolution. The diversity of agents depends

on the population size. But the requirement of population size is application specific. Hence, we

suggest experimenting with different population sizes for the application of concern.

5.3.3 Genetic Operators

The genetic operators are the vital components of the genetic application. If we use binary

encoding for chromosomes then the use of traditional GA operators is natural and the application

of GA operators such as mutation becomes simple. When we use real valued encoding, we may

have to alter the traditional operators to be able to work on the real encoded chromosomes.

The genetic operators are broadly classified as:

1) Crossover

2) Mutation

3) Selection

The genetic operators are affected by two issues:

a) Representation scheme

b) Type of evolutions on neural networks

The representation scheme influences and changes the way the genetic operators work on

chromosomes. For example, we can use GAs to evolve the weights, connections, learning rules

and/or combination of all of these. So, this scheme also affects the selection of genetic operators.

For example, the crossover operator may not be useful due to competing conventions problem

53

associated with the encoding scheme. Our algorithm attempts to m1m1c the human evolution in

which crossover is the main operator. Hence, the design of a crossover operator is also an

important factor and representation should allow it.

Most of the present day algorithms tend to exclude the crossover operator due to the competing

conventions problem that depends on their representation system.

5.3.4 Diversity

When we use GAs to evolve populations of ANNs, the degree of similarity or differences among

the networks is an important criterion. If the population is not diverse, then the problem of

crowding arises. Crowding 1s a problem in GAs where one individual is much more fit than the

others, leading the population to concentrate around this individual and variations of it. This

makes the population concentrate on a small region of population search space. Therefore,

spatially distributing the population into species preserves the diversity, thereby providing an

opportunity to increase the fitness. Hence, our algorithm requires the population to be divided into

several species based on a numerical measure of the architecture. Thus by preserving the slowly

maturing genes through the speciation, our algorithm maintains diversity in the population.

OFFLINE

Genetic Algorithm

Selection
N/W1 N/Wn

Figure 5.1 Frame work of the algonthm

ONLINE

Outputs

I GA operations I
I Spec1at1on I

Selection

54

5.4 Offline Stage

The system architecture for the offhne stage is as shown in Figure 5.1

Step1:

Representation

In biological world, crossover occurs more frequently than the mutation, hence the true evolution

needs crossover as its primary operator. Due to the competing conventions problem, the hybrid

algorithms tend to leave crossover and solely depend on mutation.

We can encode the networks using real valued parameters and make them more applicable to

the real world problems. For lifelong learning and better adaptation, the system should be

capable of dynamically growing while possessing the ability to prune whenever the need arises.

This process 1s possible by distinguishing the genotype from phenotype. The representation

should also allow us to design such a flexible system. Genotype defines the state of

characteristics in a collection of chromosomes called genome, and these characteristics are

mapped into actual network via the phenotype.

Implementation Details

We have used a type of direct encoding scheme called, node based direct encoding for our

chromosome representation. In the node based direct encoding scheme neuron and link genes

are provided with all details. For example a link knows the neuron it connects to, the neuron it is

coming from, and weight of that link. Our representation is inspired by the NEAT genotype

architecture. This flexible representation allows us to map the genotype into the phenotype with

ease and uses the "Innovation Number" concept introduced in NEAT.

The chromosome or genotype 1s divided into two genes:

a) Neuron gene

b) Link gene

The neuron gene contains a unique id called the innovation number for the neuron and

information about the type of the neuron i.e. input or output. The Link gene contains a unique 1d

for the hnk also called the innovation number, the information about the two neurons it connects,

the real valued connection weights, whether link 1s recurrent, and most importantly whether it

participates in the firing of neuron's output.

The innovation numbers for neurons and links help in overcoming the competing conventions

problem. Our innovative representation allows us to design not only feedforward ANNs but also

recurrent ANNs.

55

Step 2:

We begin by generating the population of networks or genomes for future steps. Conceptually,

our algorithm does not suggest starting with a large number of nodes and pruning them when

necessary. Thrs method seems less efficient and may result in large architectures. This is even

possible when we have a fixed number of output and input neurons. Therefore, we start with a

minimum set of nodes and add nodes when 1t is necessary.

Our algorithm evolves a random and dynamic network of neurons. We do not have layers of

hidden neurons rather we have individual hrdden neurons. In this step we generate initial random

networks with zero or more hidden neurons.

Implementation Details

We keep the number of input and output nodes fixed to enable supervised training. Hence, we

generate a population of genomes with only the input and output nodes and random weights.

Later, a few of those genomes are perturbed to have hidden nodes. This step allows us to grow

near optimal genomes even for a large-scale application.

Step3:

We map the genotypes into phenotypes to create actual neural networks from the minimal

genomes created in step2.

Implementation Details

Now, we consider the genotypes of each chromosome. By using the information provided in the

neuron gene and link gene, we build a phenotype or actual neural network wrth all the rnput,

output, hidden nodes, and the synapses connecting them.

Step 4:

Train the networks generated rn step3 usrng a modified backpropagation (MBP) algorithm. The

MBP is designed for the random neural networks with hidden nodes rather than networks with

hidden layers.

Implementation Details

As our networks are dynamically generated, we do not have any hidden layers. Instead we have

randomly introduced hidden nodes between input and output layers. The general

backpropagation method for neural networks works only on layers of neurons. With dynamic

networks, arranging the randomly generated neurons into layers is difficult. Hence, we modrfred

56

the backpropagation to work with individual hidden neurons rather than working with hidden

layers.

The following steps describe our MBP algorithm:

Prerequisites: each neuron has a means of calculating and storing the number of outgoing links.

This is stored in a variable called 'error-status'.

For each input/output pair in the training set do the following:

1) Apply the inputs to the input layer

2) Propagate the inputs through all hidden and output neurons

generate the corresponding output.

3) a) At output neurons set the corresponding 'error-status'

further output neurons are variables to '0', indicating no

connected to these neurons.

b) Calculate the error at output neurons using desired and

produced output values.

c) Adjust the weights of all the connections coming into these

neurons.

4) a) Now for each hidden neuron set the 'error-status' variable to

the number of output neurons it is connected to.

b) Whenever the error from an outgoing neuron is calculated

reduce the 'error-status' variable by '1'.

c) When 'error-status' variable value is zero, we have collected

errors from all outgoing neurons and hence modify all incoming

synapses weights.

d) Repeat the process until the incoming neurons are input

neurons.

The MBP training is set for fixed number of iterations and the training error is used as a

measurement to rank the networks. Offline learning is intended for accelerating the process. We

calculate the fitness as 1/error and rank the networks from most fit to least fit.

Steps:

We apply the genetic operators on the population. The crossover and/or mutation operators are

applied on the sorted networks to produce offspring.

57

Implementation Details

We have used four types of mutation operators.

1. Add Link: we can add either forward link, feedback, or recurrent link between two nodes.

a. Forward lmk b. Feedback lmk

Figure 5.2

0

c Recurrent lmk

2. Add Neuron: we add a neuron between two neurons bisecting the connection. The

connection weight value is divided approximately equally between the two new

connections formed due to the bisection of old connection. Figure 5.3 depicts the

process.

®
Figure 5.3 Before and after addmg a neuron 'D' between neurons 'A' and 'C'

The above two mutations are mainly architectural mutations.

3. Weight Mutation: We perturb each connection weight with a predefined mutation rate.

4. Mutation of Activation for Response Curve: Mutating the activation of the response curve

helps in evolving the learning rules. This is achieved by perturbing the controller variable in

58

the sigmoid activation function and thus changing the range of threshold for the firing

neurons.

Sigmoid function f(a) = 1/(1+e•<atc))

Where 'a' is the activation value

'c' is the controller variable.

The controller variable 'c' affects the shape of the curve. This mutation helps in evolving

the learning rules.

f(c) f(c)

For low 'c' value C For high 'c' value C

Figure 5.4 The sigmoid functJ.on for different values of controller variable (c)

Crossover:

While being an important evolutionary parameter in the biological world, crossover was omitted in

most of the present evolutionary algorithms due to the competing conventions problem it creates.

This problem makes the crossover operator inefficient in producing better offspring. Using a

unique global numbering scheme for links and neurons, we can avoid the production of invalid

networks. Based on these unique identification numbers, the genes are tracked and aligned

chronologically. Matching genes are inherited randomly. Suppose two genomes are selected for

the crossover. Their genes are ordered according to their unique global numbers. One genome

may contain some genes that are not present in the other genome at a particular position. The

genes that are not present in both genomes and are not present in either the beginning or the end

of their respective sorted genomes, are called 'disjoint genes'. But the genes that are not

matched and are either at the beginning or at the end of their respective sorted genomes, are

called 'excess genes'. Disjoint and excess genes are inherited only from the fittest parent.

59

Step 6:

In order to preserve d1vers1ty, we spec1ate the networks into different species using a

mathematical cntenon based on architectural parameters. This speciat1on into groups not only

mimics natural evolution but also helps in avoiding the crowding effect.

Implementation Details

We calculate the 'compatibility distance' using architecture specific measures like disjoint and

excess genes. If the compat1b1lity distance is within certain boundaries, then the ind1v1dual is

added to that species. If the individual is incompatible with all the current species then a new

species is created and the individual 1s added to this newly created species.

Step 7:

Perform steps 4 to 6 until required fitness is achieved.

Implementation Details

Each time we execute steps 5 and 6, we perform step 4 to calculate the MSE. If the error is less

than or equal to the minimum value, the loop 1s terminated. The other approach 1s to run steps 4

to 6 for a fixed number of iterations regardless of the MSE. If we follow the second approach, we

can avoid applying MBP each time we perform steps 5 and 6.

Step 8:

Select 'N' fit networks for the next phase.

Implementation Details

We have used Roulette wheel selection due to its simplicity and effectiveness.

5.5 Online Stage

The architecture for onhne stage is diagrammed in Figure 5.1. The online stage is similar to the

humans applying and updating their acquired knowledge in new surroundings and passing it to

the next generations for better adaptation to the new surroundings. This 1s the stage where the

advantage of our algorithm is observed and tested with agents in a drifting environment. We

create intelligent agents with neural networks brains. The 'N' networks selected from the offline

'stage are used as the brains of the agents. If the offline stage 1s not available then we create

random minimal networks and use them as the brains of intelligent agents. The online stage

follows the collaborative approach rather than the supportive approach for hybridization of

evolution and learning. The onhne stage is the combination of two phases that toggle

60

1. Evolution

2. Learning online or on field

The offhne stage 1s sometimes optional and used only to accelerate the online learning process.

When the offline stage is not present, we first apply 'evolution phase' and then 'learning online

phase'. Otherwise we can begin with the online learning stage.

Population of Networks

n Entered into the field

Environment

n Using Sensors (1/Ps)

R
Perception e

p n Learning Rule e
a
t ANN Modification

n Outputs of ANN

Actions

n Applied on surroundings

Environment

NO

Fitness Evaluation

Applying GA Operators .---------=---------,
Evolution on Networks and Speciation

Selection for new generation

Figure 5.5 Frame work of ONLINE stage.

5.5. 1 Learning Phase

This phase generates networks that can learn continuously, rather than using pre-learned

networks. The networks that can learn can adapt more efficiently to the subtleties of the

61

environment. The performance difference between learned and learning networks can be

observed clearly in dynamic environments. This notion is supported by J.M Baldwin's (1896)

views:

a) If the environment is continually changing, those indIvIduals capable of learning and

adapting quickly to the environment will have greater advantage compared to other

indIvIduals.

b) Those individuals who can learn and adapt quickly will have less dependence on the

genetic code and will help to achieve more rapid evolutionary adaptation.

In this stage, the learning method used is called online learning where the network

parameters are updated after the presentation of each example.

The steps performed in the learning stage are descnbed below:

Step1:

The basic knowledge is incorporated into networks using an evolutionary phase where

genetic algorithms are applied to them. By inserting these networks as their brains, we make

the agents intelligent.

Implementation Details:

The agents equipped with the networks from the offhne stage or evolution phase enter into an

environment that changes from one generation to the next.

As humans have a lifespan of certain number of years, the agents are given a fixed number

of time units to explore their environment and learn to adapt. This can be considered as a

lifespan for the agents in a generation.

Step2:

The agents' world consists of many obstacles and they must achieve certain goals in their

lifetime. To avoid the obstacles, agents should have a means of sensing the environment so

as to avoid the obstacles while reaching their goals.

Implementation Details

The agents perceive the environment with their sensors and the sensor readings serve as

inputs to the ANNs.

62

Step 3:

Similar to the human tendency of using oral or written knowledge to gain experience about

their surroundings in their lifetime for better living , our agents are provided with a learning

mechanism to make them more adaptable to the changes and dynamics of the environment.

Implementation Details

The agent's brains (ANNs) are updated using a learning method from input collected from the

sensors. Our algorithm is based on supervised learning, hence we only modify online

backpropagation algorithm where the input is collected randomly from the environment. The

algorithmic parameters are modified for each input, hence, to reduce the loss of previously

learned knowledge, we employ a history sensitivity function. The online learning can be of

two types:

i. Global

ii . Local

Global Online Learning:

In this type of learning, the exact desired values are not required .

TEACHER

Out

Fis the threshold function
(step function)

Figure 5.6 Illustration of Global Learning

In the global online learning, the inputs are random and the network does not have the exact

desired outputs, making it difficult to apply supervised training. Hence, when using global

online learning, we use one or more fitness parameters to produce the desired outputs for

each set of random inputs from the environment. In the global online learning, we do not

63

modify network parameters such as connection weights using a training set, but can opt1m1ze

the networks using one or more fitness parameters.

Advantages:

1. It does not require any training input-output set.

2. Optimization depends solely on the parameters that affect the fitness.

Disadvantages:

1. Cannot optimize the networks for the environment in the current generation.

2. Needs to produce target output for each random input from the environment.

3. It is difficult to include all fitness parameters to produce a good target output set for

random input set from the environment.

Local Online Leaming:

In local onhne learning, the obJect1ve of neural network training is to find optimal network

parameters (e.g. Connection weights) to minimize the error between the desired value and the

actual response. The local online learning uses a set of input-output pairs to guide the network

learning in a relatively new environment. We need to use a filter that compares the random input

collected from the environment and selects an output of a closely matching input from the training

pair. These outputs are used as target outputs. Local online learning optimizes the network

fitness by changing parameters like connection weights in the current generation. The

effectiveness is affected by the learning method and the training set.

Advantages:

1. Simple to use.

2. Optimizes the fitness function to adapt to the dynamics of the environment in every

generation.

3. Dependency on evolution 1s less when a stable architecture is found.

4. Accelerates the evolution towards adaptation.

Disadvantages:

1. The design of the training set requires a lot of expertise and time.

2. The optimization 1s greatly affected by the efficiency of the training set.

3. The dependency on environment fitness parameters is less.

64

The online Modified Back Propagation (MBP) that 1s used to train the networks is s1m1lar to its

offline counterpart with the following differences:

Step 4:

• It is designed on online learning principle hence the network parameters are

modified on application of every input and parameter modification does not

guarantee the desired output on re-application of the same input.

• History sensitivity function is used to reduce the amount of learning over time.

This function is designed in such a way that learning 1s faster in the beginning

and decreases over time to preserve past learning.

The steps 2 and 3 are repeated for a fixed number of time units. These time units indicate the life

span of agents per generation.

5.5.2 Evolutionary Phase

This phase is applied between generations GAs are used to identify the superior architecture,

weight and learning rule to determine a set of best fit networks for the next generation. This

phase is also similar to the one in the offline stage but differs in the method of usage and order of

application of its operators and also in fitness evaluation. The important operators used are:

1) Crossover

2) Mutation

3) Selection

This stage also performs speciation and evaluation. The goal of evolution is to build 'N' fit

networks for the learning stage.

Step1: Representation

This is similar to offline stage representation scheme. The representation should allow all three

kinds of evolutions (weight, architecture, learning rule) as well as their combinations.

Step 2: New Population

In this step, we generate a new population from the current population. The genetic operators are

applied on the current population and thus new population is generated.

Implementation

If the current generation is empty, we generate random rnibal networks with and without hidden

nodes. The networks have fixed input and output neurons. In all the other cases we apply genetic

operators.

65

1. Crossover:

We generate a random variable for each parameter and compare 1t with user defined crossover

constant, and 1f 1t is greater, we then perform crossover. The crossover constant value can be set

at the beginning and is constant throughout the process. The crossover operation 1s similar to the

offline stage.

2. Mutation:

Mutation is performed in 5 ways.

i. Add hnk

1i. Add neuron

11i. Weight mutation

iv. Mutation of activation response for responsive curve

v. Mutation of learning rule parameters

The first four mutations are s1m1lar to offline learning. Mutation of learning parameters can be

implemented in a similar way to that of weight mutation.

We have implemented the learning rule as a linear equation with 6 parameters to enable the

evolution of learning rule for connection weight mod1ficat1on.

~Weight= pO * (pl* weight - p2 *error* learning rate - p3 * weight
* learning rate+ p4 *error+ p5 *output* learning rate)

Where, pO is a real valued variable used to scale the result, and p1, p2, p3, p4 & p5 are real

variables.

This general linear equation tries to reduce the amount of modification applied to the weights with

respect to the error.

We generate a random variable for each parameter and compare it with standard mutation rate

and if 1t 1s greater, we perform mutation. We use Gaussian mutation method.

The design of the learning rule is based on the following important criteria.

• Outputs generated

• Error from target outputs

• Leaming rate

66

Step 3: Selection

Here we perform two tasks

a) Maintaining diversity

b) Selecting best individuals

To preserve the diversity, we divide the population into different species This process of

speciation is similar to the spec1at1on m offlme stage. We calculate the average fitness for each

species using the age and the performance of networks in the environment. Networks are sorted

based on their fitness in each species, and most fit network from each species is added to the

new population intact. The rest of the new population is selected from the networks generated

using genetic operators and their fitness. We select the required 'N' networks from all the species

depending on their average fitness.

Implementation Details

Spec1at1on 1s similar to the offlme method which uses "compatibility distance" measure to speciate

the generated networks. Fitness is designed on agent's efficiency to avoid the obstacles while

fulfilling its goals.

Step 4:

'N' networks are selected to perform online.

The learning and evolution phases are repeated until some terminating critenon is met

Sort the previous
generation's Genomes

l
Apply mutation and cross

over to create new genomes

l
Speciale all genomes and

calculate average fitness for
each species

l

Create lmt1al Genomes with random
weights, standard learning rate &

learning rule parameters

Map the genotypes onto phenotypes
,_... ___ .,. to create ANNs

Equip ANNs as agents' brain

Collect the inputs using sensors from
environment and feed them to the ..-----,

brain

Select the Genomes for the ____ ...,

Process the inputs using Online MBP
th evolved rule and generate outpu

to u date a ent's os1t1on
next generation

No

Increment the generation counter
& determine fitness

Yes

Figure 5.7 Flowchart of ONLINE stage

No

67

CHAPTER 6. APPLICATION ANALYSIS

Overview

This chapter introduces and analyses the mine sweeper application implemented using our

algorithm.

6.1 Introduction

Our algorithm attempts to develop intelligent agents which can adapt to a changing environment

effectively and more quickly than existing implementations. Since the algorithm is inspired by

human behavior and evolution, we need an application that allows us to test and observe all

aspects of the proposed algorithm. A mine sweeper application is used to demonstrate the

capabilities of our method in adapting to drifting environments. The mine sweeper's initial

framework is implemented by Mat Buckland (Al techniques for game programming, 2002). We

modified the classes and the visualization graphics in this framework to implement our algorithm.

In our application, we use neural networks to control the behavior of the mine sweepers and to

make them intelligent. The mine sweepers live in a drifti~g environment with a few different

obstacles and several mines The positions and shapes of these obstacles change from one

generation to the next. The goal of the application 1s to evolve intelligent mine sweepers to

explore as much area as possible, while avoiding the obstacles within certain time limit.

68

C

C

Cjll C

rP
o

C

C C
oc c

C

o

o

o !ftP C

"L C
o C

C

00 o

C o
C

C

o
0 C

Figure 6.1 The demo program in action .

69

o

The mine sweepers that collide with obstacles or walls appear in red. They remain in red until

they move away from the obstacles or walls. The others are shown in blue. When F key is

pressed the graphics are hidden from view and the statistics are displayed instead. The

application starts in two windows, one showing the mine sweepers exploring the environment and

the other displaying the best networks from the previous environment.

6.2 Architecture of ANNs

To design the architecture of ANNs, we need to determine the required number of inputs and

outputs and a mechanism to obtain the inputs from the environment. To determine the number of

inputs for the ANN , we need to recognize the type of information a mine sweeper needs to

navigate through the environment and the issues related to acquiring that information. This

application involves solving two game related problems.

• Obstacle avoidance

• Environment exploration

6.2.1 Obstacle Avoidance

Obstacle avoidance is a very common task in game theory. It is the responsibility of the game

agent to perceive its environment and to navigate without coll iding with the obstacles in the game

world .

70

To perform successful obstacle avoidance, the agent must be able to perform the following:

• Observe its environment

• Take action to avoid potential collisions

To observe the environment, the agents (mine sweepers) must have a way to see the world. Mine

sweepers are equipped with a number of sensors, which enable them to perceive the obstacles in

the world around them. The sensors are the line segments that radiate outward from the center of

the mine sweepers' bodies. Sensors, which are represented as vectors, have a direction and

length associated with them.

Figure 6.2 A mine sweeper with sensors

In our experiments, mine sweepers can have any number of sensors with various lengths.

However by default, a mine sweeper has five sensors that radiate outward for 25 pixels. Every

time unit of a generation is divided into certain number of frames. The mine sweeper's sensors

explore each frame for possible obstacles in the game world. Every mine sweeper is equipped

with a mechanism to determine the distance to any obstacle it may encounter. The distances

between the mine sweeper and the obstacle are measured using sensors. The closer the object

is to the mine sweeper, the closer to zero is the reading provided by the sensors. When there are

no obstacles intercepted by the sensors, then the sensors provide a value of -1.

71

2

ct,,,.1

1 o.1

Figure 6.3 A mine sweeper seeing the obstacle through its sensor readings.

To check whether a mine sweeper has actually collided with an object, we check the readings

provided by its sensors. These readings are compared to a collision distance value that is

calculated from the scale of the mine sweeper and the length of the sensor line segment.

6.2.2 Environment Exploration

Equipped with only sensors, the mine sweepers can see the obstacles and learn to avoid them in

a few generations, but they do not explore the environment efficiently since they do not have any

guidance. To develop a useful behavior for exploring the environment, in addition to learning to

avoid the obstacles, mine sweepers need additional guidance for exploration. This guidance is

provided in the form of memory. The environment is divided into a number of equal sized cells.

These cells are represented by a simple data structure. This data structure is used as a memory

map to store information about the number of time units a mine sweeper has spent in that cell.

This information helps the mine sweepers to evolve the weights, architecture and learning rules of

the ANNs to favor the unvisited cells.

Figure 6.4 The memory readings help the mine sweeper to explore unvisited cells in the environment.

72

The end points of the sensors act as antennas for the mine sweeper and retrieve the information

stored in the cell. These end points are referred to as feelers and the readings from these feelers

enable the mine sweepers to navigate the environment. The number of time units a mine

sweeper spent in the surrounding cells Is retrieved by these feelers. Using this information,

feelers provide the corresponding readings which are between -1 and 1. For example, 1f a mine

sweeper previously spent 0 time units in a surrounding cell then the corresponding feeler

provides a reading of -1. If it spent 20 time units in a surrounding cell then the reading would be

0.2, and 1f It spent 80 time units the reading would be 0.8. 1f 1t spent 100 or more time units in a

cell then the reading would be 1.

With these feeler and sensor values the mine sweeper can navigate through the environment.

The readings from feelers along with sensors are used as inputs to the neural network. An

additional input is supplied to indicate whether the current mine sweeper has collided with some

obstacle in the environment. Therefore, the default number of inputs for the neural network would

be 11, namely, five feelers, five sensors, and an additional input indicating collisions.

6.2.3 Outputs

The number of outputs for the ANN depends on how we control the movements of the mine

sweepers. We assume that mine sweepers run on two tracks. Tracks are the endless metal belts

on which vehicles such as battle tanks travel. The rotation and velocity of the mine sweepers are

adJusted by altering the relative speed of the tracks. Hence, we need two outputs, one for each

track. To make the movements more realistic, we need to produce real valued outputs for each

track. This can be achieved by using a s1gmo1d function as the actIvatIon function for the output

neurons. The rotation and speed of a mine sweeper are determined using the outputs generated

for the left and right tracks. The mine sweeper's rotational force is calculated by subtracting the

force applied by the right track from the left track. The mine sweeper's speed is the sum of the

values of left and right tracks. With this information about the inputs and outputs of the agents, we

can proceed to discuss the details of the network's architecture and encoding.

We start with a minimal architecture that includes few networks with hidden nodes for effective

exploration of architectural search space. We have used a direct encoding method called node­

based encoding. Node-based encoding encodes all the required information about each neuron

in a single gene. For each neuron (or node), its gene will contain information about the other

connected neurons and/or the weights associated with those connections.

73

Netw.ort 1 Ne1WOrk2

Figure 6.5 Two networks with their chromosomes using node-based encoding.

Our application uses a genome structure containing two kinds of genes namely neuron genes

and link genes. Both of these genes contain information about their connectivity and respective

parameters. Both of these genes make use of a concept of a unique number called the innovation

number (Kenneth Stanley at al., 2000) to avoid the competing conventions problem. These

innovation numbers are provided for both neurons and links and hence are present in both the

neuron and link genes. The links can be forward or recurrent, whereas neurons can be of input,

output, hidden or bias types.

Genotypes:

Neuron Gene
Begin

Innovation number: It is the unique id for the neuron
Type of neuron : This indicates whether the neuron is input, output, hidden or bias

End;

LinkGene
Begin

Innovation number : Unique id for the link
Link from neuron : Id of the Neuron from which link comes from
Link to neuron : Id of the Neuron to which the link goes to
Weight : A real value attached to the link ·
Recurrent : Indicates whether the link is recurrent or not
Enabled : Indicates whether the link is active or not

End;

Figure 6.6 The neuron and link genes' parameters and their description

74

After creating the genotypes, we need to create actual neural networks with all the neurons and

the links among them. This mapping from genotype to phenotype is implemented in a container

class called Genome. The Genome class contains both genotype objects and phenotype objects.

The phenotype object has information about learning rate and learning rule parameters. The

learning rate is common for all the neurons in the network. In addition, the learning rule

parameters are used in evolving learning rules for the whole network.

We start with genomes containing zero or few hidden neurons and evolve them into larger

architectures with improved fitness. This approach helps in maintaining small architectures and is

inspired by two facts:

1. Nature has evolved from small (less complex) organisms to the larger (more complex) life

forms.

2. By including genomes with hidden neurons, in addition to minimal genomes (genomes

with zero hidden neurons) in the initial population, genetic algorithms can have a larger

architectural search space.

6.3 Our Framework

The mine sweeper application is controlled by a class called "CController'. The CController class

controls the relevant invocation of methods from various classes.

l
Mine sweepers
performing in the field

I
I ::::I:::: I Genetic Algorithm

Figure 6.7 Program flow for the mine sweeper application

75

When an instance of the CController class is created, the following steps take place:

• Our framework provides an option to use offline training. If offline training 1s used then

initial networks are obtained from the offline learning stage. Otherwise, the constructor

generates the random initial networks for online stage.

• The generated networks are inserted into the mine sweepers

• For online stage, we create a random environment with obstacles for every generation.

• For online stage, we create all necessary graphical requirements to display the objects

and mine sweepers.

6.3.1 0ffline Learning Stage

Our algorithm uses offline learning stage to provide a better foundation for the online stage by

generating networks with at least some knowledge rather than no knowledge. The offline

stage is performed only once to speed up the rest of the process. We henceforth explain the

step by step processing of this stage with references to the algorithm

i. Random Network Creation:

Initially a random population of neural networks are created and stored in a vector data

structure. The information about number of inputs, number of mine sweepers and number of

outputs is decided here. Consequently, we carry out the following steps:

• We create a population of genomes. These genomes contain only input and output

neurons. They do not have any hidden neurons.

• To explore the search space of architectures with hidden neurons, we modify some

of the genomes by inserting random hidden neurons.

For a network in the population

Begin

End

■ Search for a valid link.

• If a link is found then split the link into

two different links.

• Assign a new innovation number for the new

links.

• Divide the old weight into half and assign

the value as new weights for the two links.

• Create a hidden neuron and assign a new

innovation number to it.

■ Set the two new links as incoming and out

going links to this neuron.

• We create and assign a unique innovation number to every neuron gene and hnk

gene.

In this way, we create genomes with and without hidden neurons.

ii. Mapping Genotypes to Phenotypes:

76

Using the above created genomes, we map the genotypes into phenotypes to create actual

networks. This mapping 1s performed using the information in the genes to build the neural

networks from neurons by connecting the links between them. The links are assigned the

weight information stored in their genes. These weights are assigned randomly when the

genomes are initially created.

Procedure Create Network(depth of the network)

Begin

End

• Create the neurons from the Genome information.

• Create the links from Genome information only for those

links that are enabled.

• Create a link between relevant neurons and assign the

weight stored in the link gene.

• Set the error status (i.e. the number of outgoing links)

for each neuron.

iii. Hybrid Training for the Networks:

In the offline learning, we use modified backpropagat1on (MBP) with the genetic algorithm's

operators for refining and evaluation of created networks. But since MBP 1s supervised, 1t

needs guidance to train the networks To provide this guidance, we placed several random

mine sweepers with no learning ability in the environment. We evolved them for 50

generations, each generation with 600 time units. At the 50th generation, we stored inputs

and outputs of the best performing mine sweepers We edited these input-output data to

extract 250 input-output sample set. These samples served as training data for both offline

and onhne MBP. The environment used for collecting the training data was static and was

similar to one of the random environments. For a desired number of iterations, we do the

following:

77

1. For each phenotype, we apply modified backpropagation algorithm and store the fitness of

each network. The offlme MBP returns the corresponding MSE.

For each network
Begin

End

Error= Function Offline MBP ()
Fitness of Network= 1/Error
Store Fitness (Fitness of Network)

2. We sort the networks according to their fitness values.

3. We apply genetic operators like crossover and mutation on the sorted networks. We

generate a random number. Only when this random number is less than standard

mutation rate, we perform the mutation. Otherwise, we do not perform the mutation

operation. Crossover is also similarly performed.

There are four types of mutations performed m offlme stage. They are:

• Add link

• Add Neuron

■ Weight perturbation

■ Mutation of activation response curve

These mutations are performed as described below.

Add Lmk: The new hnk can be either recurrent link or forward link.

Procedure Add Link ()
Begin

Generate a random number
If (Random Number Generated< Mutation Constant)
Begin

Generate a random number
If (Random Number Generated< Recurrent link Constant)
Begin

Get a random neuron
Add a recurrent link, if the neuron does not have one
Assign an innovation number to the link

End
Find two unlinked random neurons
Add link between these two neurons
Assign an innovation number to the link

End
End

78

Add Neuron· We add neurons only if the total number of neurons is less than the

maximum number of neurons allowed.

Procedure Add Neuron()
Begin

Generate a random number
If (Random Number Generated< Mutation Constant)
Begin

If (Total Number of neurons< Number of neurons allowed)
Begin

Search for a valid link.
If a link is found then split the link into two
different links.
Assign a new innovation number for the new links.
Divide the old weight into half and assign the value
as new weights for the two links.
Create a hidden neuron and assign a new innovation
number to it.
Set the two new links as incoming and out going
links to this neuron.

End
End

End

Weight Perturbation: The mutation of weights 1s achieved using two different

approaches. If a randomly generated value is less than a pre-defined constant, we

replace the older weight with completely a new weight, else we perturb the weight by

a small amount.

Procedure Mutate Weights ()
Begin

End

For each link in the network
Begin

Generate a random number
If (Random Number Generated< Mutation Constant)
Begin

Replace the weight with a random value
End
Else

Begin
Add a small random value to the existing weight

End
End

79

Mutation of the Activation Response Curve This mutation serves as a preliminary

evolution of learning rules.

Procedure Mutate Activation Response ()
Begin

For each neuron
Begin

Generate a random number
If (Random Number Generated< Mutation Constant)
Begin

Add a small random value to the existing
Activation response value.

End
End

End

4. If mutations are not performed then we only perform the crossover operation. The

crossover operation 1s executed only when the generated random number is less than

the pre-defined crossover constant.

Procedure Crossover (parentl, parent2)
Begin

Generate a random number
If (Random Number Generated< Crossover Constant)
Begin

End

Find the Fittest Parent
Add the Fittest parent's genes to the other parent
If both parents are equally fit
Begin

End

For every gene in the child
Begin

Select one parent randomly and add gene
from that parent

End

End

5. After performing crossover or mutation operators we once again apply the MBP to

filter out the less fit genomes from the next population.

iv. Selection:

The required number of genomes is selected to be included in the new population using

tournament selection method. In tournament selection 'n' ind1v1duals are selected from

the population and the fittest of these genomes 1s chosen to be added to the new

population. This process is repeated as many times as 1s necessary to complete the

requirements of the new population.

80

v. Perform Iterations:

We repeat steps i to iv on the new population until we reach the desired iterations.

The required number of networks 1s passed on to the online stage.

6.3.2 Online Stage

The online stage is the core of our process. It can perform with or without the help of offline

learning. The offline stage is only used to give online stage a good foundation with better fit

networks in the beginning. Online stage works in two phases known as learning phase and

evolutionary phase.

6.3.2.1 Leaming Phase:

With the offline stage active, the networks developed in the offline stage are used as the initial

brains of mine sweepers. Otherwise, initial random networks are created and inserted as initial

brains of mine sweepers. Online stage is the core of the application that improves the mine

sweepers' performance in a drifting environment.

In each generation, the mine sweepers search the environment for a number of time units. During

each time unit, the ANNs of mine sweepers are constantly fed with the information from the

surroundings. Depending on these inputs, the networks are updated using the modified

backpropagation (MBP) learning algorithm. This version of MBP differs greatly from the offline

version in the following aspects:

• This is an onhne version, i.e. it 1s updated after application of the input

• The amount of modification to the network parameters decreases over time

• It can use online gradient descent or can evolve the rule

• It can learn locally or globally

First, the input is processed by all the neurons to produce the outputs. Next the outputs of each

neuron are collected. We fetch the desired outputs from the training set using a filter function.

Procedure Filter(input from environment)
Begin

Min= infinite
Index=0
For each training sample
Begin

End

Find the distance between training input and the input
from environment
If (Min> distance

Index= Index+ 1

Get the closest matching sample using Index
Desired outputs= Matched Sample Outputs

End

81

This procedure 1s used with local online learning. We have used 250 input-output training pairs to

guide the mine sweepers in the random environment.

For global onhne learning, we do not use the input-output tra1nrng set. Instead of using the fitness

criterion, we generate the desired outputs for the current inputs from the environment.

In our mine sweeper application, an agent's fitness 1s determined broadly over three

observations.

a) The number of collisions with obJects or walls

b) The number of rotations

c) Speed of exploration

We use a simple heurrst1c function to generate outputs for global onhne learning. In our

application the heuristic function uses the speed of the mine sweeper to produce the target

outputs. To keep the function simple, we have used only one parameter (speed of mine sweeper)

of the environment fitness criterion.

Procedure Online MBP (
Begin

For each neuron
Begin

End

Set error status value to number of outgoing links from
that neuron

Calculate the error for output neurons using gradient descent
rule
For each hidden neuron
Begin

If hidden neuron's error status is zero
Begin

End
Else
Begin

Calculate error using total error from its output
neurons

82

For each neuron connected to this hidden neuron through
outgoing link

End
End

Begin
Compute the total error
Reduce error status value by 1

End

Now update the weights with the error calculated using gradient
descent rule

End

Using the mean squared error from desired and generated outputs, we update the weights with

either delta (gradient descent) rule or evolved rule. We have implemented global and local online

learning methods with the back propagation principles. The local and global learning methods

differ from each other in only one way. Global online generates desired outputs using a heuristic

function whereas local online uses a training input-output set. The modified backpropagation

algorithm uses a history sensitivity function like f (t) = N/t where 'N' is a constant (typically N=1)

and t Is the number of time units elapsed. The history sensitivity function acts as a loss function,

which preserves the previous knowledge while the networks learn online. If we choose to evolve

the learning rule rather than delta rule, we use a linear general equation with five random real

variables and a random real variable for scaling.

These five real variables are mutated after each generation depending on the difference between

the user defined mutation constant and a random real value generated. The weight change is

described by the following function.

6Weight
6Weight

F (Weight, Learning Rate, Output, Error)
p0 * (pl* weight - p2 *error* learning rate - p3 * weight
* learning rate+ p4 *error+ pS *output* learning rate)

83

p0, p1, p2, p3, p4 and p5 are posItIve constant real values, typically less than one, that regulate

the mod1f1cation of weights. These constants change from generation to generation. The weight

updating process attempts to preserve the previously learned knowledge by including the old

weight in the updating process Also by including the error value in the equation we let the

network learn new information.

The general equation depends on four important parameters that affect the learning.

They are:

• Error at the neuron

• Output of the neuron

• Old weight of the link

• Learning rate

If we do not wish to evolve the learning rule then the online gradient descent rule is used for the

modification of connection weights. This updating rule Is applied to all the output and hidden layer

neuron in-coming connection weights. It is continued until the desired number of time units per is

reached.

6.3.2.2 Evolutionary Phase:

After a desired number of time units per generation has been reached, evolutionary phase

begins. Evolutionary phase applies genetic algorithm operators on the current population to

produce a better population for next generation.

We start this phase by calculating the fitness for each mine sweeper from the current

population. We kill or remove the networks and species that are not improving over past few

generations. The rest of the networks in the population are sorted according to their fitness

values. Next we apply the genetic algorithm operators mutation, crossover and selection.

We speciate the networks using their architectural differences. Later we copy the best performing

networks from each species without any modIficatIon into the new population. For the rest of the

members of population, we use crossover and/or mutation on the current population.

The mutation and crossover operations are earned out analogously to the offline stage. The

crossover, add link, add neuron, mutate learning curve response, and mutate weight use the

same methods that are used in the offline stage. Unlike the offline learning, these operators are

not iterated but are applied until a desired population size Is achieved. The online stage has one

extra mutation that is not present in the offline stage. If we choose to evolve the learning rule,

84

then we need to mutate the learning rule parameters. This is earned out by applying mutation on

the newly created population from the application of the other GA operators.

Procedure Mutate Learning Rule Parameters ()
Begin

End

Generate a random number
If (Random Number generated< Mutation Constant)
Begin

For all learning rule parameters
Begin

End

Add a small quantity of random value
End

If there is an underflow of networks due to the rounding error, we apply tournament selection to

select the rest of the networks from the old population. The new population of networks are

inserted into mine sweepers as their new brains. The learning phase will now resume with these

mine sweepers.

6.3.3 Performance Parameters

We can set various performance parameters. Some important parameters with their sample

values are shown below.

iNumSensors 5

iNumSweepers 50

iNumTicks 300

dLearningRate 0.5

dLearningParameterl

dLearningParameter2

dLearningParameter3

dLearningParameter4

dLearningParameter5

dLearningParameter6

iOfflineTraining

iGlobalOnline 0

iRuleEvolution 1

iOnlyGAs 0

0.5

0.5

0.5

0.5

0.5

0.5

1

The number of sensors a mine sweeper can have

The mine sweeper population size

The number of time units per generation

Learning rate for the delta or evolved rule

Learning rule parameter used in rule evolution

Learning rule parameter used in rule evolution

Learning rule parameter used in rule evolution

Learning rule parameter used in rule evolution

Learning rule parameter used in rule evolution

Learning rule parameter used in rule evolution

Option for having offline training

When value is 1 global online method is chosen

When value is 1 learning rule is evolved

When value is 1 only GAs are used to update

85

When the apphcat,on 1s launched, the F key speeds up the evolution, the R key resets 1t, and the

B key shows the best four mine sweepers from the previous generation. The B key can only be

used from second generation onwards, since 1t requires ANNs from previous generation. The

previous generation's best mine sweeper is designed to leave a trail as it explores. The best

sweepers also display their sensors and feelers.

CHAPTER 7 ANALYSIS OF RESULTS

Overview

This chapter discusses the results and improvements achieved by our algorithm using a mine

sweeper application. Our algorithm helps in developing intelligent mine sweepers. We analyze

the results with the help of screen shots and Excel graphs.

7.1 Introduction

Our algorithm assists the artificially intelligent agents (mine sweepers) by enabling them to learn

in a drifting environment with the help of the acquired knowledge. Our experimental results show

a considerable improvement in the performance of mine sweepers in a dnfting environment. To

prove our claim that lifelong learning combined with evolutionary process can boost the

intelligence of art1f1cially intelligent agents in a drifting environment, we tested our algorithm on

several different scenarios. Our algorithm has two learning stages called offline and online.

Offline learning 1s optional. Online learning 1s further divided into two more phases called the

learning phase and the evolutionary phase The learning phase runs for the desired number of

time units for each generation and the evolutionary phase runs between generations.

The following describes the type of experiments we carried out to prove the effectiveness of our

algorithm.

• Performance of only evolutionary (genetic) algonthms

• Performance of offline learning and evolutionary (genetic) algorithms

• Performance of offline learning and online learning (learning and evolutionary phases)

• Performance of only online learning (learning and evolutionary phases)

• Performance of offline learning, local online in learning phase with evolutionary phase

• Performance of offline learning, global online in learning phase with evolutionary phase

• Performance of local online in learning phase with evolutionary phase

• Performance of global online in learning phase with evolutionary phase

86

87

While we observed interesting results, we also discovered the following influencing factors.

• Number of time units for generation

• Number of sweepers

• Number of generations

• Number of obstacles present

• Fitness criteria

7 .2 How Do We Analyze?

The simplest way to determine whether the mine sweepers are adapting to new environments is

by looking at them while they perform. However, this method of observation cannot be

documented. Hence we used two different fitness readings to assist us in evaluating the

performance of the algorithm. The best ever fitness indicates the highest fitness value achieved

by any agent (mine sweeper) in any generation until the present one, whereas generation's best

fitness value indicates the highest fitness value achieved by an agent (minesweeper) in that

generation. In the ideal case for an evolved network both fitness measurements should have the

same values. However, these two fitness measurements may not be the same for environments

having different number of obstacles and therefore different regions for exploration. In our

experiments, there are two ways in which one can recognize an evolved network.

1. The generation's best fitness value should have little variation from the best ever fitness value.

2. The generation's fitness value should maintain its variation consistently from the best ever

fitness over several generations.

The former indicates near optimal solution whereas the latter still has room for further

improvements.

Generation: 921

C

C C C
C

C

C

(a)

Cc

C

C

C

• • • • • • • • • • •

• • • • • • • • • • •

88

• • • • • • • • •

• • • • • • • • • • •

(b)

Figure 7.1 (a) A screen shot showing the mine sweepers exploring the environment

(b) A screen shot showing previous generations best four networks

7.3 Only Genetic Algorithms

The smart minesweeper application is a combination of GAs and ANNs. In this experiment

genetic algorithms are only responsible for the development of the networks and behavior of the

mine sweepers. ANNs are merely used to generate outputs for each input. We initially start with a

population of neural networks and after every generation GAs are used to generate a better

population of networks using genetic operators such as mutation , crossover and selection.

1600

1400

1200

1000

II)
II)
Q) 800 .5
u:

600

400

200

0

Only GAs

--t---------------------~~ ·- . ------------------<

0 200 400 600

Generations

800

Figure 7.2 The fi tness of inte ll igent agents with only GAs

1000 1200

89

- Num Species

- Best ever Fitness

- This gens Fitness

- Avg Fitness

Figure 7.2 depicts the performance of the intelligent agents equipped with only GAs. For 1000

generations, each generation with 300 time units, the maximum fitness ever achieved is less than

1500 units and the average fitness is under 800 units. Also each generation 's fitness (shown in

yellow) fluctuates across the best ever fitness (shown in pink) and also these fluctuations are

random . This indicates that the GAs have failed to evolve a single best performing network.

7.3.1 Analysis of Performance with Only Evolutionary (Genetic) Algorithms

The performance of mine sweepers equipped with GAs alone was excellent in static

environments. Within 300 and 500 generations, a best performing mine sweeper is found . But

their performance in a drifting environment was not acceptable. They failed to capture the

changes in the environment efficiently and in most cases they did not produce a best performing

minesweeper over different generations. In drifting environments, intelligent agents equipped with

GAs alone exhibited the following behavior:

• The Changes in the environment prompt the search of the architecture and weight space

whenever fitness goes down. This will result in rather complex architectures.

90

• GAs (Genetic Algorithms) have frequently failed to produce a minesweeper that shows

best performance over varying environments. Even when the generation's best fitness is

close to best ever fitness, which was observed in several different mine sweepers, they

performed well only in their specialized environment.

• GAs improve the population based on their fitness values in the previous environments.

They do not consider the fact that the environment may change for the next generation.

Hence, they generate better fit population for the environment in which the old population

has performed. For drifting environment within 700 to 800 generations, the mine

sweepers did not perform well in most of the experiments.

• If the mine sweepers, equipped with GAs alone, search the drifting environment for a

long number of generations then the architecture of ANNs gets complicated.

7.4 Offline Learning and Evolutionary (Genetic) Algorithms

We start with offline learning initially and then apply evolutionary algorithms after every

generation for further improvement. The offline learning is comprised of genetic algorithms and

modified backpropagation algorithm. The genetic algorithms evolve weights and architecture

simultaneously and MBP is used to further refine the networks. MBP is also used to test the

fitness of the networks. The offline learning provides knowledgeable neural networks. As these

networks gain some knowledge about the environment, they tend to reach higher fitness values in

less time when compared with only evolutionary algorithms in drifting environments. But

characteristics of offline learning and evolutionary algorithms both support only static

environments. So offline learning may reduce the number of generations required to reach

highest possible fitness, but does not really improve the performance in dynamic environments.

1/)
1/)
a,

.5
u::

Offline and GAs

2000 .-------------,-----,-------------------~

1500 +---------------,_-_------=a .. -=---

1000 -+--------- -----------------------!

.,•·

500

o~----------------------------- --1
200 400 600 800 1000 1 0

-500 ~-------------------------------'

Generations

Figure 7.3 The fitness of intell igent agents when offline learning is combined with GAs

91

- Num Species

- Best ever Fitness

- This gens Fitness

- Avg Fitness

Figure 7.3 depicts that in 1000 generations, with 300 time units for each generation, the highest

ever fitness reached is below 2000 units and the average fitness is less than 1000 units. We can

also observe that each generation's fitness (yellow line in the graph) deviates from the best ever

fitness (pink line in the graph) randomly. This indicates the probability of different best performing

networks for different environments.

7.4. 1 Analysis of Performance with Offline Learning and GAs:

Even with the addition of offline learning, mine sweepers were behaving similarly to those that

used genetic algorithm alone. Offline learning is carried out only in the beginning and then genetic

algorithms takeover. Therefore, initially the mine sweepers were performing better but as the

effect of offline learning fades away their performance becomes similar to those that used GAs

alone. Offline learning needs lot of resources. So we can not replace the genetic algorithms stage

with offline stage. Both offline learning and GAs perform best in static environments and tend to

perform poorly in drifting environments.

92

7.5 Offline Learning with Online Learning {Learning Phase and Evolutionary Phase}

In this approach, the ANNs benefit from both offline learning and online learning. The mine

sweepers are initially equipped with the neural networks that were evolved using offline learning.

They explore the environment with the help of their sensors and feelers In the learning phase the

mine sweepers learn while they explore the environment. We use MBP to modify the weights of

neural networks for every input collected by the mine sweepers from the environment. This helps

the mine sweepers adapt to the intrinsic details of the environment when they explore the

environment. After completion of every generation in evolutionary phase, genetic algorithms are

applied to generate new population from best fit networks of previous generation's population. In

learning phase, we have implemented two types of learning methods, namely: local onhne

learning method and global online learning method.

i. Local Online Learning Method:

Local onhne learning method is a type of online learning method that is carried out using a

training set. We compare the inputs obtained from the environment by the sensors and

feelers with the training set inputs. When a close match is found, we use the corresponding

outputs to guide mine sweepers in the environment. This local online learning method

depends on the MBP algorithm, which in tum depends on the learning rule it uses. We can

either use standard delta rule or we can evolve the rule. Depending on type of learning rule,

local onhne learning method can be applied either using the delta rule or by evolving a rule.

This learning quickly grasps the subtleties of the environments while the mine sweepers

perform and improves their fitness considerably.

ii. Global Online Learning Method:

Global online learning method does not use any training set In this type of learning neural

networks act as decision-based neural networks. We generate guiding outputs for each input

from the environment using a heuristic function of one or more fitness parameters. Similar to

local onhne learning method 1t 1s applied in two ways depending on the type of learning rule

we use in the MBP. Although global learning method opt1m1zes the performance of the mine

sweepers while they explore the environment, it becomes more effective over the generations

and works more closely with the genetic algonthms applied in evolutionary phase after each

generation.

93

Local Online with Delta Rule and Offline

2500 ,-,-----~----------------------~

2000 ----------------~ - ----------

1500 +----------- ··

_, ... ----
- Num Species

- Best ever Fitness

- This gens Fitness

- Avg Fitness

0 -+----....... -------....... ----------------..------1
200 400 600 800 1000 1200 1 0

-500 .,__ ___________________________ ___.

Generations

Figure 7.4 The fitness of intelligent agents when offline learning and online learning combined

The highest ever fitness is above 2000 units and the average fitness value is near 1000 units

(Figure 7.4) . The generation's fitness (shown with yellow line) variation from the best ever fitness

(shown with pink line) is decreasing as generations increase. After 750 generations, both yellow

and pink lines are close enough to indicate a perfect evolved network i.e. a network performing

best in all different environments.

7.5.1 Analysis of Performance with Offline Learning and Online Learning:

The mine sweepers benefit from learning while exploring the environment by adapting to the

dynamics of the drifting environment. Through online learning , the mine sweepers modify their

previous knowledge to adapt to the subtleties of the new environment. But they should not loose

the pre-learned knowledge in the process, hence, we decrease the amount of learning over time.

Using either global or local online learning, we can observe the following:

• The mine sweepers show improved behavior from the first generation.

• The mine sweepers capture the dynamics of the environment over time.

• Over the generations mine sweepers exhibit improvements in their fitness because of the

close corporation of online learning with genetic algorithm. Online learning and GAs

complement each other in producing a better performing mine sweeper over generations.

94

In most of the experiments, tl1e best performing ANNs have very simple architectures.

The performance of all mine sweepers is improved due to the online learning capability.

7.6 Only Online Learning (Learning Phase and Evolutionary Phase)

The absence of offline learning slows down the fitness growth of mine sweepers. However, after

few hundred generations mine sweepers become equally efficient to those that used combination

of offline and online learning. This proves that online learning is self sufficient.

Ill
Ill

Local Online with Delta Rule

2500 --,.,--------------------------------.

2000 +------------------------------

1500 +--------------------~

··• .-··•
~.,,. ~-·

S 1000 +------­
u::::

0 .i,jl~-----------------------------------l
200 400 600 800 1000 1~00

-500 ~ -----------------------------------'

Generations

- Num Species

- Best ever Fitness

- This gens Fitness

- Avg Fitness

Figure 7.5 The fitness of intell igent agents Onl ine Learning (local online with delta rule in learning phase and
evolutionary phase)

Figure 7.5 depicts the performance of online learning (local online with delta rule in the learning

phase and evolutionary phase with GAs) alone. For 1000 generations, with 300 time units for

each generation, the best fitness ever is 2000 units and maximum average fitness value is

around 600 units. The variations between yellow line (each generation's fitness) and the pink line

(best ever fitness) decrease as the number of generations increase. Therefore, we can say that

the algorithm has successfully evolved a network that can perform best in different environments.

95

7.6.1 Analysis of Performance with Online Leaming Alone

In the absence of offline learning, the initial mine sweepers are too unrefined to produce best

fitness. Onhne learning improves their behavior as early as the first generation. Even though

initial fitness values may not be satisfactory, however, as generations increase mine sweepers

become more sensitive to the environment with the close corporation of evolutionary phase and

learning phase. After a few (200 to 300) generations, mine sweepers' performance is as good as

those that included offline learning.

7.7 Analysis ofOffline Learning

Figures 7.2, 7.3, 7.4, and 7.5, all exhibit the fact that offline learning significantly improves the

average fitness of the population. In few generations, the best fitness values are reached.

Although the offline learning considerably improves the fitness for the first few generations, after a

large number of generations the effect of offline learning is not noticeable. Hence, we conclude

that offline learning 1s necessary but not essential for the adaptability.

7 .8 Comparisons between Different Approaches

The results of all our experiments indicate that the online learning is the key factor for adapting in

drifting environments. We have experimented with different types of online learning such as

global and local online methods individually as well as in combination with offline learning.

Comparisons among these experimental results provide more insight into the online learning.

The Global online learning method does not use a training set to guide the mine sweepers in the

new environment but uses a heuristic function to produce guiding outputs. Local onhne learning

uses a small training set to guide the mine sweepers in a drifting environment. The local online

learning algonthm performs slightly better than the global onhne learning But global online

learning is faster than local online learning. Global and local online learning methods are further

categorized based on the learning rule that is used to update the weights.

i. Global Online and Local Online Methods with Delta Rule (Leaming Phase) and Offline

Leaming:

Figures 7.4 and 7.6 depict the performances of offline learning and the local online method with

delta rule, and offline learning and the global onlme method with delta rule, respectively, in a

drifting environment. Figures 7.4 and 7.6 exhibit that both experiments have their highest ever

fitness values above 2000 units, but local online method's highest average fitness value is better

than that of the global online method. The local online graph (Figure 7.4) 1s smoother than that of

96

the global one due to its close cooperation with offl ine learning. Both offline learning and the local

onl ine method of learning phase require a training set. The global online method depends on

heuristic function and does not benefit from offline learning. In our application global online

learning optimizes only the speed of the mine sweepers and does not improve their navigation to

avoid hitting the obstacles. Hence, the generation's best fitness deviates from the best ever

fitness (Figure 7.6).

VI
VI

Global Online with Delta Rule and Offline

2500 .---------------------------~....,.,..,,

2000 ~ ---~ --- - -

1500 +---------------------------------1

-·-

5 1000 t-------------------:.i.·brJ.-'l!e.::....----------l

ii:

200 400 600 800 1000 1 0

-500 _..__ ___________________________ __,

Generations

- Num Species

- Best ever Fitness

This gens Fitness

- Avg Fitness

Figure 7.6 The fitness of intelligent agents when global on line with delta rule of learning phase, evolutionary phase
and offiine learning are combined

ii. Global Online and Local Online methods with Delta Rule of Learning Phase:

Figures 7.5 and 7.7 depict the performances of local online and global online methods with delta

rule, respectively. In absence of offline learning, global online method with delta rule attained the

highest fitness in comparison to the local online method with delta rule. Also, it can be observed

that the average fitness of global online learning is far better than the local online learning . But

global online learning graph (Figure 7.7) shows more deviations of generation's fitness from the

best ever fitness. In fact, local online learning graph is smooth. Absence of offline learning

affected the average fitness of local online learn ing. But the absence of offline learning did not

have considerable effect on global online learning method.

Global Onlline with Delta Rule

2000 +------------------------ :-- ____ ____,

1500 +---------------~ -· - -

-·

1000 +---- ------

500

0 +--------------_..-"""""'.....,, ____ """1-- - -----1

0 200 400 600

Generations

800 1000 1200

97

- Num Species

- Best ever Fitness

- Th is gens Fitness

- Avg Fitness

Figure 7.7 The fitness of intelligent agents when global online with delta rule of learning phase and evolutionary phase

iii. Global Online and Local Online methods with Rule Evolution and Offline learning:

Figures 7.8 and 7.9 depict the performances of global online and local online methods of learning

phase with rule evolution and offline learning, respectively. Figure 7.9 shows that local online

method's performance is superior to global online method 's (Figure 7.8) performance. The reason

for the decrease in the fitness of global online can be attributed to the randomness introduced by

the generalized rule. The learning rule attempts to adapt to provide the best fitness possible.

However, the global online learning directs the evolution of learning rule with respect to mine

sweeper's speed only. Hence, the low fitness values are noticed for global online learning with

rule evolution . But on the contrary, the same reason contributes towards better average fitness

for global online learning. Although local online learning attains highest fitness, it still suffers from

the deviation of generation's fitness from best ever fitness. These deviations are due to the

imperfect nature of the evolving rule. If we continue the experiments for a large number of

generations, the deviations at some point tend to decrease and then increase after a certain

number of generations. This is due to the evolutionary process of the learning rule. When the

general rule approximates the delta rule, in the process of evolution, the performance of mine

sweepers is much better for both global and local onl ine methods. Furthermore, in the rule

evolution the efficiency of the guidance is observed to play an important role.

1600

1400

1200

1000

800
1/)
1/)
QI

.5
u:::

600

400

200

0

-200

Global Online with Rule Evolution and Offline

+--------------- ----- --

200 400 600 800 1000

Generations

1 0

98

- Num Species

- Best ever Fitness

This gens Fitness

- Avg Fitness

Figure 7.8 The fitness of intelligent agents when global on line with rule evolution of learning phase, evolutionary phase
and oftline learning are combined

1/)
1/)
Cl)

.5
u:::

99

Local Online with Rule Evolution and Offline

2000

1800

1600 - - - -

1400

1200 -·-r·r---'" -

1000 - Num Species

- Best ever Fitness

800
- This gens Fitness

- Avg Fitness
•·'

600

0 -1---------i~-----,------,-------------i~--- -l
200 400 600 800 1000 1 0

-200 _._ ___________________________ __,

Generations

Figure 7.9 The fitness of intelligent agents when local online with rule evolution of learning phase, evolutionary
phase and offl ine learning are combined

iv. Global Online and Local Online Methods with Rule Evolution:

Figures 7.10 and 7.11 depict the performance of global and local online methods with rule

evolution, respectively. The absence of offline learning does not have much effect on global

onl ine method. Although local online learning has higher fitness than the global online learning,

local online learning is greatly affected by the absence of offline learning and its generation's

fitness deviates considerably from the best ever fitness. Mine sweeper population 's average

fitness is higher with global online learning than local online learning. Also, global online learning

graph (Figure 7.10) is smoother than local on line learning (Figure 7.11).

1600

1400

1200

1000

800
UI
UI
(I)

.s
u:::

600

400

200

0

-200

Global Online with Rule Evolution

+------------------------------- ---------1

--·

200 400 600 800 1000 1 0

Generations

100

- Num Species

- Best ever Fitness

This gens Fitness

- Avg Fitness

Figure 7.10 The fitness of intelligent agents when global on line with rule evolution of learning phase and evolutionary
phase

101

Local Online with Rule Evolution

1800

1600

1400

-·
1200

1000

ti) - Num Species
ti)
G)

800 .5
U:::

- Best ever Fitness

- This gens Fitness

- Avg Fitness
600

400

200

0

1 0

-200

Generations

7.11 The fitness of intelligent agents when local on line with rule evolution of learning phase and evolutionary phase

v. Online learning vs. GAs only:

Figures 7.2, 7.5, and 7.7 depict the performances of only GAs, local online learning (learning

phase) with GAs (evolutionary phase) , and Global online learning (learning phase) with GAs

(evolutionary phase) , respectively. The graphs clearly depict the superior performance of online

learning algorithms over only GAs. The evolutionary phase combined with learning phase show

an improved performance in drifting environments. The deviations that are present in Figure 7.2

are due to the fact that the mine sweepers do not learn the changes in the drifting environment.

The GAs are guided by learning phase in drifting environments and are not completely random.

Also, only GAs are frequently observed to generate complicated architectures. Figures 7.12 and

7.13 represent the architectures generated by only GAs, and online learning (learning phase and

evolutionary phase) , respectively. Whenever fitness decreases, only GAs are unable to capture

the changes in the environment and therefore attempt to increase the complexity of the

architectures in order to improve the fitness. But GAs (evolutionary phase) when combined with

the learning phase generate architectures that are tuned to the subtleties of environment with the

help of continuous learning from learning phase.

102

Best Fitness so far: 157 4

This Generation's Fitness : 157 4

This Generation's Average Fitness : 792.56

Num Species: 9

Generation: 2173 •

• • • • • • •

Figure 7.12 A sample run of "GAs Only" showing the complex architectures generated

0111'- .JI.\., •• I IJ UI IU L'-,UI 111116, r\,'6,UI ■ ,11111

Best Fitness so far: 10068 • •
This Generation's Fitness : 10065

This Generation's Average Fitness: 3240.76

Num Species: 11

Generation: 4385 • •

• • • • • • .1
•

·,
\
\
\

• •

• • • • • • • • • • •
Figure 7.13 A sample run of "Only Online Learning" showing the simple architectures generated even after 4000

generations.

103

7.9 The Factors that influence the performance of Application

Due to the involvement of large number of variables, the application's performance depends on

certain important factors. The following provides brief analysis of some important factors.

I. Number of Time Units per Generation:

The time umts directly affect the performance. When there are more time units per generation,

the mine sweepers can explore more area and thus increase their fitness by finding more mines.

In our application, an environment always contains a fixed number of mines. Hence the fitness is

directly proportional to the number of time units per generation. In an environment without mines,

the fitness is directly proportional to the number of time units per generation until a saturation

point and then the fitness stays constant.

ii. Number of Mine Sweepers:

The number of mine sweepers affects the diversity of the population. If there is a large number of

mine sweepers, then there is a fair chance of finding an effective architecture in less time. When

the population is more diverse, the genetic algorithms can generate better fit offspnng.

Iii. Number of Generations:

As the generations increase the mine sweepers get better and better. However, if the changes in

the environment are not significant, then the MBP over-trains the networks after a large number

of generations. Over-training reduces the fitness and the architectures get complicated.

Iv. Number and Type of Obstacles Present:

As the environments are of equal size for all generations, number and type of the obstacles

present in the environments affect the fitness by either offering more area to explore or by

constraining the mine sweepers in the environment. Fitness mainly depends on the amount of

area that has been explored. The type of obstacles also affect the fitness. A rectangular obstacle

may occupy more space than a triangular obstacle. Hence, the number of obstacles present in

the environment is inversely proportional to the fitness value in that environment.

v. Fitness criteria:

The number of generations needed to evolve a network depends on the fitness criteria. If we

have simple fitness criteria then we need fewer generations to evolve a network. The number of

generations required depends on the complexity of the fitness criteria. Figure 7.14 depicts the

graph for simple fitness criteria area exploration.

Ill
Ill

Local Online with Delta Rule and Only Exploration as Fitness

120 ~-----~----------------------~

100

80 +-------------------------------------1

S 60 +-------------------------------1
u::

40 +------------------------------------,]

20 +-------------------------------------,]

0 +----------------------------------0
0 200 400 600

Generations

800 1000 1200

Figure 7.14 The fitness of intelligent agents with online learning and simple fitness criteria

104

- Num Species

- Best ever Fitness

This gens Fitness

The above graph demonstrates that within 600 generations a best performing network is evolved.

If the fitness criterion is complex, a best performing network requires many more generations to

evolve.

Therefore, all key factors (number of time units, number of mine sweepers, number of

generations, number of obstacles and fitness criteria) have sign ificant effect on the performance

of the algorithm. As our algorithm is guided (learning phase) and random (evolutionary phase) ,

these factors play an important role in evolving an adapting network for drifting environments.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Overview

We have proposed a hybrid algorithm that can learn to adapt to new environments and suggested

possible extensions to the present work.

8.1 Conclusion

Designing neural networks is a tedious process that requires lots of expertise and time, since a

large number of variables may be involved. Evolutionary (Genetic) Algorithms have been

successful in automatically generating efficient neural networks. The design of neural networks

involves three different aspects namely: connection weights, architecture, and learning rules.

There are no algorithms present that can evolve a neural network using simultaneous evolution of

weights, architecture, and learning rules due to the complexity of the process. Our algorithm

provides an efficient way to achieve the simultaneous evolution of all three aspects to generate

efficient neural networks for drifting environments. Our algorithm is capable of evolving

feedforward as well as recurrent neural networks and focuses on a key issue: Dynamism in the

environment. With drifting environments the nature and variables of the environment change over

time, emphasizing the importance of adapting to the changes in the environments. We provided a

theoretically motivated hybrid adaptive learning algorithm for the drifting environments. Our

algorithm design is based on the following evolutionary characteristics.

• Automatic design and generation of dynamic neural networks using evolution.

• A continuous (life-long) learning mechanism for these dynamic networks.

In add1t1on to evolution, we used online learning mechanism to fine-tune the evolved networks for

drifting environments. We observed that complete evolution with an onflne learning mechanism

enabled the neural networks to adapt to changing environments eff1c1ently in a short period of

time. We designed and successfully used two types of online learning namely heuristic online

(global online) and guided online (local online).

Our experimental results demonstrate the ability of our algorithm to evolve efficient neural

networks with simple architectures in few hundreds of generations. We have evolved neural

105

106

networks for mme sweepers in an environment that changes from one generation to the next and

our results indicate great improvement m the mme sweepers' behavior. In addition, our results

md1cate that our algorithm successfully evolved simple and easy-to-fine-tune networks in very few

generations.

We have used a variation of backpropagat1on algorithm, which can adJust the connection weights

for a random and dynamic neural network without the need for re-arrangement into layers. Our

modified backpropagation (MBP) can handle feedforward and recurrent networks. We

successfully evolved learning rules using a simple general linear equation. Our results have

shown that the evolved learning rule is as effective as the delta rule. Many real time applications

do not have an input-output training set, hence we formulated the heuristic online or global online

which uses a heuristic function to improve the agent's (mine sweepers) performance in the

environment.

Our results show the performance of the hybrid algorithm with online learning is far superior to the

performance of only evolutionary algorithms, even with complete simultaneous evolution. This

underlines our basic claim that hfe-long learning is an important mechanism m adaptation in the

dnfting environments.

As our algorithm mimics human evolution we have successfully used all genetic operators in the

evolutionary process. We have successfully implemented complete evolution and onhne learning

to achieve effective design automation of neural networks with the ability to adapt to the dnftmg

environments. Finally, our algorithm can be effectively used with artificial life as well as artificial

agents in computer games.

107

8.2 Future Work

• We have used supervised learning approach in our algorithm. Some real time

applications do not support this approach. Hence future work could be extending the

algorithm to use unsupervised learning approach.

• One can extend the algorithm to use online evolution instead of online learning. It would

be interesting to compare these two methods.

• Our algorithm generates dynamic networks but the input and output nodes are fixed in

the algorithm. Hence it can be an effective extension if we can add or delete input and

output nodes as need arises.

• Mod1f1ed backpropagation can be optimized to run faster. Also, it can be an interesting

phenomenon to implement incremental evolution and observe the improvements if any.

APPENDIX

#ifndef C2DMATRIX_H
#define C2DMATRIX_H

I I--
II
II Name: C2DMatnx.h
II
II Authors:
II Created by Mat Buckland 2002
II Modified by Ami kumar Enumulapally 2004
II Ami kumar Enumulapally 2005
II
II
II Desc: Matrix class from the book Game AI Programming with Neural Nets
II and Genetic Algorithms.
II
I 1--

#include <stdhb.h>
#include <math.h>
#include <iostream>
#include <vector>

#include "utils.h"

struct SPoint;

using namespace std;

class C2DMatrix
{
private:

struct S2DMatnx
{

double _11, _12, _13;
double _21, _22, _23;
double _31, _32, _33;

S2DMatnx()
{

}

_11=0; _12=0; _13=0;
_21=0;_22=0;_23=0;
_31=0;_32=0;_33=0;

friend ostream &operator<<(ostream& os, const S2DMatnx &rhs)
{

os << 11\n 11 << rhs._11 << 11 11 << rhs._12 << • 11 << rhs._13;

os << 11\n 11 << rhs._21 << 11 11 << rhs._22 << 11 11 << rhs._23;

os << 11\n 11 << rhs._31 << 11 11 << rhs._32 << 11 11 << rhs._33;

108

}
};

return os;

S2DMatrix m_Matrix;

//multiplies m_Matrix with min
mime void S2DMatrixMult1ply(S2DMatrix &min};

public:

C2DMatrix()
{

}

//inrt1ahze the matrix to an 1dent1ty matrix
Identity();

//create an 1dent1ty matrix
void Identity();

//create a transformation matrix
void Translate(double x, double y);

//create a scale matrix
void Scale(double xScale, double yScale);

//create a rotation matrix
void Rotate(double rotation);

//applys a transformation matrix to a std: :vector of points
mime void TransformSPoints(vector<SPomt> &vPomts);

};

//multiply two matrices together
mime void C2DMatrix: :S2DMatrixMultiply(S2DMatrix &min}
{

S2DMatrix mat_temp;

//first row
mat_temp._11 = (m_Matrix._11 *mln._11) + (m_Matrix._12*mln._21) +

(m_Matrix ._13*mln ._31);
mat_temp._12 = (m_Matrix._11 *mln._12) + (m_Matrix._12*mln._22) +

(m_Matrix._13*mln._32);
mat_temp._13 = (m_Matrix._11 *mln._13) + (m_Matrix._12*mln._23) +

(m_Matrix._13*mln._33);

//second
mat_temp._21 = (m_Matrix._21 *mln._11) + (m_Matrix._22*mln._21) +

(m_Matrix._23*mln._31);
mat_temp._22 = (m_Matrix._21 *mln._12) + (m_Matrix._22*mln._22) +

(m_Matrix._23*mln._32);
mat_temp._23 = (m_Matrix._21 *mln._13} + (m_Matr1x._22*mln._23) +

(m_Matrix._23*mln._33);

//third
mat_temp._31 = (m_Matrrx._31 *mln._11) + (m_Matnx._32*mln._21) +

(m_Matrrx._33*mln._31);
mat_temp._32 = (m_Matrrx._31 *mln._12) + (m_Matr1x._32*mln._22) +

(m_Matnx._33*mln._32);
mat_temp._33 = (m_Matrrx._31 *mln._13) + (m_Matrrx._32*mln._23) +

(m_Matrrx._33*mln._33};

m_Matrrx = mat_temp;
}

109

//applies a 2D transformation matrix to a std:: vector of SPoints
mime void C2DMatnx: :TransformSPomts(vector<SPomt> &vPomt)
{

for (mt i=O; i<vPomt.s1ze(); ++1)
{

(m_Matnx._31);

(m_Matnx._32);

}
}

#end1f

double tempX =(m_Matnx._11 *vPomt[1].x) + (m_Matnx._21 *vPomt[1].y) +

double tempY = (m_Matnx._12*vPomt[1].x) + (m_Matnx._22*vPomt[1].y) +

vPomt[1].x = tempX;

vPomt[1].y = tempY;

110

#include "C2DMatrix.h"

///
II
// Matrix functions
II
///
//create an 1dent1ty matrix
VOid C2DMatrix: :Identity()
{

m_Matrix._11 = 1; m_Matrix._12 = O; m_Matrix._13 = O;

m_Matrix._21 = O; m_Matrix._22 = 1; m_Matrix._23 = O;

m_Matrix._31 = O; m_Matrix._32 = O; m_Matrix._33 = 1;

}

//create a transformation matrix
void C2DMatrix: :Translate(double x, double y)
{

S2DMatrix mat;

mat._11 = 1; mat._12 = O; mat._13 = O;

mat._21 = O; mat._22 = 1; mat._23 = O;

mat._31 = x; mat._32 = y; mat._33 = 1;

//and multiply
S2DMatrixMult1ply(mat);

}

//create a scale matrix
void C2DMatrix: :Scale(double xScale, double yScale)
{

S2DMatrix mat;

mat._11 = xscale; mat._12 = O; mat._13 = O;

mat._21 = O; mat._22 = yScale; mat._23 = O;

mat._31 = O; mat._32 = O; mat._33 = 1;

//and multiply
S2DMatrixMult1ply(mat);

}

//create a rotation matrix
void C2DMatrix: :Rotate(double rot)
{

S2DMatrix mat;

double Sm = sm(rot);
double Cos = cos(rot);

mat._11 = Cos; mat._12 = Sm; mat._13 = O;

mat._21 = -Sm; mat._22 = Cos; mat._23 = O;

mat._31 = o; mat._32 = O;mat._33 = 1;

//and multiply
S2DM~rixMufup~(matj;

}

111

#1fndef CCONTROLLER_H
#defme CCONTROLLER_H

I I ---------------- --
I/
II
II
II
II
II
II
II

Name: ccontroller.h

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Arni kumar Enumulapally 2004

Arni kumar Enumulapally

// Desc: Controller class for Arni Smart Sweepers
II

2005

I!--
#include <vector>
#include <sstream>
#include <stnng>
#include <wmdows.h>

#include "CMmesweeper.h"
#include "ut1ls.h"
#include "C2DMatnx.h"
#include "SVector2D.h"
#include "CParams.h"
#include "Cga.h"
//#include <fstream>

usmg namespace std;

class CController
{

private:

//storage for the entire population of chromosomes
Cga* m_pPop;

//array of sweepers
vector<CMmesweeper> m_vecSweepers;

//and the mmes
vector<SVector2D> m_vecMmes;

//array of best sweepers from last generation (used for
//display purposes when 'B' 1s pressed by the user)

vector<CM mesweeper> m_ vecBestSweepers;

mt

//vertex buffer for the sweeper shapes vertices
vector<SPomt> m_SweeperVB;

//vertex buffer for obJects
vector<SPomt> m_ObJectsVB;

//vertex buffer for the mme shape's vertices
vector<SPomt> m_MmeVB;

//stores the average fitness per generation
vector<double> m_vecAvF1tness;

//stores the best fitness per generation

m_NumSweepers;

112

vector<double> m_vecBestF1tness;

//best fitness ever
double
float

m_d BestF1tness;
m_dAvgF1tness;

//pens we use for the stats
HPEN
HPEN
HPEN
//HPEN
HPEN
HPEN
HPEN

m_GreyPenDotted;
m_RedPenDotted;

HBRUSH m_RedBrush;
HBRUSH m_BlueBrush;
HBRUSH m_BlackBrush;

m_RedPen;
m_BluePen;
m_GreenPen;
m_BlackBrush;

m_OldPen;

//HBRUSH m_BlueBrush;

//local copy of the handle to the application wmdow
HWND m_hwndMam;

//local copy of the handle to the mfo wmdow
HWND m_hwndinfo;

//toggles the speed at which the s1mulat1on runs
bool m_bFastRender;

//when set, renders the best performers from the
//previous genera1on.

boo I m_bRenderBest;

//cycles per generation
mt

//generation counter
mt

m_mcks;

m_1Generat1ons;

/ /local copy of the client wmdow d1mens1ons
mt m_cxChent, m_cyChent;

/ /this is the sweeper who's memory cells are displayed

public:

mt m_1V1ewTh1sSweeper;

void PlotStats(HDC surface)const;

void RenderSweepers(HDC &surface, vector<CMmesweeper> &sweepers);

void RenderSensors (HDC &surface, vector<CMmesweeper> &sweepers);

CController(HWND hwndMam, mt cxChent, mt cyChent);

~CController();

v01d Render(HDC &surface);
void WorldTransforml(vector<SPomt> &VBuffer, SVector2D vPos);
void RenderMmes(HDC &surface, vector<SVector2D> &mines);

//renders the phenotypes of the four best performers from
//the previous generation

void RenderNetworks(HDC &surface);
void WnteResults();

113

{

}

};

#endif

void GeneratePomt(mt &x, mt &y);
float AvgF1tness()

return m_dAvgF1tness;

bool Update();

/ 1-------------------------------------accessor methods
boo I FastRender()const{return m_bFastRender;}
void FastRender(bool arg){m_bFastRender = arg;}
void FastRenderToggle(){m_QFastRender = 1 m_bFastRender;}

bool RenderBest()const{return m_bRenderBest;}
void RenderBestToggle(){m_bRenderBest = 1 m_bRenderBest;}

void PassinfoHandle(HWND hnd){m_hwndlnfo = hnd;}

vector<double> GetF1tnessScores()const;

void V1ewBest(mt val)
{

}

1f ((val>4) 11 (val< 1))
{

return;
}

m_lVlewTh1sSweeper = val-1;

114

#include 11CController.h 11

//#include 11f1le.h"
#mclude<fstream>
#include <string>
#include <sstream>

#include <std10.h>

#define PRINT OutputDebugStrmg

//these hold the geometry of the sweepers and the mmes
canst mt NumSweeperVerts = 16;
vector<double> sensors;
vector<double> transsensors;
bool bBest;
mt iEnv=0;
char *sEnv= 1111 ;

// Imt1ahze Mme sweeper vertices
canst SPomt sweeper[NumSweeperVerts] = {SPomt(-1, -1),

SPomt(-1, 1),
SPomt(-0.5, 1),
SPomt(-0.5, -1),

SPomt(0.5, -1),
SPomt(l, -1),
SPomt(l, 1),
SPomt(0.5, 1),

SPomt(-0.5, -0.5),
SPomt(0.5, -0.5),

SPoint(-0.5, 0.5),
SPomt(-0.25, 0.5),
SPomt(-0.25, 1. 75),
SPomt(0.25, 1.75),
SPomt(0.25, 0.5),
SPomt(0.5, 0.5)};

//Initialize Mme vertices
canst mt NumMmeVerts = 4;
canst SPomt mme[NumMmeVerts] = {SPomt(-1, -1),

SPomt(-1, 1),
SPomt(l, 1),
SPomt(l, -1)};

//Initialize obJect vertices
mt NumObJectVerts;
mt NumObJectVerts5=44;
canst SPomt obJects[44] =

SPomt(200,60),
SPomt(200,60),
SPomt(200,100),
SPomt(200,100),
SPomt(160,100),
SPomt(160,100),
SPomt(160,200),
SPomt(160,200),
SPomt(B0,200),

115

{
SPomt(B0, 60),

SPomt(S0,200),
SPomt(S0,60),

SPomt(250,100),
SPomt(300,40),
SPomt(300,40),
SPomt(350,100),
5Pomt(350,100),
SPomt(250, 100),

SPomt(220,180),
SPomt(320,180),
SPomt(320,180),
SPomt(320,300),
5Pomt(320,300),
5Pomt(220,300),
SPomt(220,300),
SPomt(220,180),

5Pomt(12,15),
SPomt(380, 15),
SPomt(380,15),
SPomt(380,360),
SPomt(380,360),
5Pomt(12,360),
5Pomt(12,360),

SPomt(12,340),
SPomt(l00,290),
SPomt(l00,290),
SPomt(12,240),
5Pomt(12,240),

5Pomt(12,15),

const mt NumObJectVertsl = 20;
const SPomt obJectsl[NumObJectVertsl] = {

SPomt(12,15),

5Pomt(380, 15),

SPomt(380,15),

SPomt(380,360),

5Pomt(380,360),

SPomt(12,360),

SPomt(12,360),

SPoint(12,15),

5Pomt(80, 60),

SPomt(200,60),

SPomt(200,60),

SPomt(200,100),

SPomt(200,100),

116

SPomt(12,340),

5Pomt(12,340),
SPomt(12,340),

SPomt(12,15)};

5Pamt(160,100),

5Pamt(160,100),

5Pamt(160,200),

5Pamt(160,200),

SPamt(S0,200),

SPamt(S0,200),

5Pamt(80 ,60)

canst int NumObJectVerts2 = 14;
canst SPamt abJects2[NumObJectVerts2] = {

5Pamt(12,15),

5Pamt(380, 15),

5Pamt(380,15),

5Pamt(380,360),

5Pamt(380,360),

5Pamt(12,360),

5Paint(12,360),

5Paint(12,15),

5Pamt(250,100),

5Pamt(300,40),

5Pamt(300,40),

5Pamt(350,100),

5Pamt(350,100),

5Pamt(250, 100)

canst mt NumObjectVerts3 = 16;
canst SPamt abJects3[NumObJectVerts3] = {

5Pamt(12,15),

5Pamt(380, 15),

5Pamt(380,15),

SPamt(380,360),

5Pamt(380,360),

5Pamt(12,360),

5Pamt(12,360),

5Pamt(12,15),

117

};

};

SPomt(220,180),

SPoint(320,180),

SPomt(320,180),

SPomt(320,300),

SPomt(320,300),

SPomt(220,300),

SPoint(220,300),

SPomt(220,180)

const mt NumObJectVerts4 = 16;
const SPomt obJects4[NumObjectVerts4] = {

SPomt(12,15),

SPoint(380, 15),

SPomt(380,15),

SPomt(380,360),

SPomt(380,360),

SPoint(12,360),

SPomt(12,360),

SPomt(12,15),

SPomt(12,360),

SPoint(12,340),

SPomt(12,340),

SPomt(l00,290),

SPomt(l00,290),

SPomt(12,240),

SPoint(12,240),

SPomt(12,15)

//Create or append the results mto a excel file

};

};

fstream storel("Evolution_Rules_Local_No_Off2.xls", fstream: :in I fstream: :out I fstream: :app);

//---------------------------------------constructor --------------------
//
// m1tlla1ze the sweepers, their brains and the GA factory
II
I/---
ccontroller: :CController(HWND hwndMain,

mt cxChent,
mt cyChent): m_NumSweepers(CParams::1NumSweepers),

118

m_bFastRender(false),

m_hwndMam(hwndMam),

m_1Generat1ons(0),

m_dAvgF1tness(0)

{

m_bRenderBest(false),

m_hwndlnfo(NULL),

m_cxChent(cxChent),
m_cyChent(cyChent),
m_lVlewTh1sSweeper(0),

119

m_iT1cks{0),

storel<<"Generat1on"<<"\t"<<"Num Species"<<"\t"<<"Best ever FItness11 <<"\t"<<''Th1s gens
Fitness"<<"\t"<<"Avg F1tness"<<"\t"<<"Env_no11<<"\t"<<"Env_name"<<endl;

1f(CParams: :1OfflineTrammg==l)
{

/ /Perform offlme stage

vector<double> fitness;
double dTempF1tness;
mt 1IterS1ze=l0;//Number of iterations to be performed

//Create Random Networks
for (mt i=0; I<m_Numsweepers; ++1)

{
m_ vecsweepers. push_back(CMmesweeper());

}

//Create the population
m_pPop = new Cga(CParams: :iNumSweepers,

//create the phenotypes

CParams:: iNumlnputs,
CParams:: iNumOutputs,
CParams:: 1OffhneTrammg,
hwndMam,
10,10);

vector<CNeuralNet*> pBrams = m_pPop->CreatePhenotypes();

for(int ilter=0,1_tmp_here=0 ;ilter< 10;I1ter++ ,1_tmp_here++)
{

fitness.clear();

for (int 1=0; 1<pBrams.s1ze(); i++)
{

//Store the mean squared error from Modified Backpropagation
dTempF1tness=pBrains[1]->offlmeTra1ning{m_hwndMa1n);

// Fitness Is defined as 1/error here
fitness. push_back(l/dTempF1tness);

}//end of I FOR loop

II Perform Genetic Operations
vector<CNeuralNet*> pBrams = m_pPop->Epoch{f1tness,l);

}//end of ilter FOR loop

}
else
{

//assign the phenotypes

for (1=0; I<m_NumSweepers; 1++)
{

}

m_vecSweepers[1].InsertNewBra1n(pBra1ns[1]);
m_vecSweepers[1].SetStartmgPomt(180,200);

//lets create the random mmes
for(1=0;1<50;1++)
{

}

mt tempx1,tempy1;
GenerateP01nt(tempx1,tempy1);
m_vecM1nes.push_back(SVector2D(tempx1,tempy1));

//and the vector of sweepers which will hold the best performing sweepers
for (1=0; I<CParams: :INumBestSweepers; ++1)

{
m_vecBestSweepers.push_back(CM1nesweeper());

}

//We are m onhne learning

//let's create the mine sweepers
for (mt i=0; I<m_NumSweepers; ++1)
{

m_ vecSweepers. push_back(CM mesweeper());
}

//lets create the random mmes
for(1=0;1<50;1++)
{

}

mt tempx1,tempy1;
GeneratePomt(tempx1,tempy1);
m_vecMmes.push_back(SVector2D(tempx1,tempy1));

//and the vector of sweepers which will hold the best performing sweepers
for (1=0; I<CParams: :INumBestSweepers; ++1)

{
m_vecBestSweepers.push_back(CM1nesweeper());

}

m_pPop = new Cga(CParams: :INumSweepers,

//create the phenotypes

CParams: :INumlnputs,
CParams:: INumOutputs,
CParams: :1OffhneTrammg,
hwndMam,
10,10);

vector<CNeuralNet*> pBrams = m_pPop->CreatePhenotypes();

//assign the phenotypes
for (1=0; 1<m_NumSweepers; 1++)
{

m_vecSweepers[1].InsertNewBram(pBra1ns[1]);
}

}//end of offlme flag ELSE

120

//create a pen for the graph drawing
m_BluePen = CreatePen(PS_SOUD, 1, RGB(0, O, 250));
m_RedPen = CreatePen(PS_SOUD, 1, RGB(255, 100, 0));
m_GreenPen = CreatePen(PS_SOUD, 1, RGB(O, 180, 0));
m_GreyPenDotted = CreatePen(PS_DOT, 1, RGB(l00, 100, 100));
m_RedPenDotted = CreatePen(PS_DOT, 1, RGB(200, 0, 0));

m_OldPen = NULL;

//and the brushes
m_BlueBrush = CreateSohdBrush(RGB(0,0,244));
m_RedBrush = CreateSohdBrush(RGB(lS0,0,0));
m_BlackBrush= CreateSohdBrush(RGB(0,0,0));

//fill the vertex buffers
for (mt il=0; 1l<NumSweeperVerts; ++il)
{

m_SweeperVB.push_back(sweeper[1 l]);
}

//fill mme vertex buffers
for (int 12=0;12<NumMineVerts;++12)
{

m_MmeVB. push_back(mme[12]);
}

// Randomely generate the obJects m the environment
int temp=Randlnt(0,15);
if(temp<=2)
{

sEnv= "SquareRect";
iEnv=l;
m_ObJectsVB.clear();
NumObJectVerts=NumObjectVertsl;
for (mt 12=0; 12<NumObJectVerts; ++12)
{

m_ ObJectsVB. push_back(obJectsl [12]);
}

}

lf((temp>2) && (temp<=S))
{

sEnv="UpTramgle";
1Env=2;
NumObJectVerts=NumObJectVerts2;
m_ObJectsVB.clear();
for (mt 1=0; 1<NumObJectVerts2; ++I)
{

m_ObjectsVB. push_back(obJects2[1]);
}

}
1f((temp>S) && (temp<=8))
{

}

sEnv= "Rectangle";
1Env=3;
NumObJectVerts=NumObJectVerts3;
m_ObJectsVB.clear();
for (mt 1=0; i<NumObjectVerts3; ++1)
{

m_ObJectsVB.push_back(obJects3[1]);
}

121

}

1f((temp>8) && (temp<=l0))
{

sEnv="Vert1calTraingle";
1Env=4;
NumObJectVerts= NumObJectVerts4;
m_ObJectsVB.clear();
for (mt i=0; i<NumObJectVerts4; ++1)
{

m_ObjectsVB.push_back(obJects4[1]);
}

}

if((temp>l0) && (temp<=lS))
{

}

sEnv="Full";
iEnv=S;
NumObJectVerts= Nu mObjectVertsS;
m_ObJectsVB.clear();
for (mt i=0; i<NumObJectVerts5; ++1)
{

m_ObJectsVB. push_back(obJects[1]);
}

I/- -------------------------------------destructor-------------------------------------
/ /
I/------ --
cco ntro lier: : ~CController()
{

1f (m_pPop)
{

}

}

delete m_pPop;

DeleteObject(m_BluePen);
DeleteObJect(m_RedPen);
DeleteObJect(m_ Green Pen);
DeleteObJect(m_OldPen);
DeleteObJect(m_ Grey Pen Dotted);
DeleteObJect(m_RedPen Dotted);
DeleteObJect(m_BlueBrush);
DeleteObJect(m_Red Brush);
DeleteObject(m_BlackBrush);

I/-------- -----------------------------update---------------------------------------
/ /
// This 1s the mam workhorse. The entire s1mulat1on 1s controlled from here.
II
I/---- --
boo I CController: :Update()
{

//run the sweepers through NUM_TICKS amount of cycles. During this loop each
//sweepers NN 1s constantly updated with the appropriate information from its
//surroundings. The output from the NN 1s obtained and the sweeper 1s moved.
1f (m_fflcks++ < CParams: :iNumT1cks)
{

for (mt 1=0; 1<m_NumSweepers; ++1)
{

bBest=false;

122

123

//update the NN and posItIon
1f (lm_vecSweepers[1].Update(m_Ob1ectsVB,1,m_1Generat1ons,bBest,m_lTlcks))
{

//error m processing the neural net
MessageBox(m_hwndMam, "Wrong amount of NN inputs•", "Error",

MB_OK);

}

return false;
}
//see 1f it's found a mine
mt GrabHIt = m_vecSweepers[1].CheckForMme(m_vecMmes,2);

1f (GrabH1t >= 0)
{

}

//we have discovered a mine so increase fitness
m_ vecSweepers[1]. mcrementmmeval();

//mine found so replace the mine with another at a random
//pos1t1on

mt tempx,tempy;
GeneratePomt(tempx,tempy);
m_vecMmes[GrabH1t] = SVector2D(tempx,tempy);

//update the NNs of the last generations best performers
1f (m_1Generat1ons > 0)
{

/* if(m_vecBestSweepers.s1ze()•=4)
MessageBox(m_hwndMam, "Wrong amount of bests•", "Error", MB_OK);
*/

for (mt 1=0; i<m_vecBestSweepers.s1ze(); ++1)
{

bBest=true;
//update the NN and posItIon

If
(!m_vecBestSweepers[1].Update(m_ObJectsVB,1,m_1Generat1ons,bBest,m_lTlcks))

{
//error m processing the neural net
MessageBox(m_hwndMain, "Wrong amount of NN inputs'", "Error",

MB_OK);

}
}

}

return false;
}

//We have completed another generation so now we need to run the GA
else
{

float dTempAvg=0;
//first add up each sweepers fitness scores. (remember for this task
//there are many different sorts of penalties the sweepers may incur
//and each one has a coeff1c1ent)
for (mt swp=0; swp<m_vecSweepers.s1ze(); ++swp)
{

m_vecSweepers[swp]. EndOfRunCalculat1ons();
dTempAvg += m_ vecSweepers[swp]. Fitness();

}
m_dAvgF1tness=dTempAvg/m_ vecSweepers.size();

// Writing results to screen
WriteResults();

//increment the generation counter
++ m_IGenerat1ons;

//reset cycles
m_fflcks = 0;

//perform an epoch and grab the new brains
vector<CNeuralNet*> pBrams = m_pPop->Epoch(GetF1tnessScores(), 0);

//insert the new brains back mto the sweepers and reset their
//pos1t1ons
for (mt i=0; i<m_NumSweepers; ++i)

{
pBrams[1]­

>Mutatelearn1ngParameters(CParams: :dActivat1onMutat1onRate,

CParams: :dMaxAct1vat1onPerturbat1on);
m_vecSweepers[1].InsertNewBram(pBrains[1]);

m_ vecSweepers[i]. Reset();
}

//Change the obJects in the environment randomely
mt temp=Randint(0,15);
1f(temp<=2)
{

}

sEnv="SquareRect";
iEnv=l;
m_ObJectsVB.clear();
NumObJectVerts=NumObJectVertsl;
for (mt i2=0; 12<NumObJectVerts; ++i2)
{

m_ObJectsVB. push_back(objects! [12]);
}

If((temp>2) && (temp<=S))
{

sEnv="UpTra1ngle";
IEnv=2;
NumObJectVerts=NumObjectVerts2;
m_ObJectsVB.clear();
for (mt 1=0; 1<NumObJectVerts2; ++i)
{

}
}

m_ObJectsVB. push_back(obJects2[11);

1f((temp>S) && (temp<=B))
{

sEnv="Rectangle";
iEnv=3;
NumObJectVerts=NumObJectVerts3;
m_ObJectsVB.clear();
for (mt 1=0; 1<NumObJectVerts3; ++i)

124

}

//}

}

{

}
m_ObJectsVB.push_back(obJects3[I]);

1f((temp>8) && (temp<=l0))
{

sEnv="Vert,calTramgle";
IEnv=4;
NumObJectVerts=NumObJectVerts4;
m_ObJectsVB.clear();
for (mt 1=0; I<NumObJectVerts4; ++1)
{

m_ObJectsVB. push_back(obJects4[1]);
}

}

1f((temp>10) && (temp<=15))
{

}

sEnv="Full";
IEnv=5;
NumObJectVerts=NumObJectVerts5;
m_ObJectsVB.clear();
for (mt 1=0; 1<NumObJectVerts5; ++1)
{

m_ObJectsVB. push_back(ob1ects[1]);
}

//grab the NNs of the best performers from the last generation
vector<CNeuralNet*> pBestBrams = m_pPop->GetBestPhenotypesFromLastGenerat1on();

//put them into our record of the best sweepers
for (1=0; 1<m_vecBestSweepers.s1ze(); ++1)

{
m_vecBestSweepers[1].InsertNewBram(pBestBrams[1]);

m_ vecBestSweepers[1]. Reset();
}

//this will call WM_PAINT which will render our scene
InvahdateRect(m_hwndinfo, NULL, TRUE);

UpdateW1ndow(m_hwndlnfo);

}

return true;

//---------------------------------- RenderNetworks ---------------------­
//
// Renders the best four phenotypes from the previous generation
I/- ---
v01d CController: :RenderNetworks(HDC &surface)
{

1f (m_1Generations < 1)
{

return;
}

//draw the network of the best 4 genomes. First get the d1mens1ons of the
//mfo wmdow
RECT rect;

125

}

GetChentRect(m_hwndlnfo, &rect);

int cxlnfo = rect.nght;
int cylnfo = rect.bottom;

//now draw the 4 best networks
m_vecBestSweepers[0].DrawNet(surface, 0, cxlnfo/2, cylnfo/2, 0);
m_vecBestSweepers[l].DrawNet(surface, cxlnfo/2, cxlnfo, cylnfo/2, 0);
m_vecBestSweepers[2].DrawNet(surface, 0, cxlnfo/2, cylnfo, cylnfo/2);
m_vecBestSweepers[3].DrawNet(surface, cxlnfo/2, cxlnfo, cylnfo, cylnfo/2);

//------------------------------------Render()--------------------------------------
//
I/--
void CController: :Render(HDC &surface)
{

I /do not render 1f running at accelerated speed
If (lm_bFastRender)
{

strings= "Generation: "+ 1tos(m_iGenerat1ons);
TextOut(surface, 5, 0, s.c_str(), s.s1ze());

//select in the blue pen
m_OldPen = (HPEN)SelectObJect(surface, m_BluePen);

1f (m_bRenderBest)
{

}

//render the best sweepers memory cells
m_ vecBestSweepers[m_lVlewThisSweeper]. Render(surface);

//render the best sweepers from the last generation
RenderSweepers(surface, m_ vecBestSweepers);

// render mines
RenderMmes(surface,m_vecMmes);

//render the best sweepers sensors
RenderSensors(surface, m_ vecBestSweepers);

else
{

}

//render the sweepers
RenderSweepers(surface, m_ vecSweepers);

//Enable the following hne to see the sensors and feelers for all minesweepers
//RenderSensors(surface,m_ vecSweepers);

RenderM1nes(surface,m_vecM1nes);

SelectObJect(surface, m_OldPen);
HBRUSH OldBrush=(HBRUSH)SelectObJect(surface,NULL);
SelectObJect(surface,m_BlackBrush);
POINT* p;
int ItempNum,I99,1_t=0;

//render the objects
//Polygon(surface,p,NumObJectVerts);

for (mt i=0; I<NumObJectVerts; i+=2)
{

MoveToEx(surface, m_ObJectsVB[1].x, m_ObjectsVB[1].y, NULL);

LineTo(surface, m_ObJectsVB[1+1].x, m_ObJectsVB[i+l].y);
}

126

}

//SelectObJect(surface,OldBrush);

}//end 1f

else
{

PlotStats(surface);

}

RECT sr;
sr.top = m_cyChent-50;
sr.bottom = m_cyChent;
Sr.left = 0;
sr.right = m_cxChent;

//------------------------- RenderSweepers -------------------------------
//
// given a vector of sweepers this function renders them to the screen
I!--
void CController:: RenderSweepers(HDC &surface, vector<CMinesweeper> &sweepers)
{

for (mt i=0; 1<sweepers.s1ze(); ++i)
{

//if they have crashed into an obstacle draw
if (sweepers[1].Colhded())
{

SelectObject(surface, m_RedPen);
}

else
{

SelectObJect(surface, m_BluePen);
}

//grab the sweeper vertices
vector<SPomt> sweeperVB = m_SweeperVB;

//transform the vertex buffer
sweepers[1].WorldTransform(sweeperVB, sweepers[1].Scale());

//draw the sweeper left track
MoveToEx(surface, (int)sweeperVB[0].x, (mt)sweeperVB[0].y, NULL);

for (mt vert=l; vert<4; ++vert)
{

LineTo(surface, (mt)sweeperVB[vert] .x, (mt)sweeperVB[vert]. y);
}

LmeTo(surface, (mt)sweeperVB[0].x, (mt)sweeperVB[0].y);

//draw the sweeper right track
MoveToEx(surface, (mt)sweeperVB[4] .x, (mt)sweeperVB[4]. y, NULL);

for (vert=S; vert<8; ++vert)
{

L1neTo(surface, (int)sweeperVB[vert] .x, (mt)sweeperVB[vert]. y);
}

LmeTo(surface, (mt)sweeperVB[4].x, (mt)sweeperVB[4].y);

127

}

MoveToEx(surface, (mt)sweeperVB[S].x, (mt)sweeperVB[S].y, NULL);
LmeTo(surface, (mt)sweeperVB[9].x, (mt)sweeperVB[9].y);

MoveToEx(surface, (mt)sweeperVB[l0].x, (mt)sweeperVB[l0].y, NULL);

for (vert=ll; vert<16; ++vert)
{

LmeTo(surface, (mt)sweeperVB[vert].x, (mt)sweeperVB[vert].y);
}

}/ /next sweeper

void CController: :RenderMmes(HDC &surface, vector<SVector2D> &mmes)
{

//render the mmes
for (mt 1=0; 1<mmes.s1ze(); ++1)
{

SelectObJect(surface, m_GreenPen);
//grab the vertices for the mme shape
vector<SPomt> mmeVB = m_MmeVB;

WorldTransforml(mmeVB, mmes[1]);

//draw the mmes
MoveToEx(surface, (mt)mmeVB[0].x, (mt)mmeVB[0].y,

NULL);

for (mt vert=l; vert<mmeVB.s1ze(); ++vert)
{

LmeTo(surface, (mt)mineVB[vert].x,
(mt)mmeVB[vert]. y);

}

LmeTo(surface, (mt)mmeVB[0].x, (mt)mmeVB[0].y);

}

}//end of render mmes

//----------------------------- RenderSensors ----------------------------
//
// renders the sensors of a given vector of sweepers
I!-------- --
void CController: :RenderSensors(HDC &surface, vector<CMmesweeper> &sweepers)
{

//render the sensors
for (mt 1=0; 1<sweepers.s1ze(); ++1)
{
//grab each sweepers sensor data
vector<SPomt> tranSensors = sweepers[1].Sensors();
vector<double> SensorReadmgs = sweepers[1].SensorReadmgs();
vector<double> MemoryReadmgs = sweepers[1].MemoryReadmgs();

for (mt sr=0; sr<tranSensors.s1ze(); ++sr)
{

1f (SensorReadmgs[sr] > 0)
{

SelectObJect(surface, m_RedPen);
}

else
{

SelectObJect(surface, m_GreyPenDotted);
}

128

}

//make sure we clip the drawing of the sensors or we will get
//unwanted artifacts appearing
if (!((fabs(sweepers[1].Pos1t1on().x - tranSensors[sr].x) >

(CParams: :dSensorRange+l))I I
(fabs(sweepers[1].Pos1t1on().y - tranSensors[sr].y) >
(CParams: :dSensorRange+l))))

{

}
}

}

MoveToEx(surface,
(int)sweepers[1].Pos1t1on().x,
(int)sweepers[1].Pos1t1on().y,
NULL);

LineTo(surface, (int)tranSensors[sr] .x, (int)tranSensors[sr]. y);

//render the cell sensors
RECT rect;
rect.left = (int)tranSensors[sr].x - 2;
rect.nght = (int)tranSensors[sr].x + 2;
rect.top = (int)tranSensors[sr].y - 2;
rect.bottom= (int)tranSensors[sr].y + 2;

if (MemoryReadings[sr] < O)
{

FillRect(surface, &rect, m_BlueBrush);
}

else
{

F1IIRect(surface, &rect, m_RedBrush);
}

/1--------------------------------Wnte Results into the excel f1le--------------­
vo1d CController: :WnteResults()
{

}

storel<<m_iGenerat1ons<<"\t11 ;

storel<<m_pPop->NumSpecies()<<"\t";
store!<< m_pPop-> BestEverF1tness() < < "\t";
storel<<m_pPop->BestGenF1tness()<<"\t";
storel<<m_dAvgF1tness<<"\t11 ;

store!<< 1Env< <"\t";
storel<<sEnv<<endl;

void CController: :WorldTransforml(vector<SPoint> &VBuffer, SVector2D vPos)
{

//create the world transformation matrix
C2DMatnx matTransform;

//scale
matTransform.Scale(2, 2);

//translate
matTransform.Translate(vPos.x, vPos. y);

//transform the ships vertices

129

matTransform.TransformSP01nts(VBuffer);
}

I /--------------------------PlotStats-------------------------------------
1 /
// Given a surface to draw on this function displays some simple stats
I/------ --
void CController:: PlotStats(HDC surface)const
{

}

strings= "Generation: " + itos(m_1Generat1ons);
TextOut(surface, 5, 85, s.c_str(), s.s1ze());
//store1<<m_1Generat1ons<<"\t";

s = "Num Species: " + 1tos(m_pPop->NumSpec1es());
TextOut(surface, 5, 65, s.c_str(), s.s1ze());
//store1<<m_pPop->NumSpec1es()<<"\t";

s = "Best Fitness so far: "+ ftos(m_pPop->BestEverF1tness());
TextOut(surface, 5, 5, s.c_str(), s.s1ze());

//store1<<m_pPop->BestEverFitness()<<endl;

s = "This Generation's Fitness : " + ftos(m_pPop->BestGenF1tness());
TextOut(surface, 5, 25, s.c_str(), s.size());

s = "This Generation's Average Fitness : " + ftos(m_dAvgF1tness);
TextOut(surface, 5, 45, s.c_str(), s.s1ze());

I!------------------------------- GetF1tnessScores -----------------------
//
// returns a std: :vector contammg the genomes fitness scores
/1--
vector<double> CController: :GetF1tnessScores()const
{

}

vector<double> scores;

for (mt 1=0; i<m_vecSweepers.size(); ++1)
{

scores. push_back(m_ vecSweepers[1]. Fitness());
}
return scores;

//---------------------------------------Generate Point---------------------
! /Generates a random point which 1s not covered by obJects and also not out of boundaries
//---
VOid CController: :GeneratePoint(int &x, mt &y)
{

bool bPointFlag=true;
x=180;
y=200;
for(;;)
{

bPomtFlag=true;
x=RandFloat() * m_cxChent;
y=RandFloat() * m_cyChent;

if((x<=18)1 l(y<=21)1 l(x>=370)I I (y>=350))
// 1f((x<=12)1 l(y<=15)l l(x>=380)l l(y>=360))

130

}

//for 1

//for 2

//for 3

//for 4

{
bPomtFlag=false;

}

if((x>=80)&&(x<=200))
{
if((y<=200)&&(y> =60))

bPomtFlag=false;

}

if((x>=2S0)&&(x<=350))
{
1f((y< = l00)&&(y> =40))

bPomtFlag=false;

}

1f((x> =220)&&(x<=320))
{
1f((y< =300)&&(y> =180))

bPOI ntFlag =false;

}

1f((x>=12)&&(x<=100))
{
1f((y<=340)&&(y>=15))

bPomtFlag=false;

}

if(bPointFlag==true) break;
}/ /end of for

131

#1fndef CGA_H
#define CGA_H

I/--
11
// Name: Cga.h
II
// Authors:
// Created by Mat Buckland 2002
// Mod1f1ed by Ami kumar Enumulapally 2004
// Ami kumar Enumulapally 2005
II
// Desc: The evolutionary algorithm class used in the 1mplementat1on
II
I/--
#include <vector>
#include <windows.h>

#include "phenotype.h"
#include "genotype.h"
#include "CSpec1es.h"
#include "CParams.h"

using namespace std;

//--
11
// this structure is used in the creation of a network depth lookup
// table.
I 1--
struct SplitDepth
{

double val;

int depth;

SphtDepth(double v, int d):val(v), depth(d){}
};

I I- ---
I/
I!--
class Cga
{

private:

//current population
vector<CGenome> m_vecGenomes;

//keep a record of the last generations best genomes. (used to render
//the best performers to the display 1f the user presses the 'B' key)

vector<CGenome> m_vecBestGenomes;

//all the species
vector<CSpec1es> m_vecSpec1es;

//to keep track of innovations
Clnnovat1on* m_plnnovat1on;

132

//current generation
mt m_1Generation;

mt m_1NextGenomeID;

int m_1NextSpec1esID;

mt m_1PopS1ze;

//adJusted fitness scores
double m_dTotF1tAdJ,

m_dAvF1tAdJ;

//mdex mto the genomes for the fittest genome
mt m_1F1ttestGenome;

double
double

m_dBestEverF1tness;
m_dGenBestF1tness ;

//local copy of app handle
HWND m_hwnd;

//local copies of client area
int cxChent, cyChent;

//this holds the precalculated spht depths. They are used
//to calculate a neurons x/Y position for rendenng and also
//for calculating the flush depth of the network when a
//phenotype 1s working m 'snapshot' mode.
vector<SphtDepth> vecSphts;

//used m Crossover
void AddNeuronID(mt nodeID, vector<int> &vec);

//this function resets some values ready for the next epoch, kills off
//all the phenotypes and any poorly performing species.
void ResetAndKill();

//separates each ind1v1dual mto its respective species by calculating
//a compat1b1hty score with every other member of the population and
//niching accordingly. The function then adJusts the fitness scores of
//each md1v1dual by species age and by sharing and also determines
//how many offspring each individual should spawn.
void Spec1ateAndCalculateSpawnLevels();

//adJusts the fitness scores depending on the number sharing the
//species and the age of the species.
void AdjustSpec1esF1tnesses();

CGenome Crossover(CGenome& mum, CGenome& dad);

CGenome TournamentSelect1on(const mt NumCompansons);

//searches the lookup table for the dSphtY value of each node m the
//genome and returns the depth of the network based on this figure
mt CalculateNetDepth(const CGenome &gen);

/ /sorts the population into descend mg fitness, keeps a record of the
//best n genomes and updates any fitness stat1st1cs accordingly
void SortAndRecord();

//a recursive function used to calculate a lookup table of spht
//depths
vector<SphtDepth> Spht(double low, double high, mt depth);

133

public:

Cga(mt
mt
mt

HWND hwnd,
mt ex,
mt cy);

~Cga();

size,
inputs,
outputs,

mt offhne,

vector<CNeuralNet*> Epoch(const vector<double> &F1tnessScores, mt 10ffhne);

//iterates through the population and creates the phenotypes
vector<CNeuralNet*> CreatePhenotypes();

//keeps a record of then best genomes from the last population.
//(used to display the best genomes)
void StoreBestGenomes();

//renders the best performing species statIstIcs and a visual aid
//showing the d1stnbut1on.
void RenderSpec1eslnfo(HDC &surface, RECT db);

/ /returns a vector of the n best phenotypes from the previous generation
vector<CNeuralNet*> GetBestPhenotypesFromLastGenerat1on();

/ 1--accessor methods
int NumSpecIes()const{return m_vecSpec1es.s1ze();}

double BestEverF1tness()const{return m_dBestEverF1tness;}
double BestGenF1tness()const{return m_dGenBestF1tness;}

};

#endif

134

#include "Cga.h"

I I------ ---
I I this constructor creates a base genome from supplied values and creates
II a population of 'size' s1m1lar (same topology, varying weights) genomes
I/- --
Cga: :Cga(int size,

mt inputs,
int outputs,

{

mt offhne,
HWND hwnd,
mt ex,
mt cy): m_1PopS1ze(s1ze),

m_1Generat1on (0),
m_plnnovat1on (NU LL),
m_1NextGenomeID(0),
m_1NextSpec1esID(0),
m_1F1ttestGenome(0),
m_dBestEverF1tness(0),

m_dTotF1tAdJ(0),
m_dAvF1tAdJ(0),
m_hwnd(hwnd),
cxChent(cx),
cyChent(cy)

//create the population of genomes
for (mt 1=0; 1<m_1PopS1ze; ++i)
{

m_dGen BestF1tness(0),

135

m_ vecGenomes. push_back(CGenome(m_1NextGenomeID ++, inputs, outputs));
}

//create the innovation hst. First create a minimal genome
CGenome genome(!, inputs, outputs);

//create the innovations
m_plnnovation = new Cinnovat1on(genome.Genes(), genome.Neurons());

//If this constructor 1s called m offlme learning we add hidden neurons
//to few minimal genomes
1f(offlme==l)
{

//create minimal genome with hidden neurons
for (mt 1_temp=0; 1_temp<m_1PopS1ze/2; ++1_temp)
{

double 1-temp=RandFloat();
1f(J_temp<=RandFloat())
{

m_ vecGenomes[1_temp] .AddNeuron(0. 9, * m_pinnovat1on,CParams: : 1 Nu mTrysToFmdOldLink);
}

}

}
}//end of OFFUNE-IF

//create the network depth lookup table
vecSphts = Spht(0, 1, 0);

//------------------------------------- dtor -----------------------------
//
I/- ---

Cga:: "'Cga()
{

1f (m_plnnovat1on)
{

delete m_plnnovation;

m_plnnovation = NULL;
}

}

/ 1-------------------------------CreatePhenotypes-------------------------
//
// cycles through all the members of the population and creates their
// phenotypes. Returns a vector contammg pointers to the new phenotypes
I!---
vector<CNeuralNet* > Cga:: Create Phenotypes()
{

vector<CNeuralNet*> networks;

for (mt i=O; i<m_1PopS1ze; i++)
{

//calculate max network depth
mt depth = CalculateNetDepth(m_vecGenomes[1]);

//create new phenotype
CNeuralNet* net= m_vecGenomes[1].CreatePhenotype(depth);

networks. push_back(net);
}

return networks;
}

//-------------------------- CalculateNetDepth ---------------------------
//
II searches the lookup table for the dSphtY value of each node in the
// genome and returns the depth of the network based on this figure
I!--
int Cga::CalculateNetDepth(const CGenome &gen)
{

}

int MaxSoFar = O;

for (int nd=O; nd<gen.NumNeurons(); ++nd)
{

}

for (int i=O; i<vecSphts.size(); ++1)
{

}

1f ((gen.SphtY(nd) == vecSphts[1].val) &&
(vecSphts[i].depth > MaxSoFar))

{
MaxSoFar = vecSphts[1].depth;

}

return MaxSoFar + 2;

/ 1-----------------------------------AddNeuronID----------------------------
//
// Just checks to see 1f a node ID has already been added to a vector of
// nodes. If not then the new ID gets added. Used m Crossover.
I/-------- --
void Cga: :AddNeuronID(const mt nodeID, vector<mt> &vec)
{

for (mt 1=0; 1<vec.s1ze(); 1++)

136

}

{

}

1f (vec[i] == nodeID)
{

}

//already added
return;

vec. push_back(nodeID);

return;

//------------------------------------- Epoch ----------------------------
//
// This function performs one epoch of the genetic algorithm and returns
// a vector of pointers to the new phenotypes
I/---- --
vector<CNeuralNet*> Cga: :Epoch(const vector<double> &F1tnessScores, mt ioffhne)
{

bool bOffhne_flag=false;

//reset appropriate values and kill off the existing phenotypes and
//any poorly performing species
ResetAndK11l();

//update the genomes with the fitnesses scored m the last run
for (mt gen=0; gen<m_vecGenomes.s1ze(); ++gen)
{

m_vecGenomes[gen].SetF1tness(F1tnessScores[gen]);
}

//sort genomes and keep a record of the best performers
SortAndRecord();

//separate the population mto species of s1m1lar topology, adJust
//fitnesses and calculate spawn levels
Spec1ateAndCalculateSpawnlevels();

/ /this will hold the new population of genomes
vector<CGenome> NewPop;

//request the offspring from each species. The number of children to
//spawn 1s a double which we need to convert to an mt.
mt NumSpawnedSoFar = o;

CGenome baby;

//now to iterate through each species selecting offspring to be mated and
//mutated
for (mt spc=0; spc<m_vecSpec1es.s1ze(); ++spc)
{

//because of the number to spawn from each species 1s a double
//rounded up or down to an integer 1t 1s possible to get an overflow
//of genomes spawned. This statement just makes sure that doesn't
//happen
1f (NumSpawnedSoFar < CParams: :1NumSweepers)
{
//this 1s the amount of offspring this species 1s required to
// spawn. Rounded simply rounds the double up or down.
mt NumToSpawn = Rounded(m_vecSpec1es[spc].NumT0Spawn());

bool bChosenBestYet = false;

while (NumToSpawn--)

137

{
//first grab the best performing genome from this species and transfer
//to the new population without mutation. This provides per species
//eht1sm
1f ('bChosenBestYet)
{

baby = m_vecSpec1es[spc].Leader();

bChosenBestYet = true;
}

else
{
//If the number of individuals m this species is only one
//then we can only perform mutation
if (m_vecSpecies[spc].NumMembers() == 1)
{

//spawn a child
baby= m_vecSpec1es[spc].Spawn();

}

//1f greater than one we can use the crossover operator
else
{

}

//spawnl
CGenome gl = m_vecSpecies[spc].Spawn();

1f (RandFloat() < CParams: :dCrossoverRate)
{

//spawn2, make sure it's not the same as gl
CGenome g2 = m_vecSpec1es[spc].Spawn();

//number of attempts at fmdmg a different genome
mt NumAttempts = 10;

while ((gl.ID() == g2.ID()) && (NumAttempts--))
{

g2 = m_vecSpec1es[spc].Spawn();
}

if (g1.ID() != g2.ID())
{

}

1f(ioffhne==l)
{

1f(bOfflme_flag==false)
{

}
}//end of offhne stage check
else //1t ,s onhne

baby= Crossover(gl, g2);

}//end of crossover constant check

else
{

baby= gl;
}

++m_1NextGenomeID;

baby.SetID(m_1NextGenomeID);

bOffline_flag=true;
baby = Crossover(gl, g2);

138

1f (1offlme==l)
{

//now we have a spawned child lets mutate 1t1 First there 1s the
//chance a neuron may be added
1f (baby.NumNeurons() < CParams: :1MaxPerm1ttedNeurons)
{

1f(bOffl1ne_flag==false)
{

baby.AddNeuron(CParams: :dChanceAddNode,

CParams:: 1NumTrysT0FmdOldLmk);
}//end of offlme flag check;

}//emd of add neuron mutation

bOffline_flag=true;

*m_plnnovat1on,

//now there's the chance a link may be added
1f(bOffline_flag ==false)
{

bOffline_flag =true;

139

baby.AddLmk(CParams: :dChanceAddLmk,
CParams: :dChanceAddRecurrentLmk,
*m_plnnovat1on,

}

//mutate the weights
1f(bOffline_flag==false)
{

baby.MutateWe1ghts(CParams: :dMutat1onRate,

CParams: :dProbab11ityWe1ghtReplaced,

CParams: :dMaxWe1ghtPerturbat1on);
}

1f(bOffline_flag==false)
{

CParams:: 1NumTrysT0FmdLoopedLmk,
CParams:: 1NumAddLmkAttempts);

bOfflme_flag=true;

bOffline_flag =true;

baby. MutateAct1vat1onResponse(CParams: : dAct1vat1on Mutation Rate,

CParams: :dMaxAct1vat1onPerturbat1on);
}

}//end of 1offline==l

else //for Online
{

//now we have a spawned child lets mutate 1t1 First there 1s the
//chance a neuron may be added
1f (baby.NumNeurons() < CParams: :1MaxPerm1ttedNeurons)
{

baby.AddNeuron(CParams: :dChanceAddNode,
*m_plnnovat1on,

CParams: :iNumTrysToFmdOldlink);
}

//now there's the chance a hnk may be added
baby.AddLmk(CParams: :dChanceAddLmk,

CParams: :dChanceAddRecurrentLmk,
*m_plnnovat1on,
CParams:: 1NumTrysT0FmdLoopedLmk,
CParams: :1NumAddLmkAttempts);

//mutate the weights
baby.MutateWeights(CParams: :dMutat,onRate,

CParams: :dProbabthtyWeightReplaced,

CParams: :dMaxwe,ghtPerturbat,on);

}

baby. MutateActivationResponse(CParams: : dAct1vat1onMutationRate,

CParams: :dMaxAct1vat1onPerturbat1on);
}//end of else offltne==l;

//sort the babies genes by their mnovat,on numbers
baby .SortGenes();

//add to new pop
NewPop.push_back(baby);

++NumSpawnedSoFar;

if (NumSpawnedSoFar == CParams: :iNumSweepers)
{

NumToSpawn = O;
}

}/ /end while

}//end tf

}//next species

//tf there ,s an underflow due to the rounding error and the amount
//of offspring falls short of the population size add1t1onal children
//need to be created and added to the new population. This ts achieved
//simply, by usmg tournament selection over the entire population.
if (NumSpawnedSoFar < CParams: :iNumSweepers)
{

}

//calculate amount of additional children required
int Rqd = CParams: :1NumSweepers - NumSpawnedSoFar;

//grab them
while (Rqd--)
{

NewPop.push_back(TournamentSelect1on(m_1PopS1ze/S));
}

//replace the current population with the new one
m_vecGenomes = NewPop;

//create the new phenotypes
vector<CNeuralNet*> new_phenotypes;

140

for (gen=O; gen<m_vecGenomes.s1ze(); ++gen)
{

}

//calculate max network depth
mt depth = CalculateNetDepth(m_vecGenomes[gen]);

CNeuralNet* phenotype= m_vecGenomes[gen].CreatePhenotype(depth);

new_phenotypes.push_back(phenotype);

//increase generation counter
++m_1Generat1on;

return new_phenotypes;
}

//--------------------------- So rtAnd Record-------------------------------
/ /
II sorts the population mto descending fitness, keeps a record of the
// best n genomes and updates any fitness stat1st1cs accorchngly
//--
void Cga:: SortAndRecord()
{
//sort the genomes according to their unadJusted (no fitness sharing)
//fitnesses
sort(m_vecGenomes.begm(), m_vecGenomes.end());
m_dGenBestF1tness=m_vecGenomes[O].F1tness();

//1s the best genome this generation the best ever?
1f (m_vecGenomes[O].F1tness() > m_dBestEverF1tness)
{

m_dBestEverF1tness = m_vecGenomes[O].Fitness();
}

//keep a record of the n best genomes
StoreBestGenomes();

}

I/----------------------------- StoreBestGenomes -------------------------
//
// used to keep a record of the previous populations best genomes so that
// they can be displayed 1f required.
I/------ --
vo 1d Cga:: StoreBestGenomes()
{

}

//clear old record
m_ vecBestGenomes.clear();

for (mt gen=O; gen<CParams: :iNumBestSweepers; ++gen)
{

m_ vecBestGenomes. push_back(m_ vecGenomes[gen]);
}

//----------------- GetBestPhenotypesFromLastGeneration -----------------­
//
II returns a std: :vector of the n best phenotypes from the previous
// generation
//--
vector<CNeuralNet* > Cga: : GetBestPhenotypesFromLastGenerat1on()
{

vector<CNeuralNet*> brams;

for (int gen=O; gen<m_vecBestGenomes.size(); ++gen)
{

141

}

//calculate max network depth
mt depth = CalculateNetDepth(m_vecBestGenomes[gen]);

bra ms. push_back(m_ vecBestGenomes[gen]. CreatePhenotype(depth));
}

return brains;

I!--------------------------- Ad1ustSpec1es ------------------------------
//
// this functions simply iterates through each species and calls
// Ad1ustF1tness for each species
I!--
void Cga: :Ad1ustSpec1esF1tnesses()
{

for (mt sp=O; sp<m_vecSpec1es.s1ze(); ++sp)
{

m_ vecSpec1es[sp] .Ad1ustF1tnesses();
}

}

//------------------ Spec1ateAndCalculateSpawnLevels --------------------­
//
I I separates each individual mto its respective species by calculating
// a compat1b1hty score with every other member of the population and
// niching accordingly. The function then adJusts the fitness scores of
// each individual by species age and by sharing and also determines
// how many offspring each md1v1dual should spawn.
I 1--
void Cga:: SpeciateAndCalculateSpawnLevels()
{

bool bAdded = false;

//iterate through each genome and speciate
for (mt gen=O; gen<m_vecGenomes.s1ze(); ++gen)
{

/ /calculate its compatibility score with each species leader. If
//compatible add to species. If not, create a new species
for (int spc=O; spc<m_vecSpec1es.s1ze(); ++spc)
{

double compat1b1hty = m_vecGenomes[gen].GetCompatib1htyScore(m_vecSpec1es[spc].Leader());

//if this ind1v1dual is s1m1lar to this species add to species
1f (compat1b1hty <= CP~rams: :dCompatib1lityThreshold)
{

m_vecSpecies[spc].AddMember(m_vecGenomes[gen]);

//let the genome know which species it's in
m_vecGenomes[gen].SetSpec1es(m_vecSpec1es[spc].ID());

bAdded = true;

break;
}

}

if (!bAdded)
{
//we have not found a compatible species so let's create a new one
m_ vecSpec1es. push_back(CSpec1es(m_ vecGenomes[gen], m_1NextSpec1esID+ +));

}

bAdded = false;
}

142

}

//now all the genomes have been assigned a species the fitness scores
//need to be adjusted to take mto account sharing and species age.
AdJustSpec1esF1tnesses();

//calculate new adJusted total & average fitness for the population
for (gen=0; gen<m_vecGenomes.srze(); ++gen)
{

m_dTotFrtAdJ += m_vecGenomes[gen].GetAdJFrtness();
}

m_dAvFrtAdJ = m_dTotF1tAdJ/m_vecGenomes.s1ze();

//calculate how many offspring each member of the population
//should spawn
for (gen=0; gen<m_vecGenomes.s,ze(); ++gen)
{

double ToSpawn = m_vecGenomes[gen].GetAdJFrtness() / m_dAvFrtAdj;

m_ vecGenomes[gen]. SetAmountToSpawn (ToSpawn);
}

//iterate through all the species and calculate how many offspring
//each species should spawn
for (int spc=0; spc<m_vecSpec1es.s1ze(); ++spc)
{

m_ vecSpecres[spc]. Ca lcu lateSpawnAmount();
}

//--------------------------- TournamentSelectron ------------------------
//
I/- ---
CGeno me Cga: :TournamentSelect,on(const mt NumComparisons)
{

}

double BestFrtnessSoFar = 0;

mt ChosenOne = o;

//Select NumComparrsons members from the population at random testing
//against the best found so far
for (mt 1=0; I<NumComparisons; ++1)
{

}

mt ThisTry = Randlnt(0, m_vecGenomes.srze()-1);

rf (m_vecGenomes[Th1sTry].F1tness() > BestFrtnessSoFar)
{

ChosenOne = ThisTry;

BestFrtnessSoFar = m_ vecGenomes[ThrsTry]. Fitness();
}

//return the champion
return m_vecGenomes[ChosenOne];

//-----------------------------------Crossover----------------------------
//
I I- ---
CGeno me Cga: :Crossover(CGenome& mum, CGenome& dad)
{

//helps make the code clearer
enum parent_type{MUM, DAD,};

143

//first, calculate the genome we will using the d1s1oint/excess
//genes from. This 1s the fittest genome.
parent_type best;

//If they are of equal fitness use the shorter (because we want to keep
//the networks as small as possible)
1f (mum.Fitness() == dad.Fitness())
{

}

//If they are of equal fitness and length Just choose one at
//random
1f (mum.NumGenes() == dad.NumGenes())
{

best = (parent_type)Randlnt(0, 1);
}

else
{

}

1f (mum.NumGenes() < dad.NumGenes())
{

best= MUM;
}

else
{

best= DAD;
}

else
{

}

1f (mum.Fitness() > dad.Fitness())
{

best= MUM;
}

else
{

best= DAD;
}

//these vectors will hold the offspring's nodes and genes
vector<SNeuronGene> BabyNeurons;
vector<SLinkGene> BabyGenes;

//temporary vector to store all added node IDs
vector<int> vecNeurons;

//create iterators so we can step through each parents genes and set
//them to the first gene of each parent
vector<SLinkGene>: :iterator curMum = mum.StartOfGenes();
vector<SLinkGene>:: iterator curDad = dad.StartOfGenes();

//this will hold a copy of the gene we wish to add at each step
SLinkGene SelectedGene;

//step through each parents genes until we reach the end of both
while (l((curMum == mum.EndOfGenes()) && (curDad == dad.EndOfGenes())))
{

//the end of mum's genes have been reached
1f ((curMum == mum.EndOfGenes())&&(curDad '= dad.EndOfGenes()))
{
/ /If dad 1s fittest
If (best == DAD)

144

{

}

//add dads genes
SelectedGene = *curDad;

//move onto dad's next gene
++curDad;

}

//the end of dads's genes have been reached
else 1f ((curDad == dad.EndOfGenes()) && (curMum I= mum.EndOfGenes()))
{
//If mum 1s fittest
If (best== MUM)
{

}

//add mums genes
SelectedGene = *curMum;

//move onto mum's next gene
++curMum;

}

//If mums innovation number 1s less than dads
else 1f (curMum->Innovat1onID < curDad->Innovat1onID)
{
//If mum 1s fittest add gene
If (best== MUM)
{

SelectedGene = *curMum;
}

//move onto mum's next gene
++curMum;

}

//If dads innovation number 1s less than mums
else 1f (curDad->Innovat1onID < curMum->Innovat1onID)
{
/ /If dad 1s fittest add gene
If (best== DAD)
{

SelectedGene = *curDad;
}

//move onto dad's next gene
++curDad;

}

//1f innovation numbers are the same
else if (curDad->Innovat1onID == curMum->Innovat1onID)
{
//grab a gene from either parent
1f (RandFloat() < O.Sf)
{

SelectedGene = *curMum;
}

else
{

SelectedGene = *curDad;
}

//move onto next gene of each parent
++curMum;
++curDad;

145

}

//add the selected gene 1f not already added
1f (BabyGenes.s1ze() == O)
{

BabyGenes. push_back(SelectedGene);
}

else
{

}

if (BabyGenes[BabyGenes.size()-1].InnovationID '=
SelectedGene.Innovat,onID)

{
BabyGenes.push_back(SelectedGene);

}

//Check 1f we already have the nodes referred to in SelectedGene.
//If not, they need to be added.
AddNeuronID(SelectedGene.FromNeuron, vecNeurons);
AddNeuronID(SelectedGene.ToNeuron, vecNeurons);

}//end while

//now create the required nodes. First sort them mto order
sort(vecNeurons.begm(), vecNeurons.end());

for (int 1=0; i<vecNeurons.size(); 1++)
{

BabyNeurons.push_back(m_plnnovat1on->CreateNeuronFromID(vecNeurons[i]));
}

//finally, create the genome
CGenome babyGenome(m_1NextGenomeID++,

BabyNeurons,
BabyGenes,
mum.Numinputs(),
mum.NumOutputs());

return babyGenome;
}

//--------------------------- ResetAndK1II -------------------------------
//
// This function resets some values ready for the next epoch, kills off
II all the phenotypes and any poorly performing species.
I!--
void Cga: :ResetAndK1II()
{

m_dTotF1tAdJ = O;
m_dAvF1tAdj = O;

//purge the species
vector<CSpec1es>: :iterator curSp = m_vecSpec1es.begm();

while (curSp != m_vecSpec1es.end())
{

curSp->Purge();

//kill off species 1f not 1mprovmg and if not the species which contains
//the best genome found so far
if ((curSp->GensNolmprovement() > CParams: :1NumGensAllowedNolmprovement) &&

(curSp->BestF1tness() < m_dBestEverF1tness))
{
curSp = m_vecSpec,es.erase(curSp);

146

--curSp;
}

++curSp;
}

I /we can also delete the phenotypes
for (mt gen=0; gen<m_vecGenomes.s1ze(); ++gen)
{

}
}

m_ vecGenomes[gen]. DeletePhenotype();

I!------------------------------- Spl 1t ----------------------------------
//
// this function is used to create a lookup table that 1s used to
// calculate the depth of the network.
I I------ --
vector< Sp htDepth > Cga: :Spht(double low, double high, mt depth)
{

static vector<SphtDepth> vecSphts;

double span = high-low;

vecSphts.push_back(SphtDepth(low + span/2, depth+l));

1f (depth > 6)
{

return vecSphts;
}

else
{

}
}

Spht(low, low+span/2, depth+l);
Split(low+span/2, high, depth+l);

return vecSplits;

//--------------------------- RenderSpecieslnfo --------------------------
//
// Used to display species information on the screen
I I--
void Cga: :RenderSpec1esinfo(HDC &surface, RECT db)
{

if (m_vecSpecies.s1ze() < 1) return;

mt numColours = 255/m_vec5pec1es.s1ze();

double ShcePerSweeper = (double)(db.nght-db.left)/(double)(CParams: :1NumSweepers-l);

double left= db.left;

//now draw a different colored rectangle for each species
for (mt spc=0; spc<m_vecSpec1es.s1ze(); ++spc)
{

//choose a brush to draw with
HBRUSH P1eBrush = CreateSohdBrush(RGB(numColours*spc, 255, 255 - numColours*spc));

HBRUSH OldBrush = (HBRUSH)SelectObject(surface, PieBrush);

1f (spc == m_vecSpec1es.s1ze()-l)
{

Rectangle(surface,

147

}

left,
db.top,
db.right,
db.bottom);

}

else
{

Rectangle(surface,
left,
db.top,
left+Sl1cePerSweeper*m_vecSpec1es[spc].NumMembers(),
db.bottom);

}

left+= ShcePerSweeper * m_vecSpec1es[spc].NumMembers();

SelectObJect(surface, OldBrush);
DeleteObJect(P1eBrush);

//display best performing species stats m the same color as displayed
//m the d1stnbut1on bar
1f (m_vecSpec1es[spc].BestF1tness() == m_dBestEverF1tness)
{

}
}

strmg s = "Best Species ID: " + 1tos(m_vecSpec1es[spc].ID());
TextOut(surface, 5, db.top - 80, s.c_str(), s.s1ze());

s = "Species Age: "+ 1tos(m_vecSpec1es[spc].Age());
TextOut(surface, 5, db.top - 60, s.c_str(), s.s1ze());

s = "Generations no improvement: "+ 1tos(m_vecSpec1es[spc].GensNolmprovement());
TextOut(surface, 5, db.top - 40, s.c_str(), s.s1ze());

strmg s = "Species D1stnbut1on Bar";
TextOut(surface, 5, db.top - 20, s.c_str(), s.s1ze());

148

#1fndef CINNOVATION_H
#defme CINNOVATION_H
I I---
I/
// Name: Clnnovat1on.h

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally 2005

II
II
II
II
II
II
II
II
II

Desc: class to handle genome mnovat1ons used m the 1mplementat1on.

I/---
#include <vector>
#include <algorithm>

#include "ut1ls.h"
#include "genotype.h"
#include "phenotype.h"

usmg namespace std;

struct SLmkGene;

//---------------------Innovat1on related structs/classes---------------­
//
I/---- --
en um mnov_type
{

};

new_neuron,
new_hnk

I/--
II
// structure defmmg an innovation
I I ------ --
stru ct Slnnovat1on
{

/ /new neuron or new link?
mnov_type Innovat1onType;

mt Innovat1onID;

mt Neuronln;
mt NeuronOut;

mt NeuronID;

neuron_type NeuronType;

//1f the mnovat1on 1s a neuron we need to keep a record
//of its pos1t1on m the tree (for display purposes)
double dSphtY,

dSphtX;

Slnnovat1on(mt m,

149

mt out,
mnov_type t,
mt mov_1d):Neuronln(m),

{}

NeuronOut(out),
InnovationType(t),
Innovat1onID(mov _id),
NeuronID(0),
dSphtX(0),
dSphtY(0),
NeuronType(none)

Slnnovat1on(SNeuronGene neuron,

{}

mt mnov_1d,
mt neuron_1d):Innovat1onID(mnov_1d),

NeuronID(neuron_1d),
dSplitx(neuron.dSphtX),
dSphtY(neuron.dSphtY),
Neu ronType(neuron. NeuronType),
Neuronln(-1),
NeuronOut(-1)

Slnnovat1on(mt m,

};

int out,
innov_type t,
int mov_1d,
neuron_type type,
double x,
double y):Neuronln(m),

{}

Neuronout(out),
Innovat1onType(t),
InnovationID(inov_1d),
NeuronID(0),
NeuronType(type),
dSphtX(x),
dSphtY(y)

I/--
//
// Clnnovation class used to keep track of all innovations created during
II the populations evolution
I!--
class Clnnovat1on
{

private:

vector<Slnnovat1on> m_veclnnovs;

mt

int

public:

m_NextNeuronID;

m_Nextlnnovat1onNum;

Cinnovation(vector<SLmkGene> start_genes,
vector<SNeuronGene> start_neurons);

//checks to see 1f this innovation has already occurred. If 1t has 1t
//returns the innovation ID. If not 1t returns a negative value.
int Checklnnovat1on(int m, mt out, mnov_type type);

150

//creates a new mnovat1on and returns its ID
mt CreateNewlnnovat1on(mt m, mt out, mnov_type type);

//as above but includes addmg x/y pos1t1on of new neuron
int CreateNewlnnovat1on(mt from,

mt to,
mnov_type InnovType,
neuron_type NeuronType,
double x,
double y);

//creates a Bas1cNeuron from the given neuron ID
SNeuronGene CreateNeuronFromID(mt id);

//--accesso r methods
int GetNeuronID(mt inv)const{return m_veclnnovs[mv].NeuronID;}

void Flush(){m_veclnnovs.clear(); return;}

int NextNumber(mt num = 0)
{

}
};

m_Nextlnnovat1onNum += num;

return m_Nextlnnovat1onNum;

#end1f

151

#include "Cinnovat1on.h"

I/---------------------------------- ctor --------------------------------
//
// given a series of start genes and start neurons this ctor adds
// all the appropriate rnnovat1ons.
//--
Cinnovat1on:: Cinnovat1on(vector<SLrnkGene> start_genes,

vector<SNeuronGene> start_neurons)
{

}

m NextNeuronID = 0;
m_Nextinnovat1onNum = 0;

//add the neurons
for (mt nd=0; nd<start_neurons.s1ze(); ++nd)
{

}

m_vecinnovs.push_back(Sinnovat1on(start_neurons[nd],
m_Nextlnnovat1onNum++,
m_NextNeuronID++));

//add the lrnks
for (mt cGen = 0; cGen<start_genes.s1ze(); ++cGen)

{
Sinnovat1on Newinnov(start_genes[cGen].FromNeuron,
start_genes[cGen].ToNeuron,
new_hnk,
m_Nextinnovat1onNum);

m_ veclnnovs. push_back(Newlnnov);

++m_Nextinnovat1onNum;

}

//---------------------------Checklnnovation------------------------------
/1
II checks to see 1f this rnnovat1on has already occurred. If 1t has 1t
// returns the rnnovat1on ID. If not 1t returns a negative value.
I!--
mt Cinnovat1on: :Checkinnovat1on(rnt rn, mt out, innov_type type)
{

}

//iterate through the rnnovat1ons looking for a match on all
//three parameters

for (mt rnv=0; rnv<m_vecinnovs.s1ze(); ++rnv)
{

1f ((m_vecinnovs[rnv].Neuronin == rn) &&
(m_vecinnovs[rnv].NeuronOut == out) &&
(m_vecinnovs[rnv].Innovat1onType == type))

{

}
}

//found a match so assign this rnnovat1on number to 1d
return m_ vecinnovs[rnv].InnovationID;

//1f no match, return a negative value
return -1;

//--------------------------CreateNewinnovat1on---------------------------

152

II
I I creates a new mnovatIon and returns its ID
I 1--
mt ClnnovatIon: :CreateNewlnnovat1on(mt m, mt out, mnov_type type)
{

SlnnovatIon new_mnov(m, out, type, m_Nextlnnovat1onNum);

1f (type == new_neuron)
{

new_mnov.NeuronID = m_NextNeuronID;

++m_NextNeuronID;
}

m_veclnnovs.push_back(new_1nnov);

++m_NextlnnovatIonNum;

return (m_NextNeuronID-1);
}

I I--
II
I I as above but includes adding xfy posItIon of new neuron
I I------ --
mt ClnnovatIon: :CreateNewlnnovat1on(mt from,

mt to,
mnov_type InnovType,
neuron_type NeuronType,
double x,
double y)

{

}

Slnnovat1on new_mnov(from, to, InnovType, m_NextlnnovatIonNum, NeuronType, x, y);

1f (InnovType == new_neuron)
{

new_mnov.NeuronID = m_NextNeuronID;

++m_NextNeuronID;
}

m_veclnnovs.push_back(new_mnov);

++m_NextlnnovatIonNum;

return (m_NextNeuronID-1);

11------------------------------- CreateNeuronFromID -----------------------
11
I I given a neuron ID this function returns a clone of that neuron
I 1--
SNeuronGene Clnnovat1on: :CreateNeuronFromID(mt NeuronID)
{

SNeuronGene temp(h1dden,0,0,0);

for (mt mv=0; mv<m_veclnnovs.s1ze(); ++mv)
{

1f (m_veclnnovs[mv].NeuronID == NeuronID)
{

temp.NeuronType = m_veclnnovs[mv].NeuronType;
temp.I1D = m_veclnnovs[mv].NeuronID;
temp.dSphtY = m_veclnnovs[mv].dSphtY;
temp.dSphtX = m_veclnnovs[mv].dSphtX;

153

return temp;
}

}

return temp;
}

#1fndef CMAPPER_H
#define CMAPPER_H

#include <vector>
#include <wmdows.h>

#include "ut1ls.h"
#include "Cparams.h"

usmg namespace std;

I!------------------ --
// Authors:
II Created by Mat Buckland 2002
// Mod1f1ed by Ami kumar Enumulapally 2004
// Ami kumar Enumulapally 2005
II
// structure to define a 'cell'. A cell is a RECT m space and keeps
II a track of how many ticks the bot has spent at the cell.
I!--
struct SCell
{

mt ITlcksSpentHere;

//the coordinates which describe the cell's pos1t1on
RECTCell;

SCell(mt xmm, mt xmax, mt ymm, mt ymax):ITlcksSpentHere(0)
{

}

Cell.left = xmm;
Cell.right = xmax;
Cell.top = ymm;
Cell.bottom= ymax;

void Update()
{

++ITlcksSpentHere;
}

void Reset()
{

ITlcksSpentHere = 0;
}

};

//--
//
// This mapper class holds information about a 2d vector of cells
I/--
class CMapper
{
private:

//the 2d vector of memory cells
vector<vector<SCell> > m_2DvecCells;

mt m_NumCellsX;

154

mt m_NumCellsY;
int m_lTotalCells;

//the dimensions of each cell
double m_dCellS1ze;

pubhc:

CMapper(): m_NumCellsX(O),
m_NumCellsY(O),
m_lTotalCells(O)

{}

//this must be called after an instance of this class has been
//created. This sets up all the cell coordinates.
void Imt(mt MaxRangeX, mt MaxRangeY);

//this method is called each frame and updates the time spent
//at the cell at this pos1t1on
void Update(double xPos, double yPos);

//returns how many ticks have been spent at this cell pos1t1on
int Tickslmgered(double xPos, double yPos) const;

//returns the total number of cells v1s1ted
mt NumCellsV1s1ted()const;

//returns 1f the cell at the given pos1t1on has been v1s1ted or
//not
bool BeenV1s1ted(double xPos, double yPos) const;

//This method renders any visited cells m shades of red. The
//darker the red, the more time has been spent at that cell
void Render(HDC surface);

void Reset();

mt NumCells()const{return m_lTotalCells;}
};

#endif

155

#include "CMapper.h"

//--------------------------- Imt ---------------------------------------
//
// This method needs to be called before you can use the instance.
//--
void CMapper: :Init(int MaxRangeX, int MaxRangeY)
{

}

/ /If already 1mt1ahzed return
if(m_NumCellsX) return;

m_dCellS1ze = CParams: :dCellS1ze;

//first calculate how many segments we will require
m_NumCellsX = (mt)(MaxRangeX/m_dCellSize)+l;
m_NumCellsY = (mt)(MaxRangeY/m_dCellS1ze)+l;

//create the 2d vector of blank segments
for (int x=O; x<m_NumCellsX; ++x)
{

vector<SCell> temp;

for (int y=O; y<m_NumCellsY; ++y)
{

temp.push_back(SCell(x*m_dCellS1ze, (x+l)*m_dCellS1ze, y*m_dCellS1ze, (y+l)*m_dCellS1ze));
}

m_2DvecCells. push_back(temp);
}

m_iTotalCells = m_NumCellsX * m_NumCellsY;

I I---
void CMapper: :Update(double xPos, double yPos)
{

}

/ /check to make sure pos1t1ons are within range
if ((xPos < 0) 11 (xPos > CParams: :WindowW1dth) 11

(yPos < 0) 11 (yPos > CParams: :WmdowHe1ght))
{

return;
}

int cellX = (mt)(xPos / m_dCellS1ze);
int cellY = (mt)(yPos / m_dCellS1ze);

m_2DvecCells[cellX][cellY].Update();

return;

//---
mt CMapper: :T1cksLmgered(double xPos, double yPos)const
{

/ /bounds check the mcommg values
if ((xPos > CParams: :WmdowW1dth) 11 (xPos < 0) 11

156

(yPos > CParams: :WmdowHe1ght) 11 (yPos < 0))
{

return 999;
}

int cellX = (mt)(xPos / m_dCellS1ze);
mt cellY = (mt)(yPos / m_dCellS1ze);

return m_2DvecCells[cellX] [cellY]. fflcksSpentHere;
}

//-------------- ----------- V1s1ted --------------------------------------
//
/ 1--
bool CMapper: :BeenV1s1ted(double xPos, double yPos)const
{

mt cellX = (mt)(xPos / m_dCellS1ze);
int cellY = (mt)(yPos / m_dCellS1ze);

1f (m_2DvecCells[cellX][cellY].fflcksSpentHere > 0)
{

return true;
}

else
{

}
}

return false;

I/--------------------------------- Render -------------------------------
//
I I renders the v1s1ted cells. The color gets darker the more frequently
// the cell has been visited.
I/--
void CMapper: :Render(HDC surface)
{

for (int x=0; x<m_NumCellsX; ++x)
{

}
}

for (int y=0; y<m_NumCellsY; ++y)
{
if (m_2DvecCells[x][y].fflcksSpentHere > 0)
{

}
}

int shading = 2 * m_2DvecCells[x][y].fflcksSpentHere;

if (shading >220)
{

shading = 220;
}

HBRUSH hghtbrush = CreateSohdBrush(RGB(240,220-shadmg,220-shadmg));

F1IIRect(surface, &m_2DvecCells[x][y].Cell, lightbrush);

DeleteObJect(hghtbrush);

//-----------------------------------Reset------------------------------
void CMapper: :Reset()
{

for (int x=0; x<m_NumCellsX; ++x)

157

{
for (mt y=O; y<m_NumCellsY; ++y)
{
m_2DvecCells[x][y].Reset();

}
}

}

mt CMapper: :NumCellsV1s1ted() const
{

}

mt total= O;

for (mt x=O; x<m_NumCellsX; ++x)
{

}

for (mt y=O; y<m_NumCellsY; ++y)
{

}

1f (m_2DvecCells[x][y].ITlcksSpentHere > 0)
{

++total;
}

return total;

158

#1fndef CMINESWEEPER_H
#define CMINESWEEPER_H

I I------ --
II
II
II
II
II
II
II
II

Name: CMineSweeper.h

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally

II Desc: Class to create a minesweeper obJect
II

2005

I/------ --
#include <vector>
#include <math.h>

#include "phenotype.h"
#include "ut1ls.h"
#include "C2DMatnx.h"
#include "SVector2D.h"
#include "CParams.h"
#include "collls1on.h"
#include "CMapper.h"

using namespace std;

class CMinesweeper
{

private:

CNeuralNet* m_pitsBrain;

//1ts memory
CMapper m_MemoryMap;

//its pos1t1on in the world
SVector2D m_vPos1t1on;

//d1rect1on sweeper 1s facing
SVector2D m_vLookAt;

//how much 1t 1s rotated from its starting pos1t1on
double m_dRotat1on;

double m_dSpeed;

//to store output from the ANN
double m_lTrack, m_rTrack;

//the sweepers fitness score.
double m_dF1tness;

159

//the scale of the sweeper when drawn
double m_dScale;

//no of mmes found;
mt m_1Mmes;

/* //the mputs from sensors
double m_dSensors[5];
//the mputs from feelers
double m_dFeelers[5];

*/

//fitness parameters
mt m_1Colhs1ons;
mt m_1Rotval;
int m_iSpeedval;

/ /to store end vertices of sensor segments
vector<SPomt> m_Sensors;
vector<SPoint> m_tranSensors;

//this keeps a record of how far down the sensor segment
//a 'hit' has occurred.
vector<double> m_vecdSensors;

//the end pomts of the sensors check their coordinate
//cell to see how many times the sweeper has visited 1t.
vector<double> m_vecFeelers;

//if a colhs1on has been detected this flag is set
bool m_bColhded;

void CreateSensors(vector<SPomt> &sensors,
mt NumSensors,
double range);

int CheckForH1t(vector<SVector2D> &obJects, double size);

void TestSensors(vector<SPomt> &obJects);

void TestRange();

public:

CMinesweeper();

//updates the ANN with mformat1on from the sweepers env1roment
bool Update(vector<SPomt> &obJects, mt 1val,int igen,bool bBest, mt

iT1cks);

//used to transform the sweepers vertices prior to rendering
void WorldTransform(vector<SPomt> &sweeper, double scale);

void Reset();
//checks to see 1f the minesweeper has 'collected' a mme

int CheckForMme(vector<SVector2D> &mmes, double size);
void mcrementmineval();

160

void SetStartmgPomt(mt x, mt y)
{

m_vPos1t1on = SVector2D(x, y);

}

void EndOfRuncalculat1ons();

void RenderStats(HDC surface);

void Render(HDC surface);

void DrawNet(HDC &surface, int cxleft, mt cxR1ght, int cyTop, int cyBot)
{

m_pltsBram->DrawNet(surface, cxLeft, cxR1ght, cyTop, cyBot);
}

/ /-------------------accessor functions
SVector2D Pos1tion()const{return m_vPos1t1on;}

double Rotation()const{return m_dRotat1on;}

float F1tness()const{return m_dF1tness;}

double Scale()const{return m_dScale;}

vector<SPoint>& Sensors(){return m_tranSensors;}

vector<double>& SensorReadmgs(){return m_vecdSensors;}

bool Collided()const{return m_bColhded;}

vector<double> MemoryReadmgs(){return m_vecFeelers;}

int NumCellsV1s1ted(){return m_MemoryMap.NumCellsVistted();}

void InsertNewBram(CNeuralNet* bram){m_pltsBrain = bram;}
CNeuralNet* getBram(){ return(m_pltsBram);}

};

#end1f

161

#include "CMmesweeper.h"
#include "f1le.h"
intJval=0;
//-----------------------------------constructor-------------------------
//
I/----------- --
CM inesweeper: :CMmesweeper():

m_dRotat1on(0),
m_lTrack(0),
m_rTrack(0),
m_dF1tness(0),

{

m_bColhded(false),

//create a static start posItIon
m_vPos1tIon = SVector2D(180, 200);

//create the sensors

m_dScale(CParams: :iSweeperScale),

m_1Colhs1ons(0),
m_1Speedval(0),
m_1Mmes(0),
m_1Rotval(0)

CreateSensors(m_Sensors, CParams:: INumSensors, CParams: :dSensorRange);

//m1tiahze its memory
m_MemoryMap.In1t(CParams: :WmdowW1dth,

CParams: :WmdowHe1ght);

}

//-------------------------------- CreateSensors ------------------------
//
// This function returns a vector of points which make up the segments of
// the sweepers sensors.
I/--
vo 1d CMmesweeper: :CreateSensors(vector<SPomt> &sensors,

{

mt NumSensors,
double range)

//make sure vector of sensors Is empty before proceeding
sensors.clear();

double SegmentAngle = CParams: :dP1 / (NumSensors-1);

//going clockwise from 90deg left of posItIon calculate the fan of
//points radiating out (not mcludmg the origin)
for (mt 1=0; 1<CParams::1NumSensors; i++)
{

//calculate vertex posItIon
SPomt pomt;

pomt.x = -sm(1 * SegmentAngle - CParams: :dHalfP1) * range;

162

point.y = cos(1 * SegmentAngle - CParams: :dHalfP1) * range;

sensors. push_back(point);

}//next segment

}
I/---- -------------------------Reset()------------------------------------
/ /
// Resets the sweepers posItIon, fitness and rotation
II
I!---------------- ------------- ---
vo 1d CMinesweeper: :Reset()
{

}

//reset the sweepers posItIons
m_vPosItIon = SVector2D(180, 200);

//and the fitness
m_dF1tness = 0;

//and the rotation
m_dRotat1on = 0;

m_1Colhs1ons=0;
m_1Rotval=0;
m_1Speedval=0;

//reset its memory
m_MemoryMap. Reset();

//------------------------- RenderMemory ---------------------------------
//
I!--
void CMinesweeper:: Render(HDC surface)
{

}

//render the memory
m_MemoryMap.Render(surface);

strings= 1tos(m_MemoryMap.NumCellsVIs1ted());
s = "Num Cells V1s1ted: "+ s;
TextOut(surface, 220,0,s.c_str(), s.s1ze());

//---------------------WorldTransform--------------------------------
1 /
// sets up a translation matrix for the sweeper according to its
// scale, rotation and posItIon. Returns the transformed vertices.
I I------ ---
void CMinesweeper: :WorldTransform(vector<SPoint> &sweeper, double scale)
{

//create the world transformation matrix
C2DMatrix matTransform;

//scale
matTransform.Scale(scale, scale);

//rotate
matTransform.Rotate(m_dRotat1on);

//and translate
matTransform.Translate(m_vPos1t1on.x, m_vPos1t1on.y);

//now transform the ships vertices

163

matTra nsform. TransformSPomts(sweeper);
}

I /-------------------------------Update()--------------------------------
//
II
II
II
II

First we take sensor readings and feed these mto the sweepers bram.

The inputs are:

// The readings from the minesweepers sensors
II
II
II
II
II

We receive two outputs from the bram .. ITrack & rTrack.
So given a force for each track we calculate the resultant rotation
and acceleration and apply to current velocity vector.

I/-------- ---
boo I CMmesweeper:: Update(vector<SPomt> &obJects,mt 1val,mt 1gen,bool bBest, mt fflcks)
{

//this will store all the inputs for the NN
vector<double> inputs;

//grab sensor readings
TestSensors(obJects);

//mput sensors mto net
for (mt sr=0; sr<m_vecdSensors.sIze(); ++sr)
{

inputs. push_back(m_ vecdSensors[sr]);
inputs. push_back(m_vecFeelers[sr]);

}

1 nputs. push_back(m_bCol hded);

//update the bram and get feedback
vector<double> output = m_pitsBram->Update(mputs, CNeuralNet: :act1ve,fflcks);

{

}

//make sure there were no errors m calculating the
//output
1f (output.size() < CParams: :1NumOutputs)

return false;

//assign the outputs to the sweepers left & right tracks
m_lTrack = output[0];
m_rTrack = output[1];

//calculate steering forces
double RotForce = m_lTrack - m_rTrack;

/ /If its not rotating too much It gets bonus;
1f((RotForce>0.S) 11 (RotForce<-0.5))

m_1Rotval++;

//clamp rotation
Clamp(RotForce, -CParams: :dMaxTurnRate, CParams: :dMaxTurnRate);

m_dRotat1on += RotForce;

//update Look At
m_vlookAt.x = -sm(m_dRotat1on);
m_vLookAt.y = cos(m_dRotat1on);

/ /If the sweepers haven't collided with an obstacle
//update their posItIon

164

1f (lm_bColhded)
{

m_dSpeed = m_lTrack + m_rTrack;

/ /If speed of exploration Is more then gets bonus
1f(m_dSpeed>1.5)

m_1Speedval++;

//update position
m_vPosItIon += (m_vLookAt * m_dSpeed);

//test range of x,y values - because of 'cheap' collision detection
//this can go mto error when using < 4 sensors
TestRange();

}
else

{
m_1Colhs1ons++;

}
//update the memory map
m_MemoryMap.Update(m_vPos1tion.x, m_vPosit1on.y);

return true;
}

//----------------------- TestSensors ------------------------------------
//
// This function checks for any intersections between the sweeper's
// sensors and the obJects m its environment
I!--
void CMmesweeper: :TestSensors(vector<SPomt> &obJects)
{

m_bCollided = false;

//first we transform the sensors mto world coordinates
m_tranSensors = m_Sensors;

WorldTransform(m_tranSensors, 1); //scale Is 1

//flush the sensors
m_vecdSensors.clear();
m_vecFeelers.clear();

/ /now to check each sensor against the obJects in the world
for (int sr=O; sr<m_tranSensors.sIze(); ++sr)
{

bool bH1t = false;

double dist= O;

for (mt seg=O; seg<ob1ects.s1ze(); seg+=2)
{

}

if (Lmelntersection2D(SPomt(m_vPosit1on.x, m_vPositIon. y),
m_tranSensors[sr],
obJects[seg],
obJects[seg+l],
dist))

{
bHit = true;

break;
}

165

if (bH1t)
{

m_vecdSensors.push_back(dist);

//implement very simple colhs1on detection
1f (dist < CParams: :dColhs1onD1st)
{

m_bColhded = true;
}

}

else
{

m_ vecdSensors. push_back(-1);
}

//check how many times the minesweeper has v1s1ted the cell
//at the current posItIon
mt HowOften = m_MemoryMap.T1cksLmgered(m_tranSensors[sr].x,

m_tranSensors[sr].y);

//Update the memory mfo according to HowOften. The maximum
//value Is 1 (because we want all the inputs mto the
//ANN to be scaled between -1 < n < 1)
if (HowOften == 0)
{

m_ vecFeelers. push_back(-1);

continue;
}

if (HowOften < 10)
{

m_ vecFeelers. push_back(0);

continue;
}

if (HowOften < 20)
{

m_vecFeelers.push_back(0.2);

continue;
}

if (HowOften < 30)
{

m_ vecFeelers. push_back(0 .4);

continue;
}

if (HowOften < 50)
{

m_vecFeelers.push_back(0.6);

continue;
}

if (HowOften < 80)
{

m_vecFeelers.push_back(0.8);

continue;
}

166

m_ vecFeelers. push_back(1);

}/ /next sensor
}

I/-------------------------------- TestRange -----------------------------
//
I!--
void CMmesweeper: :TestRange()
{

1f (m_vPos1t1on.x < 0)
{

m_vPos1t1on.x = 5;
}

1f (m_vPos1t1on.x > CParams: :WmdowW1dth)
{

m_vPos1t1on.x = CParams: :WmdowWidth-5;
}

1f (m_vPos1t1on.y < 0)
{

m_vPos1t1on.y = 5;
}

1f (m_vPos1t1on.y > CParams: :WmdowHe1ght)
{

m_vPos1t1on.y = CParams::WmdowHe1ght+5;
}

}

//----------------------------- CheckForM1ne -----------------------------
//
// this function checks for col11s1on with a random mme
I/-------- ---
mt CMmesweeper: :CheckForMme(vector<SVector2D> &mmes, double size)
{

}

for(mt 1=0; 1<mmes.s1ze(); 1++)
{

}

SVector2D D1stToObJect = m_vPos1t1on - mmes[1];

1f (Vec2DLength(D1stToObJect) < (size + 10))
{

return 1;
}

return -1;

//------------------------- EndOfRunCalculat1ons() ----------------------­
//
I!--
void CMmesweeper:: EndOfRunCalculat1ons()
{
m_dF1tness += m_MemoryMap.NumCellsV1s1ted()+m_1Speedval/5-m_1Coll1s1ons/5-

m_1Rotval/l0+m_1Mmes*l0;

//Another Fitness function
//m_dF1tness += m_MemoryMap.NumCellsV1s1ted()+m_1Speedval/l0-m_1Colhs1ons/2-

m_1Rotval/l0+m_1Mmes*5;

//A simple fitness function

167

//m_dF1tness += m_MemoryMap.NumCellsV1s1ted()
}

void CMmesweeper: :mcrementmmeval()
{

m_IMmes++;
}

#1fndef CPARAMS_H
#define CPARAMS_H
I/--
II
II
II
II
II
II
II
II
II
II
II
II
II

Name: CParams.h

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally 2005

Desc: class to hold all the parameters used m this proJect. The values
are loaded m from an Im file when an instance of the class Is
created.

I/- ---
#include <windows.h>
#include <fstream>
//#include "f1le.h"
using namespace std;

//1-0 trammg pairs
static double dlop[250][13];

class CParams
{

public:

I/- --
I/ general parameters
I I --- --

static double dP1;
static double dHalfP1;
static double dTwoP1;

static mt WmdowW1dth;
static mt WmdowHe1ght;

static mt InfoWmdowW1dth;
static mt InfoWmdowHe1ght;

static mt 1FramesPerSecond;
static mt 1OffhneTrammg;
static mt 1GlobalOnhne;
static mt 1RuleEvolut1on;
static mt 1OnlyGAs;

//fstream file;

I I ---
I/ used to define the sweepers
I/---

168

static mt INumSweepers;

//limits how fast the sweepers can turn
static double dMaxTurnRate;

//for controlling the size
static mt 1SweeperScale;

//amount of sensors
static int INumSensors;

/ /range of sensors
static double dSensorRange;

//distance 0 < d < 1 for colhs1on detection. The smaller the
//value Is the closer the sweeper has to be to an obJect.
static double dColhs1onD1st;

//--------------------------------------controller parameters

/ /number of time steps we allow for each generation to hve
static mt 1NumT1cks;

I!---
I I used in CMapper.h/cpp
I I- --

static double dCellS1ze;

I/--
// used m phenotype.h/cpp
I/--

static mt INumlnputs;
static mt INumOutputs;

/ /bias value
static double dB1as;

//starting value for the s1gmo1d response
static double dS1gmo1dResponse;

I/--
//learning rate and evolutionary parameters of learning rule to use in learning
//used m phenotype.h/cpp

I!---

static double dLearmngRate;
static double dParaml;
static double dParam2;
static double dParam3;
static double dParam4;
static double dParamS;
static double dParam6;
static double dParam7;
static double dParam8;
static double dParam9;
static double dParaml0;
static double dParam11;
//static double dParaml;

I /i-o tram mg pairs
/ /static double dlop[600][13];

169

I!--
// used m genotype.h/cpp
I!--

//number of times we try to fmd 2 unlinked nodes when addmg a lmk.
I /see CGenome: :Addlmk()
static mt 1NumAddLmkAttempts;

/ /number of attempts made to choose a node that 1s not an input
//node and that does not already have a recurrently looped connection
/ /to itself. See CGenome: :Addlmk()
static mt 1NumTrysT0FmdloopedLmk;

//the number of attempts made to fmd an old hnk to prevent chammg
//m CGenome::AddNeuron
static mt 1NumTrysT0FmdOldlmk;

/ /the chance, each epoch, that a neuron or hnk will be added to the
//genome
static double dChanceAddlmk;
static double dChanceAddNode;
static double dChanceAddRecurrentlmk;

//mutation probab1ht1es for mutating the weights m CGenome: :Mutate()
static double dMutat1onRate;
static double dMaxWe1ghtPerturbat1on;
static double dProbab1htyWe1ghtReplaced;

//probab1ht1es for mutating the act1vat1on response
static double dAct1vat1onMutat1onRate;
static double dMaxAct1vat1onPerturbat1on;

//the smaller the number the more species will be created
static double dCompat1b1htyThreshold;

I!--- -----
// used in CSpec1es.h/cpp
I!--- -----

//durmg fitness adJustment this 1s how much the fitnesses of
//young species are boosted (eg 1.2 1s a 20% boost)
static double dYoungF1tnessBonus;

//1f the species are below this age their fitnesses are boosted
static mt iYoungBonusAgeThreshhold;

//number of population to survive each epoch. (0.2 = 20%)
static double dSurv1valRate;

//1f the species 1s above this age their fitness gets penalized
static mt 1OldAgeThreshold;

I /by this much
static double dOldAgePenalty;

I/--
// used m Cga.h/cpp
I/--

//how long we allow a species to exist without any improvement
static mt 1NumGensAllowedNolmprovement;

170

/ /maximum number of neurons permitted m the network
static mt 1MaxPerm1ttedNeurons;

//the number of best performing sweepers shown when 'B' Is
//selected. (you will see copies from the previous generation
static mt iNumBestSweepers;

static double dCrossoverRate;

I!---
1/ eto r
CParams(){}

bool Imt1ahze()
{

1f(•LoadlnParameters("params.mi"))
{

MessageBox(NULL, "Cannot find 'params.m1'", "Error", 0);

return false;
}

//fstreamfile ("input.rtf", Ios::out I ios::app I 1os::m);

dP1 = 3.14159265358979;
dHalfPi = dPi / 2;
dTwoP1 = dP1 * 2;

dCollis1onD1st = (double)(1SweeperScale+l)/dSensorRange;

INumlnputs = (iNumSensors * 2) + 1;
iNumOutputs = 2;

char *szF1leNamel0= 111o_tram1ng4.txt";
//fstream grab2("io_trammg.txt", fstream::m I fstream::out I fstream::app);

fstream grab2(szF1leNamel0);
mt 1_here,J_here;
//double dtmpsum;

/ /populate dlop
for (i_here=0;1_here<250;i_here++)
{

/ /trammginputs.clear();
/ /targetOutputs.clear();
/ /des1redOutputs.clear();

//dtmpsum=0;
/ /Read input from file

j_here=0;
grab2> >dlop[i_here] [J_here];

//1
J_here++;

grab2> >dlop[i_here] [J_here];
//trammglnputs. push_back(dTmpvar);

//2
J_here++;

grab2>>dlop[i_here][J_here];

//3
Lhere++;

171

}

grab2> >dlop[r_here] [J_here];

//4
1-here++;

grab2> >dlop[r_here][Lhere];

//5
J_here++;

grab2>>dlop[r_here][J_here];

//6
J_here++;

grab2> >diop[r_here][J_here];

//7 1-here++;
J_here++;

grab2> >diop[r_here] [J_here];

//8
1-here++;

grab2>>dlop[r_here][J_here];

//9
1-here++;

grab2> >dlop[r_here] [J_here];

//10
J_here++;

grab2> >dlop[r_here] [1-here];

//11
1-here++;

grab2>>dlop[r_here][J_here];

//12
J_here++;

grab2> >dlop[r_here] [J_here];

}//end of for loop

return true;

bool LoadinParameters(char* szF1leName);
};

#end1f

172

#include "CParams.h"

double CParams: :dP1 = 0;
double CParams: :dHalfP1 = 0;
double CParams: :dTwoP1 = 0;
mt CParams: :WmdowW1dth = 400;
mt CParams: :WmdowHe1ght = 400;
mt CParams: :iFramesPerSecond = 0;
int CParams: :INumlnputs = 0;
int CParams: :iNumOutputs = 0;
double CParams: :dB1as = -1;
double CParams: :dMaxTurnRate = 0;
int CParams::1SweeperScale = O;
mt CParams: :INumSensors = 0;
double CParams: :dSensorRange = 0;
int CParams:: iNumSweepers = 0;
int CParams::1NumTicks = 0;
double CParams: :dColhs1onD1st = 0;
double CParams: :dCellS1ze = 0;
double CParams: :dS1gmoidResponse = 1;
int CParams:: iNumAddLinkAttempts = 0;
int CParams: :1NumTrysT0FmdLoopedLmk = 5;
mt CParams: :1NumTrysT0FmdOldlmk = 5;
double CParams: :dYoungFItnessBonus = 0;
int CParams:: 1YoungBonusAgeThreshhold = O;
double CParams: :dSurv1valRate = 0;
int CParams: :InfoWmdowW1dth = 400;
int CParams: :InfoWmdowHe1ght = 400;
int CParams: :iNumGensAllowedNolmprovement = 0;
int CParams: :1MaxPerm1ttedNeurons = 0;
double CParams: :dChanceAddLmk = 0;
double CParams: :dChanceAddNode = 0;
double CParams: :dChanceAddRecurrentLmk = 0;
double CParams: :dMutat1onRate = 0;
double CParams: :dMaxWe1ghtPerturbat1on = 0;
double CParams: :dProbab1htyWe1ghtReplaced= 0;

double CParams: :dAct1vat1onMutatIonRate = 0;
double CParams: :dMaxAct1vat1onPerturbat1on= 0;

double CParams: :dCompat1b1htyThreshold = 0;
int CParams:: INumBestSweepers = 4;
int CParams::iOldAgeThreshold = 0;
double CParams: :dOldAgePenalty = 0;
double CParams: :dCrossoverRate = 0;
double CParams: :dLearnmgRate = 0.01;
double CParams: :dParaml = 4;
double CParams: :dParam2 = 0;
double CParams: :dParam3 = O;
double CParams: :dParam4 = 0;
double CParams: :dParam5 = o;
double CParams: :dParam6 = 0;
double CParams: :dParam7 = O;

173

= O;
= -2;
= 2;
= o;
= O;

=0;
=0;
=0;

double CParams: :dParam8
double CParams: :dParam9
double CParams: :dParaml0
double CParams: :dParam11
//double CParams: :dParaml
mt CParams: :1OffhneTrammg
mt CParams: :1GlobalOnhne
mt CParams:: 1RuleEvolut1on
mt CParams: :1OnlyGAs =0;

//this function loads m the parameters from a given file name. Returns
//false 1f there 1s a problem opening the file.
bool CParams: :LoadlnParameters(char* szF1leName)
{

1fstream grab(szF1leName);

//check file exists
1f (lgrab)
{

return false;
}

//load m from the file
char ParamDescnpt1on[40];

grab >> ParamDescnpt1on;
grab>> 1FramesPerSecond;
grab >> ParamDescnpt1on;
grab >> dMaxTurnRate;
grab >> ParamDescnption;
grab>> 1SweeperScale;
grab >> ParamDescnpt1on;
grab >> 1NumSensors;
grab >> ParamDescnpt1on;
grab > > dSensorRange;
grab >> ParamDescnpt1on;
grab>> 1NumSweepers;
grab >> ParamDescnpt1on;
grab >> 1NumT1cks;
grab >> ParamDescnpt1on;
grab >> dCellS1ze;
grab >> ParamDescnption;
grab >> 1NumAddLmkAttempts;
grab >> ParamDescnpt1on;
grab >> dSurv1valRate;
grab >> ParamDescnpt1on;
grab >> 1NumGensAllowedNolmprovement;
grab >> ParamDescnpt1on;
grab>> 1MaxPerm1ttedNeurons;
grab >> ParamDescnpt1on;
grab >> dChanceAddLmk;
grab >> ParamDescnption;
grab >> dChanceAddNode;
grab >> ParamDescnpt1on;
grab>> dChanceAddRecurrentLmk;
grab >> ParamDescnption;
grab >> dMutat1onRate;
grab >> ParamDescnpt1on;
grab>> dMaxWe1ghtPerturbat1on;
grab >> ParamDescnpt1on;
grab >> dProbab11ityWe1ghtReplaced;
grab >> ParamDescnpt1on;
grab>> dAct1vat1onMutat1onRate;
grab >> ParamDescnpt1on;

174

}

grab >> dMaxAct1vat1onPerturbat1on;
grab >> ParamDescnpt1on;
grab > > dCompat1b1l1tyThreshold;
grab >> ParamDescnpt1on;
grab >>1OldAgeThreshold;
grab >> ParamDescnpt1on;
grab > >dOldAgePenalty;
grab >> ParamDescnpt1on;
grab > > dYoungF1tnessBonus;
grab>> ParamDescnptIon;
grab>> 1YoungBonusAgeThreshhold;
grab>> ParamDescnpt1on;
grab >> dCrossoverRate;
grab >> ParamDescnpt1on;
grab >> dLearrnngRate;
grab >> ParamDescnpt1on;
grab >> dParaml;
grab >> ParamDescnpt1on;
grab >> dParam2;
grab > > ParamDescript1on;
grab>> dParam3;
grab >> ParamDescnpt1on;
grab >> dParam4;
grab >> ParamDescnpt1on;
grab >> dParam5;
grab >> ParamDescript1on;
grab>> dParam6;
grab>> ParamDescript1on;
grab>> dParam7;
grab >> ParamDescript1on;
grab >> dParam8;
grab >> ParamDescr1pt1on;
grab >> dParam9;
grab >> ParamDescnpt1on;
grab >> dParaml0;
grab >> ParamDescnpt1on;
grab >> dParamll;
//grab >> dParaml;
grab >> ParamDescnpt1on;
grab >> 1OfflineTraining;
grab >> ParamDescnpt1on;
grab>> 1GlobalOnhne;
grab >> ParamDescnpt1on;
grab >> 1RuleEvolut1on;
grab >> ParamDescnption;
grab >> 1OnlyGAs;

return true;

175

#1fndef CSPECIES_H
#define CSPECIES_H
I/-------- ---
//
// Name: CSpec1es.h
II
II
II
II
II
II

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally 2005

II Desc: Class to handle species d1stnbut1on and maintenance
I 1---
#mclude <vector>
#include <math.h>
#include <1omamp>
#include <1ostream>

#include "genotype.h"

usmg namespace std;

I!--
//
II class to hold all the genomes of a given species
I/--
cl ass CSpec1es
{

private:

//keep a local copy of the first member of this species
CGenome m_Leader,

//pointers to all the genomes w1thm this species
vector<CGenome*> m_vecMembers;

//the species needs an 1dent1f1cat1on number
mt m_1Spec1esID;

//best fitness found so far by this species
double m_dBestF1tness;

//generations smce fitness has improved, we can use
//this mfo to kill off a species 1f required
mt m_1GensNolmprovement;

//age of species
mt m_1Age;

//how many of this species should be spawned for
//the next population

176

double m_dSpawnsRqd;

public:

CSpec1es(CGenome &F1rstOrg, mt Spec1esID);

//this method boosts the fitnesses of the young, penalizes the
//fitnesses of the old and then performs fitness sharing over
//all the members of the species
void Ad1ustF1tnesses();

//adds a new md1v1dual to the species
void AddMember(CGenome& new_org);

VOid Purge();

//calculates how many offspring this species should
void CalculateSpawnAmount();

//spawns an md1v1dual from the species selected at random
//from the best CParams: :dSurv1valRate percent
CGenome Spawn();

/ 1--------------------------------------accessor methods
CGenome Leader()const{return m_Leader;}

double NumToSpawn()const{return m_dSpawnsRqd;}

mt NumMembers()const{return m_vecMembers.s1ze();}

mt GensNolmprovement()const{return m_1GensN0Improvement;}

mt ID()const{return m_1Spec1esID;}

double Spec1esLeaderF1tness()const{return m_Leader.F1tness();}

double BestF1tness()const{return m_dBestF1tness;}

int Age()const{return m_1Age;}

//so we can sort species by best fitness. Largest first
friend bool operator<(const CSpec1es &lhs, const CSpec1es &rhs)
{

return lhs.m_dBestF1tness > rhs.m_dBestF1tness;
}

};

#end1f

177

#include 11CSpec1es.h"

//-- --------------------------
//
// this ctor creates an instance of a new species. A local copy of
// the rn1t1ahzrng genome 1s kept in m_Leader and the first element
II of m_vecMembers 1s a pointer to that genome.
//-- --------------------------
CSpec1es: :CSpec1es(CGenome &F1rstOrg,

{

}

mt Spec1esID): m_1Spec1esID(Spec1esID),
m_dBestF1tness(F1rstOrg. Fitness()),
m_1GensNolmprovement(0),
m_1Age(0),
m_Leader(F1rstOrg),
m_dSpawnsRqcl(0)

m_ vecMembers. push_back(&F1 rstOrg);

m_Leader = F1rstOrg;

//------------------------ AddMember -------------------------------------
//
// this function adds a new member to this species and updates the member
// variables accordingly
I/-- --------------------------
vo 1d CSpec1es: :AddMember(CGenome &NewMember)
{

}

/ /1s the new member's fitness better than the best fitness?
1f (NewMember.F1tness() > m_dBestF1tness)
{

m_dBestF1tness = NewMember.F1tness();

m_1GensNolmprovement = 0;

m_Leader = NewMember;
}

m_vecMembers. push_back(&NewMember);

I/-------------------------- Purge ---------------------------------------
//
// this functions clears out all the members from the last generation,
// updates the age and gens no improvement.
I!--- -------------------------------
void CSpec1es: :Purge()

178

{
m_vecMembers.clear();

/ /update age etc
++m_iAge;

+ +m_iGensNolmprovement;

m_dSpawnsRqd = o;
}

I/--------------------------- AdJustF1tness ------------------------------
//
// This function adJusts the fitness of each md1v1dual by first
// exammmg the species age and penahsmg 1f old, boosting if young.
// Then we perform fitness sharing by d1v1dmg the fitness by the number
// of individuals m the species. This ensures a species does not grow
// too large
I!--
void CSpecies: :Ad1ustF1tnesses()
{

double total = o;

for (mt gen=0; gen<m_vecMembers.s1ze(); ++gen)
{

double fitness= m_vecMembers[gen]->F1tness();

//boost the fitness scores 1f the species 1s young
1f (m_1Age < CParams: :1YoungBonusAgeThreshhold)
{

fitness *= CParams: :dYoungFitnessBonus;
}

//punish older species
if (m_iAge > CParams::1OldAgeThreshold)
{

fitness *= CParams: :dOldAgePenalty;
}

total += fitness;

//apply fitness sharing to adJusted fitnesses
double AdjustedFitness = f1tness/m_vecMembers.s1ze();

m_vecMembers[gen]->SetAdJFitness(AdJustedF1tness);

}
}

//------------------------ CalculateSpawnAmount -------------------------­
//
// Simply adds up the expected spawn amount for each individual m the
// species to calculate the amount of offspring this species should
II spawn
I!--
void CSpec1es: :CalculateSpawnAmount()
{

}

for (mt gen=0; gen<m_vecMembers.s1ze(); ++gen)
{

m_dSpawnsRqd += m_vecMembers[gen]->AmountToSpawn();

}

//------------------------ Spawn ---

179

II
II Returns a random genome selected from the best md1v1duals
I I-- ---- --
CGenome CSpec1es: :Spawn()
{

CGenome baby;

1f (m_vecMembers.s1ze() == 1)
{

baby = *m_vecMembers[0];
}

else
{

mt MaxlndexS1ze = (mt) (CParams: :dSurv1valRate * m_vecMembers.s1ze())+l;

mt TheOne = Randlnt(0, MaxlndexS1ze);

baby= *m_vecMembers[TheOne];
}

return baby;
}

180

#1fndef CTIMER_H
#define CTIMER_H
I/- ---------------------------------~------------------------------------
I/
// Name: CT1mer.h
II
II
II
II
II
II
II
II

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally

Desc: Windows timer class

2005

I/------ ---

#include <windows.h>

class CTimer
{

private:

public:

//ctors

LONGLONG m_CurrentT1me,
m_LastT1me,

double

float

CT1mer();
CTimer(float fps);

m_NextT1me,
m_FrameT1me,
m_PerfCountFreq;

m_ T1meElapsed,
m_T1meScale;

m_FPS;

//whatdayaknow, this starts the timer
void Start();

//determines 1f enough time has passed to move onto next frame
bool ReadyForNextFrame();

//only use this after a call to the above.
double GetT1meElapsed(){return m_ T1meElapsed;}

181

double T1meElapsed();

};

#end1f

#include "CT1mer.h"

I/---------------------- default constructor -----------------------------­
//
I I---

CT1mer: :CT1mer(): m_FPS(0),

{

}

m_ T1meEla psed (0. Of),
m_FrameT1me(0),
m_LastT1me(0),
m_PerfCountFreq(0)

//how many ticks per sec do we get
QueryPerformanceFrequency((LARGE_INTEGER *) &m_PerfCountFreq);

m_T1meScale = 1.0f/m_PerfCountFreq;

//------------------ ---- constructor -------------------------------------
//
// use to specify FPS
II
I/- --

CT1 mer:: CT1mer(float fps): m_FPS(fps),

{

}

//how many ticks per sec do we get

m_T1meElapsed(0.0f),
m_LastT1me(0),
m_PerfCou ntFreq(0)

QueryPerformanceFrequency((LARGE_INTEGER*) &m_PerfCountFreq);

m_T1meScale = 1.0f/m_PerfCountFreq;

//calculate ticks per frame
m_FrameT1me = (LONGLONG)(m_PerfCountFreq / m_FPS);

I/-- ----------------------Sta rt()- ----- -------- --- ----- - -- - ----------- --- -
II
// call this 1mmed1ately pnor to game loop. Starts the timer (obv1ous1y1)
II
I/--
void CTimer: :Start()
{

//get the time
QueryPerformanceCounter((LARGE_INTEGER*) &m_LastT1me);

182

}

//update time to render next frame
m_NextT1me = m_LastT1me + m_FrameT1me;

return;

I I------ -------------------ReadyFo rNextFra me()------------------------------­
/ /
II
II
II

returns true 1f 1t 1s time to move on to the next frame step. To be used 1f
FPS IS set.

I/-- --
bool CT1mer:: ReadyForNextFrame()
{

}

1f (lm_FPS)
{

MessageBox(NULL, "No FPS set m timer'', "Doh•", O);

return false;
}

QueryPerformanceCounter((LARGE_INTEGER*) &m_CurrentT1me);

1f (m_CurrentT1me > m_NextT1me)
{

m_T1meElapsed = (m_CurrentT1me - m_LastT1me) * m_T,meScale;
m_LastT1me = m_CurrentT1me;

//update time to render next frame
m_NextT1me = m_CurrentT1me + m_FrameT1me;

return true;
}

return false;

//--------------------------- T1meElapsed --------------------------------
//
// returns time elapsed smce last call to this function. Use m mam
// when calculations are to be based on dt.
II
I/---- ---
double CT1mer: :T1meElapsed()
{

QueryPerformanceCounter((LARGE_INTEGER*) &m_CurrentT1me);

m_T1meElapsed = (m_CurrentT1me - m_LastT1me) * m_T1meScale;

m_LastT1me = m_CurrentT1me;

return m_T1meElapsed;

}

183

#1fndef NEATGENOTYPE_H
#define NEATGENOTYPE_H
I/---
//
// Name: genotype.h
II
II
II
II
II
II
II
II

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally

Desc: Genome description

2005

I/------ ---
#include <vector>

#include "phenotype.h"
#include "ut1ls.h"
#include "Cinnovat1on.h"
#include "Genes.h"

using namespace std;

class Cga;
class Cinnovation;

I I- ---
I I
II CGenome class defin1t1on. A genome basically consists of a vector of
// link genes, a vector of neuron genes and a fitness score.
I/-- --
class CGenome
{

private:

//its ident1f1cat1on number
int m_GenomeID;

//all the neurons which make up this genome
vector<SNeuronGene> m_vecNeurons;

//and all the the links
vector<SLinkGene> m_ veclinks;

//pointer to its phenotype
CNeuralNet* m_pPhenotype;

184

//1ts raw fitness score
double m_dF1tness;

//1ts fitness score after 1t has been placed mto a
//species and adJusted accordingly
double m_dAd1ustedF1tness;

//the number of offspring this md1v1dual is required to spawn
//for the next generation
double m_dAmountToSpawn;

//keep a record of the number of inputs and outputs
int m_1Numlnputs,

m_iNumOutPuts;

//keeps a track of which species this genome is in (only used
//for display purposes)
int m_iSpec1es;

//returns true if the spec1f1ed link 1s already part of the genome
bool DuphcateLmk(int Neuronln, mt NeuronOut);

//given a neuron id this function Just fmds its pos1t1on in
//m_vecNeurons
int GetElementPos(int neuron_1d);

//tests 1f the passed ID 1s the same as any existing neuron IDs. Used
//in AddNeuron
bool AlreadyHaveTh1sNeuronID(const int ID);

public:

CGenome();

//this constructor creates a minimal genome where there are output &
//mput neurons and every mput neuron is connected to each output neuron
CGenome(mt 1d, mt inputs, mt outputs);

//this constructor creates a genome from a vector of SLinkGenes
//a vector of SNeuronGenes and an ID number
CGenome(mt 1d,

vector<SNeuronGene> neurons,
vector<SLmkGene> genes,
int inputs,
mt outputs);

.... cGenome();

//copy constructor
CGenome(const CGenome& g);

//assignment operator
CGenome& operator =(const CGenome& g);

//create a neural network from the genome
CNeuralNet* CreatePhenotype(mt depth);

//delete the neural network
void DeletePhenotype();
CNeuralNet* GetPhenotype()
{

return(m_pPhenotype);
}

185

//add a hnk to the genome dependent upon the mutation rate
void AddLmk(double Mutation Rate,

double ChanceOfRecurrent,
CinnovatIon &mnovatIon,
mt NumTrysToFmdLoop,
mt NumTrysToAddLmk);

//and a neuron
void AddNeuron(double Mutation Rate,

Cinnovat1on &mnovatIon,
mt NumTrysToFmdOldLmk);

//this function mutates the connection weights
void MutateWe1ghts(double mut_rate,

double prob_new_mut,
double dMaxPertubat1on);

//perturbs the actIvatIon responses of the neurons
void MutateAct1vat1onResponse(double mut_rate,

double MaxPertubat1on);
// this function mutates the learning algorithm parameters
void MutateLearnmgParameters(double mut_rate,

MaxPertubat1on);

//calculates the compat1b1hty score between this genome and
//another genome
double GetCompatib1htyScore(const CGenome &genome);

VOid SortGenes();

//overload'<' used for sorting. From fittest to poorest.
friend bool operator<(const CGenome& lhs, canst CGenome& rhs)
{

return (lhs.m_dF1tness > rhs.m_dF1tness);
}

I 1---------------------------------accessor methods
mt ID()const{return m_GenomeID;}

void SetID(const mt val){m_GenomeID = val;}

mt NumGenes()const{return m_vecLmks.s1ze();}
mt NumNeurons()const{return m_vecNeurons.s1ze();}
mt Numinputs()const{return m_1Numinputs;}
mt NumOutputs()const{return m_1NumOutPuts;}

double AmountToSpawn()const{return m_dAmountToSpawn;}
void SetAmountToSpawn(double num){m_dAmountToSpawn = num;}

void SetF1tness(const double num){m_dF1tness = num;}
void SetAdJF1tness(const double num){m_dAd1ustedF1tness = num;}
double F1tness()const{return m_dF1tness;}
double GetAdJF1tness()const{return m_dAdJustedF1tness;}

mt GetSpec1es()const{return m_1Spec1es;}
void SetSpec1es(mt spc){m_1Spec1es = spc;}

double SphtY(const mt val)const{return m_vecNeurons[val].dSphtY;}

vector<SLmkGene> Genes()const{return m_vecLmks;}
vector<SNeuronGene> Neurons()const{return m_vecNeurons;}

vector<SLmkGene>: :iterator StartOfGenes(){return m_vecLmks.begm();}
vector<SLmkGene>:: iterator EndOfGenes(){return m_vecLmks.end();}

};

186

double

#end1f

#include "genotype.h"

//--
//
// default ctor
I I- ---
CGenome:: CGenome(): m_pPhenotype(NULL),

m_GenomeID(0),
m_dF1tness(0),
m_dAdjustedF1tness(0),
m_1Numlnputs(0),
m_iNumOutPuts(0),
m_dAmountToSpawn(0)

{}

//-----------------------------constructor ------------------------------
// this constructor creates a minimal genome where there are output +
// input neurons and each input neuron is connected to each output neuron.
I/--
CGenome: :CGenome(mt id, int inputs, int outputs):m_pPhenotype(NULL),

m_GenomeID(1d),

{
//create the input neurons

m_dF1tness(0),
m_dAdjustedF1tness(0),
m_1Numlnputs(inputs),
m_1NumOutPuts(outputs),
m_dAmountToSpawn(0),
m_1Species(0)

double InputRowShce = 1/(double)(inputs+2);

for (mt 1=0; i<inputs; 1++)
{

m_ vecNeurons. push_back(SNeuronGene(mput, i, 0, (i+ 2)*InputRowShce));
}

//create the bias
m_vecNeurons.push_back(SNeuronGene(b1as, inputs, 0, InputRowShce));

//create the output neurons
double OutputRowShce = 1/(double)(outputs+l);

for (1=0; i<outputs; 1++)
{

187

m_vecNeurons.push_back(SNeuronGene(output, 1+mputs+ 1, 1,
(1+l)*OutputRowShce));

}

}

//create the lmk genes, connect each input neuron to each output neuron and
//assign a random weight -1 < w < 1
for (1=0; 1<mputs+l; 1++)
{

}

for (mt J=0; J<outputs; J++)
{

}

m_vecLmks.push_back(SLmkGene(m_vecNeurons[1].1ID,
m_vecNeurons[mputs+J+l].1ID,
true,
mputs+outputs+ 1 +NumGenes(),
RandomClamped()));

I/-- --
I/
// this constructor creates a genome from a vector of SLmkGenes, a
// vector of SNeuronGenes and an ID number.
I I- ---
CGeno me: :CGenome(mt 1d,

{}

vector<SNeuronGene> neurons,
vector<SLmkGene> genes,
mt inputs,
mt outputs): m_GenomeID(1d),

m_pPhenotype(NULL),
m_vecLmks(genes),
m_vecNeurons(neurons),
m_dAmountToSpawn(0),
m_dF1tness(0),
m_dAd3ustedF1tness(0),
m_1Numlnputs(mputs),
m_1NumOutPuts(outputs)

I I ---- ---------------------------dto r-- ---
I/
I/-- --
CGenome:: ~CGenome()
{

1f (m_pPhenotype)
{

}
}

delete m_pPhenotype;

m_pPhenotype = NULL;

//---------------------------------copy ctor---
1/
I/------ ---
CGeno me: :CGenome(const CGenome& g)
{

m_GenomeID = g.m_GenomeID;
m_vecNeurons = g.m_vecNeurons;
m_vecLmks = g.m_vecLmks;
m_pPhenotype = NULL; //no need to perform a deep copy
m_dF1tness = g.m_dF1tness;
m_dAd3ustedF1tness = g.m_dAd3ustedF1tness;
m_iNumlnputs = g.m_1Numlnputs;

188

}

m_iNumOutPuts = g.m_1NumOutPuts;
m_dAmountToSpawn = g.m_dAmountToSpawn;

I /---------------------------------assignment operator-----------------------------------
//
I 1--
CGenome& CGenome: :operator =(const CGenome& g)
{

//self assignment guard
/ ~(this!= &g)

m_GenomeID = g.m_GenomeID;
m_vecNeurons = g.m_vecNeurons;
m_vecLinks = g.m_veclinks;
m_pPhenotype = NULL; //no need to perform a deep copy
m_dF1tness = g.m_dF1tness;
m_dAdJustedF1tness = g.m_dAdjustedF1tness;
m_1Numlnputs = g.m_1Numlnputs;
m_1NumOutPuts = g.m_1NumOutPuts;
m_dAmountToSpawn = g.m_dAmountToSpawn;

}

return *this;
}

//-------------------------------createPhenotype--------------------------
1/
II Creates a neural network based upon the information in the genome.
// Returns a pointer to the newly created ANN
/ 1--
CNeuralNet* CGenome: :CreatePhenotype(int depth)
{

//first make sure there is no existing phenotype for this genome
DeletePhenotype();

//this will hold all the neurons required for the phenotype
vector<SNeuron*> vecNeurons;

//first, create all the required neurons
for (int i=0; i<m_vecNeurons.s1ze(); I++)
{

SNeuron* pNeuron = new SNeuron(m_vecNeurons[i].NeuronType,
m_vecNeurons[1].1ID,
m_vecNeurons[1].dSplitY,
m_vecNeurons[1].dSphtX,
m_ vecNeu rons[1]. dActivationResponse

vecNeurons. push_back(pNeuron);
}

//now to create the links.
for (int cGene=0; cGene<m_vecLinks.s1ze(); ++cGene)
{

//make sure the lmk gene 1s enabled before the connection 1s created
1f (m_vecLinks[cGene].bEnabled)
{
//get the pointers to the relevant neurons

);

mt element = GetElementPos(m_veclinks[cGene].FromNeuron);
SNeuron* FromNeuron = vecNeurons[element];

element = GetElementPos(m_ vecLm ks[cGene]. ToNeuron);
SNeuron* ToNeuron = vecNeurons[element];

189

}
}

//create a lmk between those two neurons and assign the weight stored
//m the gene
SL.Ink tmpLmk(m_vecLmks[cGene].dWe1ght,

From Neuron,
To Neuron,
m_vecLinks[cGene].bRecurrent);

//add new lmks to neuron
FromNeuron->vecLmksOut. push_back(tmpLmk);
ToNeuron->vecLmksin.push_back(tmpL1nk);

for(mt r_temp=0; r_temp<vecNeurons.size(); i_temp++)
{

}

//setting the error status for each neuron
vecNeurons[1_temp]->1ErrorStatus=vecNeurons(1_temp]->vecL1nksOut.s1ze();

//now the neurons contain all the connect1v1ty information, a neural
/ /network may be created from them.
m_pPhenotype = new CNeuralNet(vecNeurons, depth);

return m_pPhenotype;
}

//--------------------------- DeletePhenotype ----------------------------
//
I!---------- --
void CGenome:: DeletePhenotype()
{
if (m_pPhenotype)
{

delete m_pPhenotype;
}

m_pPhenotype = NULL;
}

//---------------------------- GetElementPos -----------------------------
//
// given a neuron ID this little function Just fmds its positron in
II m_vecNeurons
I/--
mt CGenome: :GetElementPos(int neuron_,d)
{

}

for (Int 1=0; i<m_vecNeurons.size(); i++)
{

{
return i;

}
}

if (m_vecNeurons[i].iID == neuron_,d)

MessageBox(NULL, "Error m CGenome::GetElementPos", "Problem!", MB_OK);

return -1;

//------------------------------Dupl1cateLmk-----------------------------
//
// returns true 1f the lmk 1s already part of the genome
//--
bool CGenome: :Duphcatelink(mt Neuronin, mt NeuronOut)
{

for (mt cGene = 0; cGene < m_veclmks.s1ze(); ++cGene)
{

if ((m_vecLmks[cGene].FromNeuron == Neuronin) &&

190

}

(m_vecLmks[cGene].ToNeuron == NeuronOut))
{

}
}

return false;

//we already have this lmk
return true;

//--------------------------------Add Link---------------------------------
II
II create a new lmk with the probability of CParams: :dChanceAddLmk
//--
VOid CGenome: :AddLmk(double MutatIonRate,

double ChanceOfLooped,
CinnovatIon &innovation,
mt NumTrysToFmdLoop,
mt NumTrysToAddLink)

{
/ /Just return dependent on the mutation rate
1f (RandFloat() > Mutat1onRate) return;

/ /define holders for the two neurons to be linked. If we have fmd two
//valid neurons to link these values will become>= O.
int ID_neuronl = -1;
int ID_neuron2 = -1;

//flag set 1f a recurrent link Is selected (looped or normal)
bool bRecurrent = false;

//first test to see 1f an attempt shpould be made to create a
/ /lmk that loops back into the same neuron
If (RandFloat() < ChanceOfLooped)
{

//YES: try NumTrysToFmdLoop times to find a neuron that is not an
/ /input or bias neuron and that does not already have a loopback
//connect1on
while(NumTrysToFmdLoop--)
{

//grab a random neuron
int NeuronPos = Randlnt(m_1Numlnputs+l, m_vecNeurons.size()-1);

//check to make sure the neuron does not already have a loopback
//link and that It Is not an input or bias neuron
1f ('m_vecNeurons[NeuronPos].bRecurrent &&

{

(m_vecNeurons[NeuronPos].NeuronType != bias) &&
(m_vecNeurons[NeuronPos].NeuronType != input))

ID_neuronl = ID_neuron2 = m_vecNeurons[NeuronPos].1ID;

m_vecNeurons[NeuronPos].bRecurrent = true;

bRecurrent = true;

NumTrysToFmdLoop = O;
}

}
}

else
{
//No: try to fmd two unlinked neurons. Make NumTrysToAddLink
//attempts
while(NumTrysToAddLink--)
{

191

//choose two neurons, the second must not be an input or a bias
ID_neuronl = m_vecNeurons[Randint(0, m_vecNeurons.s1ze()-l)].1ID;

ID_neuron2 =
m_vecNeurons[Randint(m_iNuminputs+l, m_vecNeurons.s1ze()-l)].1ID;

1f (ID_neuron2 == 2)
{

continue;
}

//make sure these two are not already hnked and that they are
//not the same neuron
if (!(DuphcateLmk(ID_neuronl, ID_neuron2) 11

(ID_neuronl == ID_neuron2)))
{

NumTrysToAddLmk = 0;
}

else
{

ID_neuronl = -1;
ID_neuron2 = -1;

}
}

}

//return if unsuccessful m fmdmg a link
1f ((ID_neuronl < 0) 11 (ID_neuron2 < 0))
{

return;
}

//check to see 1f we have already created this innovation
mt id = innovat1on.Checkinnovation(ID_neuronl, ID_neuron2, new_lmk);

//is this hnk recurrent?
if (m_vecNeurons[GetElementPos(ID_neuronl)].dSphtY >

m_vecNeurons[GetElementPos(ID_neuron2)].dSplitY)
{

bRecurrent = true;
}

if (1d < 0)
{
//we need to create a new innovation
innovat1on.CreateNewinnovat1on(ID_neuronl, ID_neuron2, new_hnk);

//then create the new gene
int 1d = mnovat1on.NextNumber() - 1;

SLinkGene NewGene(ID_neuronl,
ID_neuron2,
true,
1d,
RandomClamped(),
bRecurrent);

m_ vecLmks. push_back(NewGene);
}

else
{
//the innovation has already been created so all we need to
//do is create the new gene using the existing innovation ID
SLinkGene NewGene(ID_neuronl,

192

ID_neuron2,
true,
1d,
RandomClamped(),
bRecurrent);

m_ vecLinks. push_back(NewGene);
}

return;
}

/ 1---------------------------------AddNeuron------------------------------
//
// this function adds a neuron to the genotype by exammmg the network,
// splitting one of the lmks and msertmg the new neuron.
I!--
void CGenome: :AddNeuron(double Mutat1onRate,

Cinnovat1on &mnovat1ons,
int NumTrysToFmdOldlmk)

{
//just return dependent on mutation rate
1f (RandFloat() > Mutat1onRate) return;

//If a valid link is found into which to insert the new neuron
//this value 1s set to true.
bool bDone = false;

//this will hold the mdex mto m_veclmks of the chosen lmk gene
int Chosenlink = 0;

/ /first a lmk is chosen to split. If the genome 1s small the code makes
//sure one of the older lmks 1s split to ensure a chaining effect does
/ /not occur. Here, if the genome contains less than 5 hidden neurons it
//1s considered to be too small to select a link at random
const int S1zeThreshold = m_1Numlnputs + m_iNumOutPuts + 5;

if (m_veclinks.s1ze() < S1zeThreshold)
{

}

while(NumTrysToFmdOldlink--)
{

//choose a link with a bias towards the older lmks m the genome
Chosenlmk = Randlnt(0, NumGenes()-1-(mt)sqrt(NumGenes()));

//make sure the link 1s enabled and that 1t is not a recurrent link
//or has a bias mput
int FromNeuron = m_veclmks[Chosenlmk].FromNeuron;

if ((m_veclmks[Chosenlmk].bEnabled) &&
(lm_veclinks[Chosenlmk].bRecurrent) &&
(m_vecNeurons[GetElementPos(FromNeuron)]. NeuronType ! = bias))

{
bDone = true;

NumTrysToFmdOldlink = 0;
}

}

if (!bDone)
{

}

//failed to fmd a decent lmk
return;

else

193

{
//the genome Is of suff1c1ent size for any lmk to be acceptable
while (!bDone)
{

ChosenLmk = Randint(0, NumGenes()-1);

//make sure the hnk Is enabled and that It Is not a recurrent lmk
//or has a BIAS mput
int FromNeuron = m_vecLmks[ChosenLmk].FromNeuron;

if ((m_vecLmks[ChosenLmk].bEnabled) &&
(•m_vecLinks[ChosenLmk].bRecurrent) &&
(m_ vecNeurons[GetElementPos(FromNeuron)]. Neuron Type , = bias))

{
bDone = true;

}
}

}

//disable this gene
m_vecLmks[ChosenLink].bEnabled = false;

//grab the weight from the gene (we want to use this for the weight of
//one of the new links so that the spht does not disturb anything the
//NN may have already learned ...
double OngmalWe1ght = m_vecLinks[ChosenLink].dWe1ght;

//identify the neurons this lmk connects
int from = m_vecLmks[ChosenLmk].FromNeuron;
int to = m_vecLmks[ChosenLmk].ToNeuron;

//calculate the depth and width of the new neuron. We can use the depth
//to see if the link feeds backwards or forwards
double NewDepth = (m_vecNeurons[GetElementPos(from)].dSphtY +

m_vecNeurons[GetElementPos(to)].dSphtY) /2;

double NewWidth = (m_vecNeurons[GetElementPos(from)].dSphtX +
m_vecNeurons[GetElementPos(to)] .dSphtX) /2;

//Now to see if this innovation has been created previously by
//another member of the population
mt 1d = innovat1ons.Checkinnovat1on(from,

to,
new_neuron);

/*
This function must check to see If a neuron ID Is already
being used. If it Is then the function creates a new innovation
for the neuron. */
if (id>= 0)
{

mt NeuronID = mnovat1ons.GetNeuronID(id);

if (AlreadyHaveTh1sNeuronID(NeuronID))
{
id= -1;

}
}

if (id< 0)
{

//add the innovation for the new neuron
mt NewNeuronID = mnovat1ons.CreateNewinnovat1on(from,

to,

194

new_neuron,
hidden,
NewW1dth,
NewDepth);

//create the new neuron gene and add It.
m_vecNeurons.push_back(SNeuronGene(h1dden,

NewNeuronID,
NewDepth,
NewW1dth));

//Two new lmk mnovatIons are required, one for each of the
//new lmks created when this gene Is spht.

//--------------- --------------------first lmk

//get the next mnovatIon ID
mt 1dlmkl = mnovat1ons.NextNumber();

//create the new mnovatIon
1nnovat1ons.CreateNewinnovat1on(from,

NewNeuronID,
new_hnk);

//create the new hnk gene
SLmkGene lmkl(from,

NewNeuronID,
true,
1dlmkl,
(1.0-OngmalWe,ght/2.0));

m_veclmks.push_back(hnkl);

I /-----------------------------------second lmk

//get the next innovation ID
mt 1dlmk2 = mnovat1ons.NextNumber();

//create the new mnovatIon
1nnovat1ons.CreateNewinnovat1on(NewNeuronID,

to,
new_hnk);

//create the new gene
SLinkGene hnk2(NewNeuronID,

to,
true,
1dlmk2,
OngmalWeight/2.0);

m_veclmks.push_back(lmk2);
}

else
{
//this mnovatIon has already been created so grab the relevant neuron
//and hnk mfo from the mnovatIon database
mt NewNeuronID = mnovat1ons.GetNeuronID(1d);

//get the mnovatIon IDs for the two new hnk genes.
mt 1dlmkl = mnovat1ons.Checkinnovat1on(from, NewNeuronID, new_hnk);
mt 1dlmk2 = mnovations.Checkinnovat1on(NewNeuronID, to, new_hnk);

//this should never happen because the mnovatIons *should* have already
//occurred
1f ((1dlmkl < O) 11 (1dlmk2 < 0))

195

}

{
MessageBox(NULL, "Error m CGenome: :AddNeuron", "Problem!", MB_OK);

return;
}

//now we need to create 2 new genes to represent the new lmks
SlinkGene hnkl(from, NewNeuronlD, true, 1dlmkl, 1.0);
SLmkGene hnk2(NewNeuronlD, to, true, 1dlmk2, OrigmalWe1ght);

m_veclmks.push_back(hnkl);
m_veclmks.push_back(hnk2);

//create the new neuron
SNeuronGene NewNeuron(h1dden, NewNeuronID, NewDepth, NewW1dth);

//and add 1t
m_ vecNeurons. push_back(NewNeuron);

}

return;

//--------------------------- AlreadyHaveTh1sNeuronID ---------------------­
//
// tests to see if the parameter is equal to any existing neuron ID's.
// Returns true 1f this is the case.
I!--------------------------- ---
bool CGenome: :AlreadyHaveTh1sNeuronlD(const mt ID)
{

for (int n=0; n<m_vecNeurons.size(); ++n)
{
if (ID == m_vecNeurons[n].11D)
{

}
}

return true;

return false;
}
//------------------------------- MutateWeights---------------------------
/1 Iterates through the genes and purturbs the weights given a
// probab1hty mut_rate.
II
// prob_new_mut 1s the chance that a weight may get replaced by a
// completely new weight.
II
// dMaxPertubat1on is the maximum perturbation to be applied.
II
// type 1s the type of random number algorithm we use
I!--------------------------- ---
void CGenome:: Mutate Weights(double mut_rate,

double prob_new_mut,
double MaxPertubat1on)

{
for (mt cGen=0; cGen<m_veclmks.size(); ++cGen)
{

//do we mutate this gene?
1f (RandFloat() < mut_rate)
{

//do we change the weight to a completely new weight?
1f (RandFloat() < prob_new_mut)
{

//change the weight using the random d1stribt1on defined by 'type'
m_veclmks[cGen].dWe1ght = RandomClamped();

196

197

}

else
{

//perturb the weight
m_vecLmks[cGen].dWe1ght -= RandomClamped() * MaxPertubat1on;

}
}

}

return;
}

void CGenome:: MutateAct1vat1onResponse(double mut_rate,
double MaxPertubatIon)

{
for (mt cGen=O; cGen<m_vecNeurons.s1ze(); ++cGen)
{

1f (RandFloat() < mut_rate)
{

m_vecNeurons[cGen].dAct1vat1onResponse += RandomClamped() * MaxPertubat1on;
}

}
}

void CGenome:: MutateLearnmgParameters(double mut_rate,double MaxPertubat1on)
{

}

I!------------------------- GetCompat1b1htyScore -----------------------­
//
// this function returns a score based on the compat1b1hty of this
// genome with the passed genome
I/- ---
double CGenome: :GetCompat1b1htyScore(const CGenome &genome)
{
//travel down the length of each genome counting the number of
//d1sJomt genes, the number of excess genes and the number of
//matched genes
double NumDISJOmt = O;
double NumExcess = O;
double NumMatched = O;

//this records the summed difference of weights m matched genes
double We1ghtD1fference = O;

//pos1t1on holders for each genome. They are incremented as we
//step down each genomes length.
mt gl = O;
mtg2 = O;

while ((gl < m_veclmks.size()-1) 11 (g2 < genome.m_veclmks.size()-1))
{

//we've reached the end of genome! but not genome2 so increment
//the excess score
1f (gl == m_veclmks.size()-1)
{

}

++g2;
++NumExcess;

continue;
}

//and vice versa
1f (g2 == genome.m_veclmks.size()-1)
{

}

++g1;
++NumExcess;

continue;

//get innovation numbers for each gene at this pomt
mt 1dl = m_vecLmks[gl].Innovat1onID;
mt id2 = genome.m_vecLmks[g2].Innovat1onID;

//innovation numbers are 1dent1cal so increase the matched score
1f (1dl == id2)
{

++g1;
++g2;
++NumMatched;

//get the weight difference between these two genes
We1ghtD1fference += fabs(m_veclmks[g1].dWe1ght - genome.m_vecLmks[g2].dWeight);

}

//innovation numbers are different so increment the d1s1omt score
if (1dl < 1d2)
{

}

++NumDISJOmt;
++g1;

if (1dl > 1d2)
{

}

++NumDISJOmt;
++g2;

}//end while

//get the length of the longest genome
int longest= genome.NumGenes();

1f (NumGenes() > longest)
{

longest= NumGenes();
}

//these are multrphers used to tweak the fmal score.
const double mD1s1omt = 1;
const double mExcess = 1;
const double mMatched = 0.4;

//finally calculate the scores
double score = (mExcess * NumExcess/(double)longest) +

(mD1s1omt * NumD1s1omt/(double)longest) +
(mMatched * We1ghtD1fference / NumMatched);

return score;

198

//--------------------------- SortGenes ----------- -----------------------
//
// sorts the genes
I I------ ----------------------- ---
vo Id CGenome: :SortGenes()
{

sort (m_vecLinks.begin(), m_vecLinks.end());
}

#1fndef PHENOTYPE_H
#define PHENOTYPE_H

I!-------------- ---
1 /
// Name: phenotype.h
II
II
II
II
II
II
II
II

Authors:
Created by Mat Buckland 2002
Mod1f1ed by Ami kumar Enumulapally 2004

Ami kumar Enumulapally 2005

Desc: defin1t1ons required for the creation of a neural network.

I!---

#include <vector>
#include <math.h>
#include <windows.h>
#include <algorithm>

#include "ut1ls.h"
#include "CParams.h"
#include "genes.h"

using namespace std;

struct SNeuron;

I/---- --
1 /
// Slink structure
I I--
struct Slink
{

//pointers to the neurons this link connects
SNeuron* pin;
SNeuron* pout;

//the connection weight
double dWe1ght;

//1s this link a recurrent link?

199

bool bRecurrent;

SLink(double dW, SNeuron* pln, SNeuron* pOut, bool bRec):dWe1ght(dW),
pin(pin),

{}
};

pOut(pOut),
bRecurrent(bRec)

I/--
II
// SNeuron
I!------ -- --------------------
struct SNeuron
{
public:

/ /all the links coming into this neuron
vector<SLink> vecLinksin;

//and out
vector<SLink> vecLmksOut;

//sum of weights x inputs
double dSumAct1vat1on;

//the output from this neuron
double dOutput;

/ /what type of neuron 1s this?
neuron_type NeuronType;

//1ts 1dent1f1cat1on number
mt 1NeuronID;

//sets the curvature of the s1gmo1d function
double dAct1vat1onResponse;

//md1cates status of error 1.e. whether the error 1s collected from all output neurons or not
mt 1ErrorStatus;

//sets the learning rate for backpropagat1on and gradient descent
double dLearnmgRate;

//stores the error for this neuron
double dError;

//stores the desired output for the neuron. only valid for output neurons
double dDes1redOutput;

//double dBpParaml;

//used m v1suahzat1on of the phenotype
mt 1PosX, 1PosY;
double dSphtY, dSphtX;

//--- ctors
SNeuron(neuron_type type,

mt 1d,
double y,
double x,
double ActResponse): Neu ronType(type),

1NeuronID(1d),
dSumAct1vat1on(0),
dOutput(0),

200

dlearnmgRate(CParams: :dlearnmgRate),

{}
};

1PosX(0),

1PosY(0),
dSphtY(y),
dSplltx(x),
dAct1vat1onResponse(ActResponse)

I/--
11
// CNeuralNet
I I- ---
class CNeuralNet
{

private:

vector<SNeuron*> m_vecpNeurons;

/ /the depth of the network
mt m_1Depth;

public:

double
double
double
double
double
double
double
double
double
double
double

dBpParaml;
dBpParam2;
dBpParam3;
dBpParam4;
dBpParamS;
dBpParam6;
dBpParam7;
dBpParam8;
dBpParam9;
dBpParam10;
dBpParam11;

CNeuralNet(vector<SNeuron* > neurons,
int depth);

~CNeuralNet();

//you have to select one of these types when updating the network
I /If snapshot 1s chosen the network depth 1s used to completely
//flush the inputs through the network. active Just updates the
//network each t1mestep
enum run_type{snapshot, active};

//update network for this clock cycle

201

dError(1),
dDesiredOutput(-1),

1ErrorStatus(veclmksOut.s1ze()),

vector<double> Update(const vector<double> &inputs, const run_type type, const int ITlcks);

//offlme trammg for a pre defined scenario
double offlmeTrammg(HWND hwnd1);

//mutating learning algorithm's parameters
void MutatelearnmgParameters(double mut_rate,

double MaxPertubat1on);

//backpropagat1on routine called m offhne trammg
VOid Backprop();
void h1ddenneuronerror(SNeuron*);
inhne vector<double> s1m1lantymeasure(const vector<double> &input);

//draws a graphical representation of the network to a user spec1ef1ed window
void DrawNet(HDC &surface,

mt cxLeft,
int cxR1ght,
mt cyTop,
int cyBot);

};

#end1f

#include "phenotype.h"

//------------------------------------519 mo1d function-------------- ----------
11
/I------ --

float Sigmoid(float netmput, float response)
{

return (1 / (1 + exp(-netmput/ response)));
}

//--------------------------------- ctor ---------------------------------
//
I/------ --
CNeu ra lNet: :CNeuralNet(vector<SNeuron*> neurons,

int depth): m_ vecpNeurons(neurons),
m_1Depth(depth),

dBpParam1(CParams: :dParam1),

dBpParam2(CParams: :dParam2),

dBpParam3(CParams: :dParam3),

dBpParam4(CParams: :dParam4),

dBpParamS(CParams: :dParamS),

dBpParam6(CParams: :dParam6),

dBpParam7(CParams: :dParam7),

dBpParamB(CParams: :dParamB),

dBpParam9(CParams: :dParam9),

dBpParam10(CParams: :dParam10),

dBpParam11(CParams: :dParam11)

{}

//--------------------------------- dtor ---------------------------------

202

II
I I --------------------------- ---
CNeuralNet: :~CNeuralNet()
{

}

//delete any hve neurons
for (mt 1=0; i<m_vecpNeurons.s1ze(); ++1)
{

}

1f (m_vecpNeurons[1])
{

delete m_vecpNeurons[1];

m_vecpNeurons[1] = NULL;
}

// This 1mplments the offhne mod1f1ed back propagation algorithm
double CNeuralNet: :offhneTrammg(HWND hwndl)
{

mt l_local,uter;
mt ILastmputneuron;
double dTmpvar;
mt 1TrammgS1ze=250;//number of trammg examples
mt IIteratIonSIze=l000 ;//Numer of times we iterate
char *szF1leNamel="1o_trammg3.txt";

1fstream grabl(szF1leNamel);
vector<double> traminglnputs;
vector<double> targetOutputs;
vector<double> errorVector1,errorVector2;

for(uter= o; uter< 1; Liter++)
{

mt s1zel=m_vecpNeurons.s1ze();
//MessageBox(hwndl,"1ter_of_offlme","progress",MB_OK);
errorVectorl .clear();
errorVector2 .clear();
for (1_local=0;i_local<ITrammgS1ze;l_local++)
{

tra1nmglnputs.clear();
targetOutputs.clear();
//errorVectorl .clear();
//errorVector2.clear();

//Read mput from file

//grabl> >dTmpvar;
tram1nglnputs.push_back(dlop[l_local][0]);

//grabl> >dTmpvar;
tra1nmglnputs.push_back(dlop[l_local][l]);

//grabl> >dTmpvar;
tra1nmglnputs.push_back(dlop[l_local][2]);

//grabl>>dTmpvar;
tra1nmglnputs.push_back(dlop[1_Iocal][3]);

/ /grabl> >dTmpvar;
tram mglnputs. push_back(dlop[l_local][4]);

//grabl> >dTmpvar;
tram1nglnputs.push_back(dlop[l_local][S]);

203

//grabl>>dTmpvar;
trammginputs.push_back(diop[i_local][6]);

//grabl> >dTmpvar;
tram1nginputs.push_back(diop[i_local][7]);

//grabl> >dTmpvar;
trammglnputs. push_back(diop[i_local] [8]);

//grabl>>dTmpvar;
trammglnputs.push_back(dlop[i_local][9]);

//grabl> >dTmpvar;
tram1nginputs.push_back(diop[i_local][10]);

//Read desired output

//grabl>>dTmpvar;
targetOutputs.push_back(dlop[i_local][11]);

//grabl> >dTmpvar;
targetOutputs.push_back(dlop[i_local][12]);

//MessageBox(hwndl, "In phenotype offhnetramg1g,after read mg
vals","progress3",MB_OK);

//this Is an mdex mto the current neuron
mt cNeuron = 0;

//first set the outputs of the 'mput' neurons to be equal
//to the values passed mto the function m inputs
while (cNeuron<l0)
{

m_vecpNeurons[cNeuron]->dOutput = trammginputs[cNeuron];

++cNeuron;
}
//MessageBox(hwndl,"In phenotype offhnetramg1g,after setting 10 1/p

vals","progress4",MB_OK);

//set the output of the bias to 1
m_vecpNeurons[10]->dOutput = 1;

cNeuron=11;
//then we step through the network one neuron at a time

204

//MessageBox(hwndl,"In phenotype offlmetramg1g,bef while loop","progressS",MB_OK);
while (cNeuron < m_vecpNeurons.s1ze())
{
//this will hold the sum of all the inputs x weights
double sum = 0;

//sum this neuron's inputs by Iteratmg through all the lmks into
//the neuron
for (mt lnk=0; lnk<m_vecpNeurons[cNeuron]->vecLmksin.s1ze(); ++Ink)
{

}

//get this link's weight
double Weight = m_vecpNeurons[cNeuron]->vecLmksin[lnk].dWe1ght;

//get the output from the neuron this link Is coming from
double NeuronOutput =
m_vecpNeurons[cNeuron]->vecL1nksin[lnk].pin->dOutput;

//add to sum
sum += Weight* NeuronOutput;

//now put the sum through the actIvatIon function and assign the
//value to this neuron's output
m_vecpNeurons[cNeuron]->dOutput = S1gmo1d(sum, m_vecpNeurons[cNeuron]­

>dActivat1onResponse);

//next neuron
++cNeuron;

}//end of while loop
//MessageBox(hwndl,"In phenotype offhnetramg1g,after the while loop of o/p

vals", "progress6" ,MB_OK);

//calculate error

//the following sets error status for output neurons to zero
cNeuron=0;
mt 1Outputmdex=0;
bool flag_output=false;

while(cNeuron < m_ vecpNeurons.s1ze())
{

1f (m_vecpNeurons[cNeuron]->NeuronType == output)
{

m_vecpNeurons[cNeuron]->1ErrorStatus=0;

1f(flag_output==false)//then It Is 1st output neuron
{

}

m_vecpNeurons[cNeuron]->dDes1redOutput=targetOutputs[0];
flag_output=true;

else //1t1s 2nd output neuron
{

m_vecpNeurons[cNeuron]->dDes1redOutput=targetOutputs[l];
}//end of ms1de IF else loop

} //end of outside 1f loop
1f (m_vecpNeurons[cNeuron]->NeuronType == hidden)
{

205

m_ vecpNeurons[cNeuron]-> 1 ErrorStatus= m_ vecpNeurons[cNeuron]-
>veclmksOut.s1ze();

}

}
//next neuron
++cNeuron;

//MessageBox(hwndl,"after setting desired ops","progress",MB_OK);

cNeuron=0;
ILastmputneuron =0;
wh1le(m_vecpNeurons[cNeuron]->NeuronType == mput)
{

}

ILastmputneuron++;
cNeuron++;

//error propagation routine
cNeuron=m_vecpNeurons.size()-1;
mt flag_out=0;

wh1le(cNeuron>1Lastmputneuron)

{
//output neuron error & weight adJustment
1f(m_ vecpNeurons[cNeuron]-> NeuronType = = output)
{

m_vecpNeurons[cNeuron]->dError=(m_vecpNeurons[cNeuron]­
>dDes1redOutput-m_vecpNeurons[cNeuron]->dOutput)* m_vecpNeurons[cNeuron]->dOutput*(l­
m_ vecpNeurons[cNeuron]- >dOutput);

1f(flag_out= = 1)
errorVectorl.push_back(m_vecpNeurons[cNeuron]->dError);
else
{

206

errorVector2. push_back(m_ vecpNeurons[cNeuron]->d Error);
flag_out=l;

}
//Updating the weights

/*comment-begin here for normal error prop*/
/*
for(int lnkl=0;lnkl< m_vecpNeurons[cNeuron]­

>veclinksln.s1ze();lnkl++)
{

m_vecpNeurons[cNeuron]->veclmksln[lnkl].dWe1ght -=
0.S*m_vecpNeurons[cNeuron]->dlearn1ngRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnkl].pln->dOutput;

}//end of for loop
*I

/*comment-end here for normal error prop */

}//end of 1f loop for output neurons

// MessageBox(hwndl,"In phenotype offlinetramg1g,after setting error for
o/p", "progress8" ,MB_OK);

/*comment-begin here for normal error prop*/
/*
1f(m_vecpNeurons[cNeuron]->NeuronType == hidden)
{

//MessageBox(hwndl,"before calling hidden
neuronerror", "progress" ,MB_OK);

h1ddenneuronerror(m_ vecpNeurons[cNeuron]);
//MessageBox(hwndl,"after calling hidden

neuronerror","progress",MB_OK);

//Updating the error
for(int lnk3=0,lnk3<m_vecpNeurons[cNeuron]­

>veclinksln.s1ze(); lnk3++)
{

//update weights
m_vecpNeurons[cNeuron]->vecL1nksln[lnk3].dWe1ght -=

m_vecpNeurons[cNeuron]->dlearningRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnk3].pln->dOutput;

}//end of for loop for updating weights

}//end of 1f loop for hidden neurons
*/
/*comment-end here for normal error propagation */

cNeuron-- ;//next 1terat1on

}//end of while loop

}// end of i_local loop

//A different approach m averaging the error
double dAvgErr1=0.0,dAvgErr2=0.0;

for(mt g1=0;g1 <errorVectorl.s12e();gl ++)
{

dAvgErr1+=errorVector1.at(g1);
dAvgErr2+=errorVector2.at(g1);

}
dAvgErrl= dAvgErr1/errorVector1.s1ze();
dAvgErr2= dAvgErr2/errorVector2.s1ze();

//Updating the error
mt cNeuronl=sIze1-1;
mt flag_outl=0;

/*comment-begin here for other error prop*/
wh1Ie(cNeuron1>10)
{

1f(m_vecpNeurons[cNeuronl]->NeuronType == output)
{

1f(flag_out1==0)
{

}
else

m_ vecpNeurons[cNeuron 1]->dError=dAvg Err2;
flag_out1=1;

m_vecpNeurons[cNeuron1]->dError=dAvgErr1;

for(mt lnk1=0;Ink1< m_vecpNeurons[cNeuronl]-
>veclmksln.s1ze(); lnkl++)

{
m_vecpNeurons[cNeuron1]->veclmksln[lnk1].dWe1ght -=

0.S*m_vecpNeurons[cNeuron1]->dlearnmgRate*m_vecpNeurons[cNeuron1]­
>dError*m_vecpNeurons[cNeuron1]->veclmksln[lnk1].pln->dOutput;

}/ /end of for loop
}//end of output neuron IF

//MessageBox(hwndl,"In phenotype offhnetramgrg,after o/p error vals","progress8",MB_OK);

rf(m_vecpNeurons[cNeuronl]->NeuronType == hidden)
{

//MessageBox(hwndl,"before calling hidden
neuronerror", "prog ress9" ,MB_ OK);

hrddenneuronerror(m_ vecpNeurons[cNeuron 1]);
//MessageBox(hwndl,"after calling hidden

neuronerror", "progress10" ,MB_ OK);

//Updating the error
for(mt lnk3=0;Ink3<m_vecpNeurons[cNeuron1]­

>veclmksln.s1ze();lnk3++)
{

//update weights
m_vecpNeurons[cNeuron1]->veclmksln[lnk3].dWeight -=

m_vecpNeurons[cNeuron1]->dlearnmgRate*m_vecpNeurons[cNeuron1]­
>dError*m_vecpNeurons[cNeuron1]->veclmksln[lnk3].pln->dOutput;

207

}//end of for loop for updating weights

}/ /end of 1f loop for hidden neurons
cNeuron1--;

}//end of while

/*comment-end here for other error propagation */

//errorVector1 .clear();
//errorVector2.clear();

}//end of Uter loop

mt cNeuron2=0;
int 1No_output_Neurons=0;
double dAvgError=0.0;
while(cNeuron2 < m_ vecpNeurons.s1ze())

{
1f (m_vecpNeurons[cNeuron2]->NeuronType == output)
{

}

1No_output_Neurons++;
dAvgError+=m_vecpNeurons[cNeuron2]->dError;

cNeuron2++;
}//end of while

dAvgError=dAvgError/(double)1No_output_Neurons;

return(dAvgError);

}//end of offhne trammg function

// A recursive function that fmds the error for hidden neurons
void CNeuralNet:: h1ddenneuronerror(SNeuron* h1ddenneuron)
{

1f(h1ddenneuron->vecllnksOut.s1ze()>0)
{

for(mt lnk2=0;1nk2< h1ddenneuron->vecLinksOut.s1ze();lnk2++)
{

1f(h1ddenneuron->vecLmksOut[lnk2].pOut->1ErrorStatus==0)
{

208

h1ddenneuron->dError+=h1ddenneuron->dOutput* (1 - h1ddenneuron­
>dOutput)* h1ddenneuron->vecLmksOut[lnk2].pOut->dError * h1ddenneuron­
>vecLmksOut[lnk2].dWe1ght;

1f(h1ddenneuron->1ErrorStatus>0)
h1ddenneuron->1ErrorStatus--;//we have calculated error from 1

output neuron so update the status

"Error", MB_OK);

else break;

}//end of 1f errorstatus=0
else 1f(h1dden neuron->vecLmksOut[ln k2]. pOut-> 1ErrorStatus>0)
{

1f(1 hidden neu ron->vecLmksOut[lnk2]. bRecu rrent)
{

}
else

h1ddenneuronerror(h1ddenneuron->vecLmksOut[lnk2].pOut);
//MessageBox(m_hwndMam, "Wrong amount of NN inputs'",

{
continue;

}
}//end of else 1f i.e. error status Is not zero
else
{

h1ddenneuron->vecL1nksOut[lnk2].pOut->1ErrorStatus=0;
continue;

}

}//end of for lnk2
}

}//end of h1ddenneuronerror function

//----------------------------------Update--------------------------------
// takes a hst of doubles as inputs mto the network then steps through
// the neurons calculating each neurons next output.
II
II finally returns a std: :vector of doubles as the output from the net.
//--
vector<double> CNeuralNet: :Update(const vector<double> &inputs,

const run_type type,

{
//create a vector to put the outputs mto
vector<double> outputs;
vector<double> DesiredOutputs;
double p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10;

/ /If the mode Is snapshot then we require all the neurons to be
//iterated through as many times as the network Is deep. If the
//mode Is set to active the method can return an output after
//Just one iteration
int FlushCount = 0;
bool flag_outputl=false;

p0= dBpParaml;

if (type == snapshot)
{

FlushCount = m_IDepth ;
}
else
{

FlushCount = 1;
}

pl= dBpParam2;
p2= dBpParam3;
p3= dBpParam4;
p4= dBpParamS;
pS= dBpParam6;
p6= dBpParam7;
p7= dBpParamS;
p8= dBpParam9;
p9= dBpParam10;
p10= dBpParam11;

//iterate through the network FlushCount times
for (mt 1=0; 1<m_1Depth; ++1)
{

//clear the output vector
outputs.clear();
// Des1redOutputs.clear();

const mt !Ticks)

209

//this 1s an mdex mto the current neuron
mt cNeuron = 0;

//first set the outputs of the 'mput' neurons to be equal
//to the values passed mto the function m inputs
while (m_vecpNeurons[cNeuron]->NeuronType == mput)
{

m_vecpNeurons[cNeuron]->dOutput = mputs[cNeuron];

++cNeuron;
}//end of mput while loop

//set the output of the bias to 1
m_vecpNeurons[cNeuron++]->dOutput = 1;

//Des1redOutputs. push_back(0. 9789);
//Des1redOutputs. push_back(0. 9897);

//then we step through the network a neuron at a time
while (cNeuron < m_vecpNeurons.s1ze())
{
//this will hold the sum of all the inputs x weights
double sum = o;

//sum this neuron's inputs by 1teratmg through all the lmks mto
//the neuron
for (mt lnk=0; lnk<m_vecpNeurons[cNeuron]->vecLmksin.s1ze(); ++Ink)
{
//get this link's weight
double Weight = m_vecpNeurons[cNeuron]->vecLmksin[lnk].dWe1ght;

//get the output from the neuron this lmk 1s coming from
double NeuronOutput =
m_vecpNeurons[cNeuron]->vecL1nksin[lnk].pin->dOutput;

//add to sum
sum +=Weight* NeuronOutput;

}//end of for loop

//now put the sum through the act1vat1on function and assign the
//value to this neuron's output
m_vecpNeurons[cNeuron]->dOutput =
S1gmo1d(sum, m_vecpNeurons[cNeuron]->dAct1vat1onResponse);

1f (m_vecpNeurons[cNeuron]->NeuronType == output)
{

outputs. push_back(m_ vecpNeurons[cNeuron]-> dOutput);

}//end of 1f output loop

//next neuron
++cNeuron;

}//end of while loop

I!---------------- -- -----------------------------
/* comment-begin for no onhne learning */
I/-- --

1f(CParams: :1OnlyGAs==0)
{
//the following sets error status for output neurons to zero

cNeuron=0;
mt 1Outputmdex=0;
bool flag_output=false;

210

Des1redOutputs.clear();

1f(CParams:: 1GlobalOnhne==0)
{

211

Des1redOutputs = s1m1laritymeasure(inputs);//If Local Online then get desired
o/ps from the training set using filter function

}
else
{

// MessageBox(NULL, "in global desired", "Error", 0);

//If Global Online then we use heuristic of fitness parameters. Here we supply
highest speed possible as desired outputs

Des1redOutputs. push_back(0. 9789);
Desired Outputs. push_back(0. 9897);

}

if(CParams:: 1GlobalOnhne==0)
{

}

//If speed value is less then teach minesweepers to spped up
1f(Des1redOutputs[0] <0. 75) Des1redOutputs[0]=Des1redOutputs[0] +0.15;
1f(DesiredOutputs[l] <0. 75) Des1redOutputs[l]=Des1redOutputs[l] +0.15;

1f(Des1redOutputs.s1ze()==0)
MessageBox(NULL, "Error Desired opsize=0•", "Error", 0);

//the following will set error status and desired outputs for output neurons
wh1le(cNeuron<m_vecpNeurons.s1ze())
{

if (m_vecpNeurons[cNeuron]->NeuronType == output)
{

m_vecpNeurons[cNeuron]->1ErrorStatus=0;

1f(flag_output==false)//then it is 1st output neuron
{

m_vecpNeurons[cNeuron]-
>dDes1redOutput=Des1redOutputs[0];

flag_output=true;//set the flag
}
else //1t 1s 2nd output neuron
{

m_vecpNeurons[cNeuron]-
>dDes1redOutput=Des1redOutputs[l];

flag_output=false;//reset the flag
}/ /end of else

} //end of outside 1f loop
1f(m_vecpNeurons[cNeuron]->NeuronType == hidden)
{

m_vecpNeurons[cNeuron]­
>1ErrorStatus=m_vecpNeurons[cNeuron]->vecLinksOut.s1ze();

}

//next neuron
++cNeuron;

}//end of error and desired op setting WHILE loop

cNeuron=0;
int iLastinputneuron=0;
wh1le(m_vecpNeurons[cNeuron]->NeuronType == input)
{

1Lastinputneuron++;

cNeuron++;
}
//1Lastinputneuron++;//to include bias neuron
1f(1Lastinputneuron= = 10)

MessageBox(NULL, "10 input neurons", "Ami", 0);

m_vecpNeurons[1Lastinputneuron]->dOutput = 1;

//error propagation routine
cNeuron = m_ vecpNeurons.size()-1;

while(cNeuron > 1 Lastinputneuron)
{

//output neuron error & weight adjustment
1f(m_vecpNeurons[cNeuron]->NeuronType == output)
{

m_vecpNeurons[cNeuron]->dError=(m_vecpNeurons[cNeuron]­
>dDes1redOutput-m_vecpNeurons[cNeuron]->dOutput)* m_vecpNeurons[cNeuron]->dOutput*(l­
m_vecpNeurons[cNeuron]->dOutput);

for(int lnkl=0; lnkl < m_vecpNeurons[cNeuron]­
>vecLinksln.s1ze();lnkl ++)

{

212

double WIJl,aJl;
w1Jl=m_vecpNeurons[cNeuron]->vecLinksin[lnkl].dWe1ght;
aJl=m_vecpNeurons[cNeuron]->dLearmngRate;
1f(CParams: :1RuleEvolut1on==0)
{

// m_vecpNeurons[cNeuron]-
>vecLinksln[lnkl].dWe1ght -= (1/ITlcks)*0.25*m_vecpNeurons[cNeuron]­
>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecL1nksin[lnkl].pin­
>dOutput;

m_vecpNeurons[cNeuron]­
>vecLinksin[lnkl].dWeight += (1/ITicks)*m_vecpNeurons[cNeuron]­
>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnkl].pln­
>dOutput;

//m_vecpNeurons[cNeuron]­
>vecLinksln[lnkl].dWeight += (1/ITlcks)*0.25*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecLinksln[lnk1].pln->dOutput;

}
else
{

m_vecpNeurons[cNeuron]­
>vecLinksin[lnkl].dWe1ght -= p0*(pl *wiJ1-p2*aJ1 *m_vecpNeurons[cNeuron]->dError-
p3*w111 *aJ 1 + p4*m_ vecpNeurons[cNeuron]->d Error+ pS*aJ 1 *m_ vecpNeurons[cNeuron]->dOutput);

}
//m_vecpNeurons[cNeuron]­

>dLearningRate+=m_vecpNeurons[cNeuron]->dLearn1ngRate*m_vecpNeurons[cNeuron]->dError;

}/ /end of for loop

}//end of if loop for output neurons

1f(m_vecpNeurons[cNeuron]->NeuronType == hidden)
{

hidden neuronerror(m_ veep Neurons[cNeuron]);
for(int lnk3=0;Ink3<m_vecpNeurons[cNeuron]­

>vecLinksln.s1ze(); lnk3++)
{

double wI1,a1;
WIJ = m_ veep Neurons[cNeuron]->vecLinksin [In k3] .dWeight;
a1=m_vecpNeurons[cNeuron]->dLearn1ngRate;
//update weights, 1f not bias
if(CParams:: 1RuleEvolut1on==0)

213

{
//m_vecpNeurons[cNeuron]­

>vecLinksin[lnk3].dWe1ght -= (1/fflcks)*0.25*m_vecpNeurons[cNeuron]­
>dlearnmgRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecLmksin[lnk3].pin­
>dOutput;

m_vecpNeurons[cNeuron]->vecLmksin[lnk3].dWe1ght +=
(1/fflcks)*m_vecpNeurons[cNeuron]->dLearn1ngRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksin[lnk3].pin->dOutput;

/Im_ vecpNeurons[cNeuron]­
>vecLinksin[lnk3] .dWe1ght += (1/fflcks)*0.25*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecLinksin[lnk3].pin->dOutput;

}
else
{

m_ vecpNeurons[cNeuron]-
> vecLinksin [In k3] .dWe1ght -= p0*0.S*(p1 *w1j-p2*aJ*m_vecpNeurons[cNeuron]->dError­
p3*wiJ*aJ+p4*m_vecpNeurons[cNeuron]->dError+pS*aJ*m_vecpNeurons[cNeuron]->dOutput);

}
/Im_ vecpNeu rons[cNeuron]-

>dLearning Rate+= m_ vecpNeurons[cNeuron]-> d Learn1ng Rate*m_ vecpNeurons[cNeu ron]->dError;
}//end of for loop for updating weights

}//end of if loop for hidden neurons

cNeuron--;//next. 1terat1on

}//end of while loop

//set the output of the bias to 1
m_vecpNeurons[1Lastinputneuron]->dOutput = 1;

}//end of only GA If loop
I I---
/* comment-end for no Online learning*/
//---

}//next. iteration through the network

//the network needs to be flushed 1f this type of update is performed
//otherwise it is possible for dependencies to be built on the order
//the training data 1s presented

if (type== snapshot)
{

}

for (mt n=0; n<m_vecpNeurons.s1ze(); ++n)
{

m_vecpNeurons[n]->dOutput = 0;
}

//return the outputs
return outputs;

}

//Fmd the s1m1lar i-o pair m the trammg set
vector<double> CNeuralNet: :s1m1lantymeasure(const vector<double> &input)
{

char *szF1IeName2="1o_trammgS.txt";
//fstream grab2("1o_trammg.txt", fstream::m I fstream::out I fstream::app);

fstream grab2(szF1IeName2);
vector<double> trammglnputs;
vector<double> targetOutputs;
vector<double> des1redOutputs;
//double trammglnputs[ll];
//double targetOuputs[2];
vector<double> dSum;
mt ITrammgSI2e=250;
double dMm=l000.0;
mt 1Mmlndex;

double dTmpvar;
mt 1_here;
double dtmpsum;

for (1_here=0; 1_here< 1TrammgSIze; 1_here++)
{

tra1nmglnputs.clear();
targetOutputs.clear();
//des1redOutputs.clear();
dtmpsum=0;
//dMm=l00.0;
//Read mput from file

for(mt 1-here=0;1-here<l0;J_here++)
{

dTmpvar=diop[1_here] []_here];
trammglnputs. push_back(dTmpvar);

}

dTmpvar=diop[1_here][11];
targetOutputs. push_back(dTmpva r);
dTmpvar=diop[i_here][12];
targetOutputs. push_back(dTmpvar);

//Fmd the distance between the inputs
for(mt k_here=0; k_here<trammglnputs.s1ze(); k_here++)
{

}

double dD1ff=mput[k_here]-trammginputs[k_here];
dtmpsum+=fabs(dD1ff);

dSum.push_back(dtmpsum);

//Update the mImmum distance and store the corresponding training mput
1f(dMm>dtmpsum)
{

des1redOutputs.clear();
dMm=dtmpsum;
1Mmlndex=1_here;
des1redOutputs=targetOutputs;

}//end of 1f

}//end of 1_here for loop

vector<double> output;// =des1redOutputs;
output=des1redOutputs;
//output[1] =des1redOutputs[1];
return(output);

}//end of function

v01d CNeuralNet: :MutateLearmngParameters(double mut_rate,double MaxPertubat1on)

214

{

}

1f (RandFloat() < mut_rate)
{

}

/*1f(RandFloat()>0. 9)
{

dBpParam1 += -1*((rand()%6)+1);
}
else*/
dBpParam1
dBpParam2
dBpParam3
dBpParam4
dBpParamS
dBpParam6
dBpParam7
dBpParam8
dBpParam9
dBpParam10
dBpParam11

//dBpParam1

+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;
+= RandomClamped()*MaxPertubat1on*0.025;

+= RandomClamped()*MaxPertubat1on;

//----------------------------- T1dyXSphts -----------------------------
//
// This 1s a fix to prevent neurons overlapping when they are displayed
I/---
vo 1d T1dyXSphts(vector<SNeuron*> &neurons)
{

//stores the mdex of any neurons with 1dent1cal sphtY values
vector<int> SameLevelNeurons;

//stores all the sphtY values already checked
vector<double> DepthsChecked;

//for each neuron fmd all neurons of 1dent1cal ySpht level
for (mt n=0; n<neurons.s1ze(); ++n)
{

double Th1sDepth = neurons[n]->dSphtY;

//check to see 1f we have already adJusted the neurons at this depth
bool bAlreadyChecked = false;

for (mt 1=0; 1<DepthsChecked.s1ze(); ++1)
{
if (DepthsChecked[1] == Th1sDepth)
{

}
}

bAlreadyChecked = true;

break;

//add this depth to the depths checked.
DepthsChecked. push_back(Th1sDepth);

//if this depth has not already been adJusted
1f (!bAlreadyChecked)
{

//clear this storage and add the neuron's mdex we are checking

215

}

SameLevelNeurons.clear();
SameLevelNeurons. push_back(n);

//fmd all the neurons with this splitY depth
for (mt I=n+l; 1<neurons.s1ze(); ++1)
{

}

1f (neurons[1]->dSplitY == Th1sDepth)
{

//add the mdex to this neuron
SameLevel Neurons. push_back(1);

}

//calculate the distance between each neuron
double slice= 1.0/(SameLevelNeurons.size()+l);

//separate all neurons at this level
for (1=0; 1<SameLevelNeurons.s1ze(); ++1)
{

mt 1dx = SameLevelNeurons[i];

neurons[1dx]->dSplitX = (1+1) * slice;
}

}/ /next neuron to check

}
//----------------------------- DrawNet ----------------------------------
//
// creates a representation of the ANN on a device context
II
I/--
void CNeuralNet:: DrawNet(HDC &surface, mt Left, mt Right, mt Top, mt Bottom)
{
//the border width
const mt border = 10;

//max hne thickness
const mt MaxTh1ckness = 5;

T1dyXSphts(m_ vecpNeurons);

//go through the neurons and assign x/y coords
mt spanX = Right - Left;
int spanY = Top - Bottom - (2*border);

for (mt cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron)
{

m_vecpNeurons[cNeuron]->1PosX = Left+ spanX*m_vecpNeurons[cNeuron]->dSphtX;
m_vecpNeurons[cNeuron]->1PosY = (Top - border) - (spanY * m_vecpNeurons[cNeuron]->dSphtY);

}

/ /create some pens and brushes to draw with
HPEN GreyPen = CreatePen(PS_SOUD, 1, RGB(200, 200, 200));
HPEN RedPen = CreatePen(PS_SOUD, 1, RGB(255, 0, 0));
HPEN GreenPen = CreatePen(PS_SOUD, 1, RGB(0, 200, 0));
HPEN OldPen = NULL;

//create a solid brush
HBRUSH RedBrush = CreateSohdBrush(RGB(255, 0, 0));
HBRUSH OldBrush = NULL;

OldPen = (HPEN) SelectObJect(surface, RedPen);
OldBrush = (HBRUSH)SelectObJect(surface, GetStockObJect(HOLLOW_BRUSH));

216

//radius of neurons
mt radNeuron = spanX/60;
mt radLmk = radNeuron * 1.5;

//now we have an X,Y pos for every neuron we can get on with the
//drawing. First step through each neuron m the network and draw
//the links
for (cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron)
{
//grab this neurons posItIon as the start posItIon of each
//connection
mt StartX = m_vecpNeurons[cNeuron]->1PosX;
int StartY = m_vecpNeurons[cNeuron]->1PosY;

//1s this a bias neuron? If so, draw the hnk m green
bool bB1as = false;

1f (m_vecpNeurons[cNeuron]->NeuronType == bias)
{

bB1as = true;
}

//now iterate through each outgoing hnk to grab the end points
for (mt cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecLmksOut.s1ze(); ++ cLnk)
{

mt EndX = m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].pOut->1PosX;
mt EndY = m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].pOut->1PosY;

//If lmk Is forward draw a straight lme
if((lm_vecpNeurons[cNeuron]->vecLinksOut[cLnk].bRecurrent) && lbB1as)
{

}

int thickness = (mt)(fabs(m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght));

Clamp(th1ckness, 0, MaxTh1ckness);

HPEN Pen;

//create a yellow pen for mh1b1tory weights
1f (m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <;.= 0)
{

Pen = CreatePen(PS_SOUD, thickness, RGB(240, 230, 170));
}

//grey for excItory
else
{

Pen = CreatePen(PS_SOUD, thickness, RGB(200, 200, 200));
}

HPEN tempPen = (HPEN)SelectObJect(surface, Pen);

//draw the hnk
MoveToEx(surface, StartX, StartY, NULL);
LmeTo(surface, EndX, EndY);

SelectObJect(surface, tempPen);

DeleteObJect(Pen);

else 1f((lm_vecpNeurons[cNeuron]->vecLmksOut[cLnk].bRecurrent) && bB1as)
{

SelectObJect(surface, GreenPen);

217

}

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LmeTo{surface, EndX, EndY);

//recurrent hnk draw m red
else
{

If ((StartX == EndX) && (StartY == EndY))
{

mt thickness = (mt)(fabs{m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght));

Clamp(th1ckness, o, MaxTh1ckness);

HPEN Pen;

//blue for mh1b1tory
if {m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <= 0)
{

Pen = CreatePen(PS_SOUD, thickness, RGB(0,0,255));
}

//red for exc1tory
else
{

Pen = CreatePen(PS_SOUD, thickness, RGB{255, 0, O));
}

HPEN tempPen = (HPEN)SelectObJect(surface, Pen);

//we have a recursive hnk to the same neuron draw an ellipse
mt x = m_vecpNeurons[cNeuron]->1PosX;
int y = m_vecpNeurons[cNeuron]->iPosY - {1.5 * radNeuron);

Elllpse(surface, x-radLmk, y-radLmk, x+radLmk, y+radLmk);

SelectObJect(surface, tempPen);

DeleteObJect(Pen);
}

else
{

mt thickness= (mt)(fabs{m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght));

Clamp{th1ckness, 0, MaxTh1ckness);

HPEN Pen;

//blue for inhibitory
1f {m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <= 0)
{

Pen = CreatePen(PS_SOUD, thickness, RGB{0,0,255));
}

//red for exc1tory
else
{

Pen = CreatePen(PS_SOUD, thickness, RGB{255, 0, O));
}

HPEN tempPen = (HPEN)SelectObJect(surface, Pen);

//draw the lmk

218

}

}
}

}
}

MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObJect(surface, tempPen);

DeleteObJect(Pen);

//now draw the neurons and their IDs
SelectObJect(surface, RedBrush);
SelectObJect(surface, GetStockObject(BLACK_PEN));

for (cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron)
{

}

int x = m_vecpNeurons[cNeuron]->1PosX;
int y = m_vecpNeurons[cNeuron]->iPosY;

//display the neuron
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron, y+radNeuron);

//cleanup
SelectObJect(surface, Old Pen);
SelectObJect(surface, OldBrush);

DeleteObJect(RedPen);
DeleteObJect(Grey Pen);
DeleteObJect(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObJect(OldBrush);

219

#1fndef COLLISION_H
#define COLLISION_H

#include "ut1ls.h"
#include <math.h>

I /--------------------2L1neslntersect1on2D------------------------­
// Authors:
// Created by Mat Buckland 2002
// Mod1f1ed by Anil kumar Enumulapally 2004
// Ami kumar Enumulapally 2005
II
// Given 2 lines in 2D space AB, CD this returns true if an
// intersection occurs and sets dist to the distance the mtersect1on
// occurs along AB
II
I/------ ---
inline bool Linelntersect1on2D(const SPoint A,

const SPoint B,
const SPoint C,
const SPoint D,
double &dist)

{
//first test against the bounding boxes of the Imes
1f ((((A.y > D.y) && (B.y > D.y)) && ((A.y > C.y) && (B.y > C.y))) 11

(((B.y < C.y) && (A.y < C.y)) && ((B.y < D.y) && (A.y < D.y))) 11
(((A.x > D.x) && (B.x > D.x)) && ((A.x > C.x) && (B.x > c.x))) 11
(((Bx< C.x) && (A.x < C.x)) && ((B.x < D.x) && (A.x < D.x))))

{
dist= 0;

return false;
}

double rTop = (A.y-C.y)*(D.x-C.x)-(A.x-C.x)*(D.y-C.y);
double rBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);

double sTop = (A.y-C. y)*(B.x-A.x)-(A.x-C.x)*(B.y-A.y);
double sBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);

double rTopBot = rTop*rBot;
double sTopBot = sTop*sBot;

1f ((rTopBot>0) && (rTopBot<rBot*rBot) && (sTopBot>0) && (sTopBot<sBot*sBot))
{

220

}

}

dist = rTop/rBot;

return true;

else
{
dist= O;

return false;
}

#end1f

#include <windows.h>
#include <t1me.h>

#include "ut1ls.h"
#include "CController.h"
#include "CT1mer.h"
#include "resource.h"
#include "CParams.h"

I////// I I I////// I I I ////GLOBALS ///// // // / / / / // // / // / / / // / ////// / / / /

char*
char*
char*

szApphcat1onName = "Ami's New Hybrid Learning Algorithm";
szWindowClassName = "sweeper";
szinfoWindowClas!:.Name = "Info Window";

//The controller class for this s1mulat1on
CController* g_pController = NULL;

CParams g_Params;

//global handle to the info window
HWND g_hwndinfo = NULL;

//global handle to the main window
HWND g_hwndMain = NULL;

//---------------------------- Cleanup ----------------------------------
//
// simply cleans up any memory issues when the application exits
I!------------------ ---
vo 1d Cleanup()
{

1f (g_pController)

delete g_pController;
}
I/-----------------------------------WI n Proc-------------- -- ---- -- -------
II
//---
LRESUL T CALLBACK WindowProc(HWND hwnd,

{

UINT msg,
WPARAM wparam,
LPARAM lparam)

221

//these hold the d1mens1ons of the client window area
static mt cxChent, cyChent;

/ /used to create the back buffer
static HDC hdcBackBuffer;
static HBITMAP hBitmap;
static HBITMAP hOldB1tmap;

sw1tch(msg)
{

case WM_CREATE:
{

//seed the random number generator
srand((uns1gned) t1me(NULL));

//get the size of the client window
RECT rect;
GetChentRect(hwnd, &rect);

cxChent = rect.nght;
cyChent = rect.bottom;

/ /setup the controller
g_pController = new CController(hwnd, cxClient, cyChent);

/ /create a surface for us to render to(backbuffer)
hdcBackBuffer = CreateCompat1bleDC(NULL);

HDC hdc = GetDC(hwnd);

hBitmap = CreateCompat1bleBitmap(hdc,

cxClient,

cyClient);

case 'B':

ReleaseDC(hwnd, hdc);

hOldB1tmap = (HBITMAP)SelectObJect{hdcBackBuffer, hBitmap);
}

break;

/ /check key press messages
case WM_KEYUP:
{

sw1tch(wparam)
{

case VK_ESCAPE:
{

}
PostQu1tMessage(0);

break;

case 'F':
{

}

break;

{

}

g_pController-> FastRenderTogg le();

g_pController-> RenderBestTogg le();

222

case 'R':
{

1f (g_pController)
{

delete g_pController;
}

//setup the new controller

break;

g_pController = new CController(hwnd, cxChent, cyChent);

//give the mfo window's handle to the controller
g_pController-> PassinfoHandle(g_hwndinfo);

//clear mfo window
InvalldateRect(g_hwndinfo, NULL, TRUE);

}

break;

!*
case 'Z':

case 'Y':

case '1':
{

U pdateWmdow(g_hwndinfo);

pTimer= SetTimer(l0000);
break;

K1IIT1mer(pTimer);
break;
*/

g_pController-> V1ewBest(1);
}

break;

case '2':
{

g_pController-> ViewBest(2);
}

break;

case '3':
{

g_pController->V1ewBest(3);
}

break;

case '4':
{

g_pController-> V1ewBest(4);
}

break;

}//end WM_KEYUP switch
}

223

break;

//has the user resized the client area?
case WM_SIZE:
{

}

break;

cxChent = LOWORD(lparam);
cyChent = HIWORD(lparam);

case WM_PAINT:
{

PAINTSTRUCT ps;

0,
0,
cxChent,
cyChent,
NULL,
NULL,
NULL,

BeginPamt(hwnd, &ps);

//fill our backbuffer with white
B1tBlt(hdcBackBuffer,

WHITENESS);

//render the sweepers
g_pController-> Render(hdcBackBuffer);

//now bht backbuffer to front
B1tBlt(ps.hdc, 0, 0, cxChent, cyClient, hdcBackBuffer, 0, 0, SRCCOPY);

EndPaint(hwnd, &ps);
}

break;

case WM_DESTROY:
{

SelectObJect(hdcBackBuffer, hOldB1tmap);

//clean up our backbuffer obJects
Delete DC(hdcBackBuffer);
DeleteOb1ect(hB1tmap);

// kill the apphcat1on, this sends a WM_QUIT message
PostQu1tMessage(0);

}

break;

default: break;

}//end switch

// default msg handler
return (DefWmdowProc(hwnd, msg, wparam, lparam));

}//end WmProc

//-----------------------------------InfoW1nProc-----------------------------
//
I/---

224

LRESULT CALLBACK InfoWmdowProc(HWND hwnd,

WPARAM wparam,

{
LPARAM lparam)

//these hold the d1mens1ons of the client wmdow area
static mt cxChent, cyChent;

sw1tch(msg)
{

case WM_CREATE:
{

}

break;

//get the size of the client wmdow
RECT rect;
GetChentRect(hwnd, &rect);

cxChent = rect.right;
cyChent = rect.bottom;

//has the user resized the client area?
case WM_SIZE:
{

cxChent = LOWORD(lparam);
cyChent = HIWORD(lparam);

}

break;

case WM_PAINT:
{

PAINTSTRUCT ps;

BegmPaint(hwnd, &ps);

g_pController-> RenderNetworks(ps. hdc);

EndPamt(hwnd, &ps);
}

break;

default: break;

}//end switch

// default msg handler
return (WmdowProc(hwnd, msg, wparam, lparam));

UINT msg,

}//end WmProc
//---------------------------------CreatelnfoW1ndow--------------------------­
/ I
// creates and displays the mfo wmdow
II
I I--
void CreatelnfoWmdow(HWND hwndParent)
{

// Create and register the wmdow class
WNDCLASSEX wclnfo = {s1zeof(WNDCLASSEX),

CS_HREDRAW I CS_VREDRAW,
InfoWmdowProc,
0,

225

O,
GetModuleHandle(NULL),

NULL,

226

NULL,
(HBRUSH)(GetStockObJect(WHITE_BRUSH)),
NULL,

Reg1sterClassEx(&wclnfo);

// Create the apphcat1on's mfo window
g_hwndlnfo = CreateWmdow("Info",

"Info",
NULL};

"ANIL - Previous generation's best four phenotypes",

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,
GetSystemMetrics(SM_CXSCREEN)/2,
GetSystemMetrics(SM_CYSCREEN)/2 - CParams: :WmdowHeight/2,
CParams:: InfoWmdowW1dth,

CParams: :InfoWmdowHe1ght,

// Show the mfo
ShowWmdow(g_hwndlnfo, SW_SHOWDEFAULT);
UpdateWmdow(g_hwndlnfo);

//give the mfo window's handle to the controller
g_pController-> PasslnfoHand le(g_hwndlnfo);

return;
}

//-----------------------------------WmMa1n---
// Entry pomt for our windows apphcat1on
I!---
int WINAPI WmMam(HINSTANCE hmstance,

{

WNDCLASSEX wmclass;
HWND hwnd;
MSG msg;

HINSTANCE hprevmstance,
LPSTR lpcmdhne,
mt ncmdshow)

//load m the parameters for the program
1f (!g_Params.Init1ahze())
{

return false;
}

// first fill m the window class stucture
wmclass.cbS1ze = s1zeof(WNDCLASSEX);
wmclass.style = CS_HREDRAW I CS_VREDRAW;
wmclass.lpfnWndProc = WmdowProc;
wmclass.cbClsExtra = O;
wmclass.cbWndExtra = O;
wmclass.hlnstance = hmstance;

WS_OVERLAPPED I

hwndParent,
NULL,
wclnfo. hlnstance,
NULL);

wmclass.hlcon = Loadlcon(hmstance, MAKEINTRESOURCE(IDI_ICON1));
wmclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wmclass.hbrBackground= NULL;
wmclass.lpszMenuName = NULL;

winclass.lpszClassName= szW1ndowClassName;
winclass.hiconSm = Loadlcon(hinstance, MAKEINTRESOURCE(IDI_ICON1));

// register the window class
1f ('Reg,sterClassEx(&winclass))
{

MessageBox(NULL, "Error Registering Class•", "Error", O);
return O;

}

// create the window (one that cannot be resized)
1f ('(hwnd = CreateWindowEx(NULL,

WS_VISIBLE I WS_CAPTION I WS_SYSMENU,

szWindowClassName,

szApphcat1onName,

WS_OVERLAPPED I

GetSystemMetncs(SM_CXSCREEN)/2 - CParams: :WindowW1dth,
GetSystemMetncs(SM_CYSCREEN)/2 - CParams: :WindowHeight/2,

227

CParams: :WindowW,dth,
CParams: :WindowHe1ght,

{
MessageBox(NULL, "Error Creating Window"', "Error", O);

return O;
}

//keep a global record of the window handle
g_hwndMain = hwnd;

//create and show the info window
CreateinfoW1 ndow(hwnd);

//Show the window
ShowWindow(hwnd, SW_SHOWDEFAULT);
UpdateW1ndow(hwnd);

//create a timer
CT1mer t,mer(CParams: :1FramesPerSecond);

//start the timer
timer.Start();

// Enter the message loop
bool bDone = FALSE;

wh1le(!bDone)
{

while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

1f(msg.message == WM_QUIT)
{

// Stop loop 1f it's a quit message
bDone = TRUE;

NULL,

NULL,

hinstance,

NULL)))

}

}

else
{

}
}

TranslateMessage(&msg);
D1spatchMessage(&msg);

1f (t1mer.ReadyForNextFrame() 11 g_pController->FastRender())
{

1f(lg_pController->Update())
{

}

//we have a problem, end app
bDone = TRUE;

//this will call WM_PAINT which will render our scene
InvahdateRect(hwnd, NULL, TRUE);
UpdateW1ndow(hwnd);

}//end while

//Cleanup everything and exit the app
Cleanup();
Unreg1sterClass(szWmdowClassName, wmclass.hlnstance);

return O;

} // end WmMam

228

#1fndef S2DVECTOR_H
#define S2DVECTOR_H

#include <math.h>

I///I////I///////////I///I////////I/////////////////////I/I//////////
II
II 2D Vector structure and methods
II
II/I///II/////////////////I///I//////I/////////////////////II/I////II
struct SVector2D
{

double x, y;

SVector2D(double a = 0, double b = 0):x(a),y(b){}

//we need some overloaded operators
SVector2D &operator+=(const SVector2D &rhs)
{

}

x += rhs.x;
y += rhs.y;

return *this;

SVector2D &operator-=(const SVector2D &rhs)
{

}

x -= rhs.x;
y -= rhs.y;

return *this;

SVector2D &operator*=(const double &rhs)
{

x *= rhs;
y *= rhs;

return *this;
}

SVector2D &operator/=(const double &rhs)
{

x /= rhs;
y /= rhs;

return *this;

229

}
};

//overload the* operator
mime 5Vector2D operator*(const 5Vector2D &lhs, double rhs)
{

}

5Vector2D result(lhs);
result *= rhs;
return result;

inhne 5Vector2D operator*(double lhs, const 5Vector2D &rhs)
{

}

5Vector2D result(rhs);
result *= lhs;
return result;

//overload the - operator
inline 5Vector2D operator-(const 5Vector2D &lhs, const 5Vector2D &rhs)
{

}

5Vector2D result(lhs);
result.x -= rhs.x;
result.y -= rhs.y;

return result;

I/------------------------- Vec2D Length -----------------------------
//
// returns the length of a 2D vector
I/- ---
inhne double Vec2DLength(const 5Vector2D &v)
{

return sqrt(v.x * v.x + v.y * v.y);
}

//------------------------- Vec2DNormalize -----------------------------
//
II normalizes a 2D Vector
I/-------- --
in I me void Vec2DNormahze(SVector2D &v)
{

double vector_length = Vec2DLength(v);

v.x = v.x / vector_length;
v.y = v.y / vector_length;

}

I/------------------------- Vec2DDot --------------------------
//
// calculates the dot product
I/------ --
in Ii ne double Vec2DDot(SVector2D &vl, 5Vector2D &v2)
{

return v1.x*v2.x + v1.y*v2.y;
}

//------------------------ Vec2D51gn --------------------------------
//
// returns pos1t1ve 1f v2 1s clockwise of vl, mmus 1f ant1clockw1se
//---
inlme int Vec2D51gn(5Vector2D &vl, 5Vector2D &v2)
{
if (v1.y*v2.x > v1.x*v2.y)
{

return 1;

230

}

}
else
{

return -1;
}

#end1f

#1fndef UTILS_H
#define UTILS_H

#include <stdhb.h>
#include <math.h>
#include <sstream>
#include <string>
#include <Iostream>
#include <vector>

using namespace std;

I I- ---
// UTIL.H
I I some random number functions.
I!--

//returns a random integer between x and y
inhne int Randlnt(int x,mt y) {return rand()%(y-x+1)+x;}

//returns a random float between zero and 1
mime double RandFloat() {return (rand())/(RAND_MAX+l.0);}

//returns a random bool
mline bool RandBool()
{

1f (Randlnt(0,1)) return true;

else return false;
}

//returns a random float m the range -1 < n < 1
inline double RandomClamped() {return RandFloat() - RandFloat();}

//---
//
II some handy httle functions
//---
//converts an integer to a string
inlme string itos(mt arg)
{

ostrmgstream buffer;

//send the mt to the ostnngstream
buffer<< arg;

231

//capture the string
return buffer.str();

}

//converts a float to a string
mime string ftos(float arg)
{

ostrmgstream buffer;

//send the mt to the ostnngstream
buffer<< arg;

//capture the string
return buffer.str();

}

//clamps the first argument between the second two
mime void Clamp(double &arg, double mm, double max)
{

1f (arg < mm)
{

arg = mm;
}

1f (arg > max)
{

arg = max;
}

}

mline void Clamp(mt &arg, mt mm, mt max)
{

1f (arg < mm)
{

arg = mm;
}

1f (arg > max)
{

arg = max;
}

}

//rounds a double up or down depending on ,ts value
mime mt Rounded(double val)
{

}

mt integral = (mt)val;
double mantissa = val - integral;

if (mantissa < 0.5)
{

return integral;
}

else
{

return integral + 1;
}

//rounds a double up or down depending on whether ,ts
//mantissa 1s higher or lower than offset
mime mt RoundUnderOffset(double val, double offset)
{

232

}

mt integral = (mt)val;
double mantissa = val - integral;

1f (mantissa < offset)
{

return integral;
}

else
{

return integral + 1;
}

III//I/////////////I///I/////I///////////////////////IIII////////////
II
II Pomt structure
II
I/// II II////// II II///////// II//////////// II II/// II II II /II /II ////II///
struct SPomt
{

float x, y;

SPomt(){}
SPomt(float a, float b):x(a),y(b){}

};

#end1f

233

I/---
/ /Global Parameter file
//parameter. Im
I!---

1FramesPerSecond 60
dMaxTurnRate 0.1
1SweeperScale 5
INumsensors 5
dSensorRange 25
iNumSweepers 25
iNumT1cks 600
dCellS1ze 20
1NumAddlmkAttempts 10
dSurvivalRate 0.2
iNumGensAllowedNolmprovement 10
iMaxPerm1ttedNeurons 100
dChanceAddlmk 0.07
dChanceAddNode 0.03
dChanceAddRecurrentlink 0.03
dMutationRate 0.5
dMaxWeightPerturbat1on 0.5
dProbab11ityWeightReplaced 0.1
dActivat1onMutationRate 0.5
dMaxAct1vat1onPerturbat1on 0.8
dCompatib11ityThreshold 0.25
iOldAgeThreshold 50
dOldAgePenalty 0.9
dYoungF1tnessBonus 1.3
iYoungBonusAgeThreshhold 10
dCrossoverRate 0.7
dLearningRate 0.05
dLearnmgParameterl 0.5 '
dlearnmgParameter2 0.02
dLearnmgParameter3 0.02
dlearnmgParameter4 0.02
dlearmngParameter5 0.02
dlearmngParameter6 0.02
iOfflineTrammg 0
iGlobalOnhne 0
1RuleEvolut1on 1
1OnlyGAs 0

234

REFERENCES

[1] Adrian Agogino, Kenneth Stanley, and Risto Miikkulainen (2000). Online Interactive Neuro­
Evolution, Neural Processing Letters 11 :29-37, 2000.

[2] Aman, S. (1967). A Theory of Adaptive Pattern Classifiers. IEEE Transactions on Electronic
Computers, Vol. EC-16, No. 3, pp. 299-307

[3] Anil Kumar Enumulapally, Ligguo Bu, and Khosrow Ka1khah (2004). Backpropagat1on: In
Search of Performance Parameters, WSEAS Transactions on Systems, Issue 2, Vol. 3, April
2004.

[4] Antonia J. Jones (1993). Genetic algorithms and their applications to the design of neural
networks. Neural Computing & Applications, 1 (1):32-45.

[5] A. Likartsis, I.Vlachavas, and L.H.Tsoukalas ~1997). A New Hybrid Neural-Genetic
Methodology for Improving Learning. Proc. of 9 International Conference on Tools with Artificial
lntelligence(ICTAI '97).

[6] Baldwin, Mark J(1896). A New Factor in Evolution. Adaptive Individuals in the evolving
Populations: Models and Algorithms. Addison-Wesley, Reading, MA.

[7] Bottou, L. (1998). Online Algorithms and Stochastic Approximations, 9-42. In Saad, D., editor,
Online Leaming in Neural Networks. Cambridge University Press, Cambridge, UK.

[8] Chalmers, D. J. (1990) The evolution of learning: An experiment in genetic connectionism. In
D.S. Touretzky, editor, Proceedings of the 1990 Connectionist Models Summer School, 81-90.
San Mateo, CA: Morgan Kaufmann.

[9] Dara Curran, Colm O'Riordan (2002). Applying Evolutionary Computation to Designing Neural
Networks: A Study of the State of the Art.

[1 O] Darpa Neural Network Study, (1998). AFCEA International Press.

[11] David B. Fogel, Evolutionary computation: toward a new philosophy of machine intelligence,
IEEE Press, Piscataway, NJ, 1995

[12] David E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning.

[13] Haykin. S, Neural Networks: a Comprehensive Foundation, 2nd Ed. Upper Saddle River, NJ:
Prentice Hall, 1999.

[14] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press: Ann Arbor, Ml.

235

[15] Hollestein R. B. (1979) Art1f1c1al genetic adap-tat1on in computer control systems. PhD
dissertation, University of Michigan.

[16] Jurgen Branke (1995). Evolutionary Algorithms for Neural Network design and Training.

[17] Kenneth 0. Stanley and Risto M1ikkulainen (2002). Efficient Evolution Of Neural Network
Topologies, Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02).
Piscataway, NJ: IEEE, 2002.

[18] Kenneth 0. Stanley and Risto Milkkulainen (2002). Efficient Evolution Of Neural Network
Topologies, Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02)
Piscataway, NJ: IEEE, 2002.

[19] Kenneth 0. Stanley, Bobby D. Bryant, and Risto Miikkulainen (2003). Evolving Adaptive
Neural Networks with and Without Adaptive Synapses, To appear in Proceedings of the 2003
IEEE Congress on Evolutionary Computation (CEC-2003).

[20] Kenneth 0. Stanley and Risto Miikkulainen (2002). Evolving Neural Networks Through
Augmenting Topologies, Evolutionary Computation 10(2):99-127, 2002.

[21] Kim W.C. Ku, M.W.Mak, and W.C.Siu (2003). Approaches to Comb1mng Local and
Evolutionary Search for Training Neural Networks: A Review and Some New Results.

236

[22] Kitano, H. (1990). Empirical studies on the speed of convergence of neural network training
using genetic algorithms. Proc. of the Eighth National Conf. on Artificial Intelligence.

[23] Klaus-Robert MOiier, Andreas Ziehe, Noboru Murata, Shun-1chi Amari (1998). On-line
Learning in Switching and Drifting Environments with Application to Blind Source Separation.

[24] Magoulas,G.D., Plag1anakos,V.P., and Vrahat1s,M.N., Hybrid methods using evolutionary
algorithms for on-line training, in Proceedings of the INNS-IEEE International Joint Conference on
Neural Networks, Washington DC, 14-19 July 2001, USA.

[25] Mat Buckland (2002). Al Techniques for Game Programming, Premier press inc.

[26] Mehrotra,K.,Mohan,C.K, and Ranka,S. (2000). Elements of Artificial Neural Networks. The
MIT press. Cambridge, Massachusetts

[27] Nikola Kasabov (2003). Evolving connectIomst systems: methods and applications in
bioinformatics, brain study and intelligent machines. London ; New York: Springer publications.

[28] Nolfi, S., Elman, J. L., & Parisi, D. (1990). Learning and evolution m neural networks. CRL
Techn. Rep. 9019. Center for Research in Language, UmversIty of California, San Diego.

[29] Nolfi, S., & Parisi, D. (1991). Growing neural networks. Techn. Rep. PCIA{91{15 Department
of Cognitive Processes and Artificial Intelligence, C.N.R. Rome, Italy.

[30] Parisi, D., Nolfi, S., and Cecconi, F. (1992). Learning, behavior, and evolution In
Proceedings of the First European Conference on Artificial Life, Cambridge, MA, MIT
Press/Bradford Books.

[31] Philipp Kohn (1996). Genetic Encoding Strategies for Neural Networks, Proceedings,
Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada,
Spam, Volume 11, pages 947-950.

237

[32] Richard S Sutton and Steven D Whitehead (1993) Online Learning with Random
Representations, Proceedings of the Tenth Int. Conf on Machine Leammg pp 314-321 Morgan

' Kaufmann

[33] Robert M French and Adam Messinger (1994) Genes, phenes and the Baldwin Effect
Learning and Evolution in a simulated population, Artificial Life IV, 277-282

'
[34] Rumelhart D E, Hinton G E, and Williams R J Learning internal representations by error
propagation In Parallel Distributed Processing, volume 1, pages 318-362 MIT Press, 1986

[35] Saad,D , editor (1998) On-line Learning in Neural Networks, Publtcations of Newton
Institute, Cambndge Umvers1ty Press, Cambridge, UK

[36] Sompohnsky H, Barka1 N and Seung HS (1995) On-line Leammg of Dichotomies Algonthms
and Leammg Curves In Advances in Neural Information Processing Systems 7 Cowan JD,
Tesauro G, and Alspector J, Eds

[37] Tom Mitchell (1997) Machine Learning, McGraw Hill pubhcat1on

[38] Talib S Hussain (1997) Methods of Combining Neural Networks and Genetic Algorithms
Queen's University

[39] V Petnd1s, S Kazarlls, A Papa1konomu and A F1lells (1992) A Hybrid Genetic algorithm for
training Neural networks Artificial Neural Networks, 2, 953-956

[40] Yao, X (1999) Evolving art1f1c1al neural networks Proceedmgs of the IEEE, 87(9) 1423-1447

[41] Yao, X, Liu, Y (1997) A new evolutionary system for evolving art1f1c1al neural networks IEEE
Transactions on Neural Networks, 8(3) 694-713

Web References

[42] htq>://www.doc.ic.ac.uk/~nd/sw:prise 96/journal/voll/csl 1/articlel.html

[43] htq>://www .dacs.dtic.mil/techs/neural/neural3 .html

[44] htq>://lslwww.e_p:fl.ch/~anperez/NN tutorial/NNdemo intro.html

[45] htq>://www.gc.ssr.upm.es/inves/neural/annl/concepts/Suunsupm.htm

[46] htq>://ai-junkie.com/ai-junkie.html

[47] htq>://www.gel.ulaval.ca/~beagle/refmanual/a01116.htm1

[48] htq>://www .evalife.dk/ToEC2002

[49] htq>://www .doc.ic.ac.uk/~nd/sw:prise 96/journal/vol4/ cs 11/re_port.html#Contents

VITA

Anil Kumar Enumulapally was born in Jagtial, India, on January 10, 1980, the

son of Waman Rao Enumulapally and Surekha Enumulapally. After completing

his work at Sharada Vidya Nilayam, Jagtial, India, in 1994, he entered Chaitanya

Jr. College, Jagtial, India. In September of 1997 he entered into Bapuji Institute

of Engineering and Technology, Davangere, India, where he remained until his

graduation with a Bachelor of Engineering in Computer Science. He also secured

a Higher Diploma in Software Engineering in February, 2000, from Aptech

Educational Center, India. In August, 2002 he entered the graduate college of

Wichita State University. Later in January, 2003 he transferred to Texas State

University-San Marcos to pursue a Master of Science in Computer Science.

During his education in the computer science department, he received Academic

Excellence awards for years 2003 and 2004 and published a paper titled

Backpropagation: In Search of Performance Parameters in WSEAS Transactions

on Systems, Issue 2, Vol. 3, April 2004 with Lingguo Bu and Khosrow Kaikhah.

During his study he was employed by the English and Finance & Economics

Departments as a computer support assistant and web master. He also worked

for the Alkek Library as a student assistant.

E-mail: anilkumar.e @gmail.com

This thesis was typed by Anil Kumar Enumulapally.

