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ABSTRACT 

A NEW HYBRID LEARNING ALGORITHM FOR DRIFTING ENVIRONMENTS 

by 

Anil Kumar Enumulapally 

Texas State University-San Marcos 

August2005 

SUPERVISING PROFESSOR: KHOSROW KAIKHAH 

An adaptive algorithm for dnfting environments is proposed and tested in simulated 

environments. Two simple but powerful problem solving technologies - Neural Networks and 

Genetic Algorithms with Online Learning, help the artificially intelligent agents to adapt to a 

changing environment. Neural networks and genetic algorithms are combined to evolve weights, 

architecture, and learning rules for the generation of efficient networks. Online learning helps 

these networks to capture the dynamics of a changing environment efficiently. Supervised 

learning 1s achieved using a variation of regular backpropagation that works on dynamic random 

networks. 

Our algorithm proposes two types of online learning, namely local online learning which requires 

a pre-defined training set and global online learning which does not It is shown that both types of 

online learning improve the performance of networks to capture subtleties of the varying 

environments. 

The algorithm's efficiency is demonstrated using a mine sweeper application. Different learning 

technologies have been compared. The results establish that online learning within the 

evolutionary process is the most significant factor for adaptation and 1s far superior to 

evolutionary algorithms alone. The evolution and learning work in a co-operating fashion to 

produce excellent results in short time. Offline learning is observed to increase the average 

fitness of whole population. It is also demonstrated that online learning is self sufficient and can 

achieve results without any pre-training stage. When mine sweepers are able to learn online, their 

performance in the drifting environment is significantly improved. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction of the Problem 

The objective of Artificial Intelligence is to support the notion that an intelligent system can 

demonstrate learning and respond like a human. In other words the program has to pass the 

"Turing test". Most of the intelligent agents do not adapt to the changes in the environment, as 

they are designed for a particular scenario and expect few deviations from 1t. These conditions 

do not exist in real time dynamic environments. The best solution for intelligent systems in real 

time drifting environments is to design and apply technologies such as Neural Networks and 

Genetic Algonthms that m1m1c the nature. Artificial neural networks and genetic algorithms are 

two relatively young research areas. Neural networks are massively parallel distributed 

processors that perform data mapping efficiently. Genetic algorithms attempt to apply 

evolutionary concepts to the function optimization capabilities of neural networks and are useful in 

searching large and complex environments. In recent times much research has been undertaken 

to combine these two important and distinct areas (Yao, 1999). 

Evolution and learning are the two most fundamental processes of adaptation and the 

environment 1s a vital component of the adaptation process. If the environment were relatively 

static, there might be little need for learning to evolve. But in real time systems, generally, 

environments are dynamic and individuals need general adaptive mechanisms to cope with 

arbitrary environments. In this way, a diverse environment encourages the evolution of learning. 

Our algorithm mimics human evolution and development. We have successfully implemented 

complete evolution and onhne learning to achieve effective design automation of neural networks 

with the ability to adapt to the dnfting environments. Our experimental results demonstrate the 

ab1hty of our algorithm to evolve efficient neural networks with simple architectures in few 

hundreds of generations. 

1 
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1.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are highly s1mplif1ed models of the brain. They consist of a 

combination of neurons and synaptic connections, which are capable of passing data through 

layers. ANNs posses a generalization property and are tolerant to noise in datasets. Neural 

networks have been successfully applied to perform regression, classification, control and 

pred1ct1on tasks in a variety of scenanos and architectures. 

ANNs can be classified into two categories depending on their connectivity. 

• Feedforward ANNs 

• Feedback ANNs 

Feedforward ANNs allow signals to travel one way only; from input to output. There is no 

feedback (loops), i.e. the output of any layer does not affect the same layer. Feedforward ANNs 

end to be straightforward networks that associate inputs to outputs. Feedback ANNs can have 

signals traveling in both directions by introducing loops in the network. Feedback networks are 

very powerful and can get extremely complicated. Feedback networks are dynamic, and the 

state of a network is continuously changing until it reaches equilibrium. 

Neural networks, with their remarkable ability to work with complicated or imprecise data, can be 

used to extract patterns and detect trends that are too complex to be noticed by either humans or 

other computer techniques. 

1.3 Learning in Artificial Neural Networks 

Learning in ANNs is accomplished by adapting the synaptic strengths to the environment. Once 

a network has been designed for a particular appllcat1on, 1t 1s ready to learn. To start the learning 

process the initial weights are chosen randomly. Artificial neural network learning algorithms are 

primarily divided into supervised and unsupervised. 

1.3.1 Supervised Learning 
In supervised learning, the training data consist of many pairs of input/output training 

patterns. Therefore, the learning will benefit from the assistance of the teacher (the desired 

output). The most widely used supervised learning algorithm is Backpropagation. In the 

training stage of the network, each input pattern is presented to the network, and fed forward 

through all the layers to the output layer. The actual output is then compared with the desired 

output corresponding to the input so that an error is computed and propagated backwards 
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through the layers for the adjustments of the weights and thresholds. The process is 

repeated for all inpuUoutput patterns until the mean squared error for all patterns is less than 
' 

a specified value. After the training phase is complete, it can recall the stored patterns, given 

an input pattern with a certain level of noise. 

1.3.2 Unsupervised Leaming 

In unsupervised learning, the training set consists of input patterns only. Therefore, the network 

is trained without benefit of any teacher. Unsupervised neural networks "learn" from correlations 

of the input. Hebbian learning and adaptive learning are unsupervised. 

As an example of adaptive learning, if a new pattern is determined to belong to a previously 

recognized cluster, then the inclusion of the new pattern into that cluster will affect the 

representation (e.g., the centroid) of the cluster. This will, in turn, change the weights 

characterizing the classification network. If the new pattern is determined to belong to none of 

the previously recognized clusters, then (the structure and the weights of) the neural network will 

be adjusted to accommodate the new class (cluster). 

Training algorithms for ANNs can be broadly classified into two types. 

a. Batch or Offline 

b. Stochastic or Online 

The batch training of ANNs is considered as the classical machine learning approach: a set of 

examples is used for learning an approximation function, before the network is used in the 

application. Batch learning can be viewed as the minimization of an error function E, to find a set 

of weights W such that W=minweR E (w) where the function E is defined as the sum of the 

squared error over the entire training set. 

In online training, the function E is pattern based and is defined as the instantaneous mean 

squared error function with respect to the currently presented training example. In this case, the 

ANN weights are updated after the presentation of each training example, which may be sampled 

with or without repetition. Online learning is appropriate for either problems with large training 

sets or tasks that slowly vary with respect to time. It helps escaping local minima and provides a 

more natural approach for learning by continuously adopting in a changing environment. 
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1.4 Genetic Algorithms 

Genetic Algorithms (GAs) are modeled loosely on the principles of evolution via natural selection. 

These algorithms encode a potential solution to a problem on a simple chromosome-like data 

structure and apply genetic operators to these chromosomes to preserve critical information. 

GAs are widely used as function optimizers and can also be applied to a broad range of 

applications. 

The traditional theory of GAs (Holland, 1975) assumes that, at a very general level of description, 

GAs work by discovering, emphasizing, and recombining good "building blocks" of solutions in a 

highly parallel fashion. The idea here is that good solutions tend to be made up of good building 

blocks-combinations of bit values that confer higher fitness on the strings in which they are 

present. 

An implementation of a genetic algorithm begins with a population of random chromosomes and 

members of current population and gives rise to the next generation population by means of 

reproduction, mutation, or crossover, which are patterned after processes in biological evolution. 

At each step the chromosomes in the current population are evaluated relative to a given 

numerical measure called fitness. The most fit chromosomes are selected probabilistically as 

seeds for producing the next generation. Chromosomes in GAs are often represented by bit 

strings, so that they can be manipulated easily by genetic operators. 

The popularity of GAs is motivated by the following: 

• Evolution is known to be a successful, robust method for adaptation within biological 

systems. 

• GAs can search spaces of hypotheses containing complex interacting parts, where the 

impact of each part on overall hypothesis fitness may be difficult to model. 

• GAs are easily parallelized. 

• GAs are very efficient at optimizing functions. 
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A genetic algorithm must contain five components 

I. Representation: 

Chromosomal representation of solutions is problem dependent Representation is a key 

issue because GAs directly manipulate coded representations of problems 

II. Evaluation Function: 

Evaluation function is problem dependent. Evaluation functions provide a measure of 

individual's performance. 

Ill. Population: 

Choosing an appropriate size for population of 1rntial solutions is very important and also a 

difficult task. Very large and very small population sizes have disadvantages. Generally, 

population is chosen at random. 

IV. Genetic Operators: 
The three primary operators are Selection, Crossover and Mutation. The effectiveness of a 

GA depends on the combination and appropnate use of these operators. 

a. Selection (Reproduction): 

This operator selects the solutions for next generation from the current generation. 

Sometimes other operators are applied before we form the next generation. In such 

cases the population reproduced is called the intermediate population. 

b. Crossover: 

The crossover operator produces two new offspring from two parent strings by copying 

selected bits from each parent. The bit at position i in each offspring is copied from the 

bit position 'I' m one of the two parents. 

Depending on the crossover mask, it can be divided into the following: 

i. Single point crossover 

ii. Two-pomt crossover 

iii. Uniform crossover 

c. Mutation: 

By modifying one or more of an existing individual's gene values, mutation creates new 

individuals to increase variety in the population. The mutation ensures that the 

probability of reaching any point in the search space is never zero 
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V. Parameters: 

Executing a genetic algorithm requires setting a number of parameter values. Finding ideal 

settings for a problem is a difficult task Some of the parameters are crossover rate, mutation 

rate, and population size and selection strategy. 

1.5 Problem Description 

Learning and evolution are two fundamental forms of adaptation. Neural networks are inefficient 

when dealing with large complex problems that generate many local optima. Genetic algorithms 

deal with complex problems efficiently. However, they are very poor at fine-tuning the solution 

where the ANN algorithms perform the best. Obviously these two strategies have their own 

strengths and weaknesses. One possible way of constructing an efficient algorithm is to allow 

these two strategies to complement each other. These approaches can be combined to achieve 

a more flexible network that can perform better in varying situations. 

There are different approaches one can take in combining the ANNs with GAs. In the supportive 

approach, ANNs and GAs are applied at different stages. GAs are commonly used to reduce the 

dimensionality of data space. In the collaborative approach, GAs and ANNs are integrated into a 

single system in which population of ANNs is evolved. But designing a hybrid system is not 

sufficient for the drifting environments. In standard hybrid algorithms, a population of networks is 

evolved to perform a task, and the best fit network is found. This network is fixed and is used for 

future instances of the problem. Networks evolved this way do not handle dynamic environments 

very well. 

Living organisms not only evolve but also learn in their lifetime and change according to the 

changes in the surroundings and their needs. So the true adaptation to the surroundings must 

include life-long (online) learning. Without online learning the process of adaptation to the 

environment, m dnfting environments, 1s incomplete. Onhne learning 1s generally used in 

applications where there are very large and redundant training sets, or where the environment 

changes slowly over time. Moreover, online learning helps escaping local minima and provides a 

more natural approach for learning time varying functions and adapting to a continuously 

changing environment. Sutton pointed out, "Online learning is essential if we want to obtain 

learning systems as opposed to merely learned ones". Hence, hybrid algorithms that employ 

online learning are required to achieve the task of true adaptation. Despite the abundance of 

methods for learning from examples, there are only few that can be used effectively for online 

learning. In a majority of approaches evolutionary principles are used in conjunction with ANN 

training to formulate the problem as finding weights of a fixed architecture. 
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This approach leads to the following major sources of noise 

• Due to the random initialization of weights the same genotype (the ANN without any 

weight information) may have quite different fitness. 

• Different training algorithms may produce different training results even from the same 

set of initial weights. 

To alleviate these problems, we need to evolve the ANN architectures and weights 

simultaneously. We propose an algorithm which not only uses the best principles of learning and 

evolution but also employs online learning for the agents. 

1.6 Solution Strategy 

The evolution of artificial neural networks can be class1f1ed according to the goals of evolution. 

There are three basic approaches by which we can combine learning with evolution. 

• Evolution of weights 

• Evolution of architectures 

• Evolution of learning rules or transfer functions 

As evolution of weights, architectures, or learning rules alone do not yield required performance, 

all three approaches must be combined to design a truly flexible network This also reduces the 

human intervention in the network design. Combining all three evolutionary approaches with 

online learning result in the adaptation. By combining evolutionary approaches with online 

learning, we have developed a hybrid algorithm that can adapt to the changing environments. 

In our approach, the artificial intelligent agent is equipped with a neural network brain which 

learns in two different stages: 

• Offline Learning 

• Online Learning 

In the offline learning stage, we integrate network learning process with evolution. In this stage 

learning is used as one of the genetic operators. We use the modified backpropagation algorithm 

with all three operators of GAs on the population. The genetic operators are used only if they are 

needed. 

In the online learning stage, network learning and evolution are applied at different stages. Online 

gradient descent method is used for learning and GA operators are used to produce a better 

population for learning process. Learning and evolution are applied to the entire population. 
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In each stage, GAs are used to evolve the weights and the architecture. Online gradient descent 

and backpropagat1on use adaptive step size to evolve the learning rule. 

1.5.1 Offline Learning 

Step 1: Represent the networks in chromosome form where weight and network evolutions 

are easily performed. 

Step 2: Generate a population of minimal genomes with and without hidden neurons. As 
our networks are random, we do not have hidden layers. 

Step 3. Generate phenotypes or actual networks with all nodes, synapses, and their 

connections. 

Step4: Train the networks using modified backpropagation algorithm by applying the 

sample data sets for fixed number of iterations. 

Step 5: Use genetic operators (mutation and crossover) on the population to create the 

better networks for population. 

Step 6: Evaluate the fitness of each network. Better fit networks are included in the 

population, which is passed to the next stage. All the other networks are 

discarded 

Step 7: Group the networks into different species. This 1s required to avoid the "Crowding" 

effect. 

Step 8: Select the best fit 'N' networks for the Online Phase. 

This is a onetime process for a network and is applied only when one 1s generated. Offline 

learning uses a stepwise approach in which learning, crossover, and mutation may be used if 

required. Learning involves the modified backpropagation algorithm. A few examples from 

drfferent environments are applied to the network for a fixed number of loops. Crossover is 

performed using innovation numbers for the connections and neurons. Innovation number 

works as an identifier for the synapses and neurons among all networks. Mutation is used to 

add a link or node, or to delete a link or node 



1.5.2 Online Learning 

Step1: The 'N' networks from the offline stage are trained. 

Step 2: The agent Is equipped with sensors, a number of vectors that collect information 

from the environment. Using these sensors the agent gets the inputs from the 

environment. 

Step 3: The agent uses the online gradient descent method to learn the environment and 

modifies network weights. This helps in adapting to the varying surroundings 

Step 4: After a fixed number of time units the networks are modified using genetic 

operators and a more fit population is generated from the current population of 

networks for the next generation. 

Steps 5: The steps from 2 to 4 are applied repeatedly. The agent gets smarter and the 

result is achieved. 

9 

This stage has two different phases that toggle, I.e. evolution and learning. Genetic 

operators are applied if the mutation or crossover rate constant is less than a certain 

threshold generated. The agent uses the onhne gradient descent method to learn the 

environment. We employ a history sensitivity function that decreases the amount of learning 

as the time elapses. We designed an onhne gradient descent method for evolved networks 

with hidden nodes. 



CHAPTER-2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS 

Overview 

This chapter provides the basis for the underlying concepts of the proposed algorithm. It provides 

information about Art1f1cial Neural Networks and their learning algorithms, and Genetic Algorithms 

and their operators in detail. 

2.1 Artificial Neural Networks 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, process information. The key element of this 

paradigm is the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurons) working in unison to solve 

specific problems. ANNs, like people, learn by example. They resemble the brain in two 

respects: 

i. Network acquires knowledge through a learning process. 

ii. Inter-neuron connection strengths known as synaptic weights are used to store the 

knowledge. 

According to the DARPA Neural Network Study (AFCEA International Press, 1998), 

an artificial neural network is a system composed of many simple processing elements operating 

in parallel whose function Is deterrmned by network structure, connection strengths, and the 

processing performed at computing elements or nodes. 

According to Haykin, S. (Neural Networks: A Comprehensive Foundation, 1998) ANNs have been 

applied to an increasing number of real-world problems of considerable complexity. Their most 

important advantage is in solving problems that are too complex for conventional technologies -­

problems that do not have an algorithmic solution or for which an algorithmic solution is too 

complex to be found. In general, because of their abstraction from the biological brain, ANNs are 

well suited to problems that people are good at solving, but for which computers are not. These 

problems include pattern recognition and forecasting (which requires the recognition of trends in 

data). 

10 
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2.1.1 Biological Inspiration 

The study of ANNs has been inspired by biological learning systems that are built from very 

complex webs of interconnected neurons. The human brain contains a very large number 

(approximately 1011
) of neurons that are massively interconnected with other neurons. Each 

neuron is a specialized cell which can propagate an electrochemical signal. The basic 

computational unit in the nervous system is the nerve cell , or neuron. A neuron has: 

• Dendrites (inputs) 

• Cell body 

• Axon ( output) 

Figure 2.1 Schematic of biological neuron 

The neuron has a branching input structure (the dendrites), a cell body, and a branching output 

structure (the axon). The axons of one cell connect to the dendrites of another via a synapse. A 

neuron receives input from other neurons (typically many thousands) . Once the sum of all inputs 

exceeds a critical level , the neuron discharges a spike, an electrical pulse that travels from the 

body, down the axon , to the next neuron(s) (or other receptors) . This structure indicates that the 

information processing capabilities of biological neural systems are the result of highly parallel 

processes that are distributed over many neurons. Motivation for ANNs is to capture this kind of 

highly parallel computation based on distributed representations. While ANNs are loosely 

inspired by biological neural systems, there are many complexities of biological neural systems 

that are not modeled by ANNs. 
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2.1.2 Architecture of Artificial Neural Networks 

There many different types of artificial neural network structures, each of which has very different 

computational properties. An art1fic1al neural network is composed of a number of neurons or 

nodes connected through links or synapses. The structure of the network depends on the way 

the neurons or nodes are connected to each other. The general structure of a neuron Is shown in 

Figure 3.2 

Xl 

X2 

INPUTS OUTPUT 

~ 
TEACHING INPUT 

Figure 2.2 A typical neuron with mcoming and outgoing connections 

Each neuron has one or more incoming synapses and single output value. Each link has a 

numeric value called weight associated with It. Each neuron performs a simple task of summing 

the product of input and weights, called weighted inputs, from all input synapses. The neuron 

fires if the net excitation (summed value) exceeds its inhIbItIon i.e. the threshold of the neuron. 

the input vector 

the weight vector for the j1h node 

b . = f cw! .A+ w .0 x 0 . ) 
J J J J 

or 
n 

b . = f (( I, w .. x a . ) + w ·o x 0 . ) 
J i=l jl J J J 

dot product pomt-wise 

b j is the output of r node. 

f(x) is the activation function such as f (x) = 1 / (1+e•x). 

0 j is the threshold for the j'h node 
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The general structure of the ANNs consists of layers of neurons: 

Input Layer: 

Each network must have one or more input neurons. Input neurons do not process the input 

hence produce output equal to their input. Input neurons are connected to hidden layer neurons, 

if any, or to output layer neurons. 

Output Layer: 

The network should contain one or more output neurons. Output layer neurons produce an output 

to the environment based on the activation function. Output neurons receive inputs from either 

hidden layer neurons, if any, or from the input layer neurons. 

Hidden Layer. 

A network may contain zero or more hidden layers. Hidden neurons are typically used as feature 

extractors and sometimes may be present in more than one layer. The hidden layers are 

bounded by input and output layers and do not interact with the environment directly. 

2.2 Learning in Artificial Neural Networks 

Leaming in ANNs refers to the modification of internal network parameters, so as to bring the 

mapping from input to output as close as possible to a desired mapping between them. 

Therefore, any change in the memory or weight space, W, is considered as learning for the 

network. 

dW /dt-::t:-0 

Leaming may also be defined as optimization of the parameter set with respect to a set of training 

examples. Two important types of learning algorithms are: 

• Supervised Leaming 

• Unsupervised Leaming 

2.2.1 Supervised Leaming 

Supervised learning is the most widely used technique. The term supervised originates from the 

fact that the desired signals on individual output nodes are provided by an external teacher. We 
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collect many examples to serve as the training set. Each example in this training set comprises 

of all inputs and the desired outputs for these inputs. A supervised learning algorithm consists of 

the following steps: 

• Present the training input to the input layer, one at a time. 

• Calculate the error between the output produced by the network and the desired output. 

• Update the network parameters so as to reduce the error. 

• Repeat these steps until the error is zero or less than the desired error tolerance. 

Back-propagation (BP) algorithm is by far the most popular supervised learning algorithm. The 

elementary backpropagation network is a three-layer, hetero associative ANN , with feedforward 

connections. 

Figure 2.3 A typical feedforward neural network 
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2.2.1.1 Backpropagation Algorithm: 

1. Assign random values in the range [+1, -1] to all the Input to hidden layer connections, vh" 

all the hidden to output layer connections w11 , to each hidden neuron threshold, 0 ,, and to 

each output neuron threshold, lj/ J 

2. For each pattern pair (Ac ,Ck), k = 1,2, ... ,m, do the following: 

a) Transfer Ac's values to the input neurons, filter the input neuron activation through 

V and calculate the new hidden neuron values, using the following: 

n 
bi= f((h~l ahvhi)-0i) tor all i= 1,2, ... ,p 

where b, is the activation value of the fh hidden neuron, 0 1 Is the fh hidden 

neuron's threshold value, and f() 1s the sigmoid threshold function: 

f(X): (1 + e·Xrf 

b) Filter the hidden activation through_ W to output using the equation: 

p 
c. = /((I, b.w .. )-lf/ .) 

l i=I l 1J J 
For allj = 1,2, ... ,q 

Where cJ is the activation value of the l' output neuron and lj/ J is the l' 
output neuron's threshold value. 

c) Compute the discrepancy (error) between the computed and desired output 

neuron values using the equation: 

~ = 0 (1 - cJ )(c/ - cJ) For all j = 1,2, ... ,q 

Where ~ Is the l' output neuron's computed error. 

d) Calculate the error of each hidden neuron relative to each ~ with the equation: 

q 
e. =b.(l-b.) I, w .. d. 

l l l j=I lJ J 
For all i = 1,2, ... ,p 

Where e, is the fh hidden neuron's computed error. 

e) Adjust the hidden to output connections: 

L1Wq = a (b, dJ For all ; = 1,2, ... ,p and all j = 1,2, ... ,q 

Where L1Wq is the amount of change made to the connection from the ith 

hidden neuron to the t output neuron, and a is a positive constant 

controlling the learning rate. 
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f) Adjust the output thresholds: 

Alf/ 1 = a~ For all j = 1,2, ... ,q 

Where LI If/ 1 is the amount of change to the j'h output neuron's threshold value. 

g) Adjust the input to hidden connections. 

Avh, = P (ah e,) for all h = 1,2, ... ,n and all;= 1,2, ... ,p 

Where Llvh, is the amount of change made to the connection from the Hh 

input and /h hidden neuron, and p is a positive constant controlling the 

learning rate. 

h) Adjust the hidden thresholds: 

Ll0, = fie, for all i = 1,2, ... ,p 

Where LI 0 1 is the amount of change to the /h hidden neuron's threshold 

value. 

3. Repeat step (2) until the error correction value ~. for each j = 1,2, ... ,q, and each training 

set k = 1,2, ... ,m, is either sufficiently low or zero. 

q 1s the number of neurons in the output layer, and 

m is the number of input/output pairs. 

To summarize backpropagation, the weights leading into an output node are adjusted in 

proportion to the difference between its actual value and its desired value. Weights leading into 

hidden nodes are adjusted in proportion to their contributions to error 
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2.2.2 Online Learning and Offline Learning 

An art1f1c1al neural network can learn in one of two ways 

• Offhne or Batch learning 

• Online or Stochastic learning 

In offline or batch learning, optimization of network parameters is performed with respect to the 

entire training set and it is an iterative process. In batch learning the network learns using training 

datasets and with this knowledge network tnes to recall near optimal results for the noisy inputs 

from the field. The swift computation of such an optim1zat1on is a d1ff1cult task, because generally, 

the dimension of parameter space is high. The network parameters (weights) are fixed in the 

operation or testing mode. Although batch learning may be faster for small or medium datasets 

and networks, it is more prone to problems like overtraining and local minima, and hence is 

inefficient in case of training large networks and for large training sets. The backpropagation 

algonthm presented above is an example of offline learning. 

In online or stochastic learning, network parameters are updated after the presentation of each 

training example. Unlike the offline training, the networks can modify its parameters when it is in 

operation or testing mode. In the online learning scenario, only one example is given at a time 

and discarded after learning. Hence it consumes less memory and fits well into more natural 

learning, where user or agent receives new information at every moment and should adapt to it. 

Online learning 1s a more natural approach for learning non-stationary tasks, where batch 

learning needs retraining on the dynamically changing datasets. Apart from easier feas1b1lity and 

data handling the most important advantage of online learning 1s its ability to adapt to changing 

environments. With batch learning these subtle changes go undetected as we average the error 

over several training examples. Onhne learning of continuous functions, using gradient based 

methods on a differentiable error measure 1s one of the most powerful and commonly used 

approaches for training non-stationary tasks in particular. 

We can obtain the elementary online gradient descent algorithm by dropping the average 

operation in the batch gradient descent algol'lthm. 

Consider an infinite sequence of independent examples 

(X1,Y1).(X2,Y2), ..... 

The purpose of learning is to obtain a network with parameter w which can represent the rules 

inherent to this data. 

In online learning the ANNs modify their parameter Wt at time t to w1+1 using next example 

(x1+1, Yt+1). But this may result in loosing the pre-learned information. To avoid this, we introduce a 

loss function (l<x,y;w>) to evaluate the performance of the network with parameter w. The best 

network is the network that has minimum l<x,y;w> value. 
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We use the following parameter updating rule (Amari, 1967 and Rumelhart et al., 1986): 

Wt+1=wrf/tC(Wt)8/ aw l(Xt+1,Yt+1:Wt), 

Where f/1 Is the learning rate that depends on t and C(wJ is a positive definitive matrix that 

depends on w1 . 

If f/1 =cit, the where c is a constant, w converges tow· (the parameter of best network) locally 

(Sompolinsky et al, 1995). 

On the other hand online training suffers from the following drawbacks 

• The main difficulty is the sensitivity of learning methods to the parameters. This 

dependence may slowdown the learning. 

• Most advanced optimization methods like conJugate gradient, rely on a fixed error surface 

where in online learning task we need to deal with inherently stochastic error surface. 

2.3 Genetic Algorithms 

Genetic algorithms are best at solving problems for which little information is available. A genetic 

algorithm is an iterative procedure that consists of a constant-size population of individuals, each 

represented by a finite string of symbols, known as the genome. The genome encodes a possible 

solution in a given problem space. This problem space, referred to as the search space, 

comprises of all possible solutions to the problem at hand. Genetic algorithms use the principles 

of selection and evolution to produce several solutions to a given problem. Genetic algorithms 

tend to thrive in an environment in which there is a very large set of candidate solutions and in 

which the search space is uneven and has many hills and valleys. 

2.3. 1 Biological Motivation 

The search performed by GAs is based on an analogy to biological evolution. At the turn of the 

century, it was unclear whether Darwin's or Lamarck's theory better explained evolution. Lamarck 

believed in direct inheritance of charactenstics acquired by individuals during their lifetime. 

Darwin proposed that natural selection coupled with diversity could largely explain evolution. 

Darwin himself believed that Lamarckian evolution might play a small role in life, but most 

Darwinians rejected Lamarckism. One potentially verifiable difference between the two theories 

was that Darwinians were committed to gradualism (evolution in small, incremental steps), while 

Lamarckians expected occasional rapid change. One of the most interesting characteristics of 

natural evolution process is its robustness. The process is not dependent on external support and 

has a very high degree of fault tolerance. Holland's aim in devising computer models based on 

natural evolution was primarily to obtain this robustness, badly lacking in the existing systems. 

Search techniques postulated in Artificial Intelligence research are largely local. Look-ahead is 

expensive Without look-ahead, chances ot the search getting stuck at local maxima is high, 
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because the optimum values at the distance are not visible to the local search techniques. Pure 

random search has a higher chance of avoiding local peaks, but 1s not sufficient for effective 

exploration of large search spaces. 

All living organisms consist of cells In each cell there is the same set of chromosomes. 

Chromosomes are strings of DNA that serve as a model for the whole organism. A chromosome's 

characteristic is determined by the genes. Each gene has several forms or alternatives which are 

called alleles. These alleles produce differences in the set of chromosomes called the genotype. 

Each genotype maps to a phenotype (the individual) with a certain fitness. 

The basic notions of natural evolution are as follows: 

• New children are created from existing parents. The children inherit many of the 

characteristics of the parents. 

• Each individual has a set of chromosomes consisting of one or more genes. The 

chromosomes (called the genotype) form the only genetically significant component for 

evolution. The genes directly control the external behavior and capabilities (called the 

phenotype) of the individuals. Changes in the phenotype can be realized by making 

changes in the genes. 

• Natural selection works on the fitness of individuals. By the point above, fitness becomes 

a direct function of an individual's gene layout, i.e., the chromosome. Therefore, natural 

selection directly controls the selection of chromosomes for propagation. 

• Chromosomes are relevant only at the point of reproduction, where suitably modified 

chromosomes for the children are created based on the chromosomes of the parents. 

• There 1s no domain knowledge guiding the evolution process. The fitness-based rate of 

survival is the only guiding factor. 

GAs work on the Darwinian principle of natural selection where stronger ind1v1duals are likely the 

winners in a competing environment. Darwinian model of evolution can be visualized as a 

sophisticated generate and test strategy. The natural selection based on fitness slowly discards 

potentially bad solutions from the population. The combining of chromosomes in the genetic 

reproduction process provides an opportunity to exploit already discovered regularities among the 

different members of the population. 
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2.3.2 A Prototypical Genetic Algorithm 

The basic principles of GAs were first proposed by Holland. GAs presume that potential solution 

of any problem is a chromosome and can be represented by a set of parameters. These 

parameters are regarded as genes of a chromosome and can be structured by a string of values. 

A positive value is used to reflect the degree of fitness of the chromosomes for the problem which 

would be highly related with its objective value. Although different implementations vary in their 

details they typically share the same basic structure. The algorithm operates by iteratively 

updating a population of chromosomes. In every generation members of the population are 

evaluated according to the degree of fitness. We then select the fittest chromosomes of old 

population for the next generation without any change. Other solutions or chromosomes, based 

on their fitness, are used as the source for creating new offspring individuals by applying genetic 

operators such as crossover and mutation. 

The following is a pseudo-code for general genetic algorithm approach: 

0. [Representation] Define a genetic representation of the system. 

1. [Start] Generate random population of n ~hromosomes (suitable solutions for the problem) 

2. [Fitness] Evaluate the fitness of each chromosome in the population 

3. [New population] Create a new population by repeating following steps until the new 

population is complete. 

3.1. [Selection] Select two parent chromosomes from a population according to their fitness 

(the better fitness, the bigger chance to be selected) 

3.2. [Crossover] With a crossover probability, cross over the parents to form a new offspring 

(children). If no crossover was performed, offspring is an exact copy of 

parents. 

3.3. [Mutation] With a mutation probability, mutate new offspring at each locus (position in 

chromosome). 

3.4. [Accepting] Place new offspring in a new population 

4. [Replace] Use new generated population for a further run of algorithm 

5. [Test] If the end condition is satisfied, stop, and return the best solution in current population 

6. [Loop] Go to step 2 
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Gcnciatc lrutial l'opulauon 

Assess lrutJal l'opulatron 

Sclcd J'opulatlon 

Kcoo.11,bmc New Population 

t 
MWate New J'opulatlon 

Assess New l'opulauon 

No 

Figure 2.4 Flow chart representation of the algorithm 

2.3.3 Chromosome Representation 

The coding of chromosome representation may vary with the type of the problem at hand. 

Generally bit string encoding is used for the benefits of easy manipulation. The chromosomes or 

solutions represented with bit strings can be very complex. Using Gray code to represent the 

solutions works better than binary coding (Hollstein,R.B, 1971 ). Problems with real parameters 

cannot be solved efficiently with bit strings. Hence we use real value chromosomes for faster 

computation and high accuracy. The real encoding of solutions require specialized genetic 

operators. Although real encoding suits the practical problems it does not guarantee good results 

in all situations. Generally we use fixed length binary strings to represent real values. This 

approach may result in loss of accuracy but is easier to manipulate. 
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2.3.4 Genetic Operators 

The generation of successors in a genetic algorithm is determined by a set of operators that 

recombine and mutate selected members of the current population. Typical genetic algorithm 

operators for manipulating the chromosomes are as follows. 

• Selection 

• Crossover 

• Mutation 

i. Selection: 

The Selection operator selects the fittest chromosomes in the population for reproduction based 

on the rule that the fitter the chromosome, the more hkely it is to be selected to reproduce. 

According to Darwin's evolution theory the best chromosomes should survive and create new 

offspring. There are many methods for selecting the best chromosomes, for example roulette 

wheel selection, Boltzman selection, tournament selection, rank selection, and steady state 

selection. Two of these approaches are explained below: 

a) Roulette Wheel Selection: Parents are selected according to their fitness. The better 

the chromosomes are, the more chances they have to be selected. Imagine a roulette 

wheel (pie chart) where all chromosomes in the population are placed m according to 

their normalized fitness. Then a random number is generated which decides the 

chromosome to be selected. Chromosomes with better fitness values will be selected 

more times since they occupy more space on the pie. 

b) Rank Selection: Roulette wheel selection is not efficient when the fitness of 

chromosomes is widely spread over a range of values. For example, if the best 

chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will 

have very few chances to be selected. Rank selection first ranks the population and then 

every chromosome 1s assigned new fitness values from its rankings. The worst 

chromosome will have fitness 1, second worst 2 etc. and the best will have fitness N 

(number of chromosomes in population). After the new fitness allocation, all the 

chromosomes have a chance to be selected But this method can lead to slower 

convergence, because best chromosomes are generally s1m1lar and do not differ much 

from one other. 

ii. Crossover: 

A crossover operator manipulates a pair of individuals, called parents, to produce new 

individuals, called offspring, by interchanging segments from the parents' coding. By 

interchanging information between two parents, the crossover operator provides a powerful 

exploration capability of the solution search space. The bit at position i in each offspring 1s copied 
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from the bit at position i in one of the two parents. The choice of which parent contributes the bit 

for posItIon i is determined by an addItIonal string called the crossover mask. 

In single point crossover, the crossover mask is constructed with contiguous 1 's followed by O's to 

complete the string This results in offspring in which the first n bits are contributed by one parent 

and remaining bits by the second parent. Each time single point crossover operator Is applied, the 

crossover point 'n' is randomly chosen, and then crossover mask Is created and applled. The 

mask contains 'n' 1 's followed by necessary number of O's to complete the string. 

In two-point crossover, the offspring are created by substituting intermediate segments of one 

parent into the middle of the second parent string. The cross over mask is a string beginning with 

no zeros followed by contiguous string of n1 1 's, followed by necessary number of O's to complete 

the string. For two point crossover operator, the mask is generated by randomly choosing the 

integers n0 and n1. 

Uniform crossover combines bits sampled uniformly from two parents. Here crossover mask is 

generated as a random bit string with each bit chosen at random and independent of others. 

iii. Mutation: 

Mutation operator generates offspring from a single parent. Mutation is originally designed for 

binary represented chromosomes. Mutation operator produces small random changes to the bit 

string by choosing a single bit at random. As a population evolves, there is a tendency for genes 

to become predominant until they have spread to all members. Without mutation, these genes will 

be fixed for ever, since crossover alone cannot introduce new gene values. If the fixed value of 

the gene is not the value required at the global maximum, the GA will fail to optimize properly. 

Mutation is, therefore, important to 'loosen up' genes which would otherwise become fixed, but if 

the mutation rate is too high, the selection pressure on genes resulting from breeding with fitter 

individuals may produce bad results. A common value for the mutation rate Is to change one 

gene in every thousand. 

iv. Objective Function: 

An obJect1ve function is a measuring mechanism that is used to evaluate the status of a 

chromosome. This function is generally referred to as either evaluation function or fitness 

function. The notion of evaluation function and fitness function are used interchangeably. 

However, It Is important to distinguish between the evaluation function and fitness function. 

Evaluation function provides a measure of an individual's performance, where as fitness function 

provides a measure of individual's reproduction opportunities. 



Single-point crasmver; 

Two-point crossover: 

Uniform crrusover: 

Point mlllation: 

Initial strings Crossover Mask 

11101001000 ~ 11101010101 

00001010101 ~ 00001001000 

11101001000 ~ 11001011000 

00001010101 ~ 00101000101 

111.Q10Q1000 ~ 10001000100 

O0001Q1Q!01 ~ 01101011001 

111O1O..Q.1O00 ---------1► 111010.11000 

Figure 2.5 Depictmg the operators with examples (Machme Leaming, Tom Mitchell) 
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GAs illustrate how learning can be viewed as a special case of optimization. Particularly the 

learning task is to find the optimal solution according to the pre defined objective function. Like 

neural networks, genetic algorithms are easy to apply to a wide range of problems The results 

can be very effective on some problems. As Denker pointed out "Neural networks are the second 

best way of doing Just about anything" and has extended his remark with "and genetic algorithms 

are the third". 



CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS 

Overview 

This chapter discusses the issues concerning with combining the two powerful technologies 

ANNs and GAs. This chapter gives brief account of the basic techniques of applying evolution to 

ANNs and assists in understanding our proposed algorithm design concepts. 

3.1 Introduction 

In the recent years two areas of adaptation, namely ANNs and GAs, captured the imagination of 

researchers all over the world. Both of these technologies are computational abstractions of 

b1olog1cal information processing systems. In general, ANNs are used as learning systems and 

GAs as optimization systems ANNs are of particular interest because of their robustness, their 

parallelism, and their learning ab1lit1es. GAs are very powerful general learning methods that are 

based on natural evolution. However, both of these prominent technologies suffer from 

shortcomings. 

ANNs are to a large extent based on 

• Trial and Error 

• Training examples or past experience 

• Lack of sound design principles 

Design of ANNs is critically dependent on the choice of prim1t1ves such as network architecture 

and parameters. Generally architectures are manually designed for the desired application and 

such a task requires lots of expertise and time on the part of the designer. 

GAs are inefficient in the fine-tuning local search and may need vast amount of time to converge 

to a solution. Designing a suitable fitness function for real world applications may be hard. GAs 

also have weak theoretical basis, require tuning of many parameters for good performance, and 

sometimes computationally expensive. 

The ANNs and GAs are capable of complimenting each other to get beyond their inefficiencies. 

They provide an extremely rich basis for contrast and hybridization. Hence, the combination 

results in highly successful adaptive systems (Yao, 1999). Features of these hybrid networks 

include adaptability to the environment, less human intervention, and more efficiency. 

25 
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3.2 Combining ANNs and GAs 

Researchers have combined ANNs and GAs in a number of different ways. Schaffer et al., have 

noted that these combinations can be classified into one of two general types - supportive 

combinations m which the ANNs and GAs are applied sequentially, and collaborative 

combinations in which they are applied simultaneously. 

In a supportive approach, the GAs and the ANNs are applied to two different stages of the 

problem. The most common combination is to use a GA to pre-process the data 

set that is used to tram an ANN. For instance, the GAs may be used to reduce the 

dimensionality of the data space by eliminating redundant or unnecessary features. 

In supportive combinations the GAs and ANNs are used independent of each other. Some other 

possible combinations include using an ANN to select the starting population for the GAs; 

using a GA to analyze the representations of an ANN; and using a GA and ANN to solve the 

same problem and integrating their responses using a voting scheme (Schaffer et al.). 

Alternatively, m a collaborative approach, the GAs and ANNs are integrated into a single 

system m which a population of neural networks Is evolved. In other words, the goal of 

the system is to find the optimal neural network solution. Such collaborative approaches are 

possible since neural network learning algorithms and genetic algorithms are search algorithms. 

A neural network learning rule performs a highly constrained search to optimize the 

network's structure, while a genetic algorithm performs a very general population-based 

search to find an optimally fit gene. Both are examples of biased search techniques, and "any 

algorithm that employs a bias to guide its future samples can be mislead in a search 

space with the right structure. There 1s always an Achilles heal." (Schaffer et al) The primary 

reason researchers have looked at integrating ANNs and GAs is the belief that they may 

compensate for each other's search weaknesses. 

3.3 Evolutionary Design of Neural Networks 

We can introduce evolution into ANNs primarily in three different levels: connection weights; 

architectures; and learning rules as noted by Yao. The evolution of connection weights 

introduces an adaptive and global approach to training, especially in the reinforcement 

learning and recurrent network learning paradigm where gradient-based training algorithms 

often experience great difficulties. The evolution of architectures enables ANNs to adapt 

their topologies to different tasks without human intervention and thus provides an 

approach to automatic ANN design as both ANN connection weights and structures can be 
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evolved. The evolution of learning rules can be regarded as a process of "learning to learn" in 

ANNs where the adaptation of learning rules Is achieved through evolution. It can also be 

regarded as an adaptive process of automatic discovery of novel learning rules. 

3.3.1 Evolution of Connection Weights: 

This Is the basic level where we can incorporate genetic operators into neural networks. 

Generally, the weights of the connections are modified in order to optimize evaluation function 

such as mean square error To formulate the training process as the evolution of connection 

weights, we require two phases. 

• Representation of connection weights 

• Evolutionary process to apply 

Genetic operators are efficient and easy to use with binary strings. The most important stage in 

evolution of weights is to decide on a suitable representation for connection weights, i.e. either we 

represent them as binary strings or not In the second phase we choose the evolutionary process 

simulated by a genetic algorithm, in which search operators such as crossover and mutation 

have to be decided in conjunction with the representation scheme. The training performance 

depends on the representation scheme we choose. 

3.3.1.1 Binary Representation: 

Genetic algonthms, in general, use binary strings to encode the population of solutions which are 

also called chromosomes. In the binary representation scheme, each connection weight is 

represented by a number of bits with certain length. An ANN is encoded by concatenation of all 

the connection weights of the network in the chromosome. A heuristic for the order of the 

concatenation of connection weights in a chromosome Is to append all the binary connection 

weights coming from input nodes to each hidden neuron in the hidden layer from left to right and 

append all binary connection weights coming from hidden nodes to each output node in the 

output layer from left to write. Hidden nodes in ANNs are in essence feature extractors and 

detectors. The above heuristic is based on the fact that separating connection weights from 

different input nodes to the same hidden node, apart in the chromosome representation This 

would increase the difficulty of constructing useful feature detectors because these feature 

detectors, found during the evolutionary process, might be destroyed by crossover. 

Figure 3.1.a and Figure 3.1.b provide an example for the binary representation of an ANN 

whose architecture is predefined. Each connection weight in the ANN is represented by 4 bits, the 

whole ANN is represented by 24 bits where weight 0000 indicates no connection between two 

nodes. 
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Node 1 Node2 0100 1010 0010 0000 0111 0011 

a b 

Figure 3.1.a: An ANN with connecb.on weights Figure 3.1.b. Bmary representab.on of connecb.on weights 

Binary encoding has its advantages and disadvantages 

Advantages: 

The advantages of binary representation are simplicity of design, generality of representation, 

and straightforward application of genetic operators such as crossover and mutation. It does not 

need any complex or tailored operators. Also binary representation facilitates digital hardware 

implementation of ANNs as weights are represented with O's and 1 's with limited precision in the 

hardware. 

Disadvantages: 

Real world applications generally need real number representation of weights. But some 

combinations of real valued connection weights cannot be approximated with sufficient 

accuracy by binary values. If too many bits are used, chromosomes representing large ANNs 

will become extremely long and the evolution in tum will become very inefficient. If too few 

bits are used to represent each connection weight, training might fail because some combinations 

of real-valued connection weights cannot be approximated with sufficient accuracy by discrete 

values. So a tradeoff between representation precision and the length of chromosome often 

has to be made. 
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Figure 3.2.a: An ANN with connection weights Figure 3.2.b: Bmary representation of connection weights 

An important concern for the evolutionary approach to neural network is the competing 

conventions problem. It is also called permutation problem. It is caused by the many-to-one 

mapping from the representation(genotype) to the actual ANN(phenotype) since two ANNs that 

order their hidden nodes differently in their chromosomes will still be equivalent functionally. 

For example, ANNs shown in Figure 3.1.a and Figure 3.2.a are functionally equivalent but are 

represented by different chromosomes as shown in Figure 3.1.b and Figure 3.2.b. The 

permutation problem makes crossover operator very inefficient and ineffective in producing good 

offspring. 

3.3.1.2 Real Number Representation: 

Real numbers represent the reality better than binary numbers. Figure 3.1.a can be represented 

by real numbers as the following real vector. 

{4.0, 10.0, 2.0, 0.0, 7.0, 3.0}. 

As connection weights are represented by real numbers, each individual in an evolving 

population will be a real vector. Traditional genetic operators no longer work with this 

representation. Real representation needs more complex genetic operators to be designed. 

Advantages: 

Real values are suitable for most of the problems and can represent values with great accuracy. 

Evolutionary Algorithms (EAs), which are different from Genetic Algorithms in their primary 

operator being mutation rather than crossover, work well with real number representation. When 

used with EAs, this representation tends to reduce the negative impact of permutation problem. 
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Disadvantages: 

As traditional operators are no longer applicable on real valued representation, we need to define 

special operators. Designing these operators is no easy task. Real valued representation also 

suffers from permutation problem. 

A typical cycle of the evolution of connection weights is shown in the following algorithm. 

1. Decode each individual genotype in the current generation into a 

set of connection weights and construct corresponding ANNs with 

the weights. 

2. Evaluate each ANN by computing its total mean square error 

between actual and desired outputs, or use any general error 

function. The fitness of an individual is determined by the 

error. The optimal mapping from error to the fitness is problem 

dependent. 

3. Select the parents for reproduction based on their fitness. 

4. Apply genetic operators such as crossover (recombination) and/or 

mutation to parents to generate offspring and then selection on 

these offspring to form the next generation. 

Repeat the above steps until the fitness is greater than a predefined value or the population has 

converged (Yao, 1999). 

3.3.2 Evolution of Architectures 

For a long time the task of designing the architecture of a neural network has been manual and 

required expertise in the field. Automating design of ANN architectures for applications is always 

an important issue. The design of neural networks architectures does not have any mathematical 

basis; hence architecture design requires a tedious trial and error method. There were several 

attempts, such as constructive and destructive algorithms, to automate the designing process. 

However, they were only partially successful. 

Design of the optimal architecture for an ANN can be formulated as a search problem in 

the architecture space where each point represents an architecture. Given some performance 

(optimality) criteria, e.g., lowest training error, lowest network complexity, etc., about 

architectures, the performance level of all architectures forms a discrete surface in the 

space. The optimal architecture design is equivalent to finding the highest point on this surface. 

This kind of vast search space is suitable for applying GAs. Hence evolution of architectures finds 

near optimal architecture given sufficient time. 
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As with the evolution of weights, there are two maJor evolution phases of architectures. 

• The representation or encoding of the network 

• Genetic operators used to evolve the architecture 

There are several encoding schemes based on how much information we want to incorporate into 

the representation. 

3.3.2.1 Direct Encoding Scheme: 

In this scheme all the details about the architecture, i.e. every connection and node of an 

architecture, can be incorporated into the chromosome. In this scheme each connection of 

architecture is directly specified by its binary representation For example, an matrix can 

represent an ANN architecture with N nodes, where indicates presence or absence of the 

connection from node i to node j . We can use to indicate a connection and to indicate no 

connection. 

Each matrix 'C' has a direct one-to-one mapping to the corresponding ANN 

architecture. The binary string representing an architecture is the concatenation of rows 

(or columns) of the matrix. Constraints on architectures being explored can easily be 

incorporated into such a representation scheme by imposing constraints on the matrix, e.g. 

a feedforward ANN will have nonzero entries only in the upper-right triangle of the matrix. 

Figure 3.3 and Figure 3 4 are two examples of the direct encoding scheme of ANN architectures. 

It is obvious that such an encoding scheme can handle both feedforward and recurrent 

ANNs. 
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Figure 3.3: An example of the direct encodmg ofa feed forward ANN (a), (b), and (c) show the archttectttre, its 
connectivity matnx, and its bmary stnng representation, respectively 
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Figure 3 4. An example of the drrect encodmg of a recurrent ANN. (a), (b), and (c) show the arclntecture, 
its connecttvity matnx, and its bmruy stnng representatton, respecttvely. 

The direct encoding 1s quite straightforward to implement. It is very suitable for the precise 

and fine tuned search of a compact ANN architecture, since a single connection can be 

added or removed from the ANN easily. It may facilitate rapid generation and optimization of 

tightly pruned new designs. The maJor disadvantage of this encoding scheme 1s scalability. A 

large neural network would result in a very large string, hence making the evolutionary process 

inefficient. 

3.3.2.2 Indirect Encoding: 

To overcome the scalability problem of direct encoding, indirect encoding scheme is commonly 

used. In the indirect encoding scheme we encode only important characteristics of architecture, 

rather than encoding all details, into the chromosome. The details about each connection in an 

ANN is either predefined according to prior knowledge or spec1f1ed by a set of deterministic 

developmental rules. The indirect encoding scheme can produce more compact genotype 

representation of ANN architectures, but 1t may not be very good at finding a compact ANN with 

good generalization ability. The following are few indirect encoding schemes and their details 

i. Parametric Indirect Encoding Scheme: 

ANN architectures may be specified by a set of parameters such as the number of hidden 

layers, the number of hidden nodes in each layer, the number of connections between two layers, 

etc. These parameters can be encoded in various forms in a chromosome. This scheme is 

proposed and developed by Harp et al. 

Although this representation considerably reduces the length of the binary string, the GAs can 
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only search a subset of the whole search space. Hence it is suitable for the problems where we 

know what kind of architectures we are trying to find. 

ii. Developmental Rule Representation Scheme: 

In this method, we encode developmental rules which are later used to build architecture into 

chromosomes. This scheme results in even more compact genotype representation and also 

increases the efficiency of crossover operator as it saves the details of promising architectures. 

A developmental rule is usually described by a recursive equation or a generation rule similar to a 

production rule in a production system with a left-hand side (LHS) and a right-hand side (RHS). 

The connectivity pattern of the architecture in the form of a matrix is constructed from a basis, i.e. 

a single-element matrix, by repetitively applying suitable developmental rules to non-terminal 

elements in the current matrix until the matrix contains only terminal elements which indicate 

the presence or absence of a connection, that is, until a connectivity pattern is fully specified. 

The following algorithm by Yao, represents evolutionary development of learning rules 

1. Decode each individual genotype in the current generation into 

architecture. If the indirect encoding scheme is used, further 

detail of architecture is specified by some developmental rules 

or a training process. 

2. Train each ANN with the decoded architecture by a predefined 

learning rule, starting from different sets of random initial 

weights and if any, learning parameters. 

3. Calculate the fitness of each individual (encoded architecture) 

according to the above training result and other performance 

criteria such as complexity of architecture. 

4. Select the parents for reproduction based on their fitness. 

5. Apply genetic operators such as crossover (recombination) and/or 

mutation to parents to generate offspring and then selection on 

these offspring to form the next generation. 

Repeat the above steps until the fitness is greater than a predefined value or the population has 

converged. 

3.3.3 Simultaneous Evolution of Architectures and Connection Weights 

The above evolutionary methods either keep architecture intact or fine tune the weights after near 

optimal architecture is found. Both these methods introduce noise and generate less efficient 

systems. One major problem with the evolution of architectures without evolution of connection 

weights is noisy fitness evaluation as phenotype's (i.e., an ANN with a full set of weights) 

fitness was used to approximate its genotype's (i.e., an ANN without any weight information) 



fitness. 

There are two maJor sources of noise. 

• Due to the random initialization of weights, the same genotype (the ANN without any 

weight information) may have quite different fitness. 

• Different training algorithms may produce different training results even from the same 

set of initial weights. 
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Hence evolution of architectures without any weight information has difficulties in evaluating 

fitness accurately. As a result, the evolution would be very inefficient. To alleviate these problems 

and to build more efficient systems we need to evolve the connection weights and architectures 

simultaneously. 

3.3.4 Evolution of Leaming Rules 

An ANN training algorithm may yield different performance when applied to different 

architectures. The design of training algorithms, more fundamentally the learning rules used to 

adjust connection weights, depends on the type of architectures under invest1gat1on. Different 

vanants of the Hebbian learning rule have been proposed to deal with different architectures. 

However, designing an optimal learning rule becomes very difficult when there is little prior 

knowledge about the ANNs architecture, which is often the case in practice. It is desirable 

to develop an automatic and systematic way to adapt the learning rule to an architecture and 

the task to be performed. Often evolution of learning rules is application specific i.e. it is almost 

impossible to find a general rule that can be applied to all structures. 

what is needed from an ANN is its ability to adjust its learning rule adaptively according to its 

architecture and the task to be performed. In other words, an ANN should learn its 

learning rule dynamically rather than have it designed and fixed manually. 

Unlike the evolution of connection weights and architectures which only deal with static 

objects in an ANN, i.e. weights and architectures, the evolution of learning rules has to 

work on the dynamic behavior of an ANN. The key issue here 1s how to encode the dynamic 

behavior of a learning rule into static chromosomes. Trying to develop a universal representation 

scheme which can specify any kind of dynamic behaviors is impractical, since it requires a very 

long computation time to search such a large learning rule space. So to keep the 

representations simple with a short search space, we impose lim1tat1ons on the type of dynamic 

behaviors. 

Two basic assumptions which have often been made on learning rules are: 

1. Weight updating depends only on local information such as the activation of the 

input node, the activation of the output node, the current connection weight, etc., 

2. The learning rule is the same for all connections in an ANN. A learning rule is assumed to 

be a linear function of these local variables and their products. 



35 

The following illustrate the basic methods of evolving learning rules. 

3.3.4.1 Developing Algorithmic Parameters: 

The adaptive adjustment of back propagation (BP) parameters (such as the learning rate and 

momentum) through evolution could be considered as the first attempt to the evolution of learning 

rules. Harp et al encoded BP's parameters in chromosomes together with ANN architecture. This 

evolutionary approach is different from the non-evolutionary approach. Because the simultaneous 

evolution of both algorithmic parameters and architectures facilitates exploration of interactions 

between the learning algorithm and architectures such that a near optimal combination of BP with 

an architecture can be found. 

3.3.4.2 Developing Learning Rules: 

The above method serves as the fundamental development of learning rules. There are three 

major issues involved in the evolution of learning rules: 

• Determination of a subset of terms described 

• Representation of their real-valued coefficients as chromosomes 

• The EA used to evolve these chromosomes. 

There is a lot of research going on today to develop this method, since this stands for the true 

evolution of learning rules. Adapting a learning rule through evolution is expected to enhance 

ANN adaptivity greatly in a dynamic environment. 

The following algorithm by Yao represents evolutionary development of learning rules 

1. Decode each individual genotype in the current generation into a 

learning rule. 

2. Construct a set of ANNs with randomly generated architectures and 

initial connection weights, and train them using the decoded 

learning rule. 

3. Calculate the fitness of each individual (encoded learning rule) 

according to the above training result. 

4. Select the parents for reproduction based on their fitness. 

5. Apply genetic operators such as crossover (recombination) and/or 

mutation to parents to generate offspring and then selection on 

these offspring to form the next generation. 
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Repeat the above steps until the fitness 1s greater than a predefined value or the population has 

converged. 

As Genetic Algorithms tend to be computationally intensive, we need to use them with prior 

knowledge or with some heuristic to assist the search. With the increasing power of parallel 

computers, the evolution of large ANNs becomes feasible. Not only evolution can discover 

possible new ANN architectures and learning rules, but 1t also offers a way to model the 

creative process as a result of ANN adaptation to a dynamic environment. 



CHAPTER 4 RELATED RESEARCH 

Overview 

There has been a lot of research in hybrid algorithms and online learning. This chapter gives 

details about the research done in the relative fields. 

4.1 Evolutionary Design of Neural Networks 

4.1.1 EPNet 

EPNet (Yao and Liu, 1996) describes an evolutionary system for evolving feedforward ANNs 

Unlike the other evolutionary algorithms, it tnes to evolve the behavior of ANNs. EPNet combines 

architectural evolution with modification of weights. This simultaneous evolution of weights and 

architecture reduce the noise in the fitness evaluations. 

EPNet is based on evolutionary programming; hence mutation is its only operator. EPNet 

encourages parsimony of evolved ANNs by attempting different mutations sequentially only if 

they are needed. 

A number of techniques have been adopted in EPNet to maintain a close behavior between 

parents and their offspring. Partial training is always employed after each architectural mutation in 

order to reduce the behavioral disruption to an individual. Each indIvIdual in a population evolved 

by EPNet is an ANN with weights. The evolution simulated by EPNet is closer to Lamarck1an than 

Darwinian It relies on five mutation operators to produce better offspring. The five mutations are: 

• Hybrid training 

• Node deletion 

• Connection deletion 

• Connection addition 

• Node addItIon 

EPNet starts with a population of networks, sorted on the fitness criteria, in the 1nit1al partial 

training. Then the five mutations are applied sequentially. If one mutation leads to a better 

offspring, It Is regarded as successful. No further mutations are applied, otherwise, next mutation 

37 



38 

is attempted. A hidden node 1s not added to existing architecture at random, but through splitting 

an existing node. This process ensures the compact architectures without loosing their ability to 

generalize. 

EPNet uses direct encoding scheme and works only for feedforward networks. Selection 

mechanism used in EPNet is based on the error generated. Only if other mutations fail to improve 
l 

the fitness hidden node deletion, connection deletion, and node addition are performed in the 

proposed order. After each stage a partial training is applied and ANNs are tested for the 

success. Only on failure of current stage further stages are applied, otherwise training skips the 

other mutation stages for the next step. The following flowchart explains EPNET training process. 

Figure 4.1: The mam structure ofEPNet 
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Results: 

The data sets used for the experiments were partitioned into three sets for training, vahdat1on, 

and testing. 

The EPNet was tested on 4 medical problems 

1. Breast cancer: data set contained 349 training, 175 validation, and 175 testing examples 

2. Diabetes: data set contained 384 training, 192 validation, and 192 testing examples 

3. Heart disease: data set contained 134 training, 68 validation, and 68 testing examples 

4. Thyroid: data set contained 2518 training, 1254 validation, and 3428 testing examples 

The results showed that evolved ANNs have very small sizes as well as low error rates. 

Our algorithm is similar to EPNet in the following areas. 

• Supervised training approach is considered to train the ANNs 

• A variation of backpropagation 1s used as training algorithm 

• Evolution of connection weights and architectures earned out simultaneously 

Our algorithm differs in several ways from EPNet algorithm. 

• EPNet does not use crossover operator 

• The networks can only be trained offline in EPNet 

• EPNet cannot be applied to recurrent or feedback networks 

• Evolution of learning rules is not implemented in EPNet 

4.1.2 NEAT (Neuro Evolution of Augmenting Topologies) 

NEAT (Kenneth Stanley et al, 2000) proposes a new design for simultaneous architecture and 

weight evolutions. In the NEAT each Genome represents network connect1v1ty and contains 

connection genes and node genes. A new concept of innovation number 1s introduced to avoid 

the competing conventions problem with crossover operator. Each connection gene 1s given an 

innovation number which is unique for the whole population. Mutation in NEAT can change both 

connection weights and network structure. 

NEAT works by starting with a minimal structured network and incrementally adding neurons 

and/or connections. They claim the resulting architecture to be the optimal structure. NEAT uses 

four genetic operators in topology evolution. 
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Genetic operators used in NEAT algorithm are: 
• Mutation of connection weights. 

• Mutation by adding neurons 

• Mutation by adding connections 

• Crossover 

Using a global innovation number, NEAT can track the historical origins with very little 

computation. This algorithm offers a solution, through historical markings, to the competing 

conventions problem in a population of diverse topologies. NEAT uses spec1ation to protect 

slowly maturing Genomes. 

Results: 

NEAT was tested with XOR problem and pole balancing task. 

For XOR problem on 100 runs, the NEAT system finds a solution structure in an average of 32 

generations. NEAT was able to evolve near optimal network for the task. 

In the pole balancing task two poles are connected to a moving cart by a hinge and the neural 

network must apply force to the cart to keep the poles balanced for as long as possible without 

going beyond the boundaries of the track. 

The criterion for success was to balance the poles for 100,000 time units. Results show that 

NEAT took fewest evaluations to complete the task. The standard deviation for the NEAT 

evaluations 1s 2704. The performance was far better than most of the existing evolutionary 

algorithms. 

Our algorithm has some common features with NEAT algorithm. 

• The unique numbering scheme, called innovation number in NEAT, is used to avoid 

competing conventions problem 

• Node based direct encoding scheme is used to encode the ANNs 

Our algorithm differs from NEAT in several characteristics. 

• Our algorithm provides an online learning mechanism which is not present in NEAT 

• NEAT algorithm can evolve weights and architectures simultaneously but does not evolve 

learning rules. Our algorithm evolves the learning rules 

While EPNet claims that Lamarck1an method works best, the NEAT supports Baldwin effect. 



4.2 Online Adaptive Algorithms 

Leaming may be viewed as an optimization of the internal parameters. This optimization is 

carried out using a learning rule, which depends on the application. There are two learning 

paradigms. 

1) Offline Learning 

2) Online Leaming 
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In Offline Leaming, the network parameters are updated after presenting the entire training set. 

This is repeated several times until all the characteristics of the training set are incorporated in 

the network. 

In Online Learning, the network parameters are updated for each training pattern. The most 

important advantage of online learning is its ability to adapt to changing environment. 

It is also shown that online algorithms are asymptotically as effective as Offline Leaming (Robbins 

and Monro, 1951) 

4.2.1 Online Learning for Drifting Environments 

An environment that changes over time and is dynamic is called a drifting environment. Klans et 

al proposed a pure neural network online algorithm that can learn to adopt. They employed 

supervised approach and used Stochastic Gradient Algorithm with an adaptive learning rate. The 

idea of adaptively changing the learning rate is called learning of learning rule (Somplinskey et al 

1995). Klans et al extended the adaptive learning rate idea to differential loss functions. In their 

approach when the error is large then learning rate takes large value and if error is small then 

learning rate also decreases. They use Hessian matrix of the expected loss function in their 

algorithm. This algorithm applies to feedforward networks and provides a learning strategy where 

continuous functions are to be learned when no explicit loss function is available. 

Results: 

Their experiments showed that they could separate original mixed and unmixed artificial signals 

in less than 500 iterations. Good quality results were observed from 200 iterations only. 

Our algorithm is similar to this algorithm (Klans et al) in the following 

• Both of the algorithms try to develop neural networks to adapt to dynamic environments 

• Both algorithms use a variation of back propagation to train neural networks online 
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Our algorithm differs from this algorithm (Klans et al) in several ways, they are: 

• Their algorithm uses Hessian functions to approximate 

• Unlike our algorithm, their algorithm doesn't evolve the architecture 

• Their algorithm does not provide offline learning 

4.3 Hybrid Online Adaptive Algorithm 

4.3.1 Evolution of Leaming: An Experiment in Genetic Connectionism 

David J Chalmers (1990) proposed a basic framework for evolution of learning in neural 

networks. Chalmers proposed that a Genome encodes the dynamic properties of weight space 

dynamics of connectiornst system. Here a number of networks are created and placed in different 

environments for specified amounts of time This helps in determining the fitness of a learning 

procedure. Each network's final stage is determined by its interaction with the learning procedure 

and the environment. The fitness of the network is determined by how well It has adapted to the 

environment in the specified time period. The algorithm claims that from a population of 

essentially ineffective learning procedures, it can produce learning rules that enable better 

adoption. This algonthm uses supervised approach because of its simplicity. The evolution of 

connection weights and architectures is not pursued here. Hence a single layer of fixed and fully 

connected network is used in the algonthm. The changes to the weight of any connection should 

only be dependent on the information local to that connection. The algonthm makes use of ten 

variables and one scale variable to evolve learning rules. The general rule uses these ten 

variables as coefficients of network and algorithmic parameters and the scale variable to increase 

or decrease the amount of change. All vanables are represented by fixed number of binary digits. 

Results: 

Chalmers conducted several experiments over 8 tasks. For each task, a network was presented 

with a number of training examples each consisting of an input pattern and associated output 

pattern. The results show fitness improvement from 60% to 90% after 1000 generations. 

Our algorithm shares some common features with this algonthm (Chalmers, 1990) 

• Both of these algorithms use a general linear equation to evolve learning rules 

• Both of the algorithms use supervised learning procedure 

• Both of the algorithms provide learning for evolved networks 
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Our algorithm has several features that are different from Chalmers' algonthm 

• Unlike this algorithm, our algorithm implements evolution of architectures 

• Chalmers algorithm uses single layer fixed and fully connected networks, whereas our 

algorithm uses dynamic architectures 

• Chalmer's algorithm is designed only for feed-forward networks 

• The learning rule variables are represented with binary values in Chalmers proposed 

algorithm. Our algorithm uses real variables in learning rule evolution 

4.3.2 Learning to Adapt to Changing Environments in Evolving ANN 

From the Institute of Psychology-Rome, Stefano Nolfi et al (1996) proposed their methodology 

"Learning to adapt to changing environments in evolving ANNs". They used a genetic algorithm to 

simulate the evolution of a population of neural networks each controlling the behavior of a small 

mobile robot that must explore an environment surrounded by walls. The environment changes 

from one generation to another. Their methodology was proposed to overcome the limitations of 

the simulated aquatic environment set up by Todd-Miller in 1991. Todd and Miller (1991) 

developed creatures that live m one of the two patches in the environment. Stefano Nolfi et al 

proposed the evolutionary method to develop a creature, which is able to reach a target area 

containing food in its environment. The creature should explore the arena as efficiently as 

possible while avoiding collisions with wall. They have used a feedforward neural network with 

four input sensors in the input layer, which are connected to four output units in the output layer. 

The neural network has two distinct sub-networks that share the same inputs but have separate 

outputs. The first network determines the creatures moving actions while the second network 

determines updating of connection weights of the standard network. The teaching network's 

connection weights never change. 

Results: 

Experiments began with 100 random networks with random weights for standard and teaching 

sub-networks. Each generation lives for 10 epochs, each epoch containing 500 input/output 

cycles. The results proved that the networks that learn achieve higher fitness than those that do 

not learn. 

Our algorithm is similar to this algorithm in some aspects. They are: 

• Both incorporate learning after evolution 

• Both algorithms address architectural evolutions 

• Both algorithms are applicable to fast changing environments 
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Our algorithm differs considerably from this algorithm ( Stefano Nolfi et al, 1996) in the following 

areas. 

• It ( Stefano Nolfi et al, 1996) addresses only feedforward neural networks 

• It does not use hidden layers 

• It does not evolve learning rules 

• It does not employ simultaneous evolution of structure and weights 

4.3.3 Evolutionary Algorithm for Online Leaming 

Magoulus et al (2001) have proposed a novel hybrid evolutionary approach for online training. As 

classic batch training algorithms cannot handle non-stationary data, the need for online learning 

arises. Their Lamarckian inspired hybrid evolutionary algorithm basically consists of two stages. 

In the first stage, they provide online training using stochastic gradient descent with adaptive step 

size. In the second stage, differential evolution strategies proposed by R.stom et al (1997) are 

used as online retraining. The second stage assumes that the SGD in the first stage has 

produced a good solution. The second stage directly incorporates the solutions produced in the 

first stage into the genes of off-spring. They have employed a memory based calculation of step 

size, in the first stage, which considers the previous information to adapt the step size for the next 

pattern presentation. They claim that the SGD algorithm has low storage requirements and needs 

less computation. In the second stage, the DE strategy is used for re-training. They perform 

evolutionary operations on the weight vector. The primary DE operator used is mutation. For each 

weight vector wP., a new mutant vector is generator using the following relation: 

Mutant Vector= wP 1+ ~ (WbesrWPi) + ~(w r1-W r2), 

Where Wbest is the best member of previous generation, ~>O is a real parameter called mutation 

constant, W r 1 and W r 2 are two random weight vectors. 

Stage 1 - "Leaming" 

Step Oa: Initialize the weights w0 , Ile and the meta-stepsize K. 

Step la: Repeat for each pattern p. 

Step 2a :Calculate E(wP) and then rE(wP). 

Step 3a: Update the weights: 

wP+l = wP-!')PrE (wP) . 

Step 4a: Calculate the stepsize to be used with the next pattern 

p + l: Ilp+l = !')P + K rE (wP-1 ), rE (wP) 

Step Sa: Until the termination condition is met. 

Step 6a: Return the final weights wP+l to the Stage 2. 



Stage 2 - "Evolution" 

Step Ob: Initialize the DE population in the neighborhood of wp+i_ 

Step lb: Repeat for each input pattern p. 

Step 2b: For i = 1 to NP 

Step 3b: MUTATION(wPi) - Mutant Vector. 

Step 4b: CROSSOVER(Mutant Vector) - Trial Vector. 

Step Sb: If E(Trial Vector) 6 E(wPi), accept Trial Vector for 

the next generation. 

Step 6b: EndFor 

Step 7b: Until the termination condition is met. 

Algorithm 4.1: Genenc Model of the Hybrid On-hne Trammg Algonthm 

45 

To further increase the diversity, they used crossover operator. Based on a crossover constant 

they decide whether to select a bit or not into the target vector. 

Results: 

They have tested the algonthm with two experiments. The first expenment was to train an ANN 

online to classify among 12 texture images. The results show that it performed better than batch 

propagation. The second expenment was to train an ANN online to detect suspicious regions in 

colonoscopic video sequences. The algorithm provided better results over algorithm without 

evolution. 

Our algorithm 1s similar to this hybrid algorithm (Magoulus et al, 2001) in some aspects. They are: 

• Both have two training stages namely, offline and onhne 

• In both algorithms evolution makes use of mutation and crossover 

• Both can be used in slowly varying environments 

Our algorithm differs in several ways from this algorithm (Magoulus et al, 2001) 

• In this algorithm the architecture 1s fixed and they only evolve weight vectors 

• In this algorithm learning is employed only once and only evolution 1s repeated until 

terminating criterion 1s met 

• It does not use spec1ation and cannot have global online learning 
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4.4 Online Interactive Learning 

Adrian Agogino et al (1999) have built a system based on online neuro evolution. There are only 

few systems that are capable of online evolution. Agogino et al have proposed to evolve 

feedforward ANNs to create the agents that improve their performance through real time 

interaction. Typically the system has two stages: 

1. Offline evolution 

2. Online evolution 

This approach is demonstrated in a game world where ANN controlled agents play against 

humans. Through offline evolution the agents are trained for various conflicting goals. Then the 

prepared population is allowed to evolve online. 

Each agent has a feedforward ANN as its brain. The outputs from this network guide the agent in 

the given environment at each time step. The inputs to the network are collected through eight 

sensors. Four of them provide enemy information and the other four supply mine location 

information. 

A 

Figure 4.2 (A) Peon's neural net with mputs and outputs. The sensor mformatlon 1s sent to the mput layer of 
the feedforward network. The two output nodes mdlcate where the peon should go m terms of latitude and longitude 
distance from the current location. (B) Configuration ofa peon's eyes Four of the eyes return the average distances to 

gold mmes in each quadrant and the other four eyes return the average distance of the enemy. 

When an agent is killed it is replaced with either a best fit agent or an agent from crossover 

operation on two better fit agents. 

The agents are ranked on their rate of productivity based on the following formula: 

Fitness= (Mines found* V-C)/ Age, 

Where V is a constant, which is awarded for finding a mine. 

C is a constant that indicates the initial cost of being born. 

This measure rewards finding mines quickly, but also awards longevity. 
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Figure 4.3 : (A) Average performance over all scenarios of a population that is allowed to evolve on line compared to 
one that is not (Offiine). (B) A population started with random weights that evolves online will outperform the 

population trained oftline when given enough time. 

(C) Even after the population has adapted to Scenario 5, it has no trouble adapting to a sudden change to Scenario 11. 
(D) The improvement is even clearer when the new scenario is !he novel Scenario 17. 

Results: 

They have tested the algorithm with 16 different game scenarios. They evaluated the 

performance of offline and online evolution combined versus offline evolution . The results show 

that online evolution significantly improved the performance. When tested with a new scenario, 

online evolution performed better than offline evolution. They even claim that given sufficient time, 

online evolution can outperform offline evolution. They have suggested that online evolution can 

be used in the domains such as search engines, where evolution was not considered before. 

There are some similarities between this algorithm and our algorithm: 

► Both aim to achieve adaptation to dynamic environments 

► Both algorithms try to fine tune the offl ine evolved networks in the environment 
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Our algorithm differs from this algorithm in several ways, they are: 

► In this algorithm, online evolution is used to adapt to the change in the environment, 

whereas our algorithm uses ANN learning algorithms for the same purpose. 

► This algorithm considers only feedforward networks, whereas our algorithm can handle 

recurrent networks. 

► In this algorithm, architectural evolution 1s not implemented. 

► In this algonthm, the role of ANNs is very limited. 



CHAPTER 5 HYBRID LEARNING ALGORITHM 

Overview 

This chapter presents a Hybrid learning system for drifting environments This chapter discusses 

the details of the core algorithm. The approach presented in this chapter improves the 

performance of neural networks in drifting environments. 

5.1 Introduction 

Evolution and learning are the most fundamental processes of adaptation. Evolution itself has an 

ability to adapt to the internal characteristics or regularities of an environment and this area is well 

explored with successful results ( EPNet by Yao 1999, NEAT by Kenneth Stanley et al) Hence 

evolution serves as the primary adaptive process. From an evolutionary point of view, learning 

has at least three adaptive functions (Miller & Todd, 1990) 

• It can help and guide evolution 

• It allows adaptation to the environmental changes, which are too fast for the evolution to 

track. 

• It helps to overcome the size lim1tat1ons of genotype by exploiting the regularities of the 

environment. 

Hence learning helps the agent to partially control the input from the environment by developing 

the agents' behavior. Evolution can only optimize the performance of the agents for the next 

generation. But when an environment changes from one generation to another generation, the 

agents may not perform well in the present environment as optimization is made using the 

performance in the last generation's environment that is different from the present. By bemg 

sensitive to environmental conditions that could not be anticipated by evolution, learning can 

incorporate them in the agents' behavior (Stefano Nolfi et. al, 1995). 

When combined with evolution, learning can use the regularities of the environment to build more 

complex phenotypes. Hence, learning is considered as a secondary adaptation process that 

49 
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provides a continuous active development due to its sensitivity to the dynamics of the 

environment 

5.2 The framework of the algorithm 

This algorithm is inspired by the ways living organisms evolve. Over the generations, living 

organisms employed mutations and crossover to produce better offspring. This process of 

Darwinian principle is effectively used in the existing algonthms for better results. But in real life 

the environment surrounding the generations is not static, and if the organisms do not adapt to 

the current changes in their lifetime they will be extinct in a few generations. The organisms not 

only change from generation to generation but learn to adapt to the changing surroundings in 

their lifetime. Lamarck1an learning proposes the similar idea that the organisms pass on the 

learned knowledge, over their lifetime, to the next generations that in turn produce better 

offspring. For a static environment, we may choose to exclude the lifelong learning since its 

benefits are limited and can also be achieved without including lifelong learning. But this is not 

true for dnfting environments. To survive in dynamic environments, the art1fic1al intelligence 

agents need to learn in their lifetime. 

Adaptation is defined (Nikola Kasbov, 2002) as: 

1. A set of parameters that are subject to change during the interaction with the 

environment. 

2. An incoming continuous flow of information. 

3. A goal that is applied to optimize the software performance over time. 

For a system to adapt to an environment, it should have the following components. 

1. Data acquisition 

2. Mechanism to provide general and adaptable frame work. 

3. Knowledge acquisition. 

As human beings are provided with sensors like eyes and ears to sense the surroundings, in our 

system, agents are equipped with sensors to acquire required information from the environment. 

Since evolution of human beings depended on both crossover and mutation of their 

chromosomes, we use a general framework that includes Genetic Algorithms (Gas) due to the 
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availability of mutation and crossover operators. GAs are used to create a population of networks 

for every generation. The GA algorithm is influenced by the following issues: 

a) Encoding 

b) Population size 

c) Genetic operators 

d) Diversity 

The knowledge is acquired through Genetic algorithms and ANN learning methods. GAs can 

acquire knowledge over generations and produce a collection of better-fit networks. When human 

beings are born, they are born with some knowledge encoded in their chromosomes. Although 

this knowledge provides basic abilities, in this ever changing world human beings have to learn in 

their lifetime to live better in the changing surroundings. For life long learning humans have to 

collect the signals or inputs from the surroundings and process them in the brain using their 

accumulated knowledge or experience to gather new experience from the resultant actions. We 

have used ANNs as agents' brains and by changing the dynamics of these ANNs with the help of 

learning rule, we make the agents learn to adapt to the environment. 

When humans migrate to an unknown place, they use their basic knowledge to understand the 

surroundings and gather knowledge to adapt. This newly acquired knowledge is passed to their 

offspring either in written or oral form. This helps the offspring to adapt to the new surroundings 

quickly and efficiently. This initial knowledge is collected by placing some basic agents in a 

simulated environment that resembles actual environments. We let the evolution work on the 

agents over a number of generations recording the inputs from the environment, to the better 

performing agents, and their corresponding output values. To make use of these facts we divided 

our algorithm into two stages called offline and online. Both of these stages use the initial 

knowledge. The offline stage plays the role of first training the offspring and is used to provide a 

better platform for online stage. Also it attempts to accelerate the online process. Both stages 

combine evolution with learning but in different approaches. The Offline stage uses the 

collaborative approach where the learning of GAs and ANNs is integrated into a single system. 

The online stage uses the supportive approach where GAs and ANNs learning are applied at 

different stages. In large-scale applications, the offline stage can be removed, as it may prove 

computationally expensive. 
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5.3 Requirements for the Proposed Algorithm 

5.3.1 Representation of Genotype 

Representation or encoding plays an important role in evolution and affects the ease of 

conversion and details in mapping from genotype to phenotype. Representation influences other 

factors that affect the GAs and their applicability. 

Real value encoding is more natural and closely represents a problem space. Often real world 

problems have vanables that are continuous over a domain rather than discrete. Hence, for our 

algorithm we require real valued encoding of genotypes for the agents in drifting environments. 

The proposed algorithm attempts to combine basic types of evolutions on neural networks. 

Hence, the representation should be able to allow these combinations of evolution. It can be 

direct or indirect encoding as long as 1t satisfies the above requirements and allows all genetic 

operators to be present in the evolutionary process. 

5.3.2 Population Size 

The size of the population affects the performance of evolution. The diversity of agents depends 

on the population size. But the requirement of population size is application specific. Hence, we 

suggest experimenting with different population sizes for the application of concern. 

5.3.3 Genetic Operators 

The genetic operators are the vital components of the genetic application. If we use binary 

encoding for chromosomes then the use of traditional GA operators is natural and the application 

of GA operators such as mutation becomes simple. When we use real valued encoding, we may 

have to alter the traditional operators to be able to work on the real encoded chromosomes. 

The genetic operators are broadly classified as: 

1 ) Crossover 

2) Mutation 

3) Selection 

The genetic operators are affected by two issues: 

a) Representation scheme 

b) Type of evolutions on neural networks 

The representation scheme influences and changes the way the genetic operators work on 

chromosomes. For example, we can use GAs to evolve the weights, connections, learning rules 

and/or combination of all of these. So, this scheme also affects the selection of genetic operators. 

For example, the crossover operator may not be useful due to competing conventions problem 
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associated with the encoding scheme. Our algorithm attempts to m1m1c the human evolution in 

which crossover is the main operator. Hence, the design of a crossover operator is also an 

important factor and representation should allow it. 

Most of the present day algorithms tend to exclude the crossover operator due to the competing 

conventions problem that depends on their representation system. 

5.3.4 Diversity 

When we use GAs to evolve populations of ANNs, the degree of similarity or differences among 

the networks is an important criterion. If the population is not diverse, then the problem of 

crowding arises. Crowding 1s a problem in GAs where one individual is much more fit than the 

others, leading the population to concentrate around this individual and variations of it. This 

makes the population concentrate on a small region of population search space. Therefore, 

spatially distributing the population into species preserves the diversity, thereby providing an 

opportunity to increase the fitness. Hence, our algorithm requires the population to be divided into 

several species based on a numerical measure of the architecture. Thus by preserving the slowly 

maturing genes through the speciation, our algorithm maintains diversity in the population. 

OFFLINE 

Genetic Algorithm 

Selection 
N/W1 ....... N/Wn 

Figure 5.1 Frame work of the algonthm 

ONLINE 

Outputs 

I GA operations I 
I Spec1at1on I 

Selection 
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5.4 Offline Stage 

The system architecture for the offhne stage is as shown in Figure 5.1 

Step1: 

Representation 

In biological world, crossover occurs more frequently than the mutation, hence the true evolution 

needs crossover as its primary operator. Due to the competing conventions problem, the hybrid 

algorithms tend to leave crossover and solely depend on mutation. 

We can encode the networks using real valued parameters and make them more applicable to 

the real world problems. For lifelong learning and better adaptation, the system should be 

capable of dynamically growing while possessing the ability to prune whenever the need arises. 

This process 1s possible by distinguishing the genotype from phenotype. The representation 

should also allow us to design such a flexible system. Genotype defines the state of 

characteristics in a collection of chromosomes called genome, and these characteristics are 

mapped into actual network via the phenotype. 

Implementation Details 

We have used a type of direct encoding scheme called, node based direct encoding for our 

chromosome representation. In the node based direct encoding scheme neuron and link genes 

are provided with all details. For example a link knows the neuron it connects to, the neuron it is 

coming from, and weight of that link. Our representation is inspired by the NEAT genotype 

architecture. This flexible representation allows us to map the genotype into the phenotype with 

ease and uses the "Innovation Number" concept introduced in NEAT. 

The chromosome or genotype 1s divided into two genes: 

a) Neuron gene 

b) Link gene 

The neuron gene contains a unique id called the innovation number for the neuron and 

information about the type of the neuron i.e. input or output. The Link gene contains a unique 1d 

for the hnk also called the innovation number, the information about the two neurons it connects, 

the real valued connection weights, whether link 1s recurrent, and most importantly whether it 

participates in the firing of neuron's output. 

The innovation numbers for neurons and links help in overcoming the competing conventions 

problem. Our innovative representation allows us to design not only feedforward ANNs but also 

recurrent ANNs. 
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Step 2: 

We begin by generating the population of networks or genomes for future steps. Conceptually, 

our algorithm does not suggest starting with a large number of nodes and pruning them when 

necessary. Thrs method seems less efficient and may result in large architectures. This is even 

possible when we have a fixed number of output and input neurons. Therefore, we start with a 

minimum set of nodes and add nodes when 1t is necessary. 

Our algorithm evolves a random and dynamic network of neurons. We do not have layers of 

hidden neurons rather we have individual hrdden neurons. In this step we generate initial random 

networks with zero or more hidden neurons. 

Implementation Details 

We keep the number of input and output nodes fixed to enable supervised training. Hence, we 

generate a population of genomes with only the input and output nodes and random weights. 

Later, a few of those genomes are perturbed to have hidden nodes. This step allows us to grow 

near optimal genomes even for a large-scale application. 

Step3: 

We map the genotypes into phenotypes to create actual neural networks from the minimal 

genomes created in step2. 

Implementation Details 

Now, we consider the genotypes of each chromosome. By using the information provided in the 

neuron gene and link gene, we build a phenotype or actual neural network wrth all the rnput, 

output, hidden nodes, and the synapses connecting them. 

Step 4: 

Train the networks generated rn step3 usrng a modified backpropagation (MBP) algorithm. The 

MBP is designed for the random neural networks with hidden nodes rather than networks with 

hidden layers. 

Implementation Details 

As our networks are dynamically generated, we do not have any hidden layers. Instead we have 

randomly introduced hidden nodes between input and output layers. The general 

backpropagation method for neural networks works only on layers of neurons. With dynamic 

networks, arranging the randomly generated neurons into layers is difficult. Hence, we modrfred 
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the backpropagation to work with individual hidden neurons rather than working with hidden 

layers. 

The following steps describe our MBP algorithm: 

Prerequisites: each neuron has a means of calculating and storing the number of outgoing links. 

This is stored in a variable called 'error-status'. 

For each input/output pair in the training set do the following: 

1) Apply the inputs to the input layer 

2) Propagate the inputs through all hidden and output neurons 

generate the corresponding output. 

3) a) At output neurons set the corresponding 'error-status' 

further output neurons are variables to '0', indicating no 

connected to these neurons. 

b) Calculate the error at output neurons using desired and 

produced output values. 

c) Adjust the weights of all the connections coming into these 

neurons. 

4) a) Now for each hidden neuron set the 'error-status' variable to 

the number of output neurons it is connected to. 

b) Whenever the error from an outgoing neuron is calculated 

reduce the 'error-status' variable by '1'. 

c) When 'error-status' variable value is zero, we have collected 

errors from all outgoing neurons and hence modify all incoming 

synapses weights. 

d) Repeat the process until the incoming neurons are input 

neurons. 

The MBP training is set for fixed number of iterations and the training error is used as a 

measurement to rank the networks. Offline learning is intended for accelerating the process. We 

calculate the fitness as 1/error and rank the networks from most fit to least fit. 

Steps: 

We apply the genetic operators on the population. The crossover and/or mutation operators are 

applied on the sorted networks to produce offspring. 
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Implementation Details 

We have used four types of mutation operators. 

1. Add Link: we can add either forward link, feedback, or recurrent link between two nodes. 

a. Forward lmk b. Feedback lmk 

Figure 5.2 

0 

c Recurrent lmk 

2. Add Neuron: we add a neuron between two neurons bisecting the connection. The 

connection weight value is divided approximately equally between the two new 

connections formed due to the bisection of old connection. Figure 5.3 depicts the 

process. 

® 
Figure 5.3 Before and after addmg a neuron 'D' between neurons 'A' and 'C' 

The above two mutations are mainly architectural mutations. 

3. Weight Mutation: We perturb each connection weight with a predefined mutation rate. 

4. Mutation of Activation for Response Curve: Mutating the activation of the response curve 

helps in evolving the learning rules. This is achieved by perturbing the controller variable in 
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the sigmoid activation function and thus changing the range of threshold for the firing 

neurons. 

Sigmoid function f(a) = 1/(1+e•<atc)) 

Where 'a' is the activation value 

'c' is the controller variable. 

The controller variable 'c' affects the shape of the curve. This mutation helps in evolving 

the learning rules. 

f(c) f(c) 

For low 'c' value C For high 'c' value C 

Figure 5.4 The sigmoid functJ.on for different values of controller variable (c) 

Crossover: 

While being an important evolutionary parameter in the biological world, crossover was omitted in 

most of the present evolutionary algorithms due to the competing conventions problem it creates. 

This problem makes the crossover operator inefficient in producing better offspring. Using a 

unique global numbering scheme for links and neurons, we can avoid the production of invalid 

networks. Based on these unique identification numbers, the genes are tracked and aligned 

chronologically. Matching genes are inherited randomly. Suppose two genomes are selected for 

the crossover. Their genes are ordered according to their unique global numbers. One genome 

may contain some genes that are not present in the other genome at a particular position. The 

genes that are not present in both genomes and are not present in either the beginning or the end 

of their respective sorted genomes, are called 'disjoint genes'. But the genes that are not 

matched and are either at the beginning or at the end of their respective sorted genomes, are 

called 'excess genes'. Disjoint and excess genes are inherited only from the fittest parent. 
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Step 6: 

In order to preserve d1vers1ty, we spec1ate the networks into different species using a 

mathematical cntenon based on architectural parameters. This speciat1on into groups not only 

mimics natural evolution but also helps in avoiding the crowding effect. 

Implementation Details 

We calculate the 'compatibility distance' using architecture specific measures like disjoint and 

excess genes. If the compat1b1lity distance is within certain boundaries, then the ind1v1dual is 

added to that species. If the individual is incompatible with all the current species then a new 

species is created and the individual 1s added to this newly created species. 

Step 7: 

Perform steps 4 to 6 until required fitness is achieved. 

Implementation Details 

Each time we execute steps 5 and 6, we perform step 4 to calculate the MSE. If the error is less 

than or equal to the minimum value, the loop 1s terminated. The other approach 1s to run steps 4 

to 6 for a fixed number of iterations regardless of the MSE. If we follow the second approach, we 

can avoid applying MBP each time we perform steps 5 and 6. 

Step 8: 

Select 'N' fit networks for the next phase. 

Implementation Details 

We have used Roulette wheel selection due to its simplicity and effectiveness. 

5.5 Online Stage 

The architecture for onhne stage is diagrammed in Figure 5.1. The online stage is similar to the 

humans applying and updating their acquired knowledge in new surroundings and passing it to 

the next generations for better adaptation to the new surroundings. This 1s the stage where the 

advantage of our algorithm is observed and tested with agents in a drifting environment. We 

create intelligent agents with neural networks brains. The 'N' networks selected from the offline 

'stage are used as the brains of the agents. If the offline stage 1s not available then we create 

random minimal networks and use them as the brains of intelligent agents. The online stage 

follows the collaborative approach rather than the supportive approach for hybridization of 

evolution and learning. The onhne stage is the combination of two phases that toggle 
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1. Evolution 

2. Learning online or on field 

The offhne stage 1s sometimes optional and used only to accelerate the online learning process. 

When the offline stage is not present, we first apply 'evolution phase' and then 'learning online 

phase'. Otherwise we can begin with the online learning stage. 

Population of Networks 

n Entered into the field 

Environment 

n Using Sensors (1/Ps) 

R 
Perception e 

p n Learning Rule e 
a 
t ANN Modification 

n Outputs of ANN 

Actions 

n Applied on surroundings 

Environment 

NO 

Fitness Evaluation 

Applying GA Operators .---------=---------, 
Evolution on Networks and Speciation 

Selection for new generation 

Figure 5.5 Frame work of ONLINE stage. 

5.5. 1 Learning Phase 

This phase generates networks that can learn continuously, rather than using pre-learned 

networks. The networks that can learn can adapt more efficiently to the subtleties of the 
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environment. The performance difference between learned and learning networks can be 

observed clearly in dynamic environments. This notion is supported by J.M Baldwin's (1896) 

views: 

a) If the environment is continually changing, those indIvIduals capable of learning and 

adapting quickly to the environment will have greater advantage compared to other 

indIvIduals. 

b) Those individuals who can learn and adapt quickly will have less dependence on the 

genetic code and will help to achieve more rapid evolutionary adaptation. 

In this stage, the learning method used is called online learning where the network 

parameters are updated after the presentation of each example. 

The steps performed in the learning stage are descnbed below: 

Step1: 

The basic knowledge is incorporated into networks using an evolutionary phase where 

genetic algorithms are applied to them. By inserting these networks as their brains, we make 

the agents intelligent. 

Implementation Details: 

The agents equipped with the networks from the offhne stage or evolution phase enter into an 

environment that changes from one generation to the next. 

As humans have a lifespan of certain number of years, the agents are given a fixed number 

of time units to explore their environment and learn to adapt. This can be considered as a 

lifespan for the agents in a generation. 

Step2: 

The agents' world consists of many obstacles and they must achieve certain goals in their 

lifetime. To avoid the obstacles, agents should have a means of sensing the environment so 

as to avoid the obstacles while reaching their goals. 

Implementation Details 

The agents perceive the environment with their sensors and the sensor readings serve as 

inputs to the ANNs. 
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Step 3: 

Similar to the human tendency of using oral or written knowledge to gain experience about 

their surroundings in their lifetime for better living , our agents are provided with a learning 

mechanism to make them more adaptable to the changes and dynamics of the environment. 

Implementation Details 

The agent's brains (ANNs) are updated using a learning method from input collected from the 

sensors. Our algorithm is based on supervised learning, hence we only modify online 

backpropagation algorithm where the input is collected randomly from the environment. The 

algorithmic parameters are modified for each input, hence, to reduce the loss of previously 

learned knowledge, we employ a history sensitivity function. The online learning can be of 

two types: 

i. Global 

ii . Local 

Global Online Learning: 

In this type of learning, the exact desired values are not required . 

TEACHER 

Out 

Fis the threshold function 
(step function) 

Figure 5.6 Illustration of Global Learning 

In the global online learning, the inputs are random and the network does not have the exact 

desired outputs, making it difficult to apply supervised training. Hence, when using global 

online learning, we use one or more fitness parameters to produce the desired outputs for 

each set of random inputs from the environment. In the global online learning, we do not 
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modify network parameters such as connection weights using a training set, but can opt1m1ze 

the networks using one or more fitness parameters. 

Advantages: 

1. It does not require any training input-output set. 

2. Optimization depends solely on the parameters that affect the fitness. 

Disadvantages: 

1. Cannot optimize the networks for the environment in the current generation. 

2. Needs to produce target output for each random input from the environment. 

3. It is difficult to include all fitness parameters to produce a good target output set for 

random input set from the environment. 

Local Online Leaming: 

In local onhne learning, the obJect1ve of neural network training is to find optimal network 

parameters (e.g. Connection weights) to minimize the error between the desired value and the 

actual response. The local online learning uses a set of input-output pairs to guide the network 

learning in a relatively new environment. We need to use a filter that compares the random input 

collected from the environment and selects an output of a closely matching input from the training 

pair. These outputs are used as target outputs. Local online learning optimizes the network 

fitness by changing parameters like connection weights in the current generation. The 

effectiveness is affected by the learning method and the training set. 

Advantages: 

1. Simple to use. 

2. Optimizes the fitness function to adapt to the dynamics of the environment in every 

generation. 

3. Dependency on evolution 1s less when a stable architecture is found. 

4. Accelerates the evolution towards adaptation. 

Disadvantages: 

1. The design of the training set requires a lot of expertise and time. 

2. The optimization 1s greatly affected by the efficiency of the training set. 

3. The dependency on environment fitness parameters is less. 
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The online Modified Back Propagation (MBP) that 1s used to train the networks is s1m1lar to its 

offline counterpart with the following differences: 

Step 4: 

• It is designed on online learning principle hence the network parameters are 

modified on application of every input and parameter modification does not 

guarantee the desired output on re-application of the same input. 

• History sensitivity function is used to reduce the amount of learning over time. 

This function is designed in such a way that learning 1s faster in the beginning 

and decreases over time to preserve past learning. 

The steps 2 and 3 are repeated for a fixed number of time units. These time units indicate the life 

span of agents per generation. 

5.5.2 Evolutionary Phase 

This phase is applied between generations GAs are used to identify the superior architecture, 

weight and learning rule to determine a set of best fit networks for the next generation. This 

phase is also similar to the one in the offline stage but differs in the method of usage and order of 

application of its operators and also in fitness evaluation. The important operators used are: 

1) Crossover 

2) Mutation 

3) Selection 

This stage also performs speciation and evaluation. The goal of evolution is to build 'N' fit 

networks for the learning stage. 

Step1: Representation 

This is similar to offline stage representation scheme. The representation should allow all three 

kinds of evolutions (weight, architecture, learning rule) as well as their combinations. 

Step 2: New Population 

In this step, we generate a new population from the current population. The genetic operators are 

applied on the current population and thus new population is generated. 

Implementation 

If the current generation is empty, we generate random rnibal networks with and without hidden 

nodes. The networks have fixed input and output neurons. In all the other cases we apply genetic 

operators. 
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1. Crossover: 

We generate a random variable for each parameter and compare 1t with user defined crossover 

constant, and 1f 1t is greater, we then perform crossover. The crossover constant value can be set 

at the beginning and is constant throughout the process. The crossover operation 1s similar to the 

offline stage. 

2. Mutation: 

Mutation is performed in 5 ways. 

i. Add hnk 

1i. Add neuron 

11i. Weight mutation 

iv. Mutation of activation response for responsive curve 

v. Mutation of learning rule parameters 

The first four mutations are s1m1lar to offline learning. Mutation of learning parameters can be 

implemented in a similar way to that of weight mutation. 

We have implemented the learning rule as a linear equation with 6 parameters to enable the 

evolution of learning rule for connection weight mod1ficat1on. 

~Weight= pO * (pl* weight - p2 *error* learning rate - p3 * weight 
* learning rate+ p4 *error+ p5 *output* learning rate) 

Where, pO is a real valued variable used to scale the result, and p1, p2, p3, p4 & p5 are real 

variables. 

This general linear equation tries to reduce the amount of modification applied to the weights with 

respect to the error. 

We generate a random variable for each parameter and compare it with standard mutation rate 

and if 1t 1s greater, we perform mutation. We use Gaussian mutation method. 

The design of the learning rule is based on the following important criteria. 

• Outputs generated 

• Error from target outputs 

• Leaming rate 
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Step 3: Selection 

Here we perform two tasks 

a) Maintaining diversity 

b) Selecting best individuals 

To preserve the diversity, we divide the population into different species This process of 

speciation is similar to the spec1at1on m offlme stage. We calculate the average fitness for each 

species using the age and the performance of networks in the environment. Networks are sorted 

based on their fitness in each species, and most fit network from each species is added to the 

new population intact. The rest of the new population is selected from the networks generated 

using genetic operators and their fitness. We select the required 'N' networks from all the species 

depending on their average fitness. 

Implementation Details 

Spec1at1on 1s similar to the offlme method which uses "compatibility distance" measure to speciate 

the generated networks. Fitness is designed on agent's efficiency to avoid the obstacles while 

fulfilling its goals. 

Step 4: 

'N' networks are selected to perform online. 

The learning and evolution phases are repeated until some terminating critenon is met 
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No 
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CHAPTER 6. APPLICATION ANALYSIS 

Overview 

This chapter introduces and analyses the mine sweeper application implemented using our 

algorithm. 

6.1 Introduction 

Our algorithm attempts to develop intelligent agents which can adapt to a changing environment 

effectively and more quickly than existing implementations. Since the algorithm is inspired by 

human behavior and evolution, we need an application that allows us to test and observe all 

aspects of the proposed algorithm. A mine sweeper application is used to demonstrate the 

capabilities of our method in adapting to drifting environments. The mine sweeper's initial 

framework is implemented by Mat Buckland (Al techniques for game programming, 2002). We 

modified the classes and the visualization graphics in this framework to implement our algorithm. 

In our application, we use neural networks to control the behavior of the mine sweepers and to 

make them intelligent. The mine sweepers live in a drifti~g environment with a few different 

obstacles and several mines The positions and shapes of these obstacles change from one 

generation to the next. The goal of the application 1s to evolve intelligent mine sweepers to 

explore as much area as possible, while avoiding the obstacles within certain time limit. 
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Figure 6.1 The demo program in action . 
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The mine sweepers that collide with obstacles or walls appear in red. They remain in red until 

they move away from the obstacles or walls. The others are shown in blue. When F key is 

pressed the graphics are hidden from view and the statistics are displayed instead. The 

application starts in two windows, one showing the mine sweepers exploring the environment and 

the other displaying the best networks from the previous environment. 

6.2 Architecture of ANNs 

To design the architecture of ANNs, we need to determine the required number of inputs and 

outputs and a mechanism to obtain the inputs from the environment. To determine the number of 

inputs for the ANN , we need to recognize the type of information a mine sweeper needs to 

navigate through the environment and the issues related to acquiring that information. This 

application involves solving two game related problems. 

• Obstacle avoidance 

• Environment exploration 

6.2.1 Obstacle Avoidance 

Obstacle avoidance is a very common task in game theory. It is the responsibility of the game 

agent to perceive its environment and to navigate without coll iding with the obstacles in the game 

world . 
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To perform successful obstacle avoidance, the agent must be able to perform the following: 

• Observe its environment 

• Take action to avoid potential collisions 

To observe the environment, the agents (mine sweepers) must have a way to see the world. Mine 

sweepers are equipped with a number of sensors, which enable them to perceive the obstacles in 

the world around them. The sensors are the line segments that radiate outward from the center of 

the mine sweepers' bodies. Sensors, which are represented as vectors, have a direction and 

length associated with them. 

Figure 6.2 A mine sweeper with sensors 

In our experiments, mine sweepers can have any number of sensors with various lengths. 

However by default, a mine sweeper has five sensors that radiate outward for 25 pixels. Every 

time unit of a generation is divided into certain number of frames. The mine sweeper's sensors 

explore each frame for possible obstacles in the game world. Every mine sweeper is equipped 

with a mechanism to determine the distance to any obstacle it may encounter. The distances 

between the mine sweeper and the obstacle are measured using sensors. The closer the object 

is to the mine sweeper, the closer to zero is the reading provided by the sensors. When there are 

no obstacles intercepted by the sensors, then the sensors provide a value of -1. 
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Figure 6.3 A mine sweeper seeing the obstacle through its sensor readings. 

To check whether a mine sweeper has actually collided with an object, we check the readings 

provided by its sensors. These readings are compared to a collision distance value that is 

calculated from the scale of the mine sweeper and the length of the sensor line segment. 

6.2.2 Environment Exploration 

Equipped with only sensors, the mine sweepers can see the obstacles and learn to avoid them in 

a few generations, but they do not explore the environment efficiently since they do not have any 

guidance. To develop a useful behavior for exploring the environment, in addition to learning to 

avoid the obstacles, mine sweepers need additional guidance for exploration. This guidance is 

provided in the form of memory. The environment is divided into a number of equal sized cells. 

These cells are represented by a simple data structure. This data structure is used as a memory 

map to store information about the number of time units a mine sweeper has spent in that cell. 

This information helps the mine sweepers to evolve the weights, architecture and learning rules of 

the ANNs to favor the unvisited cells. 

Figure 6.4 The memory readings help the mine sweeper to explore unvisited cells in the environment. 
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The end points of the sensors act as antennas for the mine sweeper and retrieve the information 

stored in the cell. These end points are referred to as feelers and the readings from these feelers 

enable the mine sweepers to navigate the environment. The number of time units a mine 

sweeper spent in the surrounding cells Is retrieved by these feelers. Using this information, 

feelers provide the corresponding readings which are between -1 and 1. For example, 1f a mine 

sweeper previously spent 0 time units in a surrounding cell then the corresponding feeler 

provides a reading of -1. If it spent 20 time units in a surrounding cell then the reading would be 

0.2, and 1f It spent 80 time units the reading would be 0.8. 1f 1t spent 100 or more time units in a 

cell then the reading would be 1. 

With these feeler and sensor values the mine sweeper can navigate through the environment. 

The readings from feelers along with sensors are used as inputs to the neural network. An 

additional input is supplied to indicate whether the current mine sweeper has collided with some 

obstacle in the environment. Therefore, the default number of inputs for the neural network would 

be 11, namely, five feelers, five sensors, and an additional input indicating collisions. 

6.2.3 Outputs 

The number of outputs for the ANN depends on how we control the movements of the mine 

sweepers. We assume that mine sweepers run on two tracks. Tracks are the endless metal belts 

on which vehicles such as battle tanks travel. The rotation and velocity of the mine sweepers are 

adJusted by altering the relative speed of the tracks. Hence, we need two outputs, one for each 

track. To make the movements more realistic, we need to produce real valued outputs for each 

track. This can be achieved by using a s1gmo1d function as the actIvatIon function for the output 

neurons. The rotation and speed of a mine sweeper are determined using the outputs generated 

for the left and right tracks. The mine sweeper's rotational force is calculated by subtracting the 

force applied by the right track from the left track. The mine sweeper's speed is the sum of the 

values of left and right tracks. With this information about the inputs and outputs of the agents, we 

can proceed to discuss the details of the network's architecture and encoding. 

We start with a minimal architecture that includes few networks with hidden nodes for effective 

exploration of architectural search space. We have used a direct encoding method called node­

based encoding. Node-based encoding encodes all the required information about each neuron 

in a single gene. For each neuron (or node), its gene will contain information about the other 

connected neurons and/or the weights associated with those connections. 
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Figure 6.5 Two networks with their chromosomes using node-based encoding. 

Our application uses a genome structure containing two kinds of genes namely neuron genes 

and link genes. Both of these genes contain information about their connectivity and respective 

parameters. Both of these genes make use of a concept of a unique number called the innovation 

number (Kenneth Stanley at al., 2000) to avoid the competing conventions problem. These 

innovation numbers are provided for both neurons and links and hence are present in both the 

neuron and link genes. The links can be forward or recurrent, whereas neurons can be of input, 

output, hidden or bias types. 

Genotypes: 

Neuron Gene 
Begin 

Innovation number: It is the unique id for the neuron 
Type of neuron : This indicates whether the neuron is input, output, hidden or bias 

End; 

LinkGene 
Begin 

Innovation number : Unique id for the link 
Link from neuron : Id of the Neuron from which link comes from 
Link to neuron : Id of the Neuron to which the link goes to 
Weight : A real value attached to the link · 
Recurrent : Indicates whether the link is recurrent or not 
Enabled : Indicates whether the link is active or not 

End; 

Figure 6.6 The neuron and link genes' parameters and their description 
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After creating the genotypes, we need to create actual neural networks with all the neurons and 

the links among them. This mapping from genotype to phenotype is implemented in a container 

class called Genome. The Genome class contains both genotype objects and phenotype objects. 

The phenotype object has information about learning rate and learning rule parameters. The 

learning rate is common for all the neurons in the network. In addition, the learning rule 

parameters are used in evolving learning rules for the whole network. 

We start with genomes containing zero or few hidden neurons and evolve them into larger 

architectures with improved fitness. This approach helps in maintaining small architectures and is 

inspired by two facts: 

1. Nature has evolved from small (less complex) organisms to the larger (more complex) life 

forms. 

2. By including genomes with hidden neurons, in addition to minimal genomes (genomes 

with zero hidden neurons) in the initial population, genetic algorithms can have a larger 

architectural search space. 

6.3 Our Framework 

The mine sweeper application is controlled by a class called "CController'. The CController class 

controls the relevant invocation of methods from various classes. 

l 
Mine sweepers 
performing in the field 

I 
I ::::I:::: I Genetic Algorithm 

Figure 6.7 Program flow for the mine sweeper application 
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When an instance of the CController class is created, the following steps take place: 

• Our framework provides an option to use offline training. If offline training 1s used then 

initial networks are obtained from the offline learning stage. Otherwise, the constructor 

generates the random initial networks for online stage. 

• The generated networks are inserted into the mine sweepers 

• For online stage, we create a random environment with obstacles for every generation. 

• For online stage, we create all necessary graphical requirements to display the objects 

and mine sweepers. 

6.3.1 0ffline Learning Stage 

Our algorithm uses offline learning stage to provide a better foundation for the online stage by 

generating networks with at least some knowledge rather than no knowledge. The offline 

stage is performed only once to speed up the rest of the process. We henceforth explain the 

step by step processing of this stage with references to the algorithm 

i. Random Network Creation: 

Initially a random population of neural networks are created and stored in a vector data 

structure. The information about number of inputs, number of mine sweepers and number of 

outputs is decided here. Consequently, we carry out the following steps: 

• We create a population of genomes. These genomes contain only input and output 

neurons. They do not have any hidden neurons. 

• To explore the search space of architectures with hidden neurons, we modify some 

of the genomes by inserting random hidden neurons. 

For a network in the population 

Begin 

End 

■ Search for a valid link. 

• If a link is found then split the link into 

two different links. 

• Assign a new innovation number for the new 

links. 

• Divide the old weight into half and assign 

the value as new weights for the two links. 

• Create a hidden neuron and assign a new 

innovation number to it. 

■ Set the two new links as incoming and out 

going links to this neuron. 



• We create and assign a unique innovation number to every neuron gene and hnk 

gene. 

In this way, we create genomes with and without hidden neurons. 

ii. Mapping Genotypes to Phenotypes: 
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Using the above created genomes, we map the genotypes into phenotypes to create actual 

networks. This mapping 1s performed using the information in the genes to build the neural 

networks from neurons by connecting the links between them. The links are assigned the 

weight information stored in their genes. These weights are assigned randomly when the 

genomes are initially created. 

Procedure Create Network(depth of the network) 

Begin 

End 

• Create the neurons from the Genome information. 

• Create the links from Genome information only for those 

links that are enabled. 

• Create a link between relevant neurons and assign the 

weight stored in the link gene. 

• Set the error status (i.e. the number of outgoing links) 

for each neuron. 

iii. Hybrid Training for the Networks: 

In the offline learning, we use modified backpropagat1on (MBP) with the genetic algorithm's 

operators for refining and evaluation of created networks. But since MBP 1s supervised, 1t 

needs guidance to train the networks To provide this guidance, we placed several random 

mine sweepers with no learning ability in the environment. We evolved them for 50 

generations, each generation with 600 time units. At the 50th generation, we stored inputs 

and outputs of the best performing mine sweepers We edited these input-output data to 

extract 250 input-output sample set. These samples served as training data for both offline 

and onhne MBP. The environment used for collecting the training data was static and was 

similar to one of the random environments. For a desired number of iterations, we do the 

following: 
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1. For each phenotype, we apply modified backpropagation algorithm and store the fitness of 

each network. The offlme MBP returns the corresponding MSE. 

For each network 
Begin 

End 

Error= Function Offline MBP () 
Fitness of Network= 1/Error 
Store Fitness (Fitness of Network) 

2. We sort the networks according to their fitness values. 

3. We apply genetic operators like crossover and mutation on the sorted networks. We 

generate a random number. Only when this random number is less than standard 

mutation rate, we perform the mutation. Otherwise, we do not perform the mutation 

operation. Crossover is also similarly performed. 

There are four types of mutations performed m offlme stage. They are: 

• Add link 

• Add Neuron 

■ Weight perturbation 

■ Mutation of activation response curve 

These mutations are performed as described below. 

Add Lmk: The new hnk can be either recurrent link or forward link. 

Procedure Add Link () 
Begin 

Generate a random number 
If (Random Number Generated< Mutation Constant) 
Begin 

Generate a random number 
If (Random Number Generated< Recurrent link Constant) 
Begin 

Get a random neuron 
Add a recurrent link, if the neuron does not have one 
Assign an innovation number to the link 

End 
Find two unlinked random neurons 
Add link between these two neurons 
Assign an innovation number to the link 

End 
End 
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Add Neuron· We add neurons only if the total number of neurons is less than the 

maximum number of neurons allowed. 

Procedure Add Neuron() 
Begin 

Generate a random number 
If (Random Number Generated< Mutation Constant) 
Begin 

If (Total Number of neurons< Number of neurons allowed) 
Begin 

Search for a valid link. 
If a link is found then split the link into two 
different links. 
Assign a new innovation number for the new links. 
Divide the old weight into half and assign the value 
as new weights for the two links. 
Create a hidden neuron and assign a new innovation 
number to it. 
Set the two new links as incoming and out going 
links to this neuron. 

End 
End 

End 

Weight Perturbation: The mutation of weights 1s achieved using two different 

approaches. If a randomly generated value is less than a pre-defined constant, we 

replace the older weight with completely a new weight, else we perturb the weight by 

a small amount. 

Procedure Mutate Weights () 
Begin 

End 

For each link in the network 
Begin 

Generate a random number 
If (Random Number Generated< Mutation Constant) 
Begin 

Replace the weight with a random value 
End 
Else 

Begin 
Add a small random value to the existing weight 

End 
End 
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Mutation of the Activation Response Curve This mutation serves as a preliminary 

evolution of learning rules. 

Procedure Mutate Activation Response () 
Begin 

For each neuron 
Begin 

Generate a random number 
If (Random Number Generated< Mutation Constant) 
Begin 

Add a small random value to the existing 
Activation response value. 

End 
End 

End 

4. If mutations are not performed then we only perform the crossover operation. The 

crossover operation 1s executed only when the generated random number is less than 

the pre-defined crossover constant. 

Procedure Crossover (parentl, parent2) 
Begin 

Generate a random number 
If (Random Number Generated< Crossover Constant) 
Begin 

End 

Find the Fittest Parent 
Add the Fittest parent's genes to the other parent 
If both parents are equally fit 
Begin 

End 

For every gene in the child 
Begin 

Select one parent randomly and add gene 
from that parent 

End 

End 

5. After performing crossover or mutation operators we once again apply the MBP to 

filter out the less fit genomes from the next population. 

iv. Selection: 

The required number of genomes is selected to be included in the new population using 

tournament selection method. In tournament selection 'n' ind1v1duals are selected from 

the population and the fittest of these genomes 1s chosen to be added to the new 

population. This process is repeated as many times as 1s necessary to complete the 

requirements of the new population. 
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v. Perform Iterations: 

We repeat steps i to iv on the new population until we reach the desired iterations. 

The required number of networks 1s passed on to the online stage. 

6.3.2 Online Stage 

The online stage is the core of our process. It can perform with or without the help of offline 

learning. The offline stage is only used to give online stage a good foundation with better fit 

networks in the beginning. Online stage works in two phases known as learning phase and 

evolutionary phase. 

6.3.2.1 Leaming Phase: 

With the offline stage active, the networks developed in the offline stage are used as the initial 

brains of mine sweepers. Otherwise, initial random networks are created and inserted as initial 

brains of mine sweepers. Online stage is the core of the application that improves the mine 

sweepers' performance in a drifting environment. 

In each generation, the mine sweepers search the environment for a number of time units. During 

each time unit, the ANNs of mine sweepers are constantly fed with the information from the 

surroundings. Depending on these inputs, the networks are updated using the modified 

backpropagation (MBP) learning algorithm. This version of MBP differs greatly from the offline 

version in the following aspects: 

• This is an onhne version, i.e. it 1s updated after application of the input 

• The amount of modification to the network parameters decreases over time 

• It can use online gradient descent or can evolve the rule 

• It can learn locally or globally 

First, the input is processed by all the neurons to produce the outputs. Next the outputs of each 

neuron are collected. We fetch the desired outputs from the training set using a filter function. 



Procedure Filter(input from environment) 
Begin 

Min= infinite 
Index=0 
For each training sample 
Begin 

End 

Find the distance between training input and the input 
from environment 
If (Min> distance 

Index= Index+ 1 

Get the closest matching sample using Index 
Desired outputs= Matched Sample Outputs 

End 
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This procedure 1s used with local online learning. We have used 250 input-output training pairs to 

guide the mine sweepers in the random environment. 

For global onhne learning, we do not use the input-output tra1nrng set. Instead of using the fitness 

criterion, we generate the desired outputs for the current inputs from the environment. 

In our mine sweeper application, an agent's fitness 1s determined broadly over three 

observations. 

a) The number of collisions with obJects or walls 

b) The number of rotations 

c) Speed of exploration 

We use a simple heurrst1c function to generate outputs for global onhne learning. In our 

application the heuristic function uses the speed of the mine sweeper to produce the target 

outputs. To keep the function simple, we have used only one parameter (speed of mine sweeper) 

of the environment fitness criterion. 



Procedure Online MBP ( 
Begin 

For each neuron 
Begin 

End 

Set error status value to number of outgoing links from 
that neuron 

Calculate the error for output neurons using gradient descent 
rule 
For each hidden neuron 
Begin 

If hidden neuron's error status is zero 
Begin 

End 
Else 
Begin 

Calculate error using total error from its output 
neurons 
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For each neuron connected to this hidden neuron through 
outgoing link 

End 
End 

Begin 
Compute the total error 
Reduce error status value by 1 

End 

Now update the weights with the error calculated using gradient 
descent rule 

End 

Using the mean squared error from desired and generated outputs, we update the weights with 

either delta (gradient descent) rule or evolved rule. We have implemented global and local online 

learning methods with the back propagation principles. The local and global learning methods 

differ from each other in only one way. Global online generates desired outputs using a heuristic 

function whereas local online uses a training input-output set. The modified backpropagation 

algorithm uses a history sensitivity function like f (t) = N/t where 'N' is a constant (typically N=1) 

and t Is the number of time units elapsed. The history sensitivity function acts as a loss function, 

which preserves the previous knowledge while the networks learn online. If we choose to evolve 

the learning rule rather than delta rule, we use a linear general equation with five random real 

variables and a random real variable for scaling. 

These five real variables are mutated after each generation depending on the difference between 

the user defined mutation constant and a random real value generated. The weight change is 

described by the following function. 

6Weight 
6Weight 

F (Weight, Learning Rate, Output, Error) 
p0 * (pl* weight - p2 *error* learning rate - p3 * weight 
* learning rate+ p4 *error+ pS *output* learning rate) 
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p0, p1, p2, p3, p4 and p5 are posItIve constant real values, typically less than one, that regulate 

the mod1f1cation of weights. These constants change from generation to generation. The weight 

updating process attempts to preserve the previously learned knowledge by including the old 

weight in the updating process Also by including the error value in the equation we let the 

network learn new information. 

The general equation depends on four important parameters that affect the learning. 

They are: 

• Error at the neuron 

• Output of the neuron 

• Old weight of the link 

• Learning rate 

If we do not wish to evolve the learning rule then the online gradient descent rule is used for the 

modification of connection weights. This updating rule Is applied to all the output and hidden layer 

neuron in-coming connection weights. It is continued until the desired number of time units per is 

reached. 

6.3.2.2 Evolutionary Phase: 

After a desired number of time units per generation has been reached, evolutionary phase 

begins. Evolutionary phase applies genetic algorithm operators on the current population to 

produce a better population for next generation. 

We start this phase by calculating the fitness for each mine sweeper from the current 

population. We kill or remove the networks and species that are not improving over past few 

generations. The rest of the networks in the population are sorted according to their fitness 

values. Next we apply the genetic algorithm operators mutation, crossover and selection. 

We speciate the networks using their architectural differences. Later we copy the best performing 

networks from each species without any modIficatIon into the new population. For the rest of the 

members of population, we use crossover and/or mutation on the current population. 

The mutation and crossover operations are earned out analogously to the offline stage. The 

crossover, add link, add neuron, mutate learning curve response, and mutate weight use the 

same methods that are used in the offline stage. Unlike the offline learning, these operators are 

not iterated but are applied until a desired population size Is achieved. The online stage has one 

extra mutation that is not present in the offline stage. If we choose to evolve the learning rule, 
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then we need to mutate the learning rule parameters. This is earned out by applying mutation on 

the newly created population from the application of the other GA operators. 

Procedure Mutate Learning Rule Parameters () 
Begin 

End 

Generate a random number 
If (Random Number generated< Mutation Constant) 
Begin 

For all learning rule parameters 
Begin 

End 

Add a small quantity of random value 
End 

If there is an underflow of networks due to the rounding error, we apply tournament selection to 

select the rest of the networks from the old population. The new population of networks are 

inserted into mine sweepers as their new brains. The learning phase will now resume with these 

mine sweepers. 

6.3.3 Performance Parameters 

We can set various performance parameters. Some important parameters with their sample 

values are shown below. 

iNumSensors 5 

iNumSweepers 50 

iNumTicks 300 

dLearningRate 0.5 

dLearningParameterl 

dLearningParameter2 

dLearningParameter3 

dLearningParameter4 

dLearningParameter5 

dLearningParameter6 

iOfflineTraining 

iGlobalOnline 0 

iRuleEvolution 1 

iOnlyGAs 0 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

1 

The number of sensors a mine sweeper can have 

The mine sweeper population size 

The number of time units per generation 

Learning rate for the delta or evolved rule 

Learning rule parameter used in rule evolution 

Learning rule parameter used in rule evolution 

Learning rule parameter used in rule evolution 

Learning rule parameter used in rule evolution 

Learning rule parameter used in rule evolution 

Learning rule parameter used in rule evolution 

Option for having offline training 

When value is 1 global online method is chosen 

When value is 1 learning rule is evolved 

When value is 1 only GAs are used to update 
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When the apphcat,on 1s launched, the F key speeds up the evolution, the R key resets 1t, and the 

B key shows the best four mine sweepers from the previous generation. The B key can only be 

used from second generation onwards, since 1t requires ANNs from previous generation. The 

previous generation's best mine sweeper is designed to leave a trail as it explores. The best 

sweepers also display their sensors and feelers. 



CHAPTER 7 ANALYSIS OF RESULTS 

Overview 

This chapter discusses the results and improvements achieved by our algorithm using a mine 

sweeper application. Our algorithm helps in developing intelligent mine sweepers. We analyze 

the results with the help of screen shots and Excel graphs. 

7.1 Introduction 

Our algorithm assists the artificially intelligent agents (mine sweepers) by enabling them to learn 

in a drifting environment with the help of the acquired knowledge. Our experimental results show 

a considerable improvement in the performance of mine sweepers in a dnfting environment. To 

prove our claim that lifelong learning combined with evolutionary process can boost the 

intelligence of art1f1cially intelligent agents in a drifting environment, we tested our algorithm on 

several different scenarios. Our algorithm has two learning stages called offline and online. 

Offline learning 1s optional. Online learning 1s further divided into two more phases called the 

learning phase and the evolutionary phase The learning phase runs for the desired number of 

time units for each generation and the evolutionary phase runs between generations. 

The following describes the type of experiments we carried out to prove the effectiveness of our 

algorithm. 

• Performance of only evolutionary (genetic) algonthms 

• Performance of offline learning and evolutionary (genetic) algorithms 

• Performance of offline learning and online learning (learning and evolutionary phases) 

• Performance of only online learning (learning and evolutionary phases) 

• Performance of offline learning, local online in learning phase with evolutionary phase 

• Performance of offline learning, global online in learning phase with evolutionary phase 

• Performance of local online in learning phase with evolutionary phase 

• Performance of global online in learning phase with evolutionary phase 

86 



87 

While we observed interesting results, we also discovered the following influencing factors. 

• Number of time units for generation 

• Number of sweepers 

• Number of generations 

• Number of obstacles present 

• Fitness criteria 

7 .2 How Do We Analyze? 

The simplest way to determine whether the mine sweepers are adapting to new environments is 

by looking at them while they perform. However, this method of observation cannot be 

documented. Hence we used two different fitness readings to assist us in evaluating the 

performance of the algorithm. The best ever fitness indicates the highest fitness value achieved 

by any agent (mine sweeper) in any generation until the present one, whereas generation's best 

fitness value indicates the highest fitness value achieved by an agent (minesweeper) in that 

generation. In the ideal case for an evolved network both fitness measurements should have the 

same values. However, these two fitness measurements may not be the same for environments 

having different number of obstacles and therefore different regions for exploration. In our 

experiments, there are two ways in which one can recognize an evolved network. 

1. The generation's best fitness value should have little variation from the best ever fitness value. 

2. The generation's fitness value should maintain its variation consistently from the best ever 

fitness over several generations. 

The former indicates near optimal solution whereas the latter still has room for further 

improvements. 
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Figure 7.1 (a) A screen shot showing the mine sweepers exploring the environment 

(b) A screen shot showing previous generations best four networks 

7.3 Only Genetic Algorithms 

The smart minesweeper application is a combination of GAs and ANNs. In this experiment 

genetic algorithms are only responsible for the development of the networks and behavior of the 

mine sweepers. ANNs are merely used to generate outputs for each input. We initially start with a 

population of neural networks and after every generation GAs are used to generate a better 

population of networks using genetic operators such as mutation , crossover and selection. 
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Figure 7.2 depicts the performance of the intelligent agents equipped with only GAs. For 1000 

generations, each generation with 300 time units, the maximum fitness ever achieved is less than 

1500 units and the average fitness is under 800 units. Also each generation 's fitness (shown in 

yellow) fluctuates across the best ever fitness (shown in pink) and also these fluctuations are 

random . This indicates that the GAs have failed to evolve a single best performing network. 

7.3.1 Analysis of Performance with Only Evolutionary (Genetic) Algorithms 

The performance of mine sweepers equipped with GAs alone was excellent in static 

environments. Within 300 and 500 generations, a best performing mine sweeper is found . But 

their performance in a drifting environment was not acceptable. They failed to capture the 

changes in the environment efficiently and in most cases they did not produce a best performing 

minesweeper over different generations. In drifting environments, intelligent agents equipped with 

GAs alone exhibited the following behavior: 

• The Changes in the environment prompt the search of the architecture and weight space 

whenever fitness goes down. This will result in rather complex architectures. 
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• GAs (Genetic Algorithms) have frequently failed to produce a minesweeper that shows 

best performance over varying environments. Even when the generation's best fitness is 

close to best ever fitness, which was observed in several different mine sweepers, they 

performed well only in their specialized environment. 

• GAs improve the population based on their fitness values in the previous environments. 

They do not consider the fact that the environment may change for the next generation. 

Hence, they generate better fit population for the environment in which the old population 

has performed. For drifting environment within 700 to 800 generations, the mine 

sweepers did not perform well in most of the experiments. 

• If the mine sweepers, equipped with GAs alone, search the drifting environment for a 

long number of generations then the architecture of ANNs gets complicated. 

7.4 Offline Learning and Evolutionary (Genetic) Algorithms 

We start with offline learning initially and then apply evolutionary algorithms after every 

generation for further improvement. The offline learning is comprised of genetic algorithms and 

modified backpropagation algorithm. The genetic algorithms evolve weights and architecture 

simultaneously and MBP is used to further refine the networks. MBP is also used to test the 

fitness of the networks. The offline learning provides knowledgeable neural networks. As these 

networks gain some knowledge about the environment, they tend to reach higher fitness values in 

less time when compared with only evolutionary algorithms in drifting environments. But 

characteristics of offline learning and evolutionary algorithms both support only static 

environments. So offline learning may reduce the number of generations required to reach 

highest possible fitness, but does not really improve the performance in dynamic environments. 
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Figure 7.3 The fitness of intell igent agents when offline learning is combined with GAs 
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Figure 7.3 depicts that in 1000 generations, with 300 time units for each generation, the highest 

ever fitness reached is below 2000 units and the average fitness is less than 1000 units. We can 

also observe that each generation's fitness (yellow line in the graph) deviates from the best ever 

fitness (pink line in the graph) randomly. This indicates the probability of different best performing 

networks for different environments. 

7.4. 1 Analysis of Performance with Offline Learning and GAs: 

Even with the addition of offline learning, mine sweepers were behaving similarly to those that 

used genetic algorithm alone. Offline learning is carried out only in the beginning and then genetic 

algorithms takeover. Therefore, initially the mine sweepers were performing better but as the 

effect of offline learning fades away their performance becomes similar to those that used GAs 

alone. Offline learning needs lot of resources. So we can not replace the genetic algorithms stage 

with offline stage. Both offline learning and GAs perform best in static environments and tend to 

perform poorly in drifting environments. 
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7.5 Offline Learning with Online Learning {Learning Phase and Evolutionary Phase} 

In this approach, the ANNs benefit from both offline learning and online learning. The mine 

sweepers are initially equipped with the neural networks that were evolved using offline learning. 

They explore the environment with the help of their sensors and feelers In the learning phase the 

mine sweepers learn while they explore the environment. We use MBP to modify the weights of 

neural networks for every input collected by the mine sweepers from the environment. This helps 

the mine sweepers adapt to the intrinsic details of the environment when they explore the 

environment. After completion of every generation in evolutionary phase, genetic algorithms are 

applied to generate new population from best fit networks of previous generation's population. In 

learning phase, we have implemented two types of learning methods, namely: local onhne 

learning method and global online learning method. 

i. Local Online Learning Method: 

Local onhne learning method is a type of online learning method that is carried out using a 

training set. We compare the inputs obtained from the environment by the sensors and 

feelers with the training set inputs. When a close match is found, we use the corresponding 

outputs to guide mine sweepers in the environment. This local online learning method 

depends on the MBP algorithm, which in tum depends on the learning rule it uses. We can 

either use standard delta rule or we can evolve the rule. Depending on type of learning rule, 

local onhne learning method can be applied either using the delta rule or by evolving a rule. 

This learning quickly grasps the subtleties of the environments while the mine sweepers 

perform and improves their fitness considerably. 

ii. Global Online Learning Method: 

Global online learning method does not use any training set In this type of learning neural 

networks act as decision-based neural networks. We generate guiding outputs for each input 

from the environment using a heuristic function of one or more fitness parameters. Similar to 

local onhne learning method 1t 1s applied in two ways depending on the type of learning rule 

we use in the MBP. Although global learning method opt1m1zes the performance of the mine 

sweepers while they explore the environment, it becomes more effective over the generations 

and works more closely with the genetic algonthms applied in evolutionary phase after each 

generation. 
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Figure 7.4 The fitness of intelligent agents when offline learning and online learning combined 

The highest ever fitness is above 2000 units and the average fitness value is near 1000 units 

(Figure 7.4) . The generation's fitness (shown with yellow line) variation from the best ever fitness 

(shown with pink line) is decreasing as generations increase. After 750 generations, both yellow 

and pink lines are close enough to indicate a perfect evolved network i.e. a network performing 

best in all different environments. 

7.5.1 Analysis of Performance with Offline Learning and Online Learning: 

The mine sweepers benefit from learning while exploring the environment by adapting to the 

dynamics of the drifting environment. Through online learning , the mine sweepers modify their 

previous knowledge to adapt to the subtleties of the new environment. But they should not loose 

the pre-learned knowledge in the process, hence, we decrease the amount of learning over time. 

Using either global or local online learning, we can observe the following: 

• The mine sweepers show improved behavior from the first generation. 

• The mine sweepers capture the dynamics of the environment over time. 

• Over the generations mine sweepers exhibit improvements in their fitness because of the 

close corporation of online learning with genetic algorithm. Online learning and GAs 

complement each other in producing a better performing mine sweeper over generations. 
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In most of the experiments, tl1e best performing ANNs have very simple architectures. 

The performance of all mine sweepers is improved due to the online learning capability. 

7.6 Only Online Learning (Learning Phase and Evolutionary Phase) 

The absence of offline learning slows down the fitness growth of mine sweepers. However, after 

few hundred generations mine sweepers become equally efficient to those that used combination 

of offline and online learning. This proves that online learning is self sufficient. 
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Figure 7.5 The fitness of intell igent agents Onl ine Learning (local online with delta rule in learning phase and 
evolutionary phase) 

Figure 7.5 depicts the performance of online learning (local online with delta rule in the learning 

phase and evolutionary phase with GAs) alone. For 1000 generations, with 300 time units for 

each generation, the best fitness ever is 2000 units and maximum average fitness value is 

around 600 units. The variations between yellow line (each generation's fitness) and the pink line 

(best ever fitness) decrease as the number of generations increase. Therefore, we can say that 

the algorithm has successfully evolved a network that can perform best in different environments. 
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7.6.1 Analysis of Performance with Online Leaming Alone 

In the absence of offline learning, the initial mine sweepers are too unrefined to produce best 

fitness. Onhne learning improves their behavior as early as the first generation. Even though 

initial fitness values may not be satisfactory, however, as generations increase mine sweepers 

become more sensitive to the environment with the close corporation of evolutionary phase and 

learning phase. After a few (200 to 300) generations, mine sweepers' performance is as good as 

those that included offline learning. 

7.7 Analysis ofOffline Learning 

Figures 7.2, 7.3, 7.4, and 7.5, all exhibit the fact that offline learning significantly improves the 

average fitness of the population. In few generations, the best fitness values are reached. 

Although the offline learning considerably improves the fitness for the first few generations, after a 

large number of generations the effect of offline learning is not noticeable. Hence, we conclude 

that offline learning 1s necessary but not essential for the adaptability. 

7 .8 Comparisons between Different Approaches 

The results of all our experiments indicate that the online learning is the key factor for adapting in 

drifting environments. We have experimented with different types of online learning such as 

global and local online methods individually as well as in combination with offline learning. 

Comparisons among these experimental results provide more insight into the online learning. 

The Global online learning method does not use a training set to guide the mine sweepers in the 

new environment but uses a heuristic function to produce guiding outputs. Local onhne learning 

uses a small training set to guide the mine sweepers in a drifting environment. The local online 

learning algonthm performs slightly better than the global onhne learning But global online 

learning is faster than local online learning. Global and local online learning methods are further 

categorized based on the learning rule that is used to update the weights. 

i. Global Online and Local Online Methods with Delta Rule (Leaming Phase) and Offline 

Leaming: 

Figures 7.4 and 7.6 depict the performances of offline learning and the local online method with 

delta rule, and offline learning and the global onlme method with delta rule, respectively, in a 

drifting environment. Figures 7.4 and 7.6 exhibit that both experiments have their highest ever 

fitness values above 2000 units, but local online method's highest average fitness value is better 

than that of the global online method. The local online graph (Figure 7.4) 1s smoother than that of 
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the global one due to its close cooperation with offl ine learning. Both offline learning and the local 

onl ine method of learning phase require a training set. The global online method depends on 

heuristic function and does not benefit from offline learning. In our application global online 

learning optimizes only the speed of the mine sweepers and does not improve their navigation to 

avoid hitting the obstacles. Hence, the generation's best fitness deviates from the best ever 

fitness (Figure 7.6). 
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Figure 7.6 The fitness of intelligent agents when global on line with delta rule of learning phase, evolutionary phase 
and offiine learning are combined 

ii. Global Online and Local Online methods with Delta Rule of Learning Phase: 

Figures 7.5 and 7.7 depict the performances of local online and global online methods with delta 

rule, respectively. In absence of offline learning, global online method with delta rule attained the 

highest fitness in comparison to the local online method with delta rule. Also, it can be observed 

that the average fitness of global online learning is far better than the local online learning . But 

global online learning graph (Figure 7.7) shows more deviations of generation's fitness from the 

best ever fitness. In fact, local online learning graph is smooth. Absence of offline learning 

affected the average fitness of local online learn ing. But the absence of offline learning did not 

have considerable effect on global online learning method. 
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Figure 7.7 The fitness of intelligent agents when global online with delta rule of learning phase and evolutionary phase 

iii. Global Online and Local Online methods with Rule Evolution and Offline learning: 

Figures 7.8 and 7.9 depict the performances of global online and local online methods of learning 

phase with rule evolution and offline learning, respectively. Figure 7.9 shows that local online 

method's performance is superior to global online method 's (Figure 7.8) performance. The reason 

for the decrease in the fitness of global online can be attributed to the randomness introduced by 

the generalized rule. The learning rule attempts to adapt to provide the best fitness possible. 

However, the global online learning directs the evolution of learning rule with respect to mine 

sweeper's speed only. Hence, the low fitness values are noticed for global online learning with 

rule evolution . But on the contrary, the same reason contributes towards better average fitness 

for global online learning. Although local online learning attains highest fitness, it still suffers from 

the deviation of generation's fitness from best ever fitness. These deviations are due to the 

imperfect nature of the evolving rule. If we continue the experiments for a large number of 

generations, the deviations at some point tend to decrease and then increase after a certain 

number of generations. This is due to the evolutionary process of the learning rule. When the 

general rule approximates the delta rule, in the process of evolution, the performance of mine 

sweepers is much better for both global and local onl ine methods. Furthermore, in the rule 

evolution the efficiency of the guidance is observed to play an important role. 
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Figure 7.8 The fitness of intelligent agents when global on line with rule evolution of learning phase, evolutionary phase 
and oftline learning are combined 
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Figure 7.9 The fitness of intelligent agents when local online with rule evolution of learning phase, evolutionary 
phase and offl ine learning are combined 

iv. Global Online and Local Online Methods with Rule Evolution: 

Figures 7.10 and 7.11 depict the performance of global and local online methods with rule 

evolution, respectively. The absence of offline learning does not have much effect on global 

onl ine method. Although local online learning has higher fitness than the global online learning, 

local online learning is greatly affected by the absence of offline learning and its generation's 

fitness deviates considerably from the best ever fitness. Mine sweeper population 's average 

fitness is higher with global online learning than local online learning. Also, global online learning 

graph (Figure 7.10) is smoother than local on line learning (Figure 7.11 ). 
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Figure 7.10 The fitness of intelligent agents when global on line with rule evolution of learning phase and evolutionary 
phase 



101 

Local Online with Rule Evolution 

1800 

1600 

1400 

-· 
1200 

1000 

ti) - Num Species 
ti) 
G) 

800 .5 
U::: 

- Best ever Fitness 

- This gens Fitness 

- Avg Fitness 
600 

400 

200 

0 

1 0 

-200 

Generations 

7.11 The fitness of intelligent agents when local on line with rule evolution of learning phase and evolutionary phase 

v. Online learning vs. GAs only: 

Figures 7.2, 7.5, and 7.7 depict the performances of only GAs, local online learning (learning 

phase) with GAs (evolutionary phase) , and Global online learning (learning phase) with GAs 

(evolutionary phase) , respectively. The graphs clearly depict the superior performance of online 

learning algorithms over only GAs. The evolutionary phase combined with learning phase show 

an improved performance in drifting environments. The deviations that are present in Figure 7.2 

are due to the fact that the mine sweepers do not learn the changes in the drifting environment. 

The GAs are guided by learning phase in drifting environments and are not completely random. 

Also, only GAs are frequently observed to generate complicated architectures. Figures 7.12 and 

7.13 represent the architectures generated by only GAs, and online learning (learning phase and 

evolutionary phase) , respectively. Whenever fitness decreases, only GAs are unable to capture 

the changes in the environment and therefore attempt to increase the complexity of the 

architectures in order to improve the fitness. But GAs (evolutionary phase) when combined with 

the learning phase generate architectures that are tuned to the subtleties of environment with the 

help of continuous learning from learning phase. 
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Figure 7.12 A sample run of "GAs Only" showing the complex architectures generated 
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Figure 7.13 A sample run of "Only Online Learning" showing the simple architectures generated even after 4000 

generations. 
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7.9 The Factors that influence the performance of Application 

Due to the involvement of large number of variables, the application's performance depends on 

certain important factors. The following provides brief analysis of some important factors. 

I. Number of Time Units per Generation: 

The time umts directly affect the performance. When there are more time units per generation, 

the mine sweepers can explore more area and thus increase their fitness by finding more mines. 

In our application, an environment always contains a fixed number of mines. Hence the fitness is 

directly proportional to the number of time units per generation. In an environment without mines, 

the fitness is directly proportional to the number of time units per generation until a saturation 

point and then the fitness stays constant. 

ii. Number of Mine Sweepers: 

The number of mine sweepers affects the diversity of the population. If there is a large number of 

mine sweepers, then there is a fair chance of finding an effective architecture in less time. When 

the population is more diverse, the genetic algorithms can generate better fit offspnng. 

Iii. Number of Generations: 

As the generations increase the mine sweepers get better and better. However, if the changes in 

the environment are not significant, then the MBP over-trains the networks after a large number 

of generations. Over-training reduces the fitness and the architectures get complicated. 

Iv. Number and Type of Obstacles Present: 

As the environments are of equal size for all generations, number and type of the obstacles 

present in the environments affect the fitness by either offering more area to explore or by 

constraining the mine sweepers in the environment. Fitness mainly depends on the amount of 

area that has been explored. The type of obstacles also affect the fitness. A rectangular obstacle 

may occupy more space than a triangular obstacle. Hence, the number of obstacles present in 

the environment is inversely proportional to the fitness value in that environment. 

v. Fitness criteria: 

The number of generations needed to evolve a network depends on the fitness criteria. If we 

have simple fitness criteria then we need fewer generations to evolve a network. The number of 

generations required depends on the complexity of the fitness criteria. Figure 7.14 depicts the 

graph for simple fitness criteria area exploration. 
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The above graph demonstrates that within 600 generations a best performing network is evolved. 

If the fitness criterion is complex, a best performing network requires many more generations to 

evolve. 

Therefore, all key factors (number of time units, number of mine sweepers, number of 

generations, number of obstacles and fitness criteria) have sign ificant effect on the performance 

of the algorithm. As our algorithm is guided (learning phase) and random (evolutionary phase) , 

these factors play an important role in evolving an adapting network for drifting environments. 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

Overview 

We have proposed a hybrid algorithm that can learn to adapt to new environments and suggested 

possible extensions to the present work. 

8.1 Conclusion 

Designing neural networks is a tedious process that requires lots of expertise and time, since a 

large number of variables may be involved. Evolutionary (Genetic) Algorithms have been 

successful in automatically generating efficient neural networks. The design of neural networks 

involves three different aspects namely: connection weights, architecture, and learning rules. 

There are no algorithms present that can evolve a neural network using simultaneous evolution of 

weights, architecture, and learning rules due to the complexity of the process. Our algorithm 

provides an efficient way to achieve the simultaneous evolution of all three aspects to generate 

efficient neural networks for drifting environments. Our algorithm is capable of evolving 

feedforward as well as recurrent neural networks and focuses on a key issue: Dynamism in the 

environment. With drifting environments the nature and variables of the environment change over 

time, emphasizing the importance of adapting to the changes in the environments. We provided a 

theoretically motivated hybrid adaptive learning algorithm for the drifting environments. Our 

algorithm design is based on the following evolutionary characteristics. 

• Automatic design and generation of dynamic neural networks using evolution. 

• A continuous (life-long) learning mechanism for these dynamic networks. 

In add1t1on to evolution, we used online learning mechanism to fine-tune the evolved networks for 

drifting environments. We observed that complete evolution with an onflne learning mechanism 

enabled the neural networks to adapt to changing environments eff1c1ently in a short period of 

time. We designed and successfully used two types of online learning namely heuristic online 

(global online) and guided online (local online). 

Our experimental results demonstrate the ability of our algorithm to evolve efficient neural 

networks with simple architectures in few hundreds of generations. We have evolved neural 
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networks for mme sweepers in an environment that changes from one generation to the next and 

our results indicate great improvement m the mme sweepers' behavior. In addition, our results 

md1cate that our algorithm successfully evolved simple and easy-to-fine-tune networks in very few 

generations. 

We have used a variation of backpropagat1on algorithm, which can adJust the connection weights 

for a random and dynamic neural network without the need for re-arrangement into layers. Our 

modified backpropagation (MBP) can handle feedforward and recurrent networks. We 

successfully evolved learning rules using a simple general linear equation. Our results have 

shown that the evolved learning rule is as effective as the delta rule. Many real time applications 

do not have an input-output training set, hence we formulated the heuristic online or global online 

which uses a heuristic function to improve the agent's (mine sweepers) performance in the 

environment. 

Our results show the performance of the hybrid algorithm with online learning is far superior to the 

performance of only evolutionary algorithms, even with complete simultaneous evolution. This 

underlines our basic claim that hfe-long learning is an important mechanism m adaptation in the 

dnfting environments. 

As our algorithm mimics human evolution we have successfully used all genetic operators in the 

evolutionary process. We have successfully implemented complete evolution and onhne learning 

to achieve effective design automation of neural networks with the ability to adapt to the dnftmg 

environments. Finally, our algorithm can be effectively used with artificial life as well as artificial 

agents in computer games. 
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8.2 Future Work 

• We have used supervised learning approach in our algorithm. Some real time 

applications do not support this approach. Hence future work could be extending the 

algorithm to use unsupervised learning approach. 

• One can extend the algorithm to use online evolution instead of online learning. It would 

be interesting to compare these two methods. 

• Our algorithm generates dynamic networks but the input and output nodes are fixed in 

the algorithm. Hence it can be an effective extension if we can add or delete input and 

output nodes as need arises. 

• Mod1f1ed backpropagation can be optimized to run faster. Also, it can be an interesting 

phenomenon to implement incremental evolution and observe the improvements if any. 



APPENDIX 

#ifndef C2DMATRIX_H 
#define C2DMATRIX_H 

I I------------------------------------------------------------------------
II 
II Name: C2DMatnx.h 
II 
II Authors: 
II Created by Mat Buckland 2002 
II Modified by Ami kumar Enumulapally 2004 
II Ami kumar Enumulapally 2005 
II 
II 
II Desc: Matrix class from the book Game AI Programming with Neural Nets 
II and Genetic Algorithms. 
II 
I 1------------------------------------------------------------------------

#include <stdhb.h> 
#include <math.h> 
#include <iostream> 
#include <vector> 

#include "utils.h" 

struct SPoint; 

using namespace std; 

class C2DMatrix 
{ 
private: 

struct S2DMatnx 
{ 

double _11, _12, _13; 
double _21, _22, _23; 
double _31, _32, _33; 

S2DMatnx() 
{ 

} 

_11=0; _12=0; _13=0; 
_21=0;_22=0;_23=0; 
_31=0;_32=0;_33=0; 

friend ostream &operator<<(ostream& os, const S2DMatnx &rhs) 
{ 

os << 11\n 11 << rhs._11 << 11 11 << rhs._12 << • 11 << rhs._13; 

os << 11\n 11 << rhs._21 << 11 11 << rhs._22 << 11 11 << rhs._23; 

os << 11\n 11 << rhs._31 << 11 11 << rhs._32 << 11 11 << rhs._33; 
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} 
}; 

return os; 

S2DMatrix m_Matrix; 

//multiplies m_Matrix with min 
mime void S2DMatrixMult1ply(S2DMatrix &min}; 

public: 

C2DMatrix() 
{ 

} 

//inrt1ahze the matrix to an 1dent1ty matrix 
Identity(); 

//create an 1dent1ty matrix 
void Identity(); 

//create a transformation matrix 
void Translate(double x, double y); 

//create a scale matrix 
void Scale(double xScale, double yScale); 

//create a rotation matrix 
void Rotate(double rotation); 

//applys a transformation matrix to a std: :vector of points 
mime void TransformSPoints(vector<SPomt> &vPomts); 

}; 

//multiply two matrices together 
mime void C2DMatrix: :S2DMatrixMultiply(S2DMatrix &min} 
{ 

S2DMatrix mat_temp; 

//first row 
mat_temp._11 = (m_Matrix._11 *mln._11) + (m_Matrix._12*mln._21) + 

( m_Matrix ._13*mln ._31); 
mat_temp._12 = (m_Matrix._11 *mln._12) + (m_Matrix._12*mln._22) + 

(m_Matrix._13*mln._32); 
mat_temp._13 = (m_Matrix._11 *mln._13) + (m_Matrix._12*mln._23) + 

(m_Matrix._13*mln._33); 

//second 
mat_temp._21 = (m_Matrix._21 *mln._11) + (m_Matrix._22*mln._21) + 

(m_Matrix._23*mln._31); 
mat_temp._22 = (m_Matrix._21 *mln._12) + (m_Matrix._22*mln._22) + 

(m_Matrix._23*mln._32); 
mat_temp._23 = (m_Matrix._21 *mln._13} + (m_Matr1x._22*mln._23) + 

(m_Matrix._23*mln._33); 

//third 
mat_temp._31 = (m_Matrrx._31 *mln._11) + (m_Matnx._32*mln._21) + 

(m_Matrrx._33*mln._31); 
mat_temp._32 = (m_Matrrx._31 *mln._12) + (m_Matr1x._32*mln._22) + 

(m_Matnx._33*mln._32); 
mat_temp._33 = (m_Matrrx._31 *mln._13) + (m_Matrrx._32*mln._23) + 

(m_Matrrx._33*mln._33}; 

m_Matrrx = mat_temp; 
} 
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//applies a 2D transformation matrix to a std:: vector of SPoints 
mime void C2DMatnx: :TransformSPomts(vector<SPomt> &vPomt) 
{ 

for (mt i=O; i<vPomt.s1ze(); ++1) 
{ 

(m_Matnx._31); 

(m_Matnx._32); 

} 
} 

#end1f 

double tempX =(m_Matnx._11 *vPomt[1].x) + (m_Matnx._21 *vPomt[1].y) + 

double tempY = (m_Matnx._12*vPomt[1].x) + (m_Matnx._22*vPomt[1].y) + 

vPomt[1].x = tempX; 

vPomt[1].y = tempY; 
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#include "C2DMatrix.h" 

///////////////////////////////////////////////////////////////////// 
II 
// Matrix functions 
II 
///////////////////////////////////////////////////////////////////// 
//create an 1dent1ty matrix 
VOid C2DMatrix: :Identity() 
{ 

m_Matrix._11 = 1; m_Matrix._12 = O; m_Matrix._13 = O; 

m_Matrix._21 = O; m_Matrix._22 = 1; m_Matrix._23 = O; 

m_Matrix._31 = O; m_Matrix._32 = O; m_Matrix._33 = 1; 

} 

//create a transformation matrix 
void C2DMatrix: :Translate(double x, double y) 
{ 

S2DMatrix mat; 

mat._11 = 1; mat._12 = O; mat._13 = O; 

mat._21 = O; mat._22 = 1; mat._23 = O; 

mat._31 = x; mat._32 = y; mat._33 = 1; 

//and multiply 
S2DMatrixMult1ply(mat); 

} 

//create a scale matrix 
void C2DMatrix: :Scale(double xScale, double yScale) 
{ 

S2DMatrix mat; 

mat._11 = xscale; mat._12 = O; mat._13 = O; 

mat._21 = O; mat._22 = yScale; mat._23 = O; 

mat._31 = O; mat._32 = O; mat._33 = 1; 

//and multiply 
S2DMatrixMult1ply(mat); 

} 

//create a rotation matrix 
void C2DMatrix: :Rotate(double rot) 
{ 

S2DMatrix mat; 

double Sm = sm(rot); 
double Cos = cos(rot); 

mat._11 = Cos; mat._12 = Sm; mat._13 = O; 

mat._21 = -Sm; mat._22 = Cos; mat._23 = O; 

mat._31 = o; mat._32 = O;mat._33 = 1; 

//and multiply 
S2DM~rixMufup~(matj; 

} 
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#1fndef CCONTROLLER_H 
#defme CCONTROLLER_H 

I I ---------------- --------------------------------------------------------
I/ 
II 
II 
II 
II 
II 
II 
II 

Name: ccontroller.h 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Arni kumar Enumulapally 2004 

Arni kumar Enumulapally 

// Desc: Controller class for Arni Smart Sweepers 
II 

2005 

I!------------------------------------------------------------------------
#include <vector> 
#include <sstream> 
#include <stnng> 
#include <wmdows.h> 

#include "CMmesweeper.h" 
#include "ut1ls.h" 
#include "C2DMatnx.h" 
#include "SVector2D.h" 
#include "CParams.h" 
#include "Cga.h" 
//#include <fstream> 

usmg namespace std; 

class CController 
{ 

private: 

//storage for the entire population of chromosomes 
Cga* m_pPop; 

//array of sweepers 
vector<CMmesweeper> m_vecSweepers; 

//and the mmes 
vector<SVector2D> m_vecMmes; 

//array of best sweepers from last generation (used for 
//display purposes when 'B' 1s pressed by the user) 

vector<CM mesweeper> m_ vecBestSweepers; 

mt 

//vertex buffer for the sweeper shapes vertices 
vector<SPomt> m_SweeperVB; 

//vertex buffer for obJects 
vector<SPomt> m_ObJectsVB; 

//vertex buffer for the mme shape's vertices 
vector<SPomt> m_MmeVB; 

//stores the average fitness per generation 
vector<double> m_vecAvF1tness; 

//stores the best fitness per generation 

m_NumSweepers; 
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vector<double> m_vecBestF1tness; 

//best fitness ever 
double 
float 

m_d BestF1tness; 
m_dAvgF1tness; 

//pens we use for the stats 
HPEN 
HPEN 
HPEN 
//HPEN 
HPEN 
HPEN 
HPEN 

m_GreyPenDotted; 
m_RedPenDotted; 

HBRUSH m_RedBrush; 
HBRUSH m_BlueBrush; 
HBRUSH m_BlackBrush; 

m_RedPen; 
m_BluePen; 
m_GreenPen; 
m_BlackBrush; 

m_OldPen; 

//HBRUSH m_BlueBrush; 

//local copy of the handle to the application wmdow 
HWND m_hwndMam; 

//local copy of the handle to the mfo wmdow 
HWND m_hwndinfo; 

//toggles the speed at which the s1mulat1on runs 
bool m_bFastRender; 

//when set, renders the best performers from the 
//previous genera1on. 

boo I m_bRenderBest; 

//cycles per generation 
mt 

//generation counter 
mt 

m_mcks; 

m_1Generat1ons; 

/ /local copy of the client wmdow d1mens1ons 
mt m_cxChent, m_cyChent; 

/ /this is the sweeper who's memory cells are displayed 

public: 

mt m_1V1ewTh1sSweeper; 

void PlotStats(HDC surface)const; 

void RenderSweepers(HDC &surface, vector<CMmesweeper> &sweepers); 

void RenderSensors (HDC &surface, vector<CMmesweeper> &sweepers); 

CController(HWND hwndMam, mt cxChent, mt cyChent); 

~CController(); 

v01d Render(HDC &surface); 
void WorldTransforml(vector<SPomt> &VBuffer, SVector2D vPos); 
void RenderMmes(HDC &surface, vector<SVector2D> &mines); 

//renders the phenotypes of the four best performers from 
//the previous generation 

void RenderNetworks(HDC &surface); 
void WnteResults(); 
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{ 

} 

}; 

#endif 

void GeneratePomt(mt &x, mt &y); 
float AvgF1tness() 

return m_dAvgF1tness; 

bool Update(); 

/ 1-------------------------------------accessor methods 
boo I FastRender()const{return m_bFastRender;} 
void FastRender(bool arg){m_bFastRender = arg;} 
void FastRenderToggle(){m_QFastRender = 1 m_bFastRender;} 

bool RenderBest()const{return m_bRenderBest;} 
void RenderBestToggle(){m_bRenderBest = 1 m_bRenderBest;} 

void PassinfoHandle(HWND hnd){m_hwndlnfo = hnd;} 

vector<double> GetF1tnessScores()const; 

void V1ewBest(mt val) 
{ 

} 

1f ( (val>4) 11 (val< 1) ) 
{ 

return; 
} 

m_lVlewTh1sSweeper = val-1; 
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#include 11CController.h 11 

//#include 11f1le.h" 
#mclude<fstream> 
#include <string> 
#include <sstream> 

#include <std10.h> 

#define PRINT OutputDebugStrmg 

//these hold the geometry of the sweepers and the mmes 
canst mt NumSweeperVerts = 16; 
vector<double> sensors; 
vector<double> transsensors; 
bool bBest; 
mt iEnv=0; 
char *sEnv= 1111 ; 

// Imt1ahze Mme sweeper vertices 
canst SPomt sweeper[NumSweeperVerts] = {SPomt(-1, -1), 

SPomt(-1, 1), 
SPomt(-0.5, 1), 
SPomt(-0.5, -1), 

SPomt(0.5, -1), 
SPomt(l, -1), 
SPomt(l, 1), 
SPomt(0.5, 1), 

SPomt(-0.5, -0.5), 
SPomt(0.5, -0.5), 

SPoint(-0.5, 0.5), 
SPomt(-0.25, 0.5), 
SPomt(-0.25, 1. 75), 
SPomt(0.25, 1.75), 
SPomt(0.25, 0.5), 
SPomt(0.5, 0.5)}; 

//Initialize Mme vertices 
canst mt NumMmeVerts = 4; 
canst SPomt mme[NumMmeVerts] = {SPomt(-1, -1), 

SPomt(-1, 1), 
SPomt(l, 1), 
SPomt(l, -1)}; 

//Initialize obJect vertices 
mt NumObJectVerts; 
mt NumObJectVerts5=44; 
canst SPomt obJects[44] = 

SPomt(200,60), 
SPomt(200,60), 
SPomt(200,100), 
SPomt(200,100), 
SPomt(160,100), 
SPomt(160,100), 
SPomt(160,200), 
SPomt(160,200), 
SPomt(B0,200), 
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SPomt(B0, 60), 



SPomt(S0,200), 
SPomt(S0,60), 

SPomt(250,100), 
SPomt(300,40), 
SPomt(300,40), 
SPomt(350,100), 
5Pomt(350,100), 
SPomt(250, 100), 

SPomt(220,180), 
SPomt(320,180), 
SPomt(320,180), 
SPomt(320,300), 
5Pomt(320,300), 
5Pomt(220,300), 
SPomt(220,300), 
SPomt(220,180), 

5Pomt(12,15), 
SPomt(380, 15), 
SPomt(380,15), 
SPomt(380,360), 
SPomt(380,360), 
5Pomt(12,360), 
5Pomt(12,360), 

SPomt(12,340), 
SPomt(l00,290), 
SPomt(l00,290), 
SPomt(12,240), 
5Pomt(12,240), 

5Pomt(12,15), 

const mt NumObJectVertsl = 20; 
const SPomt obJectsl[NumObJectVertsl] = { 

SPomt(12,15), 

5Pomt(380, 15), 

SPomt(380,15), 

SPomt(380,360), 

5Pomt(380,360), 

SPomt(12,360), 

SPomt(12,360), 

SPoint(12,15), 

5Pomt(80, 60), 

SPomt(200,60), 

SPomt(200,60), 

SPomt(200,100), 

SPomt(200,100), 
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SPomt(12,340), 

5Pomt(12,340), 
SPomt(12,340), 

SPomt(12,15)}; 



5Pamt(160,100), 

5Pamt(160,100), 

5Pamt(160,200), 

5Pamt(160,200), 

SPamt(S0,200), 

SPamt(S0,200), 

5Pamt(80 ,60) 

canst int NumObJectVerts2 = 14; 
canst SPamt abJects2[NumObJectVerts2] = { 

5Pamt(12,15), 

5Pamt(380, 15), 

5Pamt(380,15), 

5Pamt(380,360), 

5Pamt(380,360), 

5Pamt(12,360), 

5Paint(12,360), 

5Paint(12,15), 

5Pamt(250,100), 

5Pamt(300,40), 

5Pamt(300,40), 

5Pamt(350,100), 

5Pamt(350,100), 

5Pamt(250, 100) 

canst mt NumObjectVerts3 = 16; 
canst SPamt abJects3[NumObJectVerts3] = { 

5Pamt(12,15), 

5Pamt(380, 15), 

5Pamt(380,15), 

SPamt( 380,360), 

5Pamt(380,360), 

5Pamt(12,360), 

5Pamt(12,360), 

5Pamt(12,15), 
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SPomt(220,180), 

SPoint(320,180), 

SPomt(320,180), 

SPomt(320,300), 

SPomt(320,300), 

SPomt(220,300), 

SPoint(220,300), 

SPomt(220,180) 

const mt NumObJectVerts4 = 16; 
const SPomt obJects4[NumObjectVerts4] = { 

SPomt(12,15), 

SPoint(380, 15), 

SPomt(380,15), 

SPomt(380,360), 

SPomt(380,360), 

SPoint(12,360), 

SPomt(12,360), 

SPomt(12,15), 

SPomt(12,360), 

SPoint(12,340), 

SPomt(12,340), 

SPomt(l00,290), 

SPomt(l00,290), 

SPomt(12,240), 

SPoint(12,240), 

SPomt(12,15) 

//Create or append the results mto a excel file 

}; 

}; 

fstream storel("Evolution_Rules_Local_No_Off2.xls", fstream: :in I fstream: :out I fstream: :app); 

//---------------------------------------constructor --------------------
// 
// m1tlla1ze the sweepers, their brains and the GA factory 
II 
I/-----------------------------------------------------------------------
ccontroller: :CController(HWND hwndMain, 

mt cxChent, 
mt cyChent): m_NumSweepers(CParams::1NumSweepers), 
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m_bFastRender(false), 

m_hwndMam(hwndMam), 

m_1Generat1ons(0), 

m_dAvgF1tness(0) 

{ 

m_bRenderBest(false), 

m_hwndlnfo(NULL), 

m_cxChent( cxChent), 
m_cyChent( cyChent), 
m_lVlewTh1sSweeper(0), 

119 

m_iT1cks{0), 

storel<<"Generat1on"<<"\t"<<"Num Species"<<"\t"<<"Best ever FItness11 <<"\t"<<''Th1s gens 
Fitness"<<"\t"<<"Avg F1tness"<<"\t"<<"Env_no11<<"\t"<<"Env_name"<<endl; 

1f(CParams: :1OfflineTrammg==l) 
{ 

/ /Perform offlme stage 

vector<double> fitness; 
double dTempF1tness; 
mt 1IterS1ze=l0;//Number of iterations to be performed 

//Create Random Networks 
for (mt i=0; I<m_Numsweepers; ++1) 

{ 
m_ vecsweepers. push_back(CMmesweeper()); 

} 

//Create the population 
m_pPop = new Cga(CParams: :iNumSweepers, 

//create the phenotypes 

CParams:: iNumlnputs, 
CParams:: iNumOutputs, 
CParams:: 1OffhneTrammg, 
hwndMam, 
10,10); 

vector<CNeuralNet*> pBrams = m_pPop->CreatePhenotypes(); 

for(int ilter=0,1_tmp_here=0 ;ilter< 10;I1ter++ ,1_tmp_here++) 
{ 

fitness.clear(); 

for (int 1=0; 1<pBrams.s1ze(); i++) 
{ 

//Store the mean squared error from Modified Backpropagation 
dTempF1tness=pBrains[1]->offlmeTra1ning{m_hwndMa1n); 

// Fitness Is defined as 1/error here 
fitness. push_back( l/dTempF1tness); 

}//end of I FOR loop 

II Perform Genetic Operations 
vector<CNeuralNet*> pBrams = m_pPop->Epoch{f1tness,l); 

}//end of ilter FOR loop 



} 
else 
{ 

//assign the phenotypes 

for ( 1=0; I<m_NumSweepers; 1++) 
{ 

} 

m_vecSweepers[1].InsertNewBra1n(pBra1ns[1]); 
m_vecSweepers[1].SetStartmgPomt(180,200); 

//lets create the random mmes 
for(1=0;1<50;1++) 
{ 

} 

mt tempx1,tempy1; 
GenerateP01nt(tempx1,tempy1); 
m_vecM1nes.push_back(SVector2D(tempx1,tempy1)); 

//and the vector of sweepers which will hold the best performing sweepers 
for (1=0; I<CParams: :INumBestSweepers; ++1) 

{ 
m_vecBestSweepers.push_back(CM1nesweeper()); 

} 

//We are m onhne learning 

//let's create the mine sweepers 
for (mt i=0; I<m_NumSweepers; ++1) 
{ 

m_ vecSweepers. push_back( CM mesweeper()); 
} 

//lets create the random mmes 
for(1=0;1<50;1++) 
{ 

} 

mt tempx1,tempy1; 
GeneratePomt(tempx1,tempy1); 
m_vecMmes.push_back(SVector2D(tempx1,tempy1)); 

//and the vector of sweepers which will hold the best performing sweepers 
for (1=0; I<CParams: :INumBestSweepers; ++1) 

{ 
m_vecBestSweepers.push_back(CM1nesweeper()); 

} 

m_pPop = new Cga(CParams: :INumSweepers, 

//create the phenotypes 

CParams: :INumlnputs, 
CParams:: INumOutputs, 
CParams: :1OffhneTrammg, 
hwndMam, 
10,10); 

vector<CNeuralNet*> pBrams = m_pPop->CreatePhenotypes(); 

//assign the phenotypes 
for (1=0; 1<m_NumSweepers; 1++) 
{ 

m_vecSweepers[1].InsertNewBram(pBra1ns[1]); 
} 

}//end of offlme flag ELSE 
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//create a pen for the graph drawing 
m_BluePen = CreatePen(PS_SOUD, 1, RGB(0, O, 250)); 
m_RedPen = CreatePen(PS_SOUD, 1, RGB(255, 100, 0)); 
m_GreenPen = CreatePen(PS_SOUD, 1, RGB(O, 180, 0)); 
m_GreyPenDotted = CreatePen(PS_DOT, 1, RGB(l00, 100, 100)); 
m_RedPenDotted = CreatePen(PS_DOT, 1, RGB(200, 0, 0)); 

m_OldPen = NULL; 

//and the brushes 
m_BlueBrush = CreateSohdBrush(RGB(0,0,244)); 
m_RedBrush = CreateSohdBrush(RGB(lS0,0,0)); 
m_BlackBrush= CreateSohdBrush(RGB(0,0,0)); 

//fill the vertex buffers 
for (mt il=0; 1l<NumSweeperVerts; ++il) 
{ 

m_SweeperVB.push_back( sweeper[1 l]); 
} 

//fill mme vertex buffers 
for (int 12=0;12<NumMineVerts;++12) 
{ 

m_MmeVB. push_back(mme[12]); 
} 

// Randomely generate the obJects m the environment 
int temp=Randlnt(0,15); 
if(temp<=2) 
{ 

sEnv= "SquareRect"; 
iEnv=l; 
m_ObJectsVB.clear(); 
NumObJectVerts=NumObjectVertsl; 
for (mt 12=0; 12<NumObJectVerts; ++12) 
{ 

m_ ObJectsVB. push_back( obJectsl [12]); 
} 

} 

lf((temp>2) && (temp<=S)) 
{ 

sEnv="UpTramgle"; 
1Env=2; 
NumObJectVerts=NumObJectVerts2; 
m_ObJectsVB.clear(); 
for (mt 1=0; 1<NumObJectVerts2; ++I) 
{ 

m_ObjectsVB. push_back( obJects2[1]); 
} 

} 
1f((temp>S) && (temp<=8)) 
{ 

} 

sEnv= "Rectangle"; 
1Env=3; 
NumObJectVerts=NumObJectVerts3; 
m_ObJectsVB.clear(); 
for (mt 1=0; i<NumObjectVerts3; ++1) 
{ 

m_ObJectsVB.push_back(obJects3[1]); 
} 
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} 

1f((temp>8) && (temp<=l0)) 
{ 

sEnv="Vert1calTraingle"; 
1Env=4; 
NumObJectVerts= NumObJectVerts4; 
m_ObJectsVB.clear(); 
for (mt i=0; i<NumObJectVerts4; ++1) 
{ 

m_ObjectsVB.push_back(obJects4[1]); 
} 

} 

if((temp>l0) && (temp<=lS)) 
{ 

} 

sEnv="Full"; 
iEnv=S; 
NumObJectVerts= Nu mObjectVertsS; 
m_ObJectsVB.clear(); 
for (mt i=0; i<NumObJectVerts5; ++1) 
{ 

m_ObJectsVB. push_back( obJects[ 1]); 
} 

I/- -------------------------------------destructor-------------------------------------
/ / 
I/------ --------------------------------------------------------------------------------
cco ntro lier: : ~CController() 
{ 

1f (m_pPop) 
{ 

} 

} 

delete m_pPop; 

DeleteObject(m_BluePen); 
DeleteObJect(m_RedPen); 
DeleteObJect( m_ Green Pen); 
DeleteObJect(m_OldPen); 
DeleteObJect( m_ Grey Pen Dotted); 
DeleteObJect( m_RedPen Dotted); 
DeleteObJect(m_BlueBrush); 
DeleteObJect( m_Red Brush); 
DeleteObject( m_BlackBrush); 

I/-------- -----------------------------update---------------------------------------
/ / 
// This 1s the mam workhorse. The entire s1mulat1on 1s controlled from here. 
II 
I/---- ----------------------------------------------------------------------------------
boo I CController: :Update() 
{ 

//run the sweepers through NUM_TICKS amount of cycles. During this loop each 
//sweepers NN 1s constantly updated with the appropriate information from its 
//surroundings. The output from the NN 1s obtained and the sweeper 1s moved. 
1f (m_fflcks++ < CParams: :iNumT1cks) 
{ 

for (mt 1=0; 1<m_NumSweepers; ++1) 
{ 

bBest=false; 
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//update the NN and posItIon 
1f (lm_vecSweepers[1].Update(m_Ob1ectsVB,1,m_1Generat1ons,bBest,m_lTlcks)) 
{ 

//error m processing the neural net 
MessageBox(m_hwndMam, "Wrong amount of NN inputs•", "Error", 

MB_OK); 

} 

return false; 
} 
//see 1f it's found a mine 
mt GrabHIt = m_vecSweepers[1].CheckForMme(m_vecMmes,2); 

1f (GrabH1t >= 0) 
{ 

} 

//we have discovered a mine so increase fitness 
m_ vecSweepers[1]. mcrementmmeval(); 

//mine found so replace the mine with another at a random 
//pos1t1on 

mt tempx,tempy; 
GeneratePomt(tempx,tempy); 
m_vecMmes[GrabH1t] = SVector2D(tempx,tempy); 

//update the NNs of the last generations best performers 
1f (m_1Generat1ons > 0) 
{ 

/* if(m_vecBestSweepers.s1ze()•=4) 
MessageBox(m_hwndMam, "Wrong amount of bests•", "Error", MB_OK); 
*/ 

for (mt 1=0; i<m_vecBestSweepers.s1ze(); ++1) 
{ 

bBest=true; 
//update the NN and posItIon 

If 
(!m_vecBestSweepers[1].Update(m_ObJectsVB,1,m_1Generat1ons,bBest,m_lTlcks)) 

{ 
//error m processing the neural net 
MessageBox(m_hwndMain, "Wrong amount of NN inputs'", "Error", 

MB_OK); 

} 
} 

} 

return false; 
} 

//We have completed another generation so now we need to run the GA 
else 
{ 

float dTempAvg=0; 
//first add up each sweepers fitness scores. (remember for this task 
//there are many different sorts of penalties the sweepers may incur 
//and each one has a coeff1c1ent) 
for (mt swp=0; swp<m_vecSweepers.s1ze(); ++swp) 
{ 

m_vecSweepers[swp]. EndOfRunCalculat1ons(); 
dTempAvg += m_ vecSweepers[swp]. Fitness(); 



} 
m_dAvgF1tness=dTempAvg/m_ vecSweepers.size(); 

// Writing results to screen 
WriteResults(); 

//increment the generation counter 
++ m_IGenerat1ons; 

//reset cycles 
m_fflcks = 0; 

//perform an epoch and grab the new brains 
vector<CNeuralNet*> pBrams = m_pPop->Epoch(GetF1tnessScores(), 0); 

//insert the new brains back mto the sweepers and reset their 
//pos1t1ons 
for (mt i=0; i<m_NumSweepers; ++i) 

{ 
pBrams[1]­

>Mutatelearn1ngParameters(CParams: :dActivat1onMutat1onRate, 

CParams: :dMaxAct1vat1onPerturbat1on); 
m_vecSweepers[1].InsertNewBram(pBrains[1]); 

m_ vecSweepers[i]. Reset(); 
} 

//Change the obJects in the environment randomely 
mt temp=Randint(0,15); 
1f(temp<=2) 
{ 

} 

sEnv="SquareRect"; 
iEnv=l; 
m_ObJectsVB.clear(); 
NumObJectVerts=NumObJectVertsl; 
for (mt i2=0; 12<NumObJectVerts; ++i2) 
{ 

m_ObJectsVB. push_back( objects! [12]); 
} 

If((temp>2) && (temp<=S)) 
{ 

sEnv="UpTra1ngle"; 
IEnv=2; 
NumObJectVerts=NumObjectVerts2; 
m_ObJectsVB.clear(); 
for (mt 1=0; 1<NumObJectVerts2; ++i) 
{ 

} 
} 

m_ObJectsVB. push_back( obJects2[ 11); 

1f((temp>S) && (temp<=B)) 
{ 

sEnv="Rectangle"; 
iEnv=3; 
NumObJectVerts=NumObJectVerts3; 
m_ObJectsVB.clear(); 
for (mt 1=0; 1<NumObJectVerts3; ++i) 
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} 

//} 

} 

{ 

} 
m_ObJectsVB.push_back(obJects3[I]); 

1f((temp>8) && (temp<=l0)) 
{ 

sEnv="Vert,calTramgle"; 
IEnv=4; 
NumObJectVerts=NumObJectVerts4; 
m_ObJectsVB.clear(); 
for (mt 1=0; I<NumObJectVerts4; ++1) 
{ 

m_ObJectsVB. push_back( obJects4[1]); 
} 

} 

1f((temp>10) && (temp<=15)) 
{ 

} 

sEnv="Full"; 
IEnv=5; 
NumObJectVerts=NumObJectVerts5; 
m_ObJectsVB.clear(); 
for (mt 1=0; 1<NumObJectVerts5; ++1) 
{ 

m_ObJectsVB. push_back( ob1ects[1]); 
} 

//grab the NNs of the best performers from the last generation 
vector<CNeuralNet*> pBestBrams = m_pPop->GetBestPhenotypesFromLastGenerat1on(); 

//put them into our record of the best sweepers 
for ( 1=0; 1<m_vecBestSweepers.s1ze(); ++1) 

{ 
m_vecBestSweepers[1].InsertNewBram(pBestBrams[1]); 

m_ vecBestSweepers[1]. Reset(); 
} 

//this will call WM_PAINT which will render our scene 
InvahdateRect(m_hwndinfo, NULL, TRUE); 

UpdateW1ndow(m_hwndlnfo); 

} 

return true; 

//---------------------------------- RenderNetworks ---------------------­
// 
// Renders the best four phenotypes from the previous generation 
I/- -----------------------------------------------------------------------
v01d CController: :RenderNetworks(HDC &surface) 
{ 

1f (m_1Generations < 1) 
{ 

return; 
} 

//draw the network of the best 4 genomes. First get the d1mens1ons of the 
//mfo wmdow 
RECT rect; 
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} 

GetChentRect(m_hwndlnfo, &rect); 

int cxlnfo = rect.nght; 
int cylnfo = rect.bottom; 

//now draw the 4 best networks 
m_vecBestSweepers[0].DrawNet(surface, 0, cxlnfo/2, cylnfo/2, 0); 
m_vecBestSweepers[l].DrawNet(surface, cxlnfo/2, cxlnfo, cylnfo/2, 0); 
m_vecBestSweepers[2].DrawNet(surface, 0, cxlnfo/2, cylnfo, cylnfo/2); 
m_vecBestSweepers[3].DrawNet(surface, cxlnfo/2, cxlnfo, cylnfo, cylnfo/2); 

//------------------------------------Render()--------------------------------------
// 
I/----------------------------------------------------------------------------------
void CController: :Render(HDC &surface) 
{ 

I /do not render 1f running at accelerated speed 
If (lm_bFastRender) 
{ 

strings= "Generation: "+ 1tos(m_iGenerat1ons); 
TextOut(surface, 5, 0, s.c_str(), s.s1ze()); 

//select in the blue pen 
m_OldPen = (HPEN)SelectObJect(surface, m_BluePen); 

1f (m_bRenderBest) 
{ 

} 

//render the best sweepers memory cells 
m_ vecBestSweepers[m_lVlewThisSweeper]. Render( surface); 

//render the best sweepers from the last generation 
RenderSweepers( surface, m_ vecBestSweepers); 

// render mines 
RenderMmes(surface,m_vecMmes); 

//render the best sweepers sensors 
RenderSensors( surface, m_ vecBestSweepers); 

else 
{ 

} 

//render the sweepers 
RenderSweepers( surface, m_ vecSweepers); 

//Enable the following hne to see the sensors and feelers for all minesweepers 
//RenderSensors(surface,m_ vecSweepers); 

RenderM1nes(surface,m_vecM1nes); 

SelectObJect(surface, m_OldPen); 
HBRUSH OldBrush=(HBRUSH)SelectObJect(surface,NULL); 
SelectObJect( surface,m_BlackBrush); 
POINT* p; 
int ItempNum,I99,1_t=0; 

//render the objects 
//Polygon(surface,p,NumObJectVerts); 

for (mt i=0; I<NumObJectVerts; i+=2) 
{ 

MoveToEx(surface, m_ObJectsVB[1].x, m_ObjectsVB[1].y, NULL); 

LineTo(surface, m_ObJectsVB[1+1].x, m_ObJectsVB[i+l].y); 
} 
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} 

//SelectObJect(surface,OldBrush); 

}//end 1f 

else 
{ 

PlotStats(surface); 

} 

RECT sr; 
sr.top = m_cyChent-50; 
sr.bottom = m_cyChent; 
Sr.left = 0; 
sr.right = m_cxChent; 

//------------------------- RenderSweepers -------------------------------
// 
// given a vector of sweepers this function renders them to the screen 
I!------------------------------------------------------------------------
void CController:: RenderSweepers(HDC &surface, vector<CMinesweeper> &sweepers) 
{ 

for (mt i=0; 1<sweepers.s1ze(); ++i) 
{ 

//if they have crashed into an obstacle draw 
if ( sweepers[1].Colhded()) 
{ 

SelectObject(surface, m_RedPen); 
} 

else 
{ 

SelectObJect(surface, m_BluePen); 
} 

//grab the sweeper vertices 
vector<SPomt> sweeperVB = m_SweeperVB; 

//transform the vertex buffer 
sweepers[1].WorldTransform(sweeperVB, sweepers[1].Scale()); 

//draw the sweeper left track 
MoveToEx(surface, (int)sweeperVB[0].x, (mt)sweeperVB[0].y, NULL); 

for (mt vert=l; vert<4; ++vert) 
{ 

LineTo(surface, (mt)sweeperVB[vert] .x, (mt)sweeperVB[vert]. y); 
} 

LmeTo(surface, (mt)sweeperVB[0].x, (mt)sweeperVB[0].y); 

//draw the sweeper right track 
MoveToEx(surface, (mt)sweeperVB[ 4] .x, (mt)sweeperVB[ 4]. y, NULL); 

for (vert=S; vert<8; ++vert) 
{ 

L1neTo(surface, (int)sweeperVB[vert] .x, (mt)sweeperVB[vert]. y); 
} 

LmeTo(surface, (mt)sweeperVB[4].x, (mt)sweeperVB[4].y); 
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} 

MoveToEx(surface, (mt)sweeperVB[S].x, (mt)sweeperVB[S].y, NULL); 
LmeTo(surface, (mt)sweeperVB[9].x, (mt)sweeperVB[9].y); 

MoveToEx(surface, (mt)sweeperVB[l0].x, (mt)sweeperVB[l0].y, NULL); 

for (vert=ll; vert<16; ++vert) 
{ 

LmeTo(surface, (mt)sweeperVB[vert].x, (mt)sweeperVB[vert].y); 
} 

}/ /next sweeper 

void CController: :RenderMmes(HDC &surface, vector<SVector2D> &mmes) 
{ 

//render the mmes 
for (mt 1=0; 1<mmes.s1ze(); ++1) 
{ 

SelectObJect(surface, m_GreenPen); 
//grab the vertices for the mme shape 
vector<SPomt> mmeVB = m_MmeVB; 

WorldTransforml(mmeVB, mmes[1]); 

//draw the mmes 
MoveToEx(surface, (mt)mmeVB[0].x, (mt)mmeVB[0].y, 

NULL); 

for (mt vert=l; vert<mmeVB.s1ze(); ++vert) 
{ 

LmeTo(surface, (mt)mineVB[vert].x, 
(mt)mmeVB[vert]. y); 

} 

LmeTo(surface, (mt)mmeVB[0].x, (mt)mmeVB[0].y); 

} 

}//end of render mmes 

//----------------------------- RenderSensors ----------------------------
// 
// renders the sensors of a given vector of sweepers 
I!-------- ----------------------------------------------------------------
void CController: :RenderSensors(HDC &surface, vector<CMmesweeper> &sweepers) 
{ 

//render the sensors 
for (mt 1=0; 1<sweepers.s1ze(); ++1) 
{ 
//grab each sweepers sensor data 
vector<SPomt> tranSensors = sweepers[1].Sensors(); 
vector<double> SensorReadmgs = sweepers[1].SensorReadmgs(); 
vector<double> MemoryReadmgs = sweepers[1].MemoryReadmgs(); 

for (mt sr=0; sr<tranSensors.s1ze(); ++sr) 
{ 

1f (SensorReadmgs[sr] > 0) 
{ 

SelectObJect(surface, m_RedPen); 
} 

else 
{ 

SelectObJect(surface, m_GreyPenDotted); 
} 
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} 

//make sure we clip the drawing of the sensors or we will get 
//unwanted artifacts appearing 
if (!((fabs(sweepers[1].Pos1t1on().x - tranSensors[sr].x) > 

(CParams: :dSensorRange+l))I I 
(fabs(sweepers[1].Pos1t1on().y - tranSensors[sr].y) > 
(CParams: :dSensorRange+l)))) 

{ 

} 
} 

} 

MoveToEx(surface, 
(int)sweepers[1].Pos1t1on().x, 
(int)sweepers[1].Pos1t1on().y, 
NULL); 

LineTo(surface, (int)tranSensors[sr] .x, (int)tranSensors[sr]. y); 

//render the cell sensors 
RECT rect; 
rect.left = (int)tranSensors[sr].x - 2; 
rect.nght = (int)tranSensors[sr].x + 2; 
rect.top = (int)tranSensors[sr].y - 2; 
rect.bottom= (int)tranSensors[sr].y + 2; 

if (MemoryReadings[sr] < O) 
{ 

FillRect(surface, &rect, m_BlueBrush); 
} 

else 
{ 

F1IIRect(surface, &rect, m_RedBrush); 
} 

/1--------------------------------Wnte Results into the excel f1le--------------­
vo1d CController: :WnteResults() 
{ 

} 

storel<<m_iGenerat1ons<<"\t11 ; 

storel<<m_pPop->NumSpecies()<<"\t"; 
store!<< m_pPop-> BestEverF1tness() < < "\t"; 
storel<<m_pPop->BestGenF1tness()<<"\t"; 
storel<<m_dAvgF1tness<<"\t11 ; 

store!<< 1Env< <"\t"; 
storel<<sEnv<<endl; 

void CController: :WorldTransforml(vector<SPoint> &VBuffer, SVector2D vPos) 
{ 

//create the world transformation matrix 
C2DMatnx matTransform; 

//scale 
matTransform.Scale(2, 2); 

//translate 
matTransform.Translate(vPos.x, vPos. y); 

//transform the ships vertices 
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matTransform.TransformSP01nts(VBuffer); 
} 

I /--------------------------PlotStats-------------------------------------
1 / 
// Given a surface to draw on this function displays some simple stats 
I/------ ------------------------------------------------------------------
void CController:: PlotStats(HDC surface)const 
{ 

} 

strings= "Generation: " + itos(m_1Generat1ons); 
TextOut(surface, 5, 85, s.c_str(), s.s1ze()); 
//store1<<m_1Generat1ons<<"\t"; 

s = "Num Species: " + 1tos(m_pPop->NumSpec1es()); 
TextOut(surface, 5, 65, s.c_str(), s.s1ze()); 
//store1<<m_pPop->NumSpec1es()<<"\t"; 

s = "Best Fitness so far: "+ ftos(m_pPop->BestEverF1tness()); 
TextOut(surface, 5, 5, s.c_str(), s.s1ze()); 

//store1<<m_pPop->BestEverFitness()<<endl; 

s = "This Generation's Fitness : " + ftos(m_pPop->BestGenF1tness()); 
TextOut(surface, 5, 25, s.c_str(), s.size()); 

s = "This Generation's Average Fitness : " + ftos(m_dAvgF1tness); 
TextOut(surface, 5, 45, s.c_str(), s.s1ze()); 

I!------------------------------- GetF1tnessScores -----------------------
// 
// returns a std: :vector contammg the genomes fitness scores 
/1------------------------------------------------------------------------
vector<double> CController: :GetF1tnessScores()const 
{ 

} 

vector<double> scores; 

for (mt 1=0; i<m_vecSweepers.size(); ++1) 
{ 

scores. push_back( m_ vecSweepers[1]. Fitness()); 
} 
return scores; 

//---------------------------------------Generate Point---------------------
! /Generates a random point which 1s not covered by obJects and also not out of boundaries 
//-----------------------------------------------------------------------------
VOid CController: :GeneratePoint(int &x, mt &y) 
{ 

bool bPointFlag=true; 
x=180; 
y=200; 
for(;;) 
{ 

bPomtFlag=true; 
x=RandFloat() * m_cxChent; 
y=RandFloat() * m_cyChent; 

if((x<=18)1 l(y<=21)1 l(x>=370)I I (y>=350)) 
// 1f((x<=12)1 l(y<=15)l l(x>=380)l l(y>=360)) 
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} 

//for 1 

//for 2 

//for 3 

//for 4 

{ 
bPomtFlag=false; 

} 

if((x>=80)&&(x<=200)) 
{ 
if((y<=200)&&(y> =60)) 

bPomtFlag=false; 

} 

if((x>=2S0)&&(x<=350)) 
{ 
1f((y< = l00)&&(y> =40)) 

bPomtFlag=false; 

} 

1f((x> =220)&&(x<=320)) 
{ 
1f((y< =300)&&(y> =180)) 

bPOI ntFlag =false; 

} 

1f((x>=12)&&(x<=100)) 
{ 
1f((y<=340)&&(y>=15)) 

bPomtFlag=false; 

} 

if(bPointFlag==true) break; 
}/ /end of for 
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#1fndef CGA_H 
#define CGA_H 

I/------------------------------------------------------------------------
11 
// Name: Cga.h 
II 
// Authors: 
// Created by Mat Buckland 2002 
// Mod1f1ed by Ami kumar Enumulapally 2004 
// Ami kumar Enumulapally 2005 
II 
// Desc: The evolutionary algorithm class used in the 1mplementat1on 
II 
I/------------------------------------------------------------------------
#include <vector> 
#include <windows.h> 

#include "phenotype.h" 
#include "genotype.h" 
#include "CSpec1es.h" 
#include "CParams.h" 

using namespace std; 

//------------------------------------------------------------------------
11 
// this structure is used in the creation of a network depth lookup 
// table. 
I 1------------------------------------------------------------------------
struct SplitDepth 
{ 

double val; 

int depth; 

SphtDepth(double v, int d):val(v), depth(d){} 
}; 

I I- -----------------------------------------------------------------------
I/ 
I!------------------------------------------------------------------------
class Cga 
{ 

private: 

//current population 
vector<CGenome> m_vecGenomes; 

//keep a record of the last generations best genomes. (used to render 
//the best performers to the display 1f the user presses the 'B' key) 

vector<CGenome> m_vecBestGenomes; 

//all the species 
vector<CSpec1es> m_vecSpec1es; 

//to keep track of innovations 
Clnnovat1on* m_plnnovat1on; 
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//current generation 
mt m_1Generation; 

mt m_1NextGenomeID; 

int m_1NextSpec1esID; 

mt m_1PopS1ze; 

//adJusted fitness scores 
double m_dTotF1tAdJ, 

m_dAvF1tAdJ; 

//mdex mto the genomes for the fittest genome 
mt m_1F1ttestGenome; 

double 
double 

m_dBestEverF1tness; 
m_dGenBestF1tness ; 

//local copy of app handle 
HWND m_hwnd; 

//local copies of client area 
int cxChent, cyChent; 

//this holds the precalculated spht depths. They are used 
//to calculate a neurons x/Y position for rendenng and also 
//for calculating the flush depth of the network when a 
//phenotype 1s working m 'snapshot' mode. 
vector<SphtDepth> vecSphts; 

//used m Crossover 
void AddNeuronID(mt nodeID, vector<int> &vec); 

//this function resets some values ready for the next epoch, kills off 
//all the phenotypes and any poorly performing species. 
void ResetAndKill(); 

//separates each ind1v1dual mto its respective species by calculating 
//a compat1b1hty score with every other member of the population and 
//niching accordingly. The function then adJusts the fitness scores of 
//each md1v1dual by species age and by sharing and also determines 
//how many offspring each individual should spawn. 
void Spec1ateAndCalculateSpawnLevels(); 

//adJusts the fitness scores depending on the number sharing the 
//species and the age of the species. 
void AdjustSpec1esF1tnesses(); 

CGenome Crossover(CGenome& mum, CGenome& dad); 

CGenome TournamentSelect1on(const mt NumCompansons); 

//searches the lookup table for the dSphtY value of each node m the 
//genome and returns the depth of the network based on this figure 
mt CalculateNetDepth(const CGenome &gen); 

/ /sorts the population into descend mg fitness, keeps a record of the 
//best n genomes and updates any fitness stat1st1cs accordingly 
void SortAndRecord(); 

//a recursive function used to calculate a lookup table of spht 
//depths 
vector<SphtDepth> Spht(double low, double high, mt depth); 
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public: 

Cga(mt 
mt 
mt 

HWND hwnd, 
mt ex, 
mt cy); 

~Cga(); 

size, 
inputs, 
outputs, 

mt offhne, 

vector<CNeuralNet*> Epoch(const vector<double> &F1tnessScores, mt 10ffhne); 

//iterates through the population and creates the phenotypes 
vector<CNeuralNet*> CreatePhenotypes(); 

//keeps a record of then best genomes from the last population. 
//(used to display the best genomes) 
void StoreBestGenomes(); 

//renders the best performing species statIstIcs and a visual aid 
//showing the d1stnbut1on. 
void RenderSpec1eslnfo(HDC &surface, RECT db); 

/ /returns a vector of the n best phenotypes from the previous generation 
vector<CNeuralNet*> GetBestPhenotypesFromLastGenerat1on(); 

/ 1----------------------------------------------------accessor methods 
int NumSpecIes()const{return m_vecSpec1es.s1ze();} 

double BestEverF1tness()const{return m_dBestEverF1tness;} 
double BestGenF1tness()const{return m_dGenBestF1tness;} 

}; 

#endif 
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#include "Cga.h" 

I I------ -------------------------------------------------------------------
I I this constructor creates a base genome from supplied values and creates 
II a population of 'size' s1m1lar (same topology, varying weights) genomes 
I/- ------------------------------------------------------------------------
Cga: :Cga(int size, 

mt inputs, 
int outputs, 

{ 

mt offhne, 
HWND hwnd, 
mt ex, 
mt cy): m_1PopS1ze(s1ze), 

m_1Generat1on ( 0), 
m_plnnovat1on (NU LL), 
m_1NextGenomeID(0), 
m_1NextSpec1esID(0), 
m_1F1ttestGenome(0), 
m_dBestEverF1tness( 0), 

m_dTotF1tAdJ(0), 
m_dAvF1tAdJ(0), 
m_hwnd(hwnd), 
cxChent(cx), 
cyChent(cy) 

//create the population of genomes 
for (mt 1=0; 1<m_1PopS1ze; ++i) 
{ 

m_dGen BestF1tness(0), 
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m_ vecGenomes. push_back( CGenome( m_1NextGenomeID ++, inputs, outputs)); 
} 

//create the innovation hst. First create a minimal genome 
CGenome genome(!, inputs, outputs); 

//create the innovations 
m_plnnovation = new Cinnovat1on(genome.Genes(), genome.Neurons()); 

//If this constructor 1s called m offlme learning we add hidden neurons 
//to few minimal genomes 
1f(offlme==l) 
{ 

//create minimal genome with hidden neurons 
for (mt 1_temp=0; 1_temp<m_1PopS1ze/2; ++1_temp) 
{ 

double 1-temp=RandFloat(); 
1f(J_temp<=RandFloat()) 
{ 

m_ vecGenomes[1_temp] .AddNeuron(0. 9, * m_pinnovat1on,CParams: : 1 Nu mTrysToFmdOldLink); 
} 

} 

} 
}//end of OFFUNE-IF 

//create the network depth lookup table 
vecSphts = Spht(0, 1, 0); 

//------------------------------------- dtor -----------------------------
// 
I/- -----------------------------------------------------------------------



Cga:: "'Cga() 
{ 

1f (m_plnnovat1on) 
{ 

delete m_plnnovation; 

m_plnnovation = NULL; 
} 

} 

/ 1-------------------------------CreatePhenotypes-------------------------
// 
// cycles through all the members of the population and creates their 
// phenotypes. Returns a vector contammg pointers to the new phenotypes 
I!-------------------------------------------------------------------------
vector<CNeuralNet* > Cga:: Create Phenotypes() 
{ 

vector<CNeuralNet*> networks; 

for (mt i=O; i<m_1PopS1ze; i++) 
{ 

//calculate max network depth 
mt depth = CalculateNetDepth(m_vecGenomes[1]); 

//create new phenotype 
CNeuralNet* net= m_vecGenomes[1].CreatePhenotype(depth); 

networks. push_back( net); 
} 

return networks; 
} 

//-------------------------- CalculateNetDepth ---------------------------
// 
II searches the lookup table for the dSphtY value of each node in the 
// genome and returns the depth of the network based on this figure 
I!------------------------------------------------------------------------
int Cga::CalculateNetDepth(const CGenome &gen) 
{ 

} 

int MaxSoFar = O; 

for (int nd=O; nd<gen.NumNeurons(); ++nd) 
{ 

} 

for (int i=O; i<vecSphts.size(); ++1) 
{ 

} 

1f ((gen.SphtY(nd) == vecSphts[1].val) && 
(vecSphts[i].depth > MaxSoFar)) 

{ 
MaxSoFar = vecSphts[1].depth; 

} 

return MaxSoFar + 2; 

/ 1-----------------------------------AddNeuronID----------------------------
// 
// Just checks to see 1f a node ID has already been added to a vector of 
// nodes. If not then the new ID gets added. Used m Crossover. 
I/-------- ----------------------------------------------------------------
void Cga: :AddNeuronID(const mt nodeID, vector<mt> &vec) 
{ 

for (mt 1=0; 1<vec.s1ze(); 1++) 
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} 

{ 

} 

1f (vec[i] == nodeID) 
{ 

} 

//already added 
return; 

vec. push_back( nodeID); 

return; 

//------------------------------------- Epoch ----------------------------
// 
// This function performs one epoch of the genetic algorithm and returns 
// a vector of pointers to the new phenotypes 
I/---- --------------------------------------------------------------------
vector<CNeuralNet*> Cga: :Epoch(const vector<double> &F1tnessScores, mt ioffhne) 
{ 

bool bOffhne_flag=false; 

//reset appropriate values and kill off the existing phenotypes and 
//any poorly performing species 
ResetAndK11l(); 

//update the genomes with the fitnesses scored m the last run 
for (mt gen=0; gen<m_vecGenomes.s1ze(); ++gen) 
{ 

m_vecGenomes[gen].SetF1tness(F1tnessScores[gen]); 
} 

//sort genomes and keep a record of the best performers 
SortAndRecord(); 

//separate the population mto species of s1m1lar topology, adJust 
//fitnesses and calculate spawn levels 
Spec1ateAndCalculateSpawnlevels(); 

/ /this will hold the new population of genomes 
vector<CGenome> NewPop; 

//request the offspring from each species. The number of children to 
//spawn 1s a double which we need to convert to an mt. 
mt NumSpawnedSoFar = o; 

CGenome baby; 

//now to iterate through each species selecting offspring to be mated and 
//mutated 
for (mt spc=0; spc<m_vecSpec1es.s1ze(); ++spc) 
{ 

//because of the number to spawn from each species 1s a double 
//rounded up or down to an integer 1t 1s possible to get an overflow 
//of genomes spawned. This statement just makes sure that doesn't 
//happen 
1f (NumSpawnedSoFar < CParams: :1NumSweepers) 
{ 
//this 1s the amount of offspring this species 1s required to 
// spawn. Rounded simply rounds the double up or down. 
mt NumToSpawn = Rounded(m_vecSpec1es[spc].NumT0Spawn()); 

bool bChosenBestYet = false; 

while (NumToSpawn--) 
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{ 
//first grab the best performing genome from this species and transfer 
//to the new population without mutation. This provides per species 
//eht1sm 
1f ('bChosenBestYet) 
{ 

baby = m_vecSpec1es[spc].Leader(); 

bChosenBestYet = true; 
} 

else 
{ 
//If the number of individuals m this species is only one 
//then we can only perform mutation 
if (m_vecSpecies[spc].NumMembers() == 1) 
{ 

//spawn a child 
baby= m_vecSpec1es[spc].Spawn(); 

} 

//1f greater than one we can use the crossover operator 
else 
{ 

} 

//spawnl 
CGenome gl = m_vecSpecies[spc].Spawn(); 

1f (RandFloat() < CParams: :dCrossoverRate) 
{ 

//spawn2, make sure it's not the same as gl 
CGenome g2 = m_vecSpec1es[spc].Spawn(); 

//number of attempts at fmdmg a different genome 
mt NumAttempts = 10; 

while ( (gl.ID() == g2.ID()) && (NumAttempts--)) 
{ 

g2 = m_vecSpec1es[spc].Spawn(); 
} 

if (g1.ID() != g2.ID()) 
{ 

} 

1f(ioffhne==l) 
{ 

1f(bOfflme_flag==false) 
{ 

} 
}//end of offhne stage check 
else //1t ,s onhne 

baby= Crossover(gl, g2); 

}//end of crossover constant check 

else 
{ 

baby= gl; 
} 

++m_1NextGenomeID; 

baby.SetID(m_1NextGenomeID); 

bOffline_flag=true; 
baby = Crossover(gl, g2); 
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1f (1offlme==l) 
{ 

//now we have a spawned child lets mutate 1t1 First there 1s the 
//chance a neuron may be added 
1f (baby.NumNeurons() < CParams: :1MaxPerm1ttedNeurons) 
{ 

1f(bOffl1ne_flag==false) 
{ 

baby.AddNeuron(CParams: :dChanceAddNode, 

CParams:: 1NumTrysT0FmdOldLmk); 
}//end of offlme flag check; 

}//emd of add neuron mutation 

bOffline_flag=true; 

*m_plnnovat1on, 

//now there's the chance a link may be added 
1f(bOffline_flag ==false) 
{ 

bOffline_flag =true; 
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baby.AddLmk(CParams: :dChanceAddLmk, 
CParams: :dChanceAddRecurrentLmk, 
*m_plnnovat1on, 

} 

//mutate the weights 
1f(bOffline_flag==false) 
{ 

baby.MutateWe1ghts(CParams: :dMutat1onRate, 

CParams: :dProbab11ityWe1ghtReplaced, 

CParams: :dMaxWe1ghtPerturbat1on); 
} 

1f(bOffline_flag==false) 
{ 

CParams:: 1NumTrysT0FmdLoopedLmk, 
CParams:: 1NumAddLmkAttempts); 

bOfflme_flag=true; 

bOffline_flag =true; 

baby. MutateAct1vat1onResponse(CParams: : dAct1vat1on Mutation Rate, 

CParams: :dMaxAct1vat1onPerturbat1on); 
} 

}//end of 1offline==l 

else //for Online 
{ 

//now we have a spawned child lets mutate 1t1 First there 1s the 
//chance a neuron may be added 
1f (baby.NumNeurons() < CParams: :1MaxPerm1ttedNeurons) 
{ 

baby.AddNeuron(CParams: :dChanceAddNode, 
*m_plnnovat1on, 



CParams: :iNumTrysToFmdOldlink); 
} 

//now there's the chance a hnk may be added 
baby.AddLmk(CParams: :dChanceAddLmk, 

CParams: :dChanceAddRecurrentLmk, 
*m_plnnovat1on, 
CParams:: 1NumTrysT0FmdLoopedLmk, 
CParams: :1NumAddLmkAttempts); 

//mutate the weights 
baby.MutateWeights(CParams: :dMutat,onRate, 

CParams: :dProbabthtyWeightReplaced, 

CParams: :dMaxwe,ghtPerturbat,on); 

} 

baby. MutateActivationResponse(CParams: : dAct1vat1onMutationRate, 

CParams: :dMaxAct1vat1onPerturbat1on); 
}//end of else offltne==l; 

//sort the babies genes by their mnovat,on numbers 
baby .SortGenes(); 

//add to new pop 
NewPop.push_back(baby); 

++NumSpawnedSoFar; 

if (NumSpawnedSoFar == CParams: :iNumSweepers) 
{ 

NumToSpawn = O; 
} 

}/ /end while 

}//end tf 

}//next species 

//tf there ,s an underflow due to the rounding error and the amount 
//of offspring falls short of the population size add1t1onal children 
//need to be created and added to the new population. This ts achieved 
//simply, by usmg tournament selection over the entire population. 
if (NumSpawnedSoFar < CParams: :iNumSweepers) 
{ 

} 

//calculate amount of additional children required 
int Rqd = CParams: :1NumSweepers - NumSpawnedSoFar; 

//grab them 
while (Rqd--) 
{ 

NewPop.push_back(TournamentSelect1on(m_1PopS1ze/S)); 
} 

//replace the current population with the new one 
m_vecGenomes = NewPop; 

//create the new phenotypes 
vector<CNeuralNet*> new_phenotypes; 
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for (gen=O; gen<m_vecGenomes.s1ze(); ++gen) 
{ 

} 

//calculate max network depth 
mt depth = CalculateNetDepth(m_vecGenomes[gen]); 

CNeuralNet* phenotype= m_vecGenomes[gen].CreatePhenotype(depth); 

new_phenotypes.push_back(phenotype); 

//increase generation counter 
++m_1Generat1on; 

return new_phenotypes; 
} 

//--------------------------- So rtAnd Record-------------------------------
/ / 
II sorts the population mto descending fitness, keeps a record of the 
// best n genomes and updates any fitness stat1st1cs accorchngly 
//------------------------------------------------------------------------
void Cga:: SortAndRecord() 
{ 
//sort the genomes according to their unadJusted (no fitness sharing) 
//fitnesses 
sort(m_vecGenomes.begm(), m_vecGenomes.end()); 
m_dGenBestF1tness=m_vecGenomes[O].F1tness(); 

//1s the best genome this generation the best ever? 
1f (m_vecGenomes[O].F1tness() > m_dBestEverF1tness) 
{ 

m_dBestEverF1tness = m_vecGenomes[O].Fitness(); 
} 

//keep a record of the n best genomes 
StoreBestGenomes(); 

} 

I/----------------------------- StoreBestGenomes -------------------------
// 
// used to keep a record of the previous populations best genomes so that 
// they can be displayed 1f required. 
I/------ ------------------------------------------------------------------
vo 1d Cga:: StoreBestGenomes() 
{ 

} 

//clear old record 
m_ vecBestGenomes.clear(); 

for (mt gen=O; gen<CParams: :iNumBestSweepers; ++gen) 
{ 

m_ vecBestGenomes. push_back( m_ vecGenomes[gen]); 
} 

//----------------- GetBestPhenotypesFromLastGeneration -----------------­
// 
II returns a std: :vector of the n best phenotypes from the previous 
// generation 
//------------------------------------------------------------------------
vector<CNeuralNet* > Cga: : GetBestPhenotypesFromLastGenerat1on() 
{ 

vector<CNeuralNet*> brams; 

for (int gen=O; gen<m_vecBestGenomes.size(); ++gen) 
{ 
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} 

//calculate max network depth 
mt depth = CalculateNetDepth(m_vecBestGenomes[gen]); 

bra ms. push_back( m_ vecBestGenomes[gen]. CreatePhenotype( depth)); 
} 

return brains; 

I!--------------------------- Ad1ustSpec1es ------------------------------
// 
// this functions simply iterates through each species and calls 
// Ad1ustF1tness for each species 
I!------------------------------------------------------------------------
void Cga: :Ad1ustSpec1esF1tnesses() 
{ 

for (mt sp=O; sp<m_vecSpec1es.s1ze(); ++sp) 
{ 

m_ vecSpec1es[sp] .Ad1ustF1tnesses(); 
} 

} 

//------------------ Spec1ateAndCalculateSpawnLevels --------------------­
// 
I I separates each individual mto its respective species by calculating 
// a compat1b1hty score with every other member of the population and 
// niching accordingly. The function then adJusts the fitness scores of 
// each individual by species age and by sharing and also determines 
// how many offspring each md1v1dual should spawn. 
I 1------------------------------------------------------------------------
void Cga:: SpeciateAndCalculateSpawnLevels() 
{ 

bool bAdded = false; 

//iterate through each genome and speciate 
for (mt gen=O; gen<m_vecGenomes.s1ze(); ++gen) 
{ 

/ /calculate its compatibility score with each species leader. If 
//compatible add to species. If not, create a new species 
for (int spc=O; spc<m_vecSpec1es.s1ze(); ++spc) 
{ 

double compat1b1hty = m_vecGenomes[gen].GetCompatib1htyScore(m_vecSpec1es[spc].Leader()); 

//if this ind1v1dual is s1m1lar to this species add to species 
1f (compat1b1hty <= CP~rams: :dCompatib1lityThreshold) 
{ 

m_vecSpecies[spc].AddMember(m_vecGenomes[gen]); 

//let the genome know which species it's in 
m_vecGenomes[gen].SetSpec1es(m_vecSpec1es[spc].ID()); 

bAdded = true; 

break; 
} 

} 

if (!bAdded) 
{ 
//we have not found a compatible species so let's create a new one 
m_ vecSpec1es. push_back(CSpec1es( m_ vecGenomes[gen], m_1NextSpec1esID+ +)); 

} 

bAdded = false; 
} 
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} 

//now all the genomes have been assigned a species the fitness scores 
//need to be adjusted to take mto account sharing and species age. 
AdJustSpec1esF1tnesses(); 

//calculate new adJusted total & average fitness for the population 
for (gen=0; gen<m_vecGenomes.srze(); ++gen) 
{ 

m_dTotFrtAdJ += m_vecGenomes[gen].GetAdJFrtness(); 
} 

m_dAvFrtAdJ = m_dTotF1tAdJ/m_vecGenomes.s1ze(); 

//calculate how many offspring each member of the population 
//should spawn 
for (gen=0; gen<m_vecGenomes.s,ze(); ++gen) 
{ 

double ToSpawn = m_vecGenomes[gen].GetAdJFrtness() / m_dAvFrtAdj; 

m_ vecGenomes[ gen]. SetAmountToSpawn (ToSpawn); 
} 

//iterate through all the species and calculate how many offspring 
//each species should spawn 
for (int spc=0; spc<m_vecSpec1es.s1ze(); ++spc) 
{ 

m_ vecSpecres[spc]. Ca lcu lateSpawnAmount(); 
} 

//--------------------------- TournamentSelectron ------------------------
// 
I/- -----------------------------------------------------------------------
CGeno me Cga: :TournamentSelect,on(const mt NumComparisons) 
{ 

} 

double BestFrtnessSoFar = 0; 

mt ChosenOne = o; 

//Select NumComparrsons members from the population at random testing 
//against the best found so far 
for (mt 1=0; I<NumComparisons; ++1) 
{ 

} 

mt ThisTry = Randlnt(0, m_vecGenomes.srze()-1); 

rf (m_vecGenomes[Th1sTry].F1tness() > BestFrtnessSoFar) 
{ 

ChosenOne = ThisTry; 

BestFrtnessSoFar = m_ vecGenomes[ThrsTry]. Fitness(); 
} 

//return the champion 
return m_vecGenomes[ChosenOne]; 

//-----------------------------------Crossover----------------------------
// 
I I- -----------------------------------------------------------------------
CGeno me Cga: :Crossover(CGenome& mum, CGenome& dad) 
{ 

//helps make the code clearer 
enum parent_type{MUM, DAD,}; 
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//first, calculate the genome we will using the d1s1oint/excess 
//genes from. This 1s the fittest genome. 
parent_type best; 

//If they are of equal fitness use the shorter (because we want to keep 
//the networks as small as possible) 
1f (mum.Fitness() == dad.Fitness()) 
{ 

} 

//If they are of equal fitness and length Just choose one at 
//random 
1f (mum.NumGenes() == dad.NumGenes()) 
{ 

best = (parent_type)Randlnt(0, 1); 
} 

else 
{ 

} 

1f (mum.NumGenes() < dad.NumGenes()) 
{ 

best= MUM; 
} 

else 
{ 

best= DAD; 
} 

else 
{ 

} 

1f (mum.Fitness() > dad.Fitness()) 
{ 

best= MUM; 
} 

else 
{ 

best= DAD; 
} 

//these vectors will hold the offspring's nodes and genes 
vector<SNeuronGene> BabyNeurons; 
vector<SLinkGene> BabyGenes; 

//temporary vector to store all added node IDs 
vector<int> vecNeurons; 

//create iterators so we can step through each parents genes and set 
//them to the first gene of each parent 
vector<SLinkGene>: :iterator curMum = mum.StartOfGenes(); 
vector<SLinkGene>:: iterator curDad = dad.StartOfGenes(); 

//this will hold a copy of the gene we wish to add at each step 
SLinkGene SelectedGene; 

//step through each parents genes until we reach the end of both 
while (l((curMum == mum.EndOfGenes()) && (curDad == dad.EndOfGenes()))) 
{ 

//the end of mum's genes have been reached 
1f ((curMum == mum.EndOfGenes())&&(curDad '= dad.EndOfGenes())) 
{ 
/ /If dad 1s fittest 
If (best == DAD) 
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{ 

} 

//add dads genes 
SelectedGene = *curDad; 

//move onto dad's next gene 
++curDad; 

} 

//the end of dads's genes have been reached 
else 1f ( (curDad == dad.EndOfGenes()) && (curMum I= mum.EndOfGenes())) 
{ 
//If mum 1s fittest 
If (best== MUM) 
{ 

} 

//add mums genes 
SelectedGene = *curMum; 

//move onto mum's next gene 
++curMum; 

} 

//If mums innovation number 1s less than dads 
else 1f (curMum->Innovat1onID < curDad->Innovat1onID) 
{ 
//If mum 1s fittest add gene 
If (best== MUM) 
{ 

SelectedGene = *curMum; 
} 

//move onto mum's next gene 
++curMum; 

} 

//If dads innovation number 1s less than mums 
else 1f (curDad->Innovat1onID < curMum->Innovat1onID) 
{ 
/ /If dad 1s fittest add gene 
If (best== DAD) 
{ 

SelectedGene = *curDad; 
} 

//move onto dad's next gene 
++curDad; 

} 

//1f innovation numbers are the same 
else if (curDad->Innovat1onID == curMum->Innovat1onID) 
{ 
//grab a gene from either parent 
1f (RandFloat() < O.Sf) 
{ 

SelectedGene = *curMum; 
} 

else 
{ 

SelectedGene = *curDad; 
} 

//move onto next gene of each parent 
++curMum; 
++curDad; 
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} 

//add the selected gene 1f not already added 
1f (BabyGenes.s1ze() == O) 
{ 

BabyGenes. push_back(SelectedGene); 
} 

else 
{ 

} 

if (BabyGenes[BabyGenes.size()-1].InnovationID '= 
SelectedGene.Innovat,onID) 

{ 
BabyGenes.push_back(SelectedGene); 

} 

//Check 1f we already have the nodes referred to in SelectedGene. 
//If not, they need to be added. 
AddNeuronID(SelectedGene.FromNeuron, vecNeurons); 
AddNeuronID(SelectedGene.ToNeuron, vecNeurons); 

}//end while 

//now create the required nodes. First sort them mto order 
sort(vecNeurons.begm(), vecNeurons.end()); 

for (int 1=0; i<vecNeurons.size(); 1++) 
{ 

BabyNeurons.push_back(m_plnnovat1on->CreateNeuronFromID(vecNeurons[i])); 
} 

//finally, create the genome 
CGenome babyGenome(m_1NextGenomeID++, 

BabyNeurons, 
BabyGenes, 
mum.Numinputs(), 
mum.NumOutputs()); 

return babyGenome; 
} 

//--------------------------- ResetAndK1II -------------------------------
// 
// This function resets some values ready for the next epoch, kills off 
II all the phenotypes and any poorly performing species. 
I!------------------------------------------------------------------------
void Cga: :ResetAndK1II() 
{ 

m_dTotF1tAdJ = O; 
m_dAvF1tAdj = O; 

//purge the species 
vector<CSpec1es>: :iterator curSp = m_vecSpec1es.begm(); 

while (curSp != m_vecSpec1es.end()) 
{ 

curSp->Purge(); 

//kill off species 1f not 1mprovmg and if not the species which contains 
//the best genome found so far 
if ( (curSp->GensNolmprovement() > CParams: :1NumGensAllowedNolmprovement) && 

(curSp->BestF1tness() < m_dBestEverF1tness) ) 
{ 
curSp = m_vecSpec,es.erase(curSp); 
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--curSp; 
} 

++curSp; 
} 

I /we can also delete the phenotypes 
for (mt gen=0; gen<m_vecGenomes.s1ze(); ++gen) 
{ 

} 
} 

m_ vecGenomes[gen]. DeletePhenotype(); 

I!------------------------------- Spl 1t ----------------------------------
// 
// this function is used to create a lookup table that 1s used to 
// calculate the depth of the network. 
I I------ ------------------------------------------------------------------
vector< Sp htDepth > Cga: :Spht(double low, double high, mt depth) 
{ 

static vector<SphtDepth> vecSphts; 

double span = high-low; 

vecSphts.push_back(SphtDepth(low + span/2, depth+l)); 

1f (depth > 6) 
{ 

return vecSphts; 
} 

else 
{ 

} 
} 

Spht(low, low+span/2, depth+l); 
Split(low+span/2, high, depth+l); 

return vecSplits; 

//--------------------------- RenderSpecieslnfo --------------------------
// 
// Used to display species information on the screen 
I I------------------------------------------------------------------------
void Cga: :RenderSpec1esinfo(HDC &surface, RECT db) 
{ 

if (m_vecSpecies.s1ze() < 1) return; 

mt numColours = 255/m_vec5pec1es.s1ze(); 

double ShcePerSweeper = (double)(db.nght-db.left)/(double)(CParams: :1NumSweepers-l); 

double left= db.left; 

//now draw a different colored rectangle for each species 
for (mt spc=0; spc<m_vecSpec1es.s1ze(); ++spc) 
{ 

//choose a brush to draw with 
HBRUSH P1eBrush = CreateSohdBrush(RGB(numColours*spc, 255, 255 - numColours*spc)); 

HBRUSH OldBrush = (HBRUSH)SelectObject(surface, PieBrush); 

1f (spc == m_vecSpec1es.s1ze()-l) 
{ 

Rectangle(surface, 
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} 

left, 
db.top, 
db.right, 
db.bottom); 

} 

else 
{ 

Rectangle(surface, 
left, 
db.top, 
left+Sl1cePerSweeper*m_vecSpec1es[spc].NumMembers(), 
db.bottom); 

} 

left+= ShcePerSweeper * m_vecSpec1es[spc].NumMembers(); 

SelectObJect(surface, OldBrush); 
DeleteObJect(P1eBrush); 

//display best performing species stats m the same color as displayed 
//m the d1stnbut1on bar 
1f ( m_vecSpec1es[spc].BestF1tness() == m_dBestEverF1tness) 
{ 

} 
} 

strmg s = "Best Species ID: " + 1tos(m_vecSpec1es[spc].ID()); 
TextOut(surface, 5, db.top - 80, s.c_str(), s.s1ze()); 

s = "Species Age: "+ 1tos(m_vecSpec1es[spc].Age()); 
TextOut(surface, 5, db.top - 60, s.c_str(), s.s1ze()); 

s = "Generations no improvement: "+ 1tos(m_vecSpec1es[spc].GensNolmprovement()); 
TextOut(surface, 5, db.top - 40, s.c_str(), s.s1ze()); 

strmg s = "Species D1stnbut1on Bar"; 
TextOut(surface, 5, db.top - 20, s.c_str(), s.s1ze()); 
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#1fndef CINNOVATION_H 
#defme CINNOVATION_H 
I I-----------------------------------------------------------------------
I/ 
// Name: Clnnovat1on.h 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 2005 

II 
II 
II 
II 
II 
II 
II 
II 
II 

Desc: class to handle genome mnovat1ons used m the 1mplementat1on. 

I/-----------------------------------------------------------------------
#include <vector> 
#include <algorithm> 

#include "ut1ls.h" 
#include "genotype.h" 
#include "phenotype.h" 

usmg namespace std; 

struct SLmkGene; 

//---------------------Innovat1on related structs/classes---------------­
// 
I/---- --------------------------------------------------------------------
en um mnov_type 
{ 

}; 

new_neuron, 
new_hnk 

I/------------------------------------------------------------------------
II 
// structure defmmg an innovation 
I I ------ ------------------------------------------------------------------
stru ct Slnnovat1on 
{ 

/ /new neuron or new link? 
mnov_type Innovat1onType; 

mt Innovat1onID; 

mt Neuronln; 
mt NeuronOut; 

mt NeuronID; 

neuron_type NeuronType; 

//1f the mnovat1on 1s a neuron we need to keep a record 
//of its pos1t1on m the tree (for display purposes) 
double dSphtY, 

dSphtX; 

Slnnovat1on(mt m, 

149 



mt out, 
mnov_type t, 
mt mov_1d):Neuronln(m), 

{} 

NeuronOut(out), 
InnovationType(t), 
Innovat1onID( mov _id), 
NeuronID(0), 
dSphtX(0), 
dSphtY(0), 
NeuronType(none) 

Slnnovat1on(SNeuronGene neuron, 

{} 

mt mnov_1d, 
mt neuron_1d):Innovat1onID(mnov_1d), 

NeuronID(neuron_1d), 
dSplitx(neuron.dSphtX), 
dSphtY(neuron.dSphtY), 
Neu ronType( neuron. NeuronType), 
Neuronln(-1), 
NeuronOut(-1) 

Slnnovat1on(mt m, 

}; 

int out, 
innov_type t, 
int mov_1d, 
neuron_type type, 
double x, 
double y):Neuronln(m), 

{} 

Neuronout(out), 
Innovat1onType(t), 
InnovationID(inov_1d), 
NeuronID(0), 
NeuronType(type), 
dSphtX(x), 
dSphtY(y) 

I/------------------------------------------------------------------------
// 
// Clnnovation class used to keep track of all innovations created during 
II the populations evolution 
I!------------------------------------------------------------------------
class Clnnovat1on 
{ 

private: 

vector<Slnnovat1on> m_veclnnovs; 

mt 

int 

public: 

m_NextNeuronID; 

m_Nextlnnovat1onNum; 

Cinnovation(vector<SLmkGene> start_genes, 
vector<SNeuronGene> start_neurons); 

//checks to see 1f this innovation has already occurred. If 1t has 1t 
//returns the innovation ID. If not 1t returns a negative value. 
int Checklnnovat1on(int m, mt out, mnov_type type); 
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//creates a new mnovat1on and returns its ID 
mt CreateNewlnnovat1on(mt m, mt out, mnov_type type); 

//as above but includes addmg x/y pos1t1on of new neuron 
int CreateNewlnnovat1on(mt from, 

mt to, 
mnov_type InnovType, 
neuron_type NeuronType, 
double x, 
double y); 

//creates a Bas1cNeuron from the given neuron ID 
SNeuronGene CreateNeuronFromID(mt id); 

//------------------------------------------------accesso r methods 
int GetNeuronID(mt inv)const{return m_veclnnovs[mv].NeuronID;} 

void Flush(){m_veclnnovs.clear(); return;} 

int NextNumber(mt num = 0) 
{ 

} 
}; 

m_Nextlnnovat1onNum += num; 

return m_Nextlnnovat1onNum; 

#end1f 
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#include "Cinnovat1on.h" 

I/---------------------------------- ctor --------------------------------
// 
// given a series of start genes and start neurons this ctor adds 
// all the appropriate rnnovat1ons. 
//------------------------------------------------------------------------
Cinnovat1on:: Cinnovat1on(vector<SLrnkGene> start_genes, 

vector<SNeuronGene> start_neurons) 
{ 

} 

m NextNeuronID = 0; 
m_Nextinnovat1onNum = 0; 

//add the neurons 
for (mt nd=0; nd<start_neurons.s1ze(); ++nd) 
{ 

} 

m_vecinnovs.push_back(Sinnovat1on(start_neurons[nd], 
m_Nextlnnovat1onNum++, 
m_NextNeuronID++)); 

//add the lrnks 
for (mt cGen = 0; cGen<start_genes.s1ze(); ++cGen) 

{ 
Sinnovat1on Newinnov(start_genes[cGen].FromNeuron, 
start_genes[cGen].ToNeuron, 
new_hnk, 
m_Nextinnovat1onNum); 

m_ veclnnovs. push_back( Newlnnov); 

++m_Nextinnovat1onNum; 

} 

//---------------------------Checklnnovation------------------------------
/1 
II checks to see 1f this rnnovat1on has already occurred. If 1t has 1t 
// returns the rnnovat1on ID. If not 1t returns a negative value. 
I!------------------------------------------------------------------------
mt Cinnovat1on: :Checkinnovat1on(rnt rn, mt out, innov_type type) 
{ 

} 

//iterate through the rnnovat1ons looking for a match on all 
//three parameters 

for (mt rnv=0; rnv<m_vecinnovs.s1ze(); ++rnv) 
{ 

1f ( (m_vecinnovs[rnv].Neuronin == rn) && 
(m_vecinnovs[rnv].NeuronOut == out) && 
(m_vecinnovs[rnv].Innovat1onType == type)) 

{ 

} 
} 

//found a match so assign this rnnovat1on number to 1d 
return m_ vecinnovs[rnv].InnovationID; 

//1f no match, return a negative value 
return -1; 

//--------------------------CreateNewinnovat1on---------------------------
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II 
I I creates a new mnovatIon and returns its ID 
I 1------------------------------------------------------------------------
mt ClnnovatIon: :CreateNewlnnovat1on(mt m, mt out, mnov_type type) 
{ 

SlnnovatIon new_mnov(m, out, type, m_Nextlnnovat1onNum); 

1f (type == new_neuron) 
{ 

new_mnov.NeuronID = m_NextNeuronID; 

++m_NextNeuronID; 
} 

m_veclnnovs.push_back(new_1nnov); 

++m_NextlnnovatIonNum; 

return (m_NextNeuronID-1); 
} 

I I------------------------------------------------------------------------
II 
I I as above but includes adding xfy posItIon of new neuron 
I I------ ------------------------------------------------------------------
mt ClnnovatIon: :CreateNewlnnovat1on(mt from, 

mt to, 
mnov_type InnovType, 
neuron_type NeuronType, 
double x, 
double y) 

{ 

} 

Slnnovat1on new_mnov(from, to, InnovType, m_NextlnnovatIonNum, NeuronType, x, y); 

1f (InnovType == new_neuron) 
{ 

new_mnov.NeuronID = m_NextNeuronID; 

++m_NextNeuronID; 
} 

m_veclnnovs.push_back(new_mnov); 

++m_NextlnnovatIonNum; 

return (m_NextNeuronID-1); 

11------------------------------- CreateNeuronFromID -----------------------
11 
I I given a neuron ID this function returns a clone of that neuron 
I 1------------------------------------------------------------------------
SNeuronGene Clnnovat1on: :CreateNeuronFromID(mt NeuronID) 
{ 

SNeuronGene temp(h1dden,0,0,0); 

for (mt mv=0; mv<m_veclnnovs.s1ze(); ++mv) 
{ 

1f (m_veclnnovs[mv].NeuronID == NeuronID) 
{ 

temp.NeuronType = m_veclnnovs[mv].NeuronType; 
temp.I1D = m_veclnnovs[mv].NeuronID; 
temp.dSphtY = m_veclnnovs[mv].dSphtY; 
temp.dSphtX = m_veclnnovs[mv].dSphtX; 
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return temp; 
} 

} 

return temp; 
} 

#1fndef CMAPPER_H 
#define CMAPPER_H 

#include <vector> 
#include <wmdows.h> 

#include "ut1ls.h" 
#include "Cparams.h" 

usmg namespace std; 

I!------------------ ------------------------------------------------------
// Authors: 
II Created by Mat Buckland 2002 
// Mod1f1ed by Ami kumar Enumulapally 2004 
// Ami kumar Enumulapally 2005 
II 
// structure to define a 'cell'. A cell is a RECT m space and keeps 
II a track of how many ticks the bot has spent at the cell. 
I!------------------------------------------------------------------------
struct SCell 
{ 

mt ITlcksSpentHere; 

//the coordinates which describe the cell's pos1t1on 
RECTCell; 

SCell(mt xmm, mt xmax, mt ymm, mt ymax):ITlcksSpentHere(0) 
{ 

} 

Cell.left = xmm; 
Cell.right = xmax; 
Cell.top = ymm; 
Cell.bottom= ymax; 

void Update() 
{ 

++ITlcksSpentHere; 
} 

void Reset() 
{ 

ITlcksSpentHere = 0; 
} 

}; 

//------------------------------------------------------------------------
// 
// This mapper class holds information about a 2d vector of cells 
I/------------------------------------------------------------------------
class CMapper 
{ 
private: 

//the 2d vector of memory cells 
vector<vector<SCell> > m_2DvecCells; 

mt m_NumCellsX; 
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mt m_NumCellsY; 
int m_lTotalCells; 

//the dimensions of each cell 
double m_dCellS1ze; 

pubhc: 

CMapper(): m_NumCellsX(O), 
m_NumCellsY(O), 
m_lTotalCells(O) 

{} 

//this must be called after an instance of this class has been 
//created. This sets up all the cell coordinates. 
void Imt(mt MaxRangeX, mt MaxRangeY); 

//this method is called each frame and updates the time spent 
//at the cell at this pos1t1on 
void Update(double xPos, double yPos); 

//returns how many ticks have been spent at this cell pos1t1on 
int Tickslmgered(double xPos, double yPos) const; 

//returns the total number of cells v1s1ted 
mt NumCellsV1s1ted()const; 

//returns 1f the cell at the given pos1t1on has been v1s1ted or 
//not 
bool BeenV1s1ted(double xPos, double yPos) const; 

//This method renders any visited cells m shades of red. The 
//darker the red, the more time has been spent at that cell 
void Render(HDC surface); 

void Reset(); 

mt NumCells()const{return m_lTotalCells;} 
}; 

#endif 
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#include "CMapper.h" 

//--------------------------- Imt ---------------------------------------
// 
// This method needs to be called before you can use the instance. 
//------------------------------------------------------------------------
void CMapper: :Init(int MaxRangeX, int MaxRangeY) 
{ 

} 

/ /If already 1mt1ahzed return 
if(m_NumCellsX) return; 

m_dCellS1ze = CParams: :dCellS1ze; 

//first calculate how many segments we will require 
m_NumCellsX = (mt)(MaxRangeX/m_dCellSize)+l; 
m_NumCellsY = (mt)(MaxRangeY/m_dCellS1ze)+l; 

//create the 2d vector of blank segments 
for (int x=O; x<m_NumCellsX; ++x) 
{ 

vector<SCell> temp; 

for (int y=O; y<m_NumCellsY; ++y) 
{ 

temp.push_back(SCell(x*m_dCellS1ze, (x+l)*m_dCellS1ze, y*m_dCellS1ze, (y+l)*m_dCellS1ze)); 
} 

m_2DvecCells. push_back(temp); 
} 

m_iTotalCells = m_NumCellsX * m_NumCellsY; 

I I-------------------------------------------------------------
void CMapper: :Update(double xPos, double yPos) 
{ 

} 

/ /check to make sure pos1t1ons are within range 
if ( (xPos < 0) 11 (xPos > CParams: :WindowW1dth) 11 

(yPos < 0) 11 (yPos > CParams: :WmdowHe1ght) ) 
{ 

return; 
} 

int cellX = (mt)(xPos / m_dCellS1ze ); 
int cellY = (mt)(yPos / m_dCellS1ze ); 

m_2DvecCells[cellX][cellY].Update(); 

return; 

//---------------------------------------------------------------
mt CMapper: :T1cksLmgered(double xPos, double yPos)const 
{ 

/ /bounds check the mcommg values 
if ( (xPos > CParams: :WmdowW1dth) 11 (xPos < 0) 11 
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(yPos > CParams: :WmdowHe1ght) 11 (yPos < 0)) 
{ 

return 999; 
} 

int cellX = (mt)(xPos / m_dCellS1ze); 
mt cellY = (mt)(yPos / m_dCellS1ze); 

return m_2DvecCells[ cellX] [ cellY]. fflcksSpentHere; 
} 

//-------------- ----------- V1s1ted --------------------------------------
// 
/ 1------------------------------------------------------------------------
bool CMapper: :BeenV1s1ted(double xPos, double yPos)const 
{ 

mt cellX = (mt)(xPos / m_dCellS1ze); 
int cellY = (mt)(yPos / m_dCellS1ze); 

1f (m_2DvecCells[cellX][cellY].fflcksSpentHere > 0) 
{ 

return true; 
} 

else 
{ 

} 
} 

return false; 

I/--------------------------------- Render -------------------------------
// 
I I renders the v1s1ted cells. The color gets darker the more frequently 
// the cell has been visited. 
I/------------------------------------------------------------------------
void CMapper: :Render(HDC surface) 
{ 

for (int x=0; x<m_NumCellsX; ++x) 
{ 

} 
} 

for (int y=0; y<m_NumCellsY; ++y) 
{ 
if (m_2DvecCells[x][y].fflcksSpentHere > 0) 
{ 

} 
} 

int shading = 2 * m_2DvecCells[x][y].fflcksSpentHere; 

if (shading >220) 
{ 

shading = 220; 
} 

HBRUSH hghtbrush = CreateSohdBrush(RGB(240,220-shadmg,220-shadmg)); 

F1IIRect(surface, &m_2DvecCells[x][y].Cell, lightbrush); 

DeleteObJect(hghtbrush); 

//-----------------------------------Reset------------------------------
void CMapper: :Reset() 
{ 

for (int x=0; x<m_NumCellsX; ++x) 
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{ 
for (mt y=O; y<m_NumCellsY; ++y) 
{ 
m_2DvecCells[x][y].Reset(); 

} 
} 

} 

mt CMapper: :NumCellsV1s1ted() const 
{ 

} 

mt total= O; 

for (mt x=O; x<m_NumCellsX; ++x) 
{ 

} 

for (mt y=O; y<m_NumCellsY; ++y) 
{ 

} 

1f (m_2DvecCells[x][y].ITlcksSpentHere > 0) 
{ 

++total; 
} 

return total; 
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#1fndef CMINESWEEPER_H 
#define CMINESWEEPER_H 

I I------ ------------------------------------------------------------------
II 
II 
II 
II 
II 
II 
II 
II 

Name: CMineSweeper.h 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 

II Desc: Class to create a minesweeper obJect 
II 

2005 

I/------ ------------------------------------------------------------------
#include <vector> 
#include <math.h> 

#include "phenotype.h" 
#include "ut1ls.h" 
#include "C2DMatnx.h" 
#include "SVector2D.h" 
#include "CParams.h" 
#include "collls1on.h" 
#include "CMapper.h" 

using namespace std; 

class CMinesweeper 
{ 

private: 

CNeuralNet* m_pitsBrain; 

//1ts memory 
CMapper m_MemoryMap; 

//its pos1t1on in the world 
SVector2D m_vPos1t1on; 

//d1rect1on sweeper 1s facing 
SVector2D m_vLookAt; 

//how much 1t 1s rotated from its starting pos1t1on 
double m_dRotat1on; 

double m_dSpeed; 

//to store output from the ANN 
double m_lTrack, m_rTrack; 

//the sweepers fitness score. 
double m_dF1tness; 
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//the scale of the sweeper when drawn 
double m_dScale; 

//no of mmes found; 
mt m_1Mmes; 

/* //the mputs from sensors 
double m_dSensors[5]; 
//the mputs from feelers 
double m_dFeelers[5]; 

*/ 

//fitness parameters 
mt m_1Colhs1ons; 
mt m_1Rotval; 
int m_iSpeedval; 

/ /to store end vertices of sensor segments 
vector<SPomt> m_Sensors; 
vector<SPoint> m_tranSensors; 

//this keeps a record of how far down the sensor segment 
//a 'hit' has occurred. 
vector<double> m_vecdSensors; 

//the end pomts of the sensors check their coordinate 
//cell to see how many times the sweeper has visited 1t. 
vector<double> m_vecFeelers; 

//if a colhs1on has been detected this flag is set 
bool m_bColhded; 

void CreateSensors(vector<SPomt> &sensors, 
mt NumSensors, 
double range); 

int CheckForH1t(vector<SVector2D> &obJects, double size); 

void TestSensors(vector<SPomt> &obJects); 

void TestRange(); 

public: 

CMinesweeper(); 

//updates the ANN with mformat1on from the sweepers env1roment 
bool Update(vector<SPomt> &obJects, mt 1val,int igen,bool bBest, mt 

iT1cks); 

//used to transform the sweepers vertices prior to rendering 
void WorldTransform(vector<SPomt> &sweeper, double scale); 

void Reset(); 
//checks to see 1f the minesweeper has 'collected' a mme 

int CheckForMme(vector<SVector2D> &mmes, double size); 
void mcrementmineval(); 
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void SetStartmgPomt(mt x, mt y) 
{ 

m_vPos1t1on = SVector2D(x, y); 

} 

void EndOfRuncalculat1ons(); 

void RenderStats(HDC surface); 

void Render(HDC surface); 

void DrawNet(HDC &surface, int cxleft, mt cxR1ght, int cyTop, int cyBot) 
{ 

m_pltsBram->DrawNet(surface, cxLeft, cxR1ght, cyTop, cyBot); 
} 

/ /-------------------accessor functions 
SVector2D Pos1tion()const{return m_vPos1t1on;} 

double Rotation()const{return m_dRotat1on;} 

float F1tness()const{return m_dF1tness;} 

double Scale()const{return m_dScale;} 

vector<SPoint>& Sensors(){return m_tranSensors;} 

vector<double>& SensorReadmgs(){return m_vecdSensors;} 

bool Collided()const{return m_bColhded;} 

vector<double> MemoryReadmgs(){return m_vecFeelers;} 

int NumCellsV1s1ted(){return m_MemoryMap.NumCellsVistted();} 

void InsertNewBram(CNeuralNet* bram){m_pltsBrain = bram;} 
CNeuralNet* getBram(){ return(m_pltsBram);} 

}; 

#end1f 
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#include "CMmesweeper.h" 
#include "f1le.h" 
intJval=0; 
//-----------------------------------constructor-------------------------
// 
I/----------- ------------------------------------------------------------
CM inesweeper: :CMmesweeper(): 

m_dRotat1on(0), 
m_lTrack(0), 
m_rTrack(0), 
m_dF1tness(0), 

{ 

m_bColhded(false), 

//create a static start posItIon 
m_vPos1tIon = SVector2D(180, 200); 

//create the sensors 

m_dScale(CParams: :iSweeperScale), 

m_1Colhs1ons(0), 
m_1Speedval(0), 
m_1Mmes(0), 
m_1Rotval(0) 

CreateSensors(m_Sensors, CParams:: INumSensors, CParams: :dSensorRange); 

//m1tiahze its memory 
m_MemoryMap.In1t(CParams: :WmdowW1dth, 

CParams: :WmdowHe1ght); 

} 

//-------------------------------- CreateSensors ------------------------
// 
// This function returns a vector of points which make up the segments of 
// the sweepers sensors. 
I/------------------------------------------------------------------------
vo 1d CMmesweeper: :CreateSensors(vector<SPomt> &sensors, 

{ 

mt NumSensors, 
double range) 

//make sure vector of sensors Is empty before proceeding 
sensors.clear(); 

double SegmentAngle = CParams: :dP1 / (NumSensors-1); 

//going clockwise from 90deg left of posItIon calculate the fan of 
//points radiating out (not mcludmg the origin) 
for (mt 1=0; 1<CParams::1NumSensors; i++) 
{ 

//calculate vertex posItIon 
SPomt pomt; 

pomt.x = -sm(1 * SegmentAngle - CParams: :dHalfP1) * range; 
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point.y = cos(1 * SegmentAngle - CParams: :dHalfP1) * range; 

sensors. push_back(point); 

}//next segment 

} 
I/---- -------------------------Reset()------------------------------------
/ / 
// Resets the sweepers posItIon, fitness and rotation 
II 
I!---------------- ------------- -------------------------------------------
vo 1d CMinesweeper: :Reset() 
{ 

} 

//reset the sweepers posItIons 
m_vPosItIon = SVector2D(180, 200); 

//and the fitness 
m_dF1tness = 0; 

//and the rotation 
m_dRotat1on = 0; 

m_1Colhs1ons=0; 
m_1Rotval=0; 
m_1Speedval=0; 

//reset its memory 
m_MemoryMap. Reset(); 

//------------------------- RenderMemory ---------------------------------
// 
I!------------------------------------------------------------------------
void CMinesweeper:: Render(HDC surface) 
{ 

} 

//render the memory 
m_MemoryMap.Render(surface); 

strings= 1tos(m_MemoryMap.NumCellsVIs1ted()); 
s = "Num Cells V1s1ted: "+ s; 
TextOut(surface, 220,0,s.c_str(), s.s1ze()); 

//---------------------WorldTransform--------------------------------
1 / 
// sets up a translation matrix for the sweeper according to its 
// scale, rotation and posItIon. Returns the transformed vertices. 
I I------ -------------------------------------------------------------
void CMinesweeper: :WorldTransform(vector<SPoint> &sweeper, double scale) 
{ 

//create the world transformation matrix 
C2DMatrix matTransform; 

//scale 
matTransform.Scale(scale, scale); 

//rotate 
matTransform.Rotate(m_dRotat1on); 

//and translate 
matTransform.Translate(m_vPos1t1on.x, m_vPos1t1on.y); 

//now transform the ships vertices 
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matTra nsform. TransformSPomts( sweeper); 
} 

I /-------------------------------Update()--------------------------------
// 
II 
II 
II 
II 

First we take sensor readings and feed these mto the sweepers bram. 

The inputs are: 

// The readings from the minesweepers sensors 
II 
II 
II 
II 
II 

We receive two outputs from the bram .. ITrack & rTrack. 
So given a force for each track we calculate the resultant rotation 
and acceleration and apply to current velocity vector. 

I/-------- ---------------------------------------------------------------
boo I CMmesweeper:: Update(vector<SPomt> &obJects,mt 1val,mt 1gen,bool bBest, mt fflcks) 
{ 

//this will store all the inputs for the NN 
vector<double> inputs; 

//grab sensor readings 
TestSensors( obJects); 

//mput sensors mto net 
for (mt sr=0; sr<m_vecdSensors.sIze(); ++sr) 
{ 

inputs. push_back( m_ vecdSensors[sr]); 
inputs. push_back( m_vecFeelers[sr]); 

} 

1 nputs. push_back( m_bCol hded); 

//update the bram and get feedback 
vector<double> output = m_pitsBram->Update(mputs, CNeuralNet: :act1ve,fflcks); 

{ 

} 

//make sure there were no errors m calculating the 
//output 
1f (output.size() < CParams: :1NumOutputs) 

return false; 

//assign the outputs to the sweepers left & right tracks 
m_lTrack = output[0]; 
m_rTrack = output[1]; 

//calculate steering forces 
double RotForce = m_lTrack - m_rTrack; 

/ /If its not rotating too much It gets bonus; 
1f((RotForce>0.S) 11 (RotForce<-0.5)) 

m_1Rotval++; 

//clamp rotation 
Clamp(RotForce, -CParams: :dMaxTurnRate, CParams: :dMaxTurnRate); 

m_dRotat1on += RotForce; 

//update Look At 
m_vlookAt.x = -sm(m_dRotat1on); 
m_vLookAt.y = cos(m_dRotat1on); 

/ /If the sweepers haven't collided with an obstacle 
//update their posItIon 
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1f (lm_bColhded) 
{ 

m_dSpeed = m_lTrack + m_rTrack; 

/ /If speed of exploration Is more then gets bonus 
1f(m_dSpeed>1.5) 

m_1Speedval++; 

//update position 
m_vPosItIon += (m_vLookAt * m_dSpeed); 

//test range of x,y values - because of 'cheap' collision detection 
//this can go mto error when using < 4 sensors 
TestRange(); 

} 
else 

{ 
m_1Colhs1ons++; 

} 
//update the memory map 
m_MemoryMap.Update(m_vPos1tion.x, m_vPosit1on.y); 

return true; 
} 

//----------------------- TestSensors ------------------------------------
// 
// This function checks for any intersections between the sweeper's 
// sensors and the obJects m its environment 
I!------------------------------------------------------------------------
void CMmesweeper: :TestSensors(vector<SPomt> &obJects) 
{ 

m_bCollided = false; 

//first we transform the sensors mto world coordinates 
m_tranSensors = m_Sensors; 

WorldTransform(m_tranSensors, 1); //scale Is 1 

//flush the sensors 
m_vecdSensors.clear(); 
m_vecFeelers.clear(); 

/ /now to check each sensor against the obJects in the world 
for (int sr=O; sr<m_tranSensors.sIze(); ++sr) 
{ 

bool bH1t = false; 

double dist= O; 

for (mt seg=O; seg<ob1ects.s1ze(); seg+=2) 
{ 

} 

if (Lmelntersection2D(SPomt(m_vPosit1on.x, m_vPositIon. y), 
m_tranSensors[sr], 
obJects[seg], 
obJects[seg+l], 
dist)) 

{ 
bHit = true; 

break; 
} 
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if (bH1t) 
{ 

m_vecdSensors.push_back( dist); 

//implement very simple colhs1on detection 
1f (dist < CParams: :dColhs1onD1st) 
{ 

m_bColhded = true; 
} 

} 

else 
{ 

m_ vecdSensors. push_back(-1); 
} 

//check how many times the minesweeper has v1s1ted the cell 
//at the current posItIon 
mt HowOften = m_MemoryMap.T1cksLmgered(m_tranSensors[sr].x, 

m_tranSensors[sr].y); 

//Update the memory mfo according to HowOften. The maximum 
//value Is 1 (because we want all the inputs mto the 
//ANN to be scaled between -1 < n < 1) 
if (HowOften == 0) 
{ 

m_ vecFeelers. push_back(-1); 

continue; 
} 

if (HowOften < 10) 
{ 

m_ vecFeelers. push_back(0); 

continue; 
} 

if (HowOften < 20) 
{ 

m_vecFeelers.push_back(0.2); 

continue; 
} 

if (HowOften < 30) 
{ 

m_ vecFeelers. push_back(0 .4); 

continue; 
} 

if (HowOften < 50) 
{ 

m_vecFeelers.push_back(0.6); 

continue; 
} 

if (HowOften < 80) 
{ 

m_vecFeelers.push_back(0.8); 

continue; 
} 
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m_ vecFeelers. push_back( 1); 

}/ /next sensor 
} 

I/-------------------------------- TestRange -----------------------------
// 
I!------------------------------------------------------------------------
void CMmesweeper: :TestRange() 
{ 

1f (m_vPos1t1on.x < 0) 
{ 

m_vPos1t1on.x = 5; 
} 

1f (m_vPos1t1on.x > CParams: :WmdowW1dth) 
{ 

m_vPos1t1on.x = CParams: :WmdowWidth-5; 
} 

1f (m_vPos1t1on.y < 0) 
{ 

m_vPos1t1on.y = 5; 
} 

1f (m_vPos1t1on.y > CParams: :WmdowHe1ght) 
{ 

m_vPos1t1on.y = CParams::WmdowHe1ght+5; 
} 

} 

//----------------------------- CheckForM1ne -----------------------------
// 
// this function checks for col11s1on with a random mme 
I/-------- ---------------------------------------------------------------
mt CMmesweeper: :CheckForMme(vector<SVector2D> &mmes, double size) 
{ 

} 

for(mt 1=0; 1<mmes.s1ze(); 1++) 
{ 

} 

SVector2D D1stToObJect = m_vPos1t1on - mmes[1]; 

1f (Vec2DLength(D1stToObJect) < (size + 10)) 
{ 

return 1; 
} 

return -1; 

//------------------------- EndOfRunCalculat1ons() ----------------------­
// 
I!------------------------------------------------------------------------
void CMmesweeper:: EndOfRunCalculat1ons() 
{ 
m_dF1tness += m_MemoryMap.NumCellsV1s1ted()+m_1Speedval/5-m_1Coll1s1ons/5-

m_1Rotval/l0+m_1Mmes*l0; 

//Another Fitness function 
//m_dF1tness += m_MemoryMap.NumCellsV1s1ted()+m_1Speedval/l0-m_1Colhs1ons/2-

m_1Rotval/l0+m_1Mmes*5; 

//A simple fitness function 
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//m_dF1tness += m_MemoryMap.NumCellsV1s1ted() 
} 

void CMmesweeper: :mcrementmmeval() 
{ 

m_IMmes++; 
} 

#1fndef CPARAMS_H 
#define CPARAMS_H 
I/------------------------------------------------------------------------
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Name: CParams.h 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 2005 

Desc: class to hold all the parameters used m this proJect. The values 
are loaded m from an Im file when an instance of the class Is 
created. 

I/- -----------------------------------------------------------------------
#include <windows.h> 
#include <fstream> 
//#include "f1le.h" 
using namespace std; 

//1-0 trammg pairs 
static double dlop[250][13]; 

class CParams 
{ 

public: 

I/- ------------------------------------------------------------------
I/ general parameters 
I I ----------------------------------------------------------------- --

static double dP1; 
static double dHalfP1; 
static double dTwoP1; 

static mt WmdowW1dth; 
static mt WmdowHe1ght; 

static mt InfoWmdowW1dth; 
static mt InfoWmdowHe1ght; 

static mt 1FramesPerSecond; 
static mt 1OffhneTrammg; 
static mt 1GlobalOnhne; 
static mt 1RuleEvolut1on; 
static mt 1OnlyGAs; 

//fstream file; 

I I -------------------------------------------------------------------
I/ used to define the sweepers 
I/-------------------------------------------------------------------
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static mt INumSweepers; 

//limits how fast the sweepers can turn 
static double dMaxTurnRate; 

//for controlling the size 
static mt 1SweeperScale; 

//amount of sensors 
static int INumSensors; 

/ /range of sensors 
static double dSensorRange; 

//distance 0 < d < 1 for colhs1on detection. The smaller the 
//value Is the closer the sweeper has to be to an obJect. 
static double dColhs1onD1st; 

//--------------------------------------controller parameters 

/ /number of time steps we allow for each generation to hve 
static mt 1NumT1cks; 

I!---------------------------------------------------------------------
I I used in CMapper.h/cpp 
I I- --------------------------------------------------------------------

static double dCellS1ze; 

I/----------------------------------------------------------------------
// used m phenotype.h/cpp 
I/----------------------------------------------------------------------

static mt INumlnputs; 
static mt INumOutputs; 

/ /bias value 
static double dB1as; 

//starting value for the s1gmo1d response 
static double dS1gmo1dResponse; 

I/----------------------------------------------------------------------------
//learning rate and evolutionary parameters of learning rule to use in learning 
//used m phenotype.h/cpp 

I!-----------------------------------------------------------------------------

static double dLearmngRate; 
static double dParaml; 
static double dParam2; 
static double dParam3; 
static double dParam4; 
static double dParamS; 
static double dParam6; 
static double dParam7; 
static double dParam8; 
static double dParam9; 
static double dParaml0; 
static double dParam11; 
//static double dParaml; 

I /i-o tram mg pairs 
/ /static double dlop[600][13]; 
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I!----------------------------------------------------------------------
// used m genotype.h/cpp 
I!----------------------------------------------------------------------

//number of times we try to fmd 2 unlinked nodes when addmg a lmk. 
I /see CGenome: :Addlmk() 
static mt 1NumAddLmkAttempts; 

/ /number of attempts made to choose a node that 1s not an input 
//node and that does not already have a recurrently looped connection 
/ /to itself. See CGenome: :Addlmk() 
static mt 1NumTrysT0FmdloopedLmk; 

//the number of attempts made to fmd an old hnk to prevent chammg 
//m CGenome::AddNeuron 
static mt 1NumTrysT0FmdOldlmk; 

/ /the chance, each epoch, that a neuron or hnk will be added to the 
//genome 
static double dChanceAddlmk; 
static double dChanceAddNode; 
static double dChanceAddRecurrentlmk; 

//mutation probab1ht1es for mutating the weights m CGenome: :Mutate() 
static double dMutat1onRate; 
static double dMaxWe1ghtPerturbat1on; 
static double dProbab1htyWe1ghtReplaced; 

//probab1ht1es for mutating the act1vat1on response 
static double dAct1vat1onMutat1onRate; 
static double dMaxAct1vat1onPerturbat1on; 

//the smaller the number the more species will be created 
static double dCompat1b1htyThreshold; 

I!----------------------------------------------------------------- -----
// used in CSpec1es.h/cpp 
I!----------------------------------------------------------------- -----

//durmg fitness adJustment this 1s how much the fitnesses of 
//young species are boosted (eg 1.2 1s a 20% boost) 
static double dYoungF1tnessBonus; 

//1f the species are below this age their fitnesses are boosted 
static mt iYoungBonusAgeThreshhold; 

//number of population to survive each epoch. (0.2 = 20%) 
static double dSurv1valRate; 

//1f the species 1s above this age their fitness gets penalized 
static mt 1OldAgeThreshold; 

I /by this much 
static double dOldAgePenalty; 

I/----------------------------------------------------------------------
// used m Cga.h/cpp 
I/----------------------------------------------------------------------

//how long we allow a species to exist without any improvement 
static mt 1NumGensAllowedNolmprovement; 
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/ /maximum number of neurons permitted m the network 
static mt 1MaxPerm1ttedNeurons; 

//the number of best performing sweepers shown when 'B' Is 
//selected. (you will see copies from the previous generation 
static mt iNumBestSweepers; 

static double dCrossoverRate; 

I!---------------------------------------------
1/ eto r 
CParams(){} 

bool Imt1ahze() 
{ 

1f(•LoadlnParameters("params.mi")) 
{ 

MessageBox(NULL, "Cannot find 'params.m1'", "Error", 0); 

return false; 
} 

//fstreamfile ("input.rtf", Ios::out I ios::app I 1os::m); 

dP1 = 3.14159265358979; 
dHalfPi = dPi / 2; 
dTwoP1 = dP1 * 2; 

dCollis1onD1st = (double)(1SweeperScale+l)/dSensorRange; 

INumlnputs = (iNumSensors * 2) + 1; 
iNumOutputs = 2; 

char *szF1leNamel0= 111o_tram1ng4.txt"; 
//fstream grab2("io_trammg.txt", fstream::m I fstream::out I fstream::app); 

fstream grab2(szF1leNamel0); 
mt 1_here,J_here; 
//double dtmpsum; 

/ /populate dlop 
for (i_here=0;1_here<250;i_here++) 
{ 

/ /trammginputs.clear(); 
/ /targetOutputs.clear(); 
/ /des1redOutputs.clear(); 

//dtmpsum=0; 
/ /Read input from file 

j_here=0; 
grab2> >dlop[i_here] [J_here]; 

//1 
J_here++; 

grab2> >dlop[i_here] [J_here]; 
//trammglnputs. push_back( dTmpvar); 

//2 
J_here++; 

grab2>>dlop[i_here][J_here]; 

//3 
Lhere++; 
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} 

grab2> >dlop[r_here] [J_here]; 

//4 
1-here++; 

grab2> >dlop[r_here][Lhere]; 

//5 
J_here++; 

grab2>>dlop[r_here][J_here]; 

//6 
J_here++; 

grab2> >diop[r_here][J_here]; 

//7 1-here++; 
J_here++; 

grab2> >diop[r_here] [J_here]; 

//8 
1-here++; 

grab2>>dlop[r_here][J_here]; 

//9 
1-here++; 

grab2> >dlop[r_here] [J_here]; 

//10 
J_here++; 

grab2> >dlop[r_here] [1-here]; 

//11 
1-here++; 

grab2>>dlop[r_here][J_here]; 

//12 
J_here++; 

grab2> >dlop[r_here] [J_here]; 

}//end of for loop 

return true; 

bool LoadinParameters(char* szF1leName); 
}; 

#end1f 
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#include "CParams.h" 

double CParams: :dP1 = 0; 
double CParams: :dHalfP1 = 0; 
double CParams: :dTwoP1 = 0; 
mt CParams: :WmdowW1dth = 400; 
mt CParams: :WmdowHe1ght = 400; 
mt CParams: :iFramesPerSecond = 0; 
int CParams: :INumlnputs = 0; 
int CParams: :iNumOutputs = 0; 
double CParams: :dB1as = -1; 
double CParams: :dMaxTurnRate = 0; 
int CParams::1SweeperScale = O; 
mt CParams: :INumSensors = 0; 
double CParams: :dSensorRange = 0; 
int CParams:: iNumSweepers = 0; 
int CParams::1NumTicks = 0; 
double CParams: :dColhs1onD1st = 0; 
double CParams: :dCellS1ze = 0; 
double CParams: :dS1gmoidResponse = 1; 
int CParams:: iNumAddLinkAttempts = 0; 
int CParams: :1NumTrysT0FmdLoopedLmk = 5; 
mt CParams: :1NumTrysT0FmdOldlmk = 5; 
double CParams: :dYoungFItnessBonus = 0; 
int CParams:: 1YoungBonusAgeThreshhold = O; 
double CParams: :dSurv1valRate = 0; 
int CParams: :InfoWmdowW1dth = 400; 
int CParams: :InfoWmdowHe1ght = 400; 
int CParams: :iNumGensAllowedNolmprovement = 0; 
int CParams: :1MaxPerm1ttedNeurons = 0; 
double CParams: :dChanceAddLmk = 0; 
double CParams: :dChanceAddNode = 0; 
double CParams: :dChanceAddRecurrentLmk = 0; 
double CParams: :dMutat1onRate = 0; 
double CParams: :dMaxWe1ghtPerturbat1on = 0; 
double CParams: :dProbab1htyWe1ghtReplaced= 0; 

double CParams: :dAct1vat1onMutatIonRate = 0; 
double CParams: :dMaxAct1vat1onPerturbat1on= 0; 

double CParams: :dCompat1b1htyThreshold = 0; 
int CParams:: INumBestSweepers = 4; 
int CParams::iOldAgeThreshold = 0; 
double CParams: :dOldAgePenalty = 0; 
double CParams: :dCrossoverRate = 0; 
double CParams: :dLearnmgRate = 0.01; 
double CParams: :dParaml = 4; 
double CParams: :dParam2 = 0; 
double CParams: :dParam3 = O; 
double CParams: :dParam4 = 0; 
double CParams: :dParam5 = o; 
double CParams: :dParam6 = 0; 
double CParams: :dParam7 = O; 
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= O; 
= -2; 
= 2; 
= o; 
= O; 

=0; 
=0; 
=0; 

double CParams: :dParam8 
double CParams: :dParam9 
double CParams: :dParaml0 
double CParams: :dParam11 
//double CParams: :dParaml 
mt CParams: :1OffhneTrammg 
mt CParams: :1GlobalOnhne 
mt CParams:: 1RuleEvolut1on 
mt CParams: :1OnlyGAs =0; 

//this function loads m the parameters from a given file name. Returns 
//false 1f there 1s a problem opening the file. 
bool CParams: :LoadlnParameters(char* szF1leName) 
{ 

1fstream grab(szF1leName); 

//check file exists 
1f (lgrab) 
{ 

return false; 
} 

//load m from the file 
char ParamDescnpt1on[40]; 

grab >> ParamDescnpt1on; 
grab>> 1FramesPerSecond; 
grab >> ParamDescnpt1on; 
grab >> dMaxTurnRate; 
grab >> ParamDescnption; 
grab>> 1SweeperScale; 
grab >> ParamDescnpt1on; 
grab >> 1NumSensors; 
grab >> ParamDescnpt1on; 
grab > > dSensorRange; 
grab >> ParamDescnpt1on; 
grab>> 1NumSweepers; 
grab >> ParamDescnpt1on; 
grab >> 1NumT1cks; 
grab >> ParamDescnpt1on; 
grab >> dCellS1ze; 
grab >> ParamDescnption; 
grab >> 1NumAddLmkAttempts; 
grab >> ParamDescnpt1on; 
grab >> dSurv1valRate; 
grab >> ParamDescnpt1on; 
grab >> 1NumGensAllowedNolmprovement; 
grab >> ParamDescnpt1on; 
grab>> 1MaxPerm1ttedNeurons; 
grab >> ParamDescnpt1on; 
grab >> dChanceAddLmk; 
grab >> ParamDescnption; 
grab >> dChanceAddNode; 
grab >> ParamDescnpt1on; 
grab>> dChanceAddRecurrentLmk; 
grab >> ParamDescnption; 
grab >> dMutat1onRate; 
grab >> ParamDescnpt1on; 
grab>> dMaxWe1ghtPerturbat1on; 
grab >> ParamDescnpt1on; 
grab >> dProbab11ityWe1ghtReplaced; 
grab >> ParamDescnpt1on; 
grab>> dAct1vat1onMutat1onRate; 
grab >> ParamDescnpt1on; 
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} 

grab >> dMaxAct1vat1onPerturbat1on; 
grab >> ParamDescnpt1on; 
grab > > dCompat1b1l1tyThreshold; 
grab >> ParamDescnpt1on; 
grab >>1OldAgeThreshold; 
grab >> ParamDescnpt1on; 
grab > >dOldAgePenalty; 
grab >> ParamDescnpt1on; 
grab > > dYoungF1tnessBonus; 
grab>> ParamDescnptIon; 
grab>> 1YoungBonusAgeThreshhold; 
grab>> ParamDescnpt1on; 
grab >> dCrossoverRate; 
grab >> ParamDescnpt1on; 
grab >> dLearrnngRate; 
grab >> ParamDescnpt1on; 
grab >> dParaml; 
grab >> ParamDescnpt1on; 
grab >> dParam2; 
grab > > ParamDescript1on; 
grab>> dParam3; 
grab >> ParamDescnpt1on; 
grab >> dParam4; 
grab >> ParamDescnpt1on; 
grab >> dParam5; 
grab >> ParamDescript1on; 
grab>> dParam6; 
grab>> ParamDescript1on; 
grab>> dParam7; 
grab >> ParamDescript1on; 
grab >> dParam8; 
grab >> ParamDescr1pt1on; 
grab >> dParam9; 
grab >> ParamDescnpt1on; 
grab >> dParaml0; 
grab >> ParamDescnpt1on; 
grab >> dParamll; 
//grab >> dParaml; 
grab >> ParamDescnpt1on; 
grab >> 1OfflineTraining; 
grab >> ParamDescnpt1on; 
grab>> 1GlobalOnhne; 
grab >> ParamDescnpt1on; 
grab >> 1RuleEvolut1on; 
grab >> ParamDescnption; 
grab >> 1OnlyGAs; 

return true; 
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#1fndef CSPECIES_H 
#define CSPECIES_H 
I/-------- ---------------------------------------------------------------
// 
// Name: CSpec1es.h 
II 
II 
II 
II 
II 
II 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 2005 

II Desc: Class to handle species d1stnbut1on and maintenance 
I 1-----------------------------------------------------------------------
#mclude <vector> 
#include <math.h> 
#include <1omamp> 
#include <1ostream> 

#include "genotype.h" 

usmg namespace std; 

I!------------------------------------------------------------------------
// 
II class to hold all the genomes of a given species 
I/------------------------------------------------------------------------
cl ass CSpec1es 
{ 

private: 

//keep a local copy of the first member of this species 
CGenome m_Leader, 

//pointers to all the genomes w1thm this species 
vector<CGenome*> m_vecMembers; 

//the species needs an 1dent1f1cat1on number 
mt m_1Spec1esID; 

//best fitness found so far by this species 
double m_dBestF1tness; 

//generations smce fitness has improved, we can use 
//this mfo to kill off a species 1f required 
mt m_1GensNolmprovement; 

//age of species 
mt m_1Age; 

//how many of this species should be spawned for 
//the next population 
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double m_dSpawnsRqd; 

public: 

CSpec1es(CGenome &F1rstOrg, mt Spec1esID); 

//this method boosts the fitnesses of the young, penalizes the 
//fitnesses of the old and then performs fitness sharing over 
//all the members of the species 
void Ad1ustF1tnesses(); 

//adds a new md1v1dual to the species 
void AddMember(CGenome& new_org); 

VOid Purge(); 

//calculates how many offspring this species should 
void CalculateSpawnAmount(); 

//spawns an md1v1dual from the species selected at random 
//from the best CParams: :dSurv1valRate percent 
CGenome Spawn(); 

/ 1--------------------------------------accessor methods 
CGenome Leader()const{return m_Leader;} 

double NumToSpawn()const{return m_dSpawnsRqd;} 

mt NumMembers()const{return m_vecMembers.s1ze();} 

mt GensNolmprovement()const{return m_1GensN0Improvement;} 

mt ID()const{return m_1Spec1esID;} 

double Spec1esLeaderF1tness()const{return m_Leader.F1tness();} 

double BestF1tness()const{return m_dBestF1tness;} 

int Age()const{return m_1Age;} 

//so we can sort species by best fitness. Largest first 
friend bool operator<(const CSpec1es &lhs, const CSpec1es &rhs) 
{ 

return lhs.m_dBestF1tness > rhs.m_dBestF1tness; 
} 

}; 

#end1f 
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#include 11CSpec1es.h" 

//---------------------------------------------- --------------------------
// 
// this ctor creates an instance of a new species. A local copy of 
// the rn1t1ahzrng genome 1s kept in m_Leader and the first element 
II of m_vecMembers 1s a pointer to that genome. 
//---------------------------------------------- --------------------------
CSpec1es: :CSpec1es(CGenome &F1rstOrg, 

{ 

} 

mt Spec1esID): m_1Spec1esID(Spec1esID), 
m_dBestF1tness(F1rstOrg. Fitness()), 
m_1GensNolmprovement(0), 
m_1Age(0), 
m_Leader(F1rstOrg), 
m_dSpawnsRqcl(0) 

m_ vecMembers. push_back(&F1 rstOrg); 

m_Leader = F1rstOrg; 

//------------------------ AddMember -------------------------------------
// 
// this function adds a new member to this species and updates the member 
// variables accordingly 
I/---------------------------------------------- --------------------------
vo 1d CSpec1es: :AddMember(CGenome &NewMember) 
{ 

} 

/ /1s the new member's fitness better than the best fitness? 
1f (NewMember.F1tness() > m_dBestF1tness) 
{ 

m_dBestF1tness = NewMember.F1tness(); 

m_1GensNolmprovement = 0; 

m_Leader = NewMember; 
} 

m_vecMembers. push_back(&NewMember); 

I/-------------------------- Purge ---------------------------------------
// 
// this functions clears out all the members from the last generation, 
// updates the age and gens no improvement. 
I!----------------------------------------- -------------------------------
void CSpec1es: :Purge() 
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{ 
m_vecMembers.clear(); 

/ /update age etc 
++m_iAge; 

+ +m_iGensNolmprovement; 

m_dSpawnsRqd = o; 
} 

I/--------------------------- AdJustF1tness ------------------------------
// 
// This function adJusts the fitness of each md1v1dual by first 
// exammmg the species age and penahsmg 1f old, boosting if young. 
// Then we perform fitness sharing by d1v1dmg the fitness by the number 
// of individuals m the species. This ensures a species does not grow 
// too large 
I!------------------------------------------------------------------------
void CSpecies: :Ad1ustF1tnesses() 
{ 

double total = o; 

for (mt gen=0; gen<m_vecMembers.s1ze(); ++gen) 
{ 

double fitness= m_vecMembers[gen]->F1tness(); 

//boost the fitness scores 1f the species 1s young 
1f (m_1Age < CParams: :1YoungBonusAgeThreshhold) 
{ 

fitness *= CParams: :dYoungFitnessBonus; 
} 

//punish older species 
if (m_iAge > CParams::1OldAgeThreshold) 
{ 

fitness *= CParams: :dOldAgePenalty; 
} 

total += fitness; 

//apply fitness sharing to adJusted fitnesses 
double AdjustedFitness = f1tness/m_vecMembers.s1ze(); 

m_vecMembers[gen]->SetAdJFitness(AdJustedF1tness); 

} 
} 

//------------------------ CalculateSpawnAmount -------------------------­
// 
// Simply adds up the expected spawn amount for each individual m the 
// species to calculate the amount of offspring this species should 
II spawn 
I!------------------------------------------------------------------------
void CSpec1es: :CalculateSpawnAmount() 
{ 

} 

for (mt gen=0; gen<m_vecMembers.s1ze(); ++gen) 
{ 

m_dSpawnsRqd += m_vecMembers[gen]->AmountToSpawn(); 

} 

//------------------------ Spawn -----------------------------------------
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II 
II Returns a random genome selected from the best md1v1duals 
I I-- ---- ------------------------------------------------------------------
CGenome CSpec1es: :Spawn() 
{ 

CGenome baby; 

1f (m_vecMembers.s1ze() == 1) 
{ 

baby = *m_vecMembers[0]; 
} 

else 
{ 

mt MaxlndexS1ze = (mt) (CParams: :dSurv1valRate * m_vecMembers.s1ze())+l; 

mt TheOne = Randlnt(0, MaxlndexS1ze); 

baby= *m_vecMembers[TheOne]; 
} 

return baby; 
} 
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#1fndef CTIMER_H 
#define CTIMER_H 
I/- ---------------------------------~------------------------------------
I/ 
// Name: CT1mer.h 
II 
II 
II 
II 
II 
II 
II 
II 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 

Desc: Windows timer class 

2005 

I/------ -----------------------------------------------------------------

#include <windows.h> 

class CTimer 
{ 

private: 

public: 

//ctors 

LONGLONG m_CurrentT1me, 
m_LastT1me, 

double 

float 

CT1mer(); 
CTimer(float fps); 

m_NextT1me, 
m_FrameT1me, 
m_PerfCountFreq; 

m_ T1meElapsed, 
m_T1meScale; 

m_FPS; 

//whatdayaknow, this starts the timer 
void Start(); 

//determines 1f enough time has passed to move onto next frame 
bool ReadyForNextFrame(); 

//only use this after a call to the above. 
double GetT1meElapsed(){return m_ T1meElapsed;} 
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double T1meElapsed(); 

}; 

#end1f 

#include "CT1mer.h" 

I/---------------------- default constructor -----------------------------­
// 
I I-------------------------------------------------------------------------

CT1mer: :CT1mer(): m_FPS(0), 

{ 

} 

m_ T1meEla psed (0. Of), 
m_FrameT1me(0), 
m_LastT1me(0), 
m_PerfCountFreq(0) 

//how many ticks per sec do we get 
QueryPerformanceFrequency( (LARGE_INTEGER *) &m_PerfCountFreq); 

m_T1meScale = 1.0f/m_PerfCountFreq; 

//------------------ ---- constructor -------------------------------------
// 
// use to specify FPS 
II 
I/- ------------------------------------------------------------------------

CT1 mer:: CT1mer(float fps): m_FPS(fps), 

{ 

} 

//how many ticks per sec do we get 

m_T1meElapsed(0.0f), 
m_LastT1me(0), 
m_PerfCou ntFreq( 0) 

QueryPerformanceFrequency( (LARGE_INTEGER*) &m_PerfCountFreq); 

m_T1meScale = 1.0f/m_PerfCountFreq; 

//calculate ticks per frame 
m_FrameT1me = (LONGLONG)(m_PerfCountFreq / m_FPS); 

I/-- ----------------------Sta rt()- ----- -------- --- ----- - -- - ----------- --- -
II 
// call this 1mmed1ately pnor to game loop. Starts the timer (obv1ous1y1) 
II 
I/--------------------------------------------------------------------------
void CTimer: :Start() 
{ 

//get the time 
QueryPerformanceCounter( (LARGE_INTEGER*) &m_LastT1me); 
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} 

//update time to render next frame 
m_NextT1me = m_LastT1me + m_FrameT1me; 

return; 

I I------ -------------------ReadyFo rNextFra me()------------------------------­
/ / 
II 
II 
II 

returns true 1f 1t 1s time to move on to the next frame step. To be used 1f 
FPS IS set. 

I/-- --------------------------------------------------------------------------
bool CT1mer:: ReadyForNextFrame() 
{ 

} 

1f (lm_FPS) 
{ 

MessageBox(NULL, "No FPS set m timer'', "Doh•", O); 

return false; 
} 

QueryPerformanceCounter( (LARGE_INTEGER*) &m_CurrentT1me); 

1f (m_CurrentT1me > m_NextT1me) 
{ 

m_T1meElapsed = (m_CurrentT1me - m_LastT1me) * m_T,meScale; 
m_LastT1me = m_CurrentT1me; 

//update time to render next frame 
m_NextT1me = m_CurrentT1me + m_FrameT1me; 

return true; 
} 

return false; 

//--------------------------- T1meElapsed --------------------------------
// 
// returns time elapsed smce last call to this function. Use m mam 
// when calculations are to be based on dt. 
II 
I/---- ---------------------------------------------------------------------
double CT1mer: :T1meElapsed() 
{ 

QueryPerformanceCounter( (LARGE_INTEGER*) &m_CurrentT1me); 

m_T1meElapsed = (m_CurrentT1me - m_LastT1me) * m_T1meScale; 

m_LastT1me = m_CurrentT1me; 

return m_T1meElapsed; 

} 

183 



#1fndef NEATGENOTYPE_H 
#define NEATGENOTYPE_H 
I/-----------------------------------------------------------------------
// 
// Name: genotype.h 
II 
II 
II 
II 
II 
II 
II 
II 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 

Desc: Genome description 

2005 

I/------ -----------------------------------------------------------------
#include <vector> 

#include "phenotype.h" 
#include "ut1ls.h" 
#include "Cinnovat1on.h" 
#include "Genes.h" 

using namespace std; 

class Cga; 
class Cinnovation; 

I I- -----------------------------------------------------------------------
I I 
II CGenome class defin1t1on. A genome basically consists of a vector of 
// link genes, a vector of neuron genes and a fitness score. 
I/-- ----------------------------------------------------------------------
class CGenome 
{ 

private: 

//its ident1f1cat1on number 
int m_GenomeID; 

//all the neurons which make up this genome 
vector<SNeuronGene> m_vecNeurons; 

//and all the the links 
vector<SLinkGene> m_ veclinks; 

//pointer to its phenotype 
CNeuralNet* m_pPhenotype; 
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//1ts raw fitness score 
double m_dF1tness; 

//1ts fitness score after 1t has been placed mto a 
//species and adJusted accordingly 
double m_dAd1ustedF1tness; 

//the number of offspring this md1v1dual is required to spawn 
//for the next generation 
double m_dAmountToSpawn; 

//keep a record of the number of inputs and outputs 
int m_1Numlnputs, 

m_iNumOutPuts; 

//keeps a track of which species this genome is in (only used 
//for display purposes) 
int m_iSpec1es; 

//returns true if the spec1f1ed link 1s already part of the genome 
bool DuphcateLmk(int Neuronln, mt NeuronOut); 

//given a neuron id this function Just fmds its pos1t1on in 
//m_vecNeurons 
int GetElementPos(int neuron_1d); 

//tests 1f the passed ID 1s the same as any existing neuron IDs. Used 
//in AddNeuron 
bool AlreadyHaveTh1sNeuronID(const int ID); 

public: 

CGenome(); 

//this constructor creates a minimal genome where there are output & 
//mput neurons and every mput neuron is connected to each output neuron 
CGenome(mt 1d, mt inputs, mt outputs); 

//this constructor creates a genome from a vector of SLinkGenes 
//a vector of SNeuronGenes and an ID number 
CGenome(mt 1d, 

vector<SNeuronGene> neurons, 
vector<SLmkGene> genes, 
int inputs, 
mt outputs); 

.... cGenome(); 

//copy constructor 
CGenome(const CGenome& g); 

//assignment operator 
CGenome& operator =(const CGenome& g); 

//create a neural network from the genome 
CNeuralNet* CreatePhenotype(mt depth); 

//delete the neural network 
void DeletePhenotype(); 
CNeuralNet* GetPhenotype() 
{ 

return(m_pPhenotype); 
} 
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//add a hnk to the genome dependent upon the mutation rate 
void AddLmk(double Mutation Rate, 

double ChanceOfRecurrent, 
CinnovatIon &mnovatIon, 
mt NumTrysToFmdLoop, 
mt NumTrysToAddLmk); 

//and a neuron 
void AddNeuron(double Mutation Rate, 

Cinnovat1on &mnovatIon, 
mt NumTrysToFmdOldLmk); 

//this function mutates the connection weights 
void MutateWe1ghts(double mut_rate, 

double prob_new_mut, 
double dMaxPertubat1on); 

//perturbs the actIvatIon responses of the neurons 
void MutateAct1vat1onResponse(double mut_rate, 

double MaxPertubat1on); 
// this function mutates the learning algorithm parameters 
void MutateLearnmgParameters(double mut_rate, 

MaxPertubat1on); 

//calculates the compat1b1hty score between this genome and 
//another genome 
double GetCompatib1htyScore(const CGenome &genome); 

VOid SortGenes(); 

//overload'<' used for sorting. From fittest to poorest. 
friend bool operator<(const CGenome& lhs, canst CGenome& rhs) 
{ 

return (lhs.m_dF1tness > rhs.m_dF1tness); 
} 

I 1---------------------------------accessor methods 
mt ID()const{return m_GenomeID;} 

void SetID(const mt val){m_GenomeID = val;} 

mt NumGenes()const{return m_vecLmks.s1ze();} 
mt NumNeurons()const{return m_vecNeurons.s1ze();} 
mt Numinputs()const{return m_1Numinputs;} 
mt NumOutputs()const{return m_1NumOutPuts;} 

double AmountToSpawn()const{return m_dAmountToSpawn;} 
void SetAmountToSpawn(double num){m_dAmountToSpawn = num;} 

void SetF1tness(const double num){m_dF1tness = num;} 
void SetAdJF1tness(const double num){m_dAd1ustedF1tness = num;} 
double F1tness()const{return m_dF1tness;} 
double GetAdJF1tness()const{return m_dAdJustedF1tness;} 

mt GetSpec1es()const{return m_1Spec1es;} 
void SetSpec1es(mt spc){m_1Spec1es = spc;} 

double SphtY(const mt val)const{return m_vecNeurons[val].dSphtY;} 

vector<SLmkGene> Genes()const{return m_vecLmks;} 
vector<SNeuronGene> Neurons()const{return m_vecNeurons;} 

vector<SLmkGene>: :iterator StartOfGenes(){return m_vecLmks.begm();} 
vector<SLmkGene>:: iterator EndOfGenes(){return m_vecLmks.end();} 

}; 
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#end1f 

#include "genotype.h" 

//------------------------------------------------------------------------
// 
// default ctor 
I I- -----------------------------------------------------------------------
CGenome:: CGenome(): m_pPhenotype(NULL), 

m_GenomeID(0), 
m_dF1tness(0), 
m_dAdjustedF1tness(0), 
m_1Numlnputs(0), 
m_iNumOutPuts(0), 
m_dAmountToSpawn(0) 

{} 

//-----------------------------constructor ------------------------------
// this constructor creates a minimal genome where there are output + 
// input neurons and each input neuron is connected to each output neuron. 
I/------------------------------------------------------------------------
CGenome: :CGenome(mt id, int inputs, int outputs):m_pPhenotype(NULL), 

m_GenomeID(1d), 

{ 
//create the input neurons 

m_dF1tness(0), 
m_dAdjustedF1tness(0), 
m_1Numlnputs(inputs), 
m_1NumOutPuts( outputs), 
m_dAmountToSpawn(0), 
m_1Species(0) 

double InputRowShce = 1/(double)(inputs+2); 

for (mt 1=0; i<inputs; 1++) 
{ 

m_ vecNeurons. push_back(SNeuronGene(mput, i, 0, (i+ 2 )*InputRowShce)); 
} 

//create the bias 
m_vecNeurons.push_back(SNeuronGene(b1as, inputs, 0, InputRowShce)); 

//create the output neurons 
double OutputRowShce = 1/(double)(outputs+l); 

for (1=0; i<outputs; 1++) 
{ 
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m_vecNeurons.push_back(SNeuronGene(output, 1+mputs+ 1, 1, 
(1+l)*OutputRowShce)); 

} 

} 

//create the lmk genes, connect each input neuron to each output neuron and 
//assign a random weight -1 < w < 1 
for (1=0; 1<mputs+l; 1++) 
{ 

} 

for (mt J=0; J<outputs; J++) 
{ 

} 

m_vecLmks.push_back(SLmkGene(m_vecNeurons[1].1ID, 
m_vecNeurons[mputs+J+l].1ID, 
true, 
mputs+outputs+ 1 +NumGenes(), 
RandomClamped())); 

I/-- ----------------------------------------------------------------------
I/ 
// this constructor creates a genome from a vector of SLmkGenes, a 
// vector of SNeuronGenes and an ID number. 
I I- -----------------------------------------------------------------------
CGeno me: :CGenome(mt 1d, 

{} 

vector<SNeuronGene> neurons, 
vector<SLmkGene> genes, 
mt inputs, 
mt outputs): m_GenomeID(1d), 

m_pPhenotype(NULL), 
m_vecLmks(genes), 
m_vecNeurons(neurons), 
m_dAmountToSpawn(0), 
m_dF1tness(0), 
m_dAd3ustedF1tness(0), 
m_1Numlnputs(mputs), 
m_1NumOutPuts( outputs) 

I I ---- ---------------------------dto r-- ---------------------------------------------------
I/ 
I/-- --------------------------------------------------------------------------------------
CGenome:: ~CGenome() 
{ 

1f (m_pPhenotype) 
{ 

} 
} 

delete m_pPhenotype; 

m_pPhenotype = NULL; 

//---------------------------------copy ctor---------------------------------------------
1/ 
I/------ ---------------------------------------------------------------------------------
CGeno me: :CGenome(const CGenome& g) 
{ 

m_GenomeID = g.m_GenomeID; 
m_vecNeurons = g.m_vecNeurons; 
m_vecLmks = g.m_vecLmks; 
m_pPhenotype = NULL; //no need to perform a deep copy 
m_dF1tness = g.m_dF1tness; 
m_dAd3ustedF1tness = g.m_dAd3ustedF1tness; 
m_iNumlnputs = g.m_1Numlnputs; 
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} 

m_iNumOutPuts = g.m_1NumOutPuts; 
m_dAmountToSpawn = g.m_dAmountToSpawn; 

I /---------------------------------assignment operator-----------------------------------
// 
I 1----------------------------------------------------------------------------------------
CGenome& CGenome: :operator =(const CGenome& g) 
{ 

//self assignment guard 
/ ~(this!= &g) 

m_GenomeID = g.m_GenomeID; 
m_vecNeurons = g.m_vecNeurons; 
m_vecLinks = g.m_veclinks; 
m_pPhenotype = NULL; //no need to perform a deep copy 
m_dF1tness = g.m_dF1tness; 
m_dAdJustedF1tness = g.m_dAdjustedF1tness; 
m_1Numlnputs = g.m_1Numlnputs; 
m_1NumOutPuts = g.m_1NumOutPuts; 
m_dAmountToSpawn = g.m_dAmountToSpawn; 

} 

return *this; 
} 

//-------------------------------createPhenotype--------------------------
1/ 
II Creates a neural network based upon the information in the genome. 
// Returns a pointer to the newly created ANN 
/ 1------------------------------------------------------------------------
CNeuralNet* CGenome: :CreatePhenotype(int depth) 
{ 

//first make sure there is no existing phenotype for this genome 
DeletePhenotype(); 

//this will hold all the neurons required for the phenotype 
vector<SNeuron*> vecNeurons; 

//first, create all the required neurons 
for (int i=0; i<m_vecNeurons.s1ze(); I++) 
{ 

SNeuron* pNeuron = new SNeuron(m_vecNeurons[i].NeuronType, 
m_vecNeurons[1].1ID, 
m_vecNeurons[1].dSplitY, 
m_vecNeurons[1].dSphtX, 
m_ vecNeu rons[1]. dActivationResponse 

vecNeurons. push_back(pNeuron); 
} 

//now to create the links. 
for (int cGene=0; cGene<m_vecLinks.s1ze(); ++cGene) 
{ 

//make sure the lmk gene 1s enabled before the connection 1s created 
1f (m_vecLinks[cGene].bEnabled) 
{ 
//get the pointers to the relevant neurons 

); 

mt element = GetElementPos(m_veclinks[cGene].FromNeuron); 
SNeuron* FromNeuron = vecNeurons[element]; 

element = GetElementPos( m_ vecLm ks[ cGene]. ToNeuron); 
SNeuron* ToNeuron = vecNeurons[element]; 
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} 
} 

//create a lmk between those two neurons and assign the weight stored 
//m the gene 
SL.Ink tmpLmk(m_vecLmks[cGene].dWe1ght, 

From Neuron, 
To Neuron, 
m_vecLinks[cGene].bRecurrent); 

//add new lmks to neuron 
FromNeuron->vecLmksOut. push_back(tmpLmk); 
ToNeuron->vecLmksin.push_back(tmpL1nk); 

for(mt r_temp=0; r_temp<vecNeurons.size(); i_temp++) 
{ 

} 

//setting the error status for each neuron 
vecNeurons[1_temp]->1ErrorStatus=vecNeurons(1_temp]->vecL1nksOut.s1ze(); 

//now the neurons contain all the connect1v1ty information, a neural 
/ /network may be created from them. 
m_pPhenotype = new CNeuralNet(vecNeurons, depth); 

return m_pPhenotype; 
} 

//--------------------------- DeletePhenotype ----------------------------
// 
I!---------- --------------------------------------------------------------
void CGenome:: DeletePhenotype() 
{ 
if (m_pPhenotype) 
{ 

delete m_pPhenotype; 
} 

m_pPhenotype = NULL; 
} 

//---------------------------- GetElementPos -----------------------------
// 
// given a neuron ID this little function Just fmds its positron in 
II m_vecNeurons 
I/------------------------------------------------------------------------
mt CGenome: :GetElementPos(int neuron_,d) 
{ 

} 

for (Int 1=0; i<m_vecNeurons.size(); i++) 
{ 

{ 
return i; 

} 
} 

if (m_vecNeurons[i].iID == neuron_,d) 

MessageBox(NULL, "Error m CGenome::GetElementPos", "Problem!", MB_OK); 

return -1; 

//------------------------------Dupl1cateLmk-----------------------------
// 
// returns true 1f the lmk 1s already part of the genome 
//------------------------------------------------------------------------
bool CGenome: :Duphcatelink(mt Neuronin, mt NeuronOut) 
{ 

for (mt cGene = 0; cGene < m_veclmks.s1ze(); ++cGene) 
{ 

if ((m_vecLmks[cGene].FromNeuron == Neuronin) && 
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} 

(m_vecLmks[cGene].ToNeuron == NeuronOut)) 
{ 

} 
} 

return false; 

//we already have this lmk 
return true; 

//--------------------------------Add Link---------------------------------
II 
II create a new lmk with the probability of CParams: :dChanceAddLmk 
//------------------------------------------------------------------------
VOid CGenome: :AddLmk(double MutatIonRate, 

double ChanceOfLooped, 
CinnovatIon &innovation, 
mt NumTrysToFmdLoop, 
mt NumTrysToAddLink) 

{ 
/ /Just return dependent on the mutation rate 
1f (RandFloat() > Mutat1onRate) return; 

/ /define holders for the two neurons to be linked. If we have fmd two 
//valid neurons to link these values will become>= O. 
int ID_neuronl = -1; 
int ID_neuron2 = -1; 

//flag set 1f a recurrent link Is selected (looped or normal) 
bool bRecurrent = false; 

//first test to see 1f an attempt shpould be made to create a 
/ /lmk that loops back into the same neuron 
If (RandFloat() < ChanceOfLooped) 
{ 

//YES: try NumTrysToFmdLoop times to find a neuron that is not an 
/ /input or bias neuron and that does not already have a loopback 
//connect1on 
while(NumTrysToFmdLoop--) 
{ 

//grab a random neuron 
int NeuronPos = Randlnt(m_1Numlnputs+l, m_vecNeurons.size()-1); 

//check to make sure the neuron does not already have a loopback 
//link and that It Is not an input or bias neuron 
1f ('m_vecNeurons[NeuronPos].bRecurrent && 

{ 

(m_vecNeurons[NeuronPos].NeuronType != bias) && 
(m_vecNeurons[NeuronPos].NeuronType != input)) 

ID_neuronl = ID_neuron2 = m_vecNeurons[NeuronPos].1ID; 

m_vecNeurons[NeuronPos].bRecurrent = true; 

bRecurrent = true; 

NumTrysToFmdLoop = O; 
} 

} 
} 

else 
{ 
//No: try to fmd two unlinked neurons. Make NumTrysToAddLink 
//attempts 
while(NumTrysToAddLink--) 
{ 
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//choose two neurons, the second must not be an input or a bias 
ID_neuronl = m_vecNeurons[Randint(0, m_vecNeurons.s1ze()-l)].1ID; 

ID_neuron2 = 
m_vecNeurons[Randint(m_iNuminputs+l, m_vecNeurons.s1ze()-l)].1ID; 

1f (ID_neuron2 == 2) 
{ 

continue; 
} 

//make sure these two are not already hnked and that they are 
//not the same neuron 
if ( !( DuphcateLmk(ID_neuronl, ID_neuron2) 11 

(ID_neuronl == ID_neuron2))) 
{ 

NumTrysToAddLmk = 0; 
} 

else 
{ 

ID_neuronl = -1; 
ID_neuron2 = -1; 

} 
} 

} 

//return if unsuccessful m fmdmg a link 
1f ( (ID_neuronl < 0) 11 (ID_neuron2 < 0) ) 
{ 

return; 
} 

//check to see 1f we have already created this innovation 
mt id = innovat1on.Checkinnovation(ID_neuronl, ID_neuron2, new_lmk); 

//is this hnk recurrent? 
if (m_vecNeurons[GetElementPos(ID_neuronl)].dSphtY > 

m_vecNeurons[GetElementPos(ID_neuron2)].dSplitY) 
{ 

bRecurrent = true; 
} 

if ( 1d < 0) 
{ 
//we need to create a new innovation 
innovat1on.CreateNewinnovat1on(ID_neuronl, ID_neuron2, new_hnk); 

//then create the new gene 
int 1d = mnovat1on.NextNumber() - 1; 

SLinkGene NewGene(ID_neuronl, 
ID_neuron2, 
true, 
1d, 
RandomClamped(), 
bRecurrent); 

m_ vecLmks. push_back(NewGene); 
} 

else 
{ 
//the innovation has already been created so all we need to 
//do is create the new gene using the existing innovation ID 
SLinkGene NewGene(ID_neuronl, 
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ID_neuron2, 
true, 
1d, 
RandomClamped(), 
bRecurrent); 

m_ vecLinks. push_back(NewGene); 
} 

return; 
} 

/ 1---------------------------------AddNeuron------------------------------
// 
// this function adds a neuron to the genotype by exammmg the network, 
// splitting one of the lmks and msertmg the new neuron. 
I!------------------------------------------------------------------------
void CGenome: :AddNeuron(double Mutat1onRate, 

Cinnovat1on &mnovat1ons, 
int NumTrysToFmdOldlmk) 

{ 
//just return dependent on mutation rate 
1f (RandFloat() > Mutat1onRate) return; 

//If a valid link is found into which to insert the new neuron 
//this value 1s set to true. 
bool bDone = false; 

//this will hold the mdex mto m_veclmks of the chosen lmk gene 
int Chosenlink = 0; 

/ /first a lmk is chosen to split. If the genome 1s small the code makes 
//sure one of the older lmks 1s split to ensure a chaining effect does 
/ /not occur. Here, if the genome contains less than 5 hidden neurons it 
//1s considered to be too small to select a link at random 
const int S1zeThreshold = m_1Numlnputs + m_iNumOutPuts + 5; 

if (m_veclinks.s1ze() < S1zeThreshold) 
{ 

} 

while(NumTrysToFmdOldlink--) 
{ 

//choose a link with a bias towards the older lmks m the genome 
Chosenlmk = Randlnt(0, NumGenes()-1-(mt)sqrt(NumGenes())); 

//make sure the link 1s enabled and that 1t is not a recurrent link 
//or has a bias mput 
int FromNeuron = m_veclmks[Chosenlmk].FromNeuron; 

if ( (m_veclmks[Chosenlmk].bEnabled) && 
(lm_veclinks[Chosenlmk].bRecurrent) && 
(m_vecNeurons[GetElementPos(FromNeuron)]. NeuronType ! = bias)) 

{ 
bDone = true; 

NumTrysToFmdOldlink = 0; 
} 

} 

if (!bDone) 
{ 

} 

//failed to fmd a decent lmk 
return; 

else 
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{ 
//the genome Is of suff1c1ent size for any lmk to be acceptable 
while (!bDone) 
{ 

ChosenLmk = Randint(0, NumGenes()-1); 

//make sure the hnk Is enabled and that It Is not a recurrent lmk 
//or has a BIAS mput 
int FromNeuron = m_vecLmks[ChosenLmk].FromNeuron; 

if ( (m_vecLmks[ChosenLmk].bEnabled) && 
(•m_vecLinks[ChosenLmk].bRecurrent) && 
( m_ vecNeurons[GetElementPos(FromNeuron)]. Neuron Type , = bias)) 

{ 
bDone = true; 

} 
} 

} 

//disable this gene 
m_vecLmks[ChosenLink].bEnabled = false; 

//grab the weight from the gene (we want to use this for the weight of 
//one of the new links so that the spht does not disturb anything the 
//NN may have already learned ... 
double OngmalWe1ght = m_vecLinks[ChosenLink].dWe1ght; 

//identify the neurons this lmk connects 
int from = m_vecLmks[ChosenLmk].FromNeuron; 
int to = m_vecLmks[ChosenLmk].ToNeuron; 

//calculate the depth and width of the new neuron. We can use the depth 
//to see if the link feeds backwards or forwards 
double NewDepth = (m_vecNeurons[GetElementPos(from)].dSphtY + 

m_vecNeurons[GetElementPos(to)].dSphtY) /2; 

double NewWidth = (m_vecNeurons[GetElementPos(from)].dSphtX + 
m_vecNeurons[GetElementPos(to )] .dSphtX) /2; 

//Now to see if this innovation has been created previously by 
//another member of the population 
mt 1d = innovat1ons.Checkinnovat1on(from, 

to, 
new_neuron); 

/* 
This function must check to see If a neuron ID Is already 
being used. If it Is then the function creates a new innovation 
for the neuron. */ 
if (id>= 0) 
{ 

mt NeuronID = mnovat1ons.GetNeuronID(id); 

if (AlreadyHaveTh1sNeuronID(NeuronID)) 
{ 
id= -1; 

} 
} 

if (id< 0) 
{ 

//add the innovation for the new neuron 
mt NewNeuronID = mnovat1ons.CreateNewinnovat1on(from, 

to, 
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new_neuron, 
hidden, 
NewW1dth, 
NewDepth); 

//create the new neuron gene and add It. 
m_vecNeurons.push_back(SNeuronGene(h1dden, 

NewNeuronID, 
NewDepth, 
NewW1dth)); 

//Two new lmk mnovatIons are required, one for each of the 
//new lmks created when this gene Is spht. 

//--------------- --------------------first lmk 

//get the next mnovatIon ID 
mt 1dlmkl = mnovat1ons.NextNumber(); 

//create the new mnovatIon 
1nnovat1ons.CreateNewinnovat1on(from, 

NewNeuronID, 
new_hnk); 

//create the new hnk gene 
SLmkGene lmkl(from, 

NewNeuronID, 
true, 
1dlmkl, 
(1.0-OngmalWe,ght/2.0)); 

m_veclmks.push_back(hnkl); 

I /-----------------------------------second lmk 

//get the next innovation ID 
mt 1dlmk2 = mnovat1ons.NextNumber(); 

//create the new mnovatIon 
1nnovat1ons.CreateNewinnovat1on(NewNeuronID, 

to, 
new_hnk); 

//create the new gene 
SLinkGene hnk2(NewNeuronID, 

to, 
true, 
1dlmk2, 
OngmalWeight/2.0); 

m_veclmks.push_back(lmk2); 
} 

else 
{ 
//this mnovatIon has already been created so grab the relevant neuron 
//and hnk mfo from the mnovatIon database 
mt NewNeuronID = mnovat1ons.GetNeuronID(1d); 

//get the mnovatIon IDs for the two new hnk genes. 
mt 1dlmkl = mnovat1ons.Checkinnovat1on(from, NewNeuronID, new_hnk); 
mt 1dlmk2 = mnovations.Checkinnovat1on(NewNeuronID, to, new_hnk); 

//this should never happen because the mnovatIons *should* have already 
//occurred 
1f ( (1dlmkl < O) 11 (1dlmk2 < 0) ) 
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} 

{ 
MessageBox(NULL, "Error m CGenome: :AddNeuron", "Problem!", MB_OK); 

return; 
} 

//now we need to create 2 new genes to represent the new lmks 
SlinkGene hnkl(from, NewNeuronlD, true, 1dlmkl, 1.0); 
SLmkGene hnk2(NewNeuronlD, to, true, 1dlmk2, OrigmalWe1ght); 

m_veclmks.push_back(hnkl); 
m_veclmks.push_back(hnk2); 

//create the new neuron 
SNeuronGene NewNeuron(h1dden, NewNeuronID, NewDepth, NewW1dth); 

//and add 1t 
m_ vecNeurons. push_back(NewNeuron); 

} 

return; 

//--------------------------- AlreadyHaveTh1sNeuronID ---------------------­
// 
// tests to see if the parameter is equal to any existing neuron ID's. 
// Returns true 1f this is the case. 
I!--------------------------- ---------------------------------------------
bool CGenome: :AlreadyHaveTh1sNeuronlD(const mt ID) 
{ 

for (int n=0; n<m_vecNeurons.size(); ++n) 
{ 
if (ID == m_vecNeurons[n].11D) 
{ 

} 
} 

return true; 

return false; 
} 
//------------------------------- MutateWeights---------------------------
/1 Iterates through the genes and purturbs the weights given a 
// probab1hty mut_rate. 
II 
// prob_new_mut 1s the chance that a weight may get replaced by a 
// completely new weight. 
II 
// dMaxPertubat1on is the maximum perturbation to be applied. 
II 
// type 1s the type of random number algorithm we use 
I!--------------------------- ---------------------------------------------
void CGenome:: Mutate Weights( double mut_rate, 

double prob_new_mut, 
double MaxPertubat1on) 

{ 
for (mt cGen=0; cGen<m_veclmks.size(); ++cGen) 
{ 

//do we mutate this gene? 
1f (RandFloat() < mut_rate) 
{ 

//do we change the weight to a completely new weight? 
1f (RandFloat() < prob_new_mut) 
{ 

//change the weight using the random d1stribt1on defined by 'type' 
m_veclmks[cGen].dWe1ght = RandomClamped(); 
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} 

else 
{ 

//perturb the weight 
m_vecLmks[cGen].dWe1ght -= RandomClamped() * MaxPertubat1on; 

} 
} 

} 

return; 
} 

void CGenome:: MutateAct1vat1onResponse(double mut_rate, 
double MaxPertubatIon) 

{ 
for (mt cGen=O; cGen<m_vecNeurons.s1ze(); ++cGen) 
{ 

1f (RandFloat() < mut_rate) 
{ 

m_vecNeurons[cGen].dAct1vat1onResponse += RandomClamped() * MaxPertubat1on; 
} 

} 
} 

void CGenome:: MutateLearnmgParameters( double mut_rate,double MaxPertubat1on) 
{ 

} 

I!------------------------- GetCompat1b1htyScore -----------------------­
// 
// this function returns a score based on the compat1b1hty of this 
// genome with the passed genome 
I/- -----------------------------------------------------------------------
double CGenome: :GetCompat1b1htyScore(const CGenome &genome) 
{ 
//travel down the length of each genome counting the number of 
//d1sJomt genes, the number of excess genes and the number of 
//matched genes 
double NumDISJOmt = O; 
double NumExcess = O; 
double NumMatched = O; 

//this records the summed difference of weights m matched genes 
double We1ghtD1fference = O; 

//pos1t1on holders for each genome. They are incremented as we 
//step down each genomes length. 
mt gl = O; 
mtg2 = O; 

while ( (gl < m_veclmks.size()-1) 11 (g2 < genome.m_veclmks.size()-1)) 
{ 

//we've reached the end of genome! but not genome2 so increment 
//the excess score 
1f (gl == m_veclmks.size()-1) 
{ 



} 

++g2; 
++NumExcess; 

continue; 
} 

//and vice versa 
1f (g2 == genome.m_veclmks.size()-1) 
{ 

} 

++g1; 
++NumExcess; 

continue; 

//get innovation numbers for each gene at this pomt 
mt 1dl = m_vecLmks[gl].Innovat1onID; 
mt id2 = genome.m_vecLmks[g2].Innovat1onID; 

//innovation numbers are 1dent1cal so increase the matched score 
1f (1dl == id2) 
{ 

++g1; 
++g2; 
++NumMatched; 

//get the weight difference between these two genes 
We1ghtD1fference += fabs(m_veclmks[g1].dWe1ght - genome.m_vecLmks[g2].dWeight); 

} 

//innovation numbers are different so increment the d1s1omt score 
if (1dl < 1d2) 
{ 

} 

++NumDISJOmt; 
++g1; 

if (1dl > 1d2) 
{ 

} 

++NumDISJOmt; 
++g2; 

}//end while 

//get the length of the longest genome 
int longest= genome.NumGenes(); 

1f (NumGenes() > longest) 
{ 

longest= NumGenes(); 
} 

//these are multrphers used to tweak the fmal score. 
const double mD1s1omt = 1; 
const double mExcess = 1; 
const double mMatched = 0.4; 

//finally calculate the scores 
double score = (mExcess * NumExcess/(double)longest) + 

(mD1s1omt * NumD1s1omt/(double)longest) + 
(mMatched * We1ghtD1fference / NumMatched); 

return score; 
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//--------------------------- SortGenes ----------- -----------------------
// 
// sorts the genes 
I I------ ----------------------- -------------------------------------------
vo Id CGenome: :SortGenes() 
{ 

sort (m_vecLinks.begin(), m_vecLinks.end()); 
} 

#1fndef PHENOTYPE_H 
#define PHENOTYPE_H 

I!-------------- ---------------------------------------------------------
1 / 
// Name: phenotype.h 
II 
II 
II 
II 
II 
II 
II 
II 

Authors: 
Created by Mat Buckland 2002 
Mod1f1ed by Ami kumar Enumulapally 2004 

Ami kumar Enumulapally 2005 

Desc: defin1t1ons required for the creation of a neural network. 

I!-----------------------------------------------------------------------

#include <vector> 
#include <math.h> 
#include <windows.h> 
#include <algorithm> 

#include "ut1ls.h" 
#include "CParams.h" 
#include "genes.h" 

using namespace std; 

struct SNeuron; 

I/---- --------------------------------------------------------------------
1 / 
// Slink structure 
I I------------------------------------------------------------------------
struct Slink 
{ 

//pointers to the neurons this link connects 
SNeuron* pin; 
SNeuron* pout; 

//the connection weight 
double dWe1ght; 

//1s this link a recurrent link? 
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bool bRecurrent; 

SLink(double dW, SNeuron* pln, SNeuron* pOut, bool bRec):dWe1ght(dW), 
pin(pin), 

{} 
}; 

pOut(pOut), 
bRecurrent(bRec) 

I/------------------------------------------------------------------------
II 
// SNeuron 
I!------ ---------------------------------------------- --------------------
struct SNeuron 
{ 
public: 

/ /all the links coming into this neuron 
vector<SLink> vecLinksin; 

//and out 
vector<SLink> vecLmksOut; 

//sum of weights x inputs 
double dSumAct1vat1on; 

//the output from this neuron 
double dOutput; 

/ /what type of neuron 1s this? 
neuron_type NeuronType; 

//1ts 1dent1f1cat1on number 
mt 1NeuronID; 

//sets the curvature of the s1gmo1d function 
double dAct1vat1onResponse; 

//md1cates status of error 1.e. whether the error 1s collected from all output neurons or not 
mt 1ErrorStatus; 

//sets the learning rate for backpropagat1on and gradient descent 
double dLearnmgRate; 

//stores the error for this neuron 
double dError; 

//stores the desired output for the neuron. only valid for output neurons 
double dDes1redOutput; 

//double dBpParaml; 

//used m v1suahzat1on of the phenotype 
mt 1PosX, 1PosY; 
double dSphtY, dSphtX; 

//--- ctors 
SNeuron(neuron_type type, 

mt 1d, 
double y, 
double x, 
double ActResponse): Neu ronType(type), 

1NeuronID(1d), 
dSumAct1vat1on(0), 
dOutput(0), 
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dlearnmgRate(CParams: :dlearnmgRate), 

{} 
}; 

1PosX(0), 

1PosY(0), 
dSphtY(y), 
dSplltx(x), 
dAct1vat1onResponse(ActResponse) 

I/------------------------------------------------------------------------
11 
// CNeuralNet 
I I- -----------------------------------------------------------------------
class CNeuralNet 
{ 

private: 

vector<SNeuron*> m_vecpNeurons; 

/ /the depth of the network 
mt m_1Depth; 

public: 

double 
double 
double 
double 
double 
double 
double 
double 
double 
double 
double 

dBpParaml; 
dBpParam2; 
dBpParam3; 
dBpParam4; 
dBpParamS; 
dBpParam6; 
dBpParam7; 
dBpParam8; 
dBpParam9; 
dBpParam10; 
dBpParam11; 

CNeuralNet(vector<SNeuron* > neurons, 
int depth); 

~CNeuralNet(); 

//you have to select one of these types when updating the network 
I /If snapshot 1s chosen the network depth 1s used to completely 
//flush the inputs through the network. active Just updates the 
//network each t1mestep 
enum run_type{snapshot, active}; 

//update network for this clock cycle 
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dError(1), 
dDesiredOutput(-1), 

1ErrorStatus(veclmksOut.s1ze()), 

vector<double> Update(const vector<double> &inputs, const run_type type, const int ITlcks); 

//offlme trammg for a pre defined scenario 
double offlmeTrammg(HWND hwnd1); 

//mutating learning algorithm's parameters 
void MutatelearnmgParameters(double mut_rate, 

double MaxPertubat1on); 



//backpropagat1on routine called m offhne trammg 
VOid Backprop(); 
void h1ddenneuronerror(SNeuron*); 
inhne vector<double> s1m1lantymeasure( const vector<double> &input); 

//draws a graphical representation of the network to a user spec1ef1ed window 
void DrawNet(HDC &surface, 

mt cxLeft, 
int cxR1ght, 
mt cyTop, 
int cyBot); 

}; 

#end1f 

#include "phenotype.h" 

//------------------------------------519 mo1d function-------------- ----------
11 
/I------ ----------------------------------------------------------------------

float Sigmoid(float netmput, float response) 
{ 

return ( 1 / ( 1 + exp(-netmput/ response))); 
} 

//--------------------------------- ctor ---------------------------------
// 
I/------ ------------------------------------------------------------------
CNeu ra lNet: :CNeuralNet(vector<SNeuron*> neurons, 

int depth): m_ vecpNeurons( neurons), 
m_1Depth(depth), 

dBpParam1(CParams: :dParam1), 

dBpParam2(CParams: :dParam2), 

dBpParam3(CParams: :dParam3), 

dBpParam4(CParams: :dParam4), 

dBpParamS(CParams: :dParamS), 

dBpParam6(CParams: :dParam6), 

dBpParam7(CParams: :dParam7), 

dBpParamB(CParams: :dParamB), 

dBpParam9(CParams: :dParam9), 

dBpParam10(CParams: :dParam10), 

dBpParam11(CParams: :dParam11) 

{} 

//--------------------------------- dtor ---------------------------------
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II 
I I --------------------------- ---------------------------------------------
CNeuralNet: :~CNeuralNet() 
{ 

} 

//delete any hve neurons 
for (mt 1=0; i<m_vecpNeurons.s1ze(); ++1) 
{ 

} 

1f (m_vecpNeurons[1]) 
{ 

delete m_vecpNeurons[1]; 

m_vecpNeurons[1] = NULL; 
} 

// This 1mplments the offhne mod1f1ed back propagation algorithm 
double CNeuralNet: :offhneTrammg(HWND hwndl) 
{ 

mt l_local,uter; 
mt ILastmputneuron; 
double dTmpvar; 
mt 1TrammgS1ze=250;//number of trammg examples 
mt IIteratIonSIze=l000 ;//Numer of times we iterate 
char *szF1leNamel="1o_trammg3.txt"; 

1fstream grabl(szF1leNamel); 
vector<double> traminglnputs; 
vector<double> targetOutputs; 
vector<double> errorVector1,errorVector2; 

for( uter= o; uter< 1; Liter++) 
{ 

mt s1zel=m_vecpNeurons.s1ze(); 
//MessageBox(hwndl,"1ter_of_offlme","progress",MB_OK); 
errorVectorl .clear(); 
errorVector2 .clear(); 
for (1_local=0;i_local<ITrammgS1ze;l_local++) 
{ 

tra1nmglnputs.clear(); 
targetOutputs.clear(); 
//errorVectorl .clear(); 
//errorVector2.clear(); 

//Read mput from file 

//grabl> >dTmpvar; 
tram1nglnputs.push_back(dlop[l_local][0]); 

//grabl> >dTmpvar; 
tra1nmglnputs.push_back(dlop[l_local][l]); 

//grabl> >dTmpvar; 
tra1nmglnputs.push_back(dlop[l_local][2]); 

//grabl>>dTmpvar; 
tra1nmglnputs.push_back(dlop[1_Iocal][3]); 

/ /grabl> >dTmpvar; 
tram mglnputs. push_back( dlop[l_local][ 4]); 

//grabl> >dTmpvar; 
tram1nglnputs.push_back(dlop[l_local][S]); 
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//grabl>>dTmpvar; 
trammginputs.push_back(diop[i_local][6]); 

//grabl> >dTmpvar; 
tram1nginputs.push_back(diop[i_local][7]); 

//grabl> >dTmpvar; 
trammglnputs. push_back( diop[i_local] [8]); 

//grabl>>dTmpvar; 
trammglnputs.push_back(dlop[i_local][9]); 

//grabl> >dTmpvar; 
tram1nginputs.push_back(diop[i_local][10]); 

//Read desired output 

//grabl>>dTmpvar; 
targetOutputs.push_back( dlop[i_local][ 11]); 

//grabl> >dTmpvar; 
targetOutputs.push_back(dlop[i_local][12]); 

//MessageBox(hwndl, "In phenotype offhnetramg1g,after read mg 
vals","progress3",MB_OK); 

//this Is an mdex mto the current neuron 
mt cNeuron = 0; 

//first set the outputs of the 'mput' neurons to be equal 
//to the values passed mto the function m inputs 
while (cNeuron<l0) 
{ 

m_vecpNeurons[cNeuron]->dOutput = trammginputs[cNeuron]; 

++cNeuron; 
} 
//MessageBox(hwndl,"In phenotype offhnetramg1g,after setting 10 1/p 

vals","progress4",MB_OK); 

//set the output of the bias to 1 
m_vecpNeurons[10]->dOutput = 1; 

cNeuron=11; 
//then we step through the network one neuron at a time 
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//MessageBox(hwndl,"In phenotype offlmetramg1g,bef while loop","progressS",MB_OK); 
while (cNeuron < m_vecpNeurons.s1ze()) 
{ 
//this will hold the sum of all the inputs x weights 
double sum = 0; 

//sum this neuron's inputs by Iteratmg through all the lmks into 
//the neuron 
for (mt lnk=0; lnk<m_vecpNeurons[cNeuron]->vecLmksin.s1ze(); ++Ink) 
{ 

} 

//get this link's weight 
double Weight = m_vecpNeurons[cNeuron]->vecLmksin[lnk].dWe1ght; 

//get the output from the neuron this link Is coming from 
double NeuronOutput = 
m_vecpNeurons[cNeuron]->vecL1nksin[lnk].pin->dOutput; 

//add to sum 
sum += Weight* NeuronOutput; 



//now put the sum through the actIvatIon function and assign the 
//value to this neuron's output 
m_vecpNeurons[cNeuron]->dOutput = S1gmo1d(sum, m_vecpNeurons[cNeuron]­

>dActivat1onResponse); 

//next neuron 
++cNeuron; 

}//end of while loop 
//MessageBox(hwndl,"In phenotype offhnetramg1g,after the while loop of o/p 

vals", "progress6" ,MB_OK); 

//calculate error 

//the following sets error status for output neurons to zero 
cNeuron=0; 
mt 1Outputmdex=0; 
bool flag_output=false; 

while( cNeuron < m_ vecpNeurons.s1ze()) 
{ 

1f (m_vecpNeurons[cNeuron]->NeuronType == output) 
{ 

m_vecpNeurons[cNeuron]->1ErrorStatus=0; 

1f(flag_output==false)//then It Is 1st output neuron 
{ 

} 

m_vecpNeurons[cNeuron]->dDes1redOutput=targetOutputs[0]; 
flag_output=true; 

else //1t1s 2nd output neuron 
{ 

m_vecpNeurons[cNeuron]->dDes1redOutput=targetOutputs[l]; 
}//end of ms1de IF else loop 

} //end of outside 1f loop 
1f (m_vecpNeurons[cNeuron]->NeuronType == hidden) 
{ 
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m_ vecpNeurons[ cNeuron]-> 1 ErrorStatus= m_ vecpNeurons[ cNeuron ]-
>veclmksOut.s1ze(); 

} 

} 
//next neuron 
++cNeuron; 

//MessageBox(hwndl,"after setting desired ops","progress",MB_OK); 

cNeuron=0; 
ILastmputneuron =0; 
wh1le(m_vecpNeurons[cNeuron]->NeuronType == mput) 
{ 

} 

ILastmputneuron++; 
cNeuron++; 

//error propagation routine 
cNeuron=m_vecpNeurons.size()-1; 
mt flag_out=0; 

wh1le(cNeuron>1Lastmputneuron) 



{ 
//output neuron error & weight adJustment 
1f(m_ vecpNeurons[ cNeuron]-> NeuronType = = output) 
{ 

m_vecpNeurons[cNeuron]->dError=(m_vecpNeurons[cNeuron]­
>dDes1redOutput-m_vecpNeurons[cNeuron]->dOutput)* m_vecpNeurons[cNeuron]->dOutput*(l­
m_ vecpNeurons[ cNeuron]- >dOutput); 

1f(flag_out= = 1) 
errorVectorl.push_back(m_vecpNeurons[cNeuron]->dError); 
else 
{ 
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errorVector2. push_back( m_ vecpNeurons[ cNeuron]->d Error); 
flag_out=l; 

} 
//Updating the weights 

/*comment-begin here for normal error prop*/ 
/* 
for(int lnkl=0;lnkl< m_vecpNeurons[cNeuron]­

>veclinksln.s1ze();lnkl++) 
{ 

m_vecpNeurons[cNeuron]->veclmksln[lnkl].dWe1ght -= 
0.S*m_vecpNeurons[cNeuron]->dlearn1ngRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnkl].pln->dOutput; 

}//end of for loop 
*I 

/*comment-end here for normal error prop */ 

}//end of 1f loop for output neurons 

// MessageBox(hwndl,"In phenotype offlinetramg1g,after setting error for 
o/p", "progress8" ,MB_OK); 

/*comment-begin here for normal error prop*/ 
/* 
1f(m_vecpNeurons[cNeuron]->NeuronType == hidden) 
{ 

//MessageBox(hwndl,"before calling hidden 
neuronerror", "progress" ,MB_OK); 

h1ddenneuronerror( m_ vecpNeurons[ cNeuron]); 
//MessageBox(hwndl,"after calling hidden 

neuronerror","progress",MB_OK); 

//Updating the error 
for(int lnk3=0,lnk3<m_vecpNeurons[cNeuron]­

>veclinksln.s1ze(); lnk3++) 
{ 

//update weights 
m_vecpNeurons[cNeuron]->vecL1nksln[lnk3].dWe1ght -= 

m_vecpNeurons[cNeuron]->dlearningRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnk3].pln->dOutput; 

}//end of for loop for updating weights 

}//end of 1f loop for hidden neurons 
*/ 
/*comment-end here for normal error propagation */ 

cNeuron-- ;//next 1terat1on 



}//end of while loop 

}// end of i_local loop 

//A different approach m averaging the error 
double dAvgErr1=0.0,dAvgErr2=0.0; 

for(mt g1=0;g1 <errorVectorl.s12e();gl ++) 
{ 

dAvgErr1+=errorVector1.at(g1); 
dAvgErr2+=errorVector2.at(g1); 

} 
dAvgErrl= dAvgErr1/errorVector1.s1ze(); 
dAvgErr2= dAvgErr2/errorVector2.s1ze(); 

//Updating the error 
mt cNeuronl=sIze1-1; 
mt flag_outl=0; 

/*comment-begin here for other error prop*/ 
wh1Ie(cNeuron1>10) 
{ 

1f(m_vecpNeurons[cNeuronl]->NeuronType == output) 
{ 

1f(flag_out1==0) 
{ 

} 
else 

m_ vecpNeurons[ cNeuron 1]->dError=dAvg Err2; 
flag_out1=1; 

m_vecpNeurons[cNeuron1]->dError=dAvgErr1; 

for(mt lnk1=0;Ink1< m_vecpNeurons[cNeuronl]-
>veclmksln.s1ze(); lnkl++) 

{ 
m_vecpNeurons[cNeuron1]->veclmksln[lnk1].dWe1ght -= 

0.S*m_vecpNeurons[cNeuron1]->dlearnmgRate*m_vecpNeurons[cNeuron1]­
>dError*m_vecpNeurons[cNeuron1]->veclmksln[lnk1].pln->dOutput; 

}/ /end of for loop 
}//end of output neuron IF 

//MessageBox(hwndl,"In phenotype offhnetramgrg,after o/p error vals","progress8",MB_OK); 

rf(m_vecpNeurons[cNeuronl]->NeuronType == hidden) 
{ 

//MessageBox(hwndl,"before calling hidden 
neuronerror", "prog ress9" ,MB_ OK); 

hrddenneuronerror( m_ vecpNeurons[ cNeuron 1]); 
//MessageBox(hwndl,"after calling hidden 

neuronerror", "progress10" ,MB_ OK); 

//Updating the error 
for(mt lnk3=0;Ink3<m_vecpNeurons[cNeuron1]­

>veclmksln.s1ze();lnk3++) 
{ 

//update weights 
m_vecpNeurons[cNeuron1]->veclmksln[lnk3].dWeight -= 

m_vecpNeurons[cNeuron1]->dlearnmgRate*m_vecpNeurons[cNeuron1]­
>dError*m_vecpNeurons[cNeuron1]->veclmksln[lnk3].pln->dOutput; 
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}//end of for loop for updating weights 

}/ /end of 1f loop for hidden neurons 
cNeuron1--; 

}//end of while 

/*comment-end here for other error propagation */ 

//errorVector1 .clear(); 
//errorVector2.clear(); 

}//end of Uter loop 

mt cNeuron2=0; 
int 1No_output_Neurons=0; 
double dAvgError=0.0; 
while( cNeuron2 < m_ vecpNeurons.s1ze()) 

{ 
1f (m_vecpNeurons[cNeuron2]->NeuronType == output) 
{ 

} 

1No_output_Neurons++; 
dAvgError+=m_vecpNeurons[cNeuron2]->dError; 

cNeuron2++; 
}//end of while 

dAvgError=dAvgError/(double)1No_output_Neurons; 

return( dAvgError); 

}//end of offhne trammg function 

// A recursive function that fmds the error for hidden neurons 
void CNeuralNet:: h1ddenneuronerror(SNeuron* h1ddenneuron) 
{ 

1f(h1ddenneuron->vecllnksOut.s1ze()>0) 
{ 

for(mt lnk2=0;1nk2< h1ddenneuron->vecLinksOut.s1ze();lnk2++) 
{ 

1f(h1ddenneuron->vecLmksOut[lnk2].pOut->1ErrorStatus==0) 
{ 
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h1ddenneuron->dError+=h1ddenneuron->dOutput* (1 - h1ddenneuron­
>dOutput)* h1ddenneuron->vecLmksOut[lnk2].pOut->dError * h1ddenneuron­
>vecLmksOut[lnk2].dWe1ght; 

1f(h1ddenneuron->1ErrorStatus>0) 
h1ddenneuron->1ErrorStatus--;//we have calculated error from 1 

output neuron so update the status 

"Error", MB_OK); 

else break; 

}//end of 1f errorstatus=0 
else 1f(h1dden neuron->vecLmksOut[ln k2]. pOut-> 1ErrorStatus>0) 
{ 

1f( 1 hidden neu ron->vecLmksOut[lnk2]. bRecu rrent) 
{ 

} 
else 

h1ddenneuronerror(h1ddenneuron->vecLmksOut[lnk2].pOut); 
//MessageBox(m_hwndMam, "Wrong amount of NN inputs'", 



{ 
continue; 

} 
}//end of else 1f i.e. error status Is not zero 
else 
{ 

h1ddenneuron->vecL1nksOut[lnk2].pOut->1ErrorStatus=0; 
continue; 

} 

}//end of for lnk2 
} 

}//end of h1ddenneuronerror function 

//----------------------------------Update--------------------------------
// takes a hst of doubles as inputs mto the network then steps through 
// the neurons calculating each neurons next output. 
II 
II finally returns a std: :vector of doubles as the output from the net. 
//------------------------------------------------------------------------
vector<double> CNeuralNet: :Update(const vector<double> &inputs, 

const run_type type, 

{ 
//create a vector to put the outputs mto 
vector<double> outputs; 
vector<double> DesiredOutputs; 
double p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10; 

/ /If the mode Is snapshot then we require all the neurons to be 
//iterated through as many times as the network Is deep. If the 
//mode Is set to active the method can return an output after 
//Just one iteration 
int FlushCount = 0; 
bool flag_outputl=false; 

p0= dBpParaml; 

if (type == snapshot) 
{ 

FlushCount = m_IDepth ; 
} 
else 
{ 

FlushCount = 1; 
} 

pl= dBpParam2; 
p2= dBpParam3; 
p3= dBpParam4; 
p4= dBpParamS; 
pS= dBpParam6; 
p6= dBpParam7; 
p7= dBpParamS; 
p8= dBpParam9; 
p9= dBpParam10; 
p10= dBpParam11; 

//iterate through the network FlushCount times 
for (mt 1=0; 1<m_1Depth; ++1) 
{ 

//clear the output vector 
outputs.clear(); 
// Des1redOutputs.clear(); 

const mt !Ticks) 
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//this 1s an mdex mto the current neuron 
mt cNeuron = 0; 

//first set the outputs of the 'mput' neurons to be equal 
//to the values passed mto the function m inputs 
while (m_vecpNeurons[cNeuron]->NeuronType == mput) 
{ 

m_vecpNeurons[cNeuron]->dOutput = mputs[cNeuron]; 

++cNeuron; 
}//end of mput while loop 

//set the output of the bias to 1 
m_vecpNeurons[cNeuron++ ]->dOutput = 1; 

//Des1redOutputs. push_back(0. 9789); 
//Des1redOutputs. push_back(0. 9897); 

//then we step through the network a neuron at a time 
while (cNeuron < m_vecpNeurons.s1ze()) 
{ 
//this will hold the sum of all the inputs x weights 
double sum = o; 

//sum this neuron's inputs by 1teratmg through all the lmks mto 
//the neuron 
for (mt lnk=0; lnk<m_vecpNeurons[cNeuron]->vecLmksin.s1ze(); ++Ink) 
{ 
//get this link's weight 
double Weight = m_vecpNeurons[cNeuron]->vecLmksin[lnk].dWe1ght; 

//get the output from the neuron this lmk 1s coming from 
double NeuronOutput = 
m_vecpNeurons[cNeuron]->vecL1nksin[lnk].pin->dOutput; 

//add to sum 
sum +=Weight* NeuronOutput; 

}//end of for loop 

//now put the sum through the act1vat1on function and assign the 
//value to this neuron's output 
m_vecpNeurons[cNeuron]->dOutput = 
S1gmo1d(sum, m_vecpNeurons[cNeuron]->dAct1vat1onResponse); 

1f (m_vecpNeurons[cNeuron]->NeuronType == output) 
{ 

outputs. push_back( m_ vecpNeurons[ cNeuron]-> dOutput); 

}//end of 1f output loop 

//next neuron 
++cNeuron; 

}//end of while loop 

I!---------------- -- -----------------------------
/* comment-begin for no onhne learning */ 
I/-- ------------------------------------------------

1f(CParams: :1OnlyGAs==0) 
{ 
//the following sets error status for output neurons to zero 

cNeuron=0; 
mt 1Outputmdex=0; 
bool flag_output=false; 
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Des1redOutputs.clear(); 

1f(CParams:: 1GlobalOnhne==0) 
{ 
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Des1redOutputs = s1m1laritymeasure(inputs);//If Local Online then get desired 
o/ps from the training set using filter function 

} 
else 
{ 

// MessageBox(NULL, "in global desired", "Error", 0); 

//If Global Online then we use heuristic of fitness parameters. Here we supply 
highest speed possible as desired outputs 

Des1redOutputs. push_back(0. 9789); 
Desired Outputs. push_back(0. 9897); 

} 

if(CParams:: 1GlobalOnhne==0) 
{ 

} 

//If speed value is less then teach minesweepers to spped up 
1f(Des1redOutputs[0] <0. 75) Des1redOutputs[0]=Des1redOutputs[0] +0.15; 
1f(DesiredOutputs[l] <0. 75) Des1redOutputs[l]=Des1redOutputs[l] +0.15; 

1f(Des1redOutputs.s1ze()==0) 
MessageBox(NULL, "Error Desired opsize=0•", "Error", 0); 

//the following will set error status and desired outputs for output neurons 
wh1le(cNeuron<m_vecpNeurons.s1ze()) 
{ 

if (m_vecpNeurons[cNeuron]->NeuronType == output) 
{ 

m_vecpNeurons[cNeuron]->1ErrorStatus=0; 

1f(flag_output==false)//then it is 1st output neuron 
{ 

m_vecpNeurons[cNeuron]-
>dDes1redOutput=Des1redOutputs[0]; 

flag_output=true;//set the flag 
} 
else //1t 1s 2nd output neuron 
{ 

m_vecpNeurons[cNeuron]-
>dDes1redOutput=Des1redOutputs[l]; 

flag_output=false;//reset the flag 
}/ /end of else 

} //end of outside 1f loop 
1f(m_vecpNeurons[cNeuron]->NeuronType == hidden) 
{ 

m_vecpNeurons[cNeuron]­
>1ErrorStatus=m_vecpNeurons[cNeuron]->vecLinksOut.s1ze(); 

} 

//next neuron 
++cNeuron; 

}//end of error and desired op setting WHILE loop 

cNeuron=0; 
int iLastinputneuron=0; 
wh1le(m_vecpNeurons[cNeuron]->NeuronType == input) 
{ 

1Lastinputneuron++; 



cNeuron++; 
} 
//1Lastinputneuron++;//to include bias neuron 
1f(1Lastinputneuron= = 10) 

MessageBox(NULL, "10 input neurons", "Ami", 0); 

m_vecpNeurons[1Lastinputneuron]->dOutput = 1; 

//error propagation routine 
cNeuron = m_ vecpNeurons.size()-1; 

while( cNeuron > 1 Lastinputneuron) 
{ 

//output neuron error & weight adjustment 
1f(m_vecpNeurons[cNeuron]->NeuronType == output) 
{ 

m_vecpNeurons[cNeuron]->dError=(m_vecpNeurons[cNeuron]­
>dDes1redOutput-m_vecpNeurons[cNeuron]->dOutput)* m_vecpNeurons[cNeuron]->dOutput*(l­
m_vecpNeurons[cNeuron]->dOutput); 

for(int lnkl=0; lnkl < m_vecpNeurons[cNeuron]­
>vecLinksln.s1ze();lnkl ++) 

{ 
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double WIJl,aJl; 
w1Jl=m_vecpNeurons[cNeuron]->vecLinksin[lnkl].dWe1ght; 
aJl=m_vecpNeurons[cNeuron]->dLearmngRate; 
1f(CParams: :1RuleEvolut1on==0) 
{ 

// m_vecpNeurons[cNeuron]-
>vecLinksln[lnkl].dWe1ght -= (1/ITlcks)*0.25*m_vecpNeurons[cNeuron]­
>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecL1nksin[lnkl].pin­
>dOutput; 

m_vecpNeurons[cNeuron]­
>vecLinksin[lnkl].dWeight += (1/ITicks)*m_vecpNeurons[cNeuron]­
>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecL1nksln[lnkl].pln­
>dOutput; 

//m_vecpNeurons[cNeuron]­
>vecLinksln[lnkl].dWeight += (1/ITlcks)*0.25*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecLinksln[lnk1].pln->dOutput; 

} 
else 
{ 

m_vecpNeurons[cNeuron]­
>vecLinksin[lnkl].dWe1ght -= p0*(pl *wiJ1-p2*aJ1 *m_vecpNeurons[cNeuron]->dError-
p3*w111 *aJ 1 + p4*m_ vecpNeurons[ cNeuron]->d Error+ pS*aJ 1 *m_ vecpNeurons[ cNeuron]->dOutput); 

} 
//m_vecpNeurons[cNeuron]­

>dLearningRate+=m_vecpNeurons[cNeuron]->dLearn1ngRate*m_vecpNeurons[cNeuron]->dError; 

}/ /end of for loop 

}//end of if loop for output neurons 

1f(m_vecpNeurons[cNeuron]->NeuronType == hidden) 
{ 

hidden neuronerror( m_ veep Neurons[ cNeuron]); 
for(int lnk3=0;Ink3<m_vecpNeurons[cNeuron]­

>vecLinksln.s1ze(); lnk3++) 
{ 

double wI1,a1; 
WIJ = m_ veep Neurons[ cNeuron]->vecLinksin [In k3] .dWeight; 
a1=m_vecpNeurons[cNeuron]->dLearn1ngRate; 
//update weights, 1f not bias 
if(CParams:: 1RuleEvolut1on==0) 
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{ 
//m_vecpNeurons[cNeuron]­

>vecLinksin[lnk3].dWe1ght -= (1/fflcks)*0.25*m_vecpNeurons[cNeuron]­
>dlearnmgRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecLmksin[lnk3].pin­
>dOutput; 

m_vecpNeurons[cNeuron]->vecLmksin[lnk3].dWe1ght += 
(1/fflcks)*m_vecpNeurons[cNeuron]->dLearn1ngRate*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecL1nksin[lnk3].pin->dOutput; 

/Im_ vecpNeurons[ cNeuron]­
>vecLinksin[lnk3] .dWe1ght += (1/fflcks)*0.25*m_vecpNeurons[cNeuron]­
>dError*m_vecpNeurons[cNeuron]->vecLinksin[lnk3].pin->dOutput; 

} 
else 
{ 

m_ vecpNeurons[ cNeuron]-
> vecLinksin [In k3] .dWe1ght -= p0*0.S*(p1 *w1j-p2*aJ*m_vecpNeurons[cNeuron]->dError­
p3*wiJ*aJ+p4*m_vecpNeurons[cNeuron]->dError+pS*aJ*m_vecpNeurons[cNeuron]->dOutput); 

} 
/Im_ vecpNeu rons[ cNeuron ]-

>dLearning Rate+= m_ vecpNeurons[ cNeuron]-> d Learn1ng Rate*m_ vecpNeurons[ cNeu ron]->dError; 
}//end of for loop for updating weights 

}//end of if loop for hidden neurons 

cNeuron--;//next. 1terat1on 

}//end of while loop 

//set the output of the bias to 1 
m_vecpNeurons[1Lastinputneuron]->dOutput = 1; 

}//end of only GA If loop 
I I-------------------------------------------------
/* comment-end for no Online learning*/ 
//-------------------------------------------------

}//next. iteration through the network 

//the network needs to be flushed 1f this type of update is performed 
//otherwise it is possible for dependencies to be built on the order 
//the training data 1s presented 

if (type== snapshot) 
{ 

} 

for (mt n=0; n<m_vecpNeurons.s1ze(); ++n) 
{ 

m_vecpNeurons[n]->dOutput = 0; 
} 

//return the outputs 
return outputs; 

} 

//Fmd the s1m1lar i-o pair m the trammg set 
vector<double> CNeuralNet: :s1m1lantymeasure(const vector<double> &input) 
{ 



char *szF1IeName2="1o_trammgS.txt"; 
//fstream grab2("1o_trammg.txt", fstream::m I fstream::out I fstream::app); 

fstream grab2(szF1IeName2); 
vector<double> trammglnputs; 
vector<double> targetOutputs; 
vector<double> des1redOutputs; 
//double trammglnputs[ll]; 
//double targetOuputs[2]; 
vector<double> dSum; 
mt ITrammgSI2e=250; 
double dMm=l000.0; 
mt 1Mmlndex; 

double dTmpvar; 
mt 1_here; 
double dtmpsum; 

for (1_here=0; 1_here< 1TrammgSIze; 1_here++) 
{ 

tra1nmglnputs.clear(); 
targetOutputs.clear(); 
//des1redOutputs.clear(); 
dtmpsum=0; 
//dMm=l00.0; 
//Read mput from file 

for(mt 1-here=0;1-here<l0;J_here++) 
{ 

dTmpvar=diop[1_here] []_here]; 
trammglnputs. push_back( dTmpvar); 

} 

dTmpvar=diop[1_here][ 11]; 
targetOutputs. push_back( dTmpva r); 
dTmpvar=diop[i_here][12]; 
targetOutputs. push_back( dTmpvar); 

//Fmd the distance between the inputs 
for(mt k_here=0; k_here<trammglnputs.s1ze(); k_here++) 
{ 

} 

double dD1ff=mput[k_here]-trammginputs[k_here]; 
dtmpsum+=fabs( dD1ff); 

dSum.push_back(dtmpsum); 

//Update the mImmum distance and store the corresponding training mput 
1f(dMm>dtmpsum) 
{ 

des1redOutputs.clear(); 
dMm=dtmpsum; 
1Mmlndex=1_here; 
des1redOutputs=targetOutputs; 

}//end of 1f 

}//end of 1_here for loop 

vector<double> output;// =des1redOutputs; 
output=des1redOutputs; 
//output[ 1] =des1redOutputs[ 1]; 
return( output); 

}//end of function 

v01d CNeuralNet: :MutateLearmngParameters(double mut_rate,double MaxPertubat1on) 
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{ 

} 

1f (RandFloat() < mut_rate) 
{ 

} 

/*1f(RandFloat()>0. 9) 
{ 

dBpParam1 += -1*((rand()%6)+1); 
} 
else*/ 
dBpParam1 
dBpParam2 
dBpParam3 
dBpParam4 
dBpParamS 
dBpParam6 
dBpParam7 
dBpParam8 
dBpParam9 
dBpParam10 
dBpParam11 

//dBpParam1 

+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 
+= RandomClamped()*MaxPertubat1on*0.025; 

+= RandomClamped()*MaxPertubat1on; 

//----------------------------- T1dyXSphts -----------------------------
// 
// This 1s a fix to prevent neurons overlapping when they are displayed 
I/-----------------------------------------------------------------------
vo 1d T1dyXSphts(vector<SNeuron*> &neurons) 
{ 

//stores the mdex of any neurons with 1dent1cal sphtY values 
vector<int> SameLevelNeurons; 

//stores all the sphtY values already checked 
vector<double> DepthsChecked; 

//for each neuron fmd all neurons of 1dent1cal ySpht level 
for (mt n=0; n<neurons.s1ze(); ++n) 
{ 

double Th1sDepth = neurons[n]->dSphtY; 

//check to see 1f we have already adJusted the neurons at this depth 
bool bAlreadyChecked = false; 

for (mt 1=0; 1<DepthsChecked.s1ze(); ++1) 
{ 
if (DepthsChecked[1] == Th1sDepth) 
{ 

} 
} 

bAlreadyChecked = true; 

break; 

//add this depth to the depths checked. 
DepthsChecked. push_back(Th1sDepth); 

//if this depth has not already been adJusted 
1f (!bAlreadyChecked) 
{ 

//clear this storage and add the neuron's mdex we are checking 
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} 

SameLevelNeurons.clear(); 
SameLevelNeurons. push_back( n); 

//fmd all the neurons with this splitY depth 
for (mt I=n+l; 1<neurons.s1ze(); ++1) 
{ 

} 

1f (neurons[1]->dSplitY == Th1sDepth) 
{ 

//add the mdex to this neuron 
SameLevel Neurons. push_back( 1); 

} 

//calculate the distance between each neuron 
double slice= 1.0/(SameLevelNeurons.size()+l); 

//separate all neurons at this level 
for (1=0; 1<SameLevelNeurons.s1ze(); ++1) 
{ 

mt 1dx = SameLevelNeurons[i]; 

neurons[1dx]->dSplitX = (1+1) * slice; 
} 

}/ /next neuron to check 

} 
//----------------------------- DrawNet ----------------------------------
// 
// creates a representation of the ANN on a device context 
II 
I/------------------------------------------------------------------------
void CNeuralNet:: DrawNet(HDC &surface, mt Left, mt Right, mt Top, mt Bottom) 
{ 
//the border width 
const mt border = 10; 

//max hne thickness 
const mt MaxTh1ckness = 5; 

T1dyXSphts(m_ vecpNeurons); 

//go through the neurons and assign x/y coords 
mt spanX = Right - Left; 
int spanY = Top - Bottom - (2*border); 

for (mt cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron) 
{ 

m_vecpNeurons[cNeuron]->1PosX = Left+ spanX*m_vecpNeurons[cNeuron]->dSphtX; 
m_vecpNeurons[cNeuron]->1PosY = (Top - border) - (spanY * m_vecpNeurons[cNeuron]->dSphtY); 

} 

/ /create some pens and brushes to draw with 
HPEN GreyPen = CreatePen(PS_SOUD, 1, RGB(200, 200, 200)); 
HPEN RedPen = CreatePen(PS_SOUD, 1, RGB(255, 0, 0)); 
HPEN GreenPen = CreatePen(PS_SOUD, 1, RGB(0, 200, 0)); 
HPEN OldPen = NULL; 

//create a solid brush 
HBRUSH RedBrush = CreateSohdBrush(RGB(255, 0, 0)); 
HBRUSH OldBrush = NULL; 

OldPen = (HPEN) SelectObJect(surface, RedPen); 
OldBrush = (HBRUSH)SelectObJect(surface, GetStockObJect(HOLLOW_BRUSH)); 
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//radius of neurons 
mt radNeuron = spanX/60; 
mt radLmk = radNeuron * 1.5; 

//now we have an X,Y pos for every neuron we can get on with the 
//drawing. First step through each neuron m the network and draw 
//the links 
for (cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron) 
{ 
//grab this neurons posItIon as the start posItIon of each 
//connection 
mt StartX = m_vecpNeurons[cNeuron]->1PosX; 
int StartY = m_vecpNeurons[cNeuron]->1PosY; 

//1s this a bias neuron? If so, draw the hnk m green 
bool bB1as = false; 

1f (m_vecpNeurons[cNeuron]->NeuronType == bias) 
{ 

bB1as = true; 
} 

//now iterate through each outgoing hnk to grab the end points 
for (mt cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecLmksOut.s1ze(); ++ cLnk) 
{ 

mt EndX = m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].pOut->1PosX; 
mt EndY = m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].pOut->1PosY; 

//If lmk Is forward draw a straight lme 
if( (lm_vecpNeurons[cNeuron]->vecLinksOut[cLnk].bRecurrent) && lbB1as) 
{ 

} 

int thickness = (mt)(fabs(m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght)); 

Clamp(th1ckness, 0, MaxTh1ckness); 

HPEN Pen; 

//create a yellow pen for mh1b1tory weights 
1f (m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <;.= 0) 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB(240, 230, 170)); 
} 

//grey for excItory 
else 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB(200, 200, 200)); 
} 

HPEN tempPen = (HPEN)SelectObJect(surface, Pen); 

//draw the hnk 
MoveToEx(surface, StartX, StartY, NULL); 
LmeTo(surface, EndX, EndY); 

SelectObJect(surface, tempPen); 

DeleteObJect(Pen); 

else 1f( (lm_vecpNeurons[cNeuron]->vecLmksOut[cLnk].bRecurrent) && bB1as) 
{ 

SelectObJect(surface, GreenPen); 
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} 

//draw the link 
MoveToEx(surface, StartX, StartY, NULL); 
LmeTo{surface, EndX, EndY); 

//recurrent hnk draw m red 
else 
{ 

If ((StartX == EndX) && (StartY == EndY)) 
{ 

mt thickness = (mt)(fabs{m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght)); 

Clamp(th1ckness, o, MaxTh1ckness); 

HPEN Pen; 

//blue for mh1b1tory 
if {m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <= 0) 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB(0,0,255)); 
} 

//red for exc1tory 
else 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB{255, 0, O)); 
} 

HPEN tempPen = (HPEN)SelectObJect(surface, Pen); 

//we have a recursive hnk to the same neuron draw an ellipse 
mt x = m_vecpNeurons[cNeuron]->1PosX; 
int y = m_vecpNeurons[cNeuron]->iPosY - {1.5 * radNeuron); 

Elllpse(surface, x-radLmk, y-radLmk, x+radLmk, y+radLmk); 

SelectObJect(surface, tempPen); 

DeleteObJect(Pen); 
} 

else 
{ 

mt thickness= (mt)(fabs{m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght)); 

Clamp{th1ckness, 0, MaxTh1ckness); 

HPEN Pen; 

//blue for inhibitory 
1f {m_vecpNeurons[cNeuron]->vecLmksOut[cLnk].dWe1ght <= 0) 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB{0,0,255)); 
} 

//red for exc1tory 
else 
{ 

Pen = CreatePen(PS_SOUD, thickness, RGB{255, 0, O)); 
} 

HPEN tempPen = (HPEN)SelectObJect(surface, Pen); 

//draw the lmk 
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} 

} 
} 

} 
} 

MoveToEx(surface, StartX, StartY, NULL); 
LineTo(surface, EndX, EndY); 

SelectObJect(surface, tempPen); 

DeleteObJect(Pen); 

//now draw the neurons and their IDs 
SelectObJect(surface, RedBrush); 
SelectObJect( surface, GetStockObject(BLACK_PEN)); 

for (cNeuron=0; cNeuron<m_vecpNeurons.s1ze(); ++cNeuron) 
{ 

} 

int x = m_vecpNeurons[cNeuron]->1PosX; 
int y = m_vecpNeurons[cNeuron]->iPosY; 

//display the neuron 
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron, y+radNeuron); 

//cleanup 
SelectObJect(surface, Old Pen); 
SelectObJect(surface, OldBrush); 

DeleteObJect(RedPen); 
DeleteObJect( Grey Pen); 
DeleteObJect(GreenPen); 
DeleteObject(OldPen); 
DeleteObject(RedBrush); 
DeleteObJect(OldBrush); 
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#1fndef COLLISION_H 
#define COLLISION_H 

#include "ut1ls.h" 
#include <math.h> 

I /--------------------2L1neslntersect1on2D------------------------­
// Authors: 
// Created by Mat Buckland 2002 
// Mod1f1ed by Anil kumar Enumulapally 2004 
// Ami kumar Enumulapally 2005 
II 
// Given 2 lines in 2D space AB, CD this returns true if an 
// intersection occurs and sets dist to the distance the mtersect1on 
// occurs along AB 
II 
I/------ -----------------------------------------------------------
inline bool Linelntersect1on2D(const SPoint A, 

const SPoint B, 
const SPoint C, 
const SPoint D, 
double &dist) 

{ 
//first test against the bounding boxes of the Imes 
1f ( (((A.y > D.y) && (B.y > D.y)) && ((A.y > C.y) && (B.y > C.y))) 11 

(((B.y < C.y) && (A.y < C.y)) && ((B.y < D.y) && (A.y < D.y))) 11 
(((A.x > D.x) && (B.x > D.x)) && ((A.x > C.x) && (B.x > c.x))) 11 
(((Bx< C.x) && (A.x < C.x)) && ((B.x < D.x) && (A.x < D.x))) ) 

{ 
dist= 0; 

return false; 
} 

double rTop = (A.y-C.y)*(D.x-C.x)-(A.x-C.x)*(D.y-C.y); 
double rBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x); 

double sTop = (A.y-C. y)*(B.x-A.x)-(A.x-C.x)*(B.y-A.y); 
double sBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x); 

double rTopBot = rTop*rBot; 
double sTopBot = sTop*sBot; 

1f ((rTopBot>0) && (rTopBot<rBot*rBot) && (sTopBot>0) && (sTopBot<sBot*sBot)) 
{ 
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} 

} 

dist = rTop/rBot; 

return true; 

else 
{ 
dist= O; 

return false; 
} 

#end1f 

#include <windows.h> 
#include <t1me.h> 

#include "ut1ls.h" 
#include "CController.h" 
#include "CT1mer.h" 
#include "resource.h" 
#include "CParams.h" 

I////// I I I////// I I I ////GLOBALS ///// // // / / / / // // / // / / / // / ////// / / / / 

char* 
char* 
char* 

szApphcat1onName = "Ami's New Hybrid Learning Algorithm"; 
szWindowClassName = "sweeper"; 
szinfoWindowClas!:.Name = "Info Window"; 

//The controller class for this s1mulat1on 
CController* g_pController = NULL; 

CParams g_Params; 

//global handle to the info window 
HWND g_hwndinfo = NULL; 

//global handle to the main window 
HWND g_hwndMain = NULL; 

//---------------------------- Cleanup ----------------------------------
// 
// simply cleans up any memory issues when the application exits 
I!------------------ -----------------------------------------------------
vo 1d Cleanup() 
{ 

1f (g_pController) 

delete g_pController; 
} 
I/-----------------------------------WI n Proc-------------- -- ---- -- -------
II 
//-----------------------------------------------------------------------
LRESUL T CALLBACK WindowProc(HWND hwnd, 

{ 

UINT msg, 
WPARAM wparam, 
LPARAM lparam) 
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//these hold the d1mens1ons of the client window area 
static mt cxChent, cyChent; 

/ /used to create the back buffer 
static HDC hdcBackBuffer; 
static HBITMAP hBitmap; 
static HBITMAP hOldB1tmap; 

sw1tch(msg) 
{ 

case WM_CREATE: 
{ 

//seed the random number generator 
srand((uns1gned) t1me(NULL)); 

//get the size of the client window 
RECT rect; 
GetChentRect(hwnd, &rect); 

cxChent = rect.nght; 
cyChent = rect.bottom; 

/ /setup the controller 
g_pController = new CController(hwnd, cxClient, cyChent); 

/ /create a surface for us to render to(backbuffer) 
hdcBackBuffer = CreateCompat1bleDC(NULL); 

HDC hdc = GetDC(hwnd); 

hBitmap = CreateCompat1bleBitmap(hdc, 

cxClient, 

cyClient); 

case 'B': 

ReleaseDC(hwnd, hdc); 

hOldB1tmap = (HBITMAP)SelectObJect{hdcBackBuffer, hBitmap); 
} 

break; 

/ /check key press messages 
case WM_KEYUP: 
{ 

sw1tch(wparam) 
{ 

case VK_ESCAPE: 
{ 

} 
PostQu1tMessage(0); 

break; 

case 'F': 
{ 

} 

break; 

{ 

} 

g_pController-> FastRenderTogg le(); 

g_pController-> RenderBestTogg le(); 
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case 'R': 
{ 

1f (g_pController) 
{ 

delete g_pController; 
} 

//setup the new controller 

break; 

g_pController = new CController(hwnd, cxChent, cyChent); 

//give the mfo window's handle to the controller 
g_pController-> PassinfoHandle(g_hwndinfo); 

//clear mfo window 
InvalldateRect(g_hwndinfo, NULL, TRUE); 

} 

break; 

!* 
case 'Z': 

case 'Y': 

case '1': 
{ 

U pdateWmdow(g_hwndinfo); 

pTimer= SetTimer(l0000); 
break; 

K1IIT1mer(pTimer); 
break; 
*/ 

g_pController-> V1ewBest( 1); 
} 

break; 

case '2': 
{ 

g_pController-> ViewBest(2); 
} 

break; 

case '3': 
{ 

g_pController->V1ewBest(3); 
} 

break; 

case '4': 
{ 

g_pController-> V1ewBest( 4); 
} 

break; 

}//end WM_KEYUP switch 
} 
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break; 

//has the user resized the client area? 
case WM_SIZE: 
{ 

} 

break; 

cxChent = LOWORD(lparam); 
cyChent = HIWORD(lparam); 

case WM_PAINT: 
{ 

PAINTSTRUCT ps; 

0, 
0, 
cxChent, 
cyChent, 
NULL, 
NULL, 
NULL, 

BeginPamt(hwnd, &ps); 

//fill our backbuffer with white 
B1tBlt(hdcBackBuffer, 

WHITENESS); 

//render the sweepers 
g_pController-> Render(hdcBackBuffer); 

//now bht backbuffer to front 
B1tBlt(ps.hdc, 0, 0, cxChent, cyClient, hdcBackBuffer, 0, 0, SRCCOPY); 

EndPaint(hwnd, &ps); 
} 

break; 

case WM_DESTROY: 
{ 

SelectObJect(hdcBackBuffer, hOldB1tmap); 

//clean up our backbuffer obJects 
Delete DC( hdcBackBuffer); 
DeleteOb1ect(hB1tmap); 

// kill the apphcat1on, this sends a WM_QUIT message 
PostQu1tMessage(0); 

} 

break; 

default: break; 

}//end switch 

// default msg handler 
return (DefWmdowProc(hwnd, msg, wparam, lparam)); 

}//end WmProc 

//-----------------------------------InfoW1nProc-----------------------------
// 
I/-----------------------------------------------------------------------
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LRESULT CALLBACK InfoWmdowProc(HWND hwnd, 

WPARAM wparam, 

{ 
LPARAM lparam) 

//these hold the d1mens1ons of the client wmdow area 
static mt cxChent, cyChent; 

sw1tch(msg) 
{ 

case WM_CREATE: 
{ 

} 

break; 

//get the size of the client wmdow 
RECT rect; 
GetChentRect(hwnd, &rect); 

cxChent = rect.right; 
cyChent = rect.bottom; 

//has the user resized the client area? 
case WM_SIZE: 
{ 

cxChent = LOWORD(lparam); 
cyChent = HIWORD(lparam); 

} 

break; 

case WM_PAINT: 
{ 

PAINTSTRUCT ps; 

BegmPaint(hwnd, &ps); 

g_pController-> RenderNetworks(ps. hdc); 

EndPamt(hwnd, &ps); 
} 

break; 

default: break; 

}//end switch 

// default msg handler 
return (WmdowProc(hwnd, msg, wparam, lparam)); 

UINT msg, 

}//end WmProc 
//---------------------------------CreatelnfoW1ndow--------------------------­
/ I 
// creates and displays the mfo wmdow 
II 
I I----------------------------------------------------------------------------
void CreatelnfoWmdow(HWND hwndParent) 
{ 

// Create and register the wmdow class 
WNDCLASSEX wclnfo = {s1zeof(WNDCLASSEX), 

CS_HREDRAW I CS_VREDRAW, 
InfoWmdowProc, 
0, 
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O, 
GetModuleHandle(NULL), 

NULL, 
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NULL, 
(HBRUSH)(GetStockObJect(WHITE_BRUSH)), 
NULL, 

Reg1sterClassEx( &wclnfo ); 

// Create the apphcat1on's mfo window 
g_hwndlnfo = CreateWmdow("Info", 

"Info", 
NULL}; 

"ANIL - Previous generation's best four phenotypes", 

WS_VISIBLE I WS_CAPTION I WS_SYSMENU, 
GetSystemMetrics(SM_CXSCREEN)/2, 
GetSystemMetrics(SM_CYSCREEN)/2 - CParams: :WmdowHeight/2, 
CParams:: InfoWmdowW1dth, 

CParams: :InfoWmdowHe1ght, 

// Show the mfo 
ShowWmdow(g_hwndlnfo, SW_SHOWDEFAULT); 
UpdateWmdow(g_hwndlnfo); 

//give the mfo window's handle to the controller 
g_pController-> PasslnfoHand le(g_hwndlnfo); 

return; 
} 

//-----------------------------------WmMa1n-----------------------------------------
// Entry pomt for our windows apphcat1on 
I!-----------------------------------------------------------------------------------
int WINAPI WmMam( HINSTANCE hmstance, 

{ 

WNDCLASSEX wmclass; 
HWND hwnd; 
MSG msg; 

HINSTANCE hprevmstance, 
LPSTR lpcmdhne, 
mt ncmdshow) 

//load m the parameters for the program 
1f (!g_Params.Init1ahze()) 
{ 

return false; 
} 

// first fill m the window class stucture 
wmclass.cbS1ze = s1zeof(WNDCLASSEX); 
wmclass.style = CS_HREDRAW I CS_VREDRAW; 
wmclass.lpfnWndProc = WmdowProc; 
wmclass.cbClsExtra = O; 
wmclass.cbWndExtra = O; 
wmclass.hlnstance = hmstance; 

WS_OVERLAPPED I 

hwndParent, 
NULL, 
wclnfo. hlnstance, 
NULL); 

wmclass.hlcon = Loadlcon(hmstance, MAKEINTRESOURCE(IDI_ICON1)); 
wmclass.hCursor = LoadCursor(NULL, IDC_ARROW); 
wmclass.hbrBackground= NULL; 
wmclass.lpszMenuName = NULL; 



winclass.lpszClassName= szW1ndowClassName; 
winclass.hiconSm = Loadlcon(hinstance, MAKEINTRESOURCE(IDI_ICON1)); 

// register the window class 
1f ('Reg,sterClassEx(&winclass)) 
{ 

MessageBox(NULL, "Error Registering Class•", "Error", O); 
return O; 

} 

// create the window (one that cannot be resized) 
1f ('(hwnd = CreateWindowEx(NULL, 

WS_VISIBLE I WS_CAPTION I WS_SYSMENU, 

szWindowClassName, 

szApphcat1onName, 

WS_OVERLAPPED I 

GetSystemMetncs(SM_CXSCREEN)/2 - CParams: :WindowW1dth, 
GetSystemMetncs(SM_CYSCREEN)/2 - CParams: :WindowHeight/2, 
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CParams: :WindowW,dth, 
CParams: :WindowHe1ght, 

{ 
MessageBox(NULL, "Error Creating Window"', "Error", O); 

return O; 
} 

//keep a global record of the window handle 
g_hwndMain = hwnd; 

//create and show the info window 
CreateinfoW1 ndow(hwnd); 

//Show the window 
ShowWindow(hwnd, SW_SHOWDEFAULT ); 
UpdateW1ndow(hwnd); 

//create a timer 
CT1mer t,mer(CParams: :1FramesPerSecond); 

//start the timer 
timer.Start(); 

// Enter the message loop 
bool bDone = FALSE; 

wh1le(!bDone) 
{ 

while( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) ) 
{ 

1f( msg.message == WM_QUIT) 
{ 

// Stop loop 1f it's a quit message 
bDone = TRUE; 

NULL, 

NULL, 

hinstance, 

NULL))) 



} 

} 

else 
{ 

} 
} 

TranslateMessage( &msg ); 
D1spatchMessage( &msg ); 

1f (t1mer.ReadyForNextFrame() 11 g_pController->FastRender()) 
{ 

1f(lg_pController->Update()) 
{ 

} 

//we have a problem, end app 
bDone = TRUE; 

//this will call WM_PAINT which will render our scene 
InvahdateRect(hwnd, NULL, TRUE); 
UpdateW1ndow(hwnd); 

}//end while 

//Cleanup everything and exit the app 
Cleanup(); 
Unreg1sterClass( szWmdowClassName, wmclass.hlnstance ); 

return O; 

} // end WmMam 
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#1fndef S2DVECTOR_H 
#define S2DVECTOR_H 

#include <math.h> 

I///I////I///////////I///I////////I/////////////////////I/I////////// 
II 
II 2D Vector structure and methods 
II 
II/I///II/////////////////I///I//////I/////////////////////II/I////II 
struct SVector2D 
{ 

double x, y; 

SVector2D(double a = 0, double b = 0):x(a),y(b){} 

//we need some overloaded operators 
SVector2D &operator+=(const SVector2D &rhs) 
{ 

} 

x += rhs.x; 
y += rhs.y; 

return *this; 

SVector2D &operator-=(const SVector2D &rhs) 
{ 

} 

x -= rhs.x; 
y -= rhs.y; 

return *this; 

SVector2D &operator*=(const double &rhs) 
{ 

x *= rhs; 
y *= rhs; 

return *this; 
} 

SVector2D &operator/=(const double &rhs) 
{ 

x /= rhs; 
y /= rhs; 

return *this; 
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} 
}; 

//overload the* operator 
mime 5Vector2D operator*(const 5Vector2D &lhs, double rhs) 
{ 

} 

5Vector2D result(lhs); 
result *= rhs; 
return result; 

inhne 5Vector2D operator*(double lhs, const 5Vector2D &rhs) 
{ 

} 

5Vector2D result(rhs); 
result *= lhs; 
return result; 

//overload the - operator 
inline 5Vector2D operator-(const 5Vector2D &lhs, const 5Vector2D &rhs) 
{ 

} 

5Vector2D result(lhs); 
result.x -= rhs.x; 
result.y -= rhs.y; 

return result; 

I/------------------------- Vec2D Length -----------------------------
// 
// returns the length of a 2D vector 
I/- -------------------------------------------------------------------
inhne double Vec2DLength(const 5Vector2D &v) 
{ 

return sqrt(v.x * v.x + v.y * v.y); 
} 

//------------------------- Vec2DNormalize -----------------------------
// 
II normalizes a 2D Vector 
I/-------- ------------------------------------------------------------
in I me void Vec2DNormahze(SVector2D &v) 
{ 

double vector_length = Vec2DLength(v); 

v.x = v.x / vector_length; 
v.y = v.y / vector_length; 

} 

I/------------------------- Vec2DDot --------------------------
// 
// calculates the dot product 
I/------ --------------------------------------------------------------
in Ii ne double Vec2DDot(SVector2D &vl, 5Vector2D &v2) 
{ 

return v1.x*v2.x + v1.y*v2.y; 
} 

//------------------------ Vec2D51gn --------------------------------
// 
// returns pos1t1ve 1f v2 1s clockwise of vl, mmus 1f ant1clockw1se 
//-------------------------------------------------------------------
inlme int Vec2D51gn(5Vector2D &vl, 5Vector2D &v2) 
{ 
if (v1.y*v2.x > v1.x*v2.y) 
{ 

return 1; 
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} 

} 
else 
{ 

return -1; 
} 

#end1f 

#1fndef UTILS_H 
#define UTILS_H 

#include <stdhb.h> 
#include <math.h> 
#include <sstream> 
#include <string> 
#include <Iostream> 
#include <vector> 

using namespace std; 

I I- ---------------------------------------------------------------------------
// UTIL.H 
I I some random number functions. 
I!----------------------------------------------------------------------------

//returns a random integer between x and y 
inhne int Randlnt(int x,mt y) {return rand()%(y-x+1)+x;} 

//returns a random float between zero and 1 
mime double RandFloat() {return (rand())/(RAND_MAX+l.0);} 

//returns a random bool 
mline bool RandBool() 
{ 

1f (Randlnt(0,1)) return true; 

else return false; 
} 

//returns a random float m the range -1 < n < 1 
inline double RandomClamped() {return RandFloat() - RandFloat();} 

//-----------------------------------------------------------------------
// 
II some handy httle functions 
//-----------------------------------------------------------------------
//converts an integer to a string 
inlme string itos(mt arg) 
{ 

ostrmgstream buffer; 

//send the mt to the ostnngstream 
buffer<< arg; 
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//capture the string 
return buffer.str(); 

} 

//converts a float to a string 
mime string ftos(float arg) 
{ 

ostrmgstream buffer; 

//send the mt to the ostnngstream 
buffer<< arg; 

//capture the string 
return buffer.str(); 

} 

//clamps the first argument between the second two 
mime void Clamp(double &arg, double mm, double max) 
{ 

1f (arg < mm) 
{ 

arg = mm; 
} 

1f (arg > max) 
{ 

arg = max; 
} 

} 

mline void Clamp(mt &arg, mt mm, mt max) 
{ 

1f (arg < mm) 
{ 

arg = mm; 
} 

1f (arg > max) 
{ 

arg = max; 
} 

} 

//rounds a double up or down depending on ,ts value 
mime mt Rounded(double val) 
{ 

} 

mt integral = (mt)val; 
double mantissa = val - integral; 

if (mantissa < 0.5) 
{ 

return integral; 
} 

else 
{ 

return integral + 1; 
} 

//rounds a double up or down depending on whether ,ts 
//mantissa 1s higher or lower than offset 
mime mt RoundUnderOffset(double val, double offset) 
{ 
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} 

mt integral = (mt)val; 
double mantissa = val - integral; 

1f (mantissa < offset) 
{ 

return integral; 
} 

else 
{ 

return integral + 1; 
} 

III//I/////////////I///I/////I///////////////////////IIII//////////// 
II 
II Pomt structure 
II 
I/// II II////// II II///////// II//////////// II II/// II II II /II /II ////II/// 
struct SPomt 
{ 

float x, y; 

SPomt(){} 
SPomt(float a, float b):x(a),y(b){} 

}; 

#end1f 
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I/-------------------------------------------------
/ /Global Parameter file 
//parameter. Im 
I!-------------------------------------------------

1FramesPerSecond 60 
dMaxTurnRate 0.1 
1SweeperScale 5 
INumsensors 5 
dSensorRange 25 
iNumSweepers 25 
iNumT1cks 600 
dCellS1ze 20 
1NumAddlmkAttempts 10 
dSurvivalRate 0.2 
iNumGensAllowedNolmprovement 10 
iMaxPerm1ttedNeurons 100 
dChanceAddlmk 0.07 
dChanceAddNode 0.03 
dChanceAddRecurrentlink 0.03 
dMutationRate 0.5 
dMaxWeightPerturbat1on 0.5 
dProbab11ityWeightReplaced 0.1 
dActivat1onMutationRate 0.5 
dMaxAct1vat1onPerturbat1on 0.8 
dCompatib11ityThreshold 0.25 
iOldAgeThreshold 50 
dOldAgePenalty 0.9 
dYoungF1tnessBonus 1.3 
iYoungBonusAgeThreshhold 10 
dCrossoverRate 0.7 
dLearningRate 0.05 
dLearnmgParameterl 0.5 ' 
dlearnmgParameter2 0.02 
dLearnmgParameter3 0.02 
dlearnmgParameter4 0.02 
dlearmngParameter5 0.02 
dlearmngParameter6 0.02 
iOfflineTrammg 0 
iGlobalOnhne 0 
1RuleEvolut1on 1 
1OnlyGAs 0 
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