A NEW HYBRID LEARNING ALGORITHM FOR
DRIFTING ENVIRONMENTS

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos
in Partial Fulfiliment

of the Requirements

for the Degree

Master of SCIENCE

by
Enumulapally Anil Kumar, B.E

ANIL K. ENUMULAPALLY

San Marcos, Texas
August 2005

ACKNOWLEDGEMENTS

| would like to express my heartfelt gratitude to Dr. Khosrow Kaikhah. Without his
invaluable knowledge and patience | could not have accomplished this. His
encouragement and involvement have been extremely helpful in completing this
thesis. His mathematical skills and in-depth knowledge in neural networks have

been priceless in this research.

My thanks and gratitude also go to Dr. Carol Hazlewood for her patience, advice
and encouragement. | appreciate Dr. Hazlewood extending her cooperation in
meeting the deadline for the research, even under tough family conditions.

| thank Dr. Moonis Ali for his support and his valuable time.

I would also like to thank my friends Chandu, Kishore, Narsi, Naveen and Nazir

for their support, enthusiasm and belief in my abilities.
| express my special gratitude to my mother Surekha and my brother
Ramakrishna for their love, care and support. | also appreciate their patience and

enduring me and all that comes with me, through this thesis.

Above all | convey my prayers to Sri Saibaba and His Holiness Sri Sri Ravi

Shankar for their grace and love.

This manuscript was submitted on July 28, 2005.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS........cciiiiiiccrinieirisrseesemssssseesasmsessassasassessssnsesssnassssasassansasssnssessnsns snmsensan]
LIST OF FIGUREScoiiiiiiiccmmirenresnnnsnerasesrssscnsesssnassssenerasasesssssesesenenssans snsas sassnnessssns sasas nsasaesan Vil
ABSTRACT i s as s et anen s ss s sm e e nr e s R s SR e ea s s rm et sasnnrees s ranneeasasssanmenarn 1X
CHAPTER 1 INTRODUCTION ... inae e st issseass st meesssnsssssassasas s ssssessonnenssneensssssssssasassnnes 1
1.1 INTRODUCTION OF THE PROBLEM.....ccuvetiiiieiiriiieirieneiinicrieseireestesestentesteneesessessentssesreseesseseensasesseseesseneas 1
1.2 ARTIFICIAL NEURAL NETWORKSceoueeuirtintenieniirrinteseessssseesersessesstessesesasssstsnesanessesosssnssnestessassessesane 2
1.3 LEARNING IN ARTIFICIAL NEURAL NETWORKS.......coriiiierterieneneestesieenentesesessresseeseessessesseessesonensessesas 2
1.3.] Supervised LEArningccouceriniirecriniceineietneestr ettt teeesesess st sasbsst e et st s e et b aseseannaes 2

1.3.2 UnSuperviSed LEAVNING............c.ccouccceeemeineeiniriesiieeeeseiet ettt ettt sttt sttt eaene e 3

1.4 GENETIC ALGORITHMScoiteitmeerimcrennenreeetoneenensenmseeseneresecsnne e e 4
1.5 PROBLEM DESCRIPTION........titeeieerierieatestestenrtentenetsstesresseesssssessessteses seesmeesstsssssnssussessesssessessassensesessnenne 6
1.6 SOLUTION STRATEGY ..veeveuvinueriesieeetierentestentesteessssseeseassessesesmsesssssenessstessessessessessssssessessessesnsessssnessns 7
1.5.1 Offling LEAFTING.........ccccovoiviceiieiieraieiier sttt n e sa st oreae et e cenestesaeasennennaesaanne 8

1.5.2 ORIING LEAFNING......c..couvervoviiieceniiiitaeteseestaestesessteseeesesstasaestesinestesisanseasaosesnsesssssensennsensansssnsessssssins 9
CHAPTER 2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS 10
OVERVIEW ..oiiiieiimiiiteieeceae st reeteee s rescaneseseeeas s heseesseseearatesesrssee e sessaansstsasertesesenreneoreneennenesseossneraentsness 10
2.1 ARTIFICIAL NEURAL NETWORKS ...c.ceeutiiinienteirietirtestesrnesensessaessestesteesesneesesssesssesesssesseesmosssseessesnseseas 10
2.1.1 BioloGical INSPIFALIONccceeviiieeeeeirieiiieesiesiaesieseessesiaeise st sssesse e testesesssssessesasenttereaneens 11

2.1.2 Architecture of Artificial Neural NEIWOFTKSc.occuevuereeceriirieiritiisessisesrensesonssessessesesneesensens 12

2.2 LEARNING IN ARTIFICIAL NEURAL NETWORKSc.cccvertrueriirtermaeerenrereeeereernssesssessesseseeseescessensonsssansnes 13
2.2.1 SUPErVISEAd LEATRINGcccconmviieeeiniieeiecie ettt ettt ettt ea et e e 13

2.2.2 Online Learning and Offling LEAINIAGccveeevviviveeevecieeiinieenieiiisseianiescesseessssssessesssosseniens 17

2.3 GENETIC ALGORITHMScotiiieierieienieteeesseenteteeeestesteeseessessasssssse saeesnessesmtestensessessesasesseensensesarensesses 18
2.3.1 BioloQiCal MOBIVALIONc.oouveeeeeeeeerraiiesieceestectaeses s e ssteste vt tes e ssaassenaessasssansesasanseasannsan 18

2.3.2 A Prototypical Genetic AIGOFItAML.............c...coevereeeiveeeeeieieeesisessesessiessesasesessessasssssessssssessssnsen 20

2.3.3 Chromosome RepreSentation................c...cccoueiircirciiecieic et aee e 21

2.3.4 GENELIC OPEFALOTS........ccoverveiieitieseesiiecresiee et e arteseaeestesesessteessassatesteessseeaeaeasrenseennensteeesesnacensenne 22

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS

... 25

OVERVIEW L.viviiiiiiiieniiietit st eb st s st st h e bt s o0 s b e a b s sm e se s st s eeseneen 25
3.1 INTRODUCTION ..cuviimiinietietintetibeb ettt b s s s et st s b s bt s b s b sasmas e sbess e b s et ansbenaan 25
3.2 COMBINING ANNS AND GAS ...covriiiiiiiiiticii ittt st s b s en s 26
3.3 EVOLUTIONARY DESIGN OF NEURAL NETWORKS.......oveiiiiimireiitiis s eiesrens st rasinsns 26
3.3.1 Evolution of Connection Weighis:cccceeinereneiienniereeeetaeecseisseseeeientsssesesessaessssenanes 27
3.3.2 EVOIULION Of AVCRILECTUFES ..o sttt enea 30
3.3.3 Simultaneous Evolution of Architectures and Connection Weights............ccccocvcencvccrinnancnnnn, 33
3.3.4 Evolution of Learning RUIEScccociveveriiiiiimeiineeieieeiesictiiescsaenenos st saons 34

v

CHAPTER 4 RELATED RESEARCH ...t ssas s sss s saecnnns 37

OVERVIEW ..oivieiverieniieiestrseoriestereestesesassessassasssesasssessessrsssossesssassasssssessessessessensssssssssnsesssonssssessesssmessnsssssens 37
4.1 EVOLUTIONARY DESIGN OF NEURAL NETWORKS.......coviitieieieeirenteeseessestseseessesesresssensessessssssesssesssonses 37
GBI T EPNEL......o.coooeeeoeeeeeeeeeeeee et e s et et s e et ent e e ettt e e r et ans 37
4.1.2 NEAT (Neuro Evolution of Augmenting TOPOIOZIES)..........c.c.covueevveveeereisiesiireveveeressnsasssiensens 39
4.2 ONLINE ADAPTIVE ALGORITHMS ..otieiieieireitieieresteesessaessesssesesseeeessessesssessesserssessassessssssssssossonssssanes 41
4.2.1 Online Learning for DYifting ENVIFONIMENLScccooeveeeesieveerieieserissssesensosessessesssessessessassennns 41
4.3 HYBRID ONLINE ADAPTIVE ALGORITHM......ccotreueecoveceeeeeteeeseeeeteesseesneeesesseseeseesssenssssnesssssssssenessnssesseens 42
4.3.1 Evolution of Learning: An Experiment in Genetic CORNECHORISMcccuvvereeeerrirnsanienernsnnas 42
4.3.2 Learning to Adapt to Changing Environments in Evolving ANNcccccoroeoeiiiiienroinecenn. 43
4.3.3 Evolutionary Algorithm for Onling LEQrNINGccucoueeceevervvceiiieeniesisieeieeeeseecentenereeeas 44
4.4 ONLINE INTERACTIVE LEARNINGccvviiiieiieiereeteeeeeceeetsessesesseesseesssssseeeseesassanseesssessessnesssseeneesassessennn 46
CHAPTER 5 HYBRID LEARNING ALGORITHMcoiieeieenrirccasecsesssssssnneneseessaserssssssssasansses 49
OVERVIEW .c.uviiiriiiiieiierireeeereesnesesesesssesssasessseesssessasesssatesssssssssessssssesesssesessssesassessssssesasssssssonssesensansarsssees 49
5.1 INTRODUCTIONccueeireerierueesruaresnreasenerssstesasetesssesassassssanesssssssssasssssassssesssssesssssssssssssensassssssesssssesassaens 49
5.2 THE FRAMEWORK OF THE ALGORITHMcioottriiiintieriersienereeasneesseessesassessasssesnsessssassessssessssssessserssnssss 50
5.3 REQUIREMENTS FOR THE PROPOSED ALGORITHMcccvvierevreerirrerirrressteesssiessseesensessssesassrsssssesssssnssen 52
5.3.1 RepreSerntation Of GENOIYPE.cccvvvirveveeerieeeeeeeeasisseseeseatssseataessestesssssassassasssesansssssassesnsancs 52
5.3.2 POPUIALION SIZEueeesiieeeaniecriiieerinteeie it eee et eteetaseteatsbeesteessase st aesaeseassesssassansansessesssessesresssantas 52
5.3.3 GORELIC OPEFAIOTS......ooevveiiaeeireieeeirreeieneenesrsesiestasseassassestastssttetsessessasseassasseasasssessansasesnsenssesis 52
5.304 DIVEESIIY .ottt sttt ettt et et kst ke b st ek s e s ne e bt ssaep et et ree e 53
5.4 OFFLINE STAGEccutiieeteeriuererrtresitesesnseesseesasseransssssssesasssessssssssssesesntessasssssnsessossessssesesssssssssessnsesssssessns 54
5.5 ONLINE STAGE ...oceeiuveeririeinrerenniiesrtesreseasesssssesaasesesssesasessessssesosseseorsessasssassesssnsssersnsesssssssssseransesssssesees 59
5.5.1 LeAINING PRASE.........ooeeveeeeeeeaieeeeeters et sas e seesae s e e asaste s sessesaesassassensasessensasessessessansansasanses 60
5.5.2 EVOIUIONATY PRASE..........cccouoeeiiiiiieineieininiretcetee ettt sttt ettt sttt eb bt b s saeaen 64
CHAPTER 6 APPLICATION ANALYSIScooomiiiiiirirrenreemeeseettiniisersisessssssssesaneriesessessssensnsnsnsansee 68
OVERVIEW ..vviietieeitveesireeesertesessesissessssassasesssressssreesssesssssssssssssssssssissassssssssssesssssssssssossasessasssassssesssnsessssaes 68
6.1 INTRODUCTIONccuuricrurerrteiaraeaeseeessseesistesasseeassasssssesssssssssaesssrssssssssssssassassessssresssssssssesssssassassssssesasens 68
6.2 ARCHITECTURE OF ANNS .civitiiiieiieeeieeeeeeeerteeeesssreeessessrseessesausessesssasesssssnsstessssassssssosnsssessssssnseses 69
6.2.1 ObSIACIE AVOIAANCE ...ttt ettt 69
6.2.2 EnvIironment EXPIOFALION.c.cc.coeeemeemiineeiieeietesseesssurasesesassestenseesesssessaessensessassssssasasesssenes 71
6.2.3 QUIDULS ..o s oot s e e s eeeer e sreees 72
6.3 OUR FRAMEWORKooeiiitieeeiieerniiectreeireersaessssneesstesassseessseesssesssssessonsesssseessssasssssesssssessssenssssessssseesansen 74
6.3.1 Offline Learning SIAQE...........cccoccveveevueriieoeriisieeienieissesseesesesiesasesssssesssessassessssssensssssssssessesssesssenes 75
6.3.2 ONIINE SEAGE..........coiiticiriiiiiiiteiec ettt ettt ettt 80
6.3.3 Performance PAVQIMEIETSccccovcuiiiunureeesiesteeseensaniresiassessisssessessessesstassssssessssssssessesssesssenses 84
CHAPTER 7 ANALYSIS OF RESULTS ... oo iciiiriimeecrccicnerrcsessssrarsesssasennsmssmsssssensessssssssnssnanasrenne 86
OVERVIEW ..oiiiitiieiiirieresiiteseeseeesseasansessiaessssessossassssasassasesssasassssssssssssssasesassesssssssassesessessassessesasssssassssssesasses 86
7.1 INTRODUCTIONoeiiieiieiieerteereeeeireesveessssessssnesassessssesssssessssesssessesassassssessssseessssessssessssseasassessssrrasases 86
T2 HOW DO WE ANALYZE?ovvitiiieiitiericeeeeaenettessteensestassssesssasssaassesssaanssssseaseessesssesassesssessssesssssssasanees 87
7.3 ONLY GENETIC ALGORITHMS.......0ecoiteriiireeieaeneirseessaesesssessssassessssasssessessssssssasssesssesssssssessssmsseesssesssans 88

7.3.1 Analysis of Performance with Only Evolutionary (Genetic) AIGOFItAMScovvevceveeievunenirenne 89

7.4 OFFLINE LEARNING AND EVOLUTIONARY (GENETIC) ALGORITHMS ...coeorvtrrieniineeiienicesreeenaseeenereneens 90
7.4.1 Analysis of Performance with Offline Learning and GAS:..........coouvceevvecemvieerenreenieneeiseneesnneene 91

7.5 OFFLINE LEARNING WITH ONLINE LEARNING (LEARNING PHASE AND EVOLUTIONARY PHASE)......... 92
7.5.1 Analysis of Performance with Offline Learning and Online Learning:cc.cccuevenueeenc. 93

7.6 ONLY ONLINE LEARNING (LEARNING PHASE AND EVOLUTIONARY PHASE)covveiiiinceirinieceneeane 94
7.6.1 Analysis of Performance with Online Learning AIORe..............cccooceionmeceerccnniiiiicenecineecan 95

7.7 ANALYSIS OF OFFLINE LEARNINGcoveiutecereeistnsiecee st estetessesiesnesutenessresasessesseensesenasesesnsssssneonsesnes 95
7.8 COMPARISONS BETWEEN DIFFERENT APPROACHES........ccuteotiriermeeinrientecesseeessessesnesmessessesssessassesneonsens 95
7.9 THE FACTORS THAT INFLUENCE THE PERFORMANCE OF APPLICATION......ccctevvtrermernenrecersneneeeeenne 103
CHAPTER 8. CONCLUSIONS AND FUTURE WORKcociccameiminminnicnniercncsnsssnsnssmenenans 105
OVERVIEW ...cuviuiieiiniententinetintietente st estesnessessesassssssstensnsstosssasesmesasssnessessesssessesssesstssssssesnssssessesaessnessssesnssns 105
8.1 CONCLUSION ...ccutitititiretritinterintetetes e eeteestas st ne st s oassaesanestassesssassessassnesasssneanasenesnenesstsntsssennesas 105
8.2 FUTURE WORK ...cvitiuiriireteninicrestestatcntensestemaesesetesssestsseaseneesensesuessessenseneaneesessessoseeneeseontsssrasasenesenes 107

N o o | 108
REFERENCES.....cccoiiamreiiiiirieresst s ns s sms e s e sssaneassnaesassasasass ssssas s nesanesesens sesass mnssnssasasnssanes 235
WEB REFERENCEScecteruteeueesiersueeeeereerseeesntessessseesenssnesaresssesssnesssnesssessnesasrsasteesssssetesstessssassssrsosssssssss 237

vi

List of Figures

CHAPTER-2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS

Figure 2 1 Schematic of biological neuron

Figure 2.2 A typical neuron with incoming and outgoing connections

Figure 2 3 A typical feedforward neural network

Figure 2 4 Flow chart representation of the algorithm.

Figure 2 5 Depicting the operators with examples (Machine Learning, Tom Mitchell)

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC
ALGORITHMS

Figure 3 1 a An ANN with connection weights

Figure 3 1.b: Binary representation of connection weights

Figure 3 2 a: An ANN with connection weights

Figure 3.2 b: Binary representation of connection weights

Figure 3 3: An example of the direct encoding of a feed forward ANN
Figure 3 4: An example of the direct encoding of arecurrent ANN

CHAPTER 4 RELATED RESEARCH
Figure 4.1 The main structure of EPNet

Figure 4.2 a Peon’s neural net with inputs and outputs.

Figure 4.2 b Configuration of a peon’s eyes.

Figure 4 3 a Average performance over all scenarios of a population that is allowed to evolve
online compared to one that is not (Offline)

Figure 4 3 b A population started with random weights that evolves online will outperform the
population trained offline when given enough time

Figure 4 3 ¢ Even after the population has adapted to Scenario 5, it has no trouble adapting
to a sudden change to Scenario 11

Figure 4 3 d The improvement is even clearer when the new scenario Is the novel Scenario 17.

CHAPTER 5 HYBRID LEARNING ALGORITHM

Figure 5 1 Frame work of the algorithm
Figure 5 2 a Forward link

Figure 5 2 b Feedback link
Figure 5 2 ¢ Recurrent Iink
Figure 5 3 Before and after adding a neuron ‘D’ between neurons ‘A’ and ‘C’

vii

11
12
14
21
24

28
28
29
29
31
32

38
46
46

47

47

47

53
57

57
57
57

Figure 5.4 The sigmoid function for different values of controller variable (c)
Figure 55 Frame work of ONLINE stage

Figure 5 6 lllustration of Global Learning

Figure 5 7 Flowchart of ONLINE stage

CHAPTER 6 APPLICATION ANALYSIS

Figure 6 1 The demo program in action

Figure 6 2 A mine sweeper with sensors

Figure 6.3 A mine sweeper seeing the obstacle through its sensor readings

Figure 6.4 The memory readings help the mine sweeper to explore unvisited cells in the environment.

Figure 6 5 Two networks with their chromosomes using node-based encoding.
Figure 6.6 The neuron and link genes’ parameters and their description

Figure 6.7 Program flow for the mine sweeper application

CHAPTER 7 ANALYSIS OF RESULTS

Figure 7.1 (a) A screen shot showing the mine sweepers exploring the environment

Figure 7.1 (b) A screen shot showing previous generations best four networks

Figure 7.2 The fitness of intelligent agents with only GAs

Figure 7.3 The fitness of intelligent agents when offline learning is combined with GAs

Figure 7 4 The fitness of intelligent agents when offline learning and online learning combined

Figure 7.5 The fitness of intelligent agents Online Learning (local online with delta rule in
learning phase and evolutionary phase)

Figure 7.6 The fitness of intelligent agents when global online with delta rule of
learning phase, evolutionary phase and offline leaming are combined

Figure 7.7 The fitness of intelligent agents when global online with delta rule of learming phase and
evolutionary phase

Figure 7.8 The fitness of intelligent agents when global online with rule evolution of learning phase,
evolutionary phase and offline learning are combined

Figure 7.9 The fitness of intelligent agents when local online with rule evolution of learning phase,
evolutionary phase and offline learning are combined

Figure 7.10 The fitness of intelligent agents when global online with rule evolution of
learning phase and evolutionary phase

Figure 7 11 The fitness of intelligent agents when local online with rule evolution of
learning phase and evolutionary phase

Figure 7.12 A sample run of “GAs Only” showing the complex architectures generated

Figure 7.13 A sample run of “Only Online Learning” showing the simple architectures

generated even after 4000 generations.
Figure 7.14 The fitness of intelligent agents with online learning and simple fitness criteria

viii

58
60
62
67

69
70
71
71
73
73
74

88

88

89

91

93

94

96

97

98

89

100

101

102

102
104

ABSTRACT
A NEW HYBRID LEARNING ALGORITHM FOR DRIFTING ENVIRONMENTS
by
Anil Kumar Enumulapally
Texas State University-San Marcos
August 2005

SUPERVISING PROFESSOR: KHOSROW KAIKHAH

An adaptive algorithm for drfting environments is proposed and tested in simulated
environments. Two simple but powerful problem solving technologies — Neural Networks and
Genetic Algorithms with Online Learning, help the artificially inteliigent agents to adapt to a
changing environment. Neural networks and genetic algorithms are combined to evolve weights,
architecture, and learning rules for the generation of efficient networks. Online learning helps
these networks to capture the dynamics of a changing environment efficiently. Supervised
learning 1s achieved using a variation of regular backpropagation that works on dynamic random

networks.

Our algorithm proposes two types of online learning, namely local online learning which requires
a pre-defined training set and global online learning which does not It is shown that both types of
online learning improve the performance of networks to capture subtleties of the varying

environments.

The algorithm’s efficiency is demonstrated using a mine sweeper application. Different learning
technologies have been compared. The results establish that online learning within the
evolutionary process is the most significant factor for adaptation and is far superior to
evolutionary algorithms alone. The evolution and learning work in a co-operating fashion to
produce excellent results in short time. Offline learning is observed to increase the average
fithess of whole population. It is also demonstrated that online learning is self sufficient and can
achieve results without any pre-training stage. When mine sweepers are able to learn online, their

performance in the drifting environment is significantly improved.

X

CHAPTER 1 INTRODUCTION

1.1 Introduction of the Problem

The objective of Artificial Intelligence is to support the notion that an intelligent system can
demonstrate learning and respond like a human. In other words the program has to pass the
“Turing test”. Most of the intelligent agents do not adapt to the changes in the environment, as
they are designed for a particular scenario and expect few deviations from it. These conditions
do not exist in real time dynamic environments. The best solution for intelligent systems in real
time drifting environments is to design and apply technologies such as Neural Networks and
Genetic Algonthms that mimic the nature. Artificial neural networks and genetic algorithms are
two reiatively young research areas. Neural networks are massively parallel distributed
processors that perform data mapping efficiently. Genetic algorthms attempt to apply
evolutionary concepts to the function optimization capabilities of neural networks and are useful in
searching large and complex environments. In recent times much research has been undertaken

to combine these two important and distinct areas (Yao, 1999).

Evolution and learning are the two most fundamental processes of adaptation and the
environment 1s a vital component of the adaptation process. If the environment were relatively
static, there might be little need for learning to evolve. But in real time systems, generally,
environments are dynamic and individuals need general adaptive mechanisms to cope with

arbitrary environments. In this way, a diverse environment encourages the evolution of learning.

Our algorithm mimics human evolution and development. We have successfully implemented
complete evolution and online learning to achieve effective design automation of neural networks
with the ability to adapt to the dnfting environments. Our expernimental results demonstrate the
ability of our algorithm to evolve efficient neural networks with simple architectures in few

hundreds of generations.

1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are highly simplified models of the brain. They consist of a
combination of neurons and synaptic connections, which are capable of passing data through
layers. ANNs posses a generalization property and are tolerant to noise in datasets. Neural
networks have been successfully applied to perform regression, classification, control and
prediction tasks in a variety of scenarios and architectures.

ANNs can be classified into two categories depending on their connectivity.
s Feedforward ANNs
o Feedback ANNs

Feedforward ANNs allow signals to travel one way only; from input to output. There is no
feedback (loops), i.e. the output of any layer does not affect the same layer. Feedforward ANNs
end to be straightforward networks that associate inputs to outputs. Feedback ANNs can have
signals traveling in both directions by introducing loops in the network. Feedback networks are
very powerful and can get extremely complicated. Feedback networks are dynamic, and the

state of a network is continuously changing until it reaches equilibrium.

Neural networks, with their remarkable ability to work with complicated or imprecise data, can be
used to extract patterns and detect trends that are too complex to be noticed by either humans or

other computer techniques.
1.3 Learning in Artificial Neural Networks

Learning in ANNs is accomplished by adapting the synaptic strengths to the environment. Once
a network has been designed for a particular application, it 1s ready to learn. To start the learning
process the initial weights are chosen randomly. Artificial neural network learning algorithms are

primarily divided into supervised and unsupervised.

1.3.1 Supervised Learning
In supervised learning, the training data consist of many pairs of input/output training

patterns. Therefore, the learning will benefit from the assistance of the teacher (the desired
output). The most widely used supervised learning algorithm is Backpropagation. In the
training stage of the network, each input pattern is presented to the network, and fed forward
through all the layers to the output layer. The actual output is then compared with the desired
output corresponding to the input so that an error is computed and propagated backwards

through the layers for the adjustments of the weights and thresholds. The process is
repeated for all input/output patterns until the mean squared error for all patterns is less than
a specified value. After the training phase is complete, it can recall the stored patterns, given

an input pattern with a certain level of noise.

1.3.2 Unsupervised Learning

In unsupervised learning, the training set consists of input patterns only. Therefore, the network
is trained without benefit of any teacher. Unsupervised neural networks "learn” from correlations
of the input. Hebbian learning and adaptive learning are unsupervised.

As an example of adaptive learning, if a new pattern is determined to belong to a previously
recognized cluster, then the inclusion of the new pattern into that cluster will affect the
representation (e.g., the centroid) of the cluster. This will, in turn, change the weights
characterizing the classification network. If the new pattern is determined to belong to none of
the previously recognized clusters, then (the structure and the weights of) the neural network will

be adjusted to accommodate the new class (cluster).

Training algorithms for ANNs can be broadly classified into fwo types.
a. Batch or Offline
b. Stochastic or Online

The batch training of ANNs is considered as the classical machine learning approach: a set of
examples is used for learning an approximation function, before the network is used in the
application. Batch learning can be viewed as the minimization of an error function E, to find a set
of weights W such that W=min,.gr E (w) where the function E is defined as the sum of the

squared error over the entire training set.

In online training, the function E is pattern based and is defined as the instantaneous mean
squared error function with respect to the currently presented training example. In this case, the
ANN weights are updated after the presentation of each training example, which may be sampled
with or without repetition. Online learning is appropriate for either problems with large training
sets or tasks that slowly vary with respect to time. It helps escaping local minima and provides a

more natural approach for learning by continuously adopting in a changing environment.

1.4 Genetic Algorithms

Genetic Algorithms (GAs) are modeled loosely on the principles of evolution via natural selection.
These algorithms encode a potential solution to a problem on a simple chromosome-like data
structure and apply genetic operators to these chromosomes to preserve critical information.
GAs are widely used as function optimizers and can also be applied to a broad range of

applications.

The traditional theory of GAs (Holland, 1975) assumes that, at a very general level of description,
GAs work by discovering, emphasizing, and recombining good "building blocks" of solutions in a
highly parallel fashion. The idea here is that good solutions tend to be made up of good building
blocks—combinations of bit values that confer higher fitness on the strings in which they are

present.

An implementation of a genetic algorithm begins with a population of random chromosomes and
members of current population and gives rise to the next generation population by means of
reproduction, mutation, or crossover, which are patterned after processes in biological evolution.
At each step the chromosomes in the current population are evaluated relative to a given
numerical measure called fitness. The most fit chromosomes are selected probabilistically as
seeds for producing the next generation. Chromosomes in GAs are often represented by bit
strings, so that they can be manipulated easily by genetic operators.

The popularity of GAs is motivated by the following:
¢ Evolution is known to be a successful, robust method for adaptation within biological
systems.
¢ GAs can search spaces of hypotheses containing complex interacting parts, where the
impact of each part on overall hypothesis fithess may be difficult to model.

¢ GAs are easlly parallelized.

e GAs are very efficient at optimizing functions.

A genetic algorithm must contain five components

l. Representation:

Chromosomal representation of solutions is problem dependent Representation is a key

issue because GAs directly manipulate coded representations of problems

Il. Evaluation Function:

Iv.

Evaluation function is problem dependent. Evaluation functions provide a measure of

individual’s performance.

Population:
Choosing an appropriate size for population of initial solutions is very important and also a

difficult task. Very large and very small population sizes have disadvantages. Generally,

population is chosen at random.

Genetic Operators:
The three primary operators are Selection, Crossover and Mutation. The effectiveness of a

GA depends on the combination and appropriate use of these operators.

a. Selection (Reproduction):
This operator selects the solutions for next generation from the current generation.
Sometimes other operators are applied before we form the next generation. In such

cases the population reproduced is called the intermediate population.

b. Crossover:
The crossover operator produces two new offspring from two parent strings by copying
selected bits from each parent. The bit at position i in each offspring is copied from the
bit position ‘I’ in one of the two parents.
Depending on the crossover mask, it can be divided into the following:

i. Single point crossover

ii. Two-point crossover

ili. Uniform crossover

c. Mutation:
By modifying one or more of an existing individual’s gene values, mutation creates new
individuals to increase variety in the population. The mutation ensures that the

probability of reaching any point in the search space is never zero

V. Parameters:
Executing a genetic algorithm requires setting a number of parameter values. Finding ideal
settings for a problem is a difficult task Some of the parameters are crossover rate, mutation

rate, and population size and selection strategy.

1.5 Problem Description

Learning and evolution are two fundamental forms of adaptation. Neural networks are inefficient
when dealing with large complex problems that generate many local optima. Genetic algorithms
deal with complex problems efficiently. However, they are very poor at fine-tuning the soliution
where the ANN algorithms perform the best. Obviously these two strategies have their own
strengths and weaknesses. One possible way of constructing an efficient algorithm is to allow
these two strategies to complement each other. These approaches can be combined to achieve
a more flexible network that can perform better in varying situations.

There are different approaches one can take in combining the ANNs with GAs. In the supportive
approach, ANNs and GAs are applied at different stages. GAs are commonly used to reduce the
dimensionality of data space. In the collaborative approach, GAs and ANNs are integrated into a
single system in which population of ANNs is evolved. But designing a hybrid system is not
sufficient for the drifting environments. In standard hybrid algorithms, a population of networks is
evolved to perform a task, and the best fit network is found. This network is fixed and is used for
future instances of the problem. Networks evolved this way do not handle dynamic environments
very well.

Living organisms not only evolve but also learn in their lifetime and change according to the
changes in the surroundings and their needs. So the true adaptation to the surroundings must
include life-long (online) learning. Without oniine learning the process of adaptation to the
environment, Iin drifting environments, 1s Incomplete. Online learning 1s generally used In
applications where there are very large and redundant training sets, or where the environment
changes slowly over time. Moreover, online learning helps escaping local minima and provides a
more natural approach for learning time varying functions and adapting to a continuously
changing environment. Sutton pointed out, “Online learning is essential if we want to obtain
learning systems as opposed to merely learned ones”. Hence, hybrid algorithms that employ
online learning are required to achieve the task of true adaptation. Despite the abundance of
methods for learning from examples, there are only few that can be used effectively for online
learning. In a majority of approaches evolutionary principles are used in conjunction with ANN

training to formulate the problem as finding weights of a fixed architecture.

This approach leads to the following major sources of noise
» Due to the random initialization of weights the same genotype (the ANN without any
weight information) may have quite different fitness.
« Different training algornthms may produce different training resuits even from the same

set of initial weights.

To alleviate these problems, we need to evolve the ANN architectures and weights
simultaneously. We propose an algorithm which not only uses the best principles of learning and

evolution but also employs online learning for the agents.

1.6 Solution Strategy

The evolution of artificial neural networks can be classified according to the goals of evolution.
There are three basic approaches by which we can combine learning with evolution.

e Evolution of weights

e Evolution of architectures

o Evolution of learning rules or transfer functions

As evolution of weights, architectures, or learning rules alone do not yield required performance,
all three approaches must be combined to design a truly flexible network This also reduces the
human intervention in the network design. Combining all three evolutionary approaches with
online learning result in the adaptation. By combining evolutionary approaches with online
learning, we have developed a hybnd algorithm that can adapt to the changing environments.

In our approach, the artificial inteligent agent is equipped with a neural network brain which
learns in two different stages:

e Offline Learning

¢ Online Learning

In the offline learning stage, we integrate network learning process with evolution. In this stage
learning is used as one of the genetic operators. We use the modified backpropagation algorithm
with all three operators of GAs on the population. The genetic operators are used only if they are

needed.

In the online learning stage, network learning and evolution are applied at different stages. Online
gradient descent method is used for learning and GA operators are used to produce a better

population for learning process. Learning and evolution are applied to the entire population.

In each stage, GAs are used to evolve the weights and the architecture. Online gradient descent

and backpropagation use adaptive step size to evolve the learning rule.

1.5.1 Offline Learning
Step 1: Represent the networks in chromosome form where weight and network evolutions

are easily performed.

Step 2: Generate a population of minimal genomes with and without hidden neurons. As
our networks are random, we do not have hidden layers.

Step 3. Generate phenotypes or actual networks with all nodes, synapses, and their

connections.

Step4: Train the networks using modified backpropagation algorithm by applying the

sample data sets for fixed number of iterations.

Step 5: Use genetic operators (mutation and crossover) on the population to create the

better networks for population.

Step 6: Evaluate the fitness of each network. Better fit networks are inciuded in the
population, which is passed to the next stage. All the other networks are

discarded

Step 7: Group the networks into different species. This is required to avoid the “Crowding”

effect.
Step 8: Select the best fit ‘N’ networks for the Online Phase.

This is a onetime process for a network and is applied only when one I1s generated. Offline
learning uses a stepwise approach in which learning, crossover, and mutation may be used if
required. Learning involves the modified backpropagation algorithm. A few examples from
different environments are applied to the network for a fixed number of loops. Crossover is
performed using innovation numbers for the connections and neurons. Innovation number
works as an identifier for the synapses and neurons among all networks. Mutation is used to

add a link or node, or to delete a link or node

1.5.2 Online Learning
Step1: The ‘N’ networks from the offline stage are trained.

Step 2: The agent is equipped with sensors, a number of vectors that collect information
from the environment. Using these sensors the agent gets the inputs from the

environment.

Step 3: The agent uses the online gradient descent method to iearn the environment and

modifies network weights. This helps in adapting to the varying surroundings

Step 4: After a fixed number of time units the networks are modified using genetic
operators and a more fit population is generated from the current population of

networks for the next generation.

Steps 5: The steps from 2 to 4 are applied repeatedly. The agent gets smarter and the

result is achieved.

This stage has two different phases that toggle, 1.e. evolution and learning. Genetic
operators are applied if the mutation or crossover rate constant is less than a certain
threshold generated. The agent uses the online gradient descent method to learn the
environment. We employ a history sensitivity function that decreases the amount of learning
as the time elapses. We designed an online gradient descent method for evolved networks

with hidden nodes.

CHAPTER-2 INTRODUCTION TO NEURAL NETWORKS AND GENETIC ALGORITHMS

Overview

This chapter provides the basis for the underlying concepts of the proposed algorithm. It provides
information about Artificial Neural Networks and their learning algorithms, and Genetic Algorithms

and their operators in detail.
2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the
way biological nervous systems, such as the bramn, process information. The key element of this
paradigm is the novel structure of the information processing system. It is composed of a large
number of highly interconnected processing elements (neurons) working in unison to solve
specific problems. ANNs, like people, learn by example. They resemble the brain in two
respects:

i. Network acquires knowledge through a learning process.

ii. Inter-neuron connection strengths known as synaptic weights are used to store the

knowledge.

According to the DARPA Neural Network Study (AFCEA International Press, 1998),
an artificial neural network is a system composed of many simple processing elements operating
in parallel whose function is determined by network structure, connection strengths, and the

processing performed at computing elements or nodes.

According to Haykin, S. (Neural Networks: A Comprehensive Foundation, 1998) ANNs have been
applied to an increasing number of real-world problems of considerable complexity. Their most
important advantage is in solving problems that are too complex for conventional technologles --
problems that do not have an algorithmic solution or for which an algorithmic solution is too
complex to be found. In general, because of their abstraction from the biological brain, ANNs are
well suited to problems that people are good at solving, but for which computers are not. These
problems include pattern recognition and forecasting (which requires the recognition of trends in

data).

10

11

2.1.1 Biological Inspiration

The study of ANNs has been inspired by biological learning systems that are built from very
complex webs of interconnected neurons. The human brain contains a very large number
(approximately 10'"") of neurons that are massively interconnected with other neurons. Each
neuron is a specialized cell which can propagate an electrochemical signal. The basic
computational unit in the nervous system is the nerve cell, or neuron. A neuron has:

+ Dendrites (inputs)
e Cell body
¢ Axon (output)

2 Axon hallock

S a8
~ 20Mma
Axon

“Nucleus

Termanal buttons

\

Figure 2.1 Schematic of biological neuron

The neuron has a branching input structure (the dendrites), a cell body, and a branching output
structure (the axon). The axons of one cell connect to the dendrites of another via a synapse. A
neuron receives input from other neurons (typically many thousands). Once the sum of all inputs
exceeds a critical level, the neuron discharges a spike, an electrical pulse that travels from the
body, down the axon, to the next neuron(s) (or other receptors). This structure indicates that the
information processing capabilities of biological neural systems are the result of highly parallel
processes that are distributed over many neurons. Motivation for ANNSs is to capture this kind of
highly parallel computation based on distributed representations. While ANNs are loosely
inspired by biological neural systems, there are many complexities of biological neural systems
that are not modeled by ANNs.

12

2.1.2 Architecture of Artificial Neural Networks

There many different types of artificial neural network structures, each of which has very different
computational properties. An artificial neural network is composed of a number of neurons or
nodes connected through links or synapses. The structure of the network depends on the way

the neurons or nodes are connected to each other. The general structure of a neuron is shown in

Figure 3.2

X1 . x Wl
X2 - W2
.ﬁz
ra
in Whn

TEACHING INPUT

Figure 2.2 A typical neuron with mcoming and outgoing connections

Each neuron has one or more incoming synapses and single output value. Each link has a
numeric value called weight associated with it. Each neuron performs a simple task of summing
the product of input and weights, called weighted inputs, from all input synapses. The neuron

fires if the net excitation (summed value) exceeds its inhibition i.e. the threshold of the neuron.

AT,-"- [ar,....a,...,a the input vector

W= Wiy s Wy e W] the weight vector for the j" node

J

dot product point-wise

- T PR
bj—f(Wj .A+w.0><6’j) or bj f((lélel.xaj)-i-wjoxﬁj)

b i is the output of | node.

f(x) is the activation function such as f (x) = 1/ (1+e™).

0 i is the threshold for the j" node

13

The general structure of the ANNs consists of layers of neurons:
Input Layer:

Each network must have one or more input neurons. Input neurons do not process the input
hence produce output equal to their input. Input neurons are connected to hidden layer neurons,

if any, or to output layer neurons.
Output Layer:

The network should contain one or more output neurons. Output layer neurons produce an output
to the environment based on the activation function. Output neurons receive inputs from either
hidden layer neurons, if any, or from the input layer neurons.

Hidden Layer:

A network may contain zero or more hidden layers. Hidden neurons are typically used as feature
extractors and sometimes may be present in more than one layer. The hidden layers are
bounded by input and output layers and do not interact with the environment directly.

2.2 Learning in Artificial Neural Networks

Learning in ANNs refers to the modification of internal network parameters, so as to bring the
mapping from input to output as close as possible to a desired mapping between them.
Therefore, any change in the memory or weight space, W, is considered as learning for the

network.

dW /dt#0

Learning may also be defined as optimization of the parameter set with respect to a set of training

examples. Two important types of learning algorithms are:

s Supervised Learning

e Unsupervised Learning

2.2.1 Supervised Learning
Supervised learning is the most widely used technique. The term supervised originates from the
fact that the desired signals on individual output nodes are provided by an external feacher. We

14

collect many examples to serve as the training set. Each example in this training set comprises
of all inputs and the desired outputs for these inputs. A supervised learning algorithm consists of
the following steps:

¢ Present the training input to the input layer, one at a time.
e Calculate the error between the output produced by the network and the desired output.
¢ Update the network parameters so as to reduce the error.

e Repeat these steps until the error is zero or less than the desired error tolerance.

Back-propagation (BP) algorithm is by far the most popular supervised learning algorithm. The
elementary backpropagation network is a three-layer, hetero associative ANN, with feedforward
connections.

W

Figure 2.3 A typical feedforward neural network

15

2.2.1.1 Backpropagation Algorithm:
1. Assign random values In the range [+1, -1] to all the Input to hidden layer connections, vy,

all the hidden to output layer connections w,, to each hidden neuron threshold, @, and to

each output neuron threshold, i/,

2. For each pattern pair (A« ,Ck), k = 1,2,...,m, do the following:
a) Transfer A¢'s values to the input neurons, filter the input neuron activation through
V and calculate the new hidden neuron values, using the following:

n
bi = f((hélahvhi)_ei) foralli=1,2,...,p

where b, is the activation value of the /" hidden neuron, 0 18 the /" hidden

neuron's threshold value, and f{) is the sigmoid threshold function:

fix) = (1+e%"
b) Filter the hidden activation through W to output using the equation:

=1 (E by

Where ¢, is the activation value of the /" output neuron and ¥/, is the /*

) — l//) Forallj=1,2,..,9

output neuron's threshold value.

c) Compute the discrepancy (error} between the computed and desired output
neuron values using the equation:
d =c(1- c,)(c,k -¢) Forailj=1,2..,q9
Where d; 1s the f” output neuron's computed error.

d) Calculate the error of each hidden neuron relative to each d, with the equation:

e =p. (1 b.) Z W d Foralli=1,2,..,p
=

Where g, is the " hidden neuron’s computed error.

e) Adjust the hidden to output connections:

Aw, = «a (b, d) Foralli=1,2..pandallj=12...49
Where Aw, is the amount of change made to the connection from the i

hidden neuron to the j"1 output neuron, and & is a positive constant

controlling the learning rate.

16

f) Adjust the output thresholds:
Ay, =aq Forallj=1,2,...,q

Where Ay, is the amount of change to the | output neuron’s threshold value.

g) Adjust the input to hidden connections.
Avi= [(ane) forallh=1,2..,nandalli=12,..,p
Where Av,, is the amount of change made to the connection from the h"
input and /" hidden neuron, and /3 is a positive constant controlling the

learning rate.

h) Adjust the hidden thresholds:
At9, = ﬂe, foralli=1,2,..,p

Where 46 ; is the amount of change to the " hidden neuron's threshold

value.

3. Repeat step (2) until the error correction value d,, for each j = 1,2,...,q, and each training
set k= 1,2,...,m, is either sufficiently low or zero.
g 1s the number of neurons in the output layer, and

m is the number of input/output pairs.

To summarize backpropagation, the weights leading into an output node are adjusted in
proportion to the difference between its actual value and its desired value. Weights leading into

hidden nodes are adjusted in proportion to their contributions to error

17

2.2.2 Online Learning and Offline Learning
An artificial neural network can learn in one of two ways
o Offline or Batch learning

o Online or Stochastic learning

In offline or batch learning, optimization of network parameters is performed with respect to the
entire training set and it is an iterative process. In batch learning the network learns using training
datasets and with this knowledge network tries to recall near optimal results for the noisy inputs
from the field. The swift computation of such an optimization is a difficult task, because generally,
the dimension of parameter space is high. The network parameters (weights) are fixed in the
operation or testing mode. Although batch learning may be faster for small or medium datasets
and networks, it is more prone to problems like overtraining and local minima, and hence is
inefficient In case of training large networks and for large training sets. The backpropagation
algorithm presented above is an example of offline learning.

In online or stochastic learning, network parameters are updated after the presentation of each
training example. Unlike the offline traming, the networks can modify its parameters when it is in
operation or testing mode. In the online learning scenario, only one example is given at a time
and discarded after learning. Hence it consumes less memory and fits well into more natural
learning, where user or agent receives new information at every moment and should adapt to it.
Online learning 1s a more natural approach for learning non-stationary tasks, where batch
learning needs retraining on the dynamically changing datasets. Apart from easier feasibility and
data handling the most important advantage of online learning ts its ability to adapt to changing
environments. With batch learning these subtle changes go undetected as we average the error
over several training examples. Online learning of continuous functions, using gradient based
methods on a differentiable error measure is one of the most powerful and commonly used
approaches for training non-stationary tasks in particular.

We can obtain the elementary online gradient descent algorithm by dropping the average

operation in the batch gradient descent algonthm.

Consider an infinite sequence of independent examples

(X1.y1):,(x2,¥2), - ..

The purpose of learning is to obtain a network with parameter w which can represent the rules
inherent to this data.

In online learning the ANNs modify their parameter w; at time t to wy, using next example
(Xt+1, Yi=1). But this may result in loosing the pre-learned information. To avod this, we infroduce a
loss function (I<x,y;w>) to evaluate the performance of the network with parameter w. The best

network is the network that has minimum I<x,y;,w> value.

18

We use the following parameter updating rule (Amari, 1967 and Rumelhart et al., 1986):

Wi =we-nNC(wi)o/ ow I(Xes1,Ye1,Wy),

Where 1j; 1s the learning rate that depends on t and C(wy is a positive definitive matrix that
depends on w; .

If iy =cit, the where c is a constant, w converges to w (the parameter of best network) locally
(Sompolinsky et al, 1995).

On the other hand online training suffers from the following drawbacks
e The main difficulty is the sensiivity of learning methods to the parameters. This
dependence may slowdown the learning.
* Most advanced optimization methods like conjugate gradient, rely on a fixed error surface
where in online learning task we need to deal with inherently stochastic error surface.

2.3 Genetic Algorithms

Genetic algorithms are best at solving problems for which little information is available. A genetic
algorithm is an iterative procedure that consists of a constant-size population of indwviduals, each
represented by a finite string of symbols, known as the genome. The genome encodes a possible
solution in a given problem space. This problem space, referred to as the search space,
comprises of all possible solutions to the problem at hand. Genetic algorithms use the principles
of selection and evolution to produce several solutions to a given problem. Genetic algorithms
tend to thrive in an environment in which there is a very large set of candidate solutions and in

which the search space is uneven and has many hills and valleys.

2.3.1 Biological Motivation

The search performed by GAs is based on an analogy to biological evolution. At the turn of the
century, it was unclear whether Darwin's or Lamarck's theory better explained evolution. Lamarck
believed in direct inheritance of characteristics acquired by individuals during their lifetime.
Darwin proposed that natural selection coupled with diversity could largely explain evolution.
Darwin himself belleved that Lamarckian evolution might play a small role in life, but most
Darwinians rejected Lamarckism. One potentially verifiable difference between the two theories
was that Darwinians were committed to gradualism (evolution in small, incremental steps), while
Lamarckians expected occasional rapid change. One of the most interesting characteristics of
natural evolution process is its robustness. The process is not dependent on external support and
has a very high degree of fault tolerance. Holland's aim in devising computer modeis based on
natural evolution was primarily to obtain this robustness, badly lacking in the existing systems.
Search techniques postulated in Artificial Intelligence research are largely local. Look-ahead is
expensive Without lock-ahead, chances of the search getting stuck at local maxima is high,

19

because the optimum values at the distance are not visible to the local search techniques. Pure
random search has a higher chance of avoiding local peaks, but I1s not sufficient for effective

exploration of large search spaces.

All living organisms consist of cells in each cell there is the same set of chromosomes.
Chromosomes are strings of DNA that serve as a model for the whole organism. A chromosome's
characteristic is determined by the genes. Each gene has several forms or alternatives which are
called alleles. These alleles produce differences in the set of chromosomes called the genotype.

Each genotype maps to a phenotype (the individual) with a certain fitness.
The basic notions of natural evolution are as follows:

e New children are created from existing parents. The children inherit many of the
characteristics of the parents.

o Each indidual has a set of chromosomes consisting of one or more genes. The
chromosomes (called the genotype) form the only genetically significant component for
evolution. The genes directly control the external behavior and capabilities (called the
phenotype) of the individuals. Changes in the phenctype can be realized by making
changes in the genes.

+ Natural selection works on the fitness of individuals. By the point above, fitness becomes
a direct function of an individual’s gene layout, i.e., the chromosome. Therefore, natural
selection directly controls the selection of chromosomes for propagation.

e Chromosomes are relevant only at the point of reproduction, where suitably modified
chromosomes for the children are created based on the chromosomes of the parents.

e There 1s no domain knowledge guiding the evolution process. The fitness-based rate of

survival is the only guiding factor.

GAs work on the Darwinian principle of natural selection where stronger individuals are likely the
winners in a competing environment. Darwinian model of evolution can be visualized as a
sophisticated generate and test strategy. The natural selection based on fithess slowly discards
potentially bad solutions from the population. The combining of chromosomes in the genetic
reproduction process provides an opportunity to exploit already discovered regulanities among the

different members of the population.

20

2.3.2 A Prototypical Genetic Algorithm

The basic principles of GAs were first proposed by Holland. GAs presume that potential solution
of any problem is a chromosome and can be represented by a set of parameters. These
parameters are regarded as genes of a chromosome and can be structured by a string of values.
A positive value is used to reflect the degree of fithess of the chromosomes for the problem which
would be highly related with its objective value. Although different implementations vary in their
details they typically share the same basic structure. The algorithm operates by iteratively
updating a population of chromosomes. In every generation members of the population are
evaluated according to the degree of fitness. We then select the fittest chromosomes of old
population for the next generation without any change. Other solutions or chromosomes, based
on their fitness, are used as the source for creating new offspring individuals by applying genetic

operators such as crossover and mutation.
The following is a pseudo-code for general genetic algorithm approach:

0. [Representation] Define a genetic representation of the system.

1. [Start] Generate random population of n chromosomes (suitable solutions for the problem)

2, [Fitness] Evaluate the fitness of each chromosome in the population

3. [New population] Create a new population by repeating following steps until the new
population is complete.

3.1. [Selection] Select two parent chromosomes from a population according to their fitness
(the better fitness, the bigger chance to be selected)

3.2. [Crossover] With a crossover probability, cross over the parents to form a new offspring
(children). If no crossover was performed, offspring is an exact copy of
parents.

3.3. [Mutation] With a mutation probability, mutate new offspring at each locus (position in
chromosome).

3.4. [Accepting] Place new offspring in a new population

4. [Replace] Use new generated population for a further run of algorithm

5. [Test] If the end condition is satisfied, stop, and return the best solution in current population

6. [Loop] Go to step 2

21

L Cenerate Iutial Populatian ,

Y

L Asgess Inutial Population I

P

k
I Sclect Population I

'

L Rocambme New Population l

!

L Mutate Now Fapulatian '

'

| Asgess Now Population |

Figure 2.4 Flow chart representation of the algorithm

2.3.3 Chromosome Representation

The coding of chromosome representation may vary with the type of the problem at hand.
Generally bit string encoding is used for the benefits of easy manipulation. The chromosomes or
solutions represented with bit strings can be very complex. Using Gray code to represent the
solutions works better than binary coding (Hollstein,R.B, 1971). Problems with real parameters
cannot be solved efficiently with bit strings. Hence we use real value chromosomes for faster
computation and high accuracy. The real encoding of solutions require specialized genetic
operators. Although real encoding suits the practical problems it does not guarantee good results
in all situations. Generally we use fixed length binary strings to represent real values. This

approach may result in loss of accuracy but is easier to manipulate.

22

2.3.4 Genetic Operators
The generation of successors in a genetic algorithm is determined by a set of operators that

recombine and mutate selected members of the current population. Typical genetic algonthm
operators for manipulating the chromosomes are as follows.

e Selection

e Crossover

e Mutation

i. Selection:

The Selection operator selects the fittest chromosomes in the population for reproduction based
on the rule that the fitter the chromosome, the more likely it is to be selected to reproduce.
According to Darwin's evolution theory the best chromosomes should survive and create new
offspring. There are many methods for selecting the best chromosomes, for example roulette
wheel selection, Boltzman selection, tournament selection, rank selection, and steady state
selection. Two of these approaches are explained below:

a) Roulette Wheel Selection: Parents are selected according to their fitness. The better
the chromosomes are, the more chances they have to be selected. Imagine a roulette
wheel (pie chart) where all chromosomes in the population are placed in according to
their normalized fitness. Then a random number is generated which decides the
chromosome to be selected. Chromosomes with better fitness values will be selected
more times since they occupy more space on the pie.

b) Rank Selection: Roulette wheel selection is not efficient when the fitness of
chromosomes is widely spread over a range of values. For example, if the best
chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will
have very few chances to be seiected. Rank selection first ranks the population and then
every chromosome I1s assigned new fitness values from its rankings. The worst
chromosome will have fithess 1, second worst 2 etc. and the best will have fitness N
{(number of chromosomes in population). After the new fitness allocation, all the
chromosomes have a chance to be selected But this method can lead to slower
convergence, because best chromosomes are generally similar and do not differ much

from one other.

ii. Crossover:

A crossover operator manipulates a pair of individuals, cailled parents, to produce new
individuals, called offspring, by interchanging segments from the parents’ coding. By
interchanging information between two parents, the crossover operator provides a powerful
exploration capability of the solution search space. The bit at position i in each offspring I1s copied

23

from the bit at position i in one of the two parents. The choice of which parent contributes the bit
for position i is determined by an additional string called the crossover mask.

In single point crossover, the crossover mask is constructed with contiguous 1’s followed by 0's to
complete the string This results in offspring in which the first n bits are contributed by one parent
and remaining bits by the second parent. Each time single point crossover operator is applied, the
crossover point ‘n’ is randomly chosen, and then crossover mask Is created and applied. The
mask contains ‘n’ 1’s followed by necessary number of 0’s to complete the string.

In two-point crossover, the offspring are created by substifuting intermediate segments of one
parent into the middle of the second parent string. The cross over mask is a string beginning with
ng zeros followed by contiguous string of ny 1’s, followed by necessary number of 0’s to complete
the string. For two point crossover operator, the mask is generated by randomly choosing the
integers ng and n.

Uniform crossover combines bits sampled uniformly from two parents. Here crossover mask is

generated as a random bit string with each bit chosen at random and independent of others.

iii. Mutation:

Mutation operator generates offspring from a single parent. Mutation is originally designed for
binary represented chromosomes. Mutation operator produces small random changes to the bit
string by choosing a single bit at random. As a population evolves, there is a tendency for genes
to become predominant until they have spread to all members. Without mutation, these genes will
be fixed for ever, since crossover alone cannot introduce new gene values. If the fixed value of
the gene is not the value required at the global maximum, the GA will fail to optimize properly.
Mutation is, therefore, important to “loosen up' genes which would otherwise become fixed, but if
the mutation rate is too high, the selechon pressure on genes resulting from breeding with fitter
individuals may produce bad results. A common value for the mutation rate is to change one

gene in every thousand.

iv. Objective Function:

An objective function is a measuring mechanism that is used to evaluate the status of a
chromosome. This function is generally referred to as either evaluation function or fitness
function. The notion of evaluaton function and fitness function are used interchangeably.
However, it 1s important to distinguish between the evaluation function and fitness function.
Evaluation function provides a measure of an individual's performance, where as fithess function

provides a measure of individual’s reproduction opportunities.

24

Initial strings Crossaver Mask (fspring

Single-point croxsaver:

11101001000 \ 11111000000 / 11131010101

00001210101 /, \ gooa 1001000
Dwo-point crossover:

11101081000 110018110064

I \ 00111110000 /

00001010101 /’ \ 00101000101
Uniform crassover:

11101001000 100301000100

\ 10011010011 j

00001010101 A 01101011001

Fatnt rutation: 11101001000 w 11101011000

Figure 2.5 Depicting the operators with examples (Machine Learning, Tom Mitchell)

GAs illustrate how learning can be viewed as a special case of optimization. Particularly the
learning task is to find the optimal solution according to the pre defined objective function. Like
neural networks, genetic algorithms are easy to apply to a wide range of problems The results
can be very effective on some problems. As Denker pointed out “Neural networks are the second
best way of doing just about anything” and has extended his remark with “and genetic algorithms
are the third”.

CHAPTER 3 COMBINING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS

Overview

This chapter discusses the issues concerning with combining the two powerful technologies
ANNs and GAs. This chapter gives brief account of the basic techniques of applying evolution to

ANNs and assists in understanding our proposed algorithm design concepts.

3.1 Introduction

In the recent years two areas of adaptation, namely ANNs and GAs, captured the imagination of
researchers all over the world. Both of these technologies are computational abstractions of
biological information processing systems. In general, ANNs are used as learning systems and
GAs as optimization systems ANNs are of particular interest because of their robustness, their
parallelism, and their learning abilities. GAs are very powerful general learning methods that are
based on natural evolution. However, both of these prominent technologies suffer from
shortcomings.
ANNSs are to a large extent based on

e Trial and Error

¢ Training examples or past experience

o Lack of sound design principles

Design of ANNs is critically dependent on the choice of primitives such as network architecture
and parameters. Generally architectures are manually designed for the desired application and
such a task requires lots of expertise and time on the part of the designer.

GAs are inefficient in the fine-tuning local search and may need vast amount of time to converge
to a solution. Designing a suttable fitness function for real world applications may be hard. GAs
also have weak theoretical basis, require tuning of many parameters for good performance, and
sometimes computationally expensive.

The ANNs and GAs are capable of complimenting each other to get beyond their inefficiencies.
They provide an extremely rich basis for contrast and hybridization. Hence, the combination
results in highly successful adaptive systems (Yao, 1999). Features of these hybrid networks

include adaptability to the environment, less human intervention, and more efficiency.

25

26

3.2 Combining ANNs and GAs

Researchers have combined ANNs and GAs in a number of different ways. Schaffer et al., have
noted that these combinations can be classified into one of two general types - supportive
combinations in which the ANNs and GAs are applied sequentially, and collaborative

combinations in which they are applied simultaneously.

In a supportive approach, the GAs and the ANNs are applied to two different stages of the
problem. The most common combination is to use a GA to pre-process the data
set that is used to tran an ANN. For instance, the GAs may be used to reduce the
dimensionality of the data space by eliminating redundant or unnecessary features.

In supportive combinations the GAs and ANNs are used independent of each other. Some other
possible combinations include using an ANN to select the starting population for the GAs;
using a GA to analyze the representations of an ANN; and using a GA and ANN to solve the
same problem and integrating their responses using a voting scheme (Schaffer et al.).
Alternatively, in a collaborative approach, the GAs and ANNs are integrated into a single
system in which a population of neural networks is evolved. In other words, the goal of
the system is to find the optimal neural network solution. Such collaborative approaches are
possible since neural network learning algorithms and genetic algorithms are search algorithms.
A neural network learning rule performs a highly constrained search to optimize the
network’s structure, while a genetic algorithm performs a very general population-based
search to find an optimally fit gene. Both are examples of biased search techniques, and “any
algonthm that employs a bias to guide its future samples can be mislead in a search
space with the right structure. There 1s always an Achilles heal.” (Schaffer et al) The primary
reason researchers have looked at integrating ANNs and GAs is the belief that they may

compensate for each other’s search weaknesses.
3.3 Evolutionary Design of Neural Networks

We can introduce evolution into ANNs primarily in three different levels: connection weights;
architectures; and learning rules as noted by Yao. The evolution of connection weights
introduces an adaptive and global approach to training, especially in the reinforcement
learning and recurrent network iearning paradigm where gradient-based training algorithms
often experience great difficulties. The evolution of architectures enables ANNs to adapt
their topologies to different tasks without human intervention and thus provides an
approach to automatic ANN design as both ANN connection weights and structures can be

27

evolved. The evolution of learning rules can be regarded as a process of “learning to learn” in
ANNs where the adaptation of learning rules 1s achieved through evolution. It can also be

regarded as an adaptive process of automatic discovery of novel learning rules.

3.3.1 Evolution of Connection Weights:
This 1s the basic level where we can incorporate genetic operators into neural networks.
Generally, the weights of the connections are modified 1n order to optimize evaluation function
such as mean square error To formulate the training process as the evolution of connection
weights, we require two phases.

o Representation of connection weights

¢ Evolutionary process to apply

Genetic operators are efficient and easy to use with binary strings. The most important stage in
evolution of weights is to decide on a suitable representation for connection weights, i.e. either we
represent them as binary strings or not In the second phase we choose the evolutionary process
simulated by a genetic algorithm, in which search operators such as crossover and mutation
have tobe decided in conjunction with the representation scheme. The training performance

depends on the representation scheme we choose.

3.3.1.1 Binary Representation:
Genetic algorithms, in general, use binary strings to encode the population of solutions which are
also called chromosomes. In the binary representation scheme, each connection weight is
represented by a number of bits with certain iength. An ANN is encoded by concatenation of all
the connection weights of the network in the chromosome. A heuristic for the order of the
concatenation of connection weights in a chromosome is to append all the binary connection
weights coming from input nodes to each hidden neuron in the hidden layer from left to right and
append all binary connection weights coming from hidden nodes to each output node in the
output layer from left to write. Hidden nodes in ANNs are In essence feature extractors and
detectors. The above heuristic is based on the fact that separating connection weights from
different input nodes to the same hidden node, apart in the chromosome representation This
would increase the difficulty of constructing useful feature detectors because these feature
detectors, found during the evolutionary process, might be destroyed by crossover.

Figure 3.1.a and Figure 3.1.b provide an example for the binary representation of an ANN
whose architecture is predefined. Each connection weight in the ANN is represented by 4 bits, the
whole ANN is represented by 24 bits where weight 0000 indicates no connection between two

nodes.

28

Node 1 Node 2 0100 1010 0010 0000 0111 0011

a b

Figure 3.1.a: An ANN with connection weights Figure 3.1.b. Binary representation of connection weights

Binary encoding has its advantages and disadvantages

Advantages:

The advantages of binary representation are simplicity of design, generality of representation,
and straightforward application of genetic operators such as crossover and mutation. It does not
need any complex or taillored operators. Also binary representation facilitates digital hardware
implementation of ANNs as weights are represented with 0’'s and 1's with limited precision in the
hardware.

Disadvantages:

Real world applications generally need real number representation of weights. But some
combinations of real valued connection weights cannot be approximated with sufficient
accuracy by binary values. If too many bits are used, chromosomes representing large ANNs
will become extremely long and the evolution inturn will become very inefficient. If too few
bits are used to represent each connection weight, training might fail because some combinations
of real-valued connection weights cannot be approximated with sufficient accuracy by discrete
values. So a tradeoff between representation precision and the length of chromosome often

has to be made.

29

Node 1 0010 0000 0100 1010 0011 0111

10

a

Figure 3.2.a: An ANN with connection weights Figure 3.2.b: Binary representation of connection weights

An important concern for the evolutionary approach to neural network is the competing
conventions problem. It is also called permutation problem. It is caused by the many-to-one
mapping from the representation(genotype) to the actual ANN(phenotype) since two ANNs that
order their hidden nodes differently in their chromosomes will still be equivalent functionally.
For example, ANNs shown in Figure 3.1.a and Figure 3.2.a are functionally equivalent but are
represented by different chromosomes as shown in Figure 3.1.b and Figure 3.2.b. The
permutation problem makes crossover operator very inefficient and ineffective in producing good

offspring.

3.3.1.2 Real Number Representation:

Real numbers represent the reality better than binary numbers. Figure 3.1.a can be represented
by real numbers as the following real vector.

{4.0, 10.0, 2.0, 0.0, 7.0, 3.0}.

As connection weights are represented by real numbers, each individual in an evolving
population will be a real vector. Traditional genetic operators no longer work with this

representation. Real representation needs more complex genetic operators to be designed.

Advantages:

Real values are suitable for most of the problems and can represent values with great accuracy.
Evolutionary Algorithms (EAs), which are different from Genetic Algorithms in their primary
operator being mutation rather than crossover, work well with real number representation. When
used with EAs, this representation tends to reduce the negative impact of permutation problem.

30

Disadvantages:
As traditional operators are no longer applicable on real valued representation, we need to define
special operators. Designing these operators is no easy task. Real valued representation also

suffers from permutation problem.

A typical cycle of the evolution of connection weights is shown in the following algorithm.

1. Decode each individual genotype in the current generation into a
set of connection weights and construct corresponding ANNs with
the weights.

2. Evaluate each ANN Dby computing its total mean square error
between actual and desired outputs, or use any general error
function. The fitness of an individual is determined by the
error. The optimal mapping from error to the fitness is problem
dependent.

3. Seléét the parents for reproduction based on their fitness.

4. Apply genetic operators such as crossover (recombination) and/or
mutation to parents to generate offspring and then selection on

these offspring to form the next generation.

Repeat the above steps until the fitness is greater than a predefined value or the population has

converged (Yao, 1999).

3.3.2 Evolution of Architectures

For a long time the task of designing the architecture of a neural network has been manual and
required expertise in the field. Automating design of ANN architectures for applications is always
an important issue. The design of neural networks architectures does not have any mathematical
basis; hence architecture design requires a tedious trial and error method. There were several
attempts, such as constructive and destructive algorithms, to automate the designing process.
However, they were only partially successful.

Design of the optimal architecture for an ANN can be formulated as a search problem in
the architecture space where each point represents an architecture. Given some performance
(optimality) criteria, e.g., lowest training error, lowest network complexity, etc., about
architectures, the performance level of all architectures forms a discrete surface in the
space. The optimal architecture design is equivalent to finding the highest point on this surface.
This kind of vast search space is suitable for applying GAs. Hence evolution of architectures finds

near optimal architecture given sufficient time.

31

As with the evolution of weights, there are two major evolution phases of architectures.
e The representation or encoding of the network

e Genetic operators used to evolve the architecture “

There are several encoding schemes based on how much information we want to incorporate into

the representation.

3.3.2.1 Direct Encoding Scheme:

In this scheme all the details about the architecture, i.e. every connection and node of an
architecture, can be incorporated into the chromosome. In this scheme each connection of
architecture is directly specified by its binary representation For example, an matrix can
represent an ANN architecture with N nodes, where indicates presence or absence of the
connection from node i to node j . We can use to indicate a connection and to indicate no

connection.

Each matrix ‘C’ has a direct one-to-one mapping to the corresponding ANN
architecture. The binary string representing an architecture is the concatenation of rows
{or columns) of the matrix. Constrainis on architectures being explored can easily be
incorporated into such a representation scheme by imposing constraints on the matrix, e.g.
a feedforward ANN will have nonzero entries onlyin the upper-right triangle of the matrix.
Figure 3.3 and Figure 3 4 are two examples of the direct encoding scheme of ANN architectures.
It is obvious that such an encoding scheme can handle both feedforward and recurrent

ANNSs.

5
/'0 0110 \
3 4
0 01 01
0110101011
0 0 0 01
0 0 0 01
1 2 k() 00 00 J
a b ¢

Figure 3.3: An example of the direct encoding of a feed forward ANN (a), (b), and (¢) show the architecture, 1ts
connectivity matrix, and its bmary string representation, respectively

32

5
) /00110\
00100 [00110 00100 10001 00001 01000]
1000 1
0000 1
1 2 \ 01000)
a b c

Figure 3 4. An example of the direct encoding of arecurrent ANN. (a), (b), and (¢) show the architecture,
1ts connectivity matrix, and 1ts binary string representation, respectively.

The direct encoding is quite straightforward to implement. it is very suitable for the precise
and fine tuned search of a compact ANN architecture, since a single connection can be
added or removed from the ANN easily. It may facilitate rapid generation and optimization of
tightly pruned new designs. The major disadvantage of this encoding scheme Is scalability. A
large neural network would result in a very large string, hence making the evolutionary process

inefficient.

3.3.2.2 Indirect Encoding:

To overcome the scalability problem of direct encoding, indirect encoding scheme is commonly
used. In the indirect encoding scheme we encode only important characteristics of architecture,
rather than encoding all details, into the chromosome. The details about each connection in an
ANN is either predefined according to prior knowledge or specified by a set of deterministic
developmental rules. The indirect encoding scheme can produce more compact genotype
representation of ANN architectures, but it may not be very good at finding a compact ANN with
good generalization ability. The following are few indirect encoding schemes and their details

i. Parametric Indirect Encoding Scheme:

ANN architectures may be specified by a set of parameters such as the number of hidden
layers, the number of hidden nodes in each layer, the number of connections between two layers,
etc. These parameters can be encoded in various forms in a chromosome. This scheme is
proposed and developed by Harp et al.

Although this representation considerably reduces the length of the binary string, the GAs can

33

only search a subset of the whole search space. Hence it is suitable for the problems where we

know what kind of architectures we are trying to find.

ii. Developmental Rule Representation Scheme:

In this method, we encode developmental rules which are later used to build architecture into
chromosomes. This scheme results in even more compact genotype representation and also
increases the efficiency of crossover operator as it saves the details of promising architectures.

A developmental rule is usually described by a recursive equation or a generation rule similar to a
production rule in a production system with a left-hand side (LHS) and a right-hand side (RHS).
The connectivity pattern of the architecture in the form of a matrix is constructed from a basis, i.e.
a single-element matrix, by repetitively applying suitable developmental rules to non-terminal
elements in the current matrix until the matrix contains only terminal elements which indicate
the presence or absence of a connection, that is, until a connectivity pattern is fully specified.

The following algorithm by Yao, represents evolutionary development of learning rules

1. Decode each individual genotype in the current generation into
architecture. If the indirect encoding scheme 1s used, further
detail of architecture is specified by some developmental rules
or a training process.

2. Train each ANN with the decoded architecture by a predefined
learning rule, starting from different sets of random initial
weights and if any, learning parameters.

3. Calculate the fitness of each individual (encoded architecture)
according to the above training result and other performance
criteria such as complexity of architecture.

4. Select the parents for reproduction based on their fitness.

5. Apply genetic operators such as crossover (recombination) and/or
mutation to parents to generate offspring and then selection on
these offspring to form the next generation.

Repeat the above steps until the fitness is greater than a predefined value or the population has

converged.

3.3.3 Simultaneous Evolution of Architectures and Connection Weights

The above evolutionary methods either keep architecture intact or fine tune the weights after near
optimal architecture is found. Both these methods introduce noise and generate less efficient
systems. One major problem with the evolution of architectures without evolution of connection
weights is noisy fithess evaluation as phenotype's (i.e., an ANN with a full set of weights)
fitness was used to approximate its genotype's (i.e., an ANN without any weight information)

34

fitness.
There are two major sources of noise.
¢ Due to the random initialization of weights, the same genotype (the ANN without any
weight information) may have quite different fitness.
o Different training algorithms may produce different training results even from the same

set of initial weights.

Hence evolution of architectures without any weight information has difficulties in evaluating
fitness accurately. As a result, the evolution would be very inefficient. To alleviate these problems
and to build more efficient systems we need to evolve the connection weights and architectures

simultaneously.

3.3.4 Evolution of Learning Rules

An ANN fraining algonthm may vyield different performance when applied to different
architectures. The design of training algorithms, more fundamentally the learning rules used to
adjust connection weights, depends on the type of architectures under investigation. Different
vanants of the Hebbian learning rule have been proposed to deal with different architectures.
However, designing an optimal learning rule becomes very difficult when there is lttle prior
knowledge about the ANNs architecture, which is often the case in practice. It is desirable
to develop an automatic and systematic way to adapt the learning rule to an architecture and
the task to be performed. Often evolution of learning rules is application specific i.e. it is almost
impossible to find a general rule that can be applied to all structures.

what is needed from an ANN is its ability to adjust its learning rule adaptively according to its
architecture and the task to be performed. In other words, an ANN should learn its
learning rule dynamically rather than have it designed and fixed manually.

Unlike the evolution of connection weights and architectures which only deal with static
objects in an ANN, i.e. weights and architectures, the evolution of learning rules has to
work on the dynamic behavior of an ANN. The key issue here is how to encode the dynamic
behavior of alearning rule into static chromosomes. Trying to develop a universal representation
scheme which can specify any kind of dynamic behaviors is impractical, since it requires a very
long computation time to search such a large learning rule space. So to keep the
representations simple with a short search space, we impose limitations on the type of dynamic
behaviors.

Two basic assumptions which have often been made on learning rules are:

1. Weight updating depends only on local information such as the activation of the

input node, the activation of the output node, the current connection weight, etc.,

2. The learning rule is the same for all connections in an ANN. A learning rule is assumed to

be a linear function of these local variables and their products.

35

The following illustrate the basic methods of evolving learning rules.

3.3.4.1 Developing Algorithmic Parameters:

The adaptive adjustment of back propagation (BP) parameters (such as the leaming rate and
momentum) through evolution could be considered as the first attempt to the evolution of learning
rules. Harp ef al encoded BP's parameters in chromosomes together with ANN architecture. This
evolutionary approach is different from the non-evolutionary approach. Because the simultaneous
evolution of both algorithmic parameters and architectures facilitates exploration of interactions
between the learning algorithm and architectures such that a near optimal combination of BP with

an architecture can be found.

3.3.4.2 Developing Learning Rules:
The above method serves as the fundamental development of learning rules. There are three
major issues involved in the evolution of learning rules:

e Determination of a subset of terms described

e Representation of their real-valued coefficients as chromosomes

e The EA used to evolve these chromosomes.

There is a lot of research going on today to develop this method, since this stands for the true
evolution of learning rules. Adapting a learning rule through evolution is expected to enhance

ANN adaptivity greatly in a dynamic environment.
The following algorithm by Yao represents evolutionary development of learning rules

1. Decode each individual genotype in the current generation into a
learning rule.

2. Construct a set of ANNs with randomly generated architectures and
initial connection weights, and train them using the decoded
learning rule.

3. Calculate the fitness of each individual (encoded learning rule)
according to the above training result.

4. Select the parents for reproduction based on their fitness.

5. Apply genetic operators such as crossover (recombination) and/or
mutation to parents to generate offspring and then selection on

these offspring to form the next generation.

36

Repeat the above steps until the fitness is greater than a predefined value or the population has

converged.

As Genetic Algorithms tend to be computationally intensive, we need to use them with prior
knowledge or with some heuristic to assist the search. With the increasing power of parallel
computers, the evolution of large ANNs becomes feasible. Not only evolution can discover
possible new ANN architectures and learning rules, but it also offers a way to model the

creative process as a result of ANN adaptation to a dynamic environment.

CHAPTER 4 RELATED RESEARCH

Overview

There has been a lot of research 1n hybrid algorithms and online learning. This chapter gives

details about the research done in the relative fields.

4.1 Evolutionary Design of Neural Networks

4.1.1 EPNet

EPNet (Yao and Liu, 1996) describes an evolutionary system for evolving feedforward ANNs
Unlike the other evolutionary algorithms, it tries to evolve the behavior of ANNs. EPNet combines
architectural evolution with modification of weights. This simultaneous evolution of weights and
architecture reduce the noise in the fithess evaluations.

EPNet is based on evolutionary programming; hence mutation is its only operator. EPNet
encourages parsimony of evolved ANNs by attempting different mutations sequentially only if

they are needed.

A number of techniques have been adopted in EPNet to maintain a close behavior between
parents and their offspring. Partial training is always employed after each architectural mutation in
order to reduce the behavioral disruption to an individual. Each individual in a population evolved
by EPNet is an ANN with weights. The evolution simulated by EPNet is closer to Lamarckian than

Darwinian It relies on five mutation operators to produce better offspring. The five mutations are:

e Hybrid training
» Node deletion
+ Connection deletion
¢ Connection addition
+ Node addition

EPNet starts with a population of networks, sorted on the fitness cnteria, in the initial partial
training. Then the five mutations are applied sequentially. If one mutation leads to a better
offspring, it Is regarded as successful. No further mutations are applied, otherwise, next mutation

37

38

is attempted. A hidden node is not added to existing architecture at random, but through splitting
an existing node. This process ensures the compact architectures without loosing their ability to

generalize.

EPNet uses direct encoding scheme and works only for feedforward networks. Selection
mechanism used in EPNet is based on the error generated. Only if other mutations fail to improve
the fitness hidden node deletidn, connection deletion, and node addition are performed in the
proposed order. After each stage a partial training is applied and ANNs are tested for the
success. Only on failure of current stage further stages are applied, otherwise training skips the
other mutation stages for the next step. The following flowchart explains EPNET training process.

of ANNs

tnitial partial traini

Rank-based selection

Mutations

\ v

Obtain the new stop?

§1E8
Funher tulning

Figure 4.1: The mam structure of EPNet

39

Results:

The data sets used for the experiments were partitioned Into three sets for training, validation,
and testing.

The EPNet was tested on 4 medical problems

Breast cancer: data set contained 349 training, 175 validation, and 175 testing examples
Diabetes: data set contained 384 training, 192 validation, and 192 testing examples
Heart disease: data set contained 134 training, 68 validation, and 68 testing examples
Thyroid: data set contained 2518 training, 1254 validation, and 3428 testing examples

N =

The results showed that evolved ANNs have very small sizes as well as low error rates.

Our algorithm is similar to EPNet in the following areas.
e Supervised training approach is considered to train the ANNs
* Avariation of backpropagation i1s used as training algorithm

¢ Evolution of connection weights and architectures carried out simultaneously

Our algorithm differs in several ways from EPNet algorithm.
e EPNet does not use crossover operator
+ The networks can only be trained offline in EPNet
+» EPNet cannot be applied to recurrent or feedback networks

+ Evolution of learning rules is not implemented in EPNet

4.1.2 NEAT (Neuro Evolution of Augmenting Topologies)

NEAT (Kenneth Stanley et al, 2000) proposes a new design for simultaneous architecture and
weight evolutions. In the NEAT each Genome represents network connectivity and contains
connection genes and node genes. A new concept of innovation number 1s introduced to avoid
the competing conventions problem with crossover operator. Each connection gene 1s given an
innovation number which is unique for the whole population. Mutation in NEAT can change both

connection weights and network structure.

NEAT works by starting with a minimal structured network and incrementally adding neurons
and/or connections. They claim the resulting architecture to be the optimal structure. NEAT uses

four genetic operators in topology evoiution.

40

Genetic operators used in NEAT algorithm are:
e Mutation of connection weights.

e Mutation by adding neurons
e Mutation by adding connections

e Crossover

Using a global innovation number, NEAT can track the historical origins with very litle
computation. This algonthm offers a solution, through historical markings, to the competing
conventions problem in a population of diverse topologies. NEAT uses speciation to protect

slowly maturing Genomes.

Results:

NEAT was tested with XOR problem and pole balancing task.

For XOR problem on 100 runs, the NEAT system finds a solution structure in an average of 32
generations. NEAT was able to evolve near optimal network for the task.

In the pole balancing task two poles are connected to a moving cart by a hinge and the neural
network must apply force to the cart to keep the poles balanced for as long as possible without
going beyond the boundaries of the track.

The criterion for success was to balance the poles for 100,000 time units. Results show that
NEAT took fewest evaluations to complete the task. The standard deviation for the NEAT
evaluations is 2704. The performance was far better than most of the existing evolutionary

algorithms.

Our algorithm has some common features with NEAT algornthm.
¢ The unigue numbering scheme, called innovation number in NEAT, is used to avoid
competing conventions problem N

+ Node based direct encoding scheme is used to encode the ANNs

Our algorithm differs from NEAT in several characteristics.
e Qur algorithm provides an online learning mechanism which is not present in NEAT
 NEAT algonthm can evolve weights and architectures simultaneously but does not evolve

learning rules. Our algorithm evolves the learning rules

While EPNet claims that Lamarckian method works best, the NEAT supports Baldwin effect.

41

4.2 Online Adaptive Algorithms

Learning may be viewed as an optimization of the internal parameters. This optimization is
carried out using a learning rule, which depends on the application. There are two learning
paradigms.

1) Offline Learning

2) Online Learning

In Offline Learning, the network parameters are updated after presenting the entire training set.
This is repeated several times until all the characteristics of the training set are incorporated in
the network.

In Online Learning, the network parameters are updated for each training pattern. The most
important advantage of online learning is its ability to adapt to changing environment.

It is also shown that online algorithms are asymptotically as effective as Offline Learning (Robbins
and Monro, 1951)

4.2.1 Online Learning for Drifting Environments

An environment that changes over time and is dynamic is called a drifting environment. Klans et
al proposed a pure neural network online algorithm that can learn to adopt. They employed
supervised approach and used Stochastic Gradient Algorithm with an adaptive learning rate. The
idea of adaptively changing the learning rate is called learning of learning rule (Somplinskey et al
1995). Klans et al extended the adaptive learning rate idea to differential loss functions. In their
approach when the error is large then learning rate takes large value and if error is small then
learning rate also decreases. They use Hessian matrix of the expected loss function in their
algorithm. This algorithm applies to feedforward networks and provides a learning strategy where

continuous functions are to be learned when no explicit loss function is available.

Results:
Their experiments showed that they could separate original mixed and unmixed artificial signals

in less than 500 iterations. Good quality results were observed from 200 iterations only.

Our algorithm is similar to this algorithm (Klans et al) in the following
¢ Both of the algorithms try to develop neural networks to adapt to dynamic environments

¢ Both algorithms use a variation of back propagation to train neural networks online

42

Our algorithm differs from this algonthm (Klans et al) in several ways, they are:
¢ Their algorithm uses Hessian functions to approximate
¢ Unlike our algorithm, their algorithm doesn’t evolve the architecture

s Therr algonthm does not provide offline learning
4.3 Hybrid Online Adaptive Algorithm

4.3.1 Evolution of Learning: An Experiment in Genetic Connectionism

David J Chalmers (1990) proposed a basic framework for evolution of learning in neural
networks. Chalmers proposed that a Genome encodes the dynamic properties of weight space
dynamics of connectionist system. Here a number of networks are created and placed in different
environments for specified amounts of time This helps in determining the fitness of a learning
procedure. Each network’s final stage is determined by its interaction with the learning procedure
and the environment. The fitness of the network is determined by how well it has adapted to the
environment in the specified time period. The algorithm claims that from a population of
essentially ineffective learning procedures, it can produce learning rules that enable better
adoption. This algorithm uses supervised approach because of its simplicity. The evolution of
connection weights and architectures is not pursued here. Hence a single layer of fixed and fully
connected network is used in the algorithm. The changes to the weight of any connection should
only be dependent on the information local to that connection. The algonthm makes use of ten
variables and one scale variable to evolve learning rules. The general rule uses these ten
variables as coefficients of network and algorithmic parameters and the scale variable to increase

or decrease the amount of change. All vaniables are represented by fixed number of binary digits.

Results:
Chalmers conducted several experiments over 8 tasks. For each task, a network was presented
with a number of training examples each consisting of an input pattern and associated output

pattern. The results show fitness improvement from 60% to 90% after 1000 generations.

Our algonthm shares some common features with this algorithm (Chalmers, 1990)
+ Both of these algorithms use a general linear equation to evolve learning rules
o Both of the algonthms use supervised learning procedure

e Both of the algorithms provide learning for evolved networks

43

Our algorithm has several features that are different from Chalmers’ algorithm
¢ Unlike this algorithm, our algorithm implements evolution of architectures
e Chalmers algorithm uses single layer fixed and fully connected networks, whereas our
algorithm uses dynamic architectures
e Chalmer’s algorithm is designed only for feed-forward networks
e The learning rule variables are represented with binary values in Chalmers proposed

algorithm. Our algorithm uses real variables in learning rule evolution

4.3.2 Learning to Adapt to Changing Environments in Evolving ANN

From the Institute of Psychology-Rome, Stefano Nolfi et al (1996) proposed their methodology
“Learning to adapt to changing environments in evolving ANNs”. They used a genetic algorithm to
simulate the evolution of a population of neural networks each controlling the behavior of a small
mobile robot that must explore an environment surrounded by walls. The environment changes
from one generation to another. Their methodology was proposed to overcome the limitations of
the simulated aquatic environment set up by Todd-Miller in 1991. Todd and Miller (1991)
developed creatures that live in one of the two patches in the environment. Stefano Nolfi et al
proposed the evolutionary method to develop a creature, which is able to reach a target area
containing food in its environment. The creature should explore the arena as efficiently as
possible while avoiding collisions with wall. They have used a feedforward neural network with
four input sensors in the input layer, which are connected to four output units in the output layer.
The neural network has two distinct sub-networks that share the same inputs but have separate
outputs. The first network determines the creatures moving actions while the second network
determines updating of connection weights of the standard network. The teaching network’s

connection weights never change.

Results:

Experiments began with 100 random networks with random weights for standard and teaching
sub-networks. Each generation lives for 10 epochs, each epoch containing 500 input/output
cycles. The results proved that the networks that learn achieve higher fitness than those that do

not learn.

Our algonithm is similar to this algorithm in some aspects. They are:
¢ Both incorporate learning after evolution
« Both algorithms address architectural evolutions

o Both algorithms are applicable to fast changing environments

44

Our algorithm differs considerably from this algorithm (Stefano Nolfi et al, 1996) in the following
areas.

o |t { Stefano Nolfi et al, 1996) addresses only feedforward neural networks

e ltdoes not use hidden layers

¢ It does not evolve learning rules

* It does not employ simultaneous evolution of structure and weights

4.3.3 Evolutionary Algorithm for Online Learning

Magoulus et al (2001) have proposed a novel hybrid evolutionary approach for online training. As
classic batch training algorithms cannot handle non-stationary data, the need for online learning
arises. Their Lamarckian inspired hybrid evolutionary algorithm basically consists of two stages.
In the first stage, they provide online training using stochastic gradient descent with adaptive step
size. In the second stage, differential evolution strategies proposed by R.storn et al (1997) are
used as online retraining. The second stage assumes that the SGD in the first stage has
produced a good solution. The second stage directly incorporates the solutions produced in the
first stage into the genes of off-spring. They have employed a memory based calculation of step
size, in the first stage, which considers the previous information to adapt the step size for the next
pattern presentation. They claim that the SGD algorithm has low storage requirements and needs
less computation. In the second stage, the DE strategy is used for re-training. They perform
evolutionary operations on the weight vector. The primary DE operator used is mutation. For each
weight vector w®,, a new mutant vector is generator using the following relation:

Mutant Vector = WP + & (Wpest-W";) + E(W "1-w),
Where Whest is the best member of previous generation, £>0 is a real parameter called mutation

constant, W 1and w "> are two random weight vectors.

Stage 1 - “Learning”

%, n° and the meta-stepsize K.

Step Ca: Initialize the weights w

Step la: Repeat for each pattern p.

Step 2a :Calculate E(wP?) and then rE(wP).

Step 3a: Update the weights:
WPl = wP-nPrE (wP) .

Step 4a: Calculate the stepsize to be used with the next pattern
p + 1: "t =P + K rE(wP?), rE(wP)

Step 5a: Until the termination condition is met.

Step 6a: Return the final weights wP'! to the Stage 2.

Stage 2 - “Evolution”

Step Ob: Initialize the DE population in the neighborhood of w

Step 1lb: Repeat for each input pattern p.
Step 2b: For 1 = 1 to NP

Step 3b: MUTATION (wP,) - Mutant Vector.
Step 4b: CROSSOVER (Mutant Vector) — Trial Vector.
Step 5b: If E(Trial Vector) 6 E(wP,), accept Trial Vector for

the next generation.
Step 6b: EndFor

Step 7b: Until the termination condition is met.

Algorithm 4.1: Generic Model of the Hybrid On-line Training Algorithm

45

To further increase the diversity, they used crossover operator. Based on a crossover constant

they decide whether to select a bit or not into the target vector.

Results:
They have tested the algonthm with two experiments. The first experiment was to frain an ANN

online to classify among 12 texture images. The results show that it performed better than batch

propagation. The second experiment was to train an ANN online to detect suspicious regions in

colonoscopic video sequences. The algorithm provided better results over algorithm without

evolution.

Our algorthm s similar to this hybnd algorithm (Magoulus et al, 2001) in some aspects. They are:

Both have two training stages namely, offline and online
[n both algorithms evolution makes use of mutation and crossover

Both can be used in slowly varying environments

Our algorithm differs in several ways from this algorithm (Magoulus et al, 2001)

In this algonthm the architecture is fixed and they only evolve weight vectors

In this algorithm iearning is employed only once and only evolution 1s repeated until

terminating criterion 1s met

It does not use speciation and cannot have global online learning

46

4.4 Online Interactive Learning

Adrian Agogino et al (1999) have built a system based on online neuro evolution. There are oniy
few systems that are capable of online evolution. Agogino et al have proposed to evolve
feedforward ANNs fo create the agents that improve their performance through real time
interaction. Typically the system has two stages:

1. Offline evolution

2. Online evolution

This approach is demonstrated in a game world where ANN controlled agents play against
humans. Through offline evolution the agents are trained for various conflicting goais. Then the

prepared population is allowed to evolve online.

Each agent has a feedforward ANN as its brain. The outputs from this network guide the agent in
the given environment at each time step. The inputs to the network are collected through eight
sensors. Four of them provide enemy information and the other four supply mine location

information.

Figure 4.2 (A) Peon’s neural net with mputs and outputs. The sensor mnformation 1s sent to the mput layer of
the feedforward network. The two output nodes indicate where the peon should go 1n terms of latitude and longitude
distance from the current location. (B) Configuration of a peon's eyes Four of the eyes return the average distances to

gold mmes in each quadrant and the other four eyes return the average distance of the enemy.

When an agent is killed it is replaced with either a best fit agent or an agent from crossover
operation on two better fit agents.

The agents are ranked on their rate of productivity based on the following formula:

Fitness= (Mines found* V-C)/ Age,

Where V is a constant, which is awarded for finding a mine.

C is a constant that indicates the initial cost of being born.

This measure rewards finding mines quickly, but also awards longevity.

100

®0

Average Over All Scenarios

47

Evolving Population Starting From Scratch
vs. Pre-evolved Population

120
y e ——
£ e
: d 1 —Online Onfy
_E 4z 4 Qffline
é a5l
2 e
B 8 8 § B § %
- - - ™~]
Game Playing Time | - seconds)
Scenario 5 and 17
|:c —
0
é 50 — 0% + Online
g 40 OMine
7

- w ~ O 7 8 @ o 9 @

- & AN ON

Game Playing Time (- seconds)

D

(A) Average performance over all scenarios of a population that is allowed to evolve online compared to

one that is not (Offline). (B) A population started with random weights that evolves online will outperform the

population trained offline when given enough time.

(C) Even after the population has adapted to Scenario 3, it has no trouble adapting to a sudden change to Scenario 11.
(D) The improvement is even clearer when the new scenario is the novel Scenario 17.

£
x 20 Off « ...Ntrel
=
% 70 —— Offline
& e
0 t $
v 2 ‘676=|DII‘:‘I14
Game Playing Time (- seconds)
Scenario 5 and 11
100
i 80
i £0 Cf + Online
% 40 ——Qffline
é 20
D
Game nla;ung ‘rime (= ur.ondal
Figure 4.3 :
Results:

They have tested the algorithm with 16 different game scenarios. They evaluated the

performance of offline and online evolution combined versus offline evolution. The results show

that online evolution significantly improved the performance. When tested with a new scenario,

online evolution performed better than offline evolution. They even claim that given sufficient time,

online evolution can outperform offline evolution. They have suggested that online evolution can

be used in the domains such as search engines, where evolution was not considered before.

There are some similarities between this algorithm and our algorithm:

» Both aim to achieve adaptation to dynamic environments

» Both algorithms try to fine tune the offline evolved networks in the environment

48

Our algorithm differs from this algorithm in several ways, they are:

>

In this algorithm, online evolution is used to adapt to the change in the environment,
whereas our algorithm uses ANN learning algorithms for the same purpose.

This algorithm considers only feedforward networks, whereas our algonthm can handle
recurrent networks.

[n this algorithm, architectural evolution 1s not implemented.

In this algorithm, the role of ANNSs is very limited.

CHAPTER 5 HYBRID LEARNING ALGORITHM

Overview

This chapter presents a Hybrid learning system for drifting environments This chapter discusses
the details of the core algorithm. The approach presented in this chapter improves the

performance of neural networks in drifting environments.

5.1 Introduction

Evolution and learning are the most fundamental processes of adaptation. Evolution itself has an
ability to adapt to the internal characteristics or regularities of an environment and this area is well
explored with successful results (EPNet by Yao 1999, NEAT by Kenneth Stanley et al) Hence
evolution serves as the primary adaptive process. From an evolutionary point of view, learning

has at least three adaptive functions (Miller & Todd, 1990)

» [t can help and guide evolution

o It allows adaptation to the environmental changes, which are too fast for the evolution to
track.

o It helps to overcome the size limitations of genotype by exploiting the regularities of the

environment.

Hence learning helps the agent to partially control the input from the environment by developing
the agents’ behavior. Evolution can only optimize the performance of the agents for the next
generation. But when an environment changes from one generation to another generation, the
agents may not perform well in the present environment as optimization is made using the
performance in the last generation’s environment that is different from the present. By being
sensitive to environmental conditions that could not be anticipated by evolution, learning can

incorporate them in the agents’ behavior (Stefano Nolfi et. al, 1995).

When combined with evolution, learning can use the regularities of the environment to build more
complex phenotypes. Hence, learning is considered as a secondary adaptation process that

49

50

provides a continuous active development due to its sensitivity to the dynamics of the

environment
5.2 The framework of the algorithm

This algorithm is inspired by the ways living organisms evolve. Over the generations, living
organisms employed mutations and crossover to produce better offspring. This process of
Darwinian principle is effectively used in the existing algonthms for better resuits. But in real life
the environment surrounding the generations is not static, and if the organisms do not adapt to
the current changes in their lifetime they will be extinct in a few generations. The organisms not
only change from generation to generation but learn to adapt to the changing surroundings In
their lifetime. Lamarckian learning proposes the similar idea that the organisms pass on the
learned knowledge, over their lifetime, to the next generations that in turn produce better
offspring. For a static environment, we may choose to exclude the lifelong learning since its
benefits are limited and can also be achieved without including lifelong learning. But this is not
true for dnfting environments. To survive in dynamic environments, the artificial intelligence

agents need to learn in their lifetime.

Adaptation is defined (Nikola Kasbov, 2002) as:
1. A set of parameters that are subject to change during the interaction with the
environment.
An incoming continuous flow of information.

3. A goal that is applied to optimize the software performance over time.

For a system to adapt to an environment, it should have the following components.
1. Data acquisition
2. Mechanism to provide general and adaptable frame work.

3. Knowledge acquisition.

As human beings are provided with sensors like eyes and ears to sense the surroundings, in our
system, agents are equipped with sensors to acquire required information from the environment.
Since evolution of human beings depended on both crossover and mutation of their
chromosomes, we use a general framework that includes Genetic Algorithms (Gas) due to the

51

availability of mutation and crossover operators. GAs are used to create a population of networks
for every generation. The GA algorithm is influenced by the following issues:

a) Encoding

b) Population size

c) Genetic operators

d) Diversity

The knowledge is acquired through Genetic algorithms and ANN learning methods. GAs can
acquire knowledge over generations and produce a collection of better-fit networks. When human
beings are born, they are born with some knowledge encoded in their chromosomes. Although
this knowledge provides basic abilities, in this ever changing world human beings have to learn in
their lifetime to live better in the changing surroundings. For life long learning humans have to
collect the signals or inputs from the surroundings and process them in the brain using their
accumulated knowledge or experience to gather new experience from the resultant actions. We
have used ANNs as agents’ brains and by changing the dynamics of these ANNs with the help of

learning ruie, we make the agents learn to adapt to the environment.

When humans migrate to an unknown place, they use their basic knowledge to understand the
surroundings and gather knowledge to adapt. This newly acquired knowiedge is passed to their
offspring either in written or oral form. This helps the offspring to adapt to the new surroundings
quickly and efficiently. This initial knowledge is collected by placing some basic agents in a
simulated environment that resembles actual environments. We let the evolution work on the
agents over a number of generations recording the inputs from the environment, to the better
performing agents, and their corresponding output values. To make use of these facts we divided
our algorithm into two stages called offline and online. Both of these stages use the initial
knowledge. The offline stage plays the role of first training the offspring and is used to provide a
better platform for online stage. Also it attempts to accelerate the online process. Both stages
combine evolution with learning but in different approaches. The Offline stage uses the
coliaborative approach where the learning of GAs and ANNSs is integrated into a single system.
The online stage uses the supportive approach where GAs and ANNs learning are applied at
different stages. In large-scale applications, the offline stage can be removed, as it may prove

computationally expensive.

52

5.3 Requirements for the Proposed Algorithm

5.3.1 Representation of Genotype

Representation or encoding plays an important role in evolution and affects the ease of
conversion and details in mapping from genotype to phenotype. Representation influences other
factors that affect the GAs and their applicability.

Real value encoding is more natural and closely represents a problem space. Often real world
problems have variables that are continuous over a domain rather than discrete. Hence, for our
algorithm we require real valued encoding of genotypes for the agents in drifting environments.
The proposed algorithm attempts to combine basic types of evolutions on neural networks.
Hence, the representation should be able to allow these combinations of evolution. It can be
direct or indirect encoding as long as it satisfies the above requirements and allows all genetic

operators to be present in the evolutionary process.

5.3.2 Population Size
The size of the population affects the performance of evolution. The diversity of agents depends
on the population size. But the requirement of population size is application specific. Hence, we

suggest expenmenting with different popuiation sizes for the application of concern.

5.3.3 Genetic Operators
The genetic operators are the vital components of the genetic application. If we use binary
encoding for chromosomes then the use of traditional GA operators is natural and the application
of GA operators such as mutation becomes simple. When we use real valued encoding, we may
have to alter the traditional operators to be able to work on the real encoded chromosomes.
The genetic operators are broadly classified as:

1) Crossover

2) Mutation

3) Selection
The genetic operators are affected by two issues:

a) Representation scheme

b) Type of evolutions on neural networks
The representation scheme influences and changes the way the genetic operators work on
chromosomes. For example, we can use GAs to evolve the weights, connections, learning rules
and/or combination of all of these. So, this scheme also affects the selection of genetic operators.

For example, the crossover operator may not be useful due to competing conventions problem

53

assoclated with the encoding scheme. Our algorithm attempts to mimic the human evolution in
which crossover is the main operator. Hence, the design of a crossover operator is also an

important factor and representation should allow it.

Most of the present day algorithms tend to exclude the crossover operator due to the competing

conventions problem that depends on their representation system.

5.3.4 Diversity

When we use GAs to evolve populations of ANNs, the degree of similarity or differences among
the networks is an important criterion. If the population is not diverse, then the probiem of
crowding arises. Crowding 1s a problem in GAs where one individual is much more fit than the
others, leading the population to concentrate around this individual and variations of it. This
makes the population concentrate on a small region of population search space. Therefore,
spatially distnbuting the population into species preserves the diversity, thereby providing an
opportunity to increase the fitness. Hence, our algorithm requires the population to be divided into
several species based on a numerical measure of the architecture. Thus by preserving the slowly
maturing genes through the speciation, our algorithm maintains diversity in the population.

OFFLINE ONLINE

Random inputs
rom Environment

Genetic Algorithm

Random Weight
Networks perturbatio

v
MBP arget O/P
/O data eneration

oNAUg

Figure 5.1 Frame work of the algonthm

'MBP K——>[GA operators] Outputs I ~ gent
¢

Juo

54

5.4 Offline Stage

The system architecture for the offline stage is as shown in Figure 5.1

Step1:

Representation

In biological world, crossover occurs more frequently than the mutation, hence the true evolution
needs crossover as Its primary operator. Due to the competing conventions problem, the hybrid
algorithms tend to leave crossover and solely depend on mutation.

We can encode the networks using real valued parameters and make them more applicable to
the real world problems. For lifelong learning and better adaptation, the system should be
capable of dynamically growing while possessing the ability to prune whenever the need arises.
This process Is possible by distinguishing the genotype from phenotype. The representation
should also allow us to design such a flexible system. Genotype defines the state of
characteristics in a collection of chromosomes called genome, and these characteristics are

mapped into actual network via the phenotype.

Implementation Details
We have used a type of direct encoding scheme called, node based direct encoding for our
chromosome representation. In the node based direct encoding scheme neuron and link genes
are provided with all details. For example a link knows the neuron it connects to, the neuron it is
coming from, and weight of that link. Our representation is inspired by the NEAT genotype
architecture. This flexible representation allows us to map the genotype into the phenotype with
ease and uses the “Innovation Number” concept introduced in NEAT.
The chromosome or genotype Is divided into two genes:

a) Neuron gene

b) Link gene

The neuron gene contains a unique id called the innovation number for the neuron and
information about the type of the neuron i.e. input or output. The Link gene contains a unique id
for the link also called the innovation number, the information about the two neurons it connects,
the real valued connection weights, whether link 1s recurrent, and most importantly whether it

participates in the firing of neuron’s output.

The nnovation numbers for neurons and links help in overcoming the competing conventions
problem. Our innovative representation allows us to design not only feedforward ANNs but also

recurrent ANNSs.

55

Step 2:

We begin by generating the population of networks or genomes for future steps. Conceptually,
our algorithm does not suggest starting with a large number of nodes and pruning them when
necessary. This method seems less efficient and may result in large architectures. This is even
possible when we have a fixed number of output and input neurons. Therefore, we start with a
minimum set of nodes and add nodes when it is necessary.

Our algorithm evolves a random and dynamic network of neurons. We do not have layers of
hidden neurons rather we have individual hidden neurons. In this step we generate initial random

networks with zero or more hidden neurons.

Implementation Details

We keep the number of input and output nodes fixed to enable supervised training. Hence, we
generate a population of genomes with only the input and output nodes and random weights.
Later, a few of those genomes are perturbed to have hidden nodes. This step allows us to grow

near optimal genomes even for a large-scale application.

Step3:
We map the genotypes into phenotypes to create actual neural networks from the minimal

genomes created in step2.

Implementation Details
Now, we consider the genotypes of each chromosome. By using the information provided in the
neuron gene and link gene, we build a phenotype or actual neural network with all the input,

output, hidden nodes, and the synapses connecting them.

Step 4:
Train the networks generated In step3 using a modified backpropagation (MBP) algorithm. The
MBP is designed for the random neural networks with hidden nodes rather than networks with

hidden layers.

Implementation Details

As our networks are dynamically generated, we do not have any hidden layers. Instead we have
randomly introduced hidden nodes between input and output layers. The general
backpropagation method for neural networks works only on layers of neurons. With dynamic

networks, arranging the randomly generated neurons into layers is difficult. Hence, we modified

56

the backpropagation to work with individual hidden neurons rather than working with hidden
layers.

The following steps describe our MBP algorithm:

Prerequisites: each neuron has a means of calculating and storing the number of outgoing links.
This is stored in a variable called ‘error-status’.

For each input/output pair in the training set do the following:

1) Apply the inputs to the input layer

2) Propagate the inputs through all hidden and output neurons
generate the corresponding output.

3) a) At output neurons set the corresponding ‘lerror-status’
variables to ‘0’, 1indicating no further output neurons are
connected to these neurons.

b) Calculate the error at output neurons using desired and

produced output values.

c¢) Adjust the weights of all the connections coming into these

neurons.

4y a) Now for each hidden neuron set the ‘error-status’ wvariable to

the number of output neurons it is connected to.

b) Whenever the error from an outgoing neuron 1s calculated
reduce the ‘error-status’ wvariable by ‘1’.

c) When ‘error-status’ variable value is zero, we have collected
errors from all outgoing neurons and hence modify all incoming
synapses weights.

d) Repeat the process until the incoming neurons are input

neurons.

The MBP training is set for fixed number of iterations and the ftraining error is used as a
measurement to rank the networks. Offline learning is intended for accelerating the process. We

calculate the fitness as 1/error and rank the networks from most fit to least fit.

Step5:
We apply the genetic operators on the population. The crossover and/or mutation operators are
applied on the sorted networks to produce offspring.

57

Implementation Details
We have used four types of mutation operators.
1. Add Link: we can add either forward link, feedback, or recurrent link between two nodes.

O

a. Forward link b. Feedback link ¢ Recurrent hink
Figure 5.2

2. Add Neuron: we add a neuron between two neurons bisecting the connection. The
connection weight value is divided approximately equally between the two new
connections formed due to the bisection of old connection. Figure 5.3 depicts the
process.

/ &

Figure 5.3 Before and after adding a neuron ‘D’ between neurons ‘A’ and ‘C’

The above two mutations are mainly architectural mutations.

3. Weight Mutation: We perturb each connection weight with a predefined mutation rate.
4. Mutation of Activation for Response Curve: Mutating the activation of the response curve
helps in evolving the learning rules. This is achieved by perturbing the controller variable in

38

the sigmoid activation function and thus changing the range of threshold for the firing
neurons.
Sigmoid function f(a) = 1/(1+e"®)
Where ‘a’ is the activation value
‘c’ is the controller variable.

The controller variable ‘c’ affects the shape of the curve. This mutation helps in evolving

the learning rules.

A

f(c) f(c)}

7 —

v

For low ‘c’ value ¢ For high ‘c’ value ¢

Figure 5.4 The sigmoid function for different values of controller variable (c)

Crossover:

While being an important evolutionary parameter in the biological world, crossover was omitted in
most of the present evolutionary algorithms due to the competing conventions problem it creates.
This problem makes the crossover operator inefficient in producing better offspring. Using a
unique global numbering scheme for links and neurons, we can avoid the production of invalid
networks. Based on these unique identification numbers, the genes are tracked and aligned
chronologically. Matching genes are inherited randomly. Suppose two genomes are selected for
the crossover. Their genes are ordered according to their unique global numbers. One genome
may contain some genes that are not present in the other genome at a particular position. The
genes that are not present in both genomes and are not present in either the beginning or the end
of their respective sorted genomes, are called ‘disjoint genes’. But the genes that are not
matched and are either at the beginning or at the end of their respective sorted genomes, are

called ‘excess genes’. Disjoint and excess genes are inherited only from the fittest parent.

59

Step 6:
In order to preserve diversity, we speciate the networks into different species using a
mathematical criterion based on architectural parameters. This speciation into groups not only

mimics natural evolution but also helps in avoiding the crowding effect.

Implementation Details

We calculate the ‘compatibility distance’ using architecture specific measures like disjoint and
excess genes. If the compatibility distance is within certain boundaries, then the individual is
added to that species. If the individual is incompatible with all the current species then a new
species is created and the individual is added to this newly created species.

Step 7:
Perform steps 4 to 6 until required fitness is achieved.

Implementation Details

Each time we execute steps 5 and 6, we perform step 4 to calculate the MSE. If the error is less
than or equal to the minimum value, the loop I1s terminated. The other approach is to run steps 4
to 6 for a fixed number of iterations regardless of the MSE. If we follow the second approach, we

can avold applying MBP each time we perform steps 5 and 6.

Step 8:
Select ‘N’ fit networks for the next phase.

Implementation Details
We have used Roulette wheel selection due to its simplicity and effectiveness.

5.5 Online Stage

The architecture for online stage is diagrammed in Figure 5.1. The online stage is similar to the
humans applying and updating their acquired knowledge in new surroundings and passing it to
the next generations for better adaptation to the new surroundings. This is the stage where the
advantage of our algorithm is observed and tested with agents in a drifting environment. We
create intelligent agents with neural networks brains. The ‘N’ networks selected from the offline
‘stage are used as the brains of the agents. If the offline stage 1s not available then we create
random minimal networks and use them as the brains of Intelligent agents. The online stage
follows the collaborative approach rather than the supportive approach for hybridization of
evolution and learning. The online stage is the combination of two phases that toggle

60

1. Evolution
2. Learning online or on field

The offline stage 1s sometimes optional and used only to accelerate the online learning process.
When the offline stage is not present, we first apply ‘evolution phase’ and then ‘learning online

phase’. Otherwise we can begin with the online learning stage.

Population of Networks

Entered into the field

=

Environment

Using Sensors (I/Ps)

=

Perception

Learning Rule

- 0T O D

ANN Modification

ﬂ Outputs of ANN
Actions
ﬂ Applied on surroundings
Environment

NO

End of the time units
for epoch

Fitness Evaluation

ﬂ Applying GA Operators

Evolution on Networks and Speciation

J

Selection for new generation

Figure 5.5 Frame work of ONLINE stage.

5.5.1 Learning Phase
This phase generates networks that can learn continuously, rather than using pre-learned

networks. The networks that can learn can adapt more efficiently to the subtleties of the

61

environment. The performance difference between learned and learning networks can be
observed clearly in dynamic environments. This notion is supported by J.M Baldwin’s (1896)
views:

a) If the environment is continually changing, those individuals capable of learning and
adapting quickly to the environment will have greater advantage compared to other
individuals.

b) Those individuals who can learn and adapt quickly will have less dependence on the
genetic code and will help to achieve more rapid evolutionary adaptation.

In this stage, the learning method used is called online learning where the network

parameters are updated after the presentation of each example.
The steps performed in the learning stage are described below:

Step1:
The basic knowledge is Incorporated into networks using an evolutionary phase where
genetic algorithms are applied to them. By inserting these networks as their brains, we make

the agents intelligent.

Implementation Details:
The agents equipped with the networks from the offline stage or evolution phase enter into an

environment that changes from one generation to the next.

As humans have a lifespan of certain number of years, the agents are given a fixed number
of time units to explore their environment and learn to adapt. This can be considered as a

Iifespan for the agents in a generation.

Step2:
The agents’ world consists of many obstacles and they must achieve certain goals in their
Iifetime. To avoid the obstacles, agents should have a means of sensing the environment so

as to avoid the obstacles while reaching their goals.

Implementation Details
The agents perceive the environment with their sensors and the sensor readings serve as

inputs to the ANNs.

Step 3:
Similar to the human tendency of using oral or written knowledge to gain experience about
their surroundings in their lifetime for better living, our agents are provided with a learning

mechanism to make them more adaptable to the changes and dynamics of the environment.

Implementation Details
The agent’s brains (ANNs) are updated using a learning method from input collected from the
sensors. Our algorithm is based on supervised learning, hence we only modify online
backpropagation algorithm where the input is collected randomly from the environment. The
algorithmic parameters are modified for each input, hence, to reduce the loss of previously
learned knowledge, we employ a history sensitivity function. The online learning can be of
two types:
i. Global
ii. Local

Global Online Learning:

In this type of learning, the exact desired values are not required.

TEACHER

ﬂ Out

F is the threshold function
(step function)

Figure 5.6 Illustration of Global Learning

In the global online learning, the inputs are random and the network does not have the exact
desired outputs, making it difficult to apply supervised training. Hence, when using global
online learning, we use one or more fitness parameters to produce the desired outputs for
each set of random inputs from the environment. In the global online learning, we do not

63

modify network parameters such as connection weights using a training set, but can optimize

the networks using one or more fitness parameters.

Advantages:
1. It does not require any training input-output set. Y
2. Optimization depends solely on the parameters that affect the fitness.

Disadvantages:

1.
2,
3.

Cannot optimize the networks for the environment in the current generation.
Needs to produce target output for each random input from the environment.
It is difficult to include all fitness parameters to produce a good target output set for

random input set from the environment.

Local Online Learning:
In local online learning, the objective of neural network training is to find optimal network

parameters (e.g. Connection weights) to minimize the error between the desired value and the

actual response. The local online learning uses a set of input-output pairs to guide the network

tearning in a relatively new environment. We need to use a filter that compares the random input
collected from the environment and selects an output of a closely matching input from the training
pair. These outputs are used as target outputs. Local online learning optimizes the network

fitness by changing parameters like connection weights in the current generation. The

effectiveness is affected by the learning method and the training set.

Advantages:
1. Simple to use.
2. Optimizes the fithess function to adapt to the dynamics of the environment in every
generation.
3. Dependency on evolution is less when a stable architecture is found.
4. Accelerates the evolution towards adaptation.

Disadvantages:

1.
2.
3.

The design of the training set requires a lot of expertise and time.
The optimization is greatly affected by the efficiency of the training set.
The dependency on environment fithess parameters is less.

64

The online Modified Back Propagation (MBP) that is used to train the networks is similar to its
offline counterpart with the following differences:

e It is designed on online learning principle hence the network parameters are
modified on application of every input and parameter modification does not
guarantee the desired output on re-application of the same input.

e History sensitivity function is used to reduce the amount of learning over time.
This function is designed In such a way that learning is faster in the beginning

and decreases over time to preserve past learning.

Step 4:
The steps 2 and 3 are repeated for a fixed number of time units. These time units indicate the life

span of agents per generation.

5.5.2 Evolutionary Phase
This phase is applied between generations GAs are used to identify the superior architecture,
weight and learning rule to determine a set of best fit networks for the next generation. This
phase is also similar to the one in the offline stage but differs in the method of usage and order of
application of its operators and also in fitness evaluation. The important operators used are:

1) Crossover

2) Mutation

3) Selection

This stage also performs speciation and evaluation. The goal of evolution is to build ‘N’ fit

networks for the learning stage.

Step1: Representation
This is similar to offline stage representation scheme. The representation should allow all three

kinds of evolutions (weight, architecture, learning rule) as well as their combinations.

Step 2: New Population
In this step, we generate a new population from the current population. The genetic operators are

applied on the current population and thus new population is generated.

Implementation
If the current generation is empty, we generate random initial networks with and without hidden
nodes. The networks have fixed input and output neurons. In all the other cases we apply genetic

operators.

65

1. Crossover:

We generate a random variable for each parameter and compare it with user defined crossover
constant, and If it is greater, we then perform crossover. The crossover constant vailue can be set
at the beginning and is constant throughout the process. The crossover operation is similar to the

offline stage.

2. Mutation:
Mutation is performed in 5 ways.
i. Addlink
fi. Add neuron
i Weight mutation
iv. Mutation of activation response for responsive curve

V. Mutation of learning rule parameters

The first four mutations are similar to offline learning. Mutation of learning parameters can be

implemented in a similar way to that of weight mutation.

We have implemented the learning rule as a linear equation with 6 parameters to enable the

evolution of learning rule for connection weight modification.

AWeight = p0 * (pl * weight - p2 * error * learning rate - p3 * weight
* learning rate + p4 * error + p5 * output * learning rate)
Where, p0 is a real valued variable used fo scale the result, and p1, p2, p3, p4 & p5 are real

variables.

This general linear equation tries to reduce the amount of modification applied to the weights with

respect to the error.

We generate a random variable for each parameter and compare it with standard mutation rate

and if it 1s greater, we perform mutation. We use Gaussian mutation method.

The design of the learning rule is based on the following important criteria.
o Outputs generated
e Error from target outputs

e Learning rate

66

Step 3: Selection
Here we perform two tasks
a) Maintaining diversity
b) Selecting best individuals

To preserve the diversity, we divide the population into different species This process of
speciation is similar to the speciation in offine stage. We calculate the average fitness for each
species using the age and the performance of networks in the environment. Networks are sorted
based on their fitness in each species, and most fit network from each species is added to the
new popuiation intact. The rest of the new population is selected from the networks generated
using genetic operators and their fitness. We select the required ‘N’ networks from all the species

depending on their average fitness.

Implementation Details
Speciation 1s similar to the offline method which uses “compatibility distance” measure to speciate
the generated networks. Fitness is designed on agent's efficiency to avoid the obstacles while

fulfilling its goals.

Step 4:
‘N’ networks are selected to perform online.

The learning and evolution phases are repeated until some terminating criterion is met

'

Sort the previous
generation’s Genomes

Apply mutation and cross
over to create new genomes

Speciate all genomes and
calculate average fitness for
each species

Select the Genomes for the
next generation

Create Initral Genomes with random
weights, standard learning rate &
learning rule parameters

Map the genotypes onto phenotypes
to create ANNs

A 4

y
Equip ANNs as agents’ brain

v

Collect the inputs using sensors from

A

environment and feed them to the
brain

Y

Process the inputs using Online MBP
with evolved rule and generate outputs

to update agent’s position

Are we at the

end of time
units?

Increment the generation counter
& determine fitness

Have we

No reached the

terminating
cnteria?

Figure 5.7 Flowchart of ONLINE stage

67

CHAPTER 6. APPLICATION ANALYSIS
Overview

This chapter introduces and analyses the mine sweeper application implemented using our

algorithm.
6.1 Introduction

Our algorithm attempts to develop intelligent agents which can adapt to a changing environment
effectively and more quickly than existing implementations. Since the algorithm is inspired by
human behavior and evolution, we need an application that allows us to test and observe all
aspects of the proposed algorithm. A mine sweeper application is used to demonstrate the
capabilities of our method in adapting to dnfting environments. The mine sweeper's initial
framework is implemented by Mat Buckland (Al techniques for game programming, 2002). We
modified the classes and the visualization graphics in this framework to implement our algorithm.
In our application, we use neural networks to control the behavior of the mine sweepers and to
make them intelligent. The mine sweepers live in a drifting environment with a few different
obstacles and several mines The positions and shapes of these obstacles change from one
generation to the next. The goal of the application 1s to evolve intelligent mine sweepers to

explore as much area as possible, while avoiding the obstacles within certain time limit.

68

69

- Apil's New Hybrid Learning Algorithm]
“Generation: 10 Num Cells Visited: 11

o o
- 9 ooo gmu
& = 8
o o a
o
a
o o
o
g2 °©
o
o o
o
a
-
| e
R . n L]
[=
® Bl
| b= @_" a
| o oY, oo
ol o

Figure 6.1 The demo program in action.

The mine sweepers that collide with obstacles or walls appear in red. They remain in red until
they move away from the obstacles or walls. The others are shown in blue. When F key is
pressed the graphics are hidden from view and the statistics are displayed instead. The
application starts in two windows, one showing the mine sweepers exploring the environment and
the other displaying the best networks from the previous environment.

6.2 Architecture of ANNs

To design the architecture of ANNs, we need to determine the required number of inputs and
outputs and a mechanism to obtain the inputs from the environment. To determine the number of
inputs for the ANN, we need to recognize the type of information a mine sweeper needs to
navigate through the environment and the issues related to acquiring that information. This
application involves solving two game related problems.

e Obstacle avoidance

e Environment exploration

6.2.1 Obstacle Avoidance

Obstacle avoidance is a very common task in game theory. It is the responsibility of the game
agent to perceive its environment and to navigate without colliding with the obstacles in the game
world.

70

To perform successful obstacle avoidance, the agent must be able to perform the foliowing:
 Observe its environment

¢ Take action to avoid potential collisions

To observe the environment, the agents (mine sweepers) must have a way to see the world. Mine
sweepers are equipped with a number of sensors, which enable them to perceive the obstacles in
the world around them. The sensors are the line segments that radiate outward from the center of
the mine sweepers’ bodies. Sensors, which are represented as vectors, have a direction and

length associated with them.

Figure 6.2 A mine sweeper with sensors

In our experiments, mine sweepers can have any number of sensors with various lengths.
However by default, a mine sweeper has five sensors that radiate outward for 25 pixels. Every
time unit of a generation is divided into certain number of frames. The mine sweeper's sensors
explore each frame for possible obstacles in the game world. Every mine sweeper is equipped
with a mechanism to determine the distance to any obstacle it may encounter. The distances
between the mine sweeper and the obstacle are measured using sensors. The closer the object
is to the mine sweeper, the closer to zero is the reading provided by the sensors. When there are

no obstacles intercepted by the sensors, then the sensors provide a value of -1.

71

> @

Figure 6.3 A mine sweeper seeing the obstacle through its sensor readings.

To check whether a mine sweeper has actually collided with an object, we check the readings
provided by its sensors. These readings are compared to a collision distance value that is
calculated from the scale of the mine sweeper and the length of the sensor line segment.

6.2.2 Environment Exploration

Equipped with only sensors, the mine sweepers can see the obstacles and learn to avoid them in
a few generations, but they do not explore the environment efficiently since they do not have any
guidance. To develop a useful behavior for exploring the environment, in addition to learning to
avoid the obstacles, mine sweepers need additional guidance for exploration. This guidance is
provided in the form of memory. The environment is divided into a number of equal sized cells.
These cells are represented by a simple data structure. This data structure is used as a memory
map to store information about the number of time units a mine sweeper has spent in that cell.
This information helps the mine sweepers to evolve the weights, architecture and learning rules of

the ANNs to favor the unvisited cells.

Figure 6.4 The memory readings help the mine sweeper to explore unvisited cells in the environment.

72

The end points of the sensors act as antennas for the mine sweeper and retrieve the information
stored in the cell. These end points are referred to as feelers and the readings from these feelers
enable the mine sweepers to navigate the environment. The number of time units a mine
sweeper spent in the surrounding cells is retrieved by these feelers. Using this information,
feelers provide the corresponding readings which are between -1 and 1. For example, if a mine
sweeper previously spent O time units in a surrounding cell then the corresponding feeler
provides a reading of -1. If it spent 20 time units in a surrounding cell then the reading would be
0.2, and if it spent 80 time units the reading would be 0.8. If it spent 100 or more time units in a

cell then the reading would be 1.

With these feeler and sensor values the mine sweeper can navigate through the environment.
The readings from feelers along with sensors are used as inputs to the neural network. An
additional input is supplied to indicate whether the current mine sweeper has collided with some
obstacle in the environment. Therefore, the defauit number of inputs for the neural network would

be 11, namely, five feelers, five sensors, and an additional input indicating collisions.

6.2.3 Outputs

The number of outputs for the ANN depends on how we control the movements of the mine
sweepers. We assume that mine sweepers run on two tracks. Tracks are the endless metal belts
on which vehicles such as battle tanks travel. The rotation and velocity of the mine sweepers are
adjusted by altering the relative speed of the tracks. Hence, we need two outputs, one for each
track. To make the movements more realistic, we need to produce real valued outputs for each
track. This can be achieved by using a sigmoid function as the activation function for the output
neurons. The rotation and speed of a mine sweeper are determined using the outputs generated
for the left and nght tracks. The mine sweeper’s rotational force is calculated by subtracting the
force applied by the right track from the left track. The mine sweeper’s speed is the sum of the
values of left and right tracks. With this information about the inputs and outputs of the agents, we

can proceed to discuss the details of the network’s architecture and encoding.

We start with a minimal architecture that includes few networks with hidden nodes for effective
exploration of architectural search space. We have used a direct encoding method called node-
based encoding. Node-based encoding encodes all the required information about each neuron
in a single gene. For each neuron (or node), its gene will contain information about the other

connected neurons and/or the weights associated with those connections.

73

A

o[ojo[o[e| [o|o]eo

Figure 6.5 Two networks with their chromosomes using node-based encoding.

Our application uses a genome structure containing two kinds of genes namely neuron genes
and link genes. Both of these genes contain information about their connectivity and respective
parameters. Both of these genes make use of a concept of a unique number called the innovation
number (Kenneth Stanley at al., 2000) to avoid the competing conventions problem. These
innovation numbers are provided for both neurons and links and hence are present in both the
neuron and link genes. The links can be forward or recurrent, whereas neurons can be of input,

output, hidden or bias types.

Genotypes:

NeuronGene
Begin

Innovation number: /t is the unique id for the neuron
Type of neuron : This indicates whether the neuron is input, output, hidden or bias

End;

LinkGene

Begin
Innovation number : Unique id for the link
Link from neuron : /d of the Neuron from which link comes from
Link to neuron : Id of the Neuron to which the link goes to
Weight : A real value attached to the link
Recurrent : Indicates whether the link is recurrent or not
Enabled : Indicates whether the link is active or not

End;

Figure 6.6 The neuron and link genes’ parameters and their description

74

After creating the genotypes, we need to create actual neural networks with all the neurons and
the links among them. This mapping from genotype to phenotype is implemented in a container
class called Genome. The Genome class contains both genotype objects and phenotype objects.
The phenotype object has information about learning rate and learning rule parameters. The
learning rate is common for all the neurons in the network. In addition, the learning rule

parameters are used in evolving learning rules for the whole network.

We start with genomes containing zero or few hidden neurons and evolve them into larger
architectures with improved fitness. This approach helps in maintaining small architectures and is

inspired by two facts:
1. Nature has evolved from small (less complex) organisms to the larger (more complex) life

forms.
2. By including genomes with hidden neurons, in addition to minimal genomes (genomes
with zero hidden neurons) in the initial population, genetic algorithms can have a larger

architectural search space.
6.3 Our Framework
The mine sweeper application is controlled by a class called “CController”. The CController class

controls the relevant invocation of methods from various classes.

Mine sweepers
performing in the field

orsrrroormen | Genetic Algorithm

S S—

Figure 6.7 Program flow for the mine sweeper application

75

When an instance of the CController class is created, the following steps take place:

» Our framework provides an option to use offline training. If offline training s used then

inttial networks are obtained from the offline learning stage. Otherwise, the constructor

generates the random initial networks for online stage.

e The generated networks are inserted into the mine sweepers

¢ Foronline stage, we create a random environment with obstacles for every generation.

e For online stage, we create all necessary graphical requirements to display the objects

and mine sweepers.

6.3.1 Offline Learning Stage
Our algorithm uses offline learning stage to provide a better foundation for the online stage by

generating networks with at least some knowledge rather than no knowledge. The offilne

stage is performed only once to speed up the rest of the process. We henceforth explain the

step by step processing of this stage with references to the algorithm

i. Random Network Creation:

Initially a random population of neural networks are created and stored in a vector data

structure. The information about number of inputs, number of mine sweepers and number of

outputs is decided here. Consequently, we carry out the following steps:

We create a population of genomes. These genomes contain only input and output

neurons. They do not have any hidden neurons.

To explore the search space of architectures with hidden neurons, we modify some

of the genomes by inserting random hidden neurons.

For a network in the population

Begin

End

Search for a valid link.

If a link is found then split the 1link into
two different links.

Assign a new innovation number for the new
links.

Divide the old weight into half and assign
the value as new weights for the two links.
Create a hidden neuron and assign a new
innovation number to it.

Set the two new links as incoming and out

going links to this neuron.

76

e We create and assign a unique innovation number to every neuron gene and link

gene.

In this way, we create genomes with and without hidden neurons.

ii. Mapping Genotypes to Phenotypes:

Using the above created genomes, we map the genotypes into phenotypes to create actual
networks. This mapping 1s performed using the information in the genes to build the neural
networks from neurons by connecting the links between them. The links are assigned the
weight information stored in their genes. These weights are assigned randomly when the

genomes are initially created.

Procedure Create Network (depth of the network)
Begin

® Create the neurons from the Genome information.

= Create the links from Genome information only for those
links that are enabled.

= Create a link between relevant neurons and assign the
weight stored in the link gene.

» Set the error status (i.e. the number of outgoing links)
for each neuron.

End

iii. Hybrid Training for the Networks:

in the offline learning, we use modified backpropagation (MBP) with the genetic algorithm’s
operators for refining and evaluation of created networks. But since MBP 1s supervised, It
needs guidance to train the networks To provide this guidance, we placed several random
mine sweepers with no learning ability in the environment. We evolved them for 50
generations, each generation with 600 time units. At the 50 generation, we stored inputs
and outputs of the best performing mine sweepers We edited these input-output data to
extract 250 input-output sample set. These samples served as training data for both offline
and online MBP. The environment used for collecting the training data was static and was
similar to one of the random environments. For a desired number of iterations, we do the

following:

77

1. For each phenotype, we apply modified backpropagation algorithm and store the fitness of
each network. The offline MBP returns the corresponding MSE.

For each network
Begin
Error = Function Offline MBP ()
Fitness of Network = 1/Error
Store Fitness (Fitness of Network)
End

2. We sort the networks according to therr fithess values.

3. We apply genetic operators like crossover and mutation on the sorted networks. We
generate a random number. Only when this random number is {ess than standard
mutation rate, we perform the mutation. Otherwise, we do not perform the mutation

operation. Crossover is also similarly performed.

There are four types of mutations performed n offline stage. They are:
= Add link
= Add Neuron
» Weight perturbation
= Mutation of activation response curve
These mutations are performed as described below.

Add Link: The new link can be either recurrent link or forward link.

Procedure Add Link ()
Begin
Generate a random number
If (Random Number Generated < Mutation Constant)
Begin
Generate a random number
If (Random Number Generated < Recurrent link Constant)
Begin
Get a random neuron
Add a recurrent link, if the neuron does not have one
Assign an innovation number to the link
End
Find two unlinked random neurons
Add link between these two neurons
Assign an innovation number to the link
End
End

78

Add Neuron® We add neurons only if the total number of neurons is less than the

maximum number of neurons allowed.

Procedure Add Neuron()
Begin
Generate a random number
If (Random Number Generated < Mutation Constant)
Begin
If (Total Number of neurons< Number of neurons allowed)
Begin
Search for a valid link.
If a link is found then split the link into two
different links.
Assign a new innovation number for the new links.
Divide the old weight into half and assign the value
as new weights for the two links.
Create a hidden neuron and assign a new innovation
number to it.
Set the two new links as incoming and out going
links to this neuron.
End
End
End

Weight Perturbation: The mutation of weights s achieved using two different
approaches. If a randomly generated value is less than a pre-defined constant, we
replace the older weight with completely a new weight, else we perturb the weight by

a small amount.

Procedure Mutate Weights ()

Begin

For each link in the network

Begin
Generate a random number
If (Random Number Generated < Mutation Constant)
Begin

Replace the weight with a random value
End
Else
Begin
Add a small random value to the existing weight

End

End

End

79

Mutation of the Activation Response Curve This mutation serves as a preliminary

evolution of learning rules.

Procedure Mutate Activation Response ()
Begin
For each neuron
Begin
Generate a random number
If (Random Number Generated < Mutation Constant)
Begin
Add a small random value to the existing
Activation response value.
End
End
End

4. If mutations are not performed then we only perform the crossover operation. The
crossover operation 1s executed only when the generated random number is less than

the pre-defined crossover constant.

Procedure Crossover (parentl, parent2)

Begin
Generate a random number
If (Random Number Generated < Crossover Constant)
Begin
Find the Fittest Parent
Add the Fittest parent’s genes to the other parent
If both parents are equally fit
Begin
For every gene in the child
Begin
Select one parent randomly and add gene
from that parent
End
End
End
End

5. After performing crossover or mutation operators we once again apply the MBP to

filter out the less fit genomes from the next population.

iv. Selection:

The required number of genomes is selected to be included in the new population using
tournament selection method. In tournament selection ‘n’ individuals are selected from
the population and the fittest of these genomes 1s chosen to be added to the new
population. This process is repeated as many times as iIs necessary to complete the

requirements of the new population.

80

v. Perform Iterations:
We repeat steps 1 to iv on the new population until we reach the desired iterations.

The required number of networks 1s passed on to the online stage.

6.3.2 Online Stage

The online stage is the core of our process. It can perform with or without the help of offline
learning. The offline stage is only used to give online stage a good foundation with better fit
networks in the beginning. Online stage works In two phases known as learning phase and

evolutionary phase.

6.3.2.1 Learning Phase:

With the offline stage active, the networks developed in the offline stage are used as the initial
brains of mine sweepers. Otherwise, initial random networks are created and inserted as Initial
brains of mine sweepers. Online stage is the core of the application that improves the mine

sweepers’ performance in a drifting environment.

In each generation, the mine sweepers search the environment for a number of time units. During
each time unit, the ANNs of mine sweepers are constantly fed with the information from the
surroundings. Depending on these inputs, the networks are updated using the modified
backpropagation (MBP) learning algorithm. This version of MBP differs greatly from the offline
version in the following aspects:

e Thisis an online version, i.e. it 1s updated after application of the input

¢ The amount of modification to the network parameters decreases over time

s [t can use online gradient descent or can evolve the rule

e lt can learn locally or globally

First, the input is processed by all the neurons to produce the outputs. Next the outputs of each
neuron are collected. We fetch the desired outputs from the training set using a filter function.

81

Procedure Filter (input from environment)
Begin
Min= infinite
Index=0
For each training sample
Begin
Find the distance between training input and the input
from environment
If (Min> distance)
Index= Index + 1
End
Get the closest matching sample using Index
Desired outputs = Matched Sample Qutputs
End

This procedure is used with local online learning. We have used 250 input-output training pairs to

guide the mine sweepers in the random environment.

For global online learning, we do not use the input-output training set. Instead of using the fitness

criterion, we generate the desired outputs for the current inputs from the environment.

In our mine sweeper application, an agent's fitness I1s determined broadly over three
observations.

a) The number of collisions with objects or walls

b) The number of rotations

c) Speed of exploration

We use a simple heunstic function to generate outputs for global online learning. In our
application the heuristic function uses the speed of the mine sweeper to produce the target
outputs. To keep the function simple, we have used only one parameter (speed of mine sweeper)

of the environment fitness criterion.

82

Procedure Online MBP ()

Begin
For each neuron
Begin
Set error status value to number of outgoing links from
that neuron
End
Calculate the error for output neurons using gradient descent
rule
For each hidden neuron
Begin
If hidden neuron’s error status is zero
Begin
Calculate error using total error from its output
neurons
End
Else
Begin
For each neuron connected to this hidden neuron through
outgoing link
Begin
Compute the total error
Reduce error status value by 1
End
End
End

Now update the weights with the error calculated using gradient

descent rule
End

Using the mean squared error from desired and generated outputs, we update the weights with
either delta (gradient descent) rule or evolved rule. We have implemented global and local online
learning methods with the back propagation principles. The local and global learning methods
differ from each other in only one way. Global online generates desired outputs using a heuristic
function whereas local online uses a fraining mput-output set. The modified backpropagation
algorithm uses a history sensitivity function like f (t) = N/t where ‘N’ is a constant (fypically N=1)
and t 1s the number of time units elapsed. The history sensitivity function acts as a loss function,
which preserves the previous knowledge while the networks learn online. If we choose to evolve
the learning rule rather than delta rule, we use a linear general equation with five random real

variables and a random real variable for scaling.

These five real variables are mutated after each generation depending on the difference between
the user defined mutation constant and a random real value generated. The weight change is
described by the following function.

AWeight = F (Weight, Learning Rate, Output, Error)

AWeight = p0 * (pl * weight - p2 * error * learning rate - p3 * weight
* learning rate + p4 * error + p5 * output * learning rate)

83

pO, p1, p2, p3, p4 and p5 are positive constant real values, typically less than one, that regulate
the modification of weights. These constants change from generation to generation. The weight
updating process attempts to preserve the previously learned knowledge by including the old
weight in the updating process Also by including the error value in the equation we let the

network learn new information.

The general equation depends on four important parameters that affect the learning.
They are:

e Error at the neuron

e OQutput of the neuron

o Old weight of the link

¢+ |Learning rate

if we do not wish to evolve the learning rule then the online gradient descent rule is used for the
modification of connection weights. This updating ruie 1s applied to all the output and hidden layer
neuron In-coming connection weights. It is continued untit the desired number of time units per is

reached.

6.3.2.2 Evolutionary Phase:
After a desired number of time units per generation has been reached, evolutionary phase
begins. Evolutionary phase applies genetic algorithm operators on the current population to

produce a better population for next generation.

We start this phase by calculating the fitness for each mine sweeper from the current
population. We kill or remove the networks and species that are not improving over past few
generations. The rest of the networks in the population are sorted according to their fithess
values. Next we apply the genetic algorithm operators mutation, crossover and selection.

We speciate the networks using their architectural differences. Later we copy the best performing
networks from each species without any modification into the new population. For the rest of the

members of population, we use crossover and/or mutation on the current population.

The mutation and crossover operations are carried out analogously to the offline stage. The
crossover, add link, add neuron, mutate learning curve response, and mutate weight use the
same methods that are used in the offline stage. Unlike the offline learning, these operators are
not iterated but are applied until a desired population size I1s achieved. The online stage has one
extra mutation that is not present in the offline stage. If we choose to evolve the learning rule,

84

then we need to mutate the learning rule parameters. This is carried out by applying mutation on
the newly created population from the application of the other GA operators.

Procedure Mutate Learning Rule Parameters ()
Begin
Generate a random number
If (Random Number generated < Mutation Constant)

Begin
For all learning rule parameters
Begin
Add a small quantity of random value
End
End

End

If there is an underflow of networks due to the rounding error, we apply tournament selection to
select the rest of the networks from the old population. The new population of networks are
inserted into mine sweepers as their new brains. The learning phase will now resume with these

mine sweepers.
6.3.3 Performance Parameters

We can set various performance parameters. Some important parameters with their sample

values are shown below.

iNumSensors 5 The number of sensors a mine sweeper can have
iNumSweepers 50 The mine sweeper population size

iNumTicks 300 The number of time units per generation
dLearningRate 0.5 Learning rate for the delta or evolved rule

dLearningParameterl 0.5 Learning rule parameter used in rule evolution
dLearningParameter2 0.5 Learning rule parameter used in rule evolution
dLearningParameter3 0.5 Learning rule parameter used in rule evolution
dLearningParameter4 0.5 Learning rule parameter used in rule evolution
dLearningParameter5 0.5 Learning rule parameter used in rule evolution

dLearningParameter6 0.5 Learning rule parameter used in rule evolution

iOfflineTraining 1 Option for having offline training
iGlobalOnline 0 When value is 1 global online method is chosen
iRuleEvolution 1 When value is 1 learning rule is evolved

iOnlyGAs 0 When value is 1 only GAs are used to update

85

When the application is launched, the F key speeds up the evolution, the R key resets it, and the
B key shows the best four mine sweepers from the previous generation. The B key can only be
used from second generation onwards, since it requires ANNs from previous generation. The
previous generation’s best mine sweeper is designed to leave a trail as it explores. The best

sweepers also display their sensors and feelers.

CHAPTER 7 ANALYSIS OF RESULTS
Overview

This chapter discusses the results and improvements achieved by our algorithm using a mine
sweeper application. Our algorithm helps in developing intelligent mine sweepers. We analyze

the results with the help of screen shots and Excel graphs.

7.1 Introduction

Our algorithm assists the artificially intelligent agents (mine sweepers) by enabling them to learn
in a drifting environment with the help of the acquired knowledge. Our experimental results show
a considerable improvement in the performance of mine sweepers in a drifting environment. To
prove our claim that lifelong learning combined with evolutionary process can boost the
intelligence of artificially intelligent agents in a drifting environment, we tested our algorithm on
several different scenarios. Our algorithm has two learning stages called offline and online.
Offline learning 1s optional. Online learning Is further divided into two more phases called the
learning phase and the evolutionary phase The learning phase runs for the desired number of

time units for each generation and the evolutionary phase runs between generations.

The following describes the type of experiments we carried out to prove the effectiveness of our
algorithm.

+ Performance of only evolutionary (genetic) algorithms

e Performance of offline learning and evolutionary (genetic) algorithms

o Performance of offline learning and online learning {learning and evolutionary phases)

* Performance of only online learning (learning and evolutionary phases)

e Performance of offline learning, local online in learning phase with evolutionary phase

¢ Performance of offline learning, global online in learning phase with evolutionary phase

e Performance of local online in learning phase with evolutionary phase

¢ Performance of global online in learning phase with evolutionary phase

86

87

While we observed interesting results, we also discovered the following influencing factors.
« Number of time units for generation
« Number of sweepers
e Number of generations
e Number of obstacles present

o Fitness criteria
7.2 How Do We Analyze?

The simplest way to determine whether the mine sweepers are adapting to new environments is
by looking at them while they perform. However, this method of observation cannot be
documented. Hence we used two different fitness readings to assist us in evaluating the
performance of the algorithm. The best ever fithess indicates the highest fithess value achieved
by any agent (mine sweeper) in any generation until the present one, whereas generation’s best
fitness value indicates the highest fithess value achieved by an agent (minesweeper) in that
generation. In the ideal case for an evolved network both fithess measurements should have the
same values. However, these two fitness measurements may not be the same for environments
having different number of obstacles and therefore different regions for exploration. In our
experiments, there are two ways in which one can recognize an evolved network.

1. The generation’s best fitness value shouid have little variation from the best ever fitness value.

2. The generation’s fithess value should maintain its variation consistently from the best ever

fithess over several generations.

The former indicates near optimal solution whereas the latter stll has room for further

improvements.

88

Generation: 921

1] L o g

o @ g & n%

= fal=a
3

Y

o o 9

® 0 0 O 0 0 O & O 0 O ® O O & 0 O & 0 0 0 O
® oo
*
(=]
a
oo
B ° ¥ °
(=]
& & o 00000 00000 0000000000
(a) (b)

Figure 7.1 (a) A screen shot showing the mine sweepers exploring the environment

(b) A screen shot showing previous generations best four networks

7.3 Only Genetic Algorithms

The smart minesweeper application is a combination of GAs and ANNs. In this experiment
genetic algorithms are only responsible for the development of the networks and behavior of the
mine sweepers. ANNs are merely used to generate outputs for each input. We initially start with a
population of neural networks and after every generation GAs are used to generate a better
population of networks using genetic operators such as mutation, crossover and selection.

89

Only GAs

1600

1400

1200

1000
i —— Num Species
é 800 —— Best ever Fitness
z This gens Fitness
—— Avg Fitness

400

0 200 400 600 800 1000 1200
Generations

Figure 7.2 The fitness of intelligent agents with only GAs

Figure 7.2 depicts the performance of the intelligent agents equipped with only GAs. For 1000
generations, each generation with 300 time units, the maximum fitness ever achieved is less than
1500 units and the average fitness is under 800 units. Also each generation's fitness (shown in
yellow) fluctuates across the best ever fitness (shown in pink) and also these fluctuations are
random. This indicates that the GAs have failed to evolve a single best performing network.

7.3.1 Analysis of Performance with Only Evolutionary (Genetic) Algorithms
The performance of mine sweepers equipped with GAs alone was excellent in static
environments. Within 300 and 500 generations, a best performing mine sweeper is found. But
their performance in a drifting environment was not acceptable. They failed to capture the
changes in the environment efficiently and in most cases they did not produce a best performing
minesweeper over different generations. In drifting environments, intelligent agents equipped with
GAs alone exhibited the following behavior:

e The Changes in the environment prompt the search of the architecture and weight space

whenever fitness goes down. This will result in rather complex architectures.

90

¢ GAs (Genetic Algorithms) have frequently failed to produce a minesweeper that shows
best performance over varying environments. Even when the generation’s best fitness is
close to best ever fithess, which was observed in several different mine sweepers, they
performed well only in their specialized environment.

e GAs improve the population based on their fitness values in the previous environments.
They do not consider the fact that the environment may change for the next generation.
Hence, they generate better fit population for the environment in which the old population
has performed. For drifting environment within 700 to 800 generations, the mine
sweepers did not perform well in most of the experiments.

o If the mine sweepers, equipped with GAs alone, search the drifting environment for a
long number of generations then the architecture of ANNs gets complicated.

7.4 Offline Learning and Evolutionary {(Genetic) Algorithms

We start with offline learning initially and then apply evolutionary algorithms after every
generation for further improvement. The offline learning is comprised of genetic algorithms and
modified backpropagation algorithm. The genetic algorithms evolve weights and architecture
simultaneously and MBP is used to further refine the networks. MBP is also used to test the
fitness of the networks. The offline learning provides knowledgeable neural networks. As these
networks gain some knowledge about the environment, they tend to reach higher fithess values in
less time when compared with only evolutionary algorithms in drifting environments. But
characteristics of offline learning and evolutionary algorithms both support only static
environments. So offline learning may reduce the number of generations required to reach

highest possible fitness, but does not really improve the performance in dynamic environments.

91

Offline and GAs

2000

1500

1000
. ——Num Species
2 —— Best ever Fitness
E This gens Fitness
—— Avg Fitness
500
0
-500 =

Generations
Figure 7.3 The fitness of intelligent agents when offline learning is combined with GAs

Figure 7.3 depicts that in 1000 generations, with 300 time units for each generation, the highest
ever fitness reached is below 2000 units and the average fitness is less than 1000 units. We can
also observe that each generation’s fitness (yellow line in the graph) deviates from the best ever
fitness (pink line in the graph) randomly. This indicates the probability of different best performing
networks for different environments.

7.4.1 Analysis of Performance with Offline Learning and GAs:

Even with the addition of offline learning, mine sweepers were behaving similarly to those that
used genetic algorithm alone. Offline learning is carried out only in the beginning and then genetic
algorithms takeover. Therefore, initially the mine sweepers were performing better but as the
effect of offline learning fades away their performance becomes similar to those that used GAs
alone. Offline learning needs lot of resources. So we can not replace the genetic algorithms stage
with offline stage. Both offline learning and GAs perform best in static environments and tend to
perform poorly in drifting environments.

92

7.5 Offline Learning with Online Learning (Learning Phase and Evolutionary Phase)

In this approach, the ANNs benefit from both offline learning and online learning. The mine
sweepers are initially equipped with the neural networks that were evolved using offline learning.
They explore the environment with the help of their sensors and feelers In the learning phase the
mine sweepers learn while they explore the environment. We use MBP to modify the weights of
neural networks for every input collected by the mine sweepers from the environment. This helps
the mine sweepers adapt to the intrinsic details of the environment when they explore the
environment. After completion of every generation in evolutionary phase, genetic algorithms are
applied to generate new population from best fit networks of previous generation’s population. In
learning phase, we have implemented two types of learning methods, namely: local online
learning method and global online learning method.
i. Local Online Learning Method:
Local online learning method is a type of online learning method that is carried out using a
training set. We compare the inputs obtained from the environment by the sensors and
feelers with the training set inputs. When a close match is found, we use the corresponding
outputs to guide mine sweepers in the environment. This local online learning method
depends on the MBP algorithm, which in turn depends on the learning rule it uses. We can
either use standard delta rule or we can evolve the rule. Depending on type of learning rule,
local online learning method can be applied either using the delta rule or by evolving a rule.
This learning quickly grasps the subtleties of the environments while the mine sweepers

perform and improves therr fitness considerably.

ii. Global Online Learning Method:
Global online learning method does not use any training set In this type of learning neural
networks act as decision-based neural networks. We generate guiding outputs for each input
from the environment using a heuristic function of one or more fitness parameters. Similar to
local online learning method 1t 1s applied In two ways depending on the type of learning rule
we use in the MBP. Although global learning method optimizes the performance of the mine
sweepers while they explore the environment, it becomes more effective over the generations
and works more closely with the genetic algorthms applied in evolutionary phase after each

generation.

93

Local Online with Delta Rule and Offline

——Num Species
— Best ever Fitness

This gens Fitness
— Avg Fitness

Figure 7.4 The fitness of intelligent agents when offline learning and online learning combined

The highest ever fitness is above 2000 units and the average fitness value is near 1000 units
(Figure 7.4). The generation’s fitness (shown with yellow line) variation from the best ever fitness
(shown with pink line) is decreasing as generations increase. After 750 generations, both yellow
and pink lines are close enough to indicate a perfect evolved network i.e. a network performing
best in all different environments.

7.5.1 Analysis of Performance with Offline Learning and Online Learning:
The mine sweepers benefit from learning while exploring the environment by adapting to the
dynamics of the drifting environment. Through online learning, the mine sweepers modify their
previous knowledge to adapt to the subtleties of the new environment. But they should not loose
the pre-learned knowledge in the process, hence, we decrease the amount of learning over time.
Using either global or local online learning, we can observe the following:
¢ The mine sweepers show improved behavior from the first generation.
¢ The mine sweepers capture the dynamics of the environment over time.
« Over the generations mine sweepers exhibit improvements in their fitness because of the
close corporation of online learning with genetic algorithm. Online learning and GAs
complement each other in producing a better performing mine sweeper over generations.

94

In most of the experiments, the best performing ANNs have very simple architectures.
The performance of all mine sweepers is improved due to the online learning capability.

7.6 Only Online Learning (Learning Phase and Evolutionary Phase)

The absence of offline learning slows down the fithess growth of mine sweepers. However, after
few hundred generations mine sweepers become equally efficient to those that used combination
of offline and online learning. This proves that online learning is self sufficient.

Local Online with Delta Rule

——Num Species
—— Best ever Fitness

This gens Fitness
— Avg Fitness

Generations

Figure 7.5 The fitness of intelligent agents Online Learning (local online with delta rule in learning phase and
evolutionary phase)

Figure 7.5 depicts the performance of online learning (local online with delta rule in the learning
phase and evolutionary phase with GAs) alone. For 1000 generations, with 300 time units for
each generation, the best fitness ever is 2000 units and maximum average fitness value is
around 600 units. The variations between yellow line (each generation’s fitness) and the pink line
(best ever fitness) decrease as the number of generations increase. Therefore, we can say that
the algorithm has successfully evolved a network that can perform best in different environments.

95

7.6.1 Analysis of Performance with Online Learning Alone

In the absence of offline learning, the initial mine sweepers are too unrefined to produce best
fitness. Online learning improves their behavior as early as the first generation. Even though
initial fitness values may not be satisfactory, however, as generations increase mine sweepers
become more sensitive to the environment with the close corporation of evolutionary phase and
learning phase. After a few (200 to 300) generations, mine sweepers’ performance is as good as

those that included offline learning.
7.7 Analysis of Offline Learning

Figures 7.2, 7.3, 7.4, and 7.5, all exhibit the fact that offline learning significantly improves the
average fitness of the population. In few generations, the best fithess values are reached.
Although the offline learning considerably improves the fitness for the first few generations, after a
large number of generations the effect of offline learning is not noticeable. Hence, we conclude

that offline learning 1s necessary but not essential for the adaptability.
7.8 Comparisons between Different Approaches

The results of all our experiments indicate that the online learning is the key factor for adapting in
drifting environments. We have experimented with different types of online learning such as
global and local online methods individually as well as in combination with offline learning.

Comparisons among these experimental results provide more insight into the online learning.

The Global online learning method does not use a training set to guide the mine sweepers in the
new environment but uses a heuristic function to produce guiding outputs. Local online learning
uses a small training set to guide the mine sweepers in a drifting environment. The local online
learning algorithm performs slightly better than the global online learning But global online
fearning is faster than local onkne learning. Global and local online learning methods are further

categorized based on the learning rule that is used to update the weights.

i. Global Online and Local Online Methods with Delta Rule (Learning Phase) and Offline
Learning:

Figures 7.4 and 7.6 depict the performances of offline learning and the local online method with
delta rule, and offline learning and the global oniine method with delta rule, respectively, in a
drifting environment. Figures 7.4 and 7.6 exhibit that both experiments have their highest ever
fitness values above 2000 units, but local online method’s highest average fitness value is better
than that of the global online method. The local online graph (Figure 7.4) i1s smoother than that of

96

the global one due to its close cooperation with offline learning. Both offline learning and the local
online method of learning phase require a training set. The global online method depends on
heuristic function and does not benefit from offline learning. In our application global online
learning optimizes only the speed of the mine sweepers and does not improve their navigation to
avoid hitting the obstacles. Hence, the generation’'s best fitness deviates from the best ever
fitness (Figure 7.6).

Global Online with Delta Rule and Offline

2500

1500 4

1000

Fitness

——Num Species
—— Best ever Fitness
This gens Fitness

—— Avg Fitness

500 +

-500 =

Figure 7.6 The fitness of intelligent agents when global online with delta rule of learning phase, evolutionary phase
and offline learning are combined

ii. Global Online and Local Online methods with Delta Rule of Learning Phase:

Figures 7.5 and 7.7 depict the performances of local online and global online methods with delta
rule, respectively. In absence of offline learning, global online method with delta rule attained the
highest fitness in comparison to the local online method with delta rule. Also, it can be observed
that the average fitness of global online learning is far better than the local online learning. But
global online learning graph (Figure 7.7) shows more deviations of generation’s fitness from the
best ever fitness. In fact, local online learning graph is smooth. Absence of offline learning
affected the average fitness of local online learning. But the absence of offline learning did not
have considerable effect on global online learning method.

97

Global Onlline with Delta Rule

2000 "

1500 Enie e ————e e Wy e)
——MNum Species
—— Best ever Fitness

This gens Fitness
|~ Avg Fitness

Fitness

0 200 400 600 800 1000 1200
Generations

Figure 7.7 The fitness of intelligent agents when global online with delta rule of learning phase and evolutionary phase

iii. Global Online and Local Online methods with Rule Evolution and Offline learning:

Figures 7.8 and 7.9 depict the performances of global online and local online methods of learning
phase with rule evolution and offline learning, respectively. Figure 7.9 shows that local online
method’s performance is superior to global online method's (Figure 7.8) performance. The reason
for the decrease in the fitness of global online can be attributed to the randomness introduced by
the generalized rule. The learning rule attempts to adapt to provide the best fitness possible.
However, the global online learning directs the evolution of learning rule with respect to mine
sweeper's speed only. Hence, the low fitness values are noticed for global online learning with
rule evolution. But on the contrary, the same reason contributes towards better average fitness
for global online learning. Although local online learning attains highest fitness, it still suffers from
the deviation of generation's fitness from best ever fitness. These deviations are due to the
imperfect nature of the evolving rule. If we continue the experiments for a large number of
generations, the deviations at some point tend to decrease and then increase after a certain
number of generations. This is due to the evolutionary process of the learning rule. When the
general rule approximates the delta rule, in the process of evolution, the performance of mine
sweepers is much better for both global and local online methods. Furthermore, in the rule

evolution the efficiency of the guidance is observed to play an important role.

98

Global Online with Rule Evolution and Offline

——Num Species
—— Best ever Fitness

This gens Fitness
—— Avg Fitness

Generations

Figure 7.8 The fitness of intelligent agents when global online with rule evolution of learning phase, evolutionary phase
and offline learning are combined

99

Local Online with Rule Evolution and Offline

—— Num Species
—— Best ever Fitness

This gens Fitness
—— Avg Fitness

Generations

Figure 7.9 The fitness of intelligent agents when local online with rule evolution of learning phase. evolutionary
phase and offline learning are combined

iv. Global Online and Local Online Methods with Rule Evolution:

Figures 7.10 and 7.11 depict the performance of global and local online methods with rule
evolution, respectively. The absence of offline learning does not have much effect on global
online method. Although local online learning has higher fitness than the global online learning,
local online learning is greatly affected by the absence of offline learning and its generation’s
fitness deviates considerably from the best ever fitness. Mine sweeper population’s average
fitness is higher with global online learning than local online learning. Also, global online learning
graph (Figure 7.10) is smoother than local online learning (Figure 7.11).

100

Global Online with Rule Evolution

——Num Species
—— Best ever Fitness

This gens Fitness
— Avg Fitness

Generations

Figure 7.10 The fitness of intelligent agents when global online with rule evolution of learning phase and evolutionary
phase

101

Local Online with Rule Evolution

1800 S

1600 + P S R

1400 +——————— = = e i _———= —— e e

1200 et ——————]

1000 WA e —
w I —— Num Species
2 —— Best ever Fitness
£ 800 :
= This gens Fitness
= — Avg Fitness

600

400

200 | ML TS

0 7 - : - =
Q 200 400 600 800 1000 1z|oo
200 —_
Generations
7.11 The fitness of intelligent agents when local online with rule evolution of learning phase and evolutionary phase

v. Online learning vs. GAs only:

Figures 7.2, 7.5, and 7.7 depict the performances of only GAs, local online learning (learning
phase) with GAs (evolutionary phase), and Global online learning (learning phase) with GAs
(evolutionary phase), respectively. The graphs clearly depict the superior performance of online
learning algorithms over only GAs. The evolutionary phase combined with learning phase show
an improved performance in drifting environments. The deviations that are present in Figure 7.2
are due to the fact that the mine sweepers do not learn the changes in the drifting environment.
The GAs are guided by learning phase in drifting environments and are not completely random.

Also, only GAs are frequently observed to generate complicated architectures. Figures 7.12 and
7.13 represent the architectures generated by only GAs, and online learning (learning phase and
evolutionary phase), respectively. Whenever fitness decreases, only GAs are unable to capture
the changes in the environment and therefore attempt to increase the complexity of the
architectures in order to improve the fitness. But GAs (evolutionary phase) when combined with
the learning phase generate architectures that are tuned to the subtleties of environment with the

help of continuous learning from learning phase.

102

Best Fitness so far: 1574

This Generation's Fitness : 1574

This Generation's Average Fitness : 792.56
Num Species: 9

Generation: 2173

® 9O " OO OO OO L L R BN B R B B B AR

Figure 7.12 A sample run of “GAs Only” showing the complex architectures generated

TRRRAL A B VR BB AR A Aotenad FEROAE BRI LIS A REA R AR TLIAE o AResh SLILEE RASSLoARLES S e

Best Fitness so far: 10068
This Generation's Fitness : 10065

'This Generation's Average Fitness : 3240.76
Num Species: 11

Generation: 4385 ° ° ° o

® 0 0 0 0 0 00 0 0 0 ® S 0 0 0 0 00 0 0 O

:"\ N I"'\

L o L] L \
* O O 0 OO0 00O O ® ® 0 0 00 00 0 0 0

Figure 7.13 A sample run of “Only Online Learning” showing the simple architectures generated even after 4000
generations.

103
7.9 The Factors that influence the performance of Application

Due to the involvement of large number of variables, the application’s performance depends on
certain important factors. The following provides brief analysis of some important factors.

i. Number of Time Units per Generation:

The time units directly affect the performance. When there are more time units per generation,
the mine sweepers can explore more area and thus increase their fitness by finding more mines.
In our application, an environment always contains a fixed number of mines. Hence the fitness is
directly proportional to the number of time units per generation. In an environment without mines,
the fitness is directly proportional to the number of time units per generation until a saturation

point and then the fitness stays constant.

ii. Number of Mine Sweepers:
The number of mine sweepers affects the diversity of the population. If there is a large number of
mine sweepers, then there is a fair chance of finding an effective architecture in less time. When

the population is more diverse, the genetic algorithms can generate better fit offspring.

iii. Number of Generations:
As the generations increase the mine sweepers get better and better. However, if the changes in
the environment are not significant, then the MBP over-trains the networks after a large number

of generations. Over-training reduces the fithess and the architectures get complicated.

iv. Number and Type of Obstacles Present:

As the environments are of equal size for all generations, number and type of the obstacles
present in the environments affect the fitness by either offering more area to explore or by
constraining the mine sweepers in the environment. Fitness mainly depends on the amount of
area that has been explored. The type of obstacles also affect the fitness. A rectangular obstacle
may occupy more space than a triangular obstacle. Hence, the number of obstacles present in

the environment is inversely proportional to the fitness value in that environment.

v. Fitness criteria:

The number of generations needed to evolve a network depends on the fitness criteria. If we
have simple fitness criteria then we need fewer generations to evolve a network. The number of
generations required depends on the complexity of the fithess criteria. Figure 7.14 depicts the

graph for simple fitness criteria area exploration.

104

Local Online with Delta Rule and Only Exploration as Fitness

TR 1T S T T T T
s T

A

"

—— Num Species
—— Best ever Fitness
This gens Fitness

0 200 400 600 800 1000 1200
Generations

Figure 7.14 The fitness of intelligent agents with online learning and simple fitness criteria

The above graph demonstrates that within 600 generations a best performing network is evolved.
If the fitness criterion is complex, a best performing network requires many more generations to
evolve.

Therefore, all key factors (number of time units, number of mine sweepers, number of
generations, number of obstacles and fitness criteria) have significant effect on the performance
of the algorithm. As our algorithm is guided (learning phase) and random (evolutionary phase),
these factors play an important role in evolving an adapting network for drifting environments.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK
Overview

We have proposed a hybrid algorithm that can learn to adapt to new environments and suggested

possible extensions to the present work.
8.1 Conclusion

Designing neural networks is a tedious process that requires lots of expertise and time, since a
large number of variables may be involved. Evolutichary (Genetic) Algorithms have been
successful in automatically generating efficient neural networks. The design of neural networks
involves three different aspects namely: connection weights, architecture, and learning rules.
There are no algorithms present that can evolve a neural network using simultaneous evolution of
weights, architecture, and learning rules due to the complexity of the process. Our algorithm
provides an efficient way to achieve the simultaneous evolution of all three aspects to generate
efficient neural networks for drifting environments. Our algorithm is capable of evolving
feedforward as well as recurrent neural networks and focuses on a key issue: Dynamism in the
environment. With drifting environments the nature and variables of the environment change over
time, emphasizing the importance of adapting to the changes in the environments. We provided a
theoretically motivated hybrnd adaptive learning algorithm for the drifting environments. Our
algorithm design is based on the following evolutionary characteristics.
* Automatic design and generation of dynamic neural networks using evolution.

e A continuous (life-long) learning mechanism for these dynamic networks.

in addition to evolution, we used online learning mechanism to fine-tune the evolved networks for
drifting environments. We observed that complete evolution with an online learning mechanism
enabled the neural networks to adapt to changing environments efficiently in a short period of
time. We designed and successfully used two types of online learning namely heuristic online

{global online) and guided online (local online).

Our experimental results demonstrate the ability of our algorithm to evolve efficient neural
networks with simple architectures in few hundreds of generations. We have evolved neural

105

106

networks for mine sweepers in an environment that changes from one generation to the next and
our results indicate great improvement in the mine sweepers’ behavior. In addition, our results
indicate that our algorithm successfully evolved simple and easy-to-fine-tune networks in very few

generations.

We have used a variation of backpropagation algorithm, which can adjust the connection weights
for a random and dynamic neural network without the need for re-arrangement into layers. Our
modified backpropagation (MBP) can handle feedforward and recurrent networks. We
successfully evolved learning rules using a simple general linear equation. Our results have
shown that the evolved leaming rule is as effective as the delta rule. Many real time applications
do not have an input-output training set, hence we formulated the heuristic online or global online
which uses a heuristic function to improve the agent's (mine sweepers) performance in the

environment.

Our results show the performance of the hybrid algorithm with online learning is far superior to the
performance of only evolutionary algorithms, even with complete simultaneous evolution. This
underlines our basic claim that life-long learning is an important mechanism in adaptation in the

dnfting environments.

As our algorithm mimics human evolution we have successfully used all genetic operators in the
evolutionary process. We have successfully implemented complete evolution and online learning
to achieve effective design automation of neural networks with the ability to adapt to the dnifting
environments. Finaily, our algonthm can be effectively used with artificial life as well as artificial

agents in computer games.

107

8.2 Future Work

= We have used supervised learning approach in our aigorithm. Some real time
applications do not support this approach. Hence future work could be extending the

algorithm to use unsupervised learning approach.

= One can extend the algorithm to use online evolution instead of online learning. It would

be interesting to compare these two methods.

= Our algorithm generates dynamic networks but the input and output nodes are fixed in
the algorithm. Hence it can be an effective extension if we can add or delete input and

output nodes as need arises.

» Modified backpropagation can be optimized to run faster. Also, it can be an interesting

phenomenon to Implement incremental evolution and observe the improvements if any.

APPENDIX

#ifndef C2DMATRIX_H
#define C2DMATRIX_H

1/

/!

// Name: C2DMatrix.h
/!

// Authors:

// Created by Mat Buckland 2002
// Modified by Anil kumar Enumulapally 2004
I/ Anil kumar Enumulapally 2005

// Desc: Matrix class from the book Game AI Programming with Neural Nets
// and Genetic Algorithms.

/!
/==

#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <vector>

#include "utils.h"
struct SPoint;

using namespace std;

class C2DMatrix

{

private:

struct S2DMatrix
{

double _11, _12, 13;

double _21, _22, 23;
double _31, _32, _33;

S2DMatrix()
_11=0; _12=0; _13=0;
_21=0; _22=0; _23=0;
_31=0; _32=0; _33=0;
}

friend ostream &operator<<(ostream& os, const S2DMatrix &rhs)
{
0s << "\n" << rhs._11 << " "<<rhs._12 << " " << rhs._13;
0s << "\n" << rhs._21 << " "<<rhs._22 << " " << rhs._23;

0s << "\n" << rhs._31 << " "<<rhs._32 << " " << rhs._33;

108

return os;

}
3
S2DMatrix m_Matrix;

//multiphes m_Matrix with min
inline void S2DMatrixMultiply(S2DMatrix &mlIn);

pubhc:
C2DMatrix()
{
//intiahze the matrix to an tdentity matrix
Identity();
//create an identity matrix
void Identity();

//create a transformation matrix
void Translate(double x, double y);

//create a scale matrix
void Scale(double xScale, double yScale);

//create a rotation matrix
void Rotate(double rotation);

//applys a transformation matrix to a std::vector of points
inline void TransformSPoints(vector<SPoint> &vPaoints);

}i

//muitiply two matrices together

inline void C2DMatrix::S2DMatrixMultiply(S2DMatrix &miIn)

{
S2DMatrix mat_temp;

//first row

mat_temp._11 = (m_Matrx._11*mIn._11) + (m_Matrix._12*mIn._21) +

(m_Matrix._13*mIn._31);

mat_temp._12 = (m_Matrix._11*mlIn._12) + (m_Matrix._12*miln._22) +

(m_Matrix._13*mIn._32);

mat_temp._13 = (m_Matrix._11*mIn._13) + (m_Matrix._12*miIn._23) +

(m_Matrix._13*miIn._33);

//second

mat_temp._21 = (m_Matrix._21*miIn._11) + (m_Matrix._22*miIn._21) +

(m_Matrix._23*miIn._31);

mat_temp._22 = (m_Matrix._21*min._12) + (m_Matrix._22*miln._22) +

{m_Matrix._23*min._32);

mat_temp._23 = (m_Matrix._21*mIn._13) + (m_Matrix._22*mlIn._23) +

(m_Matrix._23*miIn._33);

[/third

mat_temp._31 = (m_Matrix._31*mIn._11) + (m_Matrix._32*mIn._21) +

(m_Matrix._33*mlIn._31);

mat_temp._32 = (m_Matrix._31*mlIn._12) + (m_Matrix._32*mlIn._22) +

(m_Matrix._33*min._32);

mat_temp._33 = (m_Matrix. _31*mlIn._13) + (m_Matrix._32*mlIn._23) +

{m_Matrix._33*mIn._33);

m_Matrix = mat_temp;

109

110

//applies a 2D transformation matrix to a std::vector of SPoints
inline void C2DMatrix:: TransformSPoints{vector<SPoint> &vPoint)
{

for (int i=0; i<vPoint.size(); ++1)

double tempX =(m_Matrix._11*vPoint[i].x) + (m_Matrix._21*vPoint[i].y) +
{m_Matrix._31);

double tempY = {m_Matrix._12*vPoint[i].x) + (m_Matrix._22*vPoint[1].y) +
{m_Matrix._32);

vPointfi].x = tempX;

vPointfi].y = tempy;

#endif

111

#include "C2DMatrix.h"”

;;///

// Matrix functions

/!
i
//create an identity matrix

void C2DMatrix::Identity()

{ m_Matrix._11 = 1; m_Matrix._12 = 0; m_Matrix._13 = 0;
m_Matrix._21 = 0; m_Matnx._22 = 1; m_Matrix._23 = 0;
m_Matrix._31 = 0; m_Matnx._32 = 0; m_Matrix._33 = 1,
}

//create a transformation matnx
void C2DMatrix::Translate(double x, double y)

{ S2DMatrix mat;
mat._11 = 1; mat._12 = 0; mat._13 = 0;
mat._21 = 0; mat._22 = 1; mat._23 = 0;
mat._ 31 =x; mat._32=y; mat._33=1;

//and multiply
S2DMatrixMultiply(mat);

3

//create a scale matrix
void C2DMatrix::Scale(double xScale, double yScale)

{ S2DMatrix mat;
mat._11 = xScale; mat._12 = 0; mat._13 = 0;
mat._21 = 0; mat._22 = yScale; mat._23 = 0;
mat._31 = 0; mat._32 = 0; mat._33 = 1,
//and multiply

}SZDMatrlxMultlply(mat);

//create a rotation matrix
void C2DMatrix: :Rotate(double rot)

{
S2DMatrix mat;

double Sin = sin(rot);
double Cos = cos(rot);

mat._11 = Cos; mat._12 = Sin; mat._13 = 0;
mat._21 = -Sin; mat._22 = Cos; mat._23 = 0;
mat._31 = 0; mat._32 = 0;mat._33 =1,

//and multiply
S2DMatrixMultiply(mat);

3

112

#ifndef CCONTROLLER _H
#define CCONTROLLER_H

1/

/!

// Name: CController.h
/!

// Authors:

// Created by Mat Buckland 2002
// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005
/!

// Desc: Controller class for Anil Smart Sweepers

/!

/!

#include <vector>
#include <sstream>
#include <string>
#include <windows.h>

#include "CMinesweeper.h"
#include "utils.h"

#include "C2DMatrnix.h"
#include “SVector2D.h"”
#include "CParams.h"
#include "Cga.h"”
//#include <fstream>

using namespace std;

class CController

{
private:

//storage for the entire population of chromosomes
Cga* m_pPop;

//array of sweepers
vector<CMinesweeper> m_vecSweepers;

//and the mines
vector<SVector2D> m_vecMines;

//array of best sweepers from last generation (used for
//display purposes when 'B' is pressed by the user)
vector<CMinesweeper> m_vecBestSweepers;

Int m_NumSweepers;

//vertex buffer for the sweeper shapes vertices
vector<SPoint> m_SweeperVB;

//vertex buffer for objects
vector<SPoint> m_ObjectsVB;

//vertex buffer for the mine shape's vertices
vector<SPoint> m_MineVB;

//stores the average fithess per generation
vector<double> m_vecAvFitness;

//stores the best fitness per generation

vector<double> m_vecBestFitness;
//best fitness ever

double m_dBestFitness;

float m_dAvgFitness;

//pens we use for the stats

HPEN m_RedPen;
HPEN m_BluePen;
HPEN m_GreenPen;
//HPEN m_BlackBrush;

HPEN m_GreyPenDotted;
HPEN m_RedPenDotted;
HPEN m_0OldPen;

HBRUSH m_RedBrush;

HBRUSH m_BlueBrush;

HBRUSH m_BlackBrush;
//HBRUSH m_BlueBrush;

//local copy of the handie to the application window
HWND m_hwndMain;

//local copy of the handle to the info window
HWND m_hwndInfo;

//toggles the speed at which the simulation runs
bool m_bFastRender;

//when set, renders the best performers from the
//previous generaion.
bool m_bRenderBest;

//cycles per generation
int m_iTicks;

//generation counter
int m_tGenerations;

//local copy of the client window dimensions
Int m_cxClient, m_cyChent;

//this is the sweeper who's memory celis are displayed
int m_IViewThisSweeper;

void PlotStats(HDC surface)const;

void RenderSweepers(HDC &surface, vector<CMinesweeper> &sweepers);
void RenderSensors (HDC &surface, vector<CMinesweeper> &sweepers);
public:
CController(HWND hwndMain, int cxClient, int cyClient);
~CController();
void Render(HDC &surface);
void WorldTransform1(vector<SPoint> &VBuffer, SVector2D vPos);
void RenderMines(HDC &surface, vector<SVector2D> &mines);
//renders the phenotypes of the four best performers from
//the previous generation

void RenderNetworks(HDC &surface);
void WriteResults();

113

114

void GeneratePoint(int &x, int &y);
float AvgFitness()

return m_dAvgFitness;

boot

Update();

----- accessor methods

1
bool
void
void

bool
void

void

FastRender()const{return m_bFastRender;}
FastRender(bool arg){m_bFastRender = arg;}
FastRenderToggle(){m_bFastRender = 'm_bFastRender;}

RenderBest()const{return m_bRenderBest;}
RenderBestToggle(){m_bRenderBest = 'm_bRenderBest;}

PassInfoHandle(HWND hnd){m_hwndInfo = hnd;>}

vector<double> GetFitnessScores()const;

void

>i

#endif

ViewBest(int val)

if ((val>4) || (val< 1))
{

return;

m_iViewThisSweeper = val-1;

#1include "CController.h"
//#nclude "file.h"
#include<fstream>
#include <string>
#include <sstream>

#include <stdio.h>

#define PRINT OutputDebugString

//these hold the geometry of the sweepers and the mines

const iInt NumSweeperVerts = 16;
vector<double> sensors;
vector<double> transsensors;
bool bBest;

int iEnv=0;

char *sEnv="";

// Inttiahize Mine sweeper vertices

const SPoint sweeper[NumSweeperVerts] = {SPoint(-1, -1),

SPoint(-1, 1),
SPoint(-0.5, 1),
SPoint(-0.5, -1),

SPoint(0.5, -1),
SPoint(1, -1},
SPoint(1, 1),
SPoint(0.5, 1),

SPoint(-0.5, -0.5),
SPoint(0.5, -0.5),

SPoint(-0.5, 0.5),
SPoint(-0.25, 0.5),
SPoint(-0.25, 1.75),
SPoint(0.25, 1.75),
SPoint(0.25, 0.5),
SPoint(0.5, 0.5)};

//Initialize Mine vertices

const int NumMineVerts = 4;

const SPoint mine[NumMneVerts] = {SPoint(-1, -1),
SPoint(-1, 1),
SPoint(1, 1),
SPoint(1, -1)3};

//Initialize object vertices
int NumObjectVerts;

int NumObjectVerts5=44;
const SPoint objects[44] =

SPoint(200,60),
SPoint(200,60),
SPoint(200,100),
SPoInt(200,100),
SPoint(160,100),
SPoint(160,100),
SPoint(160,200),
SPoint(160,200),
SPoint(80,200),

115

SPoint(80, 60),

116

SPoint(80,200),
SPoInt(80,60),

SPoint(250,100),
SPoint(300,40),
SPoint(300,40),
SPoint(350,100),
SPoInt(350,100),
SPoint(250, 100),

SPoint(220,180),
SPoint(320,180),
SPaInt(320,180),
SPoint(320,300),
SPoInt(320,300),
SPoInt(220,300),
SPoint(220,300),
SPoint(220,180),

SPoint(12,15),
SPoint(380, 15),
SPoint(380,15),
SPoint(380,360),
SPoint(380,360),
SPoint(12,360),
SPoint(12,360),
SPoint(12,340),
SPoint(12,340),
SPoint(100,290),
SPoint(100,290),
SPoint(12,240),
SPoint(12,240),
SPoint(12,340),
SPomt(12,340),
SPoint(12,15),
SPoint(12,15)};

const int NumObjectVertsl = 20;
const SPoint objects1[NumObjectVertsl] = {

SPoint(12,15),
SPoint(380, 15),
SPoint(380,15),
SPoint(380,360),
SPoint(380,360),
SPoint(12,360),
SPoint(12,360),
SPoint(12,15),
SPoint(80, 60),
SPoint(200,60),
SPoint(200,60),
SPoint(200,100),

SPoint(200,100),

117

SPoint(160,100),
SPoInt(160,100),
SPoint(160,200),
SPoint(160,200),
SPoint(80,200),
SPoInt(80,200),

SPoInt(80,60)
3

const int NumObjectVerts2 = 14,
const SPoint objects2[NumObjectVerts2] = {

SPoint(12,15),
SPoint(380, 15),
SPoint(380,15),
SPoint(380,360),
SPoint(380,360),
SPoint(12,360),
SPoint(12,360),
SPoint(12,15),
SPoint(250,100),
SPoint(300,40),
SPoint(300,40),
SPoint(350,100),
SPoint(350,100),

SPoint(250, 100)
3

const int NumObjectVerts3 = 16;
const SPoint objects3[NumObjectVerts3] = {

SPoint(12,15),
SPoint(380, 15),
SPoint(380,15),
SPoint{380,360),
SPomnt(380,360),
SPoint(12,360),
SPoint(12,360),

SPoint(12,15),

SPoint(220,180),
SPoint(320,180),
. SPoint(320,180),
SPoint(320,300),
SPoint(320,300),
SPoint{220,300),
SPoint(220,300),

SPoint(220,180)
i

const int NumObjectVerts4 = 16;
const SPoint objects4[NumObjectVerts4] = {

SPoint(12,15),
SPoint(380, 15),
SPoint(380,15),
SPoint(380,360),
SPoint(380,360),
SPoint(12,360),
SPoint(12,360),
SPoint(12,15),
SPoint(12,360),
SPoint(12,340),
SPoint(12,340),
SPoint(100,290),
SPoint(100,290),
SPoint(12,240),
SPoint(12,240),
SPoint(12,15))

//Create or append the results into a excel file
fstream store1("Evolution_Rules_Local_No_Off2.xis", fstream::in | fstream::out | fstream::app);

[/-=~==- -constructor:
/
// inttilaize the sweepers, their brains and the GA factory
/!
//
CController::CController(HWND hwndMain,
int cxClient,

int cyClient): m_NumSweepers(CParams::iINumSweepers},

118

m_bFastRender(false),

m_bRenderBest(false),

m_hwndMain(hwndMain),

m_hwndInfo(NULL),

m_iGenerations(0),

m_cxChent(cxChent),
m_cyClent(cyClient),
m_IViewThisSweeper(0),

m_dAvgFitness(0)

{

119

m_iTicks(0),

storel<<"Generation"< <"\t"<<"Num Species"< <"\t"< <"Best ever Fitness"<<"\t"<<"This gens
Fitness"< <"\t"<<"Avg Fitness"<<"\t"<<"Env_no"<<"\t"<<"Env_name"<<endl;
if(CParams::i0fflineTraining==1)

{

//Perform offline stage

vector<double> fitness;
double dTempFitness;
int ilterSize=10;//Number of iterations to be performed

//Create Random Networks
for (int i=0; i<m_NumSweepers; ++1)

m_vecSweepers.push_back(CMinesweeper());

¥

//Create the population

m_pPop = new Cga(CParams::iNumSweepers,
CParams::iNumInputs,
CParams::iNumOutputs,
CParams: :10fflineTraining,
hwndMain,
10,10);

//create the phenotypes

vector<CNeuralNet*> pBrains = m_pPop->CreatePhenotypes();
for(int ilter=0,i_tmp_here=0;ilter<10;ilter++,_tmp_here++)
{

fithess.clear();

for (int 1=0; 1<pBrains.size(); i++)

{

//Stbre the mean squared error from Modified Backpropagation

dTempFitness=pBrains[i]->offlineTraining{m_hwndMain);
// Fitness is defined as 1/error here
fitness. push_back(1/dTempFitness);
}//end of | FOR loop
// Perform Genetic Operations
vector<CNeuralNet*> pBrains = m_pPop->Epoch(fitness,1);

}//end of ilter FOR loop

120

//assign the phenotypes

for (1=0; i<m_NumSweepers; 1++)

{
m_vecSweepers[i].InsertNewBrain(pBrains[il);
m_vecSweepers[1].SetStartingPoint(180,200);

//lets create the random mines
for(1=0;1<50;1++)

{
int tempx1,tempyl;
GeneratePoint(tempx1,tempyl);
m_vecMtnes.push_back{SVector2D(tempx1,tempy1));
¥

//and the vector of sweepers which will hold the best performing sweepers
for (1=0; 1<CParams::INumBestSweepers; ++1)

{
m_vecBestSweepers.push_back(CMinesweeper());
¥
b
else
{

//We are in onhne learning
//let's create the mine sweepers
for (int i=0; i<m_NumSweepers; ++i)

{
b

//lets create the random mines
for(1=0;1<50;1++)

m_vecSweepers.push_back(CMinesweeper());

{
int tempx1,tempyl;
GeneratePoint(tempx1,tempyl);
m_vecMines.push_back{SVector2D(tempx1,tempy1));
¥

//and the vector of sweepers which will hold the best performing sweepers
for (1=0; 1<CParams::iINumBestSweepers; ++1)

{
}

m_vecBestSweepers.push_back(CMinesweeper());

m_pPop = new Cga(CParams::iINumSweepers,
CParams::INumInputs,
CParams::INumOutputs,
CParams: :iOfflineTraining,
hwndMain,
10,10);

//create the phenotypes
vector<CNeuralNet*> pBrains = m_pPop->CreatePhenotypes();

//assign the phenotypes
for (1=0; 1I<m_NumSweepers; 1++)

{

m__vecSweepers[i1].InsertNewBrain(pBrains[i]);

>
}//end of offline flag ELSE

121

//create a pen for the graph drawing

m_BluePen = CreatePen(PS_SOLID, 1, RGB(0, 0, 250));
m_RedPen = CreatePen(PS_SOLID, 1, RGB(255, 100, 0));
m_GreenPen = CreatePen(PS_SOLID, 1, RGB(0, 180, 0));

m_GreyPenDotted = CreatePen(PS_DOT, 1, RGB(100, 100, 100));
m_RedPenDotted = CreatePen(PS_DOT, 1, RGB(200, 0, 0));

m_OldPen = NULL;

//and the brushes

m_BlueBrush = CreateSolidBrush(RGB(0,0,244));
m_RedBrush = CreateSolidBrush(RGB(150,0,0));
m_BlackBrush= CreateSolidBrush(RGB{(0,0,0));

//fill the vertex buffers
for (int i1=0; 11 <NumSweeperVerts; ++il)

{
}

//fill mine vertex buffers
for (int 12=0;12<NumMineVerts; ++12)

m_SweeperVB.push_back(sweeper{i11);

m_MineVB.push_back(minefi2]);
3

// Randomely generate the objects in the environment
int temp=RandInt(0,15);

if(temp<=2)

{

sEnv="SquareRect";

iEnv=1;

m_ObjectsVB.clear();
NumObjectVerts=NumObjectVertsl;

for (int i2=0; 12<NumObjectVerts; ++12)
{

m_0ObjectsVB.push_back(objects1[i2]);

3
if((temp>2) && (temp<=5))
{

sEnv="UpTraingle";

{Env=2;
NumObjectVerts=NumObjectVerts2;
m_ObjectsVB.clear(});

for (int 1=0; i<NumObjectVerts2; ++1i)

{

m_ObjectsVB.push_back{objects2[i]);
}

3}
iIf((temp>5) && (temp<=8))
{

sEnv="Rectangle";

IEnv=3;
NumObjectVerts=NumObjectVerts3;
m_ObjectsVB.clear();

for (int 1=0; i<NumObjectVerts3; ++1)
{

3

m_ObjectsVB.push_back(objects3[i]);

If((temp>8) && (temp<=10))
{

sEnv="VerticalTraingle";

IEnv=4;
NumObjectVerts=NumObjectVerts4;
m_0ObjectsVB.clear();

for (int i=0; i<NumObjectVerts4; ++1)

{ m__ObjectsVB.push_back(objects4{i]);
) }
if((temp>10) && (temp<=15))
{ sEnv="Full";

iEnv=5;

NumObjectVerts=NumObjectVerts5;
m_ObjectsVB.clear();
for (int i=0; i<NumObjectVerts5; ++1)

{
m_ObjectsVB.push_back{objects[1]);
¥
¥
3}
1/ destructor
/
1
CController::~CController()
if (m_pPop)
delete m_pPop;
¥
DeleteObject(m_BluePen);
DeleteObject(m_RedPen);
DeleteObject(m_GreenPen);
DeleteObject(m_OldPen);
DeleteObject(m_GreyPenDotted);
DeleteObject(m_RedPenDotted);
DeleteObject(m_BlueBrush);
DeleteObject(m_RedBrush);
DeleteObject(m_BlackBrush);
}
[/~ Update
/
// This is the main workhorse. The entire simulation 1s controlled from here.
//
/!
bool CController::Update()
{

//run the sweepers through NUM_TICKS amount of cycles. During this loop each
//sweepers NN is constantly updated with the appropriate information from its
//surroundings. The output from the NN is obtained and the sweeper i1s moved.

if (m_iTicks++ < CParams::iNumTicks)

for (int 1=0; 1<m_NumSweepers; ++1)

{

bBest=false;

122

123

//update the NN and position
if ({m_vecSweepers[i].Update(m_ObjectsVB,1,m_iGenerations,bBest,m_iTicks))
{
//error in processing the neural net
MessageBox(m_hwndMain, "Wrong amount of NN nputst", "Error”,
MB_OK);

return false;

//see If it's found a mine
int GrabHit = m_vecSweepers[i].CheckForMine(m_vecMines,2);

if (GrabHit >= 0)

{
//we have discovered a mine so increase fitness
m_vecSweepers[i].incrementmineval();
//mine found so replace the mine with another at a random
//position
Int tempx,tempy;
GeneratePoint(tempx,tempy);
m_vecMines[GrabHit] = SVector2D({tempx,tempy);
¥

//update the NNs of the last generations best performers
if (m_iGenerations > 0)

{
/* if(m_vecBestSweepers.size()!=4)
MessageBox(m_hwndMain, "Wrong amount of bests!", "Error", MB_OK);
*/

for (int 1=0; i<m_vecBestSweepers.size(); ++1)

{
bBest=true;
//update the NN and position
If
(Im_vecBestSweepers[i].Update(m_ObjectsVB,1,m_iGenerations,bBest, m_iTicks))

//error in processing the neural net
MessageBox{m_hwndMain, "Wrong amount of NN inputs!”, "Error",

MB_OK);
return false;
b3
>
b3

>

//We have completed another generation so now we need to run the GA
else

{

float dTempAvg=0;
//first add up each sweepers fitness scores. (remember for this task
//there are many different sorts of penalties the sweepers may incur
//and each one has a coefficient)
for (int swp=0; swp<m_vecSweepers.size(); ++swp)
{

m_vecSweepers[swp].EndOfRunCalculations();

dTempAvg +=m_vecSweepers[swp].Fitness();

124

m_dAvgFitness=dTempAvg/m_vecSweepers.size();

// Writing results to screen
WriteResults();

//increment the generation counter
++m_iGenerations;

//reset cycles
m_iTicks = 0;

//perform an epoch and grab the new brains
vector<CNeuralNet*> pBrains = m_pPop->Epoch(GetFitnessScores(), 0);

//insert the new brains back into the sweepers and reset their
//positions
for (int i=0; i<m_NumSweepers; ++i)

pBrains[i]-
>MutatelearningParameters(CParams: :dActivationMutationRate,

CParams::dMaxActivationPerturbation);
m_vecSweepers[i].InsertNewBrain(pBrains[i]);

m_vecSweepers[i]l.Reset();

}

//Change the objects in the environment randomely
int temp=RandInt(0,15);
if(temp<=2)
{

sEnv="SquareRect";

iEnv=1;

m_ObjectsVB.clear();
NumObjectVerts=NumObjectVerts1;

for (int i2=0; 12<NumObjectVerts; ++i2)
{

m_ObjectsVB.push_back(objects1[12]);

}
if((temp>2) && (temp<=5))
{

sEnv="UpTraingle";

IEnv=2;
NumObjectVerts=NumObjectVerts2;
m_ObjectsVB.clear();

for (int 1=0; 1<NumObjectVerts2; ++i)
{

m_ObjectsVB.push_back(objects2[1]);
}

b
If((temp>5) && (temp<=8))
{

sEnv="Rectangle";

iEnv=3;
NumObjectVerts=NumObjectVerts3;
m_ObjectsVB.clear();

for (int 1=0; I<NumObjectVerts3; ++i)

m_ObjectsVB.push_back(objects3[1]);

¥
if((temp>8) && (temp<=10))
{

sEnv="VerticalTraingle";

1IEnv=4;
NumObjectVerts=NumObjectVerts4;
m_ObjectsVB.clear();

for (int 1=0; 1<NumObjectVerts4; ++1)

{ m_ObjectsVB.push_back(objects4[i]);
s 3
if((temp>10) && (temp<=15))
{ sEnv="Full";

1IEnv=5;

NumObjectVerts=NumObjectVerts5;
m_ObjectsVB.clear();
for (int 1=0; 1<NumObjectVerts5; ++1)

{
b

m_ObjectsVB.push_back(objects[1]);

s

//grab the NNs of the best performers from the last generation
vector<CNeuralNet*> pBestBrains = m_pPop->GetBestPhenotypesFromLastGeneration();

//put them into our record of the best sweepers
for (1=0; 1<m_vecBestSweepers.size(); ++1)

{

m_vecBestSweepers[i].InsertNewBrain{pBestBrains[i]);

m_vecBestSweepers[i].Reset();

//this will call WM_PAINT which will render our scene
InvalidateRect(m_hwndInfo, NULL, TRUE);
UpdateWindow{m_hwndInfo};

3

return true;
>
// RenderNetworks ------------=---------
% Renders the best four phenotypes from the previous generation

void CController: :RenderNetworks(HDC &surface)

if (m_iGenerations < 1)
{
return;

3

//draw the network of the best 4 genomes. First get the dimensions of the
//info window
RECT rect;

125

126

GetClentRect(m_hwndInfo, &rect);

int cxInfo = rect.right;
int cylnfo = rect.bottom;

//now draw the 4 best networks

m_vecBestSweepers[0].DrawNet(surface, 0, cxInfo/2, cyInfo/2, 0);
m_vecBestSweepers[1].DrawNet(surface, cxInfo/2, cxInfo, cyInfo/2, 0);
m_vecBestSweepers[2].DrawNet(surface, 0, cxInfo/2, cylInfo, cylnfo/2);
m_vecBestSweepers[3].DrawNet(surface, cxInfo/2, cxInfo, cylnfo, cyInfo/2);

}

// Render()
//
//
void CController::Render(HDC &surface)
{

//do not render If running at accelerated speed
if ('m_bFastRender)

string s = "Generation: " + itos(m_iGenerations);
TextOut(surface, 5, 0, s.c_str(), s.size());

//select in the blue pen
m_OldPen = (HPEN)SelectObject(surface, m_BluePen);

if (m_bRenderBest)

//render the best sweepers memory cells
m_vecBestSweepers[m_i1ViewThisSweeper].Render(surface);

//render the best sweepers from the last generation
RenderSweepers(surface, m_vecBestSweepers);
// render mines
RenderMines(surface,m_vecMines);

//render the best sweepers sensors
RenderSensors(surface, m_vecBestSweepers);

}

else

{
//render the sweepers
RenderSweepers(surface, m_vecSweepers);

//Enable the following line to see the sensors and feelers for all minesweepers
//RenderSensors(surface,m_vecSweepers);

RenderMines(surface,m_vecMines);

}

SelectObject(surface, m_OldPen);
HBRUSH OldBrush=(HBRUSH)SelectObject(surface,NULL);
SelectObject(surface,m_BlackBrush);
POINT * p;
int ttempNum,199,1_t=0;

//render the objects
//Polygon(surface,p, NumObjectVerts);
for (int i=0; 1I<NumObjectVerts; i+=2)

MoveToEx(surface, m_ObjectsVB[1].x, m_ObjectsVB[i].y, NULL);

LineTo(surface, m_ObjectsVB[1+1].x, m_ObjectsVB[i+1].y);
>

127

//SelectObject(surface,OldBrush);
Y//end if
else
PlotStats(surface);
RECT sr;
sr.top = m_cyClient-50;
sr.bottom = m_cyClient;

sr.left =0;
sr.right = m_cxClient;

¥
>
// RenderSweepers
22 given a vector of sweepers this function renders them to the screen

void CController::RenderSweepers(HDC &surface, vector<CMinesweeper> &sweepers)
for (int i=0; i<sweepers.size(); ++i)

//if they have crashed into an obstacle draw

if (sweepers[i].Collided())

SelectObject(surface, m_RedPen);

else
SelectObject(surface, m_BluePen);
//grab the sweeper vertices
vector<SPoint> sweeperVB = m_SweeperVB;

//transform the vertex buffer
sweepers[i].WorldTransform(sweeperVB, sweepers[1].Scale(});

//draw the sweeper left track
MoveToEx(surface, (int)sweeperVB[0].x, (int)sweeperVB[0].y, NULL);

for (int vert=1; vert<4; ++vert)

{
LineTo(surface, (int)sweeperVB[vertl.x, (int)sweeperVB[vert].y);
b

LineTo(surface, (int)sweeperVB[0].x, (int)sweeperVB[0].y);

//draw the sweeper nght track
MoveToEx(surface, (int)sweeperVB[4].x, (int)sweeperVB[4].y, NULL);

for (vert=5; vert<8; ++vert)

{
LineTo(surface, (int)sweeperVB[vert].x, (int)sweeperVB[vert].y);
}

LineTo(surface, (int)sweeperVB[4].x, (int)sweeperVB[4].y);

MoveToEx(surface, (int)sweeperVB[8].x, (int)sweeperVB[8].y, NULL);
LineTo(surface, (int)sweeperVB[9].x, (int)sweeperVB[9].y);

MoveToEx(surface, (int)sweeperVB[10].x, (int)sweeperVB[10].y, NULL);

for (vert=11; vert<16; ++vert)

{

LineTo(surface, (int)sweeperVB[vert].x, (int)sweeperVB[vert].y);

}//next sweeper

void CController::RenderMines(HDC &surface, vector<SVector2D> &mines)

//render the mines
for (int 1=0; 1<mines.size(); ++t)

{

{
NULL);
(int)mineVB[vertl.y);

3
}//end of render mines
I/ RenderSensors

/"

SelectObject(surface, m_GreenPen);
//grab the vertices for the mine shape
vector<SPoint> mineVB = m_MineVB;
WorldTransform1(mineVB, mines[i]);

//draw the mines
MoveToEx(surface, (int)mineVB[0].x, (int)mineVB[01.y,

for (int vert=1; vert<mineVB.size(); ++vert)

{

LineTo(surface, (int)mineVB[vert].x,

b

LineTo(surface, (int)mineVB[0].x, (int)mineVB[0].y);

// renders the sensors of a given vector of sweepers

//

void CController: :RenderSensors(HDC &surface, vector<CMinesweeper> &sweepers)

//render the sensors
for (int 1=0; 1<sweepers.size(); ++1)

//grab each sweepers sensor data

vector<SPoint> tranSensors = sweepers{i].Sensors();
vector<double> SensorReadings = sweepers[i].SensorReadings();
vector<double> MemoryReadings = sweepers[i].MemoryReadings();

for (int sr=0; sr<tranSensors.size(); +-+sr)

if (SensorReadings[sr] > 0)

SelectObject(surface, m_RedPen);

else

{
SelectObject(surface, m_GreyPenDotted);

128

129

//make sure we clip the drawing of the sensors or we will get

//unwanted artifacts appearing

if (1((fabs(sweepers[i].Position(}.x - tranSensors[sr].x) >
(CParams::dSensorRange+1))||
(fabs(sweepers[i].Position().y - tranSensors[sr].y) >
(CParams::dSensorRange+1))))

{

MoveToEx(surface,
(int)sweepers[i].Position().x,
(int)sweepers[i].Position().y,
NULL);

LineTo(surface, (int)tranSensors[sr].x, (int)tranSensorsfsr].y);

//render the cell sensors

RECT rect;

rect.left = (int)tranSensors[sr].x - 2;
rect.right = (int)tranSensors[sr].x + 2;
rect.top = (int)tranSensors[srl.y - 2;
rect.bottom= (int)tranSensors[sr]l.y + 2;

if (MemoryReadings[sr] < 0)

FiliRect(surface, &rect, m_BlueBrush);

}
else

FillRect(surface, &rect, m_RedBrush);

S
}
}
H
}
// Write Results into the excel file-~-----=couvu--
void CController::WriteResults()
{
storel<<m_iGenerations<<"\t";
storel <<m_pPop->NumSpecies()<<"\t";
storel<<m_pPop->BestEverFitness()<<"\t";
storel < <m_pPop->BestGenFitness()<<"\t";
storel<<m_dAvgFitness<<"\t";
storel<<IEnv<<"\t";
storel<<sEnv<<endi;
}
void CController: :WorldTransformi(vector<SPoint> &VBuffer, SVector2D vPos)
{

//create the world transformation matrix
C2DMatrix matTransform;

//scale
matTransform.Scale(2, 2);

//translate
matTransform.Translate(vPos.x, vPos.y);

//transform the ships vertices

130

matTransform.TransformSPoints(VBuffer);

¥

// PlotStats

1/

// Given a surface to draw on this function displays some simple stats
1/

void CController::PlotStats(HDC surface)const

{

string s = "Generation: " + itos{m_iGenerations);
TextOut(surface, 5, 85, s.c_str(), s.size());
//storel<<m_iGenerations<<"\t";

s = "Num Species: ' + ttos(m_pPop->NumSpecies());
TextOut(surface, 5, 65, s.c_str(), s.s1ze());
//storel<<m_pPop->NumSpecies()<<"\t";

s = "Best Fitness so far: " + ftos(m_pPop->BestEverFitness());

TextOut(surface, 5, 5, s.c_str(), s.size());

//storel<<m_pPop->BestEverFitness()<<endl;
s = "This Generation's Fitness : " + ftos(m_pPop->BestGenFitness());
TextOut(surface, 5, 25, s.c_str(), s.size());
s = "This Generation's Average Fitness : " + ftos(m_dAvgFitness);
TextOut(surface, 5, 45, s.c_str(), s.size(});

¥

I/ GetFitnessScores -

/!

// returns a std::vector containing the genomes fitness scores

1/ --

vector<double> CController::GetFitnessScores()const
vector<double> scores;

for (int 1=0; i<m_vecSweepers.size(); ++1)

{
scores.push_back({m_vecSweepers[i].Fitness());
¥
return scores;
H
// Generate Point

//Generates a random point which 1s not covered by objects and also not out of boundaries

1/ -
void CController::GeneratePoint(int &x, int &y)

bool bPointFlag=true;
x=180;

y=200;

for(;;)

{

bPointFlag=true;
x=RandFloat() * m_cxClient;
y=RandFioat() * m_cyClient;

if((x<=18)[[(y<=21)[{(x>=370)|[(y>=350))
1 if((x<=12)[1(y<=15)||(x>=380)|[(y>=360))

//for 1

//for 2

//for 3

//for 4

bPointFlag=false;
¥

if((x>=80)&&(x<=200))

if((y<=200)&8&(y>=60))
bPointFlag=false;

if((x>=250)&&(x<=350))

If({y<=100)8&(y>=40))
bPointFlag=false;

If((x>=220)&&(x<=320))

If((y<=300)&&(y>=180))
bPointFlag=false;

If((x>=12)&&(x<=100))

If((y<=340)&&(y>=15))
bPointFlag=false;

3

if(bPointFlag==true) break;
}//end of for

131

#ifndef CGA_H
#define CGA_H

/!

/!

// Name: Cga.h
1

// Authors:

// Created by Mat Buckland 2002

// Modifted by Anmil kumar Enumulapally 2004

I/ Anil kumar Enumulapally 2005

1

// Desc: The evolutionary algorithm class used in the implementation
//
1/
#include <vector>
#include <windows.h>

#include "phenotype.h"
#include "genotype.h"
#mnclude "CSpecies.h”
#include "CParams.h"

using namespace std;

//
/
// this structure is used in the creation of a network depth lookup
// table.

//
struct SplitDepth

double val;
int depth;

SphtDepth(double v, int d):val(v), depth(d){}

class Cga

{
private:

//current population
vector<CGenome> m_vecGenomes;

//keep a record of the last generations best genomes. (used to render
//the best performers to the display If the user presses the 'B' key)
vector<CGenome> m_vecBestGenomes;

//all the species
vector<CSpecies> m_vecSpecies;

//to keep track of innovations
CInnovation* m_pInnovation;

132

//current generation

int m_iGeneration;

int m_iNextGenomelD;
int m_INextSpeciesiD;

int m_iPopSize;

//adjusted fitness scores

double m_dTotFitAd;,
m_dAvFitAds;
//index into the genomes for the fittest genome
int m_IFittestGenome;
double m_dBestEverFitness;
double m_dGenBestFitness ;

//local copy of app handie
HWND m_hwnd;

//local copies of client area
int cxClient, cyClient;

//this holds the precalculated split depths. They are used
//to calculate a neurons x/y position for rendering and also
//for calculating the flush depth of the network when a
//phenotype I1s working in 'snapshot' mode.
vector<SplitDepth> vecSplits;

//used In Crossover

void AddNeuronID(int nodelD, vector<int> &vec);
//this function resets some values ready for the next epoch, kills off
//all the phenotypes and any poorly performing species.
void ResetAndKill();

//separates each individual into its respective species by calculating

//a compatibility score with every other member of the population and

//niching accordingly. The function then adjusts the fitness scores of
//each individual by species age and by sharing and also determines
//how many offspring each individual should spawn.

void SpeciateAndCalculateSpawnLevels();

//adjusts the fitness scores depending on the number sharing the
//species and the age of the species.
void AdjustSpeciesFitnesses();

CGenome Crossover{CGenome& mum, CGenome& dad);
CGenome TournamentSelection(const int NumComparisons);

//searches the lookup table for the dSphtY value of each node in the
//genome and returns the depth of the network based on this figure
int CalculateNetDepth{const CGenome &gen);

//sorts the population into descending fitness, keeps a record of the
//best n genomes and updates any fitness statistics accordingly
void SortAndRecord();

//a recursive function used to calculate a lookup table of split

//depths
vector<SplitDepth> Split(double low, double high, int depth);

133

134

public:
Cga(int size,
int Inputs,
Int outputs,
int offline,
HWND hwnd,
int c¢x,
int cy);
~Cga();
vector<CNeuralNet*> Epoch(const vector<double> &FitnessScores, int 10ffline);

//iterates through the population and creates the phenotypes
vector<CNeuraiNet*> CreatePhenotypes();

//keeps a record of the n best genomes from the last population.
//(used to display the best genomes)
void StoreBestGenomes();

//renders the best performing species statistics and a visual aid
//showing the distribution.
void RenderSpeciesInfo(HDC &surface, RECT db);

//returns a vector of the n best phenotypes from the previous generation
vector<CNeuralNet*> GetBestPhenotypesFromLastGeneration();

/! — accessor methods
int NumSpecies()const{return m_vecSpecies.size();}

double BestEverFitness()const{return m_dBestEverFitness;}
double BestGenFitness()const{return m_dGenBestFitness;}

3

#endif

135

#include "Cga.h"

S -
1/ this constructor creates a base genome from supplied values and creates

/! a population of 'size' similar {same topology, varying weights) genomes
/f
Cga::Cga(int size,
int inputs,
int outputs,
int offline,
HWND hwnd,
int cx,
int cy): m_iPopSize(size),
m_iGeneration(0),
m_plInnovation{NULL),
m_INextGenomeID(0),
m_iNextSpeciesiD(0),
m_tFittestGenome(0),
m_dBestEverFitness(Q),

m_dGenBestFitness(0),
m_dTotFitAd;(0),
m_dAvFitAd;(0),
m_hwnd{(hwnd),
cxClient(cx),
cyClient(cy)

//create the population of genomes
for (int 1=0; 1<m_iPopSize; ++i)

{
b

//create the innovation hist. First create a minimal genome
CGenome genome(1, inputs, outputs);

m_vecGenomes.push_back(CGenome(m_iNextGenomelD++, inputs, outputs));

//create the innovations
m_pInnovation = new CInnovation(genome.Genes(), genome.Neurcns());

//1f this constructor is called in offline learning we add hidden neurons
//to few minimal genomes

if(offline==1)

{

//create minimal genome with hidden neurons
for (int I_temp=0; i_temp<m_iPopSize/2; ++i_temp)

{
double j_temp=RandFloat();

if(J_temp<=RandFloat())
{

m_vecGenomes[i_temp].AddNeuron(0.9,*m_pInnovation,CParams: :iINumTrysToFindOldLink);

b
}//end of OFFLINE-IF

//create the network depth lookup table
vecSplits = Split(0, 1, 0);
¥

// dtor -----

/
1/ -

Cga::~Cga()
{
If (m_pInnovation)
delete m_pInnovation;

m_pInnovation = NULL;

b
+
1/ --CreatePhenotypes
//
// cycles through all the members of the population and creates their

// phenotypes. Returns a vector containing pointers to the new phenotypes

vector<CNeuralNet*> Cga::CreatePhenotypes()

{

vector<CNeuralNet*> networks;
for (int i=0; i<m_iPopSize; i++)

//calculate max network depth
int depth = CalculateNetDepth{m_vecGenomes[i});

//create new phenotype
CNeuralNet* net = m_vecGenomes[i1].CreatePhenotype(depth);

networks.push_back(net);

return networks;

¥

1/ CalculateNetDepth --------------omcmmmmmmoee
1

// searches the lookup table for the dSplitY value of each node in the
// genome and returns the depth of the network based on this figure

1/
int Cga::CalculateNetDepth(const CGenome &gen)

int MaxSoFar = 0;
for (int nd=0; nd<gen.NumNeurons(); ++nd)

for (int i=0; i<vecSplts.size(); ++1)

{

if ({gen.SplitY(nd) == vecSplits[i].val) &&
(vecSphts[il.depth > MaxSoFar))

MaxSoFar = vecSplits[i].depth;

}
3
return MaxSofFar + 2;
>
I o e AddNeuronID --
1/
/! just checks to see if a node ID has already been added to a vector of

// nodes. If not then the new ID gets added. Used in Crossover.
/ ———

void Cga::AddNeuronID(const int nodeID, vector<int> &vec)

for (int 1=0; 1<vec.size(); 1++)

136

137

If (vec[i] == nodeID)

//already added

return;
¥

}

vec.push_back(nodelD);

return;
¥
1/ Epoch
1

// This function performs one epoch of the genetic algorithm and returns
// a vector of pointers to the new phenotypes

/7

vector<CNeuralNet*> Cga::Epoch{const vector<double> &FitnessScores, int ioffline)

{

bool bOffline_flag=false;

//reset appropriate values and kill off the existing phenotypes and
//any poorly performing species
ResetAndKill();

//update the genomes with the fitnesses scored in the last run
for (int gen=0; gen<m_vecGenomes.size(); ++gen)
{

m_vecGenomes[gen].SetFitness(FitnessScores[gen]);

}

//sort genomes and keep a record of the best performers
SortAndRecord();

//separate the population into species of similar topology, adjust
//fitnesses and calculate spawn levels
SpeciateAndCalculateSpawnLevels();

//this will hold the new population of genomes
vector<CGenome> NewPop;

//request the offspring from each species. The number of children to
//spawn is a double which we need to convert to an int.
int NumSpawnedSoFar = 0;

CGenome baby;

//now to iterate through each species selecting offspring to be mated and
//mutated
for (int spc=0; spc<m_vecSpecies.size(); ++spc)

//because of the number to spawn from each species i1s a double
//rounded up or down to an integer it 1s possible to get an overflow
//of genomes spawned. This statement just makes sure that doesn't

//happen
if (NumSpawnedSoFar < CParams::INumSweepers)

//this 1s the amount of offspring this species I1s required to

// spawn. Rounded simply rounds the double up or down,

int NumToSpawn = Rounded(m_vecSpecies[spc].NumToSpawn()});
bool bChosenBestYet = false;

while (NumToSpawn--)

138

//first grab the best performing genome from this species and transfer
//to the new population without mutation. This provides per species
//elitism
If ('bChosenBestYet)

baby = m_vecSpecies[spc].Leader();

bChosenBestYet = true;

b

else
//if the number of individuals In this species is only one
//then we can only perform mutation
if (m_vecSpecies[spc].NumMembers() == 1)
{
//spawn a child
baby = m_vecSpecies[spc].Spawn();

3

//if greater than one we can use the crossover operator
else

//spawnl
CGenome gl = m_vecSpecies[spc].Spawn();

if (RandFloat() < CParams::dCrossoverRate)
//spawn2, make sure it's not the same as gl
CGenome g2 = m_vecSpecies[spc].Spawn();

//number of attempts at finding a different genome
int NumAttempts = 10;

while ((g1.ID() == g2.ID()) && (NumAttempts--))
{

g2 = m_vecSpecies[spc].Spawn();

¥
if (g1.ID() {= g2.ID())
{
if(ioffline==1)
If(bOffline_flag==false)
{

bOffline_flag=true;
baby = Crossover(gi, g2);

}
}//end of offline stage check
else //it 1s online
baby = Crossover(gl, g2);
}//end of crossover constant check

else

{
baby = gi;

++m_INextGenomelD;

baby.SetID(m_iNextGenomelD);

139

if (ioffine==1)
{
//now we have a spawned child lets mutate 1t First there Is the
//chance a neurcn may be added
if (baby.NumNeurons() < CParams::iMaxPermittedNeurons)

1If(bOffline_flag==false)

{
bOffline_flag=true;

baby.AddNeuron(CParams: :dChanceAddNode,
*m_pInnovation,

CParams: :iINumTrysToFindOldLink);
}//end of offline flag check;
}//emd of add neuron mutation

//now there's the chance a link may be added
if(bOffline_flag==false)

{
bOffliine_flag=true;

baby.AddLink(CParams::dChanceAddLink,
CParams::dChanceAddRecurrentLink,
*m_pInnovation,
CParams: :INumTrysToFindLoopedLink,
CParams: :iNumAddLinkAttempts);

3

//mutate the weights
If(bOffline_flag==false)

¢ bOffline_flag=true;
baby.MutateWetghts(CParams::dMutationRate,
CParams::dProbabilityWeightReplaced,
CParams: :dMaxWeightPerturbation);
if(bOffline_flag==false)
¢ bOffline_flag=true;

baby.MutateActivationResponse(CParams: :dActivationMutationRate,

CParams::dMaxActivationPerturbation);

3

}//end of 1offline==

else //for Online

{

//now we have a spawned child lets mutate it! First there is the
//chance a neuron may be added
If {(baby.NumNeurons() < CParams::iMaxPermittedNeurons)

baby.AddNeuron(CParams::dChanceAddNode,
*m_plInnovation,

CParams: :iNumTrysToFindOldLink);
¥

//now there's the chance a link may be added
baby.AddLink(CParams::dChanceAddLink,
CParams: :dChanceAddRecurrentlLink,
*m_plInnovation,
CParams::INumTrysToFindLoopedLink,
CParams::INumAddLinkAttempts);

//mutate the weights
baby.MutateWeights(CParams::dMutationRate,

CParams::dProbabilityWeightReplaced,
CParams: :dMaxWeightPerturbation);
baby.MutateActivationResponse(CParams: :dActivationMutationRate,

CParams: :dMaxActivationPerturbation};
}//end of else offline==1;

//sort the babies genes by their innovation numbers
baby.SortGenes();

//add to new pop
NewPop.push_back(baby);

++NumSpawnedSoFar;
if (NumSpawnedSoFar == CParams::iNumSweepers)

NumToSpawn = 0;

3
}//end while
}//end if
}//next species
//if there 1s an underflow due to the rounding error and the amount
//0of offspring falls short of the population size additional children
//need to be created and added to the new population. This i1s achieved

//simply, by using tournament selection over the entire population.
if (NumSpawnedSoFar < CParams::iNumSweepers)

//calculate amount of additional children required
int Rgd = CParams::iINumSweepers - NumSpawnedSoFar;

//grab them
while (Rgd--)
{

NewPop.push_back{TournamentSelection(m_iPopSize/5));

¥

//replace the current population with the new one
m_vecGenomes = NewPop;

//create the new phenotypes
vector<CNeuralNet*> new_phenotypes;

140

141

for (gen=0; gen<m_vecGenomes.size(); ++gen)

//calculate max network depth
int depth = CalculateNetDepth(m_vecGenomes[gen]);

CNeuralNet* phenotype = m_vecGenomes[gen].CreatePhenotype(depth);

new_phenotypes.push_back(phenotype);
¥

//increase generation counter
++m_iGeneration;

return new_phenotypes;

3

1/ SortAndRecord
/!

// sorts the population into descending fitness, keeps a record of the
// best n genomes and updates any fitness statistics accordingly

/ --

void Cga::SortAndRecord()

{

//sort the genomes according to their unadjusted (no fitness sharing)
//fithesses

sort(m_vecGenomes.begin(), m_vecGenomes.end());
m_dGenBestFitness=m_vecGenomes[0].Fitness();

//1s the best genome this generation the best ever?
If (m_vecGenomes[0].Fitness() > m_dBestEverFitness)

m_dBestEverFitness = m_vecGenomes[0].Fitness();

¥
//keep a record of the n best genomes
StoreBestGenomes();
¥
// StoreBestGenomes
/!

// used to keep a record of the previous populations best genomes so that
// they can be displayed If required.
/!

void Cga: :StoreBestGenomes()

//clear old record
m_vecBestGenomes.clear();

for (int gen=0; gen<CParams::iINumBestSweepers; ++gen)

m_vecBestGenomes.push_back(m_vecGenomes[gen]);

// returns a std::vector of the n best phenotypes from the previous
// generation

vector<CNeuralNet*> Cga::GetBestPhenotypesFromLastGeneration()

{

vector<CNeuralNet*> brains;

for (int gen=0; gen<m_vecBestGenomes.size(); ++gen)

{

142

//calculate max network depth
int depth = CalculateNetDepth(m_vecBestGenomes[gen]);

brains.push_back(m_vecBestGenomes[gen].CreatePhenotype(depth));
¥

return brains;

3

// AdjustSpecies --

/!
// this functions simply iterates through each spectes and calls

// AdjustFitness for each species

1/
void Cga::AdjustSpeciesFitnesses()

for (int sp=0; sp<m_vecSpecies.size(); ++sp)

m_vecSpecies[sp].AdjustFitnesses();

[ommmm e SpeciateAndCalculateSpawnlevels

// separates each individual into its respective species by calculating
// a compatibility score with every other member of the population and
// niching accordingly. The function then adjusts the fitness scores of
// each individual by species age and by sharing and aiso determines
// how many offspring each individual should spawn.

void Cga::SpeciateAndCalculateSpawnlevels()
bool bAdded = false;

//terate through each genome and speciate
for (int gen=0; gen<m_vecGenomes.size(); ++gen)

//calculate its compatibility score with each species leader. If
//compatible add to species. If not, create a new species
for (int spc=0; spc<m_vecSpecies.size(); ++spc)
double compatibility = m_vecGenomes[gen].GetCompatibilityScore(m_vecSpecies[spc].Leader(});

//if this individual is similar to this species add to species
if (compatibility <= CPa\rams::dCompatibllityThreshoId)

m_vecSpecies[spc]l.AddMember(m_vecGenomes[gen]);

//let the genome know which species it's in
m_vecGenomes[gen].SetSpecies(m_vecSpecies[spc].ID());

bAdded = true;

break;
H
}

if (1bAdded)

//we have not found a compatible species so let's create a new one
m_vecSpecies.push_back(CSpecies(m_vecGenomes[gen], m_iNextSpeciesID++));

3

bAdded = false;
¥

//now all the genomes have been assigned a species the fitness scores
//need to be adjusted to take into account sharing and specnes age.
AdjustSpeciesFitnesses();

//calculate new adjusted total & average fitness for the population
for (gen=0; gen<m_vecGenomes.size(); ++gen)

m_dTotFitAd) += m_vecGenomes[gen].GetAdjFitness();
H

m_dAvFitAd; = m_dTotFitAd)y/m_vecGenomes.size();

//calculate how many offspring each member of the population
//should spawn
for (gen=0; gen<m_vecGenomes.size(); ++gen)

double ToSpawn = m_vecGenomes[gen].GetAdjFitness() / m_dAvFitAdj;

m_vecGenomes[gen].SetAmountToSpawn(ToSpawn);
b
//iterate through all the species and calculate how many offspring
//each spectes should spawn
for (int spc=0; spc<m_vecSpecies.size(); ++spc)

m_vecSpecies]spc].CalculateSpawnAmount();

1/ TournamentSelection

CGenome Cga::TournamentSelection({const int NumComparisons)

{
double BestFitnessSoFar = 0;

int ChosenOne = 0;

//Select NumComparisons members from the population at random testing

//against the best found so far
for (int 1=0; i<NumComparisons; ++i)

int ThisTry = RandInt(0, m_vecGenomes.size()-1);
If {(m_vecGenomes[ThisTry].Fitness() > BestFitnessSoFar)
{

ChosenOne = ThisTry;

BestFitnessSoFar = m_vecGenomes[ThisTry].Fitness();

¥
¥

//return the champion
return m_vecGenomes[ChosenOne];

I/ e Crossover ----

CGenome Cga::Crossover(CGenome& mum, CGenome& dad)

{

//helps make the code clearer
enum parent_type{MUM, DAD,};

143

//first, calculate the genome we will using the disjoint/excess
//genes from. This is the fittest genome.
parent_type best;

//\f they are of equal fitness use the shorter (because we want to keep
//the networks as small as possible)
if (mum.Fitness() == dad.Fitness())

//if they are of equal fitness and length just choose one at
//random
if (mum.NumGenes() == dad.NumGenes())

best = (parent_type)RandInt(0, 1};

else

If (mum.NumGenes() < dad.NumGenes())

best = MUM;
+
else
{
best = DAD;
¥
>
¥
else

if (mum.Fitness() > dad.Fitness())

best = MUM;
¥
else

best = DAD;
}

3

//these vectors will hold the offspring's nodes and genes
vector<SNeuronGene> BabyNeurons;
vector<SLinkGene> BabyGenes;

//temporary vector to store all added node IDs
vector<int> vecNeurons;

//create iterators so we can step through each parents genes and set
//them to the first gene of each parent

vector<SLinkGene>::iterator curMum = mum.StartOfGenes();
vector<SLinkGene>::iterator curDad = dad.StartOfGenes();

//this will hold a copy of the gene we wish to add at each step
SLinkGene SelectedGene;

//step through each parents genes until we reach the end of both

while ("((curMum == mum.EndOfGenes()) &8& (curDad == dad.EndOfGenes())))

//the end of mum's genes have been reached

If ((curMum == mum.EndOfGenes())&&(curDad '= dad.EndOfGenes()})

//if dad 1s fittest
If (best == DAD)

144

145

{
//add dads genes
SelectedGene = *curDad;

¥

//move onto dad's next gene
++curDad;

¥

//the end of dads's genes have been reached
else if ((curDad == dad.EndOfGenes()) && (curMum '= mum.EndOfGenes()))

//f mum s fittest
if (best == MUM)
{

//add mums genes
SelectedGene = *curMum;

b

//move onto mum's next gene
+-+curMum;

¥

//if mums innovation number is less than dads
else If (curMum->InnovationID < curDad->InnovationID)

//f mum 1s fittest add gene
if (best == MUM)

SelectedGene = *curMum;

¥

//move onto mum's next gene
++curMum;

b

//if dads innovation number 1s less than mums
else If (curDad->InnovationID < curMum->InnovationID)

{
//if dad 1s fittest add gene
If (best == DAD)
{

SelectedGene = *curDad;

}

//move onto dad's next gene
++curDad;

¥

//if innovation numbers are the same
else if (curDad->InnovationID == curMum->InnovationID)

//grab a gene from either parent
If (RandFloat() < 0.5f)

SelectedGene = *curMum;

3

else

SelectedGene = *curDad;

b

//move onto next gene of each parent
++curMum;
++curDad;

146

b

//add the selected gene if not already added
If (BabyGenes.size() == 0)

BabyGenes.push_back(SelectedGene);
K

else

if (BabyGenes[BabyGenes.size()-1].InnovationID =
SelectedGene.InnovationID)

{
BabyGenes.push_back(SelectedGene);

¥
b

//Check If we already have the nodes referred to in SelectedGene.

//1f not, they need to be added.
AddNeuronID(SelectedGene.FromNeuron, vecNeurons);
AddNeuronID{SelectedGene.ToNeuron, vecNeurons);

}//end while

//now create the required nodes. First sort them into order
sort(vecNeurons.begin(), vecNeurons.end());

for (int 1=0; i<vecNeurons.size(); i++)

BabyNeurons.push_back(m_pInnovation->CreateNeuronFromID(vecNeurons[i]));

//finally, create the genome

CGenome babyGenome(m_iNextGenomelD++,
BabyNeurons,
BabyGenes,
mum.NumInputs(),
mum.NumOutputs());

return babyGenome;

1/ ResetAndKill -
//

// This function resets some values ready for the next epoch, kills off
// all the phenotypes and any poorly performing species.

1/
void Cga::ResetAndKill()

m_dTotFitAd) = 0;
m_dAvFitAdj = 0O;

//purge the species
vector<CSpecies>::iterator curSp = m_vecSpecies.begin();

while (curSp != m_vecSpecies.end())
curSp->Purge();
//kill off species if not improving and if not the species which contains
//the best genome found so far
if ((curSp->GensNoImprovement() > CParams::INumGensAllowedNoImprovement) &&
(curSp->BestFitness() < m_dBestEverFitness))

curSp = m_vecSpecies.erase(curSp);

147

--CcurSp;

}

++curSp;

b

//we can also delete the phenotypes
for (int gen=0; gen<m_vecGenomes.size(); ++gen)

m_vecGenomes[gen].DeletePhenotype();

3
}

/! Split
/

// this function is used to create a lookup table that 1s used to
// calculate the depth of the network.

1/
vector<SplitDepth> Cga::Split(double low, double high, int depth)

{

static vector<SplitDepth> vecSplits;

double span = high-low;
vecSphits.push_back(SplitDepth(low + span/2, depth+1));
if (depth > 6)

{

return vecSplits;

>
else

Spht(low, low+span/2, depth+1);
Split{low+span/2, high, depth+1);

return vecSplits;

¥
¥
/! RenderSpeciesinfo
/!
// Used to display spectes information on the screen
/!

void Cga::RenderSpeciesInfo(HDC &surface, RECT db)
if (m_vecSpecies.size() < 1) return;
int numColours = 255/m_vecSpecies.size();
double SlicePerSweeper = (double)(db.right-db.left)/(double}(CParams::INumSweepers-1);
double left = db.left;

//now draw a different colored rectangle for each species
for (int spc=0; spc<m_vecSpecies.size(); +-+spc)

{

//choose a brush to draw with
HBRUSH PieBrush = CreateSolidBrush(RGB(numColours*spc, 255, 255 - numColours*spc));

HBRUSH OldBrush = (HBRUSH)SelectObject(surface, PieBrush);
If (spc == m_vecSpecies.size()-1)

Rectangle(surface,

148

left,

db.top,
db.right,
db.bottom);

¥

else

{

Rectangle(surface,
left,
db.top,
left+SlicePerSweeper*m_vecSpecies[spc].NumMembers(),
db.bottom);

3

left += SlicePerSweeper * m_vecSpecies[spc].NumMembers();

SelectObject(surface, OldBrush);
DeleteObject(PieBrush);

//display best performing species stats in the same color as displayed

//in the distnbution bar
if (m_vecSpecies[spc].BestFitness() == m_dBestEverFitness)

string s = "Best Species ID: " + itos(m_vecSpecies[spc].ID());
TextOut(surface, 5, db.top - 80, s.c_str(), s.s1ze());

s = "Spectes Age: " + 1itos(m_vecSpecies[spc].Age());
TextOut(surface, 5, db.top - 60, s.c_str(), s.size());

s = "Generations no improvement: " + itos(m_vecSpecies[spc].GensNoImprovement());
TextOut(surface, 5, db.top - 40, s.c_str(), s.size());

¥
>

string s = "Species Distribution Bar";
TextOut(surface, 5, db.top - 20, s.c_str(), s.size());
¥

#ifndef CINNOVATION_H

#define CINNOVATION_H

/! -

//

// Name: CInnovation.h

//

// Authors:

// Created by Mat Buckland 2002

// Modified by Anit kumar Enumulapally 2004

// Anil kumar Enumulapally 2005

1

// Desc: class to handle genome innovations used in the implementation.

#include <vector>
#include <algorithm>

#include "utils.h"
#include "genotype.h"
#include "phenotype.h"
using namespace std;

struct SLinkGene;

enum innov_type

{

new_neuron,
new_link

*i

/I -
/"

// structure defining an innovation

74

struct SInnovation

//new neuron or new link?
innov_type InnovationType;

int InnovationlD;
int Neuronln;

int NeuronOut;
int NeuronlD;

neuron_type NeuronType;

//if the innovation 1s a neuron we need to keep a record
//of its position In the tree (for display purposes)
double dSplity,

dsphtX;

SInnovation{int n,

149

150

int out,
innov_type t,
int inov_id):NeuronIn(in),
NeuronOut(out),
InnovationType(t),
InnovationID(inov_id),
NeuronID(0),
dSphtX(0),
dSplitY(0),
NeuronType(none)
{
SInnovation(SNeuronGene neuron,
int innov_id,
int neuron_id):InnovationID(innov_1d),
NeuronID(neuron_id),
dSplitX(neuron.dSplitX),
dSplitY(neuron.dSplitY),
NeuronType(neuron.NeuronType),
NeuronIn(-1),
NeuronOut(-1)
{
SInnovation(int n,
int out,
innov_type t,
int inov_id,
neuron_type type,
double X,
double y):NeuronIn(in),
NeuronOut(out),
InnovationType(t),
InnovationID(inov_id),
NeuronID(0),
NeuronType(type),
dSphtX(x),
dsplitY(y)
{3
+
1/
1/

// Clnnovation class used to keep track of all innovations created during
// the populations evolution
1/

class Clnnovation

{

private:

vector<SInnovation> m_veclnnovs;

int m_NextNeuronID;
int m_NextInnovationNum;
public:

CInnovation({vector<SLinkGene> start_genes,
vector<SNeuronGene> start_neurons);

//checks to see If this innovation has already occurred. If it has it
//returns the innovation ID. If not it returns a negative value.
int CheckInnovation{int in, int out, Innov_type type);

//creates a new innovation and returns its ID
int CreateNewlInnovation(int in, int out, innov_type type);

//as above but includes adding x/y position of new neuron
int CreateNewlInnovation(int from,

int to,

innov_type InnovType,

neuron_type NeuronType,

double X,

double Y);

//creates a BasicNeuron from the given neuron ID
SNeuronGene CreateNeuronFromID(int id);

1/ accessor methods
int GetNeuronID(int inv)const{return m_vecInnovs[inv].NeuronID;}

void Flush(){m_veclnnovs.clear(); return;}
int NextNumber(int num = 0)
m_NextInnovationNum += num;
return m_NextInnovationNum;

}
¥

#endif

151

#include "CInnovation.h"

/! -- ctor -
//

// given a series of start genes and start neurons this ctor adds
// all the appropriate innovations.

/
CInnovation::CInnovation(vector<SLinkGene> start_genes,

vector<SNeuronGene> start_neurons)
{

m_NextNeuronID =0;
m_NextInnovationNum = 0;

//add the neurons
for (int nd=0; nd<start_neurons.size(); ++nd)
{
m_vecInnovs.push_back(SInnovation(start_neurons[nd],
m_NextInnovationNum++,
m_NextNeuronID++));

3

//add the links
for (int cGen = 0; cGen<start_genes.size(); ++cGen)

{

SInnovation Newlnnov(start_genes[cGen].FromNeuron,
start_genes[cGen].ToNeuron,

new__kink,

m_NextInnovationNum);

m_veclnnovs.push_back(Newlnnov);

++m_NextInnovationNum;

}
b3
1/ CheckInnovation-
/!
// checks to see If this iInnovation has already occurred. If it has it
// returns the innovation ID. If not It returns a negative value.
// --- --

int CInnovation::CheckInnovation{int mn, int out, innov_type type)

//iterate through the innovations looking for a match on all
//three parameters
for (int inv=0; inv<m_vecinnovs.size(); ++inv)

if ((m_vecInnovs[inv].NeuronIn == 1n) &&
(m_vecInnovs[inv].NeuronQut == out) &&
{m_vecInnovsfinv].InnovationType == type))

//found a match so assign this innovation number to id
return m_vecInnovs[inv].InnovationID;

b
b
//if no match, return a negative value
return -1;

}

//-- --- CreateNewInnovation e

152

/!

// creates a new innovation and returns its ID

[]==mmmmmnes I

int CInnovation::CreateNewlInnovation(int in, int out, innov_type type)
{

SInnovation new_innov(in, out, type, m_NextInnovationNum);
if (type == new_neuron)
new_mnov.NeuronID = m_NextNeuronID;

++m_NextNeuroniD;

3

m_vecInnovs.push_back(new_innov);
++m_NextInnovationNum;

return (m_NextNeuronID-1);

b

//

/

// as above but includes adding x/y position of new neuron

/ —_—

int CInnovation::CreateNewInnovation(int from,
int to,
innov_type InnovType,
neuron_type NeuronType,
double X,
double y)

{

SInnovation new_innov(from, to, InnovType, m_NextInnovationNum, NeuronType, X, y);
if (InnovType == new_neuron)
new_innov.NeuronID = m_NextNeuronID;

++m_NextNeuronlD;

}

m_veclnnovs.push_back(new_innov);
++m_NextInnovationNum;

return (m_NextNeuronID-1);

}

// CreateNeuronFromID

1

// given a neuron ID this function returns a clone of that neuron
//

SNeuronGene CInnovation::CreateNeuronFromID(int NeuronID)
SNeuronGene temp(hidden,0,0,0);
for (int inv=0; inv<m_veclnnovs.size(); ++inv)

if (m_vecInnovs[inv].NeuronID == NeuroniID)

{
temp.NeuronType = m_vecInnovs[inv].NeuronType;
temp.iID = m_vecInnovs[inv].NeuronID;
temp.dSphtY = m_vecInnovs[inv].dSplitY;

temp.dSplitX = m_vecInnovs[inv].dSplitX;

153

return temp;

3
b

return temp;

b

#fndef CMAPPER_H
#define CMAPPER_H

#1include <vector>

#include <windows.h>

#include "utils.h"
#include "Cparams.h"

using namespace std;

1
// Authors:

// Created by Mat Buckland 2002
// Modified by Anil kumar Enumulapally 2004

/"
/

Anil kumar Enumulapally 2005

// structure to define a 'cell’. A cell 1s a RECT in space and keeps
// a track of how many ticks the bot has spent at the cell.

// --
struct SCell

int iTicksSpentHere;

//the coordinates which describe the cell's position

RECT Cell;

SCell(int xmin, Int xmax, int ymin, int ymax):1TicksSpentHere(0)

Cell.left = xmin;
Cell.nght = xmax;
Cell.top = ymin;

Cell.bottom = ymax;

}
void Update()

++iTicksSpentHere;

¥

void Reset()

ITicksSpentHere = 0;

b3
};

Jfemmenmmens e

/

// This mapper class holds information about a 2d vector of cells

1/--=-
class CMapper

private:

//the 2d vector of memory cells
vector<vector<SCell> > m_2DvecCells;

int m_NumcCelisX;

154

int m_NumCellsY;
int m_iTotalCells;

//the dimensions of each cell
double m_dCellSize;

pubhc:

CMapper():m_NumCellsX(0),
m_NumCellsY(0),
m_iTotalCells(0)

{3

//this must be called after an instance of this class has been
//created. This sets up all the cell coordinates.
void Imt(int MaxRangeX, int MaxRangeY);

//this method is called each frame and updates the time spent
//at the cell at this position
void Update(double xPos, double yPos);

//returns how many ticks have been spent at this cell position
int TicksLingered(double xPos, double yPos) const;

//returns the total number of cells visited
int NumcCellsVisited()const;

//returns if the cell at the given position has been visited or
//not

bool BeenVisited(double xPos, double yPos) const;

//This method renders any visited cells in shades of red. The
//darker the red, the more time has been spent at that cell
void Render(HDC surface);

void Reset();

int NumcCelis()const{return m_iTotalCells;}

¥

#endif

155

156

#include "CMapper.h"

/! Init

/!

// This method needs to be called before you can use the instance.
//

void CMapper::Init(int MaxRangeX, int MaxRangeY)

//1f already initialized return
if(m_NumcCellsX) return;

m_dCellSize = CParams::dCellSize;

//first calculate how many segments we will require
m_NumCelisX = (int)(MaxRangeX/m_dCellSize)+1;
m_NumcCellsY = (int)(MaxRangeY/m_dCellSize)+1;

//create the 2d vector of blank segments
for (int x=0; x<m_NumCellsX; ++x)

vector<SCell> temp;
for (int y=0; y<m_NumCellsY; ++y)

temp.push_back({SCell(x*m_dCellSize, (x+1)*m_dCeliSize, y*m_dCellSize, (y+1)*m_dCeliSize));

m_2DvecCells.push_back(temp);
¥

m_iTotalCells = m_NumCellsX * m_NumcCellsY;

b
/!
void CMapper: :Update(double xPos, double yPos)
{

//check to make sure positions are within range
if ((xPos < 0) |} (xPos > CParams::WindowWdth) []
(yPos < 0) || (yPos > CParams::WindowHeight))

return;

}

int cellX = (int)(xPos / m_dCellSize };
int cellY = (int)(yPos / m_dCellSize };

m_2DvecCells[cellX][cellY].Update();

return;

¥

/ ———
int CMapper::TicksLingered(double xPos, double yPos)const

//bounds check the incoming values
if ((xPos > CParams::WindowWidth) || (xPos < 0) ||

(yPos > CParams::WindowHeight)|| (yPos < 0))

return 999;
¥

int cellX = (int)(xPos / m_dCellSize);
int cellY = (int)(yPos / m_dCeliSize);

return m_2DvecCells[cellX][cellY].iTicksSpentHere;

/! Visited

/! ===
bool CMapper::BeenVisited(double xPos, double yPos)const

int cellX = (int)(xPos / m_dCeliSize);
int cellY = (int)(yPos / m_dCellSize);

if {m_2DvecCelis[celiX][cellY].iTicksSpentHere > 0)
{

return true;

else

return false;

¥
>
1/ Render
/
// renders the visited cells. The color gets darker the more frequently
// the cell has been visited.
/!
void CMapper: :Render(HDC surface)

for (int x=0; x<m_NumCellsX; ++x)
{for (int y=0; y<m_NumcCellsY; ++y)
if (m_2DvecCelis[x]ly]l.iTicksSpentHere > 0)
int shading = 2 * m_2DvecCells[x][y].(TicksSpentHere;
if (shading >220)
shading = 220;
3
HBRUSH lightbrush = CreateSolidBrush(RGB(240,220-shading,220-shading));
FillRect(surface, &m_2DvecCells[x][y].Cell, lightbrush);

DeleteObject(lightbrush};

3
}
¥

// Reset
void CMapper: :Reset()
{

for (int x=0; x<m_NumCellsX; ++x)

157

158

for (int y=0; y<m_NumCellsY; ++y)

{
m_2DvecCells[x]fy].Reset();
¥
}
b

int CMapper::NumcCellsVisited() const
int total = 0;
for (int x=0; x<m_NumCellsX; ++Xx)
for (int y=0; y<m_NumCellsY; ++y)
{lf (m_2DvecCells[x][y].ITicksSpentHere > 0)

++total;
b
>
H

return total;

3

159

#1fndef CMINESWEEPER_H
#define CMINESWEEPER_H

f]--=n=-
/I

1/ Name: CMineSweeper.h
//

// Authors:

// Created by Mat Buckland 2002
// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005
!/

// Desc: Class to create a minesweeper object

/!

// - -

#include <vector>
#include <math.h>

#include "phenotype.h"
#include "utils.h"
#include "C2DMatrix.h"
#include "SVector2D.h"
#include "CParams.h"
#include "collision.h"
#include "CMapper.h"

using namespace std;

class CMinesweeper

{
private:
CNeuralNet* m_pltsBrain;

//its memory
CMapper m_MemoryMap;

//1its position in the world
SVector2D m_vPosition;

//direction sweeper is facing

SVector2D m_vLookAt;

//how much 1t 1s rotated from its starting position
double m_dRotation;

double m_dSpeed;

//to store output from the ANN
double m_ITrack, m_rTrack;

//the sweepers fitness score.
double m_dFitness;

//the scale of the sweeper when drawn
double m_dScale;

//no of mines found;
int m_iMines;

/* //the inputs from sensors
double m_dSensors[5];
//the inputs from feelers
double m_dFeelers[5];
*/

//fitness parameters
int m_iCollisions;
int m_iRotval;
int m_iSpeedval;

//to store end vertices of sensor segments
vector<SPoint> m_Sensors;

vector<SPoint> m_tranSensors;

//this keeps a record of how far down the sensor segment
//a 'hit' has occurred.

vector<double> m_vecdSensors;

//the end points of the sensors check their coordinate
//cell to see how many times the sweeper has visited it.
vector<double> m_vecFeelers;

//if a collision has been detected this flag is set

bool m_bCollided;

void CreateSensors(vector<SPoint> &sensors,
nt NumSensors,
double range);

int CheckForHit(vector<SVector2D> &objects, double size);

void TestSensors{vector<SPoint> &objects);

void TestRange();

public:

CMinesweeper();

//updates the ANN with information from the sweepers enviroment

bool Update(vector<SPoint> &objects, int ival,int igen,bool bBest, Int
iTicks);
//used to transform the sweepers vertices prior to rendering
void WorldTransform(vector<SPoint> &sweeper, double scale);
void Reset();

//checks to see if the minesweeper has 'collected’ a mine
int CheckForMine(vector<SVector2D> &mines, double size);
veid incrementminevai();

160

161

void SetStartingPoint(int x, int y)
{

m_vPosition = SVector2D(X, y);

void EndOfRunCalculations();

void RenderStats(HDC surface);

void Render(HDC surface);

void DrawNet(HDC &surface, int cxLeft, int exRight, int cyTop, int cyBot)

{
m_pltsBrain->DrawNet(surface, cxLeft, cxRight, cyTop, cyBot);

F e accessor functions

SVector2D Position()const{return m_vPosition;}
double Rotation()const{return m_dRotation;}

float Fitness()const{return m_dFitness;}
double Scale()const{return m_dScale;}

vector<SPoint>& Sensors(){return m_tranSensors;?}

vector<double>& SensorReadings{){return m_vecdSensors;}

bool Collided()const{return m_bCollided;}

vector<double> MemoryReadings(){return m_vecFeelers;}

int NumCelisVisited(){return m_MemoryMap.NumCellsVisited(); }

void InsertNewBrain(CNeuralNet* bramn){m_pItsBrain = brain;}
CNeuralNet* getBrain(){ return(m_pItsBran);}

3

#endif

#include "CMinesweeper.h"
#include "file.h"

1/ constructor:

CMinesweeper: :CMinesweeper():
m_dRotation(0),
m_{Track(0),
m_rTrack(0),
m_dFitness(0),

m_dScale(CParams::iSweeperScale),

m_bCollided(false),
m_iCollisions(0),
m_ISpeedval(0),
m_iMines(0),
m_iRotval(0)

//create a static start position
m_vPosition = SVector2D(180, 200);

//create the sensors
CreateSensors(m_Sensors, CParams: :INumSensors, CParams::dSensorRange);

//initialize its memory
m_MemoryMap.Init{CParams::WindowWdth,
CParams::WindowHeight);

¥
/! CreateSensors -
//
// This function returns a vector of points which make up the segments of
// the sweepers sensors.
1/ -
void CMinesweeper: :CreateSensors(vector<SPoint> &sensors,
Int NumSensors,
double range)

//make sure vector of sensors Is empty before proceeding
sensors.clear();

double SegmentAngle = CParams::dP1 / (NumSensors-1);

//going clockwise from 90deg left of position calculate the fan of
//points radiating out (not including the origin)
for (int 1=0; 1<CParams::INumSensors; i++)
{
//calculate vertex position
SPoint point;

point.x = -sin{1 * SegmentAngle - CParams::dHalfP1} * range;

162

point.y = cos(1 * SegmentAngle - CParams::dHalfP1) * range;

sensors.push_back(point);

}//next segment

// “— Reset()

1/ Resets the sweepers position, fitness and rotation

/! --
void CMinesweeper::Reset()

{
//reset the sweepers positions
m_vPosition = SVector2D(180, 200);

//and the fitness
m_dFitness = 0;

//and the rotation
m_dRotation = 0;

m_iCollisions=0;
m_iRotval=0;
m_iSpeedval=0;

//reset its memory
m_MemoryMap.Reset();

// RenderMemory

void CMinesweeper: :Render(HDC surface)

//render the memory
m_MemoryMap.Render(surface);

string s = itos{(m_MemoryMap.NumCellsVisited());
s = "Num Cells Visited: " + s;
TextOut(surface, 220,0,s.c_str(), s.size());

3

[/ mmmm e WorldTransform

//

// sets up a translation matrix for the sweeper according to its

// scale, rotation and position. Returns the transformed vertices.
7 --=

void CMinesweeper: :WorldTransform(vector<SPoint> &sweeper, double scale)

{

//create the world transformation matrix
C2DMatrix matTransform;

//scale
matTransform.Scale(scale, scale);

//rotate
matTransform.Rotate(m_dRotation);

//and translate
matTransform.Translate(m_vPosition.x, m_vPosition.y);

//now transform the ships vertices

163

164

matTransform.TransformSPoints(sweeper);

ff-mmmmmmm e e Update()

// First we take sensor readings and feed these into the sweepers brain.
// The inputs are:

// The readings from the minesweepers sensors

// We receive two ocutputs from the brain.. ITrack & rTrack.

// So given a force for each track we calculate the resultant rotation
// and acceleration and apply to current velocity vector.

/1
bool CMinesweeper::Update(vector<SPoint> &objects,int ival,int igen,bool bBest, int 1Ticks)

{

//this will store all the inputs for the NN
vector<double> inputs;

//grab sensor readings
TestSensors(objects);

//input sensors into net
for (int sr=0; sr<m_vecdSensors.size(); +-+sr)

inputs.push_back(m_vecdSensors[sr]);
inputs.push_back(m_vecFeelers[sr]);
b

inputs.push_back(m_bCollided);

//update the brain and get feedback
vector<double> output = m_pltsBrain->Update(inputs, CNeuralNet: :active,Ticks);

//make sure there were no errors in calculating the
//output
If {output.size() < CParams::iINumOutputs)

return false;

}

//assign the outputs to the sweepers left & right tracks
m_ITrack = output[0];
m_rTrack = output[1];

//caiculate steering forces
double RotForce = m_ITrack - m_rTrack;

//if 1its not rotating too much it gets bonus;
if((RotForce>0.5)]|(RotForce<-0.5))
m_IRotval++;

//clamp rotation
Clamp(RotForce, -CParams: :dMaxTurnRate, CParams::dMaxTurnRate);

m_dRotation += RotForce;
//update Look At

m_vLookAt.x = -sin(m_dRotation);
m_vLookAt.y = cos(m_dRotation);

//if the sweepers haven't collided with an obstacie
//update their position

if (\m_bCollded)
m_dSpeed = m_ITrack + m_rTrack;

//if speed of exploration 1s more then gets bonus
if(m_dSpeed>1.5)
m_iSpeedval++;

//update position
m_vPosition += (m_vLookAt * m_dSpeed);

//test range of x,y values - because of 'cheap' collision detection
//this can go into error when using < 4 sensors

TestRange();

}

else
{

m_iCollisions++;

¥
//update the memory map
m_MemoryMap.Update(m_vPosition.x, m_vPosition.y);

return true;

// TestSensors
/!

// This function checks for any intersections between the sweeper's

// sensors and the objects in its environment

1/
void CMinesweeper::TestSensors(vector<SPoint> &objects)

m_bCollided = false;

//first we transform the sensors into world coordinates
m_tranSensors = m_Sensors;

WorldTransform{m_tranSensors, 1); //scaleis 1
//flush the sensors

m_vecdSensors.clear();

m_vecFeelers.clear();

//now to check each sensor against the objects in the world
for (int sr=0; sr<m_tranSensors.size(); ++sr)

{
bool bHIt = faise;
double dist = 0;
for (int seg=0; seg<objects.size(); seg+=2)

if (Linelntersection2D(SPoint(m_vPosition.x, m_vPosition.y},
m_tranSensors[sr],

objects[seq],
objects[seg+1],
dist))
bHit = true;
break;
1

}

165

if (bHit)
{
m_vecdSensors.push_back(dist);

//implement very simple collision detection
If (dist < CParams::dCollisionDist)

m_bCollided = true;

b
b

else

{

m_vecdSensors.push_back(-1);

¥

//check how many times the minesweeper has visited the cell
//at the current position

int HowOften = m_MemoryMap.TicksLingered(m_tranSensors[sr].x,

m_tranSensors[srl.y);

//Update the memory info according to HowOften. The maximum
//value is 1 (because we want all the inputs into the

//ANN to be scaled between -1 < n < 1)

if (HowOften == 0)

{

m_vecFeelers.push_back(-1);

continue;

3
if (HowOften < 10)
m_vecFeelers.push_back(0);

continue;

3

if (HowOften < 20)
{

m_vecFeelers.push_back(0.2);

continue;

¥
if (HowOften < 30)
m_vecFeelers.push_back(0.4);

continue;

b

if (HowOften < 50)
{

m_vecFeelers.push_back(0.6);

continue;

3

if (HowOften < 80)
{

m_vecFeelers.push_back(0.8);

continue;

}

166

m_vecFeelers.push_back(1);

}//next sensor

J[mmmmm e e TestRange ----------------- ---

void CMinesweeper::TestRange()

if (m_vPosition.x < 0)

{
m_vPosition.x = 5;
b3
If (m_vPosition.x > CParams::WindowW.idth)
{
m_vPosition.x = CParams::WindowWidth-5;
¥
if (m_vPosition.y < 0)
{
m_vPosttion.y = 5;
¥
If (m_vPosition.y > CParams::WindowHeight)
{
m_vPosition.y = CParams::WindowHeight+5;
b
}
/-~ - -- CheckForMine
/!
// this function checks for collision with a random mine
/!

int CMinesweeper: :CheckForMine{vector<SVector2D> &mines, double size)

for(int 1=0; i<mines.size(); 1++)

{
SVector2D DistToObject = m_vPosition - munes[i];
If (Vec2DLength{DistToObject) < (size + 10))
return i1;
>
¥
return -1;
¥
// EndOfRunCaiculations()
1/
Jfmrome e e -

void CMinesweeper::EndOfRunCalculations()

m_dFitness += m_MemoryMap.NumCelisVisited()+m_iSpeedval/5-m_iCollisions/5-
m_IRotval/10+m_iMines*10;

//Another Fitness function
//m_dFitness += m_MemoryMap.NumCellsVisited()+m_iSpeedval/10-m_iCollisions/2-
m_iRotval/10+m_iMines*5;

//A simple fitness function

167

//m_dFitness += m_MemoryMap.NumCellsVisited()
¥

void CMinesweeper::incrementmineval()

{
b

m_iMines++;

#i1fndef CPARAMS_H
#define CPARAMS_H

1/

/!

// Name: CParams.h
//

// Authors:

// Created by Mat Buckland 2002
// Modified by Anil kumar Enumulapally 2004
// Anil kumar Enumulapally 2005

/I

// Desc: class to hold all the parameters used in this project. The values
// are loaded in from an ini file when an instance of the class 1s

// created.

#include <windows.h>
#include <fstream>
//#include "file.h"
using namespace std;

//1-o training pairs
static double dIop[250][13];

class CParams

{
public:

1/
// general parameters

1/ --

static double dPi;
static double dHalfPs;
static double dTwoPi;

static int WindowW.dth;
static nt WindowHeight;

static int InfowindowWidth;
static int InfoWindowHeight;

static int iIFramesPerSecond;
static int 10fflineTraining;
static mt 1GlobalOnline;
static int RuleEvolution;
static int 10nlyGAs;

//fstream file;

1

// used to define the sweepers

1/

168

static int INumSweepers;

//limits how fast the sweepers can turn
static double dMaxTurnRate;

//for controlling the size
static int 1SweeperScale;

//amount of sensors
static int INumSensors;

//range of sensors
static double dSensorRange;

//distance 0 < d < 1 for collision detection, The smaller the
//value 1s the closer the sweeper has to be to an object.
static double dCollisionDist;

1/ -controller parameters

//number of time steps we allow for each generation to live
static int INumTIcks;

//
// used in CMapper.h/cpp

1/

static double dCellSize;

1/
// used in phenotype.h/cpp
I -

static int INumInputs;
static int INumOutputs;

//bias value
static double dBias;

//starting value for the sigmoid response
static double dSigmoidResponse;

//

//learning rate and evolutionary parameters of learning rule to use in learning

//used in phenotype.h/cpp

//

static double dLearningRate;
static double dParami;
static double dParamz2;
static double dParam3;
static double dParam4;
static double dParams5;
static double dParamé;
static double dParam7;
static double dParams;
static double dParam9;
static double dParam10;
static double dParam11;
//static double dParam1i;

//i-o training pairs
//static double dlop[600][13];

169

170

/!
// used m genotype.h/cpp

e

//number of times we try to find 2 unlinked nodes when adding a link.
//see CGenome::AddLink()
static int INumAddLinkAttempts;

//number of attempts made to choose a node that 1s not an input
//node and that does not already have a recurrently looped connection
//to tself. See CGenome::AddLink()

static int INumTrysToFindlLoopedLink;

//the number of attempts made to find an old link to prevent chaining
//in CGenome::AddNeuron
static int INumTrysToFindOIdLink;

//the chance, each epoch, that a neuron or link will be added to the
//genome

static double dChanceAddLink;

static double dChanceAddNode;

static double dChanceAddRecurrentLink;

//mutation probabihties for mutating the weights in CGenome::Mutate()
static double dMutationRate;

static double dMaxWeightPerturbation;

static double dProbabilityWeightReplaced;

//probabilities for mutating the activation response
static double dActivationMutationRate;
static double dMaxActivationPerturbation;

//the smaller the number the more species will be created
static double dCompatibilityThreshold;

e
// used in CSpecies.h/cpp

=

//during fitness adjustment this 1s how much the fitnesses of
//young species are boosted (eg 1.2 1s a 20% boost)
static double dYoungFitnessBonus;

//'f the species are below this age their fitnesses are boosted
static int iYoungBonusAgeThreshhold;

//number of population to survive each epoch. (0.2 = 20%)
static double dSurvivalRate;

//if the species is above this age their fithess gets penalized
static int 10ldAgeThreshold;

//by this much
static double dOIdAgePenalty;

e
// used in Cga.h/cpp
e

//how long we allow a species to exist without any improvement
static int INumGensAllowedNoImprovement;

//maximum number of neurons permitted in the network
static iInt IMaxPermittedNeurons;

//the number of best performing sweepers shown when 'B' 1s
//selected. (you will see copies from the previous generation
static mt iNumBestSweepers;

static double dCrossoverRate;

I

//ctor
CParams(){}

bool Initialize()

if('LoadInParameters("params.ini"))
MessageBox(NULL, "Cannot find 'params.m', "Error", 0);
return false;
// fstream file ("input.rtf", 10s::0ut | ios::app | 10s::1n);
dPi = 3.14159265358979;
dHaifPi = dPi / 2;
dTwoP1 = dP1 * 2;
dCollisionDist = (double)(1ISweeperScale+1)/dSensorRange;
INumInputs = (iNumSensors * 2) + 1;

iNumOutputs = 2;
char *szFileNamel10="10_training4.txt";

//fstream grab2("io_training.txt", fstream::in | fstream::out | fstream::app);

fstream grab2(szFileName10);
int I_here,]_here;
//double dtmpsum;

//populate dIop
for (i_here=0;1_here<250;i_here++)
{

//trainingInputs.clear();
//targetOutputs.clear();
//desiredOutputs.clear();

//dtmpsum=0;
//Read input from file

j_here=0;
grab2>>dIop[i_here][]_here];

//1

j_here++;
grab2>>dlop[i_here][j_here];
//trainingInputs.push_back(dTmpvar);

/12
]_here++;
grab2>>dIop[i_here][)_here];

//3
J_here++;

171

grab2>>dlop[i_herel{j_here];

/14
j_here++;
grab2>>dlIop[i_here}[j_here];

//5
1_here++;
grab2>>dIop[i_here][j_here];

//6
j_here++;
grab2>>dIop[i_herel[j_here];

//7 1_here++;
j_here++;
grab2>>dlop[i_here][j_here];

//8
1_here++;

grab2>>dIop[i_here][j_here];

/9
j_here++;
grab2>>dIop[i_here][j_here];

/710
1_here++;
grab2>>dlop[i_herel[j_herel;

//11

j_here++;
grab2>>dlIop[i_herel[j_herel;

/112

1_here++;
grab2>>dIop[i_here][j_here];

}//end of for loop

return true;

¥

bool LoadInParameters(char* szFileName);

3

#endif

172

#include "CParams.h"

double CParams:
double CParams:
double CParams:
int CParams: :WindowWidth

int CParams: :WindowHeight
int CParams: :iFramesPerSecond =

:dPi = 0;
:dHalfPi =0;
:dTwoPi = 0;

int CParams: :INumInputs

int CParams: :iNumQutputs = 0;
:dBias = -

doubie CParams: ;
:dMaxTurnRate =0;

double CParams:
int CParams: :iSweeperScale
int CParams::INumSensors
double CParams:
int CParams: :iNumSweepers
int CParams::INumTicks
double CParams:
double CParams:
double CParams:

:dSensorRange

:dCollisionDist
:dCellSize
:dSigmoidResponse =1;

[wre

oy ! o

oo

AR
)

int CParams::iNumAddLinkAttempts = 0;
int CParams::iINumTrysToFindLoopedLink = 5;
int CParams: :INumTrysToFindOldLink = 5;

double CParams:

:dYoungFitnessBonus =

int CParams::1YoungBonusAgeThreshhold = 0;

double CParams::dSurvivalRate
int CParams: :InfoWindowWidth
int CParams::InfoWindowHeight

int CParams::iNumGensAllowedNoImprovement = 0;

int CParams: :iIMaxPermittedNeurons =0;
double CParams::dChanceAddLink =0,;
double CParams::dChanceAddNode =0;
double CParams::dChanceAddRecurrentLink = 0;
double CParams: :dMutationRate = 0,

double CParams:
double CParams:

double CParams:
double CParams::

double CParams:
int CParams::INumBestSweepers =
int CParams: :iOldAgeThreshold = 0;
double CParams:
double CParams:
double CParams:
double CParams:
double CParams:
double CParams:
double CParams:
double CParams:
double CParams:
double CParams::

:dMaxWeightPerturbation = 0;
:dProbabilityWeightReplaced=

:dCompatibihityThreshold

:dOldAgePenalty
:dCrossoverRate
:dLearningRate
:dParaml
:dParam2
:dParam3
:dParam4
:dParam5
:dParamé6

0;

:dActivationMutationRate = 0;

dMaxActivationPerturbation= 0;

=0,
4;

0;
0;
0.01;

-

~

~ o~

-~

coocoocoaluu

dParam?

~=

173

double CParams
double CParams
double CParams
double CParams

::dParam8 =
::dParam9 =
::dParamiQ =
r:dParamil =

//double CParams::dParam1l =0;
int CParams::I0fflineTraining =0;
int CParams::1GlobalOnline =0;
int CParams::iRuleEvolution =0;
int CParams::iOnlyGAs =0;

//this function loads in the parameters from a given file name
//false If there is a problem opening the file.
bool CParams::LoadInParameters(char* szFileName)

ifstream grab(szFileName);

//check file exists
if (‘grab)

return false;

}

//load in from the file
char ParamDescriptionf40];

grab >> ParamDescription;

grab >> iIFramesPerSecond;

grab >> ParamDescription;

grab >> dMaxTurnRate;

grab >> ParamDescription;

grab >> (SweeperScale;

grab >> ParamDescription;

grab >> iINumSensors;

grab >> ParambDescription;

grab >> dSensorRange;

grab >> ParamDescription;

grab >> INumSweepers;

grab >> ParamDescription;

grab >> INumTIcks;

grab >> ParamDescription;

grab >> dCellSize;

grab >> ParamDescription;

grab >> INumAddLinkAttempts;
grab >> ParamDescription;

grab >> dSurvivalRate;

grab >> ParamDescription;

grab >> iNumGensAllowedNoIlmprovement;
grab >> ParamDescription;

grab >> iMaxPermittedNeurons;
grab >> ParamDescription;

grab >> dChanceAddLink;

grab >> ParamDescription;

grab >> dChanceAddNode;

grab >> ParamDescription;

grab >> dChanceAddRecurrentLink;
grab >> ParamDescription;

grab >> dMutationRate;

grab >> ParamDescription;

grab >> dMaxWeightPerturbation;
grab >> ParambDescription;

grab >> dProbabilityWeightReplaced;
grab >> ParamDescription;

grab >> dActivationMutationRate;
grab >> ParambDescription;

. Returns

174

¥

grab >> dMaxActivationPerturbation;
grab >> ParamDescription;
grab >> dCompatibiityThreshold;
grab >> ParamDescription;
grab >>10ldAgeThreshold;
grab >> ParamDescription;
grab >>dOldAgePenalty;
grab >> ParamDescription;
grab >> dYoungFitnessBonus;
grab >> ParamDescription;
grab >> iYoungBonusAgeThreshhold;
grab >> ParamDescription;
grab >> dCrossoverRate;
grab >> ParamDescription;
grab >> dLearmingRate;
grab >> ParamDescription;
grab >> dParam1i;

grab >> ParamDescription;
grab >> dParamz2;

grab >> ParamDescription;
grab >> dParam3;

grab >> ParamDescription;
grab >> dParam4;

grab >> ParambDescription;
grab >> dParamS5;

grab >> ParamDescription;
grab >> dParamé;

grab >> ParamDescription;
grab >> dParam7;

grab >> ParamDescription;
grab >> dParams8;

grab >> ParamDescription;
grab >> dParam9;

grab >> ParamDescription;
grab >> dParam10;

grab >> ParamDescription;
grab >> dParam1l1l;

//grab >> dParamli;

grab >> ParamDescription;
grab >> 10ffineTraining;
grab >> ParamDescription;
grab >> 1GlobalOnline;
grab >> ParambDescription;
grab >> IRuleEvolution;
grab >> ParamDescription;
grab >> 10nlyGAs;

return true;

175

#ifndef CSPECIES_H
#define CSPECIES_H

// Name: CSpecies.h

1/

// Authors:

// Created by Mat Buckland 2002

// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005

//

// Desc: Class to handie species distribution and maintenance
/!

#include <vector>
#include <math.h>
#include <iomanip>
#1include <iostream>

#include "genotype.h"

using namespace std;

/I -

!
// class to hold all the genomes of a given species

//
class CSpecies

{
private:

//keep a local copy of the first member of this species
CGenome m_Leader,

//pointers to all the genomes within this species
vector<CGenome*> m_vecMembers;

//the species needs an identification number
int m_iSpeciesID;

//best fitness found so far by this species
double m_dBestFitness;

//generations since fitness has improved, we can use
//this info to kill off a species if required
int m_iGensNoImprovement;

//age of species
int m_liAge;

//how many of this species shouid be spawned for
//the next population

176

double m_dSpawnsRqd;

public:
CSpecies{(CGenome &FirstOrg, int SpeciesID);

//this method boosts the fitnesses of the young, penalizes the
//fitnesses of the old and then performs fitness sharing over
//all the members of the species

void AdjustFitnesses();

//adds a new individual to the species
void AddMember(CGenome& new_org);

vold Purge();

//calculates how many offspring this species should
void CalculateSpawnAmount();

//spawns an individual from the species selected at random
//from the best CParams::dSurvivalRate percent
CGenome Spawn();

/- accessor methods
CGenome Leader()const{return m_Leader;}

double NumToSpawn()const{return m_dSpawnsRqd;}

int NumMembers()const{return m_vecMembers.size();}

int GensNoImprovement{)const{return m_iGensNoImprovement;}
int ID()const{return m_iSpecieslID;}

double SpecieslLeaderFitness()const{return m_Leader.Fitness();}
double BestFitness()const{return m_dBestFitness;}

int Age()const{return m_iAge;}

//so we can sort species by best fitness. Largest first
friend bool operator<(const CSpecies &lhs, const CSpecies &rhs)

{
return ths.m_dBestFitness > rhs.m_dBestFitness;

¥

+i

#endif

177

#include "CSpecies.h"

//

/

// this ctor creates an instance of a new species. A local copy of

// the initializing genome 1s kept in m_Leader and the first element

// of m_vecMembers is a pointer to that genome.

/!

CSpecies: :CSpecies(CGenome &FirstOrg,

int SpeciesID):m_iSpeciesID(SpeciesiD),

m_dBestFitness(FirstOrg.Fitness()),
m_iGensNolmprovement(0),
m_iAge(0),
m_Leader(FirstOrg),
m_dSpawnsRqd(0)

{

m_vecMembers.push_back(&FirstOrg);

m_Leader = FirstOrg;

}

I/ AddMember
/!

// this function adds a new member to this species and updates the member

// variables accordingly

[/ e e e
void CSpecies::AddMember(CGenome &NewMember)

{

//1s the new member's fitness better than the best fitness?
iIf (NewMember.Fitness() > m_dBestFitness)

{

m_dBestFitness = NewMember.Fitness();

m_iGensNoImprovement = 0;

m_Leader = NewMember;

¥

m_vecMembers.push_back(&NewMember);

b

//---- Purge
1/

// this functions clears out all the members from the last generation,
// updates the age and gens no improvement.

/ ———
void CSpecies::Purge()

178

{

m_vecMembers.clear();

//update age etc
++m_iAge;

++m_iGensNoImprovement;

m_dSpawnsRqd = 0;
H

/! AdjustFitness
/!

// This function adjusts the fitness of each individual by first

// examining the species age and penalising if old, boosting if young.

// Then we perform fitness sharing by dividing the fitness by the number
// of individuals in the species. This ensures a species does not grow

// too large

//
void CSpecies::AdjustFitnesses()

double total = 0;
for (int gen=0; gen<m_vecMembers.size(); ++gen)
double fitness = m_vecMembers[gen]->Fitness();

//boost the fitness scores If the species I1s young
if (m_IAge < CParams::iYoungBonusAgeThreshhold)

fitness *= CParams: :dYoungFitnessBonus;

}

//punish older species
if (m_iAge > CParams::10ldAgeThreshold)

fitness *= CParams::dOldAgePenalty;
3

total += fitness;

//apply fitness sharing to adjusted fitnesses
double AdjustedFitness = fithess/m_vecMembers.size();

m_vecMembers[gen]->SetAdjFitness(AdjustedFitness);

3
b

// CalculateSpawnAmount --
//

// Simply adds up the expected spawn amount for each individual in the
// species to calculate the amount of offspring this species should

// spawn

// -~

void CSpecies: :CalculateSpawnAmount()

{

for (int gen=0; gen<m_vecMembers.size(); ++gen)

m_dSpawnsRqd += m_vecMembers[gen]->AmountToSpawn();

3
¥

// Spawn

179

180

1

// Returns a random genome selected from the best individuals

1/ -- -
CGenome CSpecies::Spawn()

CGenome baby;
if (m_vecMembers.size() == 1)

baby = *m_vecMembers[0];

¥

else
int MaxIndexSize = (int) (CParams::dSurvivalRate * m_vecMembers.size())}+1;
int TheOne = RandInt(0, MaxIndexSize);

baby = *m_vecMembers[TheOne];

b

return baby;

3

181

#i1fndef CTIMER_H
#define CTIMER_H
//
//
// Name: CTimer.h

/

// Authors:

// Created by Mat Buckland 2002

// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005
//

// Desc: Windows timer class

/!

/-

#include <windows.h>

class CTimer

{
private:
LONGLONG m_CurrentTime,
m_LastTime,
m_NextTime,
m_FrameTime,
m_PerfCountFreq;
double m_TimeElapsed,
m_TimeScale;
fioat m_FPS;
public:
//ctors
CTimer(};
CTimer(float fps);
//whatdayaknow, this starts the timer
void Start();
//determines if enough time has passed to move onto next frame
bool ReadyForNextFrame();

//only use this after a call to the above.
double GetTimeElapsed(}{return m_TimeElapsed;}

}s

#endif

double TimeElapsed();

#include "CTimer.h"

m_TimeElapsed(0.0f),
m_LastTime(0),
m_PerfCountFreq(0)

[]=mmmmmmm e e default constructor -
/
1/
CTimer::CTimer(): m_FPS(0),
m_TimeElapsed(0.0f),
m_FrameTime(0),
m_LastTime(0),
m_PerfCountFreq(0)
{
//how many ticks per sec do we get
QueryPerformanceFrequency{ (LARGE_INTEGER*) &m_PerfCountFreq);
m_TimeScale = 1.0f/m_PerfCountFreq;
b
J[mmem e e constructor
//
// use to specify FPS
/!
//
CTimer::CTimer(float fps): m_FPS(fps),
{
//how many ticks per sec do we get
QueryPerformanceFrequency{ (LARGE_INTEGER*) &m_PerfCountFreq);
m_TimeScale = 1.0f/m_PerfCountFreq;
//calculate ticks per frame
m_FrameTime = (LONGLONG)(m_PerfCountFreq / m_FPS});
>
1/ Start() —
!
// call this immediately prior to game loop. Starts the timer (obvicusly!)
//
/!

void CTimer::Start()

{

//get the time
QueryPerformanceCounter((LARGE_INTEGER*) &m_lastTime);

182

//update time to render next frame
m_NextTime = m_LastTime + m_FrameTime;

return;
¥
// ReadyForNextFrame()
1
// returns true if it is time to move on to the next frame step. To be used if
/ FPS Is set.
/"
/ ———
bool CTimer::ReadyForNextFrame()
{
If (‘m_FPS)

MessageBox(NULL, "No FPS set in timer"”, "Doh!", 0);

return false;

¥
QueryPerformanceCounter((LARGE_INTEGER*) &m_CurrentTime);

if (m_CurrentTime > m_NextTime)

{
m_TimeElapsed = (m_CurrentTime - m_{LastTime) * m_TimeScale;
m_LastTime = m_CurrentTime;
//update time to render next frame
m_NextTime = m_CurrentTime + m_FrameTime;
return true;
¥
return false;
}
// TimeElapsed
//
/! returns time elapsed since last call to this function. Use in main
// when calculations are to be based on dt.
//
J=meemmmnees
double CTimer:: TimeElapsed()
{

QueryPerformanceCounter((LARGE_INTEGER*) &m_CurrentTime);

m_TimeElapsed = (m_CurrentTime - m_LastTime) * m_TimeScale

m_LastTime = m_CurrentTime;

return m_TimeElapsed;

183

#ifndef NEATGENOTYPE_H
#define NEATGENOTYPE_H

/!
//
// Name: genotype.h

//

// Authors:

// Created by Mat Buckland 2002

// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005
1/

1/ Desc: Genome description

/

4

#include <vector>

#1include "phenotype.h”
#include "utils.h”
#include "CInnovation.h"
#include "Genes.h"

using namespace std;

class Cga;
class CInnovation;

/!
/

// CGenome class definition. A genome basically consists of a vector of
// link genes, a vector of neuron genes and a fitness score.

1/

class CGenome
{

private:

//its identification number
int m_GenomelD;

//all the neurons which make up this genome

vector<SNeuronGene> m_vecNeurons;

//and all the the links
vector<SLinkGene> m_veclinks;

//pointer to its phenotype
CNeuralNet* m_pPhenotype;

184

185

//its raw fitness score
double m_dFitness;

//its fitness score after it has been placed into a
//spectes and adjusted accordingly
double m_dAdjustedFitness;

//the number of offspring this individual is required to spawn
//for the next generation
double m_dAmountToSpawn;

//keep a record of the number of inputs and outputs
int m_iNumiInputs,
m_iNumOutPuts;

//keeps a track of which species this genome is in {only used
//for display purposes)
int m_iSpecies;

//returns true if the specified link 1s already part of the genome
bool DuphcateLink(int NeuronIn, int NeuronQut);

//given a neuron id this function just finds its posttion in
//m_vecNeurons
int GetElementPos(int neuron_id);

//tests if the passed ID is the same as any existing neuron IDs. Used
//in AddNeuron
bool AlreadyHaveThisNeuronID(const int ID);

public:
CGenome();

//this constructor creates a minimal genome where there are output &
//iput neurons and every input neuron is connected to each output neuron
CGenome(int 1d, int inputs, int outputs);

//this constructor creates a genome from a vector of SLinkGenes
//a vector of SNeuronGenes and an ID number
CGenome(int id,

vector<SNeuronGene> neurons,

vector<SLinkGene> genes,

int inputs,
int outputs);
~CGenome();

//copy constructor
CGenome(const CGenome& g);

//assignment operator
CGenome& operator =(const CGenome& g);

//create a neural network from the genome

CNeuralNet* CreatePhenotype(int depth);
//delete the neural network

void DeletePhenotype();

CNeuraiNet* GetPhenotype()

return{m_pPhenotype);

//add a link to the genome dependent upon the mutation rate
void AddLink(double MutationRate,
double ChanceOfRecurrent,
CInnovation &innovation,

int NumTrysToFindLoop,
int NumTrysToAddLink);
//and a neuron
void AddNeuron(double MutationRate,
Clnnovation &innovation,
nt NumTrysToFindOldLink);

//this function mutates the connection weights

void MutateWeights(double mut_rate,
double prob_new_mut,
double dMaxPertubation);

//perturbs the activation responses of the neurons

void MutateActivationResponse(double mut_rate,
double MaxPertubation);

// this function mutates the learning algorithm parameters

void MutatelearningParameters(double mut_rate,

MaxPertubation);

//calculates the compatibility score between this genome and
//another genome

double GetCompatibilityScore(const CGenome &genome);

void SortGenes();

//overload '<' used for sorting. From fittest to poorest.

friend bool operator<{const CGenome& lhs, const CGenome& rhs)

return (lhs.m_dFitness > rhs.m_dFitness);

¥

// accessor methods
int ID()const{return m_GenomelD;}
void SetID(const int val){m_GenomelD = val;}

int NumGenes()const{return m_vecLinks.size();}
int NumNeurons()const{return m_vecNeurcns.size();}
int NumiInputs{)const{return m_iNumInputs;}
int NumOutputs()const{return m_INumOutPuts;}

double AmountToSpawn{)const{return m_dAmountToSpawn;}
void SetAmountToSpawn(double num){m_dAmountToSpawn = num;}

void SetFitness(const double num){m_dFitness = num;}

void SetAdjFitness(const double num){m_dAdjustedFitness = num;}

double Fitness()const{return m_dFitness;}
double GetAdjFitness()const{return m_dAdjustedFitness;}

int GetSpecies()const{return m_iSpecies;}
void SetSpecies(int spc){m_iSpecies = spc;}

double SplhitY({const int val)const{return m_vecNeurons[val].dSphtY;}

vector<SLinkGene> Genes()const{return m_vecLinks;}

vector<SNeuronGene> Neurons()const{return m_vecNeurons;}

vector<SLinkGene>::iterator StartOfGenes(){return m_vecLinks.begin();}
vector<SLinkGene>::iterator EndOfGenes(){return m_veclLinks.end();}

+i

186

double

#endif

#include "genotype.h”

/
1/
// defauit ctor
I
CGenome::CGenome():m_pPhenotype(NULL),
m_GenomelD(0),
m_dFitness(0),
m_dAdjustedFitness(0),
m_INumInputs(0),
m_iNumOutPuts(0),
m_dAmountToSpawn(0)

{3

I/ constructor

// this constructor creates a minimal genome where there are output +

// input neurons and each input neuron is connected to each output neuron.
1/

CGenome::CGenome(int id, int inputs, int outputs):m_pPhenotype(NULL),
m_GenomelID(id),
m_dFitness(0),
m_dAdjustedFitness(0),
m_iNumInputs(inputs),
m_iNumQutPuts(outputs),
m_dAmountToSpawn(0),
m_ISpecies(0)

//create the input neurons
double InputRowSlice = 1/(double)(inputs+2);

for (int 1=0; i<inputs; ++)

{
b

//create the bias
m_vecNeurons.push_back(SNeuronGene(bias, inputs, 0, InputRowSlice));

m_vecNeurons.push_back(SNeuronGene(input, i, 0, (i+2)*InputRowSlice));

//create the ocutput neurons
double OutputRowSlice = 1/(double)(outputs+1);

for (1=0; i<outputs; 1++)
{

187

188

m_vecNeurons.push_back(SNeuronGene(output, 1+inputs+1, 1,

(1+1)*QutputRowsSlice));
b

//create the link genes, connect each input neuron to each output neuron and
//assign a random weight -1 <w < 1
for (1=0; 1<inputs+1; 1++)

for (int 3=0; j<outputs; 1++)

m_vecLinks.push_back(SLinkGene(m_vecNeurons{i].iID,
m_vecNeurons[inputs+3+1].1ID,

true,
inputs+outputs+1+NumGenes(),
RandomClamped()));
¥
¥
b
//----
/
// this constructor creates a genome from a vector of SLinkGenes, a
// vector of SNeuronGenes and an ID number,
/===
CGenome::CGenome(int id,
vector<SNeuronGene> neurons,
vector<SLinkGene> genes,
int Inputs,
int outputs):m_GenomelD(id),
m_pPhenotype(NULL),
m_vecLinks(genes),
m_vecNeurons(neurons),
m_dAmountToSpawn(0),
m_dFitness(0),
m_dAdjustedFitness(0),
m_iNumInputs(inputs),
m_iNumOutPuts(outputs)
¢
[/---= dtor
/
/

CGenome::~CGenome()

if (m_pPhenotype)
{

delete m_pPhenotype;

m_pPhenotype = NULL;

mmmmmommmmmoomm s copy ctor---- ----

CGenome::CGenome(const CGenome& g)

{

m_GenomelD = g.m_GenomelD;

m_vecNeurons = g.m_vecNeurons;

m_veclinks = g.m_veclLinks;

m_pPhenotype = NULL; //no need to perform a deep copy
m_dFitness = g.m_dFitness;

m_dAdjustedFitness = g.m_dAdjustedFitness;

m_iNumlInputs = g.m_INumlnputs;

m_iNumQOutPuts = g.m_iNumOutPuts;
m_dAmountTeSpawn = g.m_dAmountToSpawn;

}

1/ assignment operator
//

/ —_
CGenome& CGenome: :operator ={const CGenome& g)

//self assignment guard

if (this 1= &g)
{
m_GenomelD = g.m_GenomelD;
m_vecNeurons = g.m_vecNeurons;
m_veclLinks = g.m_veclinks;
m_pPhenotype = NULL; //no need to perform a deep copy
m_dFitness = g.m_dFitness;
m_dAdjustedFitness = g.m_dAdjustedFithess;
m_INumInputs = g.m_iINumInputs;
m_INumOutPuts = g.m_iINumOutPuts;
m_dAmountToSpawn = g.m_dAmountToSpawn;
¥
return *this;
¥
/! --CreatePhenotype
/
// Creates a neural network based upon the information in the genome.
1/ Returns a pointer to the newly created ANN
1/

CNeuralNet* CGenome::CreatePhenotype(int depth)

//first make sure there is no existing phenotype for this genome
DeletePhenotype();

//this will hold all the neurons required for the phenotype
vector<SNeuron*> vecNeurons;

//first, create all the required neurons
for (int i=0; i<m_vecNeurons.size(); i++)
{

SNeuron* pNeuron = new SNeuron{m_vecNeurons[i].NeuronType,
m_vecNeurons[1].11D,
m_vecNeurons[1].dSplitY,
m_vecNeurons[1].dSplhitX,
m_vecNeurons[i].dActivationResponse

)H

vecNeurons.push_back(pNeuron);

3

//now to create the links.
for (int cGene=0; cGene<m_veclLinks.size(); ++cGene)

{

//make sure the link gene 1s enabled before the connection is created
if {m_vecl.inks[cGene].bEnabled)

//get the pointers to the relevant neurons
int element = GetElementPos{m_veclLinks[cGene].FromNeuron);
SNeuron* FromNeuron = vecNeurons[element];

element = GetElementPos(m_vecLinks[cGene].ToNeuron);
SNeuron* ToNeuron = vecNeurons[element];

189

//create a link between those two neurons and assign the weight stored
//n the gene
SLink tmpLink(m_veclLinks[cGene].dWeight,

FromNeuron,

ToNeuron,

m_veclinks[cGene].bRecurrent);

//add new links to neuron
FromNeuron->vecLinksOut.push_back(tmpLink);
ToNeuron->veclinksIn.push_back(tmpLink);

3

for(int I_temp=0; i_temp<vecNeurons.size(); I_temp++)

//setting the error status for each neuron
vecNeurons[i_temp]->iErrorStatus=vecNeurons[i_temp]->vecLinksOut.size();
}
//now the neurons contain all the connectivity information, a neural
//network may be created from them.
m_pPhenotype = new CNeuralNet(vecNeurons, depth);

return m_pPhenotype;

I/ DeletePhenotype

void CGenome::DeletePhenotype()
if (m_pPhenotype)

delete m_pPhenotype;
>

m_pPhenotype = NULL;

I - GEtElemENtPOS —-rmmmmmrmmmenemomem e e
/7

/ given a neuron ID this little function just finds its position in
// m_vecNeurons

/1

int CGenome: :GetElementPos(int neuron_id)
for (int 1=0; i<m_vecNeurons.size(); i++)
if {(m_vecNeurons[i].iID == neuron_id)
return i;

¥

MessageBox(NULL, "Error in CGenome::GetElementPos", "Problem!", MB_OK);

return -1;

}

1 -DuplicateLink
//
// returns true If the link 1s already part of the genome

/!

bool CGenome::DuplicateLink(int Neuronln, int NeuronOut)

for (int cGene = 0; cGene < m_veclLinks.size(); ++cGene)

if ({(m_veclinks[cGene].FromNeuron == NeuronIn) &&

190

191

{(m_vecLinks[cGene].ToNeuron == NeuronQOut})

{
//we already have this link
return true;
3
¥
return faise;
¥
I/ AddLink
1
// create a new link with the probability of CParams: :dChanceAddLink
e -

void CGenome::AddLink(double MutationRate,
double ChanceOfLooped,
CInnovation &innovation,
int NumTrysToFindLoop,
int NumTrysToAddLink)

//just return dependent on the mutation rate
if (RandFloat() > MutationRate) return;

//define holders for the two neurons to be linked. If we have find two
//vahd neurons to link these values will become >= 0.

int ID_neuronl = -1;

int ID_neuron2 = -1;

//flag set if a recurrent link 1s selected (looped or normat)
bool bRecurrent = false;

//first test to see If an attempt shpould be made to create a
//link that loops back into the same neuron
if (RandFloat() < ChanceOfLooped)

//YES: try NumTrysToFindLoop times to find a neuron that is not an
//input or bias neuron and that does not already have a loopback
//connection

while(NumTrysToFindLoop--)

//grab a random neuron
int NeuronPos = RandInt(m_iNuminputs+1, m_vecNeurons.size()-1);

//check to make sure the neuron does not already have a loopback

//link and that it 1s not an input or bias neuron

if (*m_vecNeurons[NeuronPos].bRecurrent &&
(m_vecNeurons{NeuronPos].NeuronType {= bias) &&
(m_vecNeurons[NeuronPos].NeuronType != input))

{

ID_neuronl = ID_neuron2 = m_vecNeurons[NeuronPos].iID;
m_vecNeurons[NeuronPos].bRecurrent = true;
bRecurrent = true;

NumTrysToFindLoop = 0;
¥
¥
¥

else

//No: try to find two unlinked neurons. Make NumTrysToAddLink
//attempts

while(NumTrysToAddLink--)

{

192

//choose two neurons, the second must not be an input or a bias
ID_neuronl = m_vecNeurons[RandInt(0, m_vecNeurons.size(}-1}].11D;

ID_neuron2 =
m_vecNeurons[RandInt(m_iNumInputs+1, m_vecNeurons.size()-1)].11D;

If (ID_neuron2 == 2)
{
continue;

X

//make sure these two are not already linked and that they are
//not the same neuron
if ({(DuplicateLink(ID_neuronl, ID_neuron2) ||

(ID_neuronl == ID_neuron2)))

NumTrysToAddLink = Q;
}

else
{
ID_neuronl = -1;
ID_neuron2 = -1;
¥
}
b

//return if unsuccessful in finding a link
if ((ID_neuronl < 0) {| (ID_neuron2 < 0))

return;

}

//check to see If we have already created this innovation
int id = innovation.CheckInnovation(ID_neuroni, ID_neuron2, new_hnk);

//is this link recurrent?
if (m_vecNeurons[GetElementPos(ID_neuron1)].dSphtY >
m_vecNeurons[GetElementPos(ID_neuron2)].dSplitY)
{
bRecurrent = true;

>
if (1d <0)
{

//we need to create a new innovation
innovation.CreateNewlInnovation(ID_neuroni, ID_neuron2, new_lnk);

//then create the new gene
int 1d = innovation.NextNumber() - 1;

SLinkGene NewGene(ID_neuroni,
ID_neuron2,
true,
id,
RandomClamped(),
bRecurrent);

m_vecLinks.push_back(NewGene);

¥
else
//the mnovation has already been created so all we need to

//do is create the new gene using the existing innovation ID
SLinkGene NewGene(ID_neuroni,

193

ID_neuronz,

true,

id,
RandomClamped(),
bRecurrent);

m_veclinks.push_back(NewGene);

}

return;

3

// - AddNeuron --
/I
1/ this function adds a neuron to the genotype by examining the network,
// splitting one of the links and inserting the new neuron.
/7
void CGenome::AddNeurcon(double MutationRate,
Clnnovation &nnovations,
int NumTrysToFindOIdLink)

//just return dependent on mutation rate
if (RandFloat() > MutationRate) return;

//if a valid link is found into which to insert the new neuron
//this value 1s set to true.
bool bDone = false;

//this will hold the index inte m_vecLinks of the chosen link gene
int ChosenLink = 0;

//first a ink is chosen to split. If the genome i1s small the code makes
//sure one of the older links Is split to ensure a chaining effect does
//not occur. Here, if the genome contains less than 5 hidden neurons it
/s considered to be too small to select a link at random

const int SizeThreshold = m_iNumInputs + m_iNumOQutPuts + 5;

if (m_vecLinks.size() < SizeThreshold)
while(NumTrysToFindOldLink--)

//choose a link with a bias towards the older links in the genome
ChosenLink = RandInt(0, NumGenes()-1-(int)sqrt{NumGenes(}));

//make sure the link 1s enabled and that it is not a recurrent link
//or has a bias input
int FromNeuron = m_veclLinks[ChosenLink].FromNeuron;

if ((m_vecLinks[ChosenLink].bEnabled) &&
('m_vecLinks[ChosenLink].bRecurrent) &&
(m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias))

{

bDone = true;

NumTrysToFindOldLink = O;
¥
b

if (1bDone)

//failed to find a decent link
return;

¥
3

else

//the genome Is of sufficient size for any link to be acceptable
while (1bDone)

ChosenLink = RandInt(0, NumGenes()-1);

//make sure the link is enabled and that it is not a recurrent link
//or has a BIAS input
int FromNeuron = m_vecLinks[ChosenLink].FromNeuron;

if ({(m_vecLinks[ChosenLink].bEnabled) &&
('m_vecLinks[ChosenLink].bRecurrent) &&
{m_vecNeurons[GetElementPos(FromNeuron)].NeuronType != bias))

bDone = true;
¥
}
>

//disable this gene
m_vecLinks[ChosenLink].bEnabled = false;

//grab the weight from the gene (we want to use this for the weight of
//one of the new links so that the split does not disturb anything the
//NN may have already learned...

double OrniginalWeight = m_veclinks[ChosenLink].dWeight;

//identify the neurons this ink connects
int from = m_vecLinks[ChosenLink].FromNeuron;
intto = m_veclLinks[ChosenLink].ToNeuron;

//calculate the depth and width of the new neuron. We can use the depth

//to see if the link feeds backwards or forwards

double NewDepth = (m_vecNeurons{GetElementPos(from)].dSphtY +
m_vecNeurons[GetElementPos(to)].dSplitY) /2;

double NewWidth = (m_vecNeurons[GetElementPos(from)].dSphitX +
m_vecNeurons[GetElementPos(tc)].dSplitX) /2;

//Now to see if this innovation has been created previously by
//another member of the population
int id = innovations.CheckInnovation(from,

to,

new_neuron);

/*

This function must check to see if a neuron ID is already
being used. If it is then the function creates a new innovation
for the neuron. */

if (id >= 0)

{

int NeuronID = innovations.GetNeuronID(id);
if (AlreadyHaveThisNeuronID(NeuronID))
id =-1;
¥
B
if (id < 0)
//add the innovation for the new neuron

int NewNeuronID = innovations.CreateNewInnovation(from,
to,

194

new_neuron,
hidden,
NewW:dth,
NewDepth);

//create the new neuron gene and add it.
m_vecNeurons.push_back(SNeuronGene(hidden,
NewNeuronlID,
NewDepth,
NewWidth));

//Two new link innovations are required, one for each of the
//new links created when this gene 1s sphit.

// first link

//get the next innovation ID
int 1dLinkl = innovations.NextNumber();

//create the new innovation

mnovations.CreateNewInnovation(from,
NewNeuronlD,
new_link);

//create the new link gene
SLinkGenge link1{from,
NewNeuronlD,
true,
idLink1,
(1.0-OrniginalWeight/2.0));

m_vecLinks.push_back(link1);

// second Iink

//get the next innovation ID
int idLink2 = innovations.NextNumber();

//create the new innovation
innovations.CreateNewInnovation{NewNeuronID,
to,
new_link);

//create the new gene

SLinkGene link2(NewNeuronID,
to,
true,
idLink2,
OniginalWeight/2.0);

m_veclinks.push_back(link2);
¥

else

{
//this innovation has already been created so grab the relevant neuron
//and hnk info from the innovation database
int NewNeuronID = innovations.GetNeuronID(id);

//get the innovation IDs for the two new link genes.
int idLink1 = innovations.CheckInnovation(from, NewNeuronID, new_link);
int 1dLink2 = innovations.CheckInnovation(NewNeuronID, to, new_link);

//this should never happen because the innovations *should* have already
//occurred
If ((idlinkl < 0) || (idLink2 < 0))

195

MessageBox(NULL, "Error in CGenome::AddNeuron”, "Problem!", MB_OK);

return;

¥

//now we need to create 2 new genes to represent the new links
SLinkGene hink1(from, NewNeuronlD, true, idLink1, 1.0);
SLinkGene link2(NewNeuronID, to, true, idLink2, OriginalWeight);

m_veclLinks.push_back{link1);
m_vecLinks.push_back(link2);

//create the new neuron
SNeuronGene NewNeuron(hidden, NewNeuronID, NewDepth, NewWidth);

//and add it
m_vecNeurons.push_back(NewNeuron);
¥
return;
3
// AlreadyHaveThisNeuronID
//

// tests to see if the parameter is equal to any existing neuron ID's.
// Returns true If this is the case.

bool CGenome::AlreadyHaveThisNeuronID(const int ID)

{

for (int n=0; n<m_vecNeurons.size(); ++n)

if (ID == m_vecNeurons[n].ilID)

{
return true;
¥
H
return false;
>
// MutateWeights
// Iterates through the genes and purturbs the weights given a
// probability mut_rate.
/
// prob_new_mut i1s the chance that a weight may get replaced by a
// completely new weight.
/"
/! dMaxPertubation is the maximum perturbation to be applied.
1/
// type 1s the type of random number algorithm we use
/!

void CGenome::MutateWeights(double mut_rate,
double prob_new_mut,
double MaxPertubation)

for (int cGen=0; cGen<m_veclLinks.size(); ++cGen)
{

//do we mutate this gene?

if (RandFloat() < mut_rate)

//do we change the weight to a completely new weight?

if (RandFloat() < prob_new_mut)

//change the weight using the random distribtion defined by ‘type’
m_vecLinks[cGen].dWeight = RandomClamped();

196

197

}
else
{
//perturb the weight
m_vecLinks[cGen].dWeight -= RandomClamped() * MaxPertubation;
b
}
¥
return;

¥

void CGenome::MutateActivationResponse(double mut_rate,
double MaxPertubation)

for (int cGen=0; cGen<m_vecNeurons.size(); ++cGen)
{

if (RandFloat() < mut_rate)

{

m_vecNeurons[cGen].dActivationResponse += RandomClamped() * MaxPertubation;

b
¥
3

void CGenome: :MutatelearningParameters(double mut_rate,double MaxPertubation)

{

¥

1/ GetCompatibilityScore
//

// this function returns a score based on the compatibility of this
// genome with the passed genome

//
double CGenome::GetCompatibilityScore(const CGenome &genome)

//travel down the length of each genome counting the number of
//disjoint genes, the number of excess genes and the number of
//matched genes

double NumDisjoint =
double NumExcess =
double NumMatched = 0;

0;
g;

//this records the summed difference of weights in matched genes
double WeightDifference = 0;

//position holders for each genome. They are incremented as we
//step down each genomes length,

intgl = 0;

intg2 = 0;

while ((g1 < m_veclLinks.size()-1) || (g2 < genome.m_vecLinks.size()-1))
//we've reached the end of genomel but not genome2 so increment

//the excess score
If (g1 == m_veclLinks.size()-1)

198

++g2;
++NumExcess;

continue;

b

//and vice versa
If (g2 == genome.m_vecLinks.size{)-1)

++4g1;
++NumExcess;

continue;
b
//get innovation numbers for each gene at this point
int idl = m_veclinks[gl].InnovationID;
Int id2 = genome.m_veclLinks[g2].InnovationlD;

//innovation numbers are identical so increase the matched score

if (1d1l == id2)

{
++g1;
++g2;
++NumMatched;

//get the weight difference between these two genes
WeightDifference += fabs{(m_veclLinks[gl].dWeight - genome.m_vecLinks[g2].dWeight);

}

//innovation numbers are different so increment the disjoint score
if (1d1 < 1d2)
{

++Numbisjoint;
++gl;

}
if (id1 > 1d2)
{

+-+NumDisjoint;
++g2;
¥

}//end while

//get the length of the longest genome
int longest = genome.NumGenes();

if (NumGenes() > longest)

longest = NumGenes();

¥

//these are multipliers used to tweak the final score.
const double mDisjoint = 1;

const double mExcess = 1;

const double mMatched = 0.4;

//finally calculate the scores

double score = (mExcess * NumExcess/(double)longest) +
(mbDisjoint * NumbDisjoint/(double)longest) +
(mMatched * WeightDifference / NumMatched);

return score;

3

/] SortGenes --
//
// sorts the genes

/! --
void CGenome::SortGenes()

sort (m_vecLinks.begin(), m_veclLinks.end());

3

#ifndef PHENOTYPE_H
#define PHENOTYPE_H

J[=mnmee -

// Name: phenotype.h

1

// Authors:

// Created by Mat Buckland 2002

// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005

/

// Desc: definitions required for the creation of a neural network.
//

1/

#include <vector>
#1include <math.h>
#include <windows.h>
#include <algonthm>

#nclude "utils.h”
#include "CParams.h"
#include "genes.h"

using namespace std;

struct SNeuron;

/-
1
// SLink structure
//
struct SLink
{
//pointers to the neurons this ink connects
SNeuron* pln;
SNeuron* pOut;

//the connection weight
double dWeight;

/s this link a recurrent ink?

199

bool bRecurrent;

SLink(double dW, SNeuron* pin, SNeuron* pOut, bool bRec):dWeight{dW),

pIn{pIn),
pOut(pOut),
bRecurrent(bRec)
{>

+i

1/

//

// SNeuron

// -

struct SNeuron

public:
//all the links coming into this neuron
vector<SLink> vecLinksln;

//and out
vector<SLink> veclLinksOut;

//sum of weights x inputs
double dSumActivation;

//the output from this neuron
double dOutput;

//what type of neuron is this?
neuron_type NeuronType;

//1its identification number
int {NeuronID;

//sets the curvature of the sigmoid function
double dActivationResponse;

//indicates status of error I.e. whether the error 1s collected from all output neurons or not

int |ErrorStatus;

//sets the learning rate for backpropagation and gradient descent
double dLearningRate;

//stores the error for this neuron
double dError;

//stores the desired output for the neuron. only valid for output neurons
double dDesiredOutput;

//double dBpParami;
//used in visualization of the phenotype

int tPosX, IPosY;
double dSplity, dSplitX;

//-~- ctors
SNeuron(neuron_type type,
int id,
double Y,

double X,

double ActResponse):NeuronType(type),
INeuronID(id),
dSumActivation(0),
dOutput(0),

200

dLearningRate(CParams::dlLearningRate),

1PosX(0),

1PosY(0),

dSplitY(y),

dSplitX(x),
dActivationResponse(ActResponse)

{3
by

-

/!
// CNeuralNet

1

class CNeuralNet

{
private:
vector<SNeuron*> m_vecpNeurons;

//the depth of the network
int m_1Depth;

public:

double dBpParamli;
double dBpParamz2;
double dBpParams3;
double dBpParam4;
double dBpParam5;
double dBpParamé;
double dBpParam7;
double dBpParams;
double dBpParam?9;
double dBpParaml10;
double dBpParamilti;

CNeuralNet(vector<SNeurcon*> neurons,
int depth);

~CNeuralNet();

//you have to select one of these types when updating the network
//1If snapshot 1s chosen the network depth I1s used to completely
//flush the inputs through the network. active just updates the

//network each timestep
enum run_type{snapshot, active};

//update network for this clock cycle

201

dError(1),
dDesiredOutput(-1},

IErrorStatus(vecLinksOut.size()),

vector<double> Update(const vector<double> &nputs, const run_type type, const int Ticks);

//offline training for a pre defined scenario
double offlineTraining(HWND hwnd1});

//mutating learning algorithm's parameters
void Mutatel.earningParameters(double mut_rate,

double MaxPertubation);

//backpropagation routine called in offline training
void Backprop();
void hiddenneuronerror(SNeuron*);

inline vector<double> similaritymeasure(const vector<double> &input);

//draws a graphical representation of the network to a user speciefied window

void DrawNet(HDC &surface,
int cxLeft,
int exRight,
int cyTop,
int cyBot);
by
#endif

#include "phenotype.h"

/! Sigmoid function
1/

/
float Sigmoid(float netinput, float response)

return (1 / (1 + exp(-netinput / response)));

}

// ctor

1/

/

CNeuralNet: :CNeuralNet(vector<SNeuron*> neurons,

int depth):m_vecpNeurons(neurons),
m_iDepth(depth),

dBpParami1(CParams::dParaml),
dBpParam2(CParams::dParam2),
dBpParam3(CParams::dParam3),
dBpParam4(CParams::dParam4),
dBpParam5(CParams::dParamb),
dBpParamé(CParams::dParameé),
dBpParam7(CParams::dParam7),
dBpParam8(CParams::dParam8),
dBpParam9(CParams: :dParam9),
dBpParam10(CParams::dParam10),

dBpParam11(CParams::dParam11)

{3

/ - dtor ---

202

203

/

// --
CNeuralNet::~CNeuraiNet()

//delete any live neurons
for (int 1=0; i<m_vecpNeurons.size(); ++1)

{

if (m_vecpNeurons[i])
delete m_vecpNeurons[i];

m_vecpNeurons[i] = NULL;
]
b
b

// This implments the offline modified back propagation algorithm
double CNeuralNet: :offlineTraining(HWND hwnd1)
{
int _local,i_iter;
int iLastinputneuron;
double dTmpvar;
int TrainingSize=250;//number of training examples
int iIterationSize=1000 ;//Numer of times we iterate
char *szFileNamel="i0_tramning3.txt";

ifstream grabl(szFileNamel);
vector<double> trainingInputs;
vector<double> targetOutputs;
vector<double> errorVectorl,errorVector2;
for(i_iter=0;1_iter<i;i_iter++)
{
int sizel=m_vecpNeurons.size();
//MessageBox(hwnd1,"iter_of offline","progress",MB_OK);
errorVectorl.clear();
errorVector2.clear();
for {I_local=0;i_local<iTrainingSize;i_local++)
{
trainingInputs.clear();
targetOutputs.clear();
//errorVectorl.clear();
//errorVector2.clear(};

//Read input from file

//grabl>>dTmpvar;
trainingInputs.push_back(dIop[i_local][0]);

//grabl>>dTmpvar;
trainingInputs.push_back(dIop[i_locall[1]);

//grabl>>dTmpvar;
trainingInputs.push_back{(dIop[i_local][2]);

//grabl>>dTmpvar;
trainingInputs.push_back(dIop[i_local][3]);

//grabl>>dTmpvar;
trainingInputs.push_back(dIop[i_locall[4]);

//grabl>>dTmpvar;
traimingInputs.push_back(dIop[i_focal][5]);

vals

vals

//grabl>>dTmpvar;
trainingInputs.push_back(dlop[i_locall[6]);

//grabl>>dTmpvar;
tramingInputs.push_back{dlop[i_locall[7]);

//grabi>>dTmpvar;
tramingInputs.push_back{dIop[i_local][8]);

//grabl>>dTmpvar;
trainingInputs.push_back(dlop[i_locall[9]);

//grabl>>dTmpvar;
trainingInputs.push_back(dIop[i_local][10]);

//Read desired output

//grabl>>dTmpvar;
targetOutputs.push_back(dIop[i_locall{11]);

//grabi>>dTmpvar;
targetOutputs.push_back(dIop[i_local}[12]);

//MessageBox(hwnd1,"In phenotype offlinetraingig,after reading

", "progress3”,MB_OK);

//this i1s an index into the current neuron

int cNeuron = 0;

//first set the outputs of the 'input' neurons to be equal
//to the values passed into the function in inputs

while (cNeuron<10)

{

m_vecpNeurons[cNeuron]->dOutput = trainingInputs{cNeuron];

++cNeuron;

b
//MessageBox{hwnd1,"In phenotype offlinetraingig,after setting 10 /p

", "progress4”,MB_OK);

//set the output of the blas to 1

m_vecpNeurons[10]->dOutput = 1;

cNeuron=11;

//then we step through the network one neuron at a time

204

//MessageBox(hwnd1,"In phenotype offlinetraingig,bef while loop”,"progress5*,MB_OK};

while (cNeuron < m_vecpNeurons.size())

//this will hold the sum of all the inputs x weights

double sum = 0;

//sum this neuron’'s inputs by iterating through all the links into

//the neuron

for (int Ink=0; Ink<m_vecpNeurons[cNeuron]->vecLinksIn.size(); ++Ink)

{
//get this link's weight

double Weight = m_vecpNeurons[cNeuron]->veclinksIn[Ink].dWeight

//get the output from the neuron this link is coming from

double NeuronQutput =

m_vecpNeurons[cNeuron]->vecLinksIn[ink].pIn->dOutput;

//add to sum

sum += Weight * NeuronQOutput;

4

205

//now put the sum through the activation function and assign the

//value to this neuron's output

m_vecpNeurons[cNeuron]->dOutput = Sigmoid(sum, m_vecpNeurons[cNeuron]-
>dActivationResponse);

//next neuron
++cNeuron;
}//end of while loop
//MessageBox(hwnd1,"In phenotype offlinetraingig,after the while loop of o/p
vals","progress6",MB_OK);

//calculate error

//the following sets error status for output neurons to zero
cNeuron=0;

int 1IQutputindex=0;

bool flag_output=false;

while(cNeuron<m_vecpNeurons.size())
if {(m_vecpNeurons[cNeuron]->NeuronType == output)
m_vecpNeurons[cNeuron]->iErrorStatus=0;
g(flagﬂoutput==false)//then it 1s 1st output neuron

m_vecpNeurons[cNeuron]->dDesiredQutput=targetOutputs[0];
flag_output=true;

else //itis 2nd output neuron

{
m_vecpNeurons[cNeuron]->dDesiredOutput=targetOutputs[1];
}//end of inside IF else loop

T //end of outside If loop
if (m_vecpNeurons[cNeuron]->NeuronType == hidden)

m_vecpNeurons{cNeuron]->IErrorStatus=m_vecpNeurons[cNeuron]-
>veclinksOQut.size();

3

//next neuron
++cNeuron;

3
//MessageBox(hwnd1,"after setting desired ops","progress",MB_0K);

cNeuron=0;
iLastinputneuron=0;
while{m_vecpNeurons[cNeuron]->NeuronType == mput)

ILastinputneuron++;
cNeuron++;

//error propagation routine
cNeuron=m_vecpNeurons.size()-1;
int flag_out=0;

while(cNeuron>iLastinputneuron)

206

//output neuron error & weight adjustment
if(m_vecpNeurons[cNeuron]->NeuronType == output)

m_vecpNeurons[{cNeuron]->dError=(m_vecpNeurons[cNeuron]-
>dDesiredOutput-m_vecpNeurons[cNeuron]->dOutput)* m_vecpNeurons[cNeuron]->dOutput*(1-
m_vecpNeurons[cNeuron]}->dOutput);
If(flag_out==1)
errorVectorl.push_back(m_vecpNeurons[cNeuron]->dError);
else
{
errorVector2.push_back(m_vecpNeurons[cNeuron]->dError);
flag_out=1;

¥
//Updating the weights
/*comment-begin here for normal error prop*/
k3

for(int Ink1=0;Ink1< m_vecpNeurons[cNeuron]-
{
m_vecpNeurons[cNeuron]->vecLinksIn[Inki].dWeight -=

0.5*m_vecpNeurons[cNeuron]->dlLearningRate*m_vecpNeurons{cNeuron]-
>dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink1].pIn->dOutput;

>veclinksIn.size();Ink1+4)

}//end of for loop
*/

/*comment-end here for normal error prop */

}//end of if loop for output neurons

// MessageBox(hwnd1,"In phenotype offlinetraingig,after setting error for
o/p","progress8",MB_OK);

/*comment-begin here for normal error prop*/
/*
If(m_vecpNeurons[cNeuron]->NeuronType == hidden)

//MessageBox(hwnd1,"before calling hidden
neuronerror”,"progress",MB_0K);

hiddenneuronerror(m_vecpNeurons[cNeuron]);

//MessageBox(hwnd1,"after calling hidden
neuronerror"”,"progress",MB_OK);

//Updating the error
for(int Ink3=0,Ink3<m_vecpNeurons[cNeuron]-
>veclinksin.size();Ink3++)

//update weights

m_vecpNeurons[cNeuron]->vecLinksIn[ink3].dWeight -=
m_vecpNeurons[cNeuron]->dLearningRate*m_vecpNeurons[cNeuron]-
>dError*m_vecpNeurons[cNeuron]->veclLinksIn[Ink3].pIn->dOutput;

}//end of for loop for updating weights

}//end of If loop for hidden neurons

*/

/*comment-end here for normal error propagation */

cNeuron--;//next iteration

207

}//end of while loop

}// end of i_local loop

//A different approach in averaging the error
double dAvgErr1=0.0,dAvgEr2=0.0;
for(int g1=0;gl<errorVectori.size();gl++)

dAvgErrl+=errorVectorli.at(gl);
dAvgErr2+=errorVector2.at(gl);

b
dAvgErri= dAvgErri/errorVectorl.size();
dAvgErr2= dAvgErr2/errorVector2.size();
//Updating the error
int cNeuronl=sizel-1;
Iint flag_out1=0;

/*comment-begin here for other error prop */
while(cNeuron1>10)

{

If(m_vecpNeurons[cNeuronl]->NeuronType == output)

if(flag_outl==0)

{
m_vecpNeurons[cNeuronl]->dError=dAvgErr2;
flag_outl=1;

}

else

m_vecpNeurons[cNeuronl]->dError=dAvgErrl;
for(int Ink1=0;Ink1< m_vecpNeurons[cNeuroni]-

{
m_vecpNeurons[cNeuron1]->vecLinksIn[Ink1].dWeight -=
0.5*m_vecpNeurons[cNeuron1]->dLearningRate*m_vecpNeurons[cNeurconl]-
>dError*m_vecpNeurons[cNeuron1]->vecLinksIn[Ink1].pIn->dOutput;

>vecLinksIn.size();Ink1++)

}//end of for loop
}//end of output neuron IF

//MessageBox(hwnd1,"In phenotype offlinetraingig,after o/p error vals","progress8",MB_OK);
if(m_vecpNeurons[cNeuronl]->NeuronType == hidden)

//MessageBox(hwnd1,"before calling hidden
neuronerror”,"progress9",MB_0K);

hiddenneuronerror(m_vecpNeurons[cNeuron1]);

//MessageBox(hwnd1,"after calling hidden
neuronerror”,"progress10",MB_OK);

//Updating the error
for(int Ink3=0;Ink3<m_vecpNeurons[cNeuron1]-

>vecLinksIn.size();Ink3++)

//update weights

m_vecpNeurons{cNeuronl]->vecLinksIn[Ink3].dWeight -=
m_vecpNeurons[cNeuron1]->dLearningRate*m_vecpNeurons[cNeuronl]-
>dError*m_vecpNeurons[cNeuronl]->vecLinksIn[ink3].pIn->dOutput;

208

}//end of for loop for updating weights

}//end of if loop for hidden neurons
cNeuroni--;

}//end of while
/*comment-end here for other error propagation */

//errorVectorl.clear();
//errorVector2.clear();
}//end of i_iter loop

tnt cNeuron2=0;

int INo_output_Neurons=0;

double dAvgError=0.0;
while(cNeuron2<m_vecpNeurons.size())

if (m_vecpNeurons[cNeuron2]->NeuronType == output)

INo_output_Neurons++;
dAvgError+=m_vecpNeurons[cNeuron2]->dError;

cNeuron2++;
}//end of while

dAvgError=dAvgError/(double)iNo_output_Neurons;
return(dAvgError);
}//end of offline training function
// A recursive function that finds the error for hidden neurons
void CNeuralNet::hiddenneuronerror(SNeuron* hiddenneuron)
if(hiddenneuron->vecLinksOut.size()>0)
for(int Ink2=0;Ink2< hiddenneuron->vecLinksOut.size();Ink2++)
if(hiddenneuron->veclinksOut[Ink2].pOut->1ErrorStatus==0)

{
hiddenneuron->dError+=hiddenneuron->dOutput* (1 - hiddenneuron-
>dOutput)* hiddenneuron->vecLinksOut[Ink2].pOut->dError * hiddenneuron-

>veclinksOut[Ink2].dWeight;
if(thiddenneuron->iErrorStatus>0)
hiddenneuron->iErrorStatus--;//we have calculated error from 1

output neuron so update the status
else break;

}//end of If errorstatus=0
else if(hiddenneurcon->vecLinksOut[Ink2].pOut->IErrorStatus>0)

if(*hiddenneuron->vecLinksOut[Ink2].bRecurrent)

hiddenneuronerror{hiddenneuron->veclinksOut[Ink2].pOut);
//MessageBox{m_hwndMain, "Wrong amount of NN inputs!”,

"Error", MB_OK);

else

continue;

}//end of else if i.e. error status is not zero
else

hiddenneuron->veclLinksOut[Ink2].pOut->iErrorStatus=0;

continue;

¥
}//end of for Ink2

}//end of hiddenneuronerror function

/! Update
// takes a list of doubles as inputs into the network then steps through
// the neurons calculating each neurons next output.
1
// finally returns a std::vector of doubles as the output from the net.
/! --
vector<double> CNeuralNet::Update(const vector<double> &inputs,
const run_type type,

const int

//create a vector to put the outputs into
vector<double> outputs;

vector<double> DesiredOutputs;

double p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10;

//if the mode Is snapshot then we require all the neurons to be
//iterated through as many times as the network Is deep. If the
//mode s set to active the method can return an output after
//1ust one iteration

int FlushCount = 0;

bool flag_outputi=false;

pO= dBpParami;

pl= dBpParam2;
p2= dBpParam3;
p3= dBpParam4;
p4= dBpParam5;
p5= dBpParam6;
p6= dBpParam?7;
p7= dBpParams;
p8= dBpParam9;
p9= dBpParam10;
p10= dBpParamll;

if (type == snapshot)
{

FlushCount = m_iDepth ;
}

else

FlushCount = 1;
>

//iterate through the network FlushCount times
for (int 1=0; 1<m_iDepth; ++1)

//clear the output vector
outputs.clear();
// DesiredQutputs.clear();

iTicks)

209

210

//this 1s an index into the current neuron
Int cNeuron = 0;

//first set the outputs of the 'input’ neurons to be equal
//to the values passed into the function in inputs
while (m_vecpNeurons{cNeuron]->NeuronType == input)

{

m_vecpNeurons[cNeuron]->dOutput = inputs[cNeuron];

++cNeuron;
}//end of input while loop

//set the output of the bias to 1
m_vecpNeurons[cNeuron++]->dQOutput = 1;

//DesiredOutputs.push_back(0.9789);
//DesiredOutputs.push_back(0.9897);

//then we step through the network a neuron at a time
while (cNeuron < m_vecpNeurons.size())

//this will hold the sum of all the inputs x weights
double sum = 0;

//sum this neuron's inputs by iterating through all the links into
//the neuron
for (int Ink=0; Ink<m_vecpNeurons[cNeuron]->veclinksIn.size(); ++Ink)

//get this link's weight
double Weight = m_vecpNeurons[cNeuron]->vecLinksIn[Iink].dWeight;

//get the output from the neuron this link 1s coming from
double NeuronOutput =
m_vecpNeurons[cNeuron]->vecLinksIn[Ink].pIn->dOutput;

//add to sum
sum += Weight * NeuronOutput;
}//end of for loop

//now put the sum through the activation function and assign the

//value to this neuron's output

m_vecpNeurons[cNeuron]->dOutput =

Sigmoid(sum, m_vecpNeurons[cNeuron]->dActivationResponse);
if {(m_vecpNeurons[cNeuron]->NeuronType == output)

outputs.push_back(m_vecpNeurons[cNeurcon]->dOutput);
}//end of if output loop
//next neuron

++cNeuron;
}//end of while loop

/ ———- -

/* comment-begin for no online learning */

1/

if(CParams::10nlyGAs==0)

//the following sets error status for output neurons to zero
cNeuron=0;
int 10utputindex=0;
bool flag_output=false;

211

DesiredQutputs.clear();
if(CParams: :i1GlobalOnline==0)

{
DesiredOutputs = similaritymeasure(inputs);//If Local Online then get desired
o/ps from the training set using filter function

else

{
// MessageBox(NULL, "in global desired", "Error", 0);

//If Global Online then we use heuristic of fitness parameters. Here we supply

highest speed possible as desired cutputs
DesiredOutputs.push_back{0.9789);

DesiredOutputs.push_back{0.9897);

¥

if(CParams: :1GlobalOnhne==0)

{
//if speed value is less then teach minesweepers to spped up
if(DesiredOutputs[0]<0.75) DesiredOutputs[0]=DesiredOutputs[0]+0.15;
if(DesiredOutputs[1]<0.75) DesiredOutputs[1]1=DesiredOutputs[1]+0.15;

¥

if(DesiredOutputs.size()==0)
MessageBox(NULL, "Error Desired opsize=0!", "Error", 0);

//the following will set error status and desired outputs for output neurons
while(cNeuron<m_vecpNeurons.size())

{

if (m_vecpNeurons[cNeuron]->NeuronType == output)

{

m_vecpNeurons[cNeuron]->iErrorStatus=0;
if(flag_output==false)//then it is 1st output neuron

m_vecpNeurons[cNeuron]-

>dDesiredOutput=DesiredOutputs[0];
flag_output=true;//set the flag

else //1t 1s 2nd output neuron

{

m_vecpNeurons[cNeuron]-

>dDesiredOutput=DesiredOutputs[1];
flag_output=false;//reset the flag

}//end of else

b3 //end of outside if loop
1If(m_vecpNeurons[cNeuron]->NeuronType == hidden)

m_vecpNeurons[cNeuron}-
>IErrorStatus=m_vecpNeurons[cNeuron]->vecLinksOut.size();

//next neuron
++cNeuron;

}//end of error and desired op setting WHILE iocop

cNeuron=0;
int iLastinputneuron=0;
while(m_vecpNeurons[cNeuron]->NeuronType == input)

{

iLastinputneuron++;

212

cNeuron++;

¥

//Lastinputneuron++;//to include bias neuron
if(ILastinputneuron==10)
MessageBox(NULL, "10 input neurons”, "Anil*, 0);

m_vecpNeurons[iLastinputneuron]->dQCutput = 1;

//error propagation routine
cNeuron=m_vecpNeurons.size()-1;

while(cNeuron>iLastinputneuron)

{

//output neuron error & weight adjustment
If(m_vecpNeurons[cNeuron]->NeuronType == output)

{

m_vecpNeurons[cNeuron]->dError=(m_vecpNeurons[cNeuron]-
>dDesiredOutput-m_vecpNeurons[cNeuron]->dQutput)* m_vecpNeurons[cNeuron]->dOutput*(1-
m_vecpNeurons[cNeuron]->dOutput);

for(int Ink1=0;Ink1< m_vecpNeurons[cNeuron]-

{

>veclinksIn.size();Ink1++)

double wij1,a31;
wil=m_vecpNeurons{cNeuron]->vecLinksIn[ink1].dWeight;
ajl=m_vecpNeurons[cNeuron]->dlLearningRate;

If(CParams: :iRuleEvolution==0)

{

// m_vecpNeurons[cNeuron]-
>vecLinksIn[ink1].dWeight -= (1/1Ticks)*0.25*m_vecpNeurons[cNeuron]-
>dLearningRate*m_vecpNeurons{cNeuron]->dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink1].pIn-

>dOutput;

m_vecpNeurons[cNeuron]-
>veclLinksIn[Ink1].dWeight += (1/1Ticks)*m_vecpNeurons[cNeuron]-
>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink1].pIn-

>dOutput;
//m_vecpNeurons[cNeuron]-

>vecl.inksIn[Iinki].dWeight += (1/1Ticks)*0.25*m_vecpNeurons[cNeuron]-
>dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink1].pIn->dOutput;
else
{
m_vecpNeurons[cNeuron]-
>vecLinksIn[Iink1].dWeight -= p0*(p1*wijl-p2*ajl*m_vecpNeurons[cNeuron]->dError-
p3*wyl*ajl+p4*m_vecpNeurons[cNeuron]->dError+p5*ajl*m_vecpNeurons[cNeuron]->dOutput);

//m_vecpNeurons[cNeuron]-
>dLearningRate+=m_vecpNeurons[cNeuron]->dLearningRate*m_vecpNeurons[cNeuron]->dError;

}//end of for loop
}//end of if loop for output neurons
If{m_vecpNeurons[cNeuron]->NeuronType == hidden)

hiddenneuronerror(m_vecpNeurons[cNeuronl);
for(int Ink3=0;Ink3<m_vecpNeurons[cNeuron]-

{

>veclinksIn.size();Ink3++)

double wi,aj;
wij=m_vecpNeurons[cNeuron]->vecLinksIn[Ink3].dWeight;
aj=m_vecpNeurons[cNeuron]->dlLearningRate;

//update weights, iIf not bias

if(CParams: :IRuleEvolution==0)

{
//m_vecpNeurons{cNeuron]-
>vecLinksIn[Ink3].dWeight -= (1/1Ticks)*0.25*m_vecpNeurons[cNeuron]-

213

>dLearningRate*m_vecpNeurons[cNeuron]->dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink3].pIn-

>dOutput;

m_vecpNeurons[cNeuron]->vecLinksInfInk3].dWeight +=

(1/1Ticks)*m_vecpNeurons[cNeuron]->dLearningRate*m_vecpNeurons[cNeuron]-
>dError*m_vecpNeurons{cNeuron]->vecLinksIn[ink3].pIn->dOutput;
//m_vecpNeurons[cNeuroni-
>veclinksIn[Iink3].dWeight += (1/iTicks)*0.25*m_vecpNeurcns[cNeuron]-
>dError*m_vecpNeurons[cNeuron]->vecLinksIn[Ink3].pIn->dOutput;
¥

else

{
m_vecpNeurons[cNeuron]-
>veclinksIn[Ink3].dWeight -= p0*0.5*(p1*wij-p2*aj*m_vecpNeurons[cNeuron]->dError-
p3*wij*aj+p4*m_vecpNeurons[cNeuron]->dError+p5*aj*m_vecpNeurons[cNeuron]->dOutput);

//m_vecpNeurons[cNeuron]-
>dLearningRate+=m_vecpNeurons[cNeuron]->dLearningRate*m_vecpNeurons[cNeuron]->dError;
}//end of for loop for updating weights
}//end of if loop for hidden neurons

cNeuron--;//next iteration

}//end of while loop

//set the output of the bias to 1
m_vecpNeurons[iLastinputneuron]}->dOutput = 1;

}//end of only GA If loop
1/

/* comment-end for no Online learning*/

/-

}//next iteration through the network

//the network needs to be flushed If this type of update is performed
//otherwise it is possible for dependencies to be built on the order
//the training data 1s presented

if (type == snapshot)
{

for (Int n=0; n<m_vecpNeurons.size(); ++n)

{

m_vecpNeurons[n]->dOutput = 0;
}
>

//return the outputs
return outputs;

3

//Find the similar i-o pair in the training set
vector<double> CNeuralNet::similantymeasure{const vector<double> &input)

{

char *szFileName2="i0_training5.txt";

//fstream grab2("io_training.txt", fstream::in | fstream::out | fstream::app);

fstream grab2(szFileName2);
vector<double> traininginputs;
vector<double> targetOutputs;
vector<double> desiredOutputs;
//double trainingInputs[11];
//double targetOuputs[2];
vector<double> dSum;

int MrainingSize=250;

double dMin=1000.0;

int iIMinIndex;

double dTmpvar;

int 1_here;
double dtmpsum;

for (I_here=0;i_here<iTrainingSize;i_here++)
{
trainingInputs.clear();
targetOutputs.clear();
//desiredOutputs.clear();
dtmpsum=0;
//dMin=100.0;
//Read input from file

for(int j_here=0;)_here<10;)_here++)

dTmpvar=dlop[i_here][j_here];
trainingInputs.push_back(dTmpvar);
¥

dTmpvar=dlop[i_here]{11];
targetOutputs. push_back(dTmpvar);
dTmpvar=dlop[i_here][12];
targetOutputs.push_back(dTmpvar);

//Find the distance between the inputs

for(int k_here=0;k_here<trainingInputs.size();k_here++)

{
double dDiff=input[k_here]-trainingInputs[k_here];
dtmpsum-+ =fabs(dDiff);

}

dSum.push_back(dtmpsum);

//Update the minimum distance and store the corresponding training input

f(dMin>dtmpsum)

{
desiredQutputs.clear();
dMin=dtmpsum;
IMinIndex=1_here;
desiredOutputs=targetOutputs;
Y//end of If

}//end of i_here for loop

vector<double> output;//=desiredOutputs;
output=desiredOutputs;
//output[1]=desiredOutputs[1];
return(output);

}//end of function

void CNeuralNet: :Mutatel.earningParameters(double mut_rate,double MaxPertubation)

214

215

If (RandFloat() < mut_rate)

{
/*if(RandFloat()>0.9)
{
dBpParaml += -1*({rand()%6)+1);
else*/
dBpParaml += RandomClamped()*MaxPertubation*0.025;
dBpParam2 += RandomClamped()*MaxPertubation*0.025;
dBpParam3 += RandomClamped()*MaxPertubation*0.025;
dBpParam4 += RandomClamped()*MaxPertubation*0.025;
dBpParam5 += RandomClamped()*MaxPertubation*0.025;
dBpParam6 += RandomClamped()*MaxPertubation*0.025;
dBpParam7 += RandomClamped()*MaxPertubation*0.025;
dBpParam8 += RandomClamped()*MaxPertubation*0.025;
dBpParam9 += RandomClamped()*MaxPertubation*0.025;
dBpParam10 += RandomClamped()*MaxPertubation*0.025;
dBpParamll += RandomClamped({)*MaxPertubation*0.025;
//dBpParaml += RandomClamped()*MaxPertubation;
+

}

1/ TidyXSplits

//

// This is a fix to prevent neurons overlapping when they are displayed

/f ==

void TidyXSplits(vector<SNeuron*> &neurons)

//stores the index of any neurons with identical sphtY values
vector<int> SamelevelNeurons;

//stores all the splitY values already checked
vector<double> DepthsChecked;

//for each neuron find all neurons of identical ySplit level
for (int n=0; n<neurons.size(); ++n)

double ThisDepth = neurons[n]->dSpiitY;

//check to see If we have already adjusted the neurons at this depth
bool bAlreadyChecked = false;

for (int 1=0; 1<DepthsChecked.size(); ++1)
{
if (DepthsChecked[i] == ThisDepth)
{
bAlreadyChecked = true;

break;
}
}

//add this depth to the depths checked.
DepthsChecked.push_back(ThisDepth);

//if this depth has not already been adjusted
If (!bAlreadyChecked)
{

//clear this storage and add the neuron's index we are checking

SamelevelNeurons.clear();
Samel.evelNeurons.push_back(n);

//find all the neurons with this splitY depth
for (Int 1=n+1; 1<neurons.size(); ++1)

if (neurons[1]->dSplitY == ThisDepth)
{

//add the index to this neuron
SamelevelNeurons.push_back(i);

b
}

//calculate the distance between each neuron
double slice = 1.0/(SameLevelNeurons.size()+1);

//separate all neurons at this level
for (1=0; 1<SamelevelNeurons.size(); ++1)

int idx = SamelLevelNeurons|[i];
neurons[idx]->dSphtX = (i+1) * slice;

b

}//next neuron to check

¥
// DrawNet

!/

// creates a representation of the ANN on a device context

1

//---- el

void CNeuraiNet::DrawNet(HDC &surface, int Left, int Right, int Top, int Bottom)

{
//the border width
const int border = 10;

//max fine thickness
const int MaxThickness = 5;

TidyXSplits(m_vecpNeurons);

//go through the neurons and assign x/y coords
int spanX = Right - Left;

int spanY = Top - Bottom - (2*border);

for (int cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)

{

m_vecpNeurons[cNeuron]->1PosX = Left + spanX*m_vecpNeurons[cNeuron]->dSphtX;

216

m_vecpNeurons[cNeuron]->iPosY = (Top - border) - (spanY * m_vecpNeurons[cNeuron]->dSplitY);

¥

//create some pens and brushes to draw with

HPEN GreyPen = CreatePen(PS_SOLID, 1, RGB(200, 200, 200));
HPEN RedPen = CreatePen(PS_SOLID, 1, RGB(255, 0, 0));
HPEN GreenPen = CreatePen(PS_SOLID, 1, RGB{0, 200, 0));
HPEN OldPen = NULL;

//create a sohd brush
HBRUSH RedBrush = CreateSolidBrush(RGB(255, 0, 0));
HBRUSH OidBrush = NULL;

OldPen = (HPEN) SelectObject(surface, RedPen);

OldBrush = (HBRUSH)SelectObject(surface, GetStockObject(HOLLOW_BRUSH));

//radius of neurons
int radNeuron = spanX/60;
int radlink = radNeuron * 1.5;

//now we have an X,Y pos for every neuron we can get on with the
//drawing. First step through each neuron in the network and draw
//the links

for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)

{

//grab this neurons position as the start position of each
//connection

it StartX = m_vecpNeurons[cNeuron]->1PosX;

int StartY = m_vecpNeurons[cNeuron]->1PosY;

//1s this a bias neuron? If so, draw the link in green
bool bBias = false;

if (m_vecpNeurons[cNeuron]->NeuronType == bias)

bBias = true;

}

//now iterate through each outgoing link to grab the end points
for (int cLnk=0; cLnk<m_vecpNeurons[cNeuron]->vecLinksOut.size(); ++ cLnk)

{
int EndX = m_vecpNeurons[cNeuron]->veclLinksOut[clnk].pOut->iPosX;
Int EndY = m_vecpNeurons[cNeuron]->vecLinksOut[cLnk].pOut->1PosY;

//if link 1s forward draw a straight line
if((‘m_vecpNeurons[cNeuron]->vecLinksOut[cLnk].bRecurrent) && 'bBias)

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]->veclLinksOut[cLnk].dWeight)});
Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//create a yellow pen for inhibitory weights
if (m_vecpNeurons[cNeuron]->vecLinksOut[cLnk].dWeight <= 0)

Pen = CreatePen(PS_SOLID, thickness, RGB(240, 230, 170));
b

//grey for excitory
else

Pen = CreatePen(PS_SOLID, thickness, RGB(200, 200, 200));
}

HPEN tempPen = (HPEN)SelectObject(surface, Pen);
//draw the link

MoveToEx{surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);

DeleteObject(Pen);
b

else if((*m_vecpNeurons[cNeuron]->vecLinksOut[cLnk].bRecurrent) && bBias)

SelectObject(surface, GreenPen);

217

218

//draw the link
MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

3

//recurrent link draw n red
else

{
if ((StartX == EndX) &8& (StartY == EndY))

int thickness = (int)(fabs(m_vecpNeurons[cNeuron]->veclinksOut[cLnk].dWeight));
Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//blue for inhibitory
if (m_vecpNeurons[cNeuron]->vecLinksOut[cLnk].dWeight <= 0)

Pen = CreatePen{PS_SOLID, thickness, RGB(0,0,255));

¥
//red for excitory
else
{
Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));
}

HPEN tempPen = (HPEN)SelectObject{surface, Pen);

//we have a recursive link to the same neuron draw an eliipse
Int x = m_vecpNeurons[cNeuron]->1PosX ;

int y = m_vecpNeurons[cNeuron]->iPosY - (1.5 * radNeuron);
Ellpse(surface, x-radLink, y-radLink, x+radLink, y+radlLink);
SelectObject(surface, tempPen);

DeleteObject(Pen);

else
int thickness = (int)(fabs{m_vecpNeurons[cNeuron]->vecLinksQut[cLnk].dWeight});
Clamp(thickness, 0, MaxThickness);
HPEN Pen;

//blue for inhibitory
If (m_vecpNeurons[cNeuron]->vecLinksOut[cl.nk].dWeight <= 0)

{

Pen = CreatePen(PS_SOLID, thickness, RGB(0,0,255));
¥
//red for excitory
else
{

Pen = CreatePen(PS_SOLID, thickness, RGB(255, 0, 0));
¥

HPEN tempPen = (HPEN)SelectObject(surface, Pen);

//draw the link

MoveToEx(surface, StartX, StartY, NULL);
LineTo(surface, EndX, EndY);

SelectObject(surface, tempPen);
DeleteObject(Pen);
}

¥
¥

//now draw the neurons and their IDs
SelectObject(surface, RedBrush);
SelectObject(surface, GetStockObject(BLACK_PEN));

for (cNeuron=0; cNeuron<m_vecpNeurons.size(); ++cNeuron)
{

int x = m_vecpNeurons[cNeuron]->1PosX;

int y = m_vecpNeurons[cNeuron]->iPosY;

//display the neuron
Ellipse(surface, x-radNeuron, y-radNeuron, x+radNeuron, y+radNeuron);

//cleanup
SelectObject(surface, OldPen);
SelectObject(surface, OldBrush);

DeleteObject(RedPen);
DeleteObject(GreyPen);
DeleteObject(GreenPen);
DeleteObject(OldPen);
DeleteObject(RedBrush);
DeleteObject(OldBrush);

219

#1fndef COLLISION_H
#define COLLISION_H

#include "utils.h"
#include <math.h>

[[~===mmmmmm e 2LinesIntersection2D
// Authors:

// Created by Mat Buckland 2002

// Modified by Anil kumar Enumulapally 2004

// Anil kumar Enumulapally 2005

/4

// Given 2 lines in 2D space AB, CD this returns true if an

// intersection occurs and sets dist to the distance the intersection
// occurs along AB

/!
//

inline bool Linelntersection2D(const SPoint A,
const SPoint B,
const SPoint C,
const SPoint D,
double &dist)

{

//first test against the bounding boxes of the lines

If ((((A.y > D.y) && (B.y > D.y)) && ({A.y > C.y) && (B.y > C.y))) |
(((B.y < C.y) && (A.y < C.y)) && ((B.y < D.y) 8&& (A.y < D.y))) |
(((Ax > D.x) && (B.x > D.X)) && ((A.x > C.x) && (B.x > C.x})) |
(((B x < C.x) && (A.x < C.x)) && ((B.x < D.x) && (A.x < D.x})))

I
|
I
{

dist = 0;

return false;

¥

double rTop = (A.y-C.y)*(D.x-C.x)-(A.x-C.x)*(D.y-C.y);
double rBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);

double sTop = (A.y-C.y)*(B.x-A.X)-(Ax-C.X)*(B.y-A.Y);
double sBot = (B.x-A.x)*(D.y-C.y)-(B.y-A.y)*(D.x-C.x);
double rTopBot = rTop*rBot;
double sTopBot = sTop*sBot;

if ((rTopBot>0) && (rTopBot<rBot*rBot) && (sTopBot>0) && (sTopBot<sBot*sBot))

220

dist = rTop/rBot;

return true;

¥
else
dist = 0;
return false;
¥
b
#endif

#include <windows.h>
#include <time.h>

#include "utils.h"
#include "CController.h"”
#include "CTimer.h"
#nclude "resource.h”
#include "CParams.h"

T TIGLOBALS f7/171171111114111111111110171111717

char* szApplicationName = "Anil's New Hybrid Learning Algorithm™;
char* szWindowClassName = “"sweeper";
char* szInfoWindowClassName = "Info Window";

//The controller class for this simulation
CController* g_pController = NULL;

CParams g_Params;

//global handle to the info window
HWND g_hwndInfo = NULL;

//global handle to the main window
HWND g_hwndMain = NULL;

//---- Cleanup

/!

// simply cleans up any memory issues when the application exits
/!

void Cleanup()
if (g_pController)

delete g_pController;

// WinProc

// ==
LRESULT CALLBACK WindowProc(HWND hwnd,
UINT msg,
WPARAM wparam,
LPARAM I[param)

221

//these hold the dimensions of the client window area
static int cxClient, cyChent;

//used to create the back buffer
static HDC hdcBackBuffer;

static HBITMAP hBitmap;
static HBITMAP hOldBitmap;

switch(msg)

case WM_CREATE:

{
//seed the random number generator
srand((unsigned) time(NULL));
//get the size of the client window
RECT rect;
GetClientRect(hwnd, &rect);

cxClient = rect.right;
cyClient = rect.bottom;

//setup the controller
g_pController = new CController(hwnd, cxClient, cyClient);

//create a surface for us to render to(backbuffer)
hdcBackBuffer = CreateCompatibleDC(NULL);

HDC hdc = GetDC(hwnd);
hBitmap = CreateCompatibleBitmap(hdc,
cxClient,

cyClient);
ReleaseDC(hwnd, hdc);

hOldBitmap = (HBITMAP)SelectObject(hdcBackBuffer, hBitmap);
¥

break;

//check key press messages
case WM_KEYUP:

{

switch(wparam)

case VK_ESCAPE:
{
3

break;

PostQuitMessage(0);

case 'F":

{
b

break;

g_pController->FastRenderToggle();

case 'B":

g_pController->RenderBestToggle();

222

223

break;

case 'R':
{
if (g_pController)
{

delete g_pController;
}

//setup the new controller
g_pController = new CController(hwnd, cxClient, cyClient);

//give the info window's handle to the controller
g_pController->PassInfoHandle(g_hwndInfo);

//clear info window
InvalidateRect(g_hwndInfo, NULL, TRUE);
UpdateWindow(g_hwndInfo);

¥
break;
/*
case 'Z':
pTimer= SetTimer(10000);
break;
case 'Y":
KillTimer(pTimer);
break;
*/
case '1":

g_pController->ViewBest(1);

break;
case '2";

g_pController->ViewBest(2);
¥

break;
case '3":

g_pController->ViewBest(3);

break;
case '4":

g_pController->ViewBest(4);
¥

break;

}//end WM_KEYUP switch

224

break;

//has the user resized the client area?
case WM_SIZE:

cxClient = LOWORD(Iparam);
cyClient = HIWORD(lparam);
¥

break;
case WM_PAINT:
PAINTSTRUCT{ps ;
BeginPaint(hwnd, &ps);

//fill our backbuffer with white
BitBlt(hdcBackBuffer,

0,

o,

cxChent,

cyClient,

NULL,

NULL,

NULL,

WHITENESS);

//render the sweepers
g_pController->Render(hdcBackBuffer);

//now blit backbuffer to front
BitBlt(ps.hdc, 0, 0, cxClient, cyClient, hdcBackBuffer, 0, 0, SRCCOPY);

EndPaint(hwnd, &ps);
3

break;

case WM_DESTROY:

{
SelectObject(hdcBackBuffer, hOldBitmap);
//clean up our backbuffer objects
DeleteDC(hdcBackBuffer);
DeleteObject(hBitmap);

// kill the application, this sends a WM_QUIT message

PostQuitMessage(0);

¥

break;

default:break;

}//end switch

// default msg handler
return (DefWindowProc(hwnd, msg, wparam, Iparam));

}//end WinProc

/! InfoWinProc

1/
/==

LRESULT CALLBACK InfowindowProc(HWND hwnd,
UINT msg,
WPARAM wparam,
LPARAM [param)

//these hold the dimensions of the client window area
static int cxClient, cyClient;

switch(msg)

case WM_CREATE:

{
//get the size of the client window
RECT rect;
GetClientRect(hwnd, &rect);
cxClient = rect.right;
cyClient = rect.bottom;

¥

break;

//has the user resized the client area?
case WM_SIZE:

{
cxClient = LOWORD(Iparam);
cyClient = HIWORD(Iparam);
¥
break;

case WM_PAINT:
PAINTSTRUCT{ps;
BeginPaint(hwnd, &ps);
g_pController->RenderNetworks(ps.hdc);

EndPaint(hwnd, &ps);
}

break;

default:break;
}//end switch

// default msg handler
return (WindowProc{hwnd, msg, wparam, Iparam});

}//end WinProc

1/ e CreateInfoWindow----
/!

// creates and displays the info window

/!
//----
void CreatelnfoWindow(HWND hwndParent)

{
// Create and register the window class
WNDCLASSEX wclnfo = {sizeof(WNDCLASSEX),
CS_HREDRAW | CS_VREDRAW,
InfoWindowProc,
0,

225

226

0,
GetModuleHandle(NULL),
NULL,
NULL,
(HBRUSH)(GetStockObject(WHITE_BRUSH}),
NULL,
"Info",
NULL };

RegisterClassEx(&wclnfo);

// Create the application's info window
g_hwndInfo = CreateWindow("Info",
"ANIL - Previous generation's best four phenotypes",
WS_OVERLAPPED |
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

GetSystemMetrics(SM_CXSCREEN)/2,
GetSystemMetrics(SM_CYSCREEN)/2 - CParams: :WindowHeight/2,
CParams: :InfowindowWidth,

CParams: :InfowWindowHeight,

hwndParent,
NULL,
wcinfo.hinstance,
NULL);
// Show the info
ShowWindow(g_hwndinfo, SW_SHOWDEFAULT);
UpdateWindow(g_hwndInfo);
//give the info window's handie to the controller
g_pController->PassInfoHandle(g_hwndInfo);
return;
3
[/--=- winMain
// Entry point for our windows application
int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hprevinstance,
LPSTR Ipcmdiine,
int ncmdshow)
{
WNDCLASSEX winclass;
HWND hwnd;
MSG msg;
//load in the parameters for the program
if (1g_Params.Initialize())
return false;
>
// first fill in the window class stucture
winclass.cbSize = s1zeof(WNDCLASSEX);
winclass.style = CS_HREDRAW | CS_VREDRAW;
winclass.lpfnWndProc = WindowProc;
winclass.cbClsExtra =0;
winclass.cbWndExtra =0,
winclass.hinstance = hinstance;
winclass.hlcon = LoadIcon(hinstance, MAKEINTRESOURCE(IDI_ICON1});
winclass.hCursor = LoadCursor(NULL, IDC_ARROW);

winclass.hbrBackground= NULL,;
winclass.lpszMenuName = NULL;

227

winclass.lpszClassName= szWindowClassName;
winclass.hlconSm = LoadIcon(hinstance, MAKEINTRESOURCE(IDI_ICON1));

// register the window class
if (RegisterClassEx(&winclass))

{

return 0;

¥

// create the window (one that cannot be resized)
if ("(hwnd = CreateWindowEx{NULL,

MessageBox(NULL, "Error Registering Class!", "Error”, 0);

szWindowClassName,
szApplicationName,

WS_OVERLAPPED |
WS_VISIBLE | WS_CAPTION | WS_SYSMENU,

GetSystemMetrics(SM_CXSCREEN)/2 - CParams: :WindowWidth,
GetSystemMetrics(SM_CYSCREEN)/2 - CParams: :WindowHeight/2,

CParams::WindowWidth,
CParams::WindowHeight,

NULL,

NULL,

hinstance,

NULL)))

MessageBox(NULL, "Error Creating Windowt", "Error", 0);
return 0;
¥

//keep a global record of the window handle
g_hwndMain = hwnd;

//create and show the info window
Createlnfowindow(hwnd);

//Show the window
ShowWindow(hwnd, SW_SHOWDEFAULT);
UpdateWindow(hwnd);

//create a timer
CTimer timer(CParams: :IFramesPerSecond);

//start the timer
timer.Start();

// Enter the message loop
bool bDone = FALSE;

while(!bDone)

while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
if(msg.message == WM_QUIT)

// Stop loop If it's a quit message
bDone = TRUE;

228

¥
else
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

If (timer.ReadyForNextFrame() || g_pController->FastRender())
if('g_pController->Update())
{

//we have a problem, end app
bDone = TRUE;
b

//this will call WM_PAINT which will render our scene

InvalidateRect(hwnd, NULL, TRUE);
UpdateWindow(hwnd);

}//end while

// Clean up everything and exit the app

Cleanup();

UnregisterClass(szWindowClassName, winclass.hInstance);
return O;

¥} // end WinMain

#ifndef S2DVECTOR_H
#define S2DVECTOR_H

#include <math.h>

;//

I/ 2D Vector structure and methods

/
HHTHHTIITT T 1 1111111101111
struct SVector2D

{
double x, y;
SVector2D(double a = 0, double b = 0):x(a),y(b){}

//we need some overloaded operators
SVector2D &operator+=(const SVector2D &rhs)

{
X += rhs.x;
y += rhs.y;
return *this;
3
SVector2D &operator-=(const SVector2D &rhs)
{
x -= rhs.x;
y -= rhs.y;
return *this;
¥
SVector2D &operator*=(const double &rhs)
{
X *= rhs;
y *=rhs;
return *this;
b
SVector2D &operator/=(const double &rhs)
{
x /= rhs;
y /= rhs;

return *this;

229

EH
//overload the * operator

inhine SVector2D operator*(const SVector2D &lhs, double rhs)

{
SVector2D result(lhs);
result *= rhs;
return result;

}
inline SVector2D operator*(double lhs, const SVector2D &rhs)

{
SVector2D result(rhs);
result *= lhs;
return result;

¥

//overload the - operator
inline SVector2D operator-{const SVector2D &lhs, const SVector2D &rhs)

SVector2D result(ihs);
result.x -= rhs.x;
result.y -= rhs.y;

return resuit;

¥
1/ Vec2DLength
/
// returns the length of a 2D vector
//
inline double Vec2DLength(const SVector2D &v)
{
return sqrt(v.x * v.x + v.y * v.y);
3
// Vec2DNormalize
I
// normalizes a 2D Vector
1/
iniine void Vec2DNormalize(SVector2D &v)
{
double vector_length = Vec2DLength(v);
v.X = v.x / vector_length;
v.y = v.y / vector_length;
}
// Vec2DDot
/!
// calculates the dot product
//

inline double Vec2DDot(SVector2D &v1, SVector2D &v2)
{

b

1/ Vec2DSign
/!
// returns positive if v2 is clockwise of vl, minus If anticlockwise

/!
inline int Vec2DSign(SVector2D &v1, SVector2D &v2)

return vi.x*v2.x + vi.y*v2.y;

if (vi.y*v2.x > vi.x*v2.y)

return 1;

230

231

¥

else
{
return -1;
¥
¥

#endif

#ifndef UTILS_H
#define UTILS_H

#include <stdhb.h>
#include <math.h>
#include <sstream>
#include <string>
#include <iostream>
#include <vector>

using namespace std;

/!

// UTIL.H

// some random number functions.
/e

//returns a random integer between x and y
inline int RandInt(int x,int y) {return rand()%(y-x+1)+x;}

//returns a random float between zero and 1
inline double RandFloat() {return (rand())/(RAND_MAX+1.0);}

//returns a random bool
inline bool RandBool()

if (RandInt(0,1)) return true;

else return false;

}

//returns a random ficat in the range -1 < n< 1
inline double RandomClamped() {return RandFloat() - RandFloat();}

// -- -
/
1/ some handy little functions

1/

//converts an integer to a string
inline string itos(int arg)

ostringstream buffer;

//send the int to the ostringstream
buffer << arg;

//capture the string
return buffer.str();

¥

//converts a float to a string
inline string ftos(float arg)

ostringstream buffer;

//send the Int to the ostringstream
buffer << arg;

//capture the string
return buffer.str();

3

//clamps the first argument between the second two
inline void Clamp(double &arg, double min, double max)

{

if (arg < min)

arg = min;

¥

If (arg > max)

arg = max;
b
¥
inline void Clamp(int &arg, int min, int max)
if (arg < min)
arg = min;
3

If (arg > max)
arg = max;

3

//rounds a double up or down depending on Its value
inline int Rounded(double val)
{

int integral = (int)val;

double mantissa = val - integral;

if (mantissa < 0.5)
{
return integral;

¥

else
{
return integral + 1;
b
b

//rounds a double up or down depending on whether its
//mantissa is higher or lower than offset
infine 1int RoundUnderOffset(double val, double offset)

{

232

233

int integral = (int)val;
double mantissa = val - integral;

if (mantissa < offset)

{

return integral;

¥
else

{

return integral + 1;

3
3

;;///

// Point structure

/
auiiiuignnnninnnnniion
struct SPoint

float x, y;
Spomt(){}

SPoint(float a, float b):x(a),y(b){}
}H

#endif

//
//Global Parameter file
//parameter.in

1/

IFramesPerSecond 60
dMaxTurnRate 0.1
ISweeperScale 5
INumSensors 5
dSensorRange 25
iNumSweepers 25
iNumTicks 600

dCeliSize 20
INumAddLinkAttempts 10
dSurvivalRate 0.2

iNumGensAllowedNoImprovement 10

iMaxPermittedNeurons 100
dChanceAddLink 0.07
dChanceAddNode 0.03
dChanceAddRecurrentLink 0.03
dMutationRate 0.5
dMaxWeightPerturbation 0.5
dProbabilityWeightReplaced 0.1
dActivationMutationRate 0.5
dMaxActivationPerturbation 0.8
dCompatibilityThreshold 0.25
iOldAgeThreshold 50
dOldAgePenalty 0.9
dYoungFitnessBonus 1.3
iYoungBonusAgeThreshhoid 10
dCrossoverRate 0.7
dLearningRate 0.05
dlLearningParameterl 0.5
dLearningParameter2 0.02
dLearningParameter3 0.02
dLearningParameter4 0.02
dLearningParameter5 0.02
diLearningParameter6 0.02
iOfflineTraining O

iGlobalOnline 0

IRuleEvolution 1

10nlyGAs 0

234

REFERENCES

[1] Adrian Agogino, Kenneth Stanley, and Risto Miikkulainen (2000). Online Interactive Neuro-
Evolution, Neural Processing Letters 11:29-37, 2000.

[2] Aman, S. (1967). A Theory of Adaptive Pattern Classifiers. IEEE Transactions on Electronic
Computers, Vol. EC-16, No. 3, pp. 299-307

[31 Anil Kumar Enumulapally, Ligguo Bu, and Khosrow Kaikhah (2004). Backpropagation: In
Search of Performance Parameters, WSEAS Transactions on Systems, Issue 2, Vol. 3, April
2004.

[4] Antonia J. Jones (1993). Genetic algonthms and their applications to the design of neural
networks. Neural Computing & Applications, 1(1):32-45.

[5] A. Likartsis, |.Vlachavas, and L.H.Tsoukalas (1997). A New Hybrid Neural-Genetic
Methodology for Improving Learning. Proc. of 9" International Conference on Tools with Artificial
Intelligence(ICTAI 97).

[6] Baldwin, Mark J(1896). A New Factor in Evolution. Adaptive Individuals in the evolving
Populations: Models and Algorithms. Addison-Wesley, Reading, MA.

[7] Bottou, L. (1998). Online Algorithms and Stochastic Approximations, 9-42. In Saad, D., editor,
Online Leaming in Neural Networks. Cambridge University Press, Cambridge, UK.

[8] Chalmers, D. J. (1990) The evolution of learning: An experiment in genetic connectionism. In
D. S. Touretzky, editor, Proceedings of the 1990 Connectionist Models Summer School, 81-90.
San Mateo, CA: Morgan Kaufmann.

[9] Dara Curran, Colm O’Riordan (2002). Applying Evolutionary Computation to Designing Neural
Networks: A Study of the State of the Art.

[10] Darpa Neural Network Study, (1998). AFCEA International Press.

[11] David B. Fogel, Evolutionary computation: toward a new philosophy of machine intelligence,
IEEE Press, Piscataway, NJ, 1995

[12] David E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and Machine
Learning.

[13] Haykin. S, Neural Networks: a Comprehensive Foundation, 2nd Ed. Upper Saddle River, NJ:
Prentice Hall, 1999.

[14] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press: Ann Arbor, Ml.

235

236

[15] Hollestein R. B. (1979) Artificial genetic adap-tation in computer control systems. PhD
dissertation, University of Michigan.

[16] Jurgen Branke {1995). Evolutionary Algorithms for Neural Network design and Training.

[17] Kenneth O. Stanley and Risto Miikkulainen (2002). Efficient Evolution Of Neural Network
Topologies, Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02).
Piscataway, NJ: IEEE, 2002.

[18] Kenneth O. Stanley and Risto Milkkulainen (2002). Efficient Evolution Of Neural Network
Topologies, Proceedings of the 2002 Congress on Evolutionary Computation (CEC '02)
Piscataway, NJ: IEEE, 2002.

[19] Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen (2003). Evolving Adaptive
Neural Networks with and Without Adaptive Synapses, To appear in Proceedings of the 2003
IEEE Congress on Evolutionary Computation (CEC-2003).

[20] Kenneth O. Stanley and Risto Miikkulainen (2002). Evolving Neural Networks Through
Augmenting Topologies, Evolutionary Computation 10(2):99-127, 2002.

[21] Kim W.C. Ku, M.W.Mak, and W.C.Siu (2003). Approaches to Combining Local and
Evolutionary Search for Training Neural Networks: A Review and Some New Results.

[22] Kitano, H. (1990). Empirical studies on the speed of convergence of neural network training
using genetic algorithms. Proc. of the Eighth National Conf. on Artificial Intelligence.

[23] Klaus-Robert Muller, Andreas Ziehe, Noboru Murata, Shun-ichi Amari (1998). On-line
Learning in Switching and Drifting Environments with Application to Blind Source Separation.

[24] Magoulas,G.D., Plagianakos,V.P., and Vrahatis,M.N., Hybrid methods using evolutionary
algorithms for on-line training, in Proceedings of the INNS-IEEE International Joint Conference on
Neural Networks, Washington DC, 14-19 July 2001, USA.

[25] Mat Buckland (2002). Al Techniques for Game Programming, Premier press inc.

[26] Mehrotra,K.,Mohan,C.K, and Ranka,S. (2000). Elements of Artificial Neural Networks. The
MIT press. Cambridge, Massachusetts

[27] Nikola Kasabov (2003). Evolving connectiontst systems: methods and applications in
bioinformatics, brain study and intelligent machines. L.ondon ; New York : Springer publications.

[28] Nolfi, S., EIman, J. L., & Parisi, D. (1990). Learning and evolution in neural networks. CRL
Techn. Rep. 9019. Center for Research in Language, University of California, San Diego.

[29] Nolfi, S., & Parisi, D. (1991). Growing neural networks. Techn. Rep. PCIA{91{15 Department
of Cognitive Processes and Artificial Intelligence, C.N.R. Rome, Italy.

[30] Parisi, D., Nolfi, S., and Cecconi, F. (1992). Learning, behavior, and evolution In
Proceedings of the First European Conference on Artificial Life, Cambridge, MA, MIT
Press/Bradford Books.

[31] Philipp Kohn (1996). Genetic Encoding Strategies for Neural Networks, Proceedings,
Information Processing and Management of Uncertainty in Knowledge-Based Systems, Granada,
Spain, Volume I, pages 947-950.

237

[32] Richard S Sutton and Steven D Whitehead (1993) Online Learning with Random
Representations, Proceedings of the Tenth Int. Conf on Machine Learning pp 314-321 Morgan
 Kaufmann

[33] Robert M French and Adam Messinger (1994) Genes, phenes and the Baldwin Effect
Learning and Evolution in a simulated population, Artificial Life IV, 277-282

[34] Rumelhart D E, Hinton G E, and Willams R J Learning internal representations by error
propagation In Parallel Distributed Processing, volume 1, pages 318-362 MIT Press, 1986

[35] Saad,D, editor (1998) On-line Learning in Neural Networks, Publications of Newton
Institute, Cambridge University Press, Cambridge, UK

[36] Sompolinsky H, Barkal N and Seung HS (1995) On-line Learning of Dichotomies Algorithms
and Learning Curves In Advances in Neural Information Processing Systems 7 Cowan J D,
Tesauro G, and Alspector J, Eds

[37] Tom Mitchell (1997) Machine Learning, McGraw Hill publication

[38] Tallb S Hussain (1997) Methods of Combining Neural Networks and Genetic Algorithms
Queen’s University

[39] V Petndis, S Kazarlts, A Papaikonomu and A Filelis (1992) A Hybnid Genetic algorithm for
training Neural networks Artificial Neural Networks, 2, 953-956

[40] Yao, X (1999) Evolving artificial neural networks Proceedings of the IEEE, 87(9) 1423-1447

{411 Yao, X, Liu, Y (1997) A new evolutionary system for evolving artificial neural networks /EEE
Transactions on Neural Networks, 8(3) 694-713

Web References

[42] http://www.doc.ic.ac.uk/~nd/surprise_96/journal/voll/csl 1/articlel.html

[43] http://www.dacs.dtic.mil/techs/neural/neural3.html

[44] http://Islwww.epfl.ch/~anperez/NN_ tutorial/NNdemo_intro.htm!

[45] http://www.gc.ssr.upm.es/inves/neural/ann 1/concepts/Suunsupm htm

[46] http://ai-junkie.com/ai-junkie.html

[47] http://www.gel.ulaval.ca/~beagle/refmanual/a01116.html

[48] http://www.evalife.dk/ToEC2002

[49] http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vold/csl 1/report.html#Contents

VITA

Anil Kumar Enumulapally was born in Jagtial, India, on January 10, 1980, the
son of Waman Rao Enumulapally and Surekha Enumulapally. After completing
his work at Sharada Vidya Nilayam, Jagtial, India, in 1994, he entered Chaitanya
Jr. College, Jagtial, India. In September of 1997 he entered into Bapuiji Institute
of Engineering and Technology, Davangere, India, where he remained until his
graduation with a Bachelor of Engineering in Computer Science. He also secured
a Higher Diploma in Software Engineering in February, 2000, from Aptech
Educational Center, India. In August, 2002 he entered the graduate college of
Wichita State University. Later in January, 2003 he transferred to Texas State
University-San Marcos to pursue a Master of Science in Computer Science.
During his education in the computer science department, he received Academic
Excellence awards for years 2003 and 2004 and published a paper titled
Backpropagation: In Search of Performance Parameters in WSEAS Transactions
on Systems, Issue 2, Vol. 3, April 2004 with Lingguo Bu and Khosrow Kaikhah.
During his study he was employed by the English and Finance & Economics
Departments as a computer support assistant and web master. He also worked

for the Alkek Library as a student assistant.

E-mail: anilkumar.e @gmail.com

This thesis was typed by Anil Kumar Enumulapally.

