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ABSTRACT 

Responding to the existential threat posed by global climate change will require adaptation 

and evolution at multiple interacting scales. This study relates to this domain focused on 

sustainable energy production and consumption and ways to change significantly. Spatial 

context becomes a determinative factor in this perspective. Seeking civic engagement 

reveals the extent of preparedness for a substantial change. Leadership and decision-

making in public Higher Education Institutions (HEIs) reflect (at least partially) the 

preferences and values of their local communities or regions as most HEIs strive to be 

upstanding citizens who maintain effective Town-Gown relations. This study shows 

discrepancies between this assumption and the results found through spatial analysis. It is 

instinctive to look to universities as sustainable practice models in their respective 

communities. This dissertation is part of the ongoing series of analyses that assess the 

sustainability problem’s roots and the costs, benefits, and effects of different sustainable 

measurements. While the earlier research focused exclusively on the profitability of certain 

alternative energy investments at a single university, this dissertation offers a more nuanced 

study that analyzes renewable energy implementation or failure in four public universities 

through a conceptual framework lens. The proposed method will apply a root cause 

analysis by involving the spatial context representing the first step in creating a national-

level evaluation as the main contribution. The results allow classifying every alternative 

energy project under investigation along four dimensions: (1) financial feasibility, (2) 
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community environmental preferences, (3) state energy policy arena, and (4) energy 

savings. In conclusion, a series of key terms and ideas are developed to show the extent of 

proper coupling in each institution. 



1 

1. INTRODUCTION AND RESEARCH QUESTIONS

The rising global population and growing demand for energy to support economic 

development led to historical fossil fuel consumption levels in recent decades. Along 

with that increased consumption, the world has seen an intensification and expansion of 

the negative environmental externalities associated with fossil fuel extraction, processing, 

and consumption (Baban & Parry 2000; Aydin et al., 2010; Azizi et al., 2014). Globally, 

climate change resulting from CO2 and other greenhouse gas emissions poses a threat to 

human and planetary welfare (Climate Change Committee (CCC), 2008).  At the macro-

level, these changes could influence rainfall patterns, availability of drinking water, 

agricultural practices, and sea levels (International Energy Agency, 2013). Locally, they 

are projected to increase variability in weather patterns, cause extreme weather events to 

occur more frequently, and, as such, put countless ecosystems at risk of degradation or 

even collapse (Field 2014; Stocker, 2013; IPCC 2013; IPCC 2014b; Mirza, 2003; 

Rosenzweig et al., 2001). The adverse consequences of massive fossil fuel consumption 

do not include only environmental concerns. It also encompasses dependence on South 

West Asia and North Africa’s oil, funding non-democratic regimes and representing an 

international threat to the security discussed in the United Nations Security Council 

(Shaffer, 2011). 

While responding to the “existential threat” posed by global climate change 

(Derber, 2015) requires adaptation and change at multiple interacting scales, at least one 

societal domain where the action seems most urgent is energy consumption. Concerns 

about the environmental effects of fossil fuels have pushed several countries to invest 

more in alternative energy resources (Ibenholt, 2002).  The constant apprehensions over 
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rising temperatures, environmental pollution, and energy security have increased interest 

in achieving “environmentally friendly energy sources such as wind, solar, hydropower, 

geothermal, hydrogen, and biomass as the replacement for fossil fuels” (Tong, 2010 p.3).  

Many countries have already integrated renewable energy systems into their national 

energy plans. The nations of the European Union, for example, aim to provide 20% of 

their energy from renewable energy sources by 2020 (Atici et al., 2015). Before that, the 

goal was set to double the contribution to primary energy consumption from 6% to 12% 

by 2010 (Haralambopoulos and Polatidis, 2003). Individual countries have also adhered 

to this idea. For example, by 2050, the UK aims to reach an 80% reduction in CO2 

emission (Climate Change Committee (CCC), 2008).  More than two decades ago, 191 

countries signed the Kyoto Protocol (1997), and more recently, 174 countries and the 

European Union have adhered to the Paris agreement on climate change (2016), which 

makes them responsible for a commitment to alleviate the environmental degradation 

caused by traditional forms of energy production. At the micro-level, and for example, in 

the United States, which composes the main study area of this dissertation, States have 

created multiple standards to diversify their energy resources, promote domestic energy 

production, and encourage economic development (National Conference of State 

Legislatures, from here on known as NCSL).  

In this dissertation, I argue that higher education institutions (HEIs) have a unique 

opportunity and responsibility to be the leaders on this front. HEIs are spaces where 

knowledge of sustainable development and sustainable energy practices come to life in 

research and teaching (Awuzie and Abuzeinab, 2019). At the same time, most college 

and university campuses function as their own spatially based communities—cities 
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within cities—that have the potential to offer scalable solutions for creating more 

sustainable neighborhoods, cities, and regions (Norton et al., 2007). Putting these two 

observations together, it follows that HEIs can look inward and project outward to answer 

pressing questions about how to reduce fossil fuel consumption while still performing 

essential economic functions. Concerning the latter, contemporary colleges and 

universities face many of the same incentives and expectations as for-profit businesses 

(Sperling, 2017). They are pressured to grow student enrollments (as well as physical 

space) while offering more, higher-quality programs on tight and, in some cases, 

shrinking budgets (Sightlines, 2018; Fonseca et al., 2018).  

One possible way to intervene in HEI energy systems—where, because of their 

social missions, HEIs are arguably more predisposed than for-profit businesses to want to 

migrate to more sustainable energy regimes—is to generate empirical evidence that new, 

comparably sustainable energy investments will enable HEIs to comply with sustainable 

goals while not causing them to sacrifice their growth-related objectives 

Related emission-reduction initiatives in HEI and other governance scales seek to 

put global temperature change on a different, less extreme trajectory. Specifically, data 

released by the Copernicus Climate Change Service (C3S) tell the tale of a persistent 

warming climate.  A recent report from C3S shows that 2018 was the fourth in a series of 

hot years. C3S, also reports that atmospheric CO2 concentrations have continued to rise 

by 2.5 +/- 0.8 ppm/year (Figure 1). To slow the rate of warming associated with these 

concentrations, members of the CCC in 2008 advised that a 50% reduction of CO2 

emission is needed by 2050 on a global scale. Recognizing the need for international 

cooperation on this matter, the Paris Agreement entered into force in November 2016 
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with more than 110 cosigner countries, representing more than 75% of global emissions.  

However, per the International Energy Agency, even if nations fulfill the Paris 

Agreement goals, it is still unlikely to keep the warming climate below 1.5℃ of increase 

on the average global temperature (World Energy Outlook, 2016).  

Figure 1. The temperature difference between 2018 and 1981-2010 (source: C3S) 

Based on these trends and their severe and negative implications for global 

environmental health, the correlation between energy consumption and a warming 

climate has increasingly come to be a leverage point for intervention (Pérez-Lombard, 

2008; de Santoli et al., 2014; Singh and Parida, 2015). To understand why energy 

consumption is such an intense focal point for behavioral change, consider the United 

States’ case. In just twenty years, from 1984 to 2004, primary energy consumption in the 

U.S. grew by 49% and CO2 emissions by 43%, with an average annual increase of 2% 

(Pérez-Lombard, 2008). This increasing trend has occurred continuously, with only a 
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handful of exceptional years (Figures 2 and 3). The following figures produced with data 

provided by Enerdata show the amount of energy consumed in the world and the United 

States in million tonnes of oil equivalent (Mtoe). In the absence of energy policies 

explicitly designed to mitigate human contributions to global climate change, energy 

consumption in the United States’ residential, commercial, and industrial (RCI) sectors is 

expected to continue to grow drastically. At least one estimate by Brown and colleagues 

(2010) predicts that growth to be on the order of 16% between 2010 and 2030. 

Figure 2. World’s Energy Consumption Trend 1990 – 2018 (Source: Enerdata) 
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Figure 3. The U.S.A. Energy Consumption Trend 1990 – 2018 (Source: Enerdata) 

Not coincidentally, given rapidly growing energy consumption levels, the world’s 

ecological footprint exceeded the planet’s sustainable capacity in 1970 and has continued 

to grow. It is estimated that the global ecological footprint has reached about 70% 

overshoot in recent years (Global Footprint Network, 2016; Harich and Rosas, 2020). At 

the same time, biodiversity has fallen by more than half (Howes et al., 2017), and, as 

illustrated above, temperatures have continued to rise. For all of these reasons and more, 

shrinking human society’s ecological footprint is understood to be a necessary step for 

avoiding global environmental catastrophe (Jorgenson, A.K. 2003). Yet, while this 

“bottom line” might be widely accepted by the scientific community (Weinzettel et al., 

2018), moving away from business-as-usual energy consumption and toward more 

sustainable alternatives will necessarily impact the “bottom line” profit margins of all 

actors—from households to goods producers, to public utilities and large-scale anchor 

institutions, to decision-makers at all scales of governance, and everyone in between 

(Borchers et al. 2018). 
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Put another way, one of the leading barriers to implementing a sustainable energy 

agenda is the short-term cost (Gallachóir, 2007). Indeed, even life cycle cost (LCC) 

analyses—one of the foundational methods of sustainability studies—are rarely included 

in large institutions’ decision-making processes due to entrenched and intense foci on 

short-term profit maximization (Pearce and Miller, 2007). For these reasons, to reduce 

energy consumption, it is necessary to grapple with economic incentives (Bauner and 

Crago, 2015). For many institutions, organizations, and political jurisdictions, existing 

incentives lead decision-makers to simultaneously (1) pursue growth and (2) cut costs 

(Obama, 2017). To the extent that growth acts as a key indicator of economic success 

(e.g., Weaver et al. 2015). Cost minimization acts as a key indicator of economic 

efficiency (Timmons et al., 2019). In many realms of the global political economy and 

organizations tend to pursue these goals at the expense of competing for social goals, 

including ecological integrity, social equity, and livability (e.g., Godschalk, 2004). In 

other words, systems designed to achieve economic growth are not properly coupled 

with, for example, environmental and social systems (Harich, 2010).  

To say that economic performance goals and sustainable energy use are not 

properly coupled is not to say that they are not couple-able. Consider that, in an 

aggregate sense, “CO2 emissions from the [U.S.] energy sector fell by 9.5% from 2008 to 

2015, while the economy grew by more than 10%” (Obama, 2017, p.1). U.S. energy-

related carbon dioxide emissions decreased in 2019 by 2.8%, mainly because of a 5% 

decline in cooling requirements. This translates to 150 million metric tons of less CO2 

compared with 2018 (EIA, 2020). While these reductions were insufficient to 

meaningfully change the course of energy consumption in the U.S.—and the 
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consequences thereof (see above)—the fact that they occurred while the nation’s 

economy improved suggests that sustainable energy use and economic health do not have 

to be “either-or” phenomena. Indeed, smaller ecological footprints are likely to have 

positive economic outcomes. For instance, renewable energy decreases dependency on 

fossil fuels and can lessen the need to trade deficits with net energy-producing nations 

(Aydin et al., 2009; Tong, 2010). 

Moreover, compared to fossil fuels, renewable energy resources are less 

vulnerable to price volatility (Bolinger et al., 2006). Also, electricity costs from 

renewable energy have fallen over the past decade due to improving technologies, better 

supply chains, and economies of scale (IRENA, 2020). In these and many other respects, 

sustainable energy investments can be more economically efficient than conventional 

energy sources in the long run. However, in the short run, investments into sustainable 

energy tend to be quite costly and can negatively affect economic performance. As such, 

short-term thinking and incentives often outcompete long-term goals, locking places and 

organizations into business-as-usual practices that fail to reverse—and in most cases 

exacerbate—fossil fuel consumption and its many negative externalities (Wright and 

Nyberg, 2017). 

How might organizations and places individually, and society in the aggregate, 

overcome this incentive trap in ways that mobilize actors toward short-term sacrifices for 

the long-term benefit of local and global environmental integrity? While radical structural 

changes to the political economy are implicated in comprehensive answers to this 

question (e.g., Aronoff et al., 2019), continuing business-as-usual practices while waiting 

on leadership to mobilize those structural changes will only hasten the pace of global 
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climate change. Accordingly, it is important for organizations and places to think about 

the changes they can make in the here-and-now, under existing pro-growth and pro-profit 

incentive schemes, to reduce fossil fuel consumption. 

In the post-recession years of 2009-2012, HEI enrollment rose markedly across 

the country (Sightlines, 2018). At the same time, since 2010, there has been essentially no 

significant growth in the operating budgets of facilities that maintain campuses, as shown 

in Figure 4 (Sightlines, 2018).  

Figure 4. Facilities Operating Budget (Source: Sightlines, 2018) 

 According to the Sightlines report from which these data were taken, the higher 

education system responded to the post-recession time by: 

 “adding new facilities to expand their programs and amenities. The 

educational landscape has become increasingly competitive in the years 

since, and institutions have doubled down on constructing new facilities. 

There is an arms race on, and institutions are building new to recruit and 

retain a greater share of the declining pool of potential students.” 

(Sightlines, 2018, p.2) (Figure 5). 
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Figure 5. Space growth vs. enrollment growth in the U.A (Sightlines, 2018) 

Thus, like decision-makers everywhere, HEI administrators see growth as a 

means for remaining competitive and economically successful. In that sense, HEIs are 

vulnerable to getting caught in business-as-usual traps that pursue growth (i.e., higher 

student enrollments bring in more tuition dollars) while striving to keep operating and 

capital costs down to stay under budget (Breneman, 2015).  

Unlike for-profit businesses, though, HEIs play the critical social roles of 1) 

creating knowledge and transferring it to society and 2) preparing students for their future 

role in society (Stough et al., 2018). This social mission suggests that HEIs arguably have 

a responsibility to teach and research sustainable practices and practice sustainability in 

their daily operations. HEIs are increasingly being placed under the microscope to 

disclose how they integrate and contribute to sustainability in ways beyond formal course 

offerings and academic publications (Stough et al., 2018; Mohammalizadehkorde and 

Weaver, 2018).  
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Crucially, however, HEIs are not exempt from the line of reasoning articulated 

above, whereby places and organizations (and society at large) are playing by a set of 

rules that disincentivizes investments into, among other things, sustainable energy 

technologies. Without radical structural changes that alter those rules, then HEIs are left 

to fulfill their social responsibilities in an economy where money talks and short-term 

profit-maximization prevails. With that in mind, one possible way to intervene in HEI 

energy systems—where, because of their social missions, HEIs are arguably more 

predisposed than for-profit businesses to want to migrate to more sustainable energy 

regimes—is to generate empirical evidence that new, comparably sustainable energy 

investments will enable HEIs to comply with sustainable goals while not causing them to 

sacrifice their growth-related objectives. On the other hand, contrary evidence would 

seemingly provide decision-makers with a defense for the following business-as-usual 

practices and not investing in new energy technologies (Mohammadalizadehkorde & 

Weaver, 2018).  Either way, however, financial analyses that document the 

(un)attractiveness of investments into selected sustainable energy projects arguably hold 

the keys to moving the current conversation forward.  This study is meant to advance that 

discourse by focusing on selected public HEIs with large spatial footprints.  The research 

aims to: (1) evaluate the extent to which a proper coupling (Harich, 2010) between the 

two goals of economic efficiency (in terms of money saved) and environmental 

protection (in terms of CO2 and other emissions avoided) is achievable through selected 

alternative energy investments at the case study public HEIs; and (2) better understand 

reasons for (lack of) investment into alternative energy programs in the HEIs.  

Financial analysis is one of the available ways to answer the critical question of 
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whether the failure of universities to meet sustainability goals (Amaral et al., 2019) can 

be blamed on a lack of financial resources. To the extent that sustainable energy projects 

are found to be cost-effective, however, lack of implementation is likely due to other 

factors. According to Howes et al. (2017), these other factors fall into three main 

categories: (1) structural factors, (2) implementation traps, and (3) knowledge/scope 

issues. Structural factors are overarching economic, social, political, environmental, 

legal, and technical issues that stand in the way of implementation. Implementation traps 

relate to the network of relationships and agencies tasked with achieving results and can 

arise from, among other sources: incomplete specification of objectives, conflicting 

objectives, incentive failures, limited competence, and lack of resources. And that is why 

Harich and Rosas (2020) believe that superficial solutions are only effective temporarily 

or not efficient at all “because the superficial solution force can never exceed the root 

cause force (Harich and Rosas, 2020, p 6).” Knowledge/scope issues refer to inadequate 

knowledge of the problem at hand (Howes et al., 2017).  

Insofar as the preceding three categories of implementation failure factors are 

wide-ranging, complex, and interconnected, a single dissertation cannot grapple with all 

of them at once. As such, after determining the financial feasibility of selected alternative 

energy interventions in four case study universities, this research focuses on the spatial 

context of each institution as a potential determinative factor. Spatial context spans at 

least two of Howes and colleagues’ (2017) three categories. With respect to structural 

factors, embeddedness in a neighborhood or region where residents and leaders prioritize 

sustainability goals might positively influence HEI sustainable energy implementation. In 

contrast, areas with low prioritization of sustainability goals can have negative or neutral 
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influences on implementation. Concerning implementation traps, HEIs that are public, 

state-funded colleges or universities are generally subject to statewide energy policies or 

legislative mandates. Such legislative measures and the incentives they create (or 

eliminate), and the funding streams they provide (or do not provide) will undoubtedly 

influence HEI investments into sustainable energy programs. To account for both sources 

of influence, this dissertation will draw on: 

• consumer survey data and municipal and regional planning documents to 

describe the “local” spatial context of each case study HEI; 

• and statewide policies and state-level Sustainable Development Goal report 

cards (https://sdgindex.org/reports/sustainable-development-report-of-the-

united-states-2018/), as well as descriptions of state-level politics, to describe 

the comparatively “global” spatial context of each case study. 

Leveraging these data sources, this dissertation will address four specific research 

questions: 

1. Are selected emissions-reducing energy investments characterized by long-run 

profitability in the HEIs under investigation? In other words, is there evidence that 

a proper coupling between lower energy consumption and economic profitability 

can be achieved at the HEIs? 

2. To what extent are sustainability goals prioritized by residents and municipalities 

in each HEI’s local spatial context? 

3. What is the nature of the relationship(s) between state-level policy, state 

Sustainable Development Goal performance, and alternative energy investments at 

https://sdgindex.org/reports/sustainable-development-report-of-the-united-states-2018/
https://sdgindex.org/reports/sustainable-development-report-of-the-united-states-2018/
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the selected HEIs? 

4. To what extent do (in)congruent state and local/regional spatial contexts promote

(inhibit) alternative energy implementation in HEIs?

The first question from above will be analyzed via energy audits and cost-benefit

analyses that can be extended and replicated for other HEIs as well as other small study 

areas, such as urban neighborhoods or even entire towns and villages. The second 

question will involve multivariate spatial analysis of consumer survey data to construct a 

profile for each HEI’s (1) home municipality and (2) the metropolitan or micropolitan 

region in which it is located. Those profiles will be unpacked relative to local and 

regional sustainability planning documents, where available, for each HEI location. The 

third question will create similar profiles for each HEI’s home state by engaging with the 

state’s Sustainability Development Goal (SDG) report card and relevant energy policies. 

Concerning the fourth question, the dissertation will explore the ways in which barriers to 

implementation are minimized, where financial feasibility is embedded within the 

supportive state and local/regional contexts. Simultaneously, incongruent spatial contexts 

are likely to create “implementation traps” (Howes et al., 2017) that might contribute to 

maintaining the status quo, business-as-usual practices. These possibilities are explored 

with the help of four case studies. 
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2. PURPOSE 

Proposed solutions to solve environmental sustainability have failed mainly 

because of the extreme complexity of the problem itself and the absence of root cause 

analysis (RCA) (Harich and Rosas, 2020). A significant portion of the problem is caused 

by the “broken political system” (Harich and Rosas, 2020), which acts as a barrier to 

solving the most critical social problems (Harich and Rosas, 2020). Several authors had 

determined that a new field of sustainability should rise and study the fundamental 

character of interactions between nature and society (Kates et al., 2001) to improve 

society’s role in guiding those interactions (Harich and Rosas, 2020). Most scientists 

agree that organizations, industries, and governments must adopt more ecologically 

sensitive practices to prevent further degradation of the environment (Ralph and Stubbs, 

2014).  While much of this literature focuses on integrating sustainability into business 

practices and reconciling profitability with corporate social responsibility and 

sustainability (Wheeler et al., 2003), there is a thriving line of research on sustainability 

initiatives and practices at colleges and universities (Norton et al., 2007; Ralph and 

Stubbs, 2014).  Among the reasons for this interest are that (1) academia plays a 

prominent role in producing knowledge about sustainability and sustainable practices 

(Kilmova et al., 2016; Elliott and Wright, 2013; Alshuwaikhat and Abubakar, 2008;) and, 

(2) college and university campuses tend to function as their own spatially based 

communities and might, therefore, offer scalable models for creating more sustainable 

neighborhoods, cities, and regions (Norton et al., 2007). Sustainability assessments study 

the integration of sustainability practices into HEIs (Stough et al., 2018). This study will 

contribute to this literature line by inventorying sustainable energy projects at four 
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selected public HEIs. From there, financial analyses will determine the feasibility of 

selected alternative energy investments at each study area location. The results will 

provide initial answers to whether HEIs differ in their commitments to sustainable energy 

due to financial considerations.   

This dissertation moves beyond traditional sustainability assessment in its deeper 

engagements with implementation successes and failures. In instances for which 

alternative energy investments appear to be financially profitable (i.e., where institution-

scaled economic and broader-scaled environmental systems are properly coupled), but 

HEIs have not meaningfully invested in them, I argue that differences in spatial context 

might be contributing or decisive factors. More explicitly, while issues of HEI leadership 

and strategic planning are likely to be some of the more determinative factors at play in 

institutional energy investment decisions, those variables are difficult to observe and 

measure in a consistent way across study areas. However, it is reasonable to assume that 

leadership and decision-making in public HEIs will at least partially reflect: (1) the 

priorities of state government, insofar as HEIs depend on state funding and will, 

therefore, be accountable to state policies and directives; and (2) the preferences and 

values of their local communities or regions, insofar as most HEIs strive to be upstanding 

citizens who maintain effective Town-Gown relations (Broto & Baker, 2018; Pasqualetti, 

2011; Cupples, 2011). Along those lines, where financial considerations are similar 

between public HEIs, differences in alternative energy commitments are likely related to 

differences in spatial contexts. This dissertation will investigate this possibility through 

four case studies. This dissertation studies sustainable energy, and specifically the 

electricity consumption as a spatial problem. Because much of the energy research is 
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grounded in engineering and physical science, scholars suggest that relatively less interest 

has been paid to social and behavioral aspects (Hoppe & de Vries, 2018). As attention is 

turning more prominently to these aspects, “there has been an increasing interest in the 

study of energy as a spatial problem” (Broto & Baker, 2018, p.1). Spatial factors and 

concerns about space can influence the relationship between energy development, energy 

supply, and energy service, placing it at the heart of low carbon transition (Broto & 

Baker, 2018). For example, uneven power relations can shape renewable energy and 

fossil fuel developments (Pasqualetti, 2011). There is an assumption that reminds us of 

the fact that “spatially-engaged energy research can make step-change contributions to 

understand the global energy challenge,” and there should be a call for thinking about the 

energy system and the transition to a low-carbon future as a matter of relational space 

(Broto & Baker, 2018, p.1-3). Within this domain, energy policy takes on particular 

importance, as it reflects the guidelines established by governing entities to exploit 

energy resources, commerce, and its relationship to population (Conde et al., 2019).  
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3. LITERATURE REVIEW

3.1 SUSTAINABLE ENERGY IN HEIs 

Carbon emissions and fossil fuel consumption are at the epicenter of current 

global affairs (Conde et al., 2019).  There is a consensus among researchers that principal 

causes of global warming, climate change, and water shortages are rooted in human 

practices involving the massive use of fossil fuels, conflicts of interest, and the complex 

global energy matrix (Mtutu and Thondhlana, 2016; Conde et al., 2019). Higher 

education systems are among those sectors where human behavior as an individual 

practice can lead to collective challenges (Altan, 2010). HEIs are significant consumers 

of energy in their communities (Altan, 2010).  Although enrollment rates decreased in 

2012, the growing space dedicated to HEIs has not stopped (Figure 5).  Buildings are 

responsible for 30% of total energy consumption globally (International Energy Agency, 

2018). Operations, maintenance, utilities, and renovations cover almost 70% of all the 

building-level expenditures (Amaral et al., 2019). In line with the importance of energy 

usage in buildings, it is possible to underline that the highest number of actions in 

American HEIs is dedicated to energy and buildings (Amaral et al., 2019).  

To satisfy their growth imperatives, HEIs tend to increase demand for resources 

such as energy (Mtutu and Thondhlana, 2016).  What is more, it has also been found that 

energy consumption (electricity and gas) can continue to rise even if the gross area of 

HEI buildings is reduced (Mohammadalizadehkorde and Weaver, 2020). Figure 6 and 

Tables 1 and 2 show the relationship between energy consumption and increasing space 

at Texas State University in a fiscal year starting September 1 and ending on August 31. 
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Figure 6. GSF vs. kWh consumption at Texas State University 

Table 1. Electric consumption based on fiscal year and savings at TSU 

Fiscal Year GrossSquareFeet 
(GSF) 

Consumption 
(kWh) 

Consumption
Per Sq. ft (EUI) % Savings

FY12 7,102,422 121,184,231 17.06 Base Year

FY13 7,493,405 118,753,429 15.84 -7.11

FY14 7,513,016 120,167,425 15.99 -6.25

FY15 7,763,457 116,461,145 15.00 -12.08

FY16 7,719,991 116,468,027 15.08 -11.58

FY17 7,915,438 120,712,750 15.25 -10.62

FY18 8,208,942 122,386,158 14.90 -12.66

Percentage savings in table 1 is calculated based on the following equation: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝐹𝐹𝐹𝐹 – 𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝐶𝐶𝑒𝑒 𝑦𝑦𝑒𝑒𝑏𝑏𝑦𝑦 
𝐸𝐸𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶 𝐶𝐶ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝐶𝐶𝑒𝑒 𝑦𝑦𝑒𝑒𝑏𝑏𝑦𝑦 

               Equation 1 
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Table 2. Gas consumption based on fiscal year and savings at Texas State University 

Fiscal 
Year Square Feet Consumption

(MCF) 
Consumption 

(BTU)
Consumption 
MCF/ Sq. ft

Consumption 
BTUs/ Sq. ft

%
Saving

FY12 7,102,422 397,994 405,953,880,000 0.056 57,157 Base Year

FY13 7,493,405 355,812 362,928,240,000 0.047 48,433 -15.263

FY14 7,513,016 388,788 396,563,760,000 0.052 52,784 -7.652

FY15 7,763,457 411,137 419,360,026,519 0.053 54,017 -5.494

FY16 7,719,991 424,003 432,482,630,414 0.055 56,021 -1.987

A diverse example is given by the Electrical Engineering Department at the 

University of Coimbra, Portugal, where the electricity demand decreases from 2010 to 

2016, reaching 510.09 MWh of demand in 2016 with an exception in 2013 due to a 

warmer summer (Fonseca et al., 2018). However, the latter example is based on one 

single building and difficult to be compared with other models unless the number of 

enrollments, the macroclimate, and the gross square feet are similar. 

Energy efficiency as a measurement aims to reduce the amount of energy needed 

to provide the same level of service to the consumer. Energy efficiency can be expressed 

in terms of the Electricity Utilization Index (EUI), which includes all energy consumed 

by an area in Btu per GSF or kWh per square feet. Implemented policies often include 

“resource and technology standards, codes, and incentives that can advance the 

deployment of energy-efficient technologies and practices across all sectors of the 

economy (EPA, 2018).” Energy efficiency interventions can benefit society and different 

energy sectors in the economy (Altan, 2010). They provide an understanding of current 

programs’ influence and encourage the systematic use of knowledge for evidence-based 
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policy (Altan, 2010). Various measures, such as environmental audits, fines, plans, 

guidelines, and declarations, tried to frame unsustainable practices, but most of them 

limit themselves only to address the symptoms (Mtutu and Thondhlana, 2016).  

What are the benefits of energy efficiency and renewable energy implementation? 

Multiple benefits of energy efficiency are determined by EPA (2018) as the following 

illustration (Figure 7): 
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Figure 7. The benefits of energy efficiency and renewable energy. Source: EPA 

• Reduces total 
electricity 
demand 

 
• Increases 

electricity 
generated from 
clean and 
efficient sources 

Energy Efficiency 
and Renewable 

Energy 

• Reduces costs 
of electricity 

• Diversifies the 
fuel mix 

• Reduces risks 

Enhances the 
Electricity System 

• Avoiding costly 
illnesses 

• Fewer worker 
absences for 
businesses 

• Less days missed at 
schools 

• More money for 
consumers to spend 
• New jobs created 

Benefits to 
Society 

Reduces Emissions and Improves 
Health 

• Improves air quality 
• Improves human health 
• Reduces premature death 

• Lower energy cost 
• Increases disposable 

income 
• Investments in energy 

 

Boosts the Economy 



 

23 

How an empirical approach to reach energy efficiency should be applied? Tactics 

to obtain sustainable energy consumption can be based on the energy efficiency cycle 

provided by the Schneider Electric Organization (SEO) (Figure 8): 

 

 

 

 

 

 

 

Figure 8. Energy efficiency cycle 

Figure 8 shows that the measuring step consists of energy audits and metering to 

establish a benchmark and provide input for the monitor process. Fixing the basics brings 

low consumption devices and power reliability while automating consists of building a 

management system (Mohammadalizadehkorde & Weaver, 2018). According to SEO, 

low consumption devices and efficient installation can lead to energy efficiency gains of 

10 to 15% of total consumption, which is in line with 17% of total energy saved in a 

recent study (Mohammadalizadehkorde & Weaver, 2020). This outcome is generally 

referred to as passive energy efficiency. Low consumption devices and efficient 

installation could be well-insulated buildings, high-efficiency motors, and more efficient 

lamps. Optimized usage of installation and devices will net a 5 to 15% increase in energy 

efficiency (SEO):  

Automate 
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For example, up to 40% of the potential savings for a motor system are realized 

by the drive and automation, and up to 30% of the potential savings in a building lighting 

system can be discovered via the lighting control. Thirdly, a permanent monitoring and 

maintenance program will garner an additional 2 to 8% efficiency. This would require 

HEIs to implement continuous measurement and to react in case of deviations. 

Automation and permanent monitoring are examples of active energy efficiency (SEO). 

EPA has a similar approach to SEO in defining energy efficiency. The EPA approach 

comprises a policy, planning, and evaluation process to determine the best time to 

implement energy efficiency and renewable energy (Figure 9). Although the wordings are 

not the same, steps can be equivalent to each other once the SEO’s energy efficiency 

cycle is compared to the EPA policy planning and evaluation process. 

 

 

 

 

 

 

 

Figure 9. Energy efficiency and renewable energy policy implementation (EPA, 2018) 
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An Implementation example of the models above and policies can be found in 

Mohammadalizadehkorde & Weaver (2020). The initial audit (measure) sets the goal, 

and proposed options try to reach those goals. Evaluation is made possible by the results 

based on the amount of electricity saving. To advance in a more detailed illustration, the 

following Figure 10 proposes lighting system replacement extracted from a recent study 

and shown here for illustrative purposes (Mohammadalizadehkorde & Weaver, 2020). 

Capital outlay is the money invested, which will be recouped after one year (when the 

green line hits the x-axis on the chart). The amount of saved money is given by the green 

area, followed by constant energy savings for ten years. The net present value—which is 

discussed in detail in the Methods section—is the value of an investment in financial 

terms, which should be positive and distant from the capital outlay. 

Figure 10. Lighting system replacement and NPV visualization 
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To assess the level of commitment, it is possible to use the GreenMetric World 

University Ranking, which focuses on sustainability derived from the environmental 

performance of HEIs (Aina et al., 2019). There are also multiple monitoring tools such as 

Sustainability Tracking Assessment & Rating System (STARS), Global Reporting 

Institute (GRI), and Leadership in Energy and Environmental Design (LEED), and the 

global GreenMetric World University Ranking to assess the energy consumption and 

policies. Table 3 and Table 4 show several ranking systems adapted from Grindsted 

(2011) and Tilbury (2011) to evaluate the energy consumption from an operations 

perspective, environmental impact, and policy aspect. 

 

Table 3. Global Campus Sustainability Ranking (Adapted from Grindsted, 2011) 

Ranking system Coverage Sponsors Year Description 

GreenMetric World 
University Ranking Global Universitas 

Indonesia 2010 

Provides profiles for universities and 
compare them based on campus 

greening and sustainability criteria, 
including policies 

Green Rating North 
America 

Princeton 
Review NA Ranks top 50 colleges based on green 

campus criteria 

University League UK People & 
Planet 2007 

Ranks universities and compares 
environmental initiatives and plans 

and carbon reduction targets 
SIERRA Cool 

Schools USA Sierra 
Magazine 2007 Benchmarks the most 

environmentally friendly campuses 

CSRC USA 
Sustainable 

Endowments 
Institute 

2007–
2011 

Provides sustainability profiles of 
institutions based on sustainability 

indicators 

ACUPCC USA ACUPCC 2006 Enjoins signatory to a commitment to 
be climate neutral 
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Table 4. Declarations for Sustainable Development in Education (Tilbury, 2011) 

Year Declarations Partners Scope 
1990 Talloires Declaration University Leaders for a Sustainable Future Global 
1991 Halifax Declaration Consortium of Canadian Institutions; IAU; UNU Global 

1993 Kyoto Declaration on Sustainable 
Development IAU Global 

1993 Swansea Declaration Association of Australia Government Universities Global 

1994 COPERNICUS University Charter for 
Sustainable Development Association of European Universities Regional (Europe) 

2001 Luneburg Declaration Global Higher Education for Sustainability Partnership Global 

2002 Ubuntu Declaration 

UNU, UNESCO, IAU, Third World Academy of Science, 
African Academy of Sciences and the Science Council of Asia, 

Copernicus-Campus, Global Higher Education for Sustainability 
Partnership, and University Leaders for Sustainable Future 

Global 

2005 
Graz Declaration on Committing 

Universities to Sustainable Development, 
Austria 

COPERNICUS CAMPUS, Karl-Franzens, University Graz, 
Technical University Graz, Oikos International, UNESCO -  

2005 Bergen European education ministers, the European Commission, and 
other consultative members Regional (Europe) 

2006 American College and University 
Presidents’ Climate Commitment AASHE National (USA) 

2008 
Declaration of the Regional Conference 
on Higher Education in Latin America 

and the Caribbean – CRES 2008 
UNESCO 

Regional (the 
Caribbean and Latin 

American) 
2008 Sapporo Sustainability Declaration G8 University Network Global 
2009 World Conference on Higher Education UNESCO Global 

2009 
Turin Declaration on Education and 

Research for Sustainable and 
Responsible Development, Italy 

G8 University Network Global 
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The concept of sustainable development has been ambiguous and contested for 

several decades (Mebratu, 1998). However, researchers try to abide by the notion 

provided by the UN—Sponsored World Commission on Environment and Development 

(WCED)— such as the framework suggested by Daily & Ehrlich (1992) where they 

attempt to provide “a framework for estimating the population sizes and lifestyles that 

could be sustained without undermining the potential of the planet to support future 

generations” (Daily & Ehrlich, 1992; Aina et al. 2019; Amaral et al., 2019).  

Although several authors recognize the Stockholm Declaration of 1972 as the first 

direct reference to sustainability (Mohammadalizadehkorde and Weaver, 2018) in HEIs, 

Amaral et al. (2019) attribute the debate of sustainable development in HEIs to 

Brundtland (1987).  Namely, in distinguishing the inseparability of humanity and the 

environment, the Stockholm Declaration recommended several ways of achieving 

environmental sustainability (Alshuwaikhat & Abubakar, 2008), including the following 

statement: 

A point has been reached in history when we must shape our actions 

throughout the world with a more prudent care for their environmental 

consequences.  Through ignorance or indifference, we can do massive and 

irreversible harm to the earthly environment on which our life and well-

being depend.  Conversely, through fuller knowledge and wiser action, we 

can achieve for ourselves and our posterity a better life in an environment 

more in keeping with human needs and hopes (UNESCO. Stockholm 

Declaration. UNESCO; 1972.) 

While the concepts of sustainability and sustainable development are still subject 
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to debate in the literature, they are sometimes merged for the sake of discussion (Stough 

et al., 2018). The ambiguity of sustainable development is addressed by Connelly (2007) 

in four different ways: 1) presenting the unproblematic concept in principle but hard to 

achieve in practice, 2) noting the ambiguity but selecting a preferred definition, 3) noting 

the ambiguity but developing praxis and 4) seeking to understand the concept of 

sustainable development.  

Stated another way, in the aggregate, humans’ aptitude for living more sustainable 

lives in more sustainable settlements depends on improved education. A significant 

portion of this expectation has relied on universities. Higher education institutions are 

requested to prepare the skilled workforce for sustainable challenges in the upcoming 

years (Kilmova et al., 2016). Accordingly, at the Stockholm Conference, education was 

recognized as one of the most critical factors in “fostering environmental protection and 

conservation” (Lozano et al., 2015).  Roughly twenty years later, the Talloires 

Declaration, drafted in 1990 with more than 500 signatories from more than 40 countries, 

became the first official statement supported by university administrators of a 

commitment to environmental sustainability in higher education (University Leaders for a 

Sustainable Future, 1990). The non-binding ten points from that declaration cover the 

teaching, research, involvement, and collaboration on higher education environmental 

issues. The Talloires declaration’s objectives demand a broad-scale change in universities 

rather than the plans’ isolated execution (Bekessy et al. 2007). In the same year, the U.S. 

Environmental Protection Agency (EPA) funded a research group at Tufts University’s 

Environmental Center known as Tufts Cooperation, Learning, and Environmental 

Awareness Now! (CLEAN!) to reduce the environmental impacts of the university’s 
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operations (Creighton, 1998). The Tufts team studied essential issues like food waste, 

transportation, energy efficiency, and procurement practices to develop recommendations 

for several departments (Creighton, S. H, 1998).  

In another example, more than 680 universities signed the American College and 

University Presidents’ Climate Commitment (AUPCC) agreement, which invites 

participating institutions to reduce greenhouse gas emissions (Agdas et al., 2015, p. 16). 

Among more recent attempts to introduce the sustainable environment in higher 

education, the U.S Environmental Protection Agency, in an issue of Enforcement Alert, 

states that “colleges and universities are required to comply with all applicable 

environmental requirements like their counterparts in the industry to create a safe haven 

for human health and environment” (EPA document:300-N-00-012). Fundamental 

Change to Resource Conservation and Recovery Act (RCRA) regulation in higher 

education, proposed by the Campus Safety and Health Environmental Management 

Association (CSHEMA), suggests one possible policy for meeting the EPA regulations, 

which consisted of reinterpretation, exemption, or changes to existing regulations (Savely 

et al., 2007). 

The current that underlies all the preceding examples is that sustainability in 

higher education is a broader concept than merely incorporating sustainability into 

classroom curricula. More specifically, while there is robust and valuable literature on 

education for sustainability (see, for example, Cortese, 1999; Junyent & Ciurana, 2008; 

Sterling, 2010), higher education institutions also have the power to practice 

sustainability. Practice adds a visual and authentic dimension to the ways in which 
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universities educate students and the public on critical environmental issues. Indeed, 

universities can serve as models and test cases for programs and practices that could be 

scaled to the level of a whole human settlement, such as a neighborhood, multi-site 

corporation, or even a municipality (Aina et al.,2019; Grindsted, 2011; Alshuwaikhat and 

Abubakar, 2008; Amaral et al., 2019).  As Alshuwaikhat and Abubakar (2008) observe, 

“universities can be compared to complex buildings and even small cities.” Peter 

Viebahn, the author of the Osnabruck Environmental Management Model for 

Universities, states that 334 different universities in Germany are comparable to large 

commercial enterprises with regard to their consumption of energy and materials 

(Viebahn, 2002). Creighton (1990) believes that universities’ and colleges’ use of 

electricity, oil, natural gas, water, and chemicals is significant and can cover the largest 

service in the community where they are located. 

On that note, “University campuses are an excellent study set to assess the design 

and enforcement of sustainability and energy efficiency policies” (Agdas et al., 2015, P. 

16). Furthermore, institutions like universities are examples of public sector building 

owners from whom is expected a commitment to the future well-being of the surrounding 

communities (Pullen, S., 2000) or as an example of special social responsibility 

(Viebahn, 2002).  

The issue of campus sustainability has been subject to intensified scrutiny by 

governmental agencies and university stakeholders (Alshuwaikhat, & Abubakar, 2008). 

Brian McCall, chancellor of the Texas State University System (TSUS), during the Board 

of Regents of TSUS held on August 19, 2011, states the crucial impact of an articulated 

plan on environmental issues: 
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Our administrators are not the only ones who will be aware of the 

environmental impact of water usage, temperature controls, insulation, and 

greener construction going forward. Our environmental performance will 

be increasingly scrutinized by the media, the public at large, and our 

students. And, well, it should! Therefore, I ask that each university president 

develop a detailed, campus-specific plan of action to improve 

environmental efficiencies (Sustainable Stewardship, Actions to improve 

campus energy efficiency, Presented by Sheri Lara, Former Director of 

Utilities Operations at Texas State University). 

 

Following this statement, any university that is enthusiastic about promoting 

sustainability on its campus ought to have a clear vision and commitment to 

sustainability. According to Alshuwaikhat and Abubakar (2008), the university should 

establish an organizational structure providing resources to achieve the sustainability 

vision, which is stated in other sustainability plans such as Energy Management System 

or ISO 14001 as well. ISO 14001 (1996) is a standard that empowers organizations to 

develop policies and objectives, taking into account legislative requirements and 

information about significant environmental impacts. This standard has been revised in 

2004 and 2015. 

However, just as environmental issues are complex and multidimensional, 

approaches to reduce resource consumption must be multifaceted and multiscalar. Not 

surprisingly, such sophisticated strategies are passed over by most universities in favor of 

more straightforward tactics (Alshuwaikhat & Abubakar, 2008). Furthermore, building 

energy efficiency is a complicated process influenced by various operational and design 

characteristics (Agdas et al., 2015). Despite these difficulties, some researchers have tried 
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to define sustainability in higher education. Velazquez et al. (2006) state: 

A higher educational institution, as a whole or as a part, that addresses, 

involves, and promotes, on a regional or a global level, the minimization of 

negative environmental, economic, societal, and health effects generated in 

the use of their resources in order to fulfill its functions of teaching, 

research, outreach and partnership, and stewardship in ways to help society 

make the transition to sustainable lifestyles (Velazquez et al., 2006, p. 812). 

Alshuwaikhat and Abubakar (2008) offer their definition of sustainable campus as: 

A healthy campus environment with a prosperous economy through energy 

and resource conservation, waste reduction and efficient environmental 

management promoting equity and social justice in its affairs and export 

these values at the community, national and global levels (Alshuwaikhat & 

Abubakar, 2008, p.3).  

As noted above, the concept of sustainability is subject to many different and 

conflicting interpretations (Weaver, 2015), which might not correspond to social and 

political values (Portney, 2015). Perhaps the most common definition of sustainability 

comes from the World Commission on Environment and Development (Brundtland, 

1987), which states that “the need of present should not compromise the ability of future 

generation to meet their own needs” (WCED 1987:39). As noted by Portney (2015), this 

definition “provides a convenient point of departure for a broad understanding of this 

fairly abstract concept” (Portney, 2015, p.4). On the other hand, the economic aspect of 

sustainability has always been an inseparable part of any definition. Daly and Cobb 

(1989) are among those researchers who challenged the concept of economic growth 

based on human-built capital (Norton, 2005). In For the Common Good (1989), Daly and 
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Cobb suggest the idea of “natural capital” which should be accessible for the future 

generation—an interpretation in harmony with the WCED definition and used to compare 

the weak and robust sense of sustainability by Daly and Cobb (Norton, 2005). 

Meanwhile, skeptics have questioned whether it is possible to achieve 

sustainability with significant positive economic growth. To Jack Harich, this question is 

one of system design: “how can we properly couple the ecological and economic 

systems, by finding and implementing the right policies to keep environmental impact at 

a sustainable level?” (Harich, 2010, p. 36; emphasis added). Kent E. Portney suggests 

that such a proper coupling might be achievable. In particular, Portney highlights the 

eight years of the Obama administration in the U.S. as an exception when policies 

regulated the carbon emissions under the Clean Air Act and Energy Efficiency and 

Conservation Block grant program (Portney, 2015).  In Science magazine, the 44th 

President of the United States described this era in his administration using the following 

terms:  

The United States is showing that GHG mitigation need not conflict with 

economic growth. Rather, it can boost efficiency, productivity, and 

innovation. Since 2008, the United States has experienced the first sustained 

period of rapid GHG emissions reductions and simultaneous economic 

growth on record (Obama, 2017). 

So, if scholarship, world leaders, and empirical evidence all argue that sustainable 

energy use need not undermine economic well-being, then why are most of the world’s 

largest economic actors (e.g., corporations, governments, HEIs, etc.) so slow or resistant 

to replacing fossil fuel-intensive energy infrastructure with more sustainable alternatives? 



   

 35  

Considering HEIs in particular, Table 5 summarizes findings from Amaral et al. (2019), 

who identified numerous drivers and barriers to sustainable technology implementation in 

HEIs through survey-based studies. Among other things, the findings implicate the 

relationship between “geographical distribution and particular drivers and barriers” 

(Amaral et al., 2019 p.8), which is the theme of the next subsection. This summary occurs 

while Harich and Rosas (2020) underline the failure of sustainability implementation and 

many other “difficult social problems” as a direct result of simulation-based scenarios 

instead of searching for the root cause. 

 

 



   

 36  

Table 5. Drivers and barriers to sustainability implementation (Amaral et al., 2019) 

Reference Survey 
objectives Drivers Barriers Nr. of HEIs 

Wright and Horst 
(2013) 

Faculty leaders’ 
perception of 

sustainability and 
barriers to 

implementation 

Funding 
Administration 

support 
Academia 

engagement 
  

Lack of funding 
Lack of leadership 

support 
Governance 

models 

32 (Canada) 

Leal Filho et al. -
2013 

HEI policies to SD 
and the relation 
with successful 

initiatives 

Existence of internal 
SD policies increases 

the probability of 
implementing 

initiatives 

- 35 (worldwide) 

Ralph and Stubbs -
2014 

Factors influencing 
sustainability 
integration in 
Australian and 
English HEIs 

Funding 
Existence of 

internal policies 

Existence of internal 
policies 

Administration 
support 

Lack of funding 
Lack of resources 

Lack of expertise 
Lack of 

understanding 
4 (Australia) 
4 (England)  

Disterheft et al. -2015 
Participatory 
approaches in 
sustainability 

initiatives  

Specific skills and 
participatory 
competences 

Inexistent or 
deficient 

institutional 
and personal 
engagement 

15 + 36 (worldwide) 

Lozano et al. -2015 

The relation 
between 

commitment to 
declarations and 

sustainability 
implementation 

Signing a declaration 
is a 

driver for 
sustainability 

implementation, but 
not         - 

the sine qua non-
condition 

-         70 (worldwide) 

Brandli et al. -2015 

Preconditions and 
barriers to 

implementing 
sustainability in 

Brazil 

Administration 
support 

Academia 
engagement 

Communication, 
training 

Lack of policies 
Lack of interest      

Lack of know-how 
6 (Brazil) 

Maiorano and Savan 
(2015) 

Obstacles in 
implementing 

energy efficiency 
measures 

Revolving funds 

The reluctance of 
HEI leaders 

Other priorities 
Lack of 

information 

15 (Canada) 

Leal Filho et al. -
2017 

Obstacles in 
implementing 
sustainability 

- 

Lack of leadership 
support 

Lack of resources 
Lack of interest 

Lack of a 
committee 

269 (worldwide) 

Blanco-Portela et al. 
(2018) 

Drivers and 
barriers to the 

implementation of 
sustainability in 
Latin America 

Existence of internal 
policies 

Leaders’ commitment 
Staff commitment 

Funding 

Inexistence of 
internal policies 

Lack of leadership 
support 

Lack of staff 
training 

Lack of resources 

45 (Latin America) 

Aleixo et al. -2018 Challenges to 
sustainability Funding Lack of resources 

Lack of know-how 4 (Portugal) 
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3.2 THE INFLUENCE OF GEOGRAPHICAL CONTEXT 

Because much energy research is grounded in engineering and physical science, 

scholars suggest that relatively less interest has been paid to social and behavioral aspects 

(Hoppe & de Vries, 2018). As attention is turning more prominently to these aspects, 

“there has been an increasing interest in the study of energy as a spatial problem” (Broto 

& Baker, 2018, p.1). Spatial factors and concerns about space can influence the 

relationship between energy development, energy supply, and energy service, placing it 

at the heart of low carbon transition (Broto & Baker, 2018). For example, uneven power 

relations can shape renewable energy and fossil fuel developments (Pasqualetti, 2011). 

There is an assumption that reminds us of the fact that “spatially-engaged energy research 

implementation in 
Funding Portugal 

Community 
engagement 

Cultural exchange, 
interdisciplinary 

Resistance to 
change 

Organizational 
structure 

Leal Filho et al. -
2018 

Challenges and 
barriers to climate 
change research 

- 

Lack of funding 
Lack of expertise 
Lack of resources 
Lack of interest 

82 (worldwide) 

Leal Filho et al. 
(2019a) 

Role of innovation 
in sustainability 

Implemented 
innovation projects 
are mostly related to 

operations 
Allows raising 

awareness 

- 73 (worldwide) 

Leal Filho et al. 
(2019b) 

Commitment level 
in energy 

efficiency and 
renewable 
measures 

Administration 
support 
Funding 

Lack of funding 
Lack of resources 
Lack of interest 

50 (worldwide) 

Leal Filho et al. 
(2019c) 

Barriers to 
planning in 

implementing 
sustainability 

- 

Lack of funding 
Lack of resources 
Lack of leadership 

support 

39 (worldwide) 

Leal Filho et al. 
(2019d) 

Sustainability 
offices and barriers 

to their 
implementation 

Allows raising 
awareness 
Academia 

engagement 
Curricula 

improvement 

Lack of funding 
Lack of leadership 

support 
Lack of interest 

Lack of resources 

70 (worldwide) 

Avila et al. -2019 
Innovation and 
sustainability 

barriers 
- 

Lack of leadership 
support 

Lack of resources 
Lack of a 
committee 

283 (worldwide) 
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can make step-change contributions to understand the global energy challenge,” and there 

should be a call for thinking about the energy system and the transition to a low-carbon 

future as a matter of relational space (Broto & Baker, 2018, p.1-3). Within this domain, 

energy policy takes on particular importance, as it reflects the guidelines established by 

governing entities to exploit energy resources, commerce, and its relationship to 

population (Conde et al., 2019).  

Going back to the 1970s, Hoare (1979) first raised the issue that geographers have 

historically had limited engagement with energy. Since that time, however, energy 

geographers have pioneered new interdisciplinary approaches in energy studies, 

highlighting the concept of “relational space” (Bradshaw, 2013). A relational approach 

defines “how energy relates to and interacts with the political, social, cultural, economic, 

ecological and technological spheres in specific locals” (Broto & Baker, 2018 p.3). It is 

known that government requirements can catalyze the decision-making process related to 

environmental commitment (Ralph and Stubbs, 2014). In Russia, for example, the 

approach to energy efficiency differs from the United States and European countries, and 

official documents provide only recommendations without any binding conditions 

(Tverdokhleb et al., 2017). Cupples (2011) provides another example by underlying that 

the privatization of electricity in Nicaragua results from neoliberalism materialization. 

The relational approach challenges the concept of energy “as a neutral, technical, and 

physical entity” (Broto & Baker, 2018, p.3). Therefore, this might be why Harich and 

Rosas (2020) deviate the attention from solving the sustainability problem to the real 

problem, which is causing it, the broken political system. 

Behavioral interventions have a significant role in this process, as well. “The 
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transition to low carbon energy systems cannot solely rely on technological innovation,” 

and there are social and behavioral barriers that need to be overcome to make the energy 

transition possible (Hoppe and de Vries, 2018). Root cause analysis can be introduced at 

this stage as a solution for difficult social problems. A “difficult problem” is defined by 

Harich and Rosas (2020) as a problem resistant to be solved at least for twenty-five years 

or more and are considered large-scale problems involving the behavior of many people. 

Sustainability and climate change have both characteristics of a difficult problem. The 

assumption is that the systemic force—meaning that the problem originates from the 

system and can affect most social agents’ behavior— also called force R is the root cause 

of environmental sustainability problems (Harich and Rosas, 2020). Solutions to mitigate 

environmental sustainability and economic growth could be considered superficial 

solution forces (force S) to solve the superficial causes. The root cause analysis will allow 

sustainability scientists “to understand the fundamental character of interactions between 

nature and society,” which in Harich and Rosas (2020) point of view has “the potential to 

change the sustainability problem from impossible-to-solve to solvable” (Harich and 

Rosas, 2020, p.6).  

To engage with geographical context in this research, I will rely on two data 

sources listed here and expanded on in Chapter V: (1) the SimmonsLOCAL annual 

consumer survey and (2) America’s Goals Report. By using these (or any other) means to 

engage with and better understand the spatial context, it is possible to roughly describe 

the interests to which university decision-makers are accountable and in which they are 

embedded. The assumption is that university administrators will make decisions 

consistent with state priorities, especially when they are state-owned and funded. 
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Therefore, by looking at the extent of sustainability in public/state HEIs’ plans, it is 

possible to assess whether current priorities reflect state policy. Similarly, it is possible to 

draw on data obtained from local (home) populations to determine how aligned HEI 

energy priorities are with their neighbors’ attitudes towards the environment. Mtutu and 

Thondhlana (2016) state that individual values such as a pro-environmental attitude do 

not necessarily translate to a pro-environmental behavior due to other constraining 

factors, but they can be a significant indicator. Once the root causes are found, the third 

type of force to solve the problem, fundamental solution force (force F), can be applied 

(Harich and Rosas, 2020). 

How energy is used is one of the significant factors influencing the environment 

(Shaffer, 2011). This concept is reflected in some national legislation: Portugal aims at a 

30 percent reduction in net-energy demand for public buildings, 20% of renewable 

energy implementation, and a low energy demand equivalent of 44kWh/m2 per year 

through national legislation (Fonseca et al., 2018). Several nations and local governments 

have adopted or updated policies encouraging energy efficiency and renewable energy 

implementation (EPA, 2018). According to EPA, as of 2018, more than half of the states 

are implementing: 

• Policies to save energy in public-sector buildings. 

• Mandatory or voluntary energy efficiency resources. 

• Mandatory or voluntary renewable portfolio standards (RPSs). 

• Financial incentives to individuals, businesses, or utilities to encourage 

renewable energy or energy efficiency (DSIRE, 2020). 

 One of the other state priorities in the United States is given under Renewable 
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Portfolio Standards (RPS) (Figure 11). States have been revising their (RPS), which 

requires a specified percentage of the electricity that utilities provide should come from 

renewable resources (National Conference of State Legislatures). While different states 

have set other goals, some of them are distinct: California, for example, aims to reach 

100% clean energy by 2045 and Maine by 2050, while Colorado aims at 100% clean 

energy by 2050 for utilities serving 500,000 or more customers. An analysis of renewable 

electricity resources application after renewable portfolio standards (RPS) enactment in 

2013 shows that 98 terawatt-hours (TWh) of renewable electricity was generated in 2013, 

the equivalent of 2.4% of total U.S electricity generation in that year (Wiser et al., 2016). 

This amounts to 59 million metric tons of avoided carbon dioxide in 2013. 

A quick look at the NCSL documents revealed that state policies vary on targets, 

entities to be included, and resources to meet requirements. Also, state legislatures might 

not be directly deriving their legislations based on SRP, which can be applied only to 

investor-owned utilities. For example, the Texas Health and Safety Code 388.005 

requires a reduction of electricity consumption without any direct reference to the 

implementation of renewable energy, which is the continuance of Senate Bill 898 (82nd 

Legislature) starting in 2011. This requirement is fulfilled by Senate Bill 241 in the 86th 

legislature approving the state-funded institutions to follow up with the pre-set goal for 

another seven years: 

“Each political subdivision in a non-attainment area or an affected county 

to establish a goal to reduce electric consumption by at least five percent 

each fiscal year. In 2019, the 86th Legislature passed Senate Bill 241, 

extending the timeline for this requirement seven years beginning 

September 1, 2019.” 
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Figure 11. Renewable Portfolio Standards in the United States. 

Energy efficiency and renewable energy impact can be valuable factors in 

determining future policies. EPA has a guideline to estimate the future impact of energy 

efficiency and renewable energy, which includes three main steps: (1) Development of 

business as usual (BAU) forecast of demand and supply, which analyses the historical 

demand and supply portfolio and how policies can cause any change, (2) Estimation of 

potentials and (3) Creation of an alternative policy forecast (EPA, 2018). “In the case of 

energy efficiency, the electricity savings estimates developed in Step 2 are subtracted 

from the BAU energy forecast developed under Step 1 to create a new policy forecast 

(EPA, 2018, p.37).” 

 In that sense, and drawing on the instructive literature summarized above, an 

HEI’s commitment to sustainable energy is hypothesized to be a function of at least four 
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interacting variables: (1) Financial feasibility, (2) energy savings, (3) State priorities and 

policy supports, and (4) Local/community preferences, values, and priorities. According 

to this view, HEIs are most likely to invest in sustainable energy when all four of the 

above factors are favorable (i.e., sustainable energy investments are profitable; the 

investments demonstrably save energy; the state is strong on climate action and energy, 

and residents prioritize sustainability goals). Simultaneously, the view suggests that even 

when projects are financially feasible and save energy, investments might not occur if 

states and communities are not particularly strong on environmental protection issues and 

sustainability. 

3.2.1 GEOGRAPHICAL CONTEXT AND CLUSTER ANALYSIS 

As a slight tangent, note that reducing numerous data points down to succinct 

descriptions of an HEI’s geographical context is no simple task. While there are many 

strategies for engaging with such a challenge, one of the most common data sciences 

approaches is to rely on multivariate analytical methods. More specifically, massive 

amounts of data are meaningful only when “one can extract the hidden information inside 

them” (Shih et al., 2010, p.1). Clustering is a powerful tool for automated data analysis 

and data mining (Aloise et al., 2009; Shih et al., 2010; Ralambondrainy, 1995; Huang, 

1997), revealing interesting groups with similar features (Huang, 1998). Clustering aims 

to discover the natural grouping(s) of patterns, points, or objects (Jain, 2010). Clustering 

is also helpful when and where the researcher wants to take action based on the location 

of one or more clusters (Mitchel, 2005). Useful patterns can be extracted by analyzing 

each cluster (Shih et al., 2010). A comparison between the extent of energy sustainability 

and the public’s opinion about sustainability will be applied by identifying clusters, 
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including a given university, which is part of the study. For instance, grouping block 

groups with their population into several clusters and based on their attitudes towards the 

environment may lead to further knowledge and patterns. 

 Cluster analysis emerged in the 1960s and 1970s when the monograph 

’Principles of numerical taxonomy’ by Sokal and Sneath (1963) encouraged research on 

clustering methods. Although MacQueen (1967) is known as the first author to use K-

means' term, Hans-Herman (2008) retraces the origin back to 1950. Organizing data into 

a more specific grouping is of the most fundamental modes of understanding and 

learning. It is also prevalent in any discipline that involves the analysis of multivariate 

data (Jain, 2010). Identifying clusters of people with a higher level of sustainability 

attitudes may explain why a university falling close to that cluster is more energy 

conscious than the others.  

“Mapping features based on how similar they are to surrounding features 

[clustering] is different [and more significant] than simply mapping the values of features 

[graduate color map]” (Mitchel, 2005, p.163). By comparing the geographical locations 

of clusters, it is possible to examine and identify the potential contributing factors to 

sustainability commitment in HEIs. In other words, it is feasible to describe the essential 

aspects of an HEI’s geographic context.  

Statistical cluster analysis helps to minimize subjectivity in making maps and 

delineating one “type” of geographic context from another. Namely, cluster analysis uses 

mathematical algorithms and inferential statistics to reveal (a)spatial patterns in data. 

Clustering groups like features together in data space and, if appropriate, in geographic 
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space, which allows the analyst to understand critical ways in which places differ on a 

range of relevant variables. In this dissertation, the relevant variables will be drawn 

primarily from consumer studies that ask adults their attitudes and opinions regarding the 

environment.  

In practice, cluster analysis is similar to Multidimensional Scaling (MDS), where 

the proximity (distance) between observations is taken into account to organize them 

(Davison, 1983). Cluster analysis does not include testing any null hypothesis (DiStefano, 

2012), and different clustering algorithms can result in different partitions, even with the 

same data (Jain, 2010). The outcome of cluster analysis is an exploratory result with the 

best structuring approach (Meyers et al., 2016).  Rogerson (2010) and Ralambondrainy 

(1995) believe that cluster analysis should be considered a data reduction technique. 

From this perspective, the researcher seeks to reduce the number of original observations 

𝑆𝑆 into g groups, where: 

1 ≤ 𝑆𝑆 ≤ 𝑆𝑆                                                              Equation 2 

The goal is to minimize the variation within groups and maximize the variation 

between groups (Rogerson 2010). The basic idea is that the algorithm “finds [group] 

centroids of a fixed number of clusters of points in a high-dimensional space” (Peng, 

2012, p.111). In a two-dimensional approach—given by two variables– it is possible to 

look at the data and figure out where the centroids are. Still, when there are more than 

two dimensions, the researcher needs an algorithm (Peng, 2012, p.111). Most clustering 

algorithm looks at the data as a point in a multidimensional space, and that is why in the 

literature they are represented as vectors (x1, x2, …xd) (Shih et al., 2010) and shown in 
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figures where they are represented with x and y-axis (e.g., see the methodology section). 

In the present context, one goal of cluster analysis is therefore to leverage complex, 

multivariate data in a way that “reduces” a large amount of information (e.g., 

environmental preference variables) into a smaller handful of “groups”—or similar 

contexts—that can be described more succinctly (e.g., Rogerson, 2010). 

Geodemographics is one field study where cluster analysis has been used 

frequently toward this end (Rogerson, 2010). Cluster analysis in geodemographics tries to 

reduce many subregions (given by block groups in this dissertation) by grouping them 

into a smaller number of types (Rogerson, 2010). Approaches to cluster analysis can be 

categorized into (1) agglomerative or hierarchical and (2) non-agglomerative or 

nonhierarchical methods (Rogerson, 2010; Hans-Hermann, 2008; Meyers et al., 2016; 

Jain, 2010; Shih et al., 2010). The agglomerative method is used to sort a small number 

of cases into clusters based on quantitative variables (Hans-Herman, 2008). In the 

agglomerative method, there are n clusters composed of the number of observations. This 

means that each observation will be assigned to the respective cluster. Two initial clusters 

will be merged so that n -1 clusters are left, and the iteration continues until one cluster 

remains (Rogerson, 2010). Hierarchical clustering is an agglomerative mode where each 

point (value) is assigned to its cluster one by one (Jain, 2010; Shih et al., 2010).  “The 

Hierarchical clustering algorithm takes numeric data as the input and generates the 

hierarchical partitions as the output” (Shih et al., 2010, p. 5). The approach can also be in 

a divisive process where all the points are initially assigned to one cluster. Eventually, 

similar points will be divided into smaller clusters until no point is left (Jain, 2010). The 

merger of two clusters cannot be undone in further steps—making more clusters— and 
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the clustering of two observations will remain intact. Hence, this is why this process is 

hierarchical (Rogerson, 2010; Meyers et al., 2016).  

In the non-hierarchical process, there is a pre-established number of g [clusters]. 

“Then one begins with either an initial set of g seed points or an initial partition of the 

data into g groups” (Rogerson, 2010, p. 342). Seed points will determine the assignment 

of observations to the nearest seed point. In contrast, if the researcher begins the 

algorithm with a partition of data into g groups (clusters), g seed point locations will be 

calculated as the centroids of the pre-established g groups, and this process repeats until 

no observation is moved from one cluster to another (Rogerson, 2010). The non-

hierarchical process has the advantage of being computationally less time-consuming and 

the disadvantage of establishing the number of clusters even though the optimal number 

of clusters can be determined after a few tries (Rogerson, 2010) by looking at the pseudo-

F statistics chart. One of the challenging steps in clustering is determining the optimized 

number of clusters (Jain, 2010). There is a top-down option where the analysis starts with 

many clusters and gradually merges them if the Minimum Message Model (MML) is 

decreased by the merger process (Jain, 2010). Other approaches are the Gaussian mixture 

model (GMM), Minimum Description Length (MDL), Bayes Information Criterion 

(BIC), Akiake Information Criterion (AIC), Gap statistics, and the Dirichlet Process (DP) 

(Jain. 2010). Non-hierarchical clustering, which is also called a partitional clustering by 

Jain (2010), finds all clusters simultaneously without imposing a hierarchy (Jain, 2010). 

Partitional algorithms are preferred in pattern recognition (Jain, 2010). A distinction is 

made between a clustering method and a clustering algorithm where the method is a 

strategy to solve a clustering problem, and the algorithm is only an instance of the 
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method (Jain, 2010). “For instance, minimizing the squared error is a clustering method” 

(Jain, 2010, p.9), and K-means is just one of the algorithms used to minimize the squared 

error method. 

K-means clustering is known as an iterative-agglomerative clustering procedure

(Meyers et al., 2016), partitional and non-hierarchical (MacQueen, 1967), and a distance-

based algorithm (Shih et al., 2010) whose purpose is to “identify from a relatively large 

sample a few subgroups of cases based on a relatively small set of variables” (Meyers et 

al., 2016, p.819). MacQueen (1967) named the K-means clustering algorithm, where at 

each step of the iteration, the mean of k groups represents the new mean of the respective 

number of iteration (K-means). However, the version of the algorithm most often used 

today was developed by Harington and Wong (1979). The areas where K-means is 

applied are identified by MacQueen (1967) and Jain (2010): (1) similarity grouping 

(clustering) where the goal is to obtain a qualitative and quantitative understanding of 

large amounts of N-dimensional data, (2) Relevant classification, (3) Approximating a 

general distribution, (4) A scrambled dimension test for independence among several 

variables, (5) Distance-based classification trees, (6) A two-step improvement procedure 

(7) Underlying structure detection, and (8) Compression as a method of summarizing.

Cluster analysis emerged in the 1960s and 1970s in response to Sokal and 

Sneath’s (1963) call for research on clustering methods. The advantage of cluster analysis 

is that it uses statistical methods such as K-means to take the guesswork out of grouping 

like records (e.g., places) together (Mitchel, 2005). In other words, if the goal is to 

identify “types” of places based on their geographic context(s), then clustering can help 

the researcher avoid making guesses about which places to group as being the same 
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“type.”   

One significant advantage of using clustering to help summarize essential aspects 

of a place’s geographic context is that it can be applied to any analysis level at which data 

are collected. In that sense, clusters detected at multiple spatial resolutions can be 

combined into a multi-level framework for specifying and evaluating context. Using a 

specific example, consider a dataset on environmental policies and practices measured at 

the state level of analysis in the U.S. and a consumer survey that provides data on the 

environmental attitudes and preferences of a place’s residents down to the census tract 

unit of analysis. Performing cluster analyses on both datasets and combining the results 

would facilitate an investigation that identifies where (in geographic space) neighborhood 

environmental values and state environmental values and actions are aligned/congruent or 

at odds/incongruent. HEIs in neighborhoods with congruent pro-environment policies, 

preferences, and attitudes are arguably more likely to take strong action on alternative 

energy than HEIs where state policies are comparably anti-environment, and community 

preferences are comparably neutral, for example. Stated another way, clustering states 

and neighborhoods into groups based on their environmental preferences, actions, and 

attitudes offers a valuable, multi-level interpretive lens through which to examine HEI 

energy practices. Recognizing which of those practices are relatively “sustainable” and 

aimed at reducing carbon emissions is taken up in the next subsection. 

3.3 SUSTAINABLE ENERGY OPTIONS FOR HEIs 

To this point, interdisciplinary literature streams have been synthesized to make 

the case that: (1) HEIs are massive energy consumers, with campuses resembling small 

cities (Gormally et al., 2019; Amber et al., 2017; Chung and Rhee, 2014; Alshuwaikhat 
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& Abubakar, 2008;); (2) HEIs tend to have growth imperatives, suggesting that their 

energy demands and consumption levels are likely to continue rising as Universities 

continue to expand under business-as-usual practices (Gormally et al., 2019; Chung and 

Rhee, 2014); (3) HEIs, particularly those that are publicly owned and funded, have a 

specific social mission and responsibility that private multinational corporations or 

similarly-scaled actors do not necessarily have (Shek and Hollister, 2017; Fonseca et al., 

2018; FHKPS, 2019); (4) at least part of that social mission manifests in the form of 

sustainability-related research and education (FHKPS, 2019; Amaral et al, 2019); (5) 

there are gains to be made from HEIs putting that research and education into practice, 

and leading by example in replacing fossil fuel-intensive energy infrastructure with more 

sustainable infrastructure (Buffel et al., 2017; Gormally et al., 2019; Pearce and Miller, 

2006); (6) however, HEIs face numerous barriers and constraints to sustainable energy 

implementation, including but not limited to massive upfront costs vis-à-vis short-term 

profitability mandates, as well as manifold state and local contextual factors (Amaral et 

al, 2019).  

While prior research has studied individual aspects of these dynamics in detail, a 

more comprehensive, spatially based approach has the potential to clarify how those 

pieces come together to result in sustainable energy (in)decisions at HEIs. More 

precisely, by evaluating the financial attractiveness of concrete sustainable energy 

projects at real-world HEIs, while simultaneously engaging with the state/policy and 

local/community influences that bear on HEI decision-making, it is possible to reveal 

pathways to successful implementation as well as roadblocks that can be targeted for 

removal. To round out the literature review and finish setting the stage for such an 
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investigation, it is necessary to conceive a “concrete sustainable energy projects” menu 

for real-world HEIs. This section creates such a menu, though observe that it is non-

exhaustive by necessity. Projects reviewed herein were selected for their regular 

appearance in the literature and their probable familiarity with institutional energy 

decision-makers. In other words, whereas previous sections reviewed the barriers to 

sustainable development in HEIs, this section discusses potential practical solutions 

offered in the literature.  

The shrinking budgets, climate change, internal and external obligations push HEI 

towards implementing energy-efficiency programs (Fonseca et al., 2018). Amaral et al. 

(2019) identify renewable energy generation sources as the most substantial sustainable 

energy initiative in HEIs, accounting for 12% of scientific papers in the literature. This is 

in line with the global trend to comply with climate change, but, as Amaral et al. (2019) 

stated, the implementation percentage has remained low. The desired implementation 

happens in university buildings that perform as demonstration sites of sustainable 

renovation (Fonseca et al., 2018). One example of the international surge for energy-

efficient buildings was introduced by the 2010 Energy Performance of Buildings 

Directive (EPBD) on behalf of the European Union (EU). According to this directive, 

buildings are considered crucial for achieving the EU’s energy and environmental goals. 

EPBD is supposed to change the EU members' building stock to highly energy-efficient 

and decarbonized by 2050. “The Directive requires that by the end of 2020, all new 

buildings should be nearly zero [emission] energy, being the deadline even sooner (by the 

end of 2018) for the buildings occupied or owned by public authorities” (Fonseca et al., 

2018, p.791). Such energy efficiency measurements require establishing a numerical 
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indicator of energy consumption (Fonseca et al., 2018). The average numerical indicator 

for a zero-emission building in the European Union is set to 110 kWh/m2 by Fonseca et 

al. (2018). While this number indicates the total energy consumption, it is possible to 

extract the electricity portion from it by using factors or looking at the portions of energy 

consumed at the building level (Mohammadalizadehkorde & Weaver, 2020). This 

dissertation uses the Commercial Buildings Electricity Consumption Survey (CBECS) 

issued by the U.S. Energy Information Administration (EIA) to create the numerical 

indicator of electricity consumption. The data for expenditure and use in commercial 

buildings shows (partially) the energy consumption of higher education facilities. 

Schneider Electric Organization identifies other areas that influence energy use 

as: 

• Controls  

• Operations and Maintenance 

• Employee Awareness 

 

Promoting the individual participation of professors, staff, and students across the 

campus is another solution to achieve better energy use (Fonseca et al., 2018). Mtutu and 

Thondhlana (2016) have studied individual energy (Employee Awareness) use practices 

on the Likert scale questioning the habits related to energy conservation, such as turning 

off the light and computers when there is no need for use.  However, personal values do 

not always reflect the reported behavior in pro-environmental studies (Mtutu and 

Thondhlana, (2016), and the best combination for achieving a pro-environment change is 

given by the personal and institutional change of values (Steg & Vlek, 2009). 
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 Following the preceding paragraph, a possible and immediate option may consist 

of institutional (rather than individual) changes. Among other things, people are more 

likely to engage with environmental issues if they see the active involvement of other 

community members (Mtutu and Thondhlana, 2016), which again speaks to the 

importance of geographical context in promoting alternative energy. 

 One reason for the low uptake of renewable energy technologies in large 

institutions is the long-term payback period (Mohammadalizadehkordeh & Weaver, 

2020). In line with a significant body of literature, renewable energy implementation is 

not a profitable investment in many places (Kalkan et al., 2011), mainly because of non-

favorable climatic conditions—e.g., low irradiance and low wind power. However, 

several authors consider it an instrument for improving the cost even with a long payback 

period of 8 years or the fact that the microgrid benefits can surpass the cost (Paudel and 

Sarper, 2013; Machamint et al., 2108).  

One way to achieve energy-efficient buildings is to implement renewable energy. 

Renewable energy is energy generated in part or exclusively from non-depleting energy 

sources (EPA, 2018). However, renewable energy definition varies by state but often 

includes wind, solar, and geothermal energy. “Some states also consider low-impact or 

small hydro, biomass, biogas, and waste-to-energy to be renewable energy sources (EPA, 

2018).” In the United States, renewable energy generated to achieve 2013 RPS 

requirements and obligations possibly moved the supply curve for electricity distribution, 

“reducing wholesale electricity prices and yielding an estimated $0 to $1.2 billion in 

savings to electricity consumers across the United States (Wiser et al., 2016, p.39). 

Renewable energy implementation also can contribute to the economy: RPS compliance 
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obligations have supported nearly 200,000 U.S.-based jobs and over $20 billion in GDP 

(Wiser et al., 2016, p.50). Does this urge a global investment in clean energy? 

Bloomberg's report on Clean Energy Investment Trends confirms this desire to achieve a 

high investment volume in clean energy. Renewable power generation even continued to 

grow in 2020 amid the COVID-19 pandemic (IRENA, 2020). The IRENA data shows 

that solar PV projects commissioned in 2021 could have an average price of just USD 

0.039/kWh. “This represents a 42% reduction compared to the global weighted-average 

Levelized cost of capital (LCOE) of solar PV in 2019 and is more than one-fifth less than 

the cheapest fossil-fuel competitor, namely coal-fired plants (IRENA, 2020, p.14).” The 

global weighted-average LCOE of utility-scale solar PV and onshore wind potentially 

will drop to USD 0.039/kWh and USD 0.043/kWh in 2021 (IRENA, 2020). This means 

renewable power projects are cheaper than “the marginal operating costs of an increasing 

number of existing coal-fired power plants, raising the risk of a growing number of 

stranded assets (IRENA, 2020, p.15).” Also, wind and solar accounted for about 27% of 

U.S. non‐carbon electricity generation in 2019 (EIA, 2020). This is while hydropower 

had the largest share of renewable electricity generation in the United States. With other 

renewables' growth, the hydropower share has declined from 34% in 1997 to 18% in 

2019 (Figure 12). Following Figures 12-15 Show the number of investments in the 

United States. 
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Figure 12. Share of non-carbon electricity generation in the U.S 

 

 

Figure 13. Clean energy investment in the United States 
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Figure 14. Clean energy investment by sector in the United States 

Figure 15. Investment in clean energy in the United States 2006-2019 
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The latest cost data from the International Renewable Energy Agency (IRENA) 

shows that the global weighted-average Levelized cost of electricity (LCOE, also 

discussed in section 5.2.3) of utility-scale solar photovoltaics (PV) fell 82% between 

2010 and 2019 (IRENA, 2020). 

With the preceding points in mind, the following subsections discuss specific 

projects that HEIs might consider to reduce their fossil fuel dependencies (and, by 

extension, ecological footprints). 

3.3.1 SMALL WIND TURBINE IMPLEMENTATION 

Wind energy is a transformed type of solar energy (Tong, 2010) and occurs due to 

the unequal distribution of solar radiation, which causes unequal heating and wind power 

around the globe (Aydin et al., 2009; Hawken, 2017). Wind energy has relatively low 

impacts on the environment and has been actively used by human societies for at least the 

past 3,000 years (Akpinar & Akpinar, 2005). A wind turbine has no fuel cost, and, once 

installed, the only fee to pay is the cost of maintenance and operations. 

In 2009, the global annual installed wind generation capacity touched 37 GW 

bringing the world capacity to 158 GW (Tong, 2010).  Nearly four percent of global 

electricity is provided by 314,000 wind turbines (Hawken, 2017). In the United States, 

wind power recently saw 8,203 MW of newly added capacity relative to 2016 and $13 

billion in new investment, reaching 2,611 MW (2016 wind technologies market report). 

In 2018 Cumulative U.S. distributed wind installed capacity reaches over 1.1 GW until 

the end of 2018 (2018 Distributed Wind Market Report, U.S. Department of Energy).  
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According to the American Wind Energy Association (AWEA), Texas is ranked 

first for installed wind capacity with 12,494 installed wind turbines. During 2016, wind 

energy provided 12.63% of all in-state electricity production (American Wind 

Association). Although wind power technology has been available for decades, more than 

90% of all wind power capacity on a global range has been installed between 2002 and 

2012 (Bolinger and Wiser, 2012). 91% of turbine units in 2015 were deployed to power 

off-grid sites or charge batteries (Orrell & Foster 2016). According to many studies, this 

happens while the cost of renewable energy has been falling in the past decade (Gielen et 

al., 2019; Al Badi et al., 2009; American Wind Energy Association). Onshore and 

offshore wind projects experienced a 9% year-on-year drop in price in 2019, reaching 

USD 0.053 kWh and USD 0.115 kWh of cost, respectively (IRENA, 2020). 

 In some cases, the capital cost has been announced between 75% and 90% of the 

total (Kaygusuz. 2002). According to AWEA, since wind energy implementation has 

zero fuel cost, utilities, and corporate customers can sign long-term contracts called 

power purchase agreements (PPA) with known electricity costs for 20 to 30 years. 

 A total of 1.5 MW of small wind turbines (with a maximum of 100 kW capacity) 

were deployed in the United States in 2018. This capacity is down from 1.7 MW in 2017, 

driven by changing federal and state environmental policy and competition from low-cost 

solar PV (2018 Distributed Wind Market Report, U.S. Department of Energy). Architects 

have suggested installing small wind turbines on high buildings' rooftops as a means of 

sustainable energy generation (Tabrizi et al., 2014). Selecting a suitable site is the 

primary factor in leading a renewable energy project towards success and starting a wind 

energy project. Wind turbines can be categorized as small, medium, and large. A small 
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wind turbine can be used for on-site generation, and a large one can be used for utility 

applications (Akpinar, & Akpinar, 2005). The literature on wind turbine site selection is 

rich, especially for large-scale implementations (e.g., a wind farm). 

In contrast, small or medium-size wind turbine studies are more frequent in 

guideline format (e.g., Stokes et al., 2011). Regardless of the environmental impact, 

much thought must be given to the economic output of the installation. Adding a 

financial analysis to the site selection analysis will help decision-makers adopt renewable 

energy wisely while keeping account of the needed amount of investment, payback, and 

avoided CO2 emission. 

Wind farm location analysis can be considered a Multi-Criteria Decision Making 

(MCDM) problem (Al-Yahyai et al., 2012). A variety of MCDM exists in the literature 

that can be used for different purposes, such as choosing, ranking, sorting, and describing 

(Baban & Parry 2001; Atici et al., 2015). Azizi et al. (2014) used an analytic network 

process (ANP) to assign the weight of each criterion and decision-making trial and 

evaluation laboratory (DEMATEL) method to determine the criteria relationship. 

“Analytic network process (ANP) proposed by Saaty (1996) is one MCDM method that 

is a generalization of the analytic hierarchy process (AHP)” (Azizi et al., 2014 p. 6696). 

Tegou et al. (2010) have applied GIS to evaluate land suitability for wind farm site 

selection. Atici et al. (2015) apply a pre-elimination of infeasible sites and evaluate 

available ones. The lack of accurate calculations—caused by the instability of wind 

discussed in the next paragraphs— creates a major difficulty in the effective deployment 

of micro-wind turbines in urban areas. Some of these methodologies to calculate the 

mean wind speed include Weibull analysis, micrometeorology data, experimental 
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measurements, and computational fluid dynamics (CFD) (Yang et al. 2016). Site 

selection's economic aspect in several studies consists of calculating the environmental 

factors such as distance from roads, slope, and the possibility of connecting the system to 

the grid in large-scale wind turbine installation. Wind power density calculation and 

power output in small-scale implantation are other parameters in this study. 

 Parameters used in wind turbine analysis can be classified in (1) economic 

parameters, such as slope, terrain, distance to road, distance to the grid, (2) social factors, 

such as urban area and its implications for noise, aesthetic concerns, vibration, and 

electromagnetic interference, (3) environmental factors, such as bird flyways, historical 

sites, wildlife, natural reserves and (4) technical parameters, such as wind speed, wind 

power density, elevation, capacity factor and forecast of electricity production (Azizi et 

al., 2014; Atici et al., 2015; Aydin et al., 2009). Note well, however, that these 

classifications are non-mutually exclusive and non-exhaustive. For example, Azizi et al. 

(2014) refer to the slope, elevation, river, and protected areas as environmental 

parameters, while Baban & Parry (2000) call them topographic factors. In other studies, 

like Al_Yahyai et al. (2012), technical variables are given more weight than socio-

economic-environmental variables. Atici et al. (2015)—bearing in mind their goal to 

create a wind turbine farm—the elevation below 1500 meters is excluded from being 

considered as a suitable area for wind turbines. The maximum terrain slop is 10% in Al 

yahyai et al. (2012) because slopes with a higher percentage can cause turbulence while 

the cost can still differ considerably between two sites with slopes of 1% and 10% (Atici 

et al., 2015). The capacity factor is another crucial criterion highly correlated to elevation 

and wind speed (Atici et al., 2015). Other parameters, such as land cover, land value, and 



   

 61  

electricity demand, have been considered in studies such as Tegou et al. (2010). 

There are few detailed methodologies for conducting wind resource assessment in 

the built environment (Tabrizi et al., 2014), where the distance to roads, slope, bird 

flyways, wildlife, and terrain have less importance due to the tendency of wind turbines 

implementation on rooftops. 

Purchasing small wind turbines is a long-term investment, and like most 

renewable energy projects, it might not have a fast payback. In Al Badi et al. (2009), it is 

mentioned that a 50-kW wind turbine installation can have an 8.5 year of simple payback 

and 15.6 years as discounted payback at a 10% discount rate. It is necessary to remember 

that for every doubling in cumulative production or installation of wind turbines, there is 

a significant reduction in cost (Bolinger and Wiser 2012) considering the average lifetime 

of renewable energy technology —like wind turbines and solar panels— of 20-25 years. 

This study will assess the degree of the economic and financial output of such an energy 

efficiency project. 

Installation cost varies depending on local zoning, permitting, and utility 

interconnection costs and eventually based on the size and components. In 2011 “a 

reliable small wind electric system and tower in Tennessee and Kentucky used to cost, on 

average $5000-$8000 per kilowatt capacity installed” (Stokes, 2011 p.7). The average 

cost reaches $5,760 per kilowatt installed in 2015, and compared to 2014, the price 

dropped almost 8% (Orrell & Foster 2016). “A 2.4 kW system, including the tower, 

inverter, and installation, can cost approximately $18,000 ($7500 per kilowatt). Larger 

systems will be less costly per kilowatt; a system rated 10kW will cost about $60,000, or 
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$6000 per kilowatt” (Stokes, 2011 p.7), while the capacity factor varies for different 

types of wind turbines. Environmental Defense Fund (EDF) establishes a capacity factor 

percentage from 20 to 40. In contrast, according to Cory & Schwabe (2009), the capacity 

factor ranges from 22 to 48 in three different scenarios (Table 6), and for Mathew (2006), 

it ranges from 0.25 to 0.4. 

Table 6. Variables for financial Analysis (Adapted from Cory & Schwabe, 2009) 

Scenario Capacity Factor 
(%) 

Installed Cost 
($/kW 

Operations & 
Maintenance 

($/MWh) 

Levelized 
Replacement Cost 

($000) 

High-Cost 22 2,600 17 25,600 
Base-Case 34 1,710 6 12,800 
Low-Cost 48 1,240 3 0 

*These ranges were based on estimates of a realistic wind project 

The cost trend for wind turbines has changed in the past decade. The lowest 

registered price is around $800/kW from 2000 to 2002 while the price increased to 

$1600/kW by the end of 2008, and recent market data suggest that the price will range 

from $800 to $1,100/kW, hitting the historically low price (2016 wind technologies 

market report). The price drops in concert with technological improvements and 

favorable terms for turbine purchases (2016 wind technologies market report). In 2015, 

“4.3 MW of small wind was deployed in the United States, representing 1.695 units and 

over $21 million in investment” (Orrell & Foster (2016). The installed MW in 2015 is 

slightly higher than in 2014 (3.7 MW) and lower than in 2013 with 5.6 MW and $36 

million of investment (Orrell & Foster 2016).  

It is necessary to bear in mind that the cost ratio for wind power decreases with 

each year of operation while the minimum useful period reaches 20 years and more. 
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Wind turbines made with the last generation of technology cost more but require less 

maintenance and can improve the scenario's financial output. The levelized cost of energy 

(LCOE) allows alternative technologies to be compared to fossil fueled generating unit 

and, if assigned to every unit of energy produced (or saved) by the system over the 

analysis period, will equal the total life-cycle cost (TLCC) when discounted back to the 

base year (Short et al., 1995). 

 Universities can implement wind power and benefit from power purchase 

agreements with utilities without a significant initial investment. However, there is little 

literature on the implementation of wind power in HEIs. The U.S. Department of Energy 

is one of the few federal departments funding the Wind for Schools project. However, 

such programs' focus is educational and aimed to engage communities in wind energy 

applications without an explicit reference to saving energy or environmental 

improvement in the short term. In 2004 Carleton College became the first college in the 

United States to possess an active utility-grade wind turbine, located out of campus and 

to supply more than 50% of college’s electricity (Environment America, 2020, on-

campus wind energy, moving toward 100% clean, renewable energy on campus). Ball 

State University is another example of HEI that has implemented a wind study to assess 

wind power implementation feasibility with the economic earnings for a 20-year life span 

(Hedin and Pentecost, 2016). While the little available literature on wind power 

implementation mainly focuses on a payback period and commercial wind turbine, this 

dissertation will attempt to study the options given by small wind turbines. 
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3.3.2 PHOTOVOLTAIC SOLAR PANEL INSTALLATION 

Much of the recent literature on the “Anthropocene” epoch of history implicates a 

need to curb large-scale fossil fuel consumption all over the world (e.g., Castree 2015). 

“Among renewable energy sources, solar energy is the most promising due to its 

tremendous potential” (Gençer & Agrawal, 2016). Currently, there are two different 

technologies capable of capturing solar energy: (1) photovoltaic solar panels and (2) 

heliothermic electric generation (Conde et al., 2019). In an hour, the quantity of power 

from the sun that strikes the Earth (supply) is more than the total world consumption 

(demand) in a year (Lewis & Nocera 2006). Yet, current technology cannot capture and 

convert this amount of energy into a usable format. Solar power has received remarkable 

attention and growth in recent years. Electricity costs from utility-scale solar PV 

decreased by 13% in 2019 compared to 2018, reaching USD 0.068 kWh (IRENA, 2020). 

The falling price is driven by a 90% reduction in module prices between 2010 and 2019 

(IRENA, 2020). However, residential and commercial rooftop solar PV—the subject of 

this study—have a higher cost structure than utility-scale projects, which will be 

discussed in this dissertation's result section. Tax incentives (i.e., policy/geographic 

context) play an influential role in this process, and projections show that the solar PV 

industry continues to experience a significant cost reduction (Comello & Reichelstein 

2016). 

It can be argued that the most crucial factor in photovoltaic electricity generation 

is the amount of solar radiation received by a surface. Not all the energy received by the 

surface can be converted to electricity. The potential for photovoltaic electricity 

generation on rooftops depends on several global, local, temporal, and spatially variable 
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conditions (Redweik et al., 2011). Therefore, there is a need to narrow down the 

calculation, including environmental conditions such as the amount of direct normal 

irradiation (DNI), available building footprint, the mean value of sun azimuth, and its 

angle in a given geographical space. 

Solar radiation comprises three components: direct beam, diffuse, and reflected 

radiation (Perez et al. 1987). The amount of solar energy reaching the Earth's surface 

depends on location, atmospheric effects, and topography. Solar radiation is measured at 

ground level, but since solar irradiation levels can vary dramatically with the terrain, 

vegetation, ground structures, and weather, in most cases, it is not accurate to be 

implemented in the analysis (Carl, 2014). Studies have revealed that solar irradiance data 

from distant stations (20-30 kilometers) can have a root mean square error reaching 25 

percent (Perez et al., 1997). 

“Technical potential is a metric that quantifies the generation available from a 

particular technology in a given region” (Gagnon et al. 2016 p.1). In other words, the 

technical potential is an estimation of how much of a given resource of energy can be 

captured by the available technology. In contrast, resource potential is the total energy 

available in a geographical entity. Previous estimates at the regional and national levels 

have lacked a rigorous foundation in geospatial data and statistical analysis to estimate 

rooftop PV potential at the individual building level (Gagnon et al., 2016). Most previous 

estimates have relied on rough engineering rules of thumb. However, there are three main 

approaches to calculate the suitable area for PV installation (Melius et al. 2013): 1) 

constant value method, 2) manual selection, 3) GIS-based methods. In this study, a GIS-

based approach will be applied to calculate the potential electricity production by the 
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available rooftops in a higher education institution's sample of buildings. Eventually, the 

obtained number will be compared to the constant-value method to assess the accuracy of 

calculations. 

Constant-value estimation methods calculate a percentage of building rooftop 

areas suitable for implementing PV (Chaudhari et al. 2004). According to this approach, 

22%-27% of the residential rooftop area is suitable for PV. Manual selection evaluates 

buildings individually and is the most precise estimation among three types of methods to 

estimate potential PV on rooftops. PVWatts and System Advisor Model (SAM) from 

NREL are examples of manual calculation of potential electricity production via solar 

panels. At the same time, large-scale estimates are usually based on GIS and LiDAR 

data. 

 As stated in the literature, HEIs are often identified as ideal testbeds for pilot 

studies to evaluate and  adapt decarbonization technologies (Horan et al., 2019). As this 

dissertation focuses on the HEIs, the quantification of possibilities may provide insight 

for the aimed transition from traditional energy consumption to renewable resources. 

Although it is difficult for state schools to find funding for such projects, previous studies 

have shown that implementing solar panels in state-funded universities is financially and 

technically feasible (Jo et al., 2017). 

3.3.3 ENERGY EFFICIENCY SOLUTIONS AT THE BUILDING LEVEL 

3.3.4 LIGHTING SYSTEM 
 

While the prior solutions (wind and solar) were focused at the campus level, HEIs 

can also take more nuanced scale actions at the level of individual buildings. This section 
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enumerates several such options. Lighting systems are indispensable components that 

ensure comfort, productivity, and safety at the building level (Mahila et al., 2011). 

Lighting is one of the primary sources of energy consumption in buildings by 

representing 20-30 percent of total demand at the building level (Habash et al., 2014). 

Rapid enhancement of lighting efficiency in existing buildings is essential to reduce the 

community or even at a global level (Ma et al., 2012). “Electricity saving over time is 

significant enough to not only pay for the new lighting but also produce a return on the 

investment” (Mahlia et al., 2005). A heuristic evaluation of bulbs used at any HEI will 

provide information on the most recent technology replaced with the non-efficient system 

(Fonseca et al., 2006). Different studies have considered upgraded lighting systems to 

assess the electricity savings in residential and commercial sections (Mahila et al., 2011; 

Heffernan et al., 2007; Mahila et al., 2005; Franconi & Rubinstein, 1992) While Pavlov 

et al. (2019), Fonseca et al. (2006), and Pearce and Miller (2006) have studied the options 

in HEI settings.  

The characteristics of an efficient lighting system consist of (1) operating cost, (2) 

light output, (3) bulb life, and (4) light quality (Fonseca et al., 2006). In the absence of 

efficiency in any of the characteristics mentioned above, the whole system is eligible for 

replacement (Fonseca et al., 2006). The traditional fluorescent and compact fluorescent 

bulbs (CFL) often use more energy—in the form of heat— than needed, causing over-

illumination or under-illumination (Fonseca et al., 2006). Fluorescent tubes have been 

considered by Heffernan et al. (2007) and Mahila et al. (2011) as the primary lighting 

system at the industrial, commercial, and institutional levels. The same lighting system 

was identified as the primary type at Texas State University despite more than a decade 
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has passed since Heffernan et al.’s study (Mohammadalizadehkorde and Weaver, 2020). 

Several drawbacks make this traditional way of lighting a non-sustainable technology: (1) 

sensitivity to supply disturbance causing flicker, (2) non-dimmable options, (3) non-ideal 

spectral power distribution, and (4) sub-optima color rendering (Heffernan et al., 2007). 

One way to improve energy efficiency at the indoor level is to use energy-efficient light 

sources such as LED lightbulbs (Pavlov et al., 2019; Heffernan et al., 2007). The artificial 

lighting must replicate the natural sunlight since human vision has adapted to conditions 

under specific light radiation (Pavlov et al., 2019), which is not represented by the 

traditional lighting system based on fluorescent or incandescent technology.  

Several types of lighting systems are available in the market, and the selection of 

the light bulb, ballasts, fixture, and the distance between each fixture depends on the type 

of task executed by the users (Mahila et al., 2011), which is accounted in the model used 

to study the lighting system in this dissertation. Table 21 summarizes different usage 

types and the amount of light needed to execute specific tasks, calculating energy 

consumption and demand. Fonseca et al. (2006) have considered the cost of bulb, ballast, 

fixture, and labor to calculate the annual savings in energy, cost, and demand while 

calculating the time to recoup the money invested in a simple payback period. This 

dissertation will provide a breakdown of all the investment's financial returns on a yearly 

basis and for the entire needed time to recoup all the money invested in the chosen study 

area. 

3.3.5 MOTOR REPLACEMENT 

Global climate change has been pushing governments at various scales and across 
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the globe to pass laws to reduce greenhouse gas emissions (Soleimani et al., 2018). As a 

result, motors will be more efficient based on different national and international 

standards (Soleimani et al., 2018; (Kaya et al., 2008).  

At the industrial level, the energy consumed by electric motors in plants can reach 

65% of total energy consumption (Kaya et al., 2008). Not all the energy consumed by a 

motor can be converted to mechanical energy (Kaya et al., 2008). A well-designed and 

well-maintained motor can convert over 90% of its input energy into useful shaft power 

for decades (Nadel, 1991), which is also verifiable in Mohammadalizadehkorde and 

Weaver (2020). Under normal conditions and correct size selection, a motor can last for 

15 years (Soleimani et al., 2018). Nadel (1991) believes that it is possible to save 9-23% 

of electricity by optimizing electric motors' performance, wiring, power conditioning, and 

components. The motors' efficiency decreases by aging, while motor winding failure has 

been subject to a crucial question: should a non-efficient motor be replaced or repaired? 

(Soleimani et al., 2018). It is known that the replacement of heavily used motors brings 

more economic profit than retrofitting them (Nadel, 1991), but also a rewound motor can 

cause a 1% - 2% loss in efficiency (Soleimani et al., 2018).   

Rewinding motors consume more energy than a new one (Rai et al., 2017). The 

Department of Energy (DOE) suggests that even the best rewinding causes a loss of 

motor efficiency, and motors with less than 70 HP should not be rewound but replaced. 

“A motor’s efficiency tends to decrease dramatically below about 50% load” (Fact Sheet, 

Motor Challenge, Determining Electric Motor Load and Efficiency. US-DOE Program). 

If the energy efficiency motor is still in a serviceable state, there is no need to change the 

motors. The high volume of the motor duty cycle is an essential factor in the process of 
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retrofitting. Deviations from ideal electricity distribution on a circuit can reduce the 

efficiency and, eventually, the useful life of a motor or other electric component (Nadel, 

1991). In an ideal and theoretical condition, the voltage should flow without turbulence, 

but in reality, the ideal condition of electricity distribution is never achieved due to 

system inefficiencies (Nadel, 1991). 

The payback gap results as the primary impediment to investing in efficient 

equipment (Nadel, 1991), although a motor's efficiency can be reduced by 10% because 

of aging (Soleimani et al., 2018). A replacement decision is usually taken after ensuring 

that the payback period is not more than the motor's lifespan (Soleimani et al., 2018).  In 

Germany, the U.K., and the United States, with a small loss in efficiency, the motors are 

usually replaced (Soleimani et al., 2018). It is also known that motors operating at full 

load—which is the case of many universities— offer good efficiency (Rai et al., 2017; 

Kaya et al., 2008). In the past decade, the efficiency of motors has been improved: 

According to Kaya et al. (2008), while a motor's efficiency was 90% when fully loaded, 

it reached 87% when it was half loaded and 80% when it is 1/4 loaded. Table 7 shows the 

average efficiency and power factor of motors in different loads in recent years, 

demonstrating a slight improvement in efficiency (Soleimani et al., 2018).
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Table 7. Average efficiency and power factor of motors (Soleimani et al., 2018) 

Load Efficiency Power Factor 

25% 90.41% 0.55 

50% 94.93 0.75 

75% 95.6% 0.83 

100% 95.7% 0.87 
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3.3.6 VARIABLE FREQUENCY DRIVE  

A significant portion of electrical power in industries is consumed by electrical 

motors (Bhas and Lathkar, 2015). Most motors applied in the higher education system are 

designed to provide constant energy consumption continuously. At the same time, 

“Modern technology requires different speeds in many applications where electric motors 

are used (Saidur et al., 2012, p. 1)”. Traditional and non-efficient ways of speed control, 

such as switching it on and off in two-speed motors, can waste a significant amount of 

energy (Saidur et al., 2012).  One of the best practices to meet energy efficiency measures 

in motors is to apply VFDs on the motors with constant speed induction. A variable-

speed or frequency drive is a device that regulates the speed and rotational force or output 

torque of pumps, fans, motors, or other industrial equipment (Saidur et al., 2012; 

Alsofyani and Idris, 2013). 

VFDs can represent a potential solution because motors contribute to more than 

60% of total industrial electricity consumption, and they cover 85% of the world’s market 

(Alsofyani and Idris, 2013). For Bhase and Lathkar (2015), more than two-thirds of 

electrical energy is fed to motors to convert AC induction into mechanical energy. 

Motors supplied with AC power have a significant potential for energy savings when 

operated by variable frequency drives (Alsofyani and Idris, 2013). The output flow in the 

case of fans and pumps changes by seasonal change and hours of operation of the 

buildings (Mohammadalizadehkorde and Weaver, 2020), and that is why a speed 

regulator is required as a possible way of energy saving. If the load demand decreases, 

significant energy saving can be achieved by decreasing the motor's rotational speed 

(Saidur et al., 2012). 
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There are different terminologies used to describe the speed control in motors: (1) 

variable frequency drive (VFD), which will be used in this dissertation, (2) Variable 

speed drive (VSD), and (3) Adjustable speed drive (ASD) (Saidur et al., 2012). While 

there are small differences between all three types, the concept remains the same. “VSDs 

and VFDs are electronic devices, which match motor speed to the required speed of the 

application (Saidur et al., 2012, p. 3)”. 

Because VFDs' cost has dropped around 50% since 1995 (Bhas and 

Lathkar, 2015), the application of VFDs or other types of speed control systems 

can improve the cost of implementation in HEIs. It is also known that a 20% 

reduction in the speed of induction motor can reduce 45% of energy consumption 

(Bhas and Lathkar, 2015). Figure 16 compares the power consumption between 

fans with VFDs and fans without it (Mohammadalizadehkorde & Weaver, 2020). 

Figure 16. Comparison of power consumption in fans 
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Some of the benefits of VFDs are listed by Bhas and Lathkar (2015) as follows: 

 

1. Substantial energy costs (due to direct speed control) 

2. Improves Process by smooth speed control 

3. Energy costs by reducing maximum utility demand charges 

4. Increase Life of mechanical equipment (due to soft starting) 

5. Reduce Motor stress (lower heat, vibration, and transient torques) 

6. Lower chances of System disruptions (by lowering current inrush from 600 percent to 

100-150 %) 

7. Substantially brings down [the] downtime and maintenance costs 

8. Smooth start and perfect control 

9. Complete motor protection against overvoltage, overload, motor stalling, short circuit, 

transients, phase loss, etc. 

 

VFD can be applied in two levels: first, at thermal plants where the needed flow 

rate is produced, and secondly, in HVAC systems inside each building to optimize the 

components' output. 

3.3.7 PUMP REPLACEMENT 

Another potential energy savings option at building scale is pumping 

systems (Kaya et al., 2008), especially when they are at the end of their lifespan. 

Thirty percent of the energy consumed by pumps could be saved through good 

design (Kaya et al., 2008). The performance loss at the operation stage of pumps 

arises from operating at part load (Kaya et al., 2008). A significant loss of 
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efficiency can be experienced in pumps with a decrease in flow rate (Kaya et al., 

2008). In case there is no need of replacing the pump, an elimination of clogs in 

the pipelines, revision of impermeability, “regular maintenance of belts, pulleys, 

bearings and filters, insulation of the heating circuit and prevention of vibration 

will assure energy saving and financial economy (Kaya et al., 2008, p. 3)”. 

However, efficient pumps will cut the operation cost and improve any institution's 

ecological footprint (Tverdokhleb et al., 2017). In recent years, the primary 

approach to increasing pumps' efficiency consisted of upgrading hydraulics and 

increasing the drives' efficiency (Tverdokhleb et al., 2017). 

The design of the most used type of pumps manufactured in recent years 

has an efficiency very close to the maximum achievable efficiency (Tverdokhleb 

et al., 2017). The last generations of pumps, motors, and drives can save between 

3%-5% of energy (Tverdokhleb et al., 2017) compared to 30% of potential energy 

saving at the end of the first decade of 2000 (Kaya et al., 2008).     

 

This study will assess the Life Cycle Cost (LCC) of pumps used in higher 

education institutions. According to the American Society of Heating, 

Refrigerating, and Air-Conditioning Engineers (ASHRAE), despite the 

consequences of the fact that pumps have been under a scheduled maintenance 

plan, they are at the end of their lifespan of 15 to 20 years. Moving to more 

efficient pumps during replacement processes is an essential step in reducing 

energy consumption. 
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3. 4 FROM PROPER COUPLING TO PROPER N-TUPLING?

In an influential article published in Systems Dynamics Review, scholar Jack 

Harich (2010, p. 36) noted that a proper coupling “occurs when the behavior of one 

system affects the behavior of other systems desirably, using the appropriate feedback 

loops, so the systems work together in harmony in accordance with design objectives 

(Harich and Rosas, 2020, p, 9).” While Harich applies this concept to the connections 

between human and environmental systems—and their current improper coupling—for 

present purposes, a proper coupling might be thought of as a situation in which the 

behavior of HEI systems affect the behavior of other systems (e.g., communities and 

local environments) in a desirable, or more environmentally sustainable, manner. 

Isolating just one aspect of this relationship, the proper coupling between HEI energy 

decisions and local environmental sustainability arguably exists when HEIs replace fossil 

fuel-intensive energy infrastructure with lower impact alternatives (see, for example, the 

menu of possible solutions in the preceding subsection). 

As the literature reviewed in this chapter suggests, this sort of HEI decision-

making problem is embedded in broader cultural, policy, and community (i.e., spatial) 

contexts that either enhance or impede (or are neutral toward) a proper coupling between 

HEI and environmental systems. Among the cultural variables that most impede progress 

on alternative energy implementation are the deep-seated values or norms that guide 

decision-making. Put another way, “policy-making is reproductive based on the dominant 

ideas which become institutionalized over time (Marginson, 2013, p. 2)”. In the present 

case, there is ample evidence to suggest that HEIs tend to be driven by growth 

imperatives, and, as such, often operate like private firms in their efforts to maximize 



77 

revenues (e.g., from larger student enrollments) while minimizing costs (Mitchell et al., 

2015). Like all entrenched mental models, changing this predominant business-as-usual 

approach may require a crisis (Hay, 2001). As indicated in the literature reviewed in this 

Chapter, many scholars—who are based at prominent HEIs—now see the adverse effects 

of climate change as constituting a crisis (e.g., Aronoff et al., 2019). Thus, the timing is 

arguably right for HEIs to begin displacing extant mental models rooted in the 

competitive market economy and have played such a central role in many countries 

throughout the past 50 years (Dill, 1997). 

To be sure, the notion of a climate crisis is leading to an increasingly ambitious 

state and local energy policy (e.g., Soleimani et al., 2018). Consequently, state-owned 

and funded HEIs are likely to face increasing pressure to reduce energy consumption 

internally and externally (i.e., due to their mandate to abide by state policies and 

priorities) (Mitchell et al., 2015). Relatedly, HEIs that are committed to strong Town-

Gown relationships may wish to make decisions that are consistent with local (popular) 

priorities and values, suggesting that increasingly pro-environmental community attitudes 

and priorities can exert further pressure on HEIs to break away from business-as-usual 

decision-making models (Butterfield and Soska, 2013). 

For all of these reasons and more, if the desired outcome (i.e., the “design 

objective,” to use Harich’s [2010] terminology) of scholars and practitioners in the 

campus sustainability discourse is that a given HEI replaces existing “dirty” energy 

infrastructure with “cleaner” alternatives, then there are more than two systems that must 

be properly coupled together—namely: HEIs must commit to a “clean” energy agenda; 

“clean” energy projects must be financially feasible; state policy must support (or, at 
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minimum, not impede) an HEI’s “clean” energy agenda; and local communities must 

demand (or, at minimum, be neutral toward) lower and “cleaner” energy use from their 

large HEI neighbors. In this stylized sense, the challenge is to arrange not a proper 

coupling but a proper quadrupling of HEI, environment, state, and local systems. Even 

more realistically, the ultimate task involves a proper n-tupling of countless interacting 

(sub)systems. To the extent that mapping out that terrain is a constant and evolving 

project, a single dissertation can neither achieve such an ambitious end nor provide all the 

answers. As such, the remainder of this research focuses more narrowly on the 

relationships sketched out above. That is, the dissertation will draw on case studies of 

four public HEIs to unpack how financial analysis, state policy, and multilevel 

geographic context(s) interact to result in the implementation (failure) of selected 

sustainable energy projects in universities.  
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4. CONCEPTUAL FRAMEWORK 

Grounded in the research summarized in Chapter III, to evaluate the extent to 

which a proper coupling, or, more accurately, a proper n-tupling (see above), of 

interacting systems to reduce fossil fuel consumption in large public higher education 

institutions (HEIs) is possible, it is necessary to engage explicitly with (1) HEI goals, 

objectives, and actions in the domain of energy use, (2) the goals and objectives of local 

and state policies that affect HEI energy decisions, and (3) local/community preferences, 

values, and priorities related to energy use. Conceptually, then, a proper coupling is 

evaluated as the intersections between university (internal - financial) motivations, 

community values (external – fine-scale), state (external – coarse scale) policies and 

directives, and positive environmental impacts. With that being said, recall the first 

research question posed in the introductory chapter of this dissertation: 

1. Are selected alternative energy investments characterized by long-

run profitability in the HEIs under investigation? In other words, is 

there evidence that a proper coupling between lower energy 

consumption and economic profitability can be achieved? 

 

This first question aims to identify synergy between HEI goals and objectives 

related to economic efficiency and broader societal goals related to energy efficiency and 

positive environmental impacts. As noted above, these two goals are not strictly 

incompatible (Altan, 2010). However, without empirical evidence of coupling between 

them, new investments by large institutions or governments into energy efficiency are 

unlikely (Altan, 2010). Thus, quantifying potential financial savings from these 

investments can encourage internal (HEI) decision-makers to make investments that 
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produce external (pro-environmental) benefits (Elliot & Wright, 2013). On that backdrop, 

the first research question from above requires financial analysis and energy audits to 

document, empirically, the levels of (1) financial attractiveness of and (2) energy savings 

from investing in selected alternative energy projects at specific public HEI study areas. 

Next, recall the second through fourth research questions from earlier: 

2. To what extent are sustainability goals prioritized by residents and

municipalities in each HEI’s local spatial context?

3. What is the nature of the relationship(s) between state-level policy,

state Sustainable Development Goal performance, and alternative

energy investments at the selected HEIs?

4. To what extent do (in)congruent state and local/regional spatial

contexts promote (inhibit) alternative energy implementation in

HEIs?

As noted in the preceding chapter, compared to physical, environmental, 

and engineering factors, energy researchers have paid less attention to the social 

and behavioral aspects of investing in alternative energy technologies (Hoppe & 

de Vries, 2018). To begin filling this gap, the dissertation will address research 

questions 2-4 by following a relational approach that grapples with “how energy 

relates to and interacts with the political, social, cultural, economic, ecological 

and technological spheres in specific locales” (Broto & Baker, 2018 p.3). More 

precisely, studying HEI energy decisions through the lens of their unique 

multilevel spatial contexts (e.g., community values and state-level policies and 

programs) will allow the dissertation to generate new insights about how state 

policy and community preferences (fail to) work together to advance alternative 
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energy agendas in selected public HEIs. 

Figure 17 integrates these considerations into a bridging framework 

represented here by way of a conceptual radar chart. According to the figure, and 

following the reasoning laid out to this point in the dissertation, specific 

alternative energy projects can be evaluated empirically according to their 

financial attractiveness and potential energy savings. Financial attractiveness and 

energy savings are both quantitative values that can be grouped into classes for 

comparative purposes. More explicitly, for clarity and ease of exposition, Figure 

10 illustrates a case wherein these dimensions collapse into four broad 

categories—those that are associated with (1) low, (2) medium/moderate, or (3) 

high financial feasibility and/or energy savings, and (4) those that are not feasible 

due to their lack of energy savings, lack of economic return, or both.  

Next, Figure 17 suggests that HEI communities and states can likewise be 

classified according to the strengths of their sustainability-related values and 

preferences (for local communities) and sustainable energy policy supports (for 

states or other levels of government). Once again, to facilitate exposition, consider 

the case wherein multivariate analyses can be used to group HEI communities and 

states into three classes: those that are associated with (1) low, (2) 

medium/moderate, or (3) high values, preferences, priorities, and/or policy 

supports for sustainability-related goals and alternative energy investments. When 

these spatial contextual dimensions are combined with the two HEI- and project-

scale dimensions described in the preceding paragraph (i.e., financial 

attractiveness and energy savings), a proper coupling of HEI-environment-social 



82 

systems can be visualized as the outermost envelope in Figure 17, where projects 

are characterized by high financial feasibility and high potential energy savings, 

residents in HEI communities hold and exhibit strong sustainability-related 

preferences and values, and HEI states provide strong policy supports and 

leadership in the area of alternative energy.  

Perhaps the most immediate implication of this framework for the current 

dissertation—and for future research that seeks to build on or replicate it—is that 

empirical analysis can be used to map any given alternative energy project (see, 

for example, the menu of options reviewed in Chapter III), at any given public 

HEI, onto the landscape delimited in Figure 17. The nearer a project falls to the 

outer envelope of the diagram, the more properly coupled are the HEI-

environmental-social systems in which the project exists—and, as such, the more 

likely the project is to be implemented.  

In addition to this potential predictive function of the framework (i.e., 

identifying projects that are most likely to be selected for implementation), Figure 

17 also offers at least one crucial observable implication for studying and 

explaining past actions and decisions. Namely, sustainable energy projects that 

are implemented by selected HEIs are likely to fall closer to the outer envelope of 

Figure 17 than projects that receive consideration but do not get implemented. In 

other words, variation in the extent to which HEI-environmental-social systems 

are properly coupled plausibly explains at least some of the variation in patterns 

of HEI investments into sustainable energy. 
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The remainder of the dissertation draws on this framework for both of the 

previous paragraph's purposes. More precisely, the following chapters propose and will 

subsequently carry out methods to evaluate the same menu of alternative energy projects 

for all four case study HEIs. Each project from that menu will be analyzed through the 

lens of Figure 17 to measure the extent to which any given project is embedded in a 

relatively properly coupled state of nature. The results from those analyses will be 

unpacked toward two ends. First, projects for which there is evidence of implementation, 

or, at minimum, consideration, at the case study HEIs will be used to evaluate the 

alternative hypothesis that proximity to the proper coupling envelope is positively 

associated with implementation (as opposed to consideration but no implementation). 

Second, projects with no history of implementation or consideration at the case study 

HEIs will be ranked according to their proximity to the proper coupling envelope. The 

projects nearest to that envelope will be highlighted as the ones that the HEIs should 

immediately pursue to lead by example on the issue of emissions reduction (thereby 

fulfilling part of their social missions; see Ch. III). Over time, as HEIs continue to move 

toward these projects and away from business-as-usual decision-making, the aggregation 

of their place-based sustainable energy investments will help to more properly couple 

local, regional, and, eventually, global landscapes of social-economic-environmental 

systems. As an example, Figure 17 shows an HEI represented by the red dot where the 

institution shows strong community values by the placement of the red dot close to the 

green line and weak financial feasibility by being close to the red line. 
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Figure 17. The conceptual landscape of properly coupled environment-social systems
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5. METHODOLOGY

Although several benefits of renewable energy implementation and energy 

efficiency policies are clear, some states faced initial resistance in implementing them 

since the benefits were not fully understood or transformed into a quantitative 

comparison of cost and benefit (EPA 2018). Research suggests that evidence of 

demonstrable financial savings can help to overcome internal barriers that stand in the 

way of sustainable energy initiatives (Elliot & Wright, 2013). More specifically, financial 

analyses can plausibly convince decision-makers to invest in sustainable energy projects 

using the same language of costs and benefits that tends to underwrite executive 

budgeting processes. A financial analysis aims to identify the options with the highest 

economic returns from a set of alternatives. In this case, alternatives are business as usual 

technology versus selected, comparably sustainable energy investments that would 

reduce energy consumption. The goal of the analysis, therefore, is to determine the level 

of attractiveness of investing in new technologies—for example, replacing compact 

fluorescent lamps (CFL) with light-emitting diodes (LED)—in terms of money saved 

every year (simple payback) or more extended period (e.g., 20 years).   

This dissertation's proposed approach also outlines the system improvement 

process (SIP) defined by Harich and Rosas (2020). In the SIP perspective, a problem 

should be tackled in 4 main steps: (1) Problem definition, (2) Analysis, (3) Solution 

convergence, (4) Implementation. The main problem discussed in this dissertation, 

environmental sustainability, is eventually divided into subproblems explained in the 

introduction and methodology sections. Subproblems, in general, include three questions: 

(1) How to overcome change resistance, (2) How to achieve proper coupling, and (3)
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How to avoid excessive model drift (Harich and Rosas, 2020). “Excessive solution model 

drift occurs when a solution model works at first and then does not (Harich and Rosas, 

2020, p. 9).” It is challenging to avoid excessive drift since the system is continuously 

evolving. For example, the change in GSF, enrollment rate, hotter summers, colder 

winters, or pandemics could easily cause an excessive drift. EPA has several 

recommendations and key considerations for energy analysis, which are incorporated in 

this dissertation. These steps comprise: 

1. Determining the scope of strategy for the analysis.

2. Defining the expected or actual direct electricity impacts of the initiative(s).

3. Quantifying the electricity system, emissions, health, and/or economic benefits of

interest.

4. Use of information to support a balanced comparison of costs and benefits during

decision-making processes.

The sustainability problem is casual, and it could be solved only by solving its 

root causes (Harich and Rosas, 2020). This dissertation will be part of the ongoing series 

of analyses that assess the sustainability problem's roots and the costs, benefits, and 

effects of different sustainable measurements. The first portion of this study builds on an 

earlier Environmental Defense Fund-supported empirical financial analysis of energy 

efficiency measures at Texas State University. It draws on the established financial 

analysis methods used in the earlier study (Mohammadalizadehkorde & Weaver, 2020). 

While the earlier research focused exclusively on the profitability of certain alternative 

energy investments at a single university, which can be considered as superficial 

problem-solving in Harich and Rosas (2020) point of view, this dissertation offers a more 

nuanced study that analyzes renewable energy implementation (failure) in four public 
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universities through the lens of the conceptual framework spelled out in Chapter IV. The 

proposed method will apply a root cause analysis by involving the spatial context 

representing the first step in creating a national-level evaluation. 

HEIs selected for this study are (1) state-owned and funded, (2) similar in size to 

Texas State University, (3) have had similar growth trajectories as Texas State, (4) are 

similar in institutional aspects, (5) may have had more success in implementing 

sustainable energy projects. The second portion of the dissertation generates national 

geographic profiles of (1) block groups based on resident/community environmental 

values and preferences, and (2) states based on their policies, plans, and performance 

with respect to selected Sustainable Development Goals (SDGs). Generating those 

profiles from secondary data sources will involve cluster analysis. 
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5. 1 STUDY AREA AND DATA

The HEIs suggested for this study are Texas State University (TSU), Texas A&M, UC Berkeley, and Colorado State 

University. Table 8 summarizes the proposed study areas needed to establish the benchmark or run the comparison. 

Table 8. Summary of sample HEIs 

University Enrollme
nt 

Building 
Number 

Building 
Gross 

Square 
Meter 
(Study 
Area) 

Total annual 
consumption 
(kWh) Main 

Campus 

Energy Efficiency 
Improvement Type at 

Building Level 

Energy 
Improveme

nt in the 
Master 

Plan 

Local 
Government’s 

Energy 
Consideration 

Texas State 
University, San 

Marcos 
38,187 250 762,635 122,386,158 

Sensors/controls, cool 
roof, 

measurement/verification, 
appliances/equipment/elec

tronics, lighting, 
benchmarking, 

water/wastewater, water 
heating, and water 

conservation 

Yes Yes 

Texas A&M, College 
Station 68,726 686 629,238 323,314,727 Building Energy 

Optimization Yes Yes 

UC Berkeley 43,204 257 393,246 213,638,553 
On-campus renewable 

electricity, Energy 
Efficiency 

Yes Yes 

Colorado State 
University 33,877 91 1,114,836 119,854,978 

Utility Services 
supervises energy and 

water consumption and 
costs and promotes energy 

and water conservation. 

Yes Yes 
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Table 9. Data sources 

Description Type of Data Provider Last 
Update Link 

GIS data point data of 
universities Geoplatform 

https://hifld-
geoplatform.opendata.arcgis.com/datasets/colleges-

and-universities 

GIS data 
University 
Campuses 

(Boundary) 
Geoplatform 

https://hifld-
geoplatform.opendata.arcgis.com/datasets/colleges-

and-universities-campuses 

JSON data Building 
Footprint Microsoft https://github.com/microsoft/USBuildingFootprints 

Raster data Direct Normal 
Irradiation SOLARGIS 2019 https://solargis.com/maps-and-gis-data/overview

Raster data 
Global Digital 
Surface Model 

30x30 m 

Earth Observation 
Research Center 
(EORC), Japan 

Aerospace Exploration 
Agency (JAXA) 

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/ 

The National Solar Radiation 
Database (NSRDB) is a serially 

complete collection of hourly and 
half-hourly values of meteorological 

data and the three most common 
measurements of solar radiation: 

global horizontal, direct normal, and 
diffuse horizontal irradiance.  

Meteorological 
data NREL 2016-

2017 https://nsrdb.nrel.gov/ 

As part of a local educational outreach 
initiative, a simpler web page was 

developed, which allows you to find 
the Closest Weather Station to your 

location. 

Meteorological 
data University of Utah 2020 https://mesowest.utah.edu/ 

https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities
https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities
https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities
https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities-campuses
https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities-campuses
https://hifld-geoplatform.opendata.arcgis.com/datasets/colleges-and-universities-campuses
https://github.com/microsoft/USBuildingFootprints
https://solargis.com/maps-and-gis-data/overview
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://nsrdb.nrel.gov/
https://mesowest.utah.edu/
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The Commercial Buildings Energy 
Consumption Survey (CBECS) is a 
national sample survey that collects 

information on U.S. commercial 
buildings' stock, including their 

energy-related building characteristics 
and energy usage data (consumption 

and expenditures). 

Commercial 
Building Energy 

Consumption 

U.S Energy
Information

Administration 
2012 https://www.eia.gov/consumption/commercial/ 

Fugro USA Land, Inc. acquired this 
orthoimagery dataset in January 2019 
during leaf-off conditions in Bastrop, 

Blanco, Brazos, Burnet, Caldwell, 
Fayette, Hays, Lee, Llano, Travis, and 
Williamson counties and portions of 

Burleson and Grimes counties. Aerial 
orthoimagery flown during leaf-off 
conditions allows the data user to 1) 

identify human-made features through 
the deciduous tree canopy and 2) 

distinguish between evergreen and 
deciduous vegetation. 

Satellite/Areal 
Imagery TNIRS 2019 

https://data.tnris.org/collection/aa2cd74e-9c2d-
4f00-bae5-609b5e898093 

Other links: 
https://www.tnris.org/stratmap/stratmap-contracts/ 

https://www.fugro.com/about-fugro/locations/north-
america/united-states 

DEM DEM 10x10 m 
spatial resolution USGS 2019 https://viewer.nationalmap.gov/basic/

Lidar Data LiDAR USGS 2019 https://prd-
tnm.s3.amazonaws.com/LidarExplorer/index.html#/ 

Lidar Data LiDAR USGS https://www.usgs.gov/core-science-
systems/ngp/3dep/data-tools 

Lidar Data LiDAR USA Government 2017-
2019 https://data.ca.gov/dataset/delta-lidar-2017 

Sustainability Report Report 
Sustainable 

Development 
Solutions Network 

2018 https://sdgindex.org/reports/sustainable-
development-report-of-the-united-states-2018/ 

Utility Report Report A&M 2020 https://utilities.tamu.edu/2014/12/17/campus-
building-cost-usage-october-2014/ 

Sustainability Report Report A&M 2020 http://sustainability.tamu.edu/Data/Sites/1/downloa
ds/2018SMP.PDF 

https://www.eia.gov/consumption/commercial/
https://data.tnris.org/collection/aa2cd74e-9c2d-4f00-bae5-609b5e898093
https://data.tnris.org/collection/aa2cd74e-9c2d-4f00-bae5-609b5e898093
https://viewer.nationalmap.gov/basic/
https://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html#/
https://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html#/
https://data.ca.gov/dataset/delta-lidar-2017
https://sdgindex.org/reports/sustainable-development-report-of-the-united-states-2018/
https://sdgindex.org/reports/sustainable-development-report-of-the-united-states-2018/
https://utilities.tamu.edu/2014/12/17/campus-building-cost-usage-october-2014/
https://utilities.tamu.edu/2014/12/17/campus-building-cost-usage-october-2014/
http://sustainability.tamu.edu/Data/Sites/1/downloads/2018SMP.PDF
http://sustainability.tamu.edu/Data/Sites/1/downloads/2018SMP.PDF
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Utility consumption at Texas A&M Report A&M 2020 https://utilities.tamu.edu/epi-data/ 

Texas A&M Building directory Report A&M 2020 https://aggiemap.tamu.edu/directory 
Texas A&M GIS data GIS data A&M 2020 https://msi.tamu.edu/maps/gis-data/ 

Utility rate by commodity at A&M Report A&M 2020 https://utilities.tamu.edu/utility-rates/ 

Utility consumption at UC Berkeley Report UCB 2020 https://engagementdashboard.com/ucb/ucb 

Utility consumption at Colorado State 
University Report CSU 2020 https://www.fm.colostate.edu/energy 

Building Floor Number at Colorado 
State University Report CSU 2020 https://www.fm.colostate.edu/floorplans 

https://utilities.tamu.edu/epi-data/
https://utilities.tamu.edu/utility-rates/
https://engagementdashboard.com/ucb/ucb
https://www.fm.colostate.edu/energy
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5.1.1 DATA FOR PROFILING LOCAL SPATIAL CONTEXT 

One of the geographic resolutions in this study is represented by the Simmons 

consumer survey, one of the oldest and most reliable consumer behavior authorities. The 

SimmonsLOCAL US captures in-depth information on consumer attitudes and 

consumption in nearly 600 categories. SimmonsLOCAL ends late fall and is released to 

the market in the spring, 2018. The survey is distributed to between 25,000 and 30,000 

participants across 210 American DMAs (Designated Market Areas). From there, 

Simmons/Experian analysts apply proprietary geo-behavioral models to the survey data – 

where models rely on Census Bureau and related data for validity – to extrapolate the 

survey responses for the overall adult (18 years and over) populations in various 

geographic units across the United States, down to the block group level of analysis. 

Among other information, the extrapolated data allow researchers to explore and analyze 

detailed patterns of consumer and media usage behavior. SimmonsLOCAL is sourced 

from trusted respondents, National Consumer study/Simmons National Hispanic 

Consumer Study (NCS/NHCS), using a probability sample to measure all American 

adults – Hispanics/Latinos and non-Hispanics, English speaking, and Spanish- speaking 

(SimmonsLOCAL Methodology Overview). SimmonsLOCAL leverages the 12-month 

Simmons NCS/NHCS study from the same time frame that corresponds to the 

SimmonsLOCAL dataset being compiled. “In addition to the NCS/NHCS study, over 200 

data points are compiled from various well-known data sources to create profiles of each 

U.S. Census block group, the smallest geographic area for which the U.S. Census 

provides population estimates” (SimmonsLOCAL Methodology Overview). 

SimmonsLOCAL delivers robust sample sizes at all geographic levels, which means 
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greater reliability and accuracy (SimmonsLOCAL Methodology Overview). 

 A significant portion of Simmons's collected data is represented by a Likert scale 

that provides convertible quantitative data. Cluster analysis of subjects will create some 

groups based on the 15 chosen variables. Higher is the average and R2 of the group, the 

more distant is that group from the center of the conceptual framework representing a 

better opportunity for coupling. The demographics for those groupings will be related to 

the case study's local demographics (e.g., block groups) based on the similarity of 

surveyed subjects and census demographics. The block group population data can 

eventually normalize the number of people agreeing with a variable to create further 

comparisons. In that case, the aggregate demography for the chosen variables is given by 

the sum of the +18 of male and female respondents in each block group.  

Using Simmons's data, it is possible to assess selected environmental and 

sustainability values held by residents at various levels of geographic aggregation, from 

local (block groups) to city, state, and national scales. The most recent Simmons dataset 

available relates to consumer behavior and preferences in 2018, with variables ranging 

from demography, media preferences, food consumption, expenditure on sustainable 

products, and how likely the individuals support sustainability initiatives in different 

places. Attitudes towards the environment give one portion of the available data by 

asking people whether they agree or disagree with certain products, management, 

attitudes, and measures the likelihood of purchasing environmentally friendly products. 

However, the Likert scale includes different agreement levels, such as “agree a little” or 

“agree a lot.” This dissertation will draw on any agreement level for consistency, thereby 

aggregating all the positive responses in one category. The specific variables used for 
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creating geographic profiles of HEI communities in this dissertation, therefore, include 

the fraction of residents who agree with the following statements: (1) I make a conscious 

effort to recycle, (2) packaging for products should be recycled, (3) environmentally 

sound practices are good business. (4) companies should help consumers to become 

environmentally responsible, (5) I have a personal obligation towards environmental 

responsibility, (6) others must see me environmentally conscious, (7) I would buy less 

expensive eco-friendly products, (8) eco-friendly products should be higher quality 

products, (9) tell companies to stop sending catalogs, (10) I am more likely to purchase 

environmentally-friendly products, (11) I am more likely to choose environmentally-

friendly methods of transportation, (12) I use recycled products, (13) I worry about the 

pollution caused by cars, (14) people must recycle, and (15) I belong to environmental 

organizations.  

5.1.2 DATA FOR MEASURING STATE POLICY CONTEXT  

America’s Goals are seven goals and twenty-one targets, offering achievable 

objectives for the United States. These goals are measured on a state-by-state basis. 

America’s Goals: Report Card analysis looks at the baseline conditions across all states 

compared to each other. At the same time, future reports will analyze whether each state 

is progressing rapidly enough to achieve the 2030 goals and targets. The 2018 report is 

presented as a ranking. Three specific variables can be used to create the State-level 

profile: (1) under goal 6B; a categorical variable indicates whether a State has a climate 

action plan or is in the process of creating one (Figure 18), (2) under goal seven, two 

variables show the rate of renewable energy consumption and production as continuous 

variables (Figures 19 and 20). 
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Figure 18. Status of climate action in the United States 

 

Figure 19. United States renewable energy consumption 

Completed    
No plan 
No data 
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Figure 20. The United States renewable energy production 

While previous figures showed a categorized visualization of data, a typical 

visualization of America’s Goals is represented using a cartogram (Figure 21) in which 

the rankings do not indicate necessarily that the top-ranked states (green color) have 

reached the targets; instead, the green symbology is typically used to indicate “relatively 

good” performance. 
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Figure 21. Visualization of Goal 6.B in America’s Goals web site 

 

According to the methodology described by the authors: 

 

“Every state is ranked on an absolute scale of 1-50, with 1 being the best, 

for each indicator, target, goal, and overall. Ranks were not normalized, and 

1 does not indicate that a state has achieved, or made the most progress 

toward, a goal, only that the state outperforms other states on the same 

measure” (America’s Goals Methodology, 2018, p. 2). 

 

State climate action plan uses 2017 data from the Center for Climate Strategies 

and assigns number 2 “if a state plan is completed, 1 if a state plan is in progress, and 0 if 

a state plan does not exist” (America’s Goals Methodology, 2018, p. 12). However, the 

score does not assess the quality of the climate action plan. Renewable energy 

consumption and production indicators are taken from the sources included in the EIA 

State Energy Data System (SEDS): fuel ethanol, wood, waste, hydroelectric, geothermal, 
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solar, and wind energy, as a share of state total primary energy consumption and 

production.  

5.2 METHODS 

5.2.1 ENERGY AUDIT 

An energy audit evaluation will be applied to benchmark the actual performance 

of a plant’s energy using systems and equipment compared against the current industry 

standards' best performance level. The difference between observed performance and best 

practice is the potential for energy and cost-saving. The energy audit should provide (1) 

clear visibility on energy consumption and cost. This means it should include a simple, 

comprehensive overview of all the types of energy used and their cost. It should also 

break out the energy consumption by users to know where and when the energy is being 

used. Moreover, this is where the number of students can help calculate the ratio of 

energy consumption in an HEI. (2) it should identify energy conservation opportunities. It 

does this by showing how energy is used or wasted and describing the energy-saving 

alternatives that could be adopted. (3) the audit will also provide an energy management 

plan including recommendations with cost-benefit analysis and prioritization of best 

practices, quick wins, and easily implemented solutions. Common opportunities to apply 

this approach in HEIs are identified by SEO: 

• Lighting
• Pumping
• Ventilation
• Compressed Air
• Steam
• Refrigeration
• HVAC
• Vacuum
• Process Machinery
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Each area's performance depends on the geographical area, but HVAC systems 

and lighting are often the largest energy wasters in commercial buildings. 

This dissertation's financial analysis will be assessed using an Excel-based model 

built on discounted cash flow analysis (DCF), including a relatively wide range of energy 

efficiency projects. A profitability index will be drawn against the NPV to visually detect 

the best option in the same building, geographical area, or other aggregate projects. 

Figure 22 shows the amount of money invested with the circles' volume, while the 

horizontal distance from the origin of the chart draws the ratio of profitability. In the case 

of Figure 22, even though the lighting system has the greatest NPV, the pump 

replacement has the highest profitability ratio. 

It is possible to look at the same outputs from another perspective (Figure 23). 

Figure 23 shows capital investment against annuity in dollars. The amount of money 

invested is given by the horizontal distance from the origin of the chart. In contrast, the 

vertical distance from the origin of the chart indicates the amount of annuity. The volume 

of the circle indicates the annual savings in kWh. 
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Figure 22. Profitability against NPV 

 
Figure 23. Capital investment against the annuity 

Several factors in the 2016 report and Mohammadalizadehkorde & Weaver 

(2020) retraced their origin from pre-calculated numbers based on regressions (such as 
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potential irradiation taken from available online tool kits, the weighted average cost of 

capital, or efficiency rates mentioned on the nameplate in motors). In this study, an 

empirical approach will calculate those numbers to provide a more accurate estimation. 

The policy assessment, residential attitudes, and consumer behavior will also give a 

significant and informative categorization of universities based on the geographical 

context.  

5.2.2 BENCHMARKING 

Buildings are considered the first target in campus sustainability, and they are 

often measured by how much electricity they consume every year to determine the extent 

of sustainable energy consumption.  Fonseca et al. (2018) give a recent example of 

looking at building consumption by choosing the Electrical Engineering Department at 

the University of Coimbra, Portugal mentioning its total area, the year of construction, 

and total electricity consumed in a year. A similar approach was used in 

Mohammadalizadehkorde & Weaver (2020), where a sample of buildings was chosen to 

study electricity consumption at the building level. It is possible to conduct a comparative 

study of HEIs energy consumption in the Commercial Buildings Electricity Consumption 

Survey (CBECS) issued by the U.S. Energy Information Administration (EIA). The data 

for expenditure and use in commercial buildings show (partially) the energy consumption 

of higher education facilities. A conventional baseline is offered by EIA’s survey on 

consumption, which will be used to compare the energy consumption in universities to 

the national standard of energy usage based on different parameters such as area, year of 

construction, and climate of the region. Also, the CBECS survey will be used to assign 

the principal activity of buildings even though, in some cases, the chosen facility cannot 
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represent the specific activity of the space caused by a mixed usage of space. 

(Mohammadalizadehkorde and Weaver, 2020). Table 10 retraces an example of 

benchmarking for Texas State University from Mohammadalizadehkorde & Weaver 

(2020) based on CBECS 2012. Similar tables for other study areas are available in 

chapter 6.10. 

 

Table 10. Sample building baseline comparison  

Building 
Name 

Electricity Cost 
(2014-2015) 

% of Total 
Electricity 
Consumed 
Based on 

the 
Sample 

Size 

EUI 

CBECS 
EUI 

Based 
on Area 
(table 
C14 of 
CBECS

) 

CBECS EUI 
by Building 

Size and 
Activity 

(Table C21) 

CBECS EUI by 
the Year of 

Construction 
(Table C21) 

Alkek L. $252,358.72 3.93% 10 17 10.8 17,8 
JC Kellam $147,370.88 2.30% 9 17 19.4 16,4 
LBJ Center $173,722.56 2.71% 10 17 NA NA 

Jowers $134,860.80 2.10% 12 15 10.8 18,1 
McCoy Hall $55,321.44 0.86% 5 15 10.8 18,5 

ELA $55,129.84 0.86% 6 15 10.8 13,1 
Health C. $19,131.20 0.30% 9 11 24.1 12,4 
Roy Mitte $267,190.64 4.17% 22 15 10.8 16,2 

San Jacinto $69,212.72 1.08% 6 15 15 18,5 
Rec Center $54,723.12 0.85% 4 15 20 17,8 
Supple Sci. $13,920.00 0.22% 2 15 10.8 17,8 
C. Plant $4,981,587.36 77.66% 1,336* 12 NA NA 

East Chiller $189,907.28 2.96% 197.49* 11.7 17.1 12.6 
*Not significant since it belongs to the industrial section  
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5.2.3 CASH FLOW AND DISCOUNTED CASH FLOW 

Several authors, such as Abraham & Plourde (2014), tried to give an example of a 

cash flow model for energy efficiency projects like small scale wind turbines (Table 10) 

where the only negative value after implementation is the price paid for maintenance: 

Table 11. Cash flow model for small-scale wind turbines (Abraham & Plourde 2014) 

Cash Flow Model Initial  Year 1  Year 2  Year 3  Year (n)  

Cost of the system        −  

Rebates        +  
Shipping        −  
Assembly        −  

Installation        −  
Maintenance                   − −  −  −  

Energy reduction                   + +  +  +  
Utility buyback                   + +  +  +  

Tax credit                   + +  +  +  
Subsidies                   + +  + 

Energy credits                   + +  + 
Carbon credits                   + +  + 

 

Another example is provided by a case study in Abraham & Plourde (2014, p. 

29), where the authors assume that a wind system generates 0.5 kW continuously—which 

is very unlikely to happen given the fluctuation in wind power— with 12 kWh of daily 

production. The total cost of energy being replaced is $0.45/kWh, then the daily savings 

provided by the system reach $5.40, which makes this investment a reliable one in the 

long-term period. This study will provide a comparative analysis of the implementation 

of different potential energy efficiency projects—discussed in the methodology— in 

several universities, offering more robust and dynamic tables and visualizations of the 

GIS output.  

Although there are many barriers to achieve a more sustainable university, the use 
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of positive and demonstrable financial savings can encourage decision-makers to 

overcome difficulties (Elliot & Wright, 2013). The energy efficiency assessment in this 

dissertation is based on a financial-economic approach. A financial analysis aims to 

provide the information needed to propose the best options to reduce energy 

consumption. This method must determine the level of attractiveness of investing in new 

technology like replacing compact fluorescent lamps (CFL) with light-emitting diodes 

(LED) in terms of money saved every year (simple payback) or more extended period 

like more than 20 years in the case of solar panel installation (cash flow model).  

“There are many ways to define cash flow and free cash flow resulting in 

problems of consistency and comparability” (Mills et al., 2002, p.37). Most companies 

and institutions produce the annual Statement of Cash Flows. The authors of Defining 

free cash flow (2002) state that since there is no consensus on a unique definition of cash 

flow and free cash flow, there is a need to reach this consensus. This becomes important 

when many analysts and investors use this criterion to assess investments' attractiveness 

(Mills et al., 2002). Here, two of these definitions are mentioned from Mills, J et al. 

(2002): In equation 4, EBITDA stands for Earnings before interest, taxes, depreciation, 

and amortization. 

𝐶𝐶𝑆𝑆𝑆𝑆ℎ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑆𝑆𝑁𝑁 + 𝐷𝐷𝑁𝑁𝐷𝐷𝑃𝑃𝑁𝑁𝐷𝐷𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝐹𝐹𝑆𝑆   Equation 3 

 𝐶𝐶𝑆𝑆𝑆𝑆ℎ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐸𝐸) Equation 4  

Also, the authors of Defining free cash flow provided an extensive table of 
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definitions for cash flow taken from different sources shown in Table 12:  

Table 12. Cash flow definition in different sources. Source: Mills et al., 2002 

Station Casino EBITDA plus operating leases 

Accounting for Dummies Net income plus depreciation, plus or minus changes in short-term 
operating assets and liabilities 

Barron’s Accounting 
Handbook 

Net income plus non-cash charges (such as depreciation) plus or minus 
changes in accounts receivable, inventory, repaid expenses, accounts 

payable, and accrued liabilities 
Financial Accounting: An 
Introduction to Concepts, 

Methods, and Uses 

Net income plus depreciation, depletion, and amortization 

Handbook of Common 
Stocks 

Net income plus non-cash depreciation charges less preferred dividends 

Standard and poor’s Stock 
Report 

Net income (before extraordinary items and discontinued operations 
and after preferred dividends) plus depreciation, depletion, and 

amortization 

Forbes Magazine Net income after taxes but before interest depreciation and rental 
expense 

Harry Domash’s Winning 
Investing 

Net income after taxes minus preferred dividends and general partner 
distributions plus depreciation, depletion, and amortization 

Investorama Net income after taxes plus non-cash charges 
Money Magazine Net income before depreciation, amortization, and non-cash charges 

 

 In the first place, cash flow is the measure of producing money from an 

investment. However, there are many factors to be subtracted from or added to the 

investment, and this is why we can have different definitions. EBITDA, one of the 

standard definitions for cash flow, has several shortcomings. First of all, it ignores many 

non-cash adjustments and the need to fund working capital changes (Mills et al., 2002). 

Free cash flow represents the available cash after meeting all current 

commitments. The lack of a unique definition applies to FCF, as well. Some analysts 

argue that FCF should represent cash availability after subtracting the operations 

expenses (Mills et al., 2002). Based on International Accounting Standard (IAS 7) 

(1992), “dividends and mandatory debt payments should not be subtracted to arrive at 

FCF” (Mills et al., 2002 p.39). There are different definitions for FCF, as well. These 
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definitions are presented by Mill et al. (2002) in Table 13.  
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Table 13. Definitions of Free Cash Flow (FCF) according to different sources 

Bell Canada CFO minus investing activities minus 
dividends 

Coca-Cola CFO minus business reinvestments 

Gerdau Steel EBITDA minus debt service cost, minus income taxes incurred and 
actually paid, minus capital expenditures incurred 

Money Magazine Operating income minus capital expenditures minus the change in 
working capital 

Forbes Magazine Net income plus depreciation and amortization plus or minus working 
capital adjustments, minus maintenance capital expenditures 

Harry Domash's 
Winning Investing CFO minus cash paid for property and equipment minus dividends 

The Motley Fool Net income plus depreciation and amortization minus the change in 
working capital plus or minus cash outlay for taxes 

Valueline 
Net income plus depreciation minus dividends, minus capital 

expenditures, minus required debt repayments, minus any other 
scheduled cash outlays 

InvestorLinks Operating cash flow (net income plus, amortization and depreciation) 
minus capital expenditures minus dividends 

Advisors Inner 
Circle Fund 

Net income plus depreciation and amortization minus capital 
expenditures 

Financial Management, 
Theory, and Practice CFO minus gross investment in operating capital 

Financial Accounting: An 
Introduction to Concepts, 

Methods, and Users 
CFO plus interest expense plus income tax expense 

 The cash flow model may differ based on the type of analysis (e.g., after-tax cash 

flows, before-tax cash flows, incremental cash flows, etc.). For some universities, such as 

Texas State University, there is no tax rate included, and in all parts of the calculation, 

the value 0 will be considered for tax rate. This is because some universities are part of a 

public sector governed by the State governing that university. The same rate should be 

applied to other universities, given their public nature. 

A cash flow model can be thought of in terms of three different activities 

performed by a company (Short et al., 2005): (1) operating, (2) investing, and (3) 

financing. Cash flows from operating activities include all revenues captured, minus 

operating and maintenance expenses. Cash flows from investments are given by capital 
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expenditure minus expenses, and financing cash flows include repayment of debt. The 

specific type of cash flow studied in this research is a discounted-investing cash flow 

model (DCF). 

Actual cash flows observed in the market are called current dollar cash flows, 

representing the actual number of dollars required in the year the cost is incurred (Short 

et al., 2005).  Constant dollar cash flows stand as Fn. Cash flow in current dollars in year 

m is Fm. In this approach, where n stands for the base year and e stands for constant 

inflation, we have:           

𝐹𝐹𝐶𝐶 = 𝐹𝐹𝑚𝑚
 (1+𝑒𝑒)𝐶𝐶−𝐶𝐶   

Equation 5 

DCF analysis discounts the future cash flows to the expenses to assess the 

attractiveness of an investment. The underlying assumption in DCF is that the value of 

DCF should be positive and higher than the initial investment discounted to the expenses: 

𝐷𝐷𝐶𝐶𝐹𝐹 = 𝐶𝐶𝐹𝐹1
(1+𝑦𝑦)1 + 𝐶𝐶𝐹𝐹2

(1+𝑦𝑦)2
+ ⋯ 𝐶𝐶𝐹𝐹𝑛𝑛

(1+𝑦𝑦)𝑛𝑛
Equation 6 

𝑁𝑁𝑃𝑃𝑁𝑁 = � 𝐹𝐹𝑛𝑛
(1+𝑑𝑑)𝑛𝑛

𝑁𝑁

𝐶𝐶=0
= 𝐹𝐹0 + 𝐹𝐹1

(1+𝑑𝑑)1 + 𝐹𝐹2
(1+𝑑𝑑)2 + ⋯⋅ 𝐹𝐹𝑁𝑁

(1+𝑑𝑑)𝑁𝑁 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑁𝑁𝑖𝑖𝑁𝑁𝑆𝑆𝑁𝑁  Equation 7 

Where: 

Fn = net cash flow in year n 
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  N = analysis period 

  d = annual discount rate  

 

Time value is another crucial factor that assumes that today's value of money is 

higher than the value of money made next year. This is because the money earned today 

can be invested as soon as possible to produce a profit. 
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𝐹𝐹𝑁𝑁 = 𝑃𝑃𝑁𝑁 �1 + �𝐶𝐶
𝐶𝐶
��

(𝐶𝐶∗𝐶𝐶)
                                                  Equation 8 

 

FV = Future value of money 

PV = Present value of money 

i = interest rate 

n = number of compounding periods per year 

t = number of years 

 

The discount rate acts as a measure of time value and central to calculate the 

present value. Also, the discount rates are often used to account for the risk inherent in an 

investment (Short et al., 2005). When it comes to assessing the future value of 

investments, it is common to use the weighted average cost of capital (WACC) as the 

discount rate (Investopedia). In universities' case, the discount rate has been fixed for 5% 

in all projects, which is very common in higher education systems and recommended by 

EDF and used in Mohammadalizadehkorde & Weaver (2020). In case the model’s user 

wants to calculate the WACC, the formula is provided by (Cucchiella and Rosa, 2015): 

 

𝑊𝑊𝐸𝐸𝐶𝐶𝐶𝐶 = 𝜔𝜔𝑒𝑒  ∗𝑃𝑃𝑒𝑒 + 𝜔𝜔𝜔𝜔 ∗ 𝑃𝑃𝑑𝑑 ∗ �1 − 𝑁𝑁𝑓𝑓�                                     Equation 9  

 

Where:  

 ωe = equity percentage 

 re = opportunity cost  

 ωd = debt percentage 

 rd = interest rate on the loan 

 tf = tax rate 
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According to Short et al., “real discount rates and dollars cash flows exclude 

inflation,” and nominal discount rates include inflationary effects, and the following 

formula can calculate them: (Short et al., 2005).
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 (1 + dn) = (1 + dr)(1 + 𝑁𝑁) 

𝜔𝜔𝐶𝐶 = [(1 + 𝜔𝜔𝑦𝑦)(1 + 𝑁𝑁)] − 1 Equation 10 

dr = [(1 + dn) (1 + e)⁄ ]− 1 

Where: 

dn = nominal discount rate 

dr = discount rate in the absence of inflation(real) 

e = inflation rate 

The Internal Rate of Return is another parameter used in this study, given by the 

rate at which the NPV will be zero (no loss and no profit). IRR should always be higher 

than the discount rate. 

0 = 𝑁𝑁𝑁𝑁𝑆𝑆 = ∑ [𝐹𝐹𝐶𝐶 ÷ (1 + 𝜔𝜔)𝐶𝐶]𝑁𝑁
𝐶𝐶=0    Equation 11    

Where: 

NPV = net present value of the capital investment 

Fn = cash flows received at time n 

d = rate equates the current value of positive and negative cash flows when used as 

a discount rate. 

As mentioned by Short et al. (2005), “there is no absolute standard as to which 

costs are included in operation and maintenance costs.” O&M costs can be broken into 

the following categories:  

• Costs during the operation
• Variable O&M costs
• Fixed costs
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Energy costs are typically variable costs, and labor costs are frequently fixed 

O&M costs, and they tend to increase since the system gets older and more maintenance 

is required (Short et al., 2005).  

 

The Equivalent Annual Annuity (EAA) is calculated based on this formula: 

 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶(𝑁𝑁𝑁𝑁𝑁𝑁)
1−(1+𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶)−𝑇𝑇

                                   Equation 12  

 Where: 

  EAA= Equivalent Annual Annuity 

  WACC= Weighted Average Cost of Capital 

  NPV=Net Present Value 

  T= Project’s useful life 

 

This study will assess the minimum cost of renewable energy based on the current 

cost of electricity and the cost-based tariff escalation rate, which is the projected increase 

or decrease in the cost of renewable energy in the future over the project's duration. 

According to the Environmental Defense Fund (EDF), the cost-based tariff escalation rate 

can be between 2 to 5 percent. The cost of energy is calculated based on the formula 

provided by (Fingersh et al. 2006 p.4): 

 

𝐶𝐶𝐶𝐶𝐸𝐸 = (𝐹𝐹𝐶𝐶𝐹𝐹×𝐸𝐸𝐶𝐶𝐶𝐶)
𝑊𝑊𝐸𝐸𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛

+ 𝐸𝐸𝐶𝐶𝐸𝐸                              Equation 13                                     
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Where: 

COE = levelized cost of energy(/kWh)  

FCR = fixed charge rate (constant $) (1/yr) 

ICC = initial capital cost ($) 

AEPnet =  net annual energy production �kWh
yr
� 

AOE =  annual operating expenses = LLC +  (O&M+LRC)
AEPnet

 

Where: 

LLC =  land lease cost 

O&M =  levelized O&M cost 

LCR =  Levelized replacement/overhaul cost  (10.7/kW in Fingersh et al., 

2006) 

The payback period (PBP) is calculated based on the following formula taken 

from Abraham & Plourde (2014): 

𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝐷𝐷𝑃𝑃 𝑃𝑃𝑁𝑁𝑃𝑃𝑆𝑆𝐹𝐹𝜔𝜔 = 𝐶𝐶𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝐶𝐶 𝐸𝐸𝐸𝐸𝐶𝐶𝑒𝑒𝐶𝐶𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦𝑒𝑒
𝑁𝑁𝑒𝑒𝐶𝐶 𝐶𝐶ℎ𝑏𝑏𝐶𝐶𝑎𝑎𝑒𝑒 𝐶𝐶𝐶𝐶 𝑁𝑁𝑒𝑒𝑦𝑦𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝑃𝑃 𝐶𝐶𝑏𝑏𝐶𝐶ℎ 𝐹𝐹𝐶𝐶𝐶𝐶𝐹𝐹

Equation 14 

PBP is a simple calculation used commonly to evaluate the attractiveness of an 

investment. PBP's acceptable range varies based on geographical location or application 

and ranges from 5 years in less-developed areas with a high electricity price —typically 

over $0.30/kWh— to 8 years (Abraham & Plourde, 2014). BPB greater than ten years is 

generally ignored as a reliable investment. 
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5.2.4 GREENHOUSE GAS CALCULATION 

The quantification of avoided emission accompanies several studies of renewable 

energies. For example, the study of Wiser et al. (2016) estimates a 3.6% reduction in 

fossil fuel generation due to renewable energy implementation. In this study, the 

calculation of emission driven by electricity consumption is based on the Scope 2 

method. Scope 2 represents a “policy-neutral, collaborative solution guided by GHG 

Protocol principles” (GHG Protocol Scope 2 Guidance, 2014). There are two methods 

included in Scope 2: (1) Location-based method, which reflects the average emission 

intensity of grid retrievable from (Emission) & Generation Resources Integrated 

Database (eGRID), calculated by the emission factor provided by the distributor of 

electricity which in Texas is Electric Reliability Council of Texas ERCOT and (2) 

Market-based method which calculates the emission from electricity distributed from a 

third party (company). The second method's emission factors are provided by a contract, 

which includes attributes about the energy generation. The new GHG Protocol states that 

companies shall report both location-based and market-based Scope 2 GHG emissions. 

The calculation of market-based GHG emission is dependent on the possibility of 

obtaining market-based emission factors. Since it was not possible to gather this 

information, the first method (location base) has been chosen to calculate the emissions at 

Texas State University, which is given from the saved kWh multiplied by the emission 

factors. Emission factors are fundamental to create and control inventories of GHG 

emissions and eventually for air quality management. EPA has a specific definition for 

emission factor: 

An emissions factor is a representative value that attempts to relate the 

quantity of a pollutant released to the atmosphere with an activity associated 
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with the release of that pollutant. These factors are usually expressed as the 

weight of pollutant divided by a unit weight, volume, distance, or duration 

of the activity emitting the pollutant (e.g., kilograms of particulate emitted 

per megagram of coal burned). Such factors facilitate [the] estimation of 

emissions from various sources of air pollution. In most cases, these factors 

are simply averages of all available data of acceptable quality and are 

generally assumed to be representative of long-term averages for all 

facilities in the source category (i.e., a population average) (from 

www.EPA.gov retrievable in https://goo.gl/9kI9BS). 

 

Hence, the general equation for emission calculation is: 

𝐸𝐸 = 𝐸𝐸 ∗ 𝐸𝐸𝐹𝐹 ∗ (1 − 𝐸𝐸𝐸𝐸 100⁄ )                                            Equation 15                                                     

Where: 

E = emissions 

A = activity rate 

EF = emission factor 

ER = overall emission reduction efficiency 

 

The electricity emission factors provide the emission factors for location-

based calculation on the EPA web portal (https://goo.gl/gP8Idw), where table 6 

presents the needed factor for CO2, CH4, and N2O in Texas. The ERCT (ERCOT 

ALL) emissions are shown in Table 14. 

 

 

http://www.epa.gov/
https://goo.gl/9kI9BS
https://goo.gl/gP8Idw
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Table 14. Electricity emission factors in Texas 

So, we have: 

𝑆𝑆𝐷𝐷𝐹𝐹𝐷𝐷𝑁𝑁 2 𝐸𝐸𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 =  𝐸𝐸𝐹𝐹𝑁𝑁𝐷𝐷𝑁𝑁𝑃𝑃𝑆𝑆𝐷𝐷𝑆𝑆𝑁𝑁𝑃𝑃 𝐶𝐶𝐹𝐹𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖𝐷𝐷𝑁𝑁𝑆𝑆𝐹𝐹𝑆𝑆 (𝑀𝑀𝑊𝑊ℎ) ∗  𝐸𝐸𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 𝐹𝐹𝑆𝑆𝐷𝐷𝑁𝑁𝐹𝐹𝑃𝑃     Equation 16 

Other emission factors for the rest of the United States are shown in Table 15 and 

Figure 24. It is also possible to use a custom emission factor given by the last row of 

Table 15. In case the location of an institution falls around the boundaries of a sub-

region, making it hard to find which eGRID should be used, the user can refer to the 

interactive model using the institution's zip code —or any building— to find the 

appropriate eGRID.

Total Output Emission Factors Non-Baseload Emission Factors 

eGRID 
Subregion 

CO2 (lb 
CO2/MWh) 

CH4 (lb 
CH4/ 
MWh) 

N2O (lb 
N2O 
/MWh) 

CO2 (lb 
C2/MWh) 

CH4 (lb 
CH4/ 
MWh) 

N2O (lb 
N2O 
/MWh) 

ERCT 
(ERCOT 
ALL) 

1,143.04 0.0167 0.01233 1,280.59 0.02153 0.01071 
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Table 15. Electricity emission factors in the United States 

 

eGRID Subregion1 lb CO2e /kWh

U.S. Average 1.509
AKGD: ASCC Alaska Grid 1.375
AKMS: ASCC Miscellaneous 1.539
AZNM: WECC Southwest 1.391
CAMX: WECC California 0.946
ERCT: ERCOT All 1.410
FRCC: FRCC All 1.193
HIMS: HICC Miscellaneous 1.540
HIOA: HICC Oahu 1.648
MORE: MRO East 1.751
MORW: MRO West 1.834
NEWE: NPCC New England 0.980
NWPP: WECC Northwest 1.534
NYCW: NPCC NYC/Westchester 1.063
NYLI: NPCC Long Island 1.341
NYUP: NPCC Upstate NY 1.022
RFCE: RFC East 1.441
RFCM: RFC Michigan 1.816
RFCW: RFC West 1.947
RMPA: WECC Rockies 1.698
SPNO: SPP North 2.004
SPSO: SPP South 1.671
SRMV: SERC Mississippi Valley 1.191
SRMW: SERC Midwest 1.967
SRSO: SERC South 1.461
SRTV: SERC Tennessee Valley 1.768
SRVC: Virginia/Carolina 1.430

CO2 CH4 N2O
Global Warming Potential2 (CO2e) 1 25 298
Custom Emissions Factor (lbs CO2/kWh 0.000
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Figure 24. United States eGRID subregions 

Other methods might calculate the value of energy supplied by the heating system 

in different units such as MJ, Kg, m3, or L (Nesticò and Pipolo, 2015). This dissertation 

uses the most common consumption measurement unit (kWh or MWh) found on 

electrical bills. However, units are convertible to kWh or MWh and vice versa. 
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5.3 RENEWABLES IN FORMS OF WIND AND SOLAR 

5.3.1 WIND  
The average wind speed is a critical factor in calculating how much electricity can 

be produced by a given type of wind turbine, which, in turn, will determine the rate of 

return in financial analysis. Wind speed is a crucial factor in wind power generation, and 

it is subject to variation in time and space (Tong 2010; Elliott et al. 1987; Al Yahyai et al. 

2012). The periodic change of wind due to the local climate, landscape, and building 

shape in urbanized areas can affect wind speed and turbulence in the process of site 

selection (Yang et al., 2016). Mean wind speed measured in hourly time series format is a 

determinative parameter in location analysis for wind turbine installation (Akpinar, & 

Akpinar, 2005). Wind power density (WPD) and wind speed are very useful in wind 

resource analysis. In some studies (such as Al-Yahyai et al., 2012), wind power was 

given a relatively higher weight than other factors (Al Yahyai et al., 2012). “Power 

density of wind is a cubic function of wind speed. Double the speed, and power increases 

eight times” (Gipe, 2005, p.35). 

A wind turbine can support high or low wind conditions based on other economic 

factors mentioned in previous paragraphs. The air density variation impacts the power 

output and kilowatt/hour of electricity production from the wind turbine. It is known that 

there is a significant seasonal variation in wind energy resources with high intensity in 

winter and spring and reduced intensity in summer and autumn in the United States 

(Elliott et al. 1987). Despite that, the variation in intensity is not global and changes in 

different parts of the world: A 10-year study of wind in Iran shows that a higher wind 

power occurs in summer (Azizi et al. 2014). The cut-in gives the wind speed threshold (5 
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m/s) and cut-off (20 m/s) of wind speed (Al-Yahyai et al. 2012; Al Yahyai et al. 2011). 

Wind power density relatively increases in higher atmospheric elevation (Al Yahyai et al. 

2012). On average, in higher height, the wind shear is positive, and the wind speed tends 

to increase, but there are some real-world experiences where the speed increase has not 

occurred (Gipe, 2005 p.40). 

The wind is classified according to wind power classes based on wind speed 

(Akpinar, & Akpinar, 2005). According to National Renewable Energy Laboratory 

(NREL), areas designated as class 3 or higher are suitable for large wind turbine 

installation (NREL), while small wind electric systems work best in wind power class 2 

with an average speed of 4.5 m/s (Stokes, 2011). 

While the following paragraphs are focused on Texas State University's case, a 

similar consideration of potentials will be taken into account for every chosen university. 

NREL wind power classification at 50 meters and Wind Energy Resource Atlas of the 

United States categorization of wind (see map 2-6 on the report) show that central and 

east Texas are not qualified for large-scale wind turbine installation (Figure 25). “The 

NREL-produced map applies only to areas with a low surface roughness (e.g., grassy 

plains) and excludes areas with slopes higher than 20%. Although, table 1-2 from the 

Wind Energy Resource Atlas of the United States shows that the same wind speed at three 

different sites can have different power class output, demonstrating the difficulty of 

having high percentage confidence of class assignment to the wind power (Table 16). 

 Given the uncertainty of wind power classification, the question is whether any 

part of a campus can be qualified for any wind power installation? According to maps 2-

12 of the Wind Energy Resource Atlas of the United States during winter, central Texas 
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switches to wind power classes 2 and 3 with an average speed of wind above 5.6, which 

makes these areas suitable for small wind turbine implementation. In the wind atlas, the 

wind resource assessment is based on surface wind data, coastal marine area data, and 

upper-air data. This opportunity is not reflected in NREL-produced data and maps 

(Figure 25-26). On the other hand, Figure 26 shows the annual average wind speed at 30 

meters, adopted from NREL. Indeed, on this map, many parts in central Texas show an 

average wind speed above 4.4 m/s, which is the threshold for class number 2 (Table 16). 

Another resource to assess the wind speed is the National Climatic Data Center (NCDC) 

report on wind data, including the wind data summary 1930 – 1960. According to this 

document, both Austin and San Antonio areas (San Marcos is located between these two 

areas) have an average annual speed of 9 mph (4.0-meter per second). Table 17 shows the 

classes of wind power density adapted from Tong (2010, p.11).  
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Table 16. Wind Speed and Wind Power Comparison (Elliott et al., 1987) 

 

 

 

 

 

 

Figure 25. Wind Power Density Classification at 50 Meters based on NREL data 

 

  

Site 

Annual 

Average Wind 

Speed (m/s) 

Annual Average 

Wind Power 

Density (W/m2) 

Wind Power, 

Power Class (10 

m) 

Culebra, Puerto Rico 6.3 220 4 

Tiana Beach, New York 6.3 285 5 

San Gorgonio, California 6.3 365 6 
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Figure 26. Texas Annual Average Wind Speed at 30 Meters, adopted from NREL  

Table 17. Classes of wind power density adapted from Tong (2010 p.11) 

 10 m height 50 m height 

Wind power class 
Wind power 

density (W/m2) 
Mean wind 
speed (m/s) 

Wind power 
density (W/m2) 

Mean wind 
speed (m/s) 

1 <100 <4.4 <200 <5.6 
2 100-150 4.4-5.1 200-300 5.6-6.4 
3 150-200 5.1-5.6 300-400 6.4-7.0 
4 200-250 6.6-6.0 400-500 7.0-7.5 
5 250-300 6.0-6.4 500-600 7.5-8.0 
6 300-350 6.4-7.0 600-800 8.0-8.8 
7 >400 >7.0 >800 >8.8 
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As mentioned in previous paragraphs, wind power is subject to change with a 

significant variation. Past experiences show that wind classification can change 

drastically. The composite analysis of new wind data obtained for the South-Central 

region in the United States resulted in a change of class for southern High Plains from 

north of Amarillo, Texas, to extreme southwestern Kansas, which were categorized as 

class 5, and after revision, they were assigned as class 4 and 3 (Elliott et al. 1987). The 

change has been verified in other places as well; The annual mean wind speed decreases 

from 1970 to 1983 at Dhahran, Saudi Arabia (Siddiqi, Khan, & Rehman, 2005), while 

Mahbub et al. (2011) showed that Saudi Arabia experienced a 2% increase in wind speed 

from 2007 to 2008. 

There are four ways to obtain the data on wind resources: 1) Data gathered from 

weather stations, 2) Using the NCDC report on wind data including the wind data 

summary between 1930 – 1960, 3) Using grids produced by other organizations such as 

NREL which are based on ground measurements and then used to generate the desired 

wind maps (Al Yahyai et al., 2012) and 4) Using the following formula (Stokes, 2011) to 

estimate the wind speed at a different elevation: 

𝑁𝑁2 = 𝑁𝑁1(ℎ2 ℎ1⁄ )𝛼𝛼 Equation 17

Where: 

V2 = wind speed at height 2 

V1 = wind speed at height 1 

h2 = height 2 

h1 = height 1 

α = shear factor 
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However, the level of uncertainty with this equation is high because of present 

surface features like buildings, parking lots, and trees (Stokes, 2011), which in its turn 

causes a lower shear factor with minimum surface roughness and a high shear factor with 

maximum surface roughness disturbing the flow (Gipe, 2005). The interpolation of wind 

speed from lower annual mean speed (10m) to higher height (80m) has been applied by 

Yang (2013) using the formula developed by Davenport (1960):  

𝑁𝑁�𝑧𝑧
𝑁𝑁�𝐺𝐺

= � 𝑍𝑍
𝑍𝑍𝐺𝐺
�
𝛼𝛼

                                    Equation 18             

Where:  

 V�z = wind speed at height1(known) 

 V�G =  wind speed at height 2 

 Z = the height at V�z   

 ZG = the height at the interpolated V�G  

 α = wind shear exponent 

  

In this study, to have a more accurate wind speed assessment, a set of 

meteorological data will be gathered through nearby weather stations close to the chosen 

campus. In the pilot study, the closest station to San Marcos is Municipal Airport 

(KHYI). This data reports the wind speed in miles/hour in an interval of 5 min 24/7. A 

mean speed has been calculated for 12 months in 2017 (Figure 28), which confirms the 

result from the NCDC report and NREL analysis, where the average wind speed does not 

exceed 9 miles per hour (the equivalent of 4 meters per second). However, the peak wind 

speed occurs in August, which contrasts with the findings of Elliott et al. 1987, where the 
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strongest winds are supposed to happen in winter. At the same time, this finding confirms 

the study of Azizi et al. (2014), where the highest wind power was detected during the 

summer in Ardabil province in Iran. The other shortcoming of wind speed assessment is 

that the weather station is located at 597 feet above sea level. There will be an addition of 

10 meters (32 feet) of height for the wind speed station—the standard height for a typical 

meteorological station (Yang, Z. 2013) — while Texas State University's main campus 

elevation ranges from 174 ft to 243 ft. Nevertheless, while the increase in wind speed 

with height is unspecified, it is commonly assumed that the 1/7 power law fits many sites 

(Gipe, 2005 p.41). For example, a wind speed of 4.7 m/s at 9.1 meters of height 

registered in Huron, South Dakota, will increase in wind speed to 6.8 at the height of 45.7 

meters with a shear factor equivalent to 0.23, resulting in 1.45 times bigger wind speed 

(Gipe, 2005 p.41). In the first step, the average wind speed is measured based on a higher 

elevation from the meteorological station (Figure 27), which shows the local level's 

average wind speed. Consequently, the wind speed at the given campus is calculated 

adapting Davenport (1960) formula with a wind shear exponent equal to 0.25 because of 

the type of surface roughness, including buildings and different types of constructions: 

𝑁𝑁 = 4 (𝐸𝐸 629⁄ )0.25                                                         Equation 19 

 Where: 

  V = wind speed 

  4 = mean wind speed in San Marcos 

 E = elevation in a given point on campus (DEM) 

 629 = height in reference point 

 0.25 = wind shear exponent 
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The result of this formula is reflected in Figure 27. Comparing the results, the 

average wind speed on campus level is below the average suggested by reports and 

studies mentioned in previous paragraphs. A lower elevation of campus causes this 

compared to the weather station as the reference point. 

Figure 27. Calculated mean speed based on elevation and shear factor at TSU 

In summary, all these findings demonstrate that urban wind regimes are characterized by 

low wind speed, increased turbulence due to high surface roughness, atmospheric 
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instability, and sudden change in direction and speed (Goodfield et al., 2017).

Figure 28. Mean wind speed at San Marcos based on the nearest weather station 

Figure 29. Proposed buildings for implementation of a small wind turbine at TSU 
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Manufacturers often provide the estimated annual energy output (AEO), but in 

case of the lack of such information, it is possible to calculate AEO based on Gipe's 

formula (2005). There are multiple factors to be considered in AEO calculation: (1) wind 

power at the site and at the height where the wind turbine will operate. (2) Annual 

average of wind speed at a given location and height and (3) Area swept by the wind 

turbine. (4) Efficiency rate. 

 

𝐸𝐸𝐸𝐸𝐶𝐶 = (𝑃𝑃 𝐸𝐸⁄ ) × (𝐸𝐸) × (𝐸𝐸𝑃𝑃) × (8760ℎ 𝑃𝑃𝑃𝑃⁄ ) × (1.000𝑊𝑊 𝑃𝑃𝐹𝐹⁄ )                   Equation 20 

Where: 

 P = power density 

 A = rotor diameter in square meter 

 Ef = efficiency % 

 

The capacity factor has been set to 30% and is given by “the ratio of the energy 

produced by the system to the energy that could have been produced by it” (Mathew 

2006 p.155). The annual energy production varies based on different types of VAWT. In 

this study, an average of 4000 kWh will be set as the yearly kWh produced, and it is 

calculated based on the formula provided by Mathew (2006): 

 

Annual Production (kWh/year) = Rated Power × Capacity factor × 8760                      Equation 21  

One other factor that should be considered while working with wind and solar 

energy is the difference between capacity and generation, which might also be confusing 

in this dissertation's financial model. The (EIA) refers to capacity as the “maximum 

output of electricity that a generator can produce under ideal conditions.” On the other 
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hand, electricity generation refers to the amount of electricity produced over a specific 

period (time). 
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5.3.2 WIND TURBINE TYPE SELECTION 

According to Orrell & Foster (2016), in 2015, there were 24 different types of 

wind turbines ranging from 160 W to 2.85 MW from 15 manufacturers in the United 

States. Fifteen different small turbine models are certified to AWEA standard 9.1-2009 

(Orrell et al., 2017). As stated by Tabrizi et al. (2014), “small wind turbines are often 

sited in more complex environments than the open terrain sites assumed in relevant 

installation guidelines or in the international small wind turbine design standard 

IEC61400-2” (IEC 61400-2:2013 is the most recent standard). The certified small wind 

turbines can range from 3,400 to 64,920 kWh of rated annual energy with five m/s of 

wind speed and a Rayleigh wind speed distribution, sea-level air density, and 100% 

availability (Orrell et al., 2017). 

 The financial and economic factors should be considered prior to the purchase 

and after site analysis to implement a micro wind system. For Abraham & Plourde 

(2014), the initial capital and setup costs are the most critical factors. In this study, both 

variables are included in the calculations as the total installed cost ($/kW). A fixed 

operational and maintenance expense has been considered for a kW of production every 

year ($/kW/yr). 

Wind turbines can be categorized as small, medium, or large (Orrell & Foster, 

2016). According to Abraham & Plourde (2014), “while there is no universal definition 

of small-scale wind power, it generally refers to systems that produce only a few 

kilowatts, can be installed in constrained spaces, and have a small footprint” (Abraham & 

Plourde 2014 p.2). Also, small wind turbine refers to wind turbines rated from 400 watts 

to 100 kilowatts (100,000 watts) when running at full capacity (Stokes, 2011; Orrell & 
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Foster, 2016). According to the international standard IEC 61400-2, “a small wind turbine 

system includes the wind turbine itself including support structures, the turbine 

controller, the charge controller/inverter (if required), wiring and disconnects, the 

installation and operation manual(s) and other documentation.” 

“Wind turbines designed for low wind conditions are characterized by a large 

rotor swept area and an increased hub height” (Al Badi et al., 2009 p.2737). Small wind 

turbines are less efficient, and many have an efficiency of less than 30%. “The average 

capacity factor for a small wind turbine sample size of 3.6 MW from 66 projects in 12 

states was 32%” (Orrell & Foster, 2016, executive summary).  If the manufacturer has 

not provided the potential output, it is possible to calculate it based on parameters used in 

output calculation: wind speed, swept area, power curve, efficiency, and height. 

A microturbine with a swept area of 1 m2 and potential capacity of 2200 kWh 

yearly and an efficiency of 20 percent can produce 440 kWh/m2 /yr with the best 

technology integrated into the wind turbine (Gipe, 2005, p. 57): 

�𝑃𝑃𝑘𝑘𝑊𝑊ℎ 𝑦𝑦𝑒𝑒𝑏𝑏𝑦𝑦⁄ �× 𝐸𝐸𝑓𝑓 Equation 22

Where: 

PkWh=Potential interception of wind 

Ef = Efficiency  

Due to social and environmental reasons discussed in previous paragraphs, it is 

recommended to implement small or medium-size wind turbines on campus and 

specifically on areas assessed by GIS as the most suitable places. A small-scale wind 
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turbine system at any campus must be connected to a battery array. It is often the case 

that power is available when not needed by the user or vice versa; the electricity is 

required but not produced because of the low wind power (Abraham & Plourde 2014). 

The goal of implementing renewable energies, such as wind turbines or solar panels, is to 

cover a portion of all needed electricity at the building level. Obstruction reduces the 

wind speed near the ground; hence, it is recommendable to install small or medium wind 

turbines either on the west part of campus or on top of the buildings on the west side of 

campus where elevation is higher (at TSU). On campuses, small wind turbines installed 

in open areas might be narrow pole towers supported by wires. This wind turbine 

demands more space (due to the wire support), and they are usually more expensive 

(Stokes, 2011). The manufacturer must provide the power curve and meet the criteria for 

a mean wind speed of 4 to 6 meters per second and support higher wind speed without 

damaging parts. The vertical axis wind turbine (VAWT) is proposed due to its 

independence from wind direction (Mertens 2002). 

Also, small wind turbines tend to be less dependent on turbulence and wind 

direction than large-scale wind turbines (Abraham & Plourde, 2014). As mentioned 

previously, buildings, trees, and landforms can disrupt the wind's flow, and wind close to 

the ground is turbulent. Therefore, the higher is the wind turbine smother is the flow of 

current captured by the turbine. Building Augmented Wind Turbine (BAWT) was 

introduced in Mertens (2002). Mertens suggests that the concentrator effect is likely to be 

present for a small wind turbine close to the buildings. Table 18 summarizes several 

characteristics of wind turbines. 
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Table 18. Wind turbine size and capacity comparison 

 Small Large 
Capacity rate 400 watts to 100 kW More than 1 MW 

Capacity Factor 30% 20% to 45% 

Height from ground 10 to 50 meters/ 
rooftops 50 to 80 meters 

Output kWh 1.7 to 100 Higher than 1 MW 

Placement Sides or top of 
buildings 

Large area with slope 
< 20-30% 

Swept area 1 to 10 m2 Greater than 10 m2 
Weight < 1000 kg > 1000 kg 

Type VAWT(Darrieus)-
HAWT HAWT 

Wind direction 
dependency 

VAWT is 
independent of wind 

direction 

Should be positioned 
in the direction of the 

wind 
Building modification No No 

Grid Connection No Yes 
Levelized cost(¢/kWh) 10 to 30 (¢/kWh) 0.6 to 7.1(¢/kWh) 

 

 The ultimate performance of turbines occurs with a steady wind speed extended in 

long periods (Abraham & Plourde, 2014), which is unlikely to happen. Implementation of 

a small wind turbine on top of the buildings implies a “low tip speed of the blades, which 

brings about a low Reynolds number of the flow on the blades” (Mertens 2002). The 

Darrieus has a lower aerodynamic efficiency compared to a lift-driven HAWT. Some of 

the buildings in the designated area with the highest wind power might be excluded 

because of physical insufficiency present in water tanks, chillers, and fire pump houses. 

Some of the buildings, such as the Central Plant at TSU, would not support additional 

weight due to the type of rooftop. 

5.4 SOLAR PANEL IMPLEMENTATIONS 

The quality of solar data is critical for the economic assessment of solar 

implementation. Accounting of uncertainty and managing weather-related variables are 
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essential for successfully planning and operating solar electricity assets. According to 

SOLARGIS, two approaches can obtain high-quality solar data and meteorological data: 

(1) high-accuracy solar instruments installed at a meteorological station and (2) complex 

models based on satellite data collection. The latter are typically less accurate than the 

meteorological stations, but their advantage is given by continuous geographical 

coverage and the possibility of collecting data for any location within decades. However, 

satellite data are also validated by ground measurements (SOLARGIS; Cebecauer and 

Suri, 2015). 

While solar irradiance consists of solar power falling on a unit of area per a given 

unit of time (W/m2), solar irradiation is the amount of solar energy falling on a unit area 

over a stated time interval (Wh/m2 or kWh/m2). Primary solar resources are categorized 

as Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI). Some 

institutions may also provide Diffuse Horizontal Irradiance (DIF) derived from GHI and 

DNI and Global Tilted Irradiance (GTI), the sum of DNI, and DIF. In this dissertation, I 

will be using or creating the DNI, the irradiation used for solar thermal power plants 

(CSP), and photovoltaic concentrating technologies (PV). Alternatively, it is also possible 

to use a third party to produce DNI based on multi-year satellite data. The solar radiation 

tools in ArcGIS Pro calculates irradiation throughout geography or for specific places, 

based on the hemispherical viewshed algorithm built by Rich et al. (1994) and further 

developed by Fu and Rich (2000, 2002). 

DNI for a given location with at least 80 degrees of zenith is the aggregation of 

the direct insolation (Dirθ, α) from all sun map sectors (Rich et al., 1994; Fu and Rich, 

2000, 2002): 
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 Dirtot = Σ Dirθ, α          Equation 23   

The following equation determines the Dirtot (DNI) from all sun map sector (Dirθ,α) with 

a centroid at zenith angle (θ) and azimuth angle (α): 

 Dirθ,α = SConst * βm(θ) * SunDurθ,α * SunGapθ,α * cos(AngInθ,α)   Equation 24  

where: 

SConst = The solar flux beyond the atmosphere at the average earth-sun distance, 

known as a solar constant, is equivalent to 1367 W/m2, consistent with the World 

Radiation Center (WRC) solar constant. 

β = The transmissivity of the atmosphere (averaged over all wavelengths) for the 

shortest path (in the zenith) direction. The amount of radiation received by a surface is 

only a portion of what is received outside the atmosphere. Values range from 0 (no 

transmission) to 1 (complete transmission). Typically observed values are 0.6 or 0.7 for 

very clear sky conditions and 0.5 for only a generally clear sky. 

m(θ) = The relative optical path length, measured as a proportion relative to the 

zenith path length calculated by the solar zenith angle and elevation above sea level.  

SunDurθ,α = The time duration is characterized by the sky sectors. It can be equal 

to the day interval multiplied by the hour interval. 

SunGapθ,α = The gap for the sun map sector. 

AngInθ,α = The angle of incidence amongst the centroid of the sky sector and the 

axis normal to the surface. 
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In the first phase, three approaches are considered to assess the resource potential 

of solar energy in this study: 1) using the Solar Radiation toolset in ArcGIS and 2) using 

the third-party data from SOLARGIS, which consists of a raster layer of potential 

kWh/m2 on a daily and yearly basis and 3) calculation of potential based on System 

Advisor Model (SAM). These three methods will provide potential solar radiation across 

a given area without considering the available rooftop, tilt, azimuth, and shading. Hence, 

in this study, LiDAR data based on the reflective surface return will be used, which 

correlates to the first object's elevation to create a digital surface model and building 

footprint. 

Area Solar Radiation calculation in ArcGIS can be done based on a whole year 

with monthly intervals, within a day, special days, and multiple days in a year. The DEM 

used to run the Area Solar Radiation may have different resolutions for different study 

areas. For example, for a pilot study, a spatial resolution of 15 meters was used for Texas 

State University using the available data in the USGS repository. However, the elevation 

model can also be produced based on the LiDAR (Texas A&M solar case). Whenever 

LiDAR is not available, it is possible to use High-resolution DEM. However, results are 

not as accurate as when LiDAR produces them. 

To compare the result from the ArcGIS Area Solar Radiation tool, the analysis 

will be applied based on the SOLARGIS raster layer s well. The SOLARGIS raster layer 

is based on an average daily/yearly sum of direct normal irradiation covering a period 

from 1994/1999/2007 (depending on the geographical region) to 2015. The solar model 

produced by SOLARGIS is based on atmospheric and satellite data, with a 15-minute and 

30- minute time step, respectively. The spatial resolution of SOLARGIS is 1 kilometer, 
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which makes it hard to process for small geographic units such as building footprint.  The 

range of global Direct Normal Irradiance (DNI) is <1.0 to 10.0 kWh/m2. The lower 

average of DNI does not mean that it is not qualified for solar panel installation. 

Table19 shows the result from the solar radiation tool included in ArcGIS Pro, 

calculation of potential electricity based on the SOLARGIS grid, LiDAR-based 

calculation, and the numbers coming from SAM. It is expected that in table 19, the 

potential kWh differs in various methods but not drastically since all methods are based 

on scientific approaches. Modeling the potential in SAM will provide a single floating 

number with minimum and maximum (Lopez et al., 2019). 

Table 19. Comparison of Potential kWh 

Method Potential (kWh/m2/day) for DNI Spatial resolution 

SOLARGIS potential ? 1 kilometer 

ArcGIS potential ? Based on the available DEM 

LiDAR ? 1 and 0.5 meter 

SAM ? N/A 

Now the question is how to assign the value of DNI to each building footprint? 

The goal is to have a more accurate estimation of potential electricity production for each 

rooftop. Without building footprint extraction, the potential output will be a generalized 

layer accompanied by low-level accuracy. The process of creation of building footprint 

and the value extraction can include: 



 

 140  

1. (If a prepared DNI is available), The Raster to Polygon tool can only process 

integer input raster. Hence, a floating type raster must be converted to an integer type 

raster before using the tool. One possible way is to use the Int tool (Spatial Analysis) or 

multiply the float number to the number of decimals (in our case, three decimals) in the 

map algebra. So DNI * 1000 will solve the problem. 

2. To calculate the potential kilowatt on the available rooftops, a point cloud 

LiDAR dataset will create the building footprint. If LiDAR does not cover the chosen 

area, an editing process will be applied to develop the building footprint, or an algorithm-

based approach provided by Microsoft's building footprint will be used.  

3. The LiDAR data often includes the LiDAR data Exchange File (LAS) grids. To 

extract the needed LAS files, we need first to overlay the files and then choose the ones 

covering the area of interest. After getting the LiDAR, it is possible to extract values 

falling on building footprints. This is useful because the different range of colors stands 

for multiple ranges of elevation. The following picture (Figure 30) shows an example of 

LiDAR output from West Bank, Buffalo, New York, where streets and generally low 

elevation objects are shown in green color, and building footprints are shown in orange 

and red: 
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Figure 30. Example of LAS files in West Bank Buffalo, New York 

There is a problem of noise, which means that not all the orange points stand for 

the rooftop. However, I will estimate the number of rooftops and their perimeter using 

these points, which will let me use the previous paragraphs' Constant-value methods.  

4. The next step consists of converting LAS to raster (Figure 31). 
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Figure 31. Example of converting LAS to Raster 

The sampling value in the process of LAS to Raster conversion defines the spatial 

resolution of the output. In most cases, the cell size—and the sampling value—are set to 

1 meter to extract the best possible output. Also, the output data type is set to an integer. 

5. The next step consists of extracting the pixels in the building footprint and

converting them to polygons or simply extracting the raster by the mask if a building 

footprint is already prepared. 

6. After depicting the building footprint, it is possible to use the Regularize

Building Footprint tool to smooth the footprint. 
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The other factor in depicting the best buildings to implement solar PV is the 

rooftop's illumination. Hillshade can help create shaded relief, considering the 

illumination distributing an integer value in the range of 0 to 255, representing the most 

shaded areas to the brightest. The shaded area is calculated by considering the local 

horizon at each cell. An only shaded layer can be eventually created by extracting 0 

values (or small integers). The azimuth is set to 180 in all modeling, which means the 

south-facing fixed array. The altitude is set to 45 to keep an average value for all models. 

The Z factor may change depending on the type of DEM used, but in most cases, it will 

be set on 1, which means the unit of measurement for x,y, and z is in the same unit 

(meter). Calculating the real potential will be possible by extracting shaded areas and 

measuring the area covered by solar PV arrays. 

The Area Solar Radiation tool can calculate the solar potential based on the 

received solar radiation and the DEM's elevation. Parameters will be set as the following 

Table 20.  However, depending on the geographical area of interest, some parameters, 

such as the latitude, may change. 
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Table 20. Solar radiation calculation parameters 

Parameter Value Description 

Latitude Based on the 
geographic unit 

The latitude for the site area. The units are 
decimal degrees, with positive values for the 

northern hemisphere and negative for the 
southern. The analysis is designed only for 

local landscape scales, so it is generally 
acceptable to use one latitude value for the 

whole DEM. 

Sky size/resolution 200-10000  

Time Whole year  

Year 2019 

The year value for time configuration is used 
to determine a leap year. It does not have any 
other influence on the solar radiation analysis 

as the calculations are a function of the 
period determined by Julian's days. 

Hour interval 0.5  

Z factor 1 

Since the analysis is applied on a projected 
dataset, therefore, the Z is set to 1. A z-factor 
is essential for correcting calculations when 

the surface z units are expressed in units 
different from the ground x,y units. The z 
units should be the same as the x,y ground 
units to get accurate results. If the units are 

not the same, use a z-factor to convert z units 
to x,y. For example, if your x,y units are 

meters and your z units are feet, you could 
specify a z-factor of 0.3048 to convert feet to 

meters. 

Calculation 
direction 32 

The number of azimuth directions. The 
number of calculation directions needed is 
related to the resolution of the input DEM. 
Natural terrain at 30-meters resolution is 

usually quite smooth, so fewer directions are 
sufficient for most situations (16 or 32). With 
finer DEMs, particularly with human-made 

structures incorporated in the DEMs, the 
number of directions needs to increase. 
Increasing the number of directions will 
increase accuracy but will also increase 

calculation time. 

Zenith division 8  

Azimuth division 8  
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Diffuse proportion 0.3 

The diffuse proportion is the fraction of 
global normal radiation flux that is diffuse. 
Values range from 0 to 1. This value should 
be set according to atmospheric conditions. 

Typical values are 0.2 for very clear sky 
conditions and 0.3 for generally clear sky 

conditions. 

Transmittivity 0.5 

The amount of solar radiation received by the 
surface is only a portion of what would be 

received outside the atmosphere. 
Transmittivity is a property of the atmosphere 

that is expressed as the ratio of the energy 
(averaged overall wavelengths) reaching the 
earth's surface to that which is received at the 

upper limit of the atmosphere 
(extraterrestrial). Values range from 0 (no 

transmission) to 1 (complete transmission). 
Typically observed values are 0.6 or 0.7 for 
very clear sky conditions and 0.5 for only a 

generally clear sky. 

To identify suitable rooftops for solar panels, it is possible to consider a series of criteria: 

1. Rooftops with a slope of 45 degrees or less.

2. Suitable sections of rooftops should receive at least 800 kWh/m2 of solar

radiation. This criterion will be assessed based on the ASR output. 

3. Since north-facing rooftops in the northern hemisphere receive less sunlight,

they will be removed. 

4. The area with less than 800 kWh/m2 of annual radiation will be removed.

5. Create a zonal statistic for each building with the average value and join the

result to the building layer. 
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6. Find suitable buildings by determining If a building has less than 30 square 

meters of suitable roof surface (See the previous paragraphs for the minimum 

needed area).  

7.Calculate the average potential of kWh production for each building by 

multiplying the mean solar radiation in an area. 

8. Convert the usable solar radiation values from the previous step to electric 

power production potential based on average efficiency and the installation's 

performance ratio. The EPA provides a conservative best estimate of 15 percent 

efficiency and an 86 percent performance ratio. These values mean that the solar 

panels can convert 15 percent of incoming solar energy into electricity, and 86 

percent of that electricity is maintained throughout the installation. 

kWh or MWh potential for each building * 0.15 * 0.86                     Equation 25 

9. A zonal statistic can help calculate the average solar radiation for each building 

and eventually join the result to the building layer.  

10. The next step consists of removing buildings with less than 30 m2 of the 

available rooftop (which means a non-feasible condition for the minimum number 

of the array installation equal to one). As discussed previously, considering the 

setback on the available area for security reasons, 30 m2 will not suffice to 

implement the minimum solar PV.  

11. Next, we can calculate the total average of annual kWh potential production 

for each building based on the AREA and MEAN fields' values. After the 
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previous step, we can convert the usable solar radiation values to electric power 

production potential based on average efficiency and the installation's 

performance ratio according to equation 25 (discussed in 5.4). 

All the classifications on final radiation outputs are based on Natural Breaks 

(Jenks) for unevenly distributed data. Jenks is a data clustering method designed to 

determine the best arrangement of values into different classes to normalize data more 

accurately. The number of classes can vary from 3 to 7. 

As mentioned in previous paragraphs, constant-value estimation methods 

calculate a percentage of building rooftop areas suitable for implementing PV equal to 

22%-27% (Chaudhari et al. 2004).  Besides, “Due to a 4 to 6 feet fire code setback 

requirement for solar installations, a portion of the rooftop along the perimeter cannot be 

used to host solar panels” (How to calculate building’s rooftop area, Report for U.S. 

Department of Housing and Urban Development). Since the rooftop homogeneity is non-

existent in the entire area, the setback should be calculated separately for each building to 

narrow down the calculation.  

Solar panel installation at different higher education institutions will be studied 

only for buildings with a significant flat and even roof. The rooftops give the best 

condition with no shadow area where the sunlight can be absorbed for the entire day, and 

panels can point toward the south without any obstacles. Usable roofs should support the 

addition of 5-6 pounds per square foot to avoid substantial construction costs. The 

average cost of electricity purchased from the local utility will be taken in the 

calculations as well. The criteria for converting Direct Current (DC) (produced by panels) 
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to Alternating Current (AC) will be applied to the calculations. It is necessary to bear in 

mind that the installation can be a grid-connected system to benefit from Renewable 

Energy Credit (REC) (Renewable Energy Credit can be sold or purchased in compliance 

or voluntary markets) in the case of excess in electricity production.  

After the detection of available rooftop through the process of GIS, the financial 

output calculation will be based on the Cost of Renewable Energy Spreadsheet Tool 

(CREST) version 1.4; this is an economic cash flow model created on behalf of the 

partnership between major energy organizations in the U.S ( National Renewable Energy 

Laboratory (NREL), the U.S. Department of Energy (DOE) Solar Energy Technologies 

Program (SETP), and the National Association of Regulatory Utility Commissions 

(NARUC). The model was developed by Sustainable Energy Advantage (SEA) under the 

direction of NREL). 

The tariff escalation rate is the projected increase or decrease in the cost of 

renewable energy in the future throughout the project. It can be between 2 to 5 percent. 

The generation capacity has been calculated using the PV Watts calculator, an online 

toolkit provided by National Renewable Energy Laboratory (NREL). It is necessary to 

bear in mind that the roof tilt and sun azimuth cannot be automatically determined from 

the aerial imagery, and consequently, the estimated system capacity may not reflect what 

is possible. To increase the accuracy of estimation, the sun azimuth and roof tilt will be 

calculated using GIS. The solar PV capacity factor is taken from EIA.  The capacity 

factor is the percentage of actual energy produced after removing all the losses. The 

percentage of product degradation is due to the natural aging of mechanical components, 

and it can be between 0 to 2 percent. 
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We also need to bring in the average condition given by total irradiance 

production of 1000 W/m2 at 25 degrees Celsius, also known as the Standard Test 

Condition (STC). 

The kWDC system size is the DC (direct current) power rating of the photovoltaic 

array in kilowatts (kW) at standard test conditions (STC). For a system with 16% 

efficient PV modules (which is the average capacity factor of Texas), the default PV 

system size is 4 kW. However, in many cases, the 15% capacity factor is used upon the 

EPA recommendation. This corresponds to an array area of approximately 25 m² (269 

ft²): 4 kW ÷ 1 kW/ m² ÷ 16% = 25 m². This array area is the total module area, not the 

total area required by the system that might include space between modules and space for 

inverters and other parts of the system. 

By default, and in many calculation tools such as PVWatts®, a DC-to-AC size 

ratio is 1.1 or 1.2 so that the arrays DC nameplate size at STC is 1.1 times the inverters 

AC (alternating current) size. The large-scale systems can reach high ratios as 1.50. The 

DC to AC size ratio is the array's DC rated size to the inverters AC rated size. For the 

default value of 1.2, a 4 kW system size would be for a 4 DC kW array at standard test 

conditions (STC) and 4 DC kW / 1.2 = 3.33 AC kW inverter. 

The best value depends on the system’s geographical location, azimuth, and the 

costs of technology. For example, the default 4 kW system has an array size of 4 DC kW 

and an inverter size of 3.63 AC kW. The default DC-to-AC ratio value is appropriate for 

most analyses, but you can change it under Advanced Parameters. It is possible to 
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estimate the system size based on the area available for the array or calculate it from the 

module nameplate size at STC and the number of modules in the array: 

 

Size (kW) = Array Area (m²) × 1 kW/m² × Module Efficiency (%)                      Equation 26 

or 

Size (kW) = Module Nameplate Size (W) × Number of Modules ÷ 1,000 W/kW    Equation 27 

5.5 ENERGY EFFICIENCY IN BUILDINGS 

5.5.1 LIGHTING SYSTEM REPLACEMENT 
 

Each fixture often contains two bulbs and, in some cases, three lamps. 

Measurements for recommended illuminance should be applied to ascertain that lighting 

conditions are adequate for the chosen space. A light meter to measure lux (foot-candles) 

should be conducted at the working surface in a horizontal plane 76.2 centimeters (30 

inches) above the floor. Since the objective is to measure the task illuminant, daylight 

should be excluded. Therefore, in an occupied area with windows, readings should be 

taken with the full use of interior shading to reduce direct solar gain. 

Illuminance is referred to as a measurement unit for the amount of light evaluated 

on a plane surface. Illuminance is measured in foot candles (ftcd, fc,fcd) or lux (metric 

system) in the international system of units (SI). A foot-candle is equal to one lumen of 

light per square foot, and one lux is one lumen per square meter. The outdoor light level 

is approximately 1,000. There has been a rapid change in recommended illuminance 

levels since the 1930s (Mills and Borg, 1999). The needed amount of lumens varies based 
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on the main activity of the space used for lighting, the proximity to the window during 

the day, and the building's physical properties, and the office's physical properties. 

However, illumination can be calculated as: 

 

𝐸𝐸 = 𝐿𝐿𝐸𝐸𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝑓𝑓 𝐸𝐸𝐸𝐸⁄                                                         Equation 28                                                          

Where: 

I = illumination (lux, lumen/m2)  

Ll = lumens per lamp (lumen) 

Cu = coefficient of utilization 

LLF = light loss factor 

Al = area per lamp (m2) 

 

Different space usage assumptions are delivered in Table 21, provided by the 

Illuminating Engineering Society (IES) and the Environmental Defense Fund (EDF). 

There are various online calculators to calculate the needed amount of lumen, and many 

of them reach the average lumen represented in the last column of Table 21. 
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Table 21. Average needed lumen for an indoor activity 

Illumination Required (lumen/m2)   

Activity Illumination 
(lux, lumen/m2) 

Average 
Lumen 

Public areas with dark surroundings 20 – 50 40 
Simple orientation for short visits 50 – 100 75 

Working areas where visual tasks are only occasionally performed 100 – 150 125 
Warehouses, Homes, Theaters, Archives 150 150 

Easy Office Work, Classes 250 250 
Normal Office Work, PC Work, Study Library, Groceries, Show 

Rooms, Laboratories 500 500 

Supermarkets, Mechanical Workshops, Office Landscapes 750 750 
Normal Drawing Work, Detailed Mechanical Workshops, Operation 

Theatres 1,000 1000 

Detailed Drawing Work, Very Detailed Mechanical Works 1500 – 2000 1750 
Performance of visual tasks of low contrast and very small size for 

prolonged periods of time 2000 – 5000 2250 

Performance of very prolonged and exacting visual tasks 5000 – 10000 7500 
Performance of very special visual tasks of extremely low contrast 

and small size 10000 – 20000 15000 

 

The next important step consists of the calculation of fixture number, which is given 

by the following formula: 

𝐹𝐹 = 𝐿𝐿∗𝑆𝑆𝑓𝑓 𝑀𝑀𝐹𝐹 ∗ 𝑈𝑈𝐹𝐹 ∗ 𝐿𝐿𝑓𝑓⁄                                                                Equation 29                                                

Where:  

F = required number of fixtures 

L = required Lux 

Sf = Square feet (converted to square meter in calculations) 

MF = maintenance factor 

UF = utilization factor 

Lf = lumen per fixture (lumen per watt * each fixture watt) 
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It is possible to calculate the cost of new fixtures for LED bulbs and ballast as 

well. The ballast price will be introduced to the formula with an average price of $10.00, 

but the average price will be verified before submitting the final version of the 

dissertation. Also, the assumption is that there is no need to remodel the distance between 

each fixture.  

5.5.2 MOTORS 

The nameplate of the motor includes factors needed to apply the energy efficiency 

calculation. If it is not possible to read the factors, the vendor or producer will be 

contacted to obtain information. The NEMA definition of energy efficiency is 

given by the ratio of its useful power output to its total power input, shown in 

percentage (Fact Sheet, Motor Challenge. Determining Electric Motor Load and 

Efficiency. US-DOE Program): 

η=(0.7457*hp*Load)/ρ_i   Equation 30 

Where: 

η = Efficiency as operated in % 

hp = Nameplate horsepower 

Load = Output power as % of rated power 

ρ_i = Three-Phase power in kW 

Power factor is calculated by: 

PF = (Volt*Current*1.732)/ ((HP)*0.7457*1000)    Equation 31   

5. 5.3 PUMP REPLACEMENT
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 The primary proposed measure consists of replacing the oversized 

standard pump with energy efficiency pumps. The nameplate provides factors to 

apply calculations. In the case of nonexistence, the vendor or producer will be 

contacted to obtain the needed information. The calculation of efficiency is 

similar to the calculation of efficiency in motors and VFDs, and other parameters 

for flow rate are retrievable through charts provided by vendors. Total head in feet 

is often provided by the plot of total head vs. flow. However, it is possible to 

calculate the total head by: 

  

HT = Hd – hs                                                      Equation 32 

Where: 

 HT = Total head 

 Hd = Suction head 

 hs = Discharge head 

 

Pump hydraulic power is calculated as:  

Ph(hp) = Ph(kW) / 0.746                                                    Equation 33 

Where: 

 Ph (hp) = hydraulic horsepower (hp) 

 Ph (kW) = hydraulic power (kW) 

 

5.6 FINANCIAL ANALYSIS MODEL 

This dissertation's financial model aggregates several models incorporating 

discounted cash flow analysis (DCF) for some common types of energy projects. The 
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models used to create the customized version for this dissertation are:  

• the Cost of Renewable Energy Spreadsheet Tool (CREST) version 1.4; 

CREST is an economic cash flow model created on behalf of the 

partnership between major energy organizations in the U.S: National 

Renewable Energy Laboratory (NREL), the U.S. Department of Energy 

(DOE) Solar Energy Technologies Program (SETP), and the National 

Association of Regulatory Utility Commissions (NARUC). The prototype 

CREST model was developed by Sustainable Energy Advantage (SEA) 

under the direction of NREL. 

• EDF Climate Corps Financial analysis version 2.0 

• Greenhouse Gas Protocol GHG emission from purchased electricity 

version 4.7 

• NREL PV Operations and Maintenance Cost Model and Cost Reduction 

• NREL System Advisor Model version 2020.2.29 

• TRM401-Technical Reference Manual for Pumps and VFDs 

 

To showcase a populated model in the following section, a completed model is 

represented (Figure 32). Tables 22 to 24 review the sample of evaluations. 
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Table 22. Key Assumption for a certain building or project 

Key Assumptions 

Electricity Rate ($/kWh) $0.08 

Demand Rate ($ /kW/month) 

Electricity Growth Rate (%) 1% 

Tax Rate (%) 0% 

Discount Rate (WACC) (%) 5% 

Total Annual Energy Spend of Alkek Library, (kWh) 3,154,484 

Location-Based Emissions factor (eGrid) ERCT: ERCOT All 

Market-Based Emissions Factor (lbs CO2/kWh) 0.000 

Market-Based Emissions Factor (lbs CH4/kWh) 0.00000000 

Market-Based Emissions Factor (lbs N2O/kWh) 0.00000000 

Social Cost of Carbon or Internal Carbon Price? Social Cost of Carbon 

Internal Carbon Price ($/MT CO2) N/A 

Figure 32. Bar charts for annual energy savings, capital investment, and NPV 

Annual Energy Savings (kWh)
 Lighting  Motors VFD
 Pumps Solar PV

Capital Investment
($)

Net Present Value
($)

 Lighting  Motors VFD

 Pumps Solar PV
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Table 23. Project overview sample 

Projects Lighting Motors VFD Pumps Solar PV 

Energy Efficiency Measure 
Replacement of T8 

lamp with LED 

Replacement of Same 
Size Standard Motor 

with EE Motor 

Installation of 
VFD in 

Centrifugal Fans 

Replacement of Oversized 
Standard Pump with EE 

Pump 

On-Site Solar 
PV Energy 
Generation 

Unit Installed (No.) 4247 2 6 2 
Annual Energy Savings 

(kWh) 
1227587 8126 788094 1020055 934217 

Annual Energy Savings (% 
of total spend) 

39% 0% 25% 32% 30% 

GHG Savings Location-
Based Method (metric tons 

CO2e) 
715 5 459 594 544.24 

GHG Savings Market-
Based Method (metric tons 

CO2e) 
0 0 0 0 0.17 

Useful Life (Yrs.) 10 15 7 10 20 

Capital Investment ($) $86,214 $6,400 $63,000 $7,000 $1,650,000 

Net Present Value ($) $711,905 -$1,117 $315,969 $656,192 $62,560 

Profitability Index 9.26 0.83 6.02 94.74 1.04 
Internal Rate of Return 

(%) 
116% -1% 101% 1178% 7% 

Equivalent Annual 
Annuity ($) 

$92,195 -$108 $54,606 $84,980 $5,678 

Payback Period (Yrs.) 0.87 9.35 0.99 0.08 9.42 
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Table 24. Sample of evaluation 

Potential EEMs 

Energy Efficiency 
Measure  

Source of Savings 

Annual 
Energy 
Savings 
(kWh) 

Annual 
Energy 

Savings ($) 
NPV Potential Barriers to 

Implementation 

Potential 
Additional 
Benefits to 

Implementation 

Recommend? 

1 
Replacing 
LFB with 

LEDs 

LEDs can provide the 
same amount of 

Lumens with a lower 
level of Watts. Also, 
the average expected 
life of LEDs is 50000 

hours compared to 
10000 hours of CFL. 

1,227,587 $24,972 $711,905 

The total number of 
LFB to change can 

represent a problem, 
but they can be 

replaced gradually 
(after being burned) or 
sold with a substantial 
rebate on each bulb. 

YES 

2 Replacement 
of Motors 

Energy-efficient 
motors also called 

premium or 
High-efficiency 

motors are 2 to 8% 
more efficient than 
standard motors. 
Motors qualify as 

“energy-efficient if 
they meet or exceed 
the efficiency levels 
listed in the National 

Electric 
Manufacturers 
Associations 

(NEMA’s) MG1-1993 
publication. 

8,126 $650 $1,117 No economic benefit. NO 
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5.7 MEASURING STATE CONTEXT 

In their recent Sustainable Development Report of the United States, Jeffrey Sachs 

and colleagues (2018) developed and measured a composite Sustainable Development 

Goal (SDG) index for each state using numerous indicator variables that the authors 

grounded in the United Nations (UN’s) SDG framework. Both the overall state-level 

SDG index values and the underlying indicator variable values are available in public-

facing datasets. Among the indicators used to construct the composite index are a state’s: 

(1) CO2 intensity in the electric supply, (2) energy-related CO2 emissions, (3) effective

carbon rate, (4) presence or absence of a climate action plan, (5) percentage of adults who 

are aware of climate change, (6) energy efficiency, (7) renewable energy production, and 

(8) renewable energy consumption. Drawing on these variables, this dissertation will

create state-level energy/energy policy profiles that will be used to describe the state-

level energy context in which each HEI study area is located.  

5.8 MEASURING LOCAL CONTEXT: K-MEANS CLUSTERING OF 

CONSUMER SURVEY DATA 

 This dissertation will attempt to situate concrete alternative energy projects at 

selected HEIs in their state policy and local/community contexts. Whereas the preceding 

section proposed data and methods for measuring/describing state context, this section 

provides details on how the local context will be approximated. 

To assess the geographical context, I will rely on two valuable data sources: (1) 

the SimmonsLOCAL annual consumer survey and (2) America’s Goals Report. The 

indicator sources were chosen to be as up-to-date as possible and based on data 

availability for the most significant number of States. The purpose of further analysis of 
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geographical context is to represent the interests to which university decision-makers are 

accountable and in which they are embedded. The assumption is that university 

administrators make decisions consistent with state priorities, especially when they are 

state-owned and funded. Therefore, by looking at the extent of sustainability in 

public/state HEIs’ plans, it is possible to assess whether current priorities reflect state 

policy. 

Similarly, it is possible to draw on data obtained from local (home) populations to 

determine how aligned HEI energy priorities are with their neighbors’ attitudes towards 

the environment. In that sense, and drawing on the instructive literature summarized 

above, an HEI’s commitment to sustainable energy is hypothesized to be a function of at 

least three interacting variables: (1) Financial feasibility (i.e., whether there is a proper 

coupling), (2) State priorities, and (3) Local priorities. One argument could be that 

universities are most likely to invest in sustainable energy when all three of the above 

factors are favorable (i.e., it is profitable; the state is strong on climate action and energy, 

and local residents prioritize sustainability goals). On the other hand, even when projects 

are financially feasible, we might expect inaction if states and localities are not 

particularly strong on environmental protection sustainability issues. 

“Mapping features based on how similar they are to surrounding features 

[clustering] is different [and more significant] than simply mapping the values of features 

[graduate color map]” (Mitchel, 2005, p.163). By comparing the geographical locations 

of clusters, it is possible to examine and identify the possible contributing factors to 

sustainability commitment in HEIs. 
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To perform a cluster analysis, two problems have to be solved: (1) efficient 

partitioning with homogeneous groups and (2) effective interpretation (Huang, 1997). 

The Multivariate Clustering tool in ArcGIS Pro uses the k-means algorithm by default. If 

the number of clusters is not defined, they will be determined by Calinski-Harabasz 

pseudo-F-statistics, a ratio of the variance between and within clusters. While it is 

possible to use nominal data, the variable used in K-means should be numeric because 

the algorithm does not yield satisfactory results with binary (categorical) variables 

(ArcGIS Pro help) unless a two-step approach is used. In addition to a summary statistic 

for each variable, the R2 will also be calculated (Equation 35). 

  The similarity between features is determined by the value assigned to them. In 

the k-means approach, higher values in multiple features will be associated with higher 

values in other features through a highly algorithmic process that cannot be summarized 

in a single formula (Peng, 2012). K-means clustering is a partitioning approach based on 

multiple rounds of iteration (Peng, 2012, p.111; MacQueen, 1967; Meyers et al., 2016). 

One requirement is that the number of clusters should be decided, and when the number 

of clusters is left empty, the algorithm may produce a high number of clusters even with 

one variable selected.  

The process called k-means appears to provide partitions that are “reasonably 

efficient in the sense of within-class variance” (MacQueen 1967, p.1). The k-means 

clustering is agglomerative since observations are added to a cluster after completing a 

phase and is iterative since the next step is based on previous ones (Meyers et al., 2016). 

The exact appropriate number of clusters cannot be known in advance, even though some 

statisticians tried to examine strategies to calculate the correct number of clusters before 
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starting the iteration (Meyers et al., 2016). The number of clusters will be determined 

after several attempts and by comparison between the researcher's best results or by using 

the results of Pseudo F statistics (Peng, 2012; Meyers et al., 2016).  

The k-means also represent a generalization of the ordinary sample mean 

(MacQueen, 1967). Given a set of numeric X and an integer number of clusters (K), the 

K-means algorithm tries to find a partition of X into K clusters that minimize the within-

group sum of squared errors (WGSS) (Huang, 1998). To achieve that, the variables 

should be in z-score, the standardization of data should be applied before starting the 

algorithm (Meyers et al., 2016), and data should be screened for outliers to avoid their 

selection as the central point in the clustering step (Norusis, 2011; Shih et al., 2010). The 

outline of the algorithm is defined by Peng (2012), Meyers (2016), ArcGIS help center 

(2019), MacQueen (1967), Shih et al. (2010), Ralambondrainy (1995), Huang (1998), 

and Jain (2010) as follows: 

1. Classification: identifies the number of clusters at some integer greater than or

equal to 2.

2. Selection of a sample number of centroids (seeds): this step is also known as the

seed point step, where some random points will be drawn as the center of clusters

(see appendix 1).

3. Assigning the points (objects, values) to the centroids of features

4. Assign the center points of each feature to the belonging cluster: After a point is

added, “the mean of the group will be adjusted to take account of the new point”

(MacQueen, 1967, p.283).

5. Recalculation of centroid position and repetition of the iteration: The modified
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centroid involves calculating Euclidean distance between center points. The 

smallest distance then will determine which cluster the center point belongs to. 

One key criterion is given by “the minimum sum of squared Euclidean distances 

from each entity to the centroid of the cluster to which it belongs” (Aloise et al., 

2009, p.245).  

            

Therefore, the number of clusters is given by: 

� 𝑅𝑅2

𝑛𝑛𝑛𝑛−1
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𝑛𝑛−𝑛𝑛𝑛𝑛
�
                                             Equation 34 

Where: 

𝐸𝐸2 = 𝑇𝑇𝑇𝑇𝑇𝑇−𝐸𝐸𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇

                                      Equation 35 

TSS is the total sum of squares, and ESS is the explained sum of squares. TSS is 

calculated by squaring and then summing deviations from the global mean value for a 

variable. ESS is calculated the same way, except deviations are group by group: every 

value is subtracted from the mean value for the group it belongs to and is then squared 

and summed. TSS is a reflection of between-cluster difference, and ESS reflects within-

cluster similarity.  
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                           Equation 36 
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Equation 37 

Where: 

 

n = the number of features  

 ni = the number of features in cluster i 

 ne = the number of classes (clusters) 

 nv = the number of variables used to cluster features 

 Vijk = the number of the kth variable of the jth feature in the ith cluster 

 Vk = the mean value of the kth variable 

 Vtk = the mean value of the kth variable in cluster I  

 

The k-means algorithm is classified as an NP-complete and also known as 

non-deterministic polynomial-time hardness (NP-hard), which means that to 

maximize the within-group similarity and between-group differences, the 

algorithm must try all the possible combinations among features (variables) 

(Aloise et al., 2009; Mahajan et al., 2009; ArcGIS Pro Help, 2020). 

The 15 variables used in this dissertation are coming from different data 

sets available on SimplyAnalytics, and they include people who agree with the 

following statements: (1) make a conscious effort to recycle, (2) packaging for 

products should be recycled, (3) environmentally sound/good business. (4) 

companies should help consumers to become environmentally responsible, (5) 

personal obligation towards environmental responsibility, (6) others must see me 

environmentally conscious, (7) would buy less expensive eco-friendly products, 
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(8) eco-friendly products should be higher quality products, (9) tell companies to

stop sending catalogs, (10) more likely to purchase from the environmentally-

friendly company, (11) to choose environmentally-friendly methods of 

transportation, (12) they have used recycled products, (13) worried about the 

pollution caused by cars, (14) people have to recycle, and (15) people who belong 

to environmentalists organizations. The acronyms correspond to the same 

variables, and they are shown in Table 25. 

Table 25. Variable acronyms 

Acronym Variable (Number of Adults Who Agree with the Statement) 

PAKSHLDREC Packaging for products should be recycled 

COMCONENV Companies help consumers to be environmentally responsible 

USEDRECPRD They have used recycled products 

PRSOBENVRE personal obligation/environment responsible 

MAKCONTORE I make a conscious effort to recycle 

PEPLDTYTTOR People have a duty to recycle 

PRCHENVFRC More likely to purchase/environmentally friendly products 

ENVGOODBUS Environmentally sound/good for business 

WORCARPOLLU Worried about pollution caused by cars 

LESEXPECFP Would buy less expensive eco-friendly products 

OTHSEEMRE Others must see me as environmentally conscious 

CSMETRPENF Choose methods of transport/environment-friendly 

ECOFHIQPPR Eco-friendly products/higher quality products 

STPSENDCAT Tell companies to stop sending me catalogs 

BLNGSTOENOR Belong to an environmentalist organization 

Source: SimmonsLOCAL U.S. 2018, via SimplyAnalytics 

K-modes is used for categorical clustering data (Huang, 1997), and K-prototype

(Huang, 1997) can cluster categorical and numerical variables together against the 

standard K-means algorithm, which is exclusively used for numerical variables. The 

dissimilarity measure in K-modes is calculated by the mismatch of the two objects' 
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corresponding attribute categories. “The smaller the number of mismatches is, the more 

similar the two objects” (Huang, 1998). 

The outline of K-prototype is defined by Huang (1997): 

1. Select k initial prototypes for each cluster.

2. Assign each object to the nearest cluster according to the following

formula:

𝜔𝜔(𝑋𝑋𝐶𝐶,𝑄𝑄1) = � �𝑥𝑥𝐶𝐶𝑗𝑗𝑦𝑦 − 𝑞𝑞𝐶𝐶𝑗𝑗𝑦𝑦 �
2𝐶𝐶𝑟𝑟

𝑗𝑗=1
+ 𝛾𝛾𝐹𝐹� 𝛿𝛿�𝑥𝑥𝐶𝐶𝑗𝑗𝑃𝑃 , 𝑞𝑞𝐶𝐶𝑗𝑗𝑃𝑃 �

𝐶𝐶𝑐𝑐

𝑗𝑗=1
Equation 38 

Where “xij
r and qlj

r are values of numeric attributes, whereas xij
c and qlj

 c are

values of categorical attributes for object i and the prototype of cluster l. mr and mc are 

the numbers of numeric and categorical attributes. γl is a weight for categorical attributes 

for cluster l” (Huang, 1997, p.4). 

3. Retest the similarity of objects against the prototypes and re-assign an object

to the correct cluster if needed.

4. Repeat until no change occurs.

In K-Prototypes, the dissimilarity between a categorical and numerical variable is 

calculated by computing first, the Euclidean distance between numeric attributes, and 

secondly by matching dissimilarity measure on the categorical attributes (Huang, 1998). 

The following formula shows a linear formulation of K-prototype implementation: 
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𝑖𝑖

𝑗𝑗=𝑁𝑁+1
                          Equation 39 

Where γ is used as a weight “to avoid favoring either type of attribute” (Huang, 

1998, p.9), the first term is the squared Euclidean distance calculation only for the 

numeric attributes, and the second term is the matching dissimilarity measure on the 

categorical attribute (Huang, 1998). The dissimilarity measure without weighting and 

only for two categorical objects can be measured by the following formula where smaller 

is the number of mismatches more similar are the two objects: 

 

𝜔𝜔1(𝑥𝑥,𝑃𝑃) = � 𝛿𝛿�𝑥𝑥𝑗𝑗 ,𝑃𝑃𝑗𝑗�
𝐶𝐶

𝑗𝑗=1
                                            Equation 40 

Where, 

𝛿𝛿�𝑥𝑥𝑗𝑗 ,𝑃𝑃𝑗𝑗� = � 1�𝐸𝐸𝑗𝑗≠𝑦𝑦𝑗𝑗�
0�𝐸𝐸𝑗𝑗=𝑦𝑦𝑗𝑗�                                               Equation 41 

A Python implementation of K-prototype is offered by Nico de Vos (Copyright, 

2016 Nico de Vos, njdevos@gmail.com), which is retrievable in appendix 3. However, it 

is possible to run K-prototypes in R using the kproto function. As opposed to other R 

packages in kproto, the categorical variables “do not need to be preprocessed in advance, 

and the order of variables does not matter (Szepannek, 2018, p.2). 

mailto:njdevos@gmail.com


168 

6. RESULTS AND OUTCOMES

The results from performing the analyses described above will allow classifying 

every alternative energy project under investigation along four dimensions: (1) financial 

feasibility (i.e., is the energy-saving project a financially sound investment?); (2) 

community environmental preferences (i.e., to what extent are residents in the HEI’s local 

spatial context positively, neutrally, or negatively predisposed to sustainable energy 

investments?); (3) state energy policy arena (i.e., to what extent are the HEI state’s 

policy and Sustainable Development Goal performance strong, neutral, or weak with 

respect to reducing energy consumption?); and (4) energy savings (i.e., how much energy 

will the investment save?).  

With this classification framework (see Figure 17 in Ch. IV for a visual 

representation), I can evaluate actual HEI decision-making practices and alternative 

energy (non)implementation to look for proper couplings between these dimensions. My 

overarching expectation is that any alternative energy projects that have been 

implemented will exist in more properly coupled HEI-environment-social systems than 

those that have not been implemented. 

 For projects that have neither been implemented nor (openly) deliberated at the 

case study HEIs, the dissertation will offer vital information for strategic decision-

making. Namely, projects that are shown (empirically) to exist in relatively properly 

coupled HEI-environment-social systems are ones that have the highest likelihood of 

achieving institutional, community, state, and broader environmental objectives in the 

long run—alternatively stated, the dissertation will generate actionable knowledge that 
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the case study Universities can integrate directly into their sustainability and energy use 

agendas and planning processes going forward. By following the methodology described 

in this dissertation, future researchers will likewise generate novel findings that can be 

used to motivate large institutional or governmental actors and decision-making bodies to 

take financially feasible, energy-saving actions. Over time, the aggregation of these 

place-based actions and decisions will help to more properly couple local, regional, and, 

eventually, global landscapes of social-economic-environmental systems. 
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6.1 TEXAS STATE UNIVERSITY SOLAR POTENTIAL 

The Digital Surface Model (DSM) for Texas State University is produced by 

mosaicking separate LiDAR files (LAS) with a spatial resolution of 0.5 meters. The 

LiDAR used for this section of the study is last updated in 2017. The building footprint 

was already digitalized for TSU; hence no processing is needed to create the building 

footprint. 

Figure 33. Texas State University building footprint, and digital surface model 

According to the weather file obtained from NSRDB, the average daily radiation 

potential (DNI) at San Marcos, Texas, reaches 5.18 kWh/m2. Figure 34 shows the 

monthly potential, which is similar to the output for Texas A&M and College Station, 

Texas (Figure 48), given the proximity of these two chosen study areas. 
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Figure 34. Monthly DNI (W/m2) at Texas State University 

The output radiation raster is a floating-point type and has watt-hours units per 

square meter (WH/m2). The latitude for the study area is in the decimal degree unit. It 

will be positive for the northern hemisphere and negative for the southern hemisphere. 

The latitude is also used to calculate solar declination and solar position (ArcGIS Pro 

documentation). The following figure shows the radiation output potential. The annual 

irradiation based on this method reaches the maximum of 1582 kWh/m2 for the best 

location (Figure 35). 
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Figure 35. Solar radiation potential at TSU based on Area Solar Radiation 

By having the total area of building footprint (337.778 m2) and an average of 

radiation (5.18 kWh/m2/day), it is possible to calculate the daily potential based on 

extracted building footprint: 

 

337.778 m2 * 5.18 kWh/m2/day = 1,749,690.04 kWh/m2/day               Equation 42 

Hence a yearly potential can be calculated as follows: 

 

1,749,690.04 kWh/m2/day * 365 = 638,636,864.6                  Equation 43 

However, the obtained number is the total potential absorbed by the building 

footprint area and not the energy produced. Depending on the kind of technology and the 

capacity factor discussed in chapter 5.4, the produced kWh will be drastically lower than 
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the potential. As mentioned previously, a percentage of building rooftop areas suitable for 

implementing PV equal to 22%-27% (Chaudhari et al. 2004). Also, “Due to a 4 to 6 feet 

fire code setback requirement for solar installations, a portion of the rooftop along the 

perimeter cannot be used to host solar panels” (How to calculate building’s rooftop area, 

Report for U.S. Department of Housing and Urban Development). Hence the calculation 

should be based on only 70% of the available rooftop to meet the standard conditions. 

Also, since the rooftop's homogeneity is non-existent in the entire area, the setback could 

be calculated separately for each building to narrow down the calculation. 

Seventy percent (70%) of the total building area at TSU is equal to 236444.59 m2. 

Considering that a 4kW capacity requires 25 m2 of the array as discussed in chapter 5.4, 

we can have 9,457.76 m2 of array dedicated to solar PV, producing 37,828 kW of DC 

energy. This number can be used as the financial model's input (Figure 36) but is still not 

significant since further processing is needed. 

Figure 36. Project appraisal overview for a 4 kWDC on-site solar PV 
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Table 26. Project evaluation for solar potential at Texas State University 

Project Valuation  

Annual Energy Production (kWh) 53,544,764 

GHG Savings Location-Based (metric tons CO2e) 34239.36 

GHG Savings Market-Based (metric tons CO2e) 0.00 

Capital Investment (excluding Rebate/Incentive) 75,960 

Net Present Value $109,799,961 

Internal Rate of Return (IRR) 13% 

Payback Period (Years) 8.14 

Profitability Index/BCR Ratio 3.71 

Debt Service Coverage Ratio - 

Equivalent Annual Annuity $4,391,998 

 

 

Figure 37. Earnings vs. expenses with 37,828 kWDC potential generation capacity  
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face north, as north-facing rooftops in the northern hemisphere receive less sunlight. 

Hence a calculation of slope, aspect, and reassignment of potential is needed as the next 

step. However, there is not much change between the conditional assignment and the 

ASR since almost all the Texas State University rooftops are flat (Figure 38). 

Figure 38. Solar radiation potential at TSU after minimum kWh/m2 condition 

The majority of north-facing surfaces were already removed by conditional 

assignment of minimum radiation; however, a few remain. Slopes that face north should 

contain a value less than 22.5 degrees or more than 337.5 degrees in the aspect raster 

layer. Eventually, flat slopes will be kept, regardless of their aspect. To achieve the 

condition above, the Con tool will determine areas with low slopes (less than 10 degrees) 

and determine areas facing north. 
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A zonal statistic approach will assign the potential to the building footprint by 

determining the mean value of the potential. The table contains fields for the number of 

cells, the area in square meters, and the average solar radiation in kWh/m2 for each 

building. Next, we remove buildings with less than 30 square meters of area, and by 

doing that, 210 out of 294 buildings will be selected.  Next, we convert the potential to 

MWh by the following equation: 

Area * Mean / 1000                Equation 44 

Moreover, as the final step, the potential will be converted to power based on 

equation 23. Figure 39 shows the final output with the chosen buildings and potential 

electricity produced in MWh. 

Figure 39. Final potential production at Texas State University 
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The applied methods offer a more detailed and accurate output. The total possible 

output reaches 45518000 kWh (45518 MW) or 17.63% less than the initial assessment 

based only on the available rooftop area.  

6.2 TEXAS STATE UNIVERSITY WIND POTENTIAL 

There are 306 constructed buildings around Texas State University's main 

campus, with an average height of 23.5 feet. The mean wind speed at Texas State 

University’s main campus is calculated and discussed in section 5.3.1 and reaches four 

m/s. However, more generalized studies or different data sources may report drastically 

different average speeds, as discussed in 5.3.1. For example, Figure 40 calculates an 

average wind speed equivalent of 2.9 meters per second (m/s) based on NSRDB data 

from the station with ID number 671993 (Lat: 29.89, Long: -97.94 Elevation: 200 

meters). 
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Figure 40. Average monthly wind speed at Texas State University 

In this study, wind power was assessed based on data for the four seasons from 

the nearest methodological station to San Marcos. The variation in seasonal mean in 2017 

ranged from 7 Mph to 13 Mph (Figure 28). The limited rate of change in mean wind 

speed causes a low wind power class (Class 1 or 2) in central Texas, where Texas State 

University is located. As mentioned, there is a high rate of fluctuation in wind speed 

depending on surface roughness. Power density can vary from season to season (Akpinar, 

& Akpinar, 2005). The energy output is given by fixed numbers while having an exact 

estimation of wind turbine output is difficult due to wind power and wind speed 

instability. 

On the other hand, studies show that higher wind speed occurs in higher 
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elevations. Hence, having different buildings with different heights will impact the 

calculation of output. “The cut-in speed, which is the minimum speed at which the wind 

turbine will generate usable power, is typically between 3 and 5 m/s” (Al Yahyai et al., 

2011 p.154). There is some peak of high wind speed registered in data, such as the one 

during August 2017, which can partially compensate for the low wind power in other 

seasons. The following Figure 41 shows the elevation of rooftops at TSU. 

 

Figure 41. Rooftop elevation at Texas State University 

After determining the elevation of available rooftops (via LiDAR), we can 

calculate the average wind speed based on Equation 17 discussed in chapter 5.3.1. 
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Figure 42. Mean wind speed based on rooftop elevation at Texas State University 

Since the minimum cut-in speed is set to 3 to 5 meters per second (Al Yahyai et 

al., 2011 p.154), only the buildings falling inside that range will be kept. The chosen 33 

buildings at TSU are shown in Figure 43. 
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Figure 43. Buildings with minimum cut-in wind speed at Texas State University 

The total available perimeter for chosen buildings reaches 10,017 meters. 

Considering a 5-meter distance between each wind turbine, we can have 2003 installed 

wind turbines. If each wind turbine produced 2500 kWh yearly, the generation capacity 

would be more than 3 million kWh, which can be used as the input for the financial 

model, as shown in table 27 and Figure 44. 
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Table 27. On-site wind turbine energy generation at Texas State University 

Project Valuation   
Annual Energy Production (kWh) 3,285,000  
GHG Savings Location-Based (metric tons CO2e) 1913.70 
GHG Savings Market-Based (metric tons CO2e) 0.00 
Capital Investment (excluding Rebate/Incentive) $18,500,000 
Net Present Value  ($11,349,211) 
Internal Rate of Return (IRR) -8% 
Payback Period (Years) N/A 
Profitability Index/BCR Ratio 0.39  
Debt Service Coverage Ratio N/A 
Equivalent Annual Annuity  ($567,461) 

 

 

 

Figure 44. Project appraisal overview for on-site wind generation at TSU 
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6.3 TEXAS A&M SOLAR POTENTIAL 

To obtain an initial assessment, the DEM for Texas A&M was extracted from the 

ALOS Global Digital Surface Model “ALOS World 3D” with 27.5 meters of spatial 

resolution and eventually clipped based on the campus profile (Figure 46). The Microsoft 

building footprint produces the building footprint for this study section with a low 

inaccuracy rate. However, solar potential GIS processing will detect most of the rooftops 

(Figure 45). 

Figure 45. Texas A&M main campus, building footprint, and digital surface model 
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The output radiation raster is a floating-point type and has watt-hours units per 

square meter (WH/m2). The latitude for the study area is in the decimal degree unit. It 

will be positive for the northern hemisphere and negative for the southern hemisphere. 

The latitude is also used to calculate solar declination and solar position (ArcGIS Pro 

documentation). The annual irradiation based on this method reaches the maximum of 

82821 WH/m2 for the best location and a minimum of 18572 WH/m2 for low and shaded 

areas, as shown in Figure 46, where the potential is converted to kWh/ m2 using a 

LiDAR-based digital elevation model (1-meter spatial resolution). The purpose of 

assessing the irradiation in two different resolutions is to highlight feature recognition 

ability between low-medium (Figure 46) and high spatial resolution (Figures 45 and 47) 

and provide an initial assessment for non-rooftop solar systems. 
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Figure 46. Solar radiation potential at A&M, based on 30-meter spatial resolution 
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Figure 47. Solar radiation potential at A&M, based on 1-meter spatial resolution 
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Figure 48. Monthly DNI (W/m2) at Texas A&M College Station 

Comparing the radiation outputs based on the proposed methods (ArcGIS, 

SolarGIS, and SAM), the average potential solar radiation within the Texas A&M 

campus reaches a daily 4.5 kWh/m2. The average potential is slightly larger in SAM and 

reaches 5.08 kWh/m2/day (Figure 48). The next question is that the building footprint 

includes how much of this potential? By having the total area of building footprint 

(629,235 m2) and an average of radiation (4.5 kWh/m2/day), it is possible to calculate the 

daily potential based on extracted building footprint: 

629.235 m2*4.5 kWh/m2/day = 2,831,557 kWh/m2/day  Equation 45 
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Figure 49. Solar radiation potential at Texas A&M, based on the building footprint 
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Hence a yearly potential can be calculated as follows: 

2,831,557 kWh/m2/day * 365 = 1,033,518,487 Equation 46 

However, this number is the total potential absorbed by the building footprint area 

and not the energy produced. Depending on the kind of technology and the capacity 

factor discussed in chapter 5.4, the produced kWh will be drastically lower than the 

potential. As mentioned previously, a percentage of building rooftop areas suitable for 

implementing PV equal to 22%-27% (Chaudhari et al. 2004). Also, “Due to a 4 to 6 feet 

fire code setback requirement for solar installations, a portion of the rooftop along the 

perimeter cannot be used to host solar panels” (How to calculate building’s rooftop area, 

Report for U.S. Department of Housing and Urban Development). Hence the calculation 

should be based on only 70% of the available rooftop to meet the standard conditions. 

Also, since the rooftop's homogeneity is non-existent in the entire area, the setback could 

be calculated separately for each building to narrow down the calculation. Hence, 70% of 

the total building area at Texas A&M is equal to 440464.5 m2. Considering that a 4kW 

capacity requires 25 m2 of the array as discussed in chapter 5.4, we can have 17,618.58 

m2 of array dedicated to solar PV, producing 70,474.32 kW of DC energy. The following 

figures, 50 and 51, show the project appraisal for a 4 kWDC array, while Table 28 depicts 
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financial and environmental outputs. 

 

 

Figure 50. Project appraisal overview for a 4 kWDC on-site solar PV at Texas A&M 

Table 28. Project evaluation for solar potential at Texas A&M 

Project Valuation  

Annual Energy Production (kWh) 5,662 
GHG Savings Location-Based (metric tons CO2e) 3.62 
GHG Savings Market-Based (metric tons CO2e) 0.00 
Capital Investment (excluding Rebate/Incentive) $4,280 

Net Present Value $11,611 
Internal Rate of Return (IRR) 13% 

Payback Period (Years) 8.14 
Profitability Index/BCR Ratio 3.71 
Debt Service Coverage Ratio N/A 
Equivalent Annual Annuity $464 
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Figure 51. Earnings vs. expenses for a 4 kWDC array on Texas A&M campus 

 Considering the dynamic nature of the model, any number can be introduced for 

generation capacity in kWDC. However, the shape of the cumulative cash flow, net 

income, EBITDA, and total revenue will not change, meaning that any volume of 

capacity will require at least eight years to recoup the initial investment.  

 Now we know that not all the building footprints have the optimal condition to 

implement solar PV. As discussed in the methodology section, suitable rooftops should 

have a slope of 45 degrees or less since steep slopes tend to receive less radiation. 

Suitable rooftops should also receive at least 800 kWh/m2 of solar radiation. Suitable 

rooftops should not face north, as north-facing rooftops in the northern hemisphere 
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needed as the next step. Figure 52 shows the extracted area by applying a slope 
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simulation based on the discussion in chapter 5.4. 

Figure 52. Solar radiation potential at Texas A&M, based on slope simulation 
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In the next step, we move forward with removing areas with low solar radiation. 

Rooftop surfaces should receive at least 800 kWh/m2 in solar radiation if solar panels are 

installed (Figure 53). This step removes all the pixels with radiation less than 800 

kWh/m2 in a year. 

Figure 53. Total radiation after removing unsuitable areas 
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The majority of north-facing surfaces were already removed by conditional 

assignment of minimum radiation; however, a few remain. Slopes that face north have a 

value less than 22.5 degrees or more than 337.5 degrees in the aspect raster layer. 

Eventually, flat slopes are kept, regardless of their aspect. To achieve the condition 

above, the Con tool is used first to determine areas with low slopes (less than 10 degrees) 

and then to determine areas facing north. However, the change is not drastic compared to 

the previous figure. 

A zonal statistic can help calculate the average solar radiation for each building 

and eventually join the result to the building layer. The next step consists of removing 

buildings with less than 30 m2 of the available rooftop (which means a non-feasible 

condition for the minimum number of the array installation equal to one). As discussed 

previously, considering the setback on the available area for security reasons, 30 m2 will 

not suffice to implement the minimum solar PV. However, all the chosen buildings at 

Texas A&M have an area greater than 30 m2.  

Next, we can calculate the total average of annual kWh potential production for 

each building based on the AREA and MEAN fields' values. After the previous step, we 

can convert the usable solar radiation values to electric power production potential based 

on average efficiency and the installation's performance ratio according to equation 23 

(discussed in 5.4). 

The following map (Figure 54) depicts the annual available production capacity 

on all the building footprints after applying the methodology discussed in chapter 5.4. 

However, some building footprints are given by parking lots, stadiums, and in some 
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cases, by a portion of not entirely flat objects such as water tanks. These footprints are 

not removed to provide an estimation of the rooftop creations matching the given 

available area. Also, the values classification is based on Jenks's natural brakes discussed 

in the methodology section. Total production after applying all the methods reaches 

108,667 MWh in a year. 
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Figure 54. Final potential production at Texas A&M 
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6.4 TEXAS A&M WIND POTENTIAL 

 There are 264 constructed buildings around Texas A&M University's main 

campus, with an average height of 122 meters. The average wind speed in College 

Station, Texas, where Texas A&M is located, is calculated based on the NSRDB station 

712655 (Figure 55). In this study, wind power was assessed based on data for the four 

seasons from the nearest methodological station to the campus. The seasonal mean 

variation in 2019 ranged from 1.5 m/s to 3.2 m/s (Figure 55). The limited rate of change 

in mean wind speed causes a low wind power class (Class 1 or 2) at North Central Texas, 

where Texas A&M is located. As mentioned, there is a high rate of fluctuation in wind 

speed depending on surface roughness. Power density can vary from season to season 

(Akpinar, & Akpinar, 2005). The energy output is given by fixed numbers while having 

an exact estimation of wind turbine output is difficult due to wind power and wind speed 

instability. 

 

Figure 55. Mean wind speed at College Station based on the nearest weather station  
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On the other hand, studies show that higher wind speed occurs in higher 

elevations. Hence, having different buildings with different heights will impact the 

calculation of output. “The cut-in speed, which is the minimum speed at which the wind 

turbine will generate usable power, is typically between 3 and 5 m/s” (Al Yahyai et al., 

2011 p.154). There is some peak of high wind speed registered in data, such as the one 

during March 2019, which can partially compensate for the low wind power in other 

seasons. Figure 57 shows the elevation in a generalized way produced by the digital 

elevation model. 

Figure 56. Texas A&M mean wind speed 
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 Figure 57 shows the elevation of rooftops at Texas A&M based on LiDAR. 

Texas A&M's main campus elevation ranges from 89 meters to 218 meters on top of the 

buildings (Figure 57).  

 

Figure 57. Rooftop elevation at Texas A&M 

The difference between figures 56 and 57 is given by the inclusion of buildings on the 
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map for mean wind speed at the College Station campus. However, the difference 

between the wind speed on top of the buildings and the ground is not significant.  

 By inserting values in equation 17 and including the average wind speed of 2.2 

m/s, the reference elevation at 99 meters (Station ID: 712655, Lat: 30.61, Long: -96.34), 

and a shear factor of 0.25 then we have the following figure with average wind speed for 

Texas A&M campus. 
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Figure 58. Mean wind speed based on rooftop elevation at Texas A&M 

Since the minimum cut-in speed is set to 3 to 5 meters per second (Al Yahyai et 

al., 2011 p.154), only the buildings falling inside that range must be kept. However, none 

of the buildings at Texas A&M reaches the cut-in speed unless a seasonal study is 

applied, such as one focused on March with a higher than three m/s wind speed. It is clear 

that with a low-class power of wind, no small wind project will be feasible even if federal 
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help and credits are added to the project. However, to provide an example of negative 

NPV, Figure 59 shows the project appraisal for a single small wind turbine with 100 kW 

daily of capacity. 

Figure 59. Project appraisal overview for on-site wind generation at Texas A&M 
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6.5 UC BERKELEY SOLAR POTENTIAL 

The Digital Surface Model (DSM) for UC Berkeley is produced by mosaicking 

separate LiDAR files (LAS) with a spatial resolution of 1 meter. The LiDAR used for this 

section of the study is last updated in 2018. The building footprint was already digitalized 

for UCB; hence no processing is needed to create the building footprint (Figure 60). 

 

 

Figure 60. UC Berkeley main campus, building footprint, and digital elevation model 

 

According to the NSRDB weather file (Station ID: 62944, Lat: 3152, Long: -

106.18, elevation: 1099 meters), the average daily radiation potential (DNI) for San 

Fransisco bay reaches 7.59 kWh/m2. Figure 61 shows the monthly potential. 
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Figure 61. Monthly DNI (W/m2) at UC Berkeley 

The output radiation raster is a floating-point type and has units of watt-hours per 

square meter (WH/m2); however, in cases where there is a need to use a Zonal Statistic, 

the user can convert the float numbers to an integer. The latitude for the study area is in 

the decimal degree unit. It will be positive for the northern hemisphere and negative for 

the southern hemisphere. The latitude is also used to calculate solar declination and solar 

position (ArcGIS Pro documentation). The annual output based on this method reaches 

the maximum of 1456 kW/m2 for the best location and a minimum of 0.15 kW /m2 for 

low and shaded areas, as shown in Figure 62. 
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Figure 62. Solar radiation potential at UC Berkeley, based on the building footprint 

Having the total area of building footprint (393,246 m2) and an average of 

radiation 7.59 (DNI) kWh/m2/day, it is possible to calculate the daily potential based on 

extracted building footprint: 

393,246 m2*7.59 kWh/m2/day = 2,977,147.14 kWh/m2/day            Equation 47

Hence a yearly potential can be calculated as follows: 

2,977,147.14 kWh/m2/day * 365 = 1,086,658,706.1  Equation 48 

However, the obtained number is the total potential absorbed by the building 

footprint area and not the energy produced. Depending on the kind of technology and the 
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capacity factor discussed in chapter 5.4, the produced kWh will be drastically lower than 

the potential. As mentioned previously, a percentage of building rooftop areas suitable for 

implementing PV equal to 22%-27% (Chaudhari et al. 2004). Also, “Due to a 4 to 6 feet 

fire code setback requirement for solar installations, a portion of the rooftop along the 

perimeter cannot be used to host solar panels” (How to calculate building’s rooftop area, 

Report for U.S. Department of Housing and Urban Development). Hence the calculation 

should be based on only 70% of the available rooftop to meet the standard conditions. 

Also, since the rooftop's homogeneity is non-existent in the entire area, the setback could 

be calculated separately for each building to narrow down the calculation.  

70% of the total building area at UC Berkeley is equal to 275272.19 m2. 

Considering that a 4kW capacity requires 25 m2 of the array as discussed in chapter 5.4, 

we can have 11,010.88 m2 of array dedicated to solar PV, producing 44,043.52 kW of DC 

energy. This number can be used as the financial model's input (Figure 63) but is still not 

as accurate as it should be since further processing is needed. As seen in the figure, the 

number of years required to recoup the initial investment is very similar to the previous 

case studies, and on average, it reaches 7-8 years. 
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Figure 63. Project appraisal overview for on-site solar PV at UC Berkeley 

Figure 64. Earnings vs. expenses based on potential generation capacity at UCB 

Net Present Value , 
$128,774,558 

Capital Outlay, 
(46245150)

(60000000)

(40000000)

(20000000)

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Sa
vi

ng
s (

$)

Project Appraisal Overview for
On-Site Solar PV Energy Generation

Cumulative Cash Flow Total Revenue

Net Present Value Capital Outlay

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

D
ol

la
rs

 ($
)

Earnings versus Expenses+Debt 

Total Revenue EBITDA (Operating Income) Net Income

Tax Credit Interest Expenses Principal Repayment

Variable O&M Expense Fixed O&M Expense



208 

Table 29. Project evaluation for solar potential at UC Berkeley 

Project Valuation 

Annual Energy Production (kWh) 69,623,112 
GHG Savings Location-Based (metric tons CO2e) 29862.79 
GHG Savings Market-Based (metric tons CO2e) 0.00 
Capital Investment (excluding Rebate/Incentive) $46,245,150 
Net Present Value  $128,774,558 
Internal Rate of Return (IRR) 14% 
Payback Period (Years) 7.25 
Profitability Index/BCR Ratio 3.78 
Debt Service Coverage Ratio N/A 
Equivalent Annual Annuity  $5,150,982 

As discussed in the methodology section, suitable rooftops should have a slope of 

45 degrees or less since steep slopes tend to receive less radiation. Suitable rooftops 

should also receive at least 800 kWh/m2 of solar radiation. Suitable rooftops should not 

face north, as north-facing rooftops in the northern hemisphere receive less sunlight. 

Hence, a calculation of slope, aspect, and potential reassignment is needed as the next 

step (Figure 65). 
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Figure 65. Solar radiation potential at UCB after minimum kWh/m2 condition 

The majority of north-facing surfaces were already removed by conditional 

assignment of minimum radiation. Slopes that face north have a value less than 22.5 

degrees or more than 337.5 degrees in the aspect raster layer. Eventually, flat slopes will 

be kept, regardless of their aspect. To achieve the condition above, the Con tool will be 

used first to determine areas with low slopes (less than 10 degrees) and then to determine 

areas facing north.  

A zonal statistic approach will assign the potential to the building footprint by 

determining the mean value of the potential. The table contains fields for the number of 

cells, the area in square meters, and the average solar radiation in kWh/m2 for each 

building. Next, we remove structures with less than 30 square meters of area, and by 

doing that, 292 out of 316 buildings will be selected.   
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Next, we convert the potential to MWh according to equation 44, and as the final 

step, the potential will be converted to power based on equation 23. Figure 66 shows the 

final output with the chosen buildings and potential electricity produced in MWh. 

 

Figure 66. Final potential production at U.C Berkeley 

The applied methods offer a more detailed and accurate output. The total possible 

output reaches 35,609 MWh.   
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6.6 UC BERKELEY WIND POTENTIAL 

There are 316 constructed buildings within the U.C Berkeley main campus, with 

an average height of 130 meters above sea level. The average wind speed in San 

Francisco Bay, where U.C Berkley is located, is calculated based on the NSRDB station 

62944 (Figure 67). The wind power is assessed based on data for the four seasons from 

the nearest methodological station to the campus. The seasonal mean variation in 2019 

reached three m/s (Figure 67).  

Figure 67. Mean wind speed at San Francisco Bay in 2019 

The limited rate of change in mean wind speed causes a low wind power class 

(Class 1 or 2) at San Francisco Bay. As mentioned, there is a high rate of fluctuation in 
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wind speed depending on surface roughness. Power density can vary from season to 

season (Akpinar, & Akpinar, 2005). The energy output is given by fixed numbers while 

having an exact estimation of wind turbine output is difficult due to wind power and wind 

speed instability.  

On the other hand, studies show that higher wind speed occurs in higher 

elevations. Hence, having different buildings with different heights impacts the 

calculation of output. “The cut-in speed, which is the minimum speed at which the wind 

turbine generates usable power, is typically between 3 and 5 m/s” (Al Yahyai et al., 2011 

p.154). There is some peak of high wind speed registered in data, such as the one during

April 2019, which can partially compensate for the low wind power in other seasons. 

Figure 68 shows the elevation of rooftops at Colorado State University. 

Figure 68. Rooftop elevation at UC Berkeley 
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After determining the elevation of available rooftops (via LiDAR), we can 

calculate the average wind speed based on Equation 17, discussed in chapter 5.3.1 

(Figure 69). However, the range of change is minimal; hence three categories are chosen 

based on Natural Breaks (Jenks). 

Figure 69. Mean wind speed based on rooftop elevation at UCB 

Since the minimum cut-in speed is set to 3 to 5 meters per second (Al Yahyai et 

al., 2011 p.154), only the buildings falling inside that range must be kept. However, none 

of the buildings at UC Berkeley reaches the cut-in speed unless a seasonal study is 

applied, such as one focused on April with a higher than three m/s wind speed. It is clear 

that with a low-class power of wind, no small wind project will be feasible even if federal 

help and credits are added to the project.   
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6.7 COLORADO STATE UNIVERSITY SOLAR POTENTIAL 

The Digital Surface Model (DSM) for Colorado State University (CSU) is 

produced by mosaicking separate LiDAR files (LAS) with a spatial resolution of 1 meter. 

The LiDAR used for this section of the study is last updated in 2015. The building 

footprint was already digitalized for CSU; hence no processing is needed to create the 

building footprint. The criteria for delineating the building footprint consisted of selecting 

buildings intersecting with the campus boundary to include the buildings not falling 

completely inside the campus boundary (Figure 70). 

Figure 70. CSU main campus, building footprint, and digital surface model 

According to the weather file obtained from NSRDB, the average daily radiation 

potential (DNI) at Fort Collins, Colorado, reaches 5.36 kWh/m2 daily. Figure 70 shows the 
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monthly potential at Fort Collins, where the CSU is located. 

Figure 71. Monthly DNI (W/m2) at Fort Collins, Colorado State University 

The latitude has changed to 40, and it is interesting to compare the Colorado case 

study and Texas cases. Figure 72 shows the radiation output potential based on the 

available rooftop detected through the LiDAR processing. The annual irradiation based 

on this method reaches the maximum of 1602.8 kWh/m2 for the best location (Figure 72). 
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Figure 72. Solar radiation potential at Colorado State University  

Having the total area of building footprint at Colorado State University Campus 

(323,363 m2) and an average of radiation (5.36 kWh/m2/day), it is possible to calculate 

the daily potential based on extracted building footprint: 

 

323363 m2 * 5.36 kWh/m2/day = 1,733,225.68 kWh/m2/day                   Equation 49  

Hence a yearly potential can be calculated as follows: 

1,733,225.68 kWh/m2/day * 365 = 632,627,373.2                         Equation 50 

However, the obtained number is the total potential absorbed by the building 

footprint area and not the energy produced. Depending on the kind of technology and the 
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capacity factor discussed in chapter 5.4, the produced kWh will be drastically lower than 

the potential. As mentioned previously, a percentage of building rooftop areas suitable for 

implementing PV equal to 22%-27% (Chaudhari et al. 2004). Also, “Due to a 4 to 6 feet 

fire code setback requirement for solar installations, a portion of the rooftop along the 

perimeter cannot be used to host solar panels” (How to calculate building’s rooftop area, 

Report for U.S. Department of Housing and Urban Development). Hence the calculation 

should be based on only 70% of the available rooftop to meet the standard conditions. 

Also, since the rooftop's homogeneity is non-existent in the entire area, the setback could 

be calculated separately for each building to narrow down the calculation. 

70% of the total building area at CSU is equal to 226354 m2. Considering that a 4kW 

capacity requires 25 m2 of the array as discussed in chapter 5.4, we can have 9,054.28 m2 

of array dedicated to solar PV, producing 36,217 kW of DC energy. This number can be 

used as the financial model's input (Figure 73) but is still not significant since further 

processing is needed. 
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Figure 73. Project appraisal overview for on-site solar PV energy generation at CSU 

Table 30. Project evaluation for solar potential at Colorado State University 

Project Valuation  

Annual Energy Production (kWh) 56,160,868  
GHG Savings Location-Based (metric tons CO2e) 43252.01 
GHG Savings Market-Based (metric tons CO2e) 0.00 
Capital Investment (excluding Rebate/Incentive) $94,164,200 
Net Present Value  $40,017,213  
Internal Rate of Return (IRR) 3% 
Payback Period (Years) 17.48 
Profitability Index/BCR Ratio 1.42  
Debt Service Coverage Ratio N/A 
Equivalent Annual Annuity  $1,600,689  
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Figure 74. Earnings vs. expenses with 37,828 kWDC potential generations at CSU 

As discussed in the methodology section, suitable rooftops should have a slope of 

Forty-five degrees or less since steep slopes tend to receive less radiation. Suitable rooftops 

should also receive at least 800 kWh/m2 of solar radiation. Suitable rooftops should not 

face north, as north-facing rooftops in the northern hemisphere receive less sunlight. Hence 

a calculation of slope, aspect, and reassignment of potential is needed as the next step. 

Following Figure 75, exclude areas with less than 800 kWh of radiation. 
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Figure 75. Solar radiation potential at CSU after minimum kWh/m2 condition 

The majority of north-facing surfaces were already removed by conditional 

assignment of minimum radiation. Slopes that face north have a 

value less than 22.5 degrees or more than 337.5 degrees in the aspect raster layer. 

Eventually, flat slopes are kept, regardless of their aspect. To achieve the condition 

above, the Con tool is used first to determine areas with low slopes (less than 10 

degrees) and then to determine areas facing north (Figure 76). However, the change is not 

drastic compared to the previous figure. 
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Figure 76. Solar radiation potential at CSU 

A zonal statistic approach assigns the potential to the building footprint by 

determining the mean value of the potential. The table contains fields for the number of 

cells, the area in square meters, and the average solar radiation in kWh/m2 for each 

building. Next, we remove buildings with less than 30 square meters of area, and by 

doing that, 270 out of 302 buildings are selected.  

Next, a field will contain the total amount of solar radiation received per year by 

each building's usable area. This field is calculated by multiplying each building's 

suitable area by its average solar radiation (Equation 42). The same method was used 

initially for each building based on the city's average radiation where the campus is 
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located. Now by introducing the GIS, the result is more accurate and calibrated. Also, to 

avoid large numbers, it is possible to convert the solar radiation from kilowatt-hours per 

square meter to megawatt-hours per square meter. 

Equation 25 provides the amount of converted potential to produce power based 

on EPA average efficiency and performance ratio (Figure 77). The total amount of 

production reaches 36,353.34 MWh at Colorado State University. 

Figure 77. Final solar electricity potential production at Colorado State University 
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6.8 COLORADO STATE UNIVERSITY WIND POTENTIAL 

There are 302 constructed buildings around Colorado State University's main 

campus, with an average height of 90 meters. The average wind speed in Fort Collins, 

Colorado, where Colorado State University is located, is calculated based on the NSRDB 

station 156050 (Figure 78). In this study, wind power was assessed based on data for the 

four seasons from the nearest methodological station to the campus. The seasonal mean 

variation in 2019 reached 2.7 m/s (Figure 78).  

Figure 78. Mean wind speed at Fort Collins based on the nearest weather station 

The limited rate of change in mean wind speed causes a low wind power class 
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(Class 1 or 2) at Fort Collins. As mentioned, there is a high rate of fluctuation in wind 

speed depending on surface roughness. Power density can vary from season to season 

(Akpinar, & Akpinar, 2005). The energy output is given by fixed numbers while having 

an exact estimation of wind turbine output is difficult due to wind power and wind speed 

instability.  

On the other hand, studies show that higher wind speed occurs in higher 

elevations. Hence, having different buildings with different heights impacts the 

calculation of output. “The cut-in speed, which is the minimum speed at which the wind 

turbine generates usable power, is typically between 3 and 5 m/s” (Al Yahyai et al., 2011 

p.154). There is some peak of high wind speed registered in data, such as the one during 

January 2019, which can partially compensate for the low wind power in other seasons. 

Figure 79 shows the elevation of rooftops at Colorado State University. 
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Figure 79. Rooftop elevation at Colorado State University 

After determining the elevation of available rooftops (via LiDAR), we can 

calculate the average wind speed based on Equation 17, discussed in chapter 5.3.1 (Figure 

80). However, the range of change is minimal; hence two categories are chosen based on 

Natural Breaks (Jenks). 
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Figure 80. Mean wind speed based on rooftop elevation at Colorado State University 

 

Since the minimum cut-in speed is set to 3 to 5 meters per second (Al Yahyai et 

al., 2011 p.154), only the buildings falling inside that range must be kept. However, none 

of the buildings at Colorado State University reaches the cut-in speed unless a seasonal 

study is applied, such as one focused in January with a higher than three m/s wind speed. 

It is clear that with a low-class power of wind, no small wind project will be feasible even 

if federal help and credits are added to the project.  
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6.9 CLUSTER ANALYSIS 

6.9.1 TEXAS 

Figure 81 shows an example of wrong clustering where the number of clusters is 

not defined; hence the algorithm produces 30 different clusters. 

Figure 81. Example of incorrect cluster number 

The maximum number of iterations is set to 100 in ArcGIS and R kproto function. 
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However, if R or any other customized script in Python is used to apply K-means 

clustering, at some point, the cluster centroids will stabilize and stop moving with each 

iteration. The cluster centroid will move less with higher numbers of iterations until 

fixed. Between each iteration, we can keep track of the distance change between the new 

position of the centroid and the previous position (Figure 82). “Once this distance is 

relatively small, we can stop the algorithm” (Peng, 2012, p. 117). A “stop snippet” is 

mentioned in the Python algorithm in appendix 1. The next step consists of assigning the 

points close to the centroid (Figure 83). 

 

Figure 82. Selection of random seed points as centroids of initial clusters 
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Figure 83. Assigning points to the respective clusters 

Table 31 shows a sample of distance calculation from the centroid of clusters for 

the first 5 points: 

 

Table 31. Distance calculations form the centroid of clusters 

X Y distance 
from k1 

distance 
from k2 

distance 
from k3 closest color 

14 20 12.64 58.30 69.40 1 r 
20 56 40.44 50 40.31 3 b 
47 33 27.01 22.84 43.73 2 g 
36 56 41.23 34.92 27.58 3 b 
56 78 68.87 37.94 2.23 3 b 
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Figure 84. Updated center of clusters after recalculation 

Figure 83 updates the center of clusters after recalculation (Step 5). Clusters have 

been identified at this stage, but the algorithm is set to more than one iteration so that it 

continues until no point is moved from one cluster to another (Figure 84). The 

highlighted point in Figure 85 is now red, while it was blue in the first iteration (Figure 

84). 
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Figure 85. Change of cluster assignment after repeated iteration 

 

The K-means algorithm requires three inputs on behalf of the user: (1) the number 

of clusters, (2) initialization mode, and (3) distance metric, which is usually set to 

Euclidean distance. If the number of clusters is specified, a table will be created 

containing the pseudo-F-statistic for clustering solutions 2 through 30, calculated to 

evaluate the clusters' optimal number. Figure 86 shows the output for running the K-

means on 15 aforementioned environmental variables in Texas at the block group level 

with five pre-established clusters. The summary statistics are shown in Table 32. 
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Table 32. Summary statistics with 5 clusters in Texas 

         Variable                              Mean  Std. Dev.         Min Max R2 

 PAKSHLDREC 1260.387895 1501.445 0 47484 0.857615 

  COMCONENV   1075.803997 1299.049 0 41997 0.854736 

USEDRECPRD 1099.796977 1312.985 0 42237 0.853953 

 PRSOBENVRE      1275.253621 1530.819 0 50781 0.853321 

 MAKCONTORE      1207.520903 1447.01 0 48075 0.852783 

PEPLDTYTTOR   1088.674657 1307.174 0 43377 0.852295 

 PRCHENVFRC     931.911391 1116.819 0 34599 0.848288 

 ENVGOODBUS   1037.810575 1273.775 0 38232 0.846742 

WORCARPOLLU     956.218392 1158.461 0 34506 0.845718 

 LESEXPECFP      1127.016444 1363.19 0 47517 0.837735 

  OTHSEEMRE    738.103346 903.6934 0 26169 0.820191 

 CSMETRPENF     496.751818 660.7856 0 17757 0.732823 

 ECOFHIQPPR        559.973879 720.5262 0 21576 0.730778 

 STPSENDCAT     418.565556 560.2972 0 14895 0.716951 

BLNGSTOENOR        26.515021 91.31169 0 1728 0.120902 
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Figure 86. K-means on 15 environmental variables in Texas with 5 clusters 
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Multiple charts will be produced to summarize the information about clusters. The 

feature per cluster chart (Figure 87) shows the count of features (block groups) in each 

cluster. Box plots shown in Figure 88 provide statistical information about clusters and 

variables. The same information can be shown as a mean line in Figure 89. The values for 

Box-Plot are standardized to avoid the influence of variables with large variances. 

Standardization requires a z-transformation by subtracting the mean for all values from 

each value and dividing it by the standard deviation for all values. 

Figure 87. Feature per cluster count for Texas 

Figure 88. Multivariate clustering box-plots side by side for Texas 
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Figure 89. Multivariate clustering box-plots as a mean line for Texas 

Figure 90. Optimized Pseudo-F statistics for Texas 

The highest peak on the optimized pseudo-F statistics shows the optimum 

number of clusters coinciding with number 3 (Figure 90). There is no need to 

produce another optimized pseudo-F statistic since, by referring to Figure 90, we 

know that the optimized number of clusters for our study area is 3. The following 

figures and tables show the result for the same study area in Texas with 3 clusters: 
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Table 33. Summary statistics with 3 clusters in Texas 

Variable   Mean Std.Dev. Min Max R2 
PAKSHLDREC 1260.388 1501.445 0 47484 0.722484 
USEDRECPRDT 1099.797 1312.985 0 42237 0.71956 
COMCONENV 1075.804 1299.049 0 41997 0.719044 
WORCARPOLLU 956.2184 1158.461 0 34506 0.717967 
PRSOBENVRE 1275.254 1530.819 0 50781 0.717608 
PEPLDTYTTOR 1088.675 1307.174 0 43377 0.717419 
PRCHENVFRC 931.9114 1116.819 0 34599 0.715505 
MAKCONTORE 1207.521 1447.01 0 48075 0.715374 
ENVGOODBUS 1037.811 1273.775 0 38232 0.71083 
LESEXPECFP 1127.016 1363.19 0 47517 0.706133 
OTHSEEMRE 738.1033 903.6934 0 26169 0.688909 
ECOFHIQPPR 559.9739 720.5262 0 21576 0.619608 
CSMETRPENF 496.7518 660.7856 0 17757 0.617494 
STPSENDCAT 418.5656 560.2972 0 14895 0.593344 
BLNGSTOENOR 26.51502 91.31169 0 1728 0.097195 
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Figure 91. K-means on 15 environmental variables in Texas with 3 clusters 

 

Figure 92. Feature per cluster count for Texas with 3 clusters 
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Figure 93. Multivariate clustering box-plots side by side for Texas 

 

Figure 94. Multivariate clustering box-plots as a mean line for Texas 

An implementation of K-means in R is represented in Appendix 2 with 1000 seed 

points from the same data set with 15 environmental variables in Texas at the block 

group level with 3 clusters. The difference between running the algorithm in R and other 

platforms such as ArcGIS Pro and Python is the possibility of visualization of each step 

in R and a smaller coding amount (Figure 95). 
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Figure 95. K-means clustering implementation in R with Texas data set 

Depicting the output of cluster analysis helps to answer question number two and 

four in chapter 4: 

2. To what extent are sustainability goals prioritized by residents and municipalities

in each HEI’s local spatial context? 

4. To what extent do (in)congruent state and local/regional spatial contexts promote
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(inhibit) alternative energy implementation in HEIs? 

Thirteen thousand five hundred thirty-five block groups are clustered in cluster 

number 1(blue color) in Texas. This is equivalent to 85.6% of all block groups. These 

block groups have the lowest frequency of positive answers among all 15 environmental 

variables and are scattered throughout Texas. Cluster number 2 (orange color) has 125 

features (0.7% of all), showing the highest standardized values, which fall above 5 for 

most environmental variables. The exception in cluster number 2 is given by the number 

of people who belong to an environmental organization with a decreased standardized 

value. Block groups falling inside cluster 2 do not fall in each other's vicinity except in 

the west Houston metropolitan area. Cluster number 3 (green color) has 2151 block 

groups (13.6% of all features), with a standardized value falling between cluster number 

1 and number 2. Cluster number 3 is scattered around big metropolitan areas.  

Texas State University falls inside cluster 1—with a few isolated green clusters—

with the lowest rate of standardized values (Figure 96), including a direct consequence of 

putting the university and the community in the inner rings of the conceptual framework 

and specifically for Community Values and Priorities as one of the pillars of the 

conceptual framework (Figure 17). This positioning in the conceptual framework is not 

necessarily a direct result of State policy. As shown in Figure 11, Texas is one of the 

States with Renewable Portfolio Standards that will position the state in the outer lines of 

the conceptual framework for State Policy and Priorities. Also, at the census block and 

bigger geographical units such as County, there is no unit categorized with cluster 2 

(highest rate of environmental attitudes). Indeed, the entire Hays County includes clusters 

1 and 3 only. 
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Figure 96. TSU campus position compared to the environmental clusters 

Texas A&M falls in cluster 3 (Figure 97), with characteristics explained in previous 

paragraphs. This fact put the university in the middle positions of the conceptual 

framework (Figure 17), making it more reliable for reaching a landscape of properly 

coupled HEI-environment-social systems than Texas State University.
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Figure 97. Texas A&M campus position compared to the environmental clusters 
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6.9.2 COLORADO 

 Figure 98 shows the clustering output for Colorado environmental variables. 

The optimized Pseudo-F Statistic (Figure 99) determines the best number of clusters as 5. 

 

Figure 98. K-means on 15 environmental variables in Colorado with 5 clusters 

 

Figure 99. Optimized Pseudo-F statistics for Colorado 
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Figure 100. Feature per cluster count for Colorado 

 

Figure 101. Multivariate clustering box-plots for Colorado 

 

Figure 102. Multivariate clustering box-plots as the mean line for Colorado 
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 Two thousand three hundred eighteen block groups out of 3532 are categorized as 

cluster 1(blue color) in Colorado. This number comprises 65.6% of the total number of 

features clustered with the algorithm. These block groups have the lowest frequency of 

positive answers among all 15 environmental variables. The geographical distribution of 

cluster 1 is scattered across Colorado State with some groups at the central, east, 

southwest, and northeast, as shown in Figure 98. Cluster 5 has the second-highest number 

of features, including 922 block groups (26%). A low frequency of positive answers also 

characterizes this cluster. However, the standardized values for cluster 5 are slightly 

higher than cluster 1(Figure 101). Cluster 5 groups occur at the central-east, northeast, 

southwest, and central west (Figure 98). Cluster 3(green color) is characterized as a low 

standardized value. However, the numbers are slightly higher than in clusters 1 and 5. 

Block groups with the highest standardized values are categorized as cluster 4 

(yellow color). Only five block groups clustered as cluster 4 fall at the central north part 

of Colorado, two of them being close to the Colorado State University. Cluster number 2 

(red color) with 47 block groups comprises the second-highest standardized value, 

including some of Colorado's largest block groups. The occurrence of cluster 2 is 

verifiable at the north-central part of Colorado except for three block groups located in 

Colorado's west-central part. Colorado State University falls inside cluster 1 with the 

lowest rate of standardized values, including a direct consequence of putting the 

university and the community in the inner rings of the conceptual framework and 

specifically for Community Values and Priorities as one of the pillars of the framework 

(Figure 17). Nevertheless, Colorado State University is relatively close to higher rank 

clusters for standardized values (Clusters 2 and 4). The proximity to higher rank clusters 
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may cause geographical assimilation in the future based on Tobler’s first law of 

geography. 

Figure 103. CSU campus position compared to the environmental clusters 
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6.9.3 CALIFORNIA 

Figure 104 shows the optimized Pseudo-F Statistic, which determines the best 

number of clusters as 2.  

 

Figure 104. Optimized Pseudo-F statistics for California 

The number of features (block groups) per clustering output is shown in Figure 

105, while Figures 106 and 107 show the Box-Plot for clusters. 

 

 

Figure 105. Feature per cluster count for California 
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Figure 106. Multivariate clustering box-plots for California 

 

Figure 107. Multivariate clustering box-plots as the mean line for California 

 

 Figure 108 shows the clustering output for California environmental variables 

with three insets trying to magnify the high concentration areas with small block groups.  
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Figure 108. K-means on 15 environmental variables in California 
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The number of clusters in California drops to only two among 23212 census 

blocks.  Cluster 1 comprises 94.8% of all features in California. These block groups have 

the lowest frequency of positive answers among all 15 environmental variables scattered 

throughout California. Cluster number two includes 6.2% of census blocks, reaching 

1189 features distributed through California. Even though the standardized value of 

cluster 2 is slightly higher than cluster 1, they both are very close in values, as shown in 

Figures 106 and 107. None of the 15 environmental variables shows a distinction in terms 

of importance compared to other variables. 

UC Berkeley's main campus is divided between clusters 1 and 2 (Figure 109).  

Although a non-matching campus shape causes this compared to the census block, it is 

challenging to allocate the campus in either of the clusters with a high statistical 

confidence level. The university is surrounded by many block groups clustered with blue 

color (Cluster 1) while neighboring two block groups clustered as 2. Either way, the 

university will be positioned in the framework's inner lines due to the low levels of 

standardized value in both clusters. 
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Figure 109. UC Berkeley campus position compared to the environmental clusters 

6.10 ENERGY CONSUMPTION 

This section will answer research question #3 in chapter 4: 

3. What is the nature of the relationship(s) between state-level policy, state Sustainable

Development Goal performance, and alternative energy? 

6.10.1 TEXAS A&M 

In favor of the Texas A&M University Vision 2020: Creating a Culture of 

Excellence and Core Values, the Energy Action Plan (EAP) 2020 has been established to 

continue improving mission-critical utilities' efficiency and effectiveness energy services. 

Continuing upon energy efficiency improvement of 47 percent for Source EUI FY02 

through FY18, EAP 2020 aims to continue improving services while reducing Source 
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EUI by an additional 3 percent (with a target of 182) for the period from FY18 through 

FY20. This goal is challenging but can be accomplished by implementing and managing 

the following comprehensive EAP 2020 plan. Figures 110-112 show the relationship 

between campus size and energy consumption. 

Initiative 1: Energy Stewardship Program (ESP) 

Initiative 2: Energy Awareness, Education, Outreach, and Engagement 

Initiative 3: Comprehensive Building Automation Management 

Initiative 4: Comprehensive Utility Metering, Data Management, Billing, and Reporting 

Initiative 5: Building Energy Optimization 

Initiative 6: Server Room Consolidation and Virtualization 

Initiative 7: Utilities and Energy System Capital Planning 

Initiative 8: Utility Production and Distribution Optimization 

Initiative 9: Academic and Research Collaboration and Partnering 

Initiative 10: Building Energy Efficiency Upgrades and Optimization  

Initiative 11: Sustainability (Environmental Benefit) and GHG Reduction 

Initiative 12: Energy Performance Improvement (EPI) Program 
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Figure 110. Texas A&M Campus size vs. energy consumption 

Figure 111. The total cost of energy at Texas A&M (in a million dollars) 
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Figure 112. Cost of electricity at Texas A&M 
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Table 34. Texas A&M sample building baseline comparison 

Building Name 
Total Floor Area 

sq.ft 

Total Electricity 

Used in kWh 

(2019) 

Electricity Cost 

(2019) 

% of Total 

Electricity 

Consumed 

Based on the 

Sample Size 

EUI 

(kWh) 

CBECS 

EUI Based 

on sq.ft 

(table C21 

of CBECS) 

Activity Year of Construction 

Evans Library 712,093 7,391,241 $576,516 43.9% 10.4 10.8 Library N/A 

Anthropology 51,592 342,433 $26,709 2.0% 6.6 11.1 Classroom N/A 

Chemistry 115,797 4,069,693 $317,436 24.2% 35.1 10.8 Research N/A 

C. Engineering 56,537 462,234 $36,054 2.7% 8.2 11.1 Research N/A 

SBISA Dining 94,233 2,752,993 $214,733 16.3% 29.2 31.0 Dining N/A 

Uti.Cen.Office 46,110 104,534 $8,154 0.6% 2.3 14.6 Office N/A 

Health Center 63,318 86,2678 $67,289 5.1% 13.6 24.1 Health N/A 

Neeley Hall 69,668 542,630 $42,325 3.2% 7.8 15.7 Residence N/A 

The Gardens 33,535 280,038 $21,843 1.7% 8.4 15.7 Residence N/A 

Bush Park.Lot N/A 29,470 $2,299 0.2% 10.4 28.2 Parking Lot N/A 

Total 1,242,883 16,837,944 $1,313,358 100% 
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6.10.2 UC BERKELEY 

Table 35. UC Berkeley sample building baseline comparison 

Building Name 

Total Floor 

Area 

sq.ft 

Total Electricity 

Used in kWh 

(2020) 

Electricity 

Cost (2020) 

% of Total 

Electricity 

Consumed 

Based on the 

Sample Size 

EUI (kWh) 

CBECS 

EUI Based 

on sq.ft 

(Table C21 

of CBECS) 

Activity Year of Construction 

Hertz Hall 31,362 99,000 $889,020 0.39% 3.2 11.1 Col/Uni 1958 

Campbell Hall 81,600 2,136,000 $19,181,280 8.35% 26.2 11.1 Laboratory 2014 

Minor Hall 46,225 1,111,000 $9,976,780 4.35% 24.0 11.1 Col/Uni 1941 

Tang Health Center 77,369 1,174,000 $10,542,520 4.59% 15.2 24.1 Health 1993 

Oxford Tract 10,535 2,180,000 $19,576,400 8.53% 206.9 11.1 Laboratory 1960 

Kroeber Hall 119,001 649,000 $5,828,020 2.54% 5.5 37.5 Facility 1959 

Energy Biosciences 124,175 3,914,000 $35,147,720 15.31% 31.5 10.8 Laboratory 2012 

Sutardja Dai Hall 141,000 4,914,000 $44,127,720 19.22% 34.9 10.8 Col/Uni 2009 

Bancroft Parking 38,986 8,938,000 $80,263,240 34.96% 229.3 28.2 Parking lot N/A 

O'Brien Hall 41,822 451,000 $4,049,980 1.76% 10.8 14.6 Office 1959 

Total 712,075 25,566,000 $229,582,680 100% 

* The average industrial electricity rate in Berkeley is 8.98¢/kWh
* Data collected on Dec 7, 2020
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UC Berkeley has a goal for each campus to reduce its energy consumption by 2% 

each year. The Energy Office is continually working on projects to make significant 

improvements in campus energy efficiency and save 4 million kWh this year. UC 

Berkeley is now producing 1 MW of solar PV through recent installations at five 

locations on campus: the MLK Student Union, Eshleman Hall, the Recreational Sports 

Facility field house, the University Village carport solar system, and Jacobs Hall. 

Table 36. UC Berkeley Energy Goals 

Goal Status 

Energy Efficiency: reduce energy use intensity by 2% annually. In progress 

On-campus renewable electricity: add 2.5 MW of solar. In progress 

Off-campus clean electricity: by 2025, procure 100% clean electricity. In progress 

On-campus combustion: by 2025, 40% of natural gas will be replaced by biogas. In progress 

* Source: Energy Office, Facilities Services at UC Berkeley
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6.10.3 COLORADO STATE UNIVERSITY 

Figure 113. Annual energy cost at Colorado State University, main campus 

Figure 114. Cost of energy at Colorado State University 
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Figure 115. Cost of electricity at Colorado State University 
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Table 37. Colorado State University sample building baseline comparison 

Building Name 
Total Area 

sq.ft 

Total Electricity 

Used in kWh 

(2019) 

Electricity 

Cost (2019) 

% of Total 

Electricity 

Consumed 

Based on the 

Sample Size 

EUI 

(kWh) 

CBECS 

EUI Based 

on sq.ft 

(Table C21) 

Activity 
Year of 

Construction 

A. Village Aspen 67,093 434,167 $31,432 3% 6.4 15.7 Dormitory 2009 

Ingersoll Hall 98,888 307,756 $22,115 2.13% 3.1 15.7 Dormitory 1964 

Administration 0080 33,919 246,013 $17,877 1.70% 7.2 14.6 Office 1924 

Centennial Hall 43,677 213,788 $15,645 1.48% 4.8 14.6 Office 1950 

Animal Science 100,469 1,264,743 $91,946 8.74% 12.5 10.8 Research 1959 

Biology 148,654 3,346,731 $243,142 23.11% 22.5 10.8 Research 2017 

Chemistry 166,127 5,052,555 $366,328 34.90% 30.4 10.8 Research 1971 

Eddy Hall 86,598 434,449 $31,492 3% 5.0 11.1 Classroom 1963 

Clark Building 255,493 2,017,539 $146,566 13.93% 7.8 10.8 Classroom 1967 

Health Center 162,061 1,161,008 $98,593 8.02% 7.1 29.1 Health 2017 

Total 1,162,979 14,478,749 $1,065,136 100% 

*Electricity rate: 0.072/kWh
*Data collected on Dec 9, 2020
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6.11 FRAMEWORK PLACING  

6.11.1 TEXAS STATE UNIVERSITY 

1. Are selected alternative energy investments characterized by long-run

profitability in the HEIs under investigation? In other words, is there evidence that a 

proper coupling between lower energy consumption and economic profitability can be 

achieved? 

 According to the results discussed in chapter 6, at least in some cases, such as 

solar panel implementation or as shown in Mohammadlizadehkorde and Weaver (2020), 

it is possible to achieve long-term profitability despite the high costs of upfront 

investment. The results in chapter 6 define the extent of possible coupling by providing 

empirical evidence in terms of financial and geographical feasibility. The energy audit 

based on the sample can also reveal another pillar of the framework given by the extent 

of possible energy savings. Texas State University shows a low EUI based on the total 

area compared to the results from CBECS calculated based on the area, the activity type, 

and the year of construction (Table 10). This data put the university in the high-medium 

range of coupling diagram for energy savings and financial feasibility, as shown in Figure 

116. Other components of the framework, such as state policy and community values,

tend to reach the diagram's inner circles affected by the results of cluster analysis (chapter 

6.9) and other studies taken into account.
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Figure 116. The conceptual landscape of properly coupled HEI-environment-social systems for TSU
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6.11.2 TEXAS A&M 

 According to the results discussed in chapter 6, at least in some cases, such as 

solar panel implementation, it is possible to achieve long-term profitability despite the 

high costs of upfront investment. The results in chapter 6 define the extent of possible 

coupling by providing empirical evidence in terms of financial and geographical 

feasibility. The energy audit based on the sample can also reveal another pillar of the 

framework given by the extent of possible energy savings. Texas A&M shows a good 

EUI based on the total area compared to the results from CBECS calculated based on the 

area, the activity type, and the year of construction (Table 34). This data put the 

university in the high-medium range of coupling diagram for energy savings and 

financial feasibility, as shown in Figure 117. Other components of the framework, such 

as state policy and community values, tend to reach the diagram's inner circles affected by 

the results of cluster analysis (chapter 6.9) and other studies considered. 
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Figure 117. The conceptual landscape of properly coupled HEI-environment-social systems for A&M 
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6.11.3 UC BERKELEY 

 According to the results discussed in chapter 6, at least in some cases, such as 

solar panel implementation, it is possible to achieve long-term profitability despite the 

high costs of upfront investment. The results in chapter 6 define the extent of possible 

coupling by providing empirical evidence in terms of financial and geographical 

feasibility. The energy audit based on the sample can also reveal another pillar of the 

framework given by the extent of possible energy savings. UC Berkeley shows a high 

EUI based on the total area compared to the results from CBECS calculated based on the 

area, the activity type, and the year of construction (chapter 6.10.2). This data put the 

sample building at UC Berkeley in the coupling diagram's inner range for energy savings 

and financial feasibility, as shown in Figure 118. Other components of the framework, 

such as state policy and community values, tend to reach the diagram's inner circles 

affected by the results of cluster analysis (chapter 6.9) and other studies considered. 
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Figure 118. The conceptual landscape of properly coupled HEI-environment-social systems for UCB 
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6.11.4 COLORADO STATE UNIVERSITY 

 According to the results discussed in chapter 6, it is implausible to achieve long-

term profitability through either a solar project or wind turbine implementation at 

Colorado State University. The results in chapter 6 define the extent of possible coupling 

by providing empirical evidence in terms of financial and geographical feasibility. The 

energy audit based on the sample can also reveal another pillar of the framework given 

by the extent of possible energy savings. UC Berkeley shows a high EUI based on the 

total area compared to the results from CBECS calculated based on the area, the activity 

type, and the year of construction (chapter 6.10.2). This data put the sample building at 

Colorado State University in the coupling diagram's exterior range for energy savings and 

financial feasibility. Hence a better output than other cases, as shown in Figure 119. 

Other components of the framework, such as state policy and community values, tend to 

reach the diagram's outer circles and inner circles affected by cluster analysis (chapter 

6.9) and other studies considered. 
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Figure 119. The conceptual landscape of properly coupled HEI-environment-social systems for CSU 
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7. CONCLUSION AND DISCUSSION

Many countries, local governments, and even higher education institutions have 

already integrated renewable energy systems into their long and short-term policymaking 

process. Many of the master plans (at universities), State bills, standards, and 

international agreements such as the Paris agreement (2016) make their cosigners 

responsible for adhering to alleviate the environmental degradation caused by traditional 

forms of energy production. Although in 2020 there has been a slight improvement in 

terms of CO2 emission (EIA, 2020), the energy-related CO2 is expected to increase in 

2021, which is in line with the world energy consumption trends shown in Figure 2. The 

correlation between energy consumption and the warming climate is considered a 

leverage point for intervention at many levels, including HEIs. The short-term cost and 

pursuing growth seem to be the most convenient explanations for the low rate of 

sustainable use of renewable energy, as discussed in Chapters 1 and 3. The pursuit of 

economic success (e.g., Weaver et al., 2015) and economic efficiency (Timmons et al., 

2019) prevents systems from reaching properly coupled goals in conjunction with 

environmental systems, with a few exceptions (Obama, 2017). 

Considering the convoluted labyrinth of sustainability, the pursuit of growth, and 

the social responsibility of HEIs, how might society in the aggregate overcome this 

incentive trap in ways that mobilize actors toward short-term sacrifices for the long-term 

benefit of local and global environmental integrity? This dissertation answered this 

question by including a series of multiple questions discussed in Chapter 4. Financial 

analysis is one aspect of this equation covered in many studies shown in Chapter 3 and 

improved by taking GIS into account (Chapters 5 and 6). A renewable investment's 
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numerical aspect is discovered by combining financial methods based on different tools 

developed by the most accredited environmental organizations (Chapter 5.6). Through 

using a multicriteria decision-making process, it was possible to detect the best place and 

time for the chosen renewable energy implementation (e.g., solar and wind in Chapter 6) 

in addition to its financial output. Simultaneously, many formal studies merely focus on 

financial aspects without including the geographical factor (Mohammadalizadehkorde & 

Weaver., 2020). In this dissertation, a combination of financial analysis and the 

geographical study was provided through a series of GIS methods to improve financial 

analysis accuracy. 

As discussed in Chapters 3.2 and 5.8, a radical change of structure with the 

capacity to alter current society rules is needed to enable proper coupling (N-tupling). As 

such, after determining the financial feasibility of selected alternative energy 

interventions in four case study universities, the dissertation zeroes in on spatial context 

as a potential determinative factor (Chapters 5.8 and 6.9). This dissertation shows the 

spatial context of at least two of Howe and colleagues’ (2017) three categories discussed 

in Chapter 1 (structural factors and knowledge/scope). With respect to structural factors, 

embeddedness in a neighborhood or region where residents and leaders prioritize 

sustainability goals might positively influence HEI sustainable energy implementation. 

However, through cluster analysis, a discrepancy was found between the community 

attitude towards sustainability and the HEI master plan toward the same goals, where the 

University is placed among the most sustainable institutions even without significant 

support on behalf of the community. This is in contrast with the assumption discussed in 

Chapter 2. While issues of HEI leadership and strategic planning are likely to be some of 
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the more determinative factors at play in institutional energy investment decisions, it is 

reasonable to assume that leadership and decision-making in public HEIs will at least 

partially reflect the preferences and values of their local communities or regions (shown 

by the cluster analysis), insofar as most HEIs strive to be upstanding citizens who 

maintain effective Town-Gown relations (Broto & Baker, 2018; Pasqualetti, 2011; 

Cupples, 2011). 

To classify the institution’s placement in the sustainability constellation and based 

on the suggested conceptual framework, a series of key terms and ideas are developed to 

show the extent of proper coupling in each institution shown in Table 38. 

Table 38. The implication of forces in proper N-tupling and possible outputs 

Internal Forces/External Forces Proactive Reactive 

Supportive Proper coupling Greenwashing 

Neutral Trendsetting Business-as-usual 

Inhibitive Radical innovation Cost minimization 

Proactive: commitment to sustainability/sustainable energy use is evident in actions; is 

apparent with or without government mandates; predates government mandates. 

Reactive: commitment to sustainability/sustainable energy use is either not present or 

present only in words, not actions; is superseded by economic considerations; would 

probably not exist if government mandates were absent. 

Proper coupling: internal and external motivations are congruent; both the university 

and the state and local community that funds it has taken demonstrable actions to reduce 
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energy use. 

Trend-setting: universities are taking actions that contribute to sustainable energy use 

without evident external support and in the absence of external pressure—it is possible 

that these “trend-setters” could inspire or otherwise motivate governments to take actions 

that would attempt to “scale up” the university’s sustainability initiatives, which could 

eventually lead to a “proper coupling.” 

Radical innovation:  despite a policy/government context that incentivizes short-term 

cost-minimization and creates artificial barriers to sustainable energy regimes, 

universities are internally motivated to reduce energy consumption and invest in 

sustainable energy technology. 

Supportive: state and local government: has adopted policies, funded initiatives that 

demonstrate a commitment to sustainable energy use; offers technical support to other 

levels of government or public institutions to achieve sustainability goals. 

Neutral: commitment to sustainability/sustainable energy use is either not present or 

present only in words, not funded programs or enforceable policies; is superseded by 

economic considerations. 

Inhibitive: government incentivizes economic efficiency and cost-savings above all else; 

no commitment to sustainability or sustainable energy use. 

Greenwashing: the relevant state and local community are supportive, but, internally, the 

university does not demonstrate a genuine commitment to sustainable energy use. Rather 

than taking bold actions or investing in new technologies, the university modifies 
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business-as-usual in marginal ways to give it the appearance of being more sustainable 

(what critical geographers have called “greenwashing”); might include rhetoric within a 

university strategic plan that is not acted on. 

Business-as-usual: self-explanatory; because there is no push or compelling external 

force, the university continues following standard operating procedure. 

Cost minimization: where the primary objective is economic efficiency, actions will be 

oriented toward minimizing the short-term (e.g., fiscal year) budget without accounting 

for the externalities that those actions generate (and how they work against sustainability 

agendas). 

Texas State University will be categorized as a reactive-business as usual 

institution since the commitment to the sustainable use of energy does not appear in the 

master plan (2017-2027) concretely. The use of renewable energy is almost absent except 

for research purposes in the engineering department. The expression “alternative energy” 

is used in different parts of the plan with no direct reference to renewable options. The 

master plan refers to “Assure that architectural designs and building sites consider energy 

efficiency (Master plan 2017-2027, p.17).” This is in line with the scope of cost 

minimization based on the standard retrofitting techniques applied at the building level. 

The local government does not require any specific renewable implementation for the 

higher education system and limits its policy to reduce electricity consumption by at least 

5% each year beginning in 2011 and extended in 2019 (Senate Bill 898 and Senate Bill 

241). On the other hand, there is no specific State-level climate action in the act, as 

shown in Figure 18, and both renewable energy consumption and production are 
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relatively low (Figures 19, 20). 

Texas A&M shares several aspects of this categorization, with Texas State 

University being located in the same geographical context. Although the institution itself 

has a specific commitment to energy efficiency at the building level (see Chapter 6.10.1), 

it fails to bring up the renewable energy implementation into its long-term plan (reflected 

at the State level). The total campus area is growing steadily, but the energy consumption 

has been contained, as shown in Figure 110. Also, the EUI in sample buildings is lower 

than CBECS values in many cases (Table 34). On the other hand, the study of wind and 

solar potential does not show a significant and reliable investment potential (Chapters 6.3 

and 6.4), which is probably why the priority is not given to renewable energy 

implementation. That is why Texas A&M can be categorized as a reactive-cost 

minimization institution. 

UC Berkeley has a goal for each campus to reduce its energy consumption by 2% 

each year. Compared to Texas, the goal at UCB is set for a lower percentage of saved 

energy yearly. However, the average EUI shows a higher electricity consumption for 

most of the sample buildings. Still, UC Berkeley is the only one with a significant 

renewable energy implementation among the four study areas. UC Berkeley is now 

producing 1 MW of solar PV through recent installations at five locations on campus: the 

MLK Student Union, Eshleman Hall, the Recreational Sports Facility field house, the 

University Village carport solar system, and Jacobs Hall. This occurs while the solar 

energy study does not show a better output than other case studies (Chapter 6.5). While 

State policy is supportive of the transition towards a more sustainable energy future by 

having a completed climate action (Figure 17), the community does not show substantial 
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support to reach the goal based on the results of cluster analysis (Chapter 6.9.3). Indeed, 

the cluster analysis shows the lowest rate of positive attitude towards sustainability 

among all 4 cases. Therefore, UC Berkeley can be considered as a supportive-

trendsetting institution. 

Colorado is another example of a State with a complete climate action (Figure 

18). Colorado State University has added several large new buildings increasing the 

institution's total square footage in recent years. However, the total energy consumption 

related to the buildings remains relatively flat. The institution has no direct reference to 

implementing renewable resources in the master plan even though Colorado aims at 

100% clean energy by 2050 for utilities serving 500,000 or more customers. 

Nevertheless, according to Colorado State University's facilities management, several 

cost minimizations and energy efficiency programs are in progress. Colorado State 

University falls inside cluster 1 with the lowest rate of standardized values, including a 

direct consequence of putting the university and the community in the inner rings of the 

conceptual framework and specifically for Community Values and Priorities as one of the 

pillars of the framework. Therefore, the institution can be categorized as cost 

minimization and business as usual HEI. 

Acquisition of viable plans is one of the requirements of sustainability 

implementation in HEIs (Leal Filho et al., 2018). This dissertation provides a feasible 

framework to cover this sustainability aspect at HEIs and, to a bigger extent, 

communities or cities. The chosen universities as a sample are aware of their unique 

opportunity to be sustainability leaders with or without being advised of their proactive 

or reactive response to sustainability. They introduce multiple opportunities to save 
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energy or adhere to bills, declarations, and other non-binding measures. Although the 

administrations see growth as a means of remaining competitive and economically 

successful, this culture will change under climate change's critical conditions. The social 

mission of HEIs suggests that they arguably have a responsibility not only to teach and 

research sustainable practices (Stough et al., 2018) but also to practice sustainability in 

their daily operations. In this dissertation, I attempt to provide the needed practices and 

approaches that shift the attention from exclusively a business-as-usual institution to a 

thriving organization to be coherent to their social responsibility. 

However, the decisive factor remains the lack of a long-term governance model 

capable of forcing measurements. The resistance to replacing fossil fuel-intensive energy 

systems results reasonably convincing due to insufficient renewable energy potential 

shown in the result section. This dissertation reviewed only wind and solar power, the 

most obvious options, while every geographic context (place) can represent a diverse 

potential given by geothermal, hydropower, biofuel, and biogas.  

Renewable energy, however, is not the only choice since building-level energy 

efficiency options can significantly reduce consumption (Mohammadalizadehkorde & 

Weaver, 2020). This dissertation reviews a series of energy efficiency measurements at 

the building level with their respective financial output, which is replicated in an Excel-

based model to be used by other researchers. In combination with renewable energy 

options, these opportunities can extend the planning process's horizon without necessarily 

relying on renewable energy. 

As this dissertation demonstrated, tackling the sustainability problem from 
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multiple fronts can result in a more holistic solution for HEIs. Behavioral interventions 

have a significant role in this process, as well. “The transition to low carbon energy 

systems cannot solely rely on technological innovation,” and there are social and 

behavioral barriers that need to be overcome to make the energy transition possible 

(Hoppe and de Vries, 2018). That is why in this dissertation, I Introduced the community 

dimension. The relationship between community and energy has been studied scarcely, 

and it is at its initial stage, as stated in the literature review. This dissertation has tried to 

show whether the community's attitude contributes to how HEI faces sustainability. The 

low or high level of sustainability attitude—shown by cluster analysis— among the 

citizens of a place might reflect how an institution adopts its social responsibility. The 

assumption is that a demanding society—with higher sustainable expectations— can 

overcome the barrier of reactive response, transforming a university into a proactive 

organization. However, cases like the University of California at Berkley show the exact 

opposite of this assumption where despite a low level of sustainable attitude on behalf of 

citizens, the university is one of the pioneers of sustainability implementation. A non-

business-as-usual political establishment could cause this diverse attitude on behalf of the 

university.  In other cases, such as Texas State University, state legislation prompted 

sustainability planning; however, inconsistent enforcement over time has weakened the 

effects. 

As centers of research and education, colleges and universities have a unique 

opportunity to help their local communities create and maintain more sustainable urban 

environments. Beyond research, instruction, and credentialing, HEIs can model best 

practices for sustainability planning, lead in the development of sound financial 
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projections associated with sustainability initiatives, demonstrate the values of emerging 

sustainable technologies, and illustrate the need for equitable, socially just community 

engagement. I argue that sustainability objectives at HEIs can only be achieved by 

integrating the needs and voices of the local community into the objectives. Therefore, a 

sustainable HEI certainly sets and achieves robust internal managerial goals, but it is also 

one that acknowledges its influence on the broader urban environment and successfully 

engages and improves its local community.      
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8. LIMITATIONS 

8.1 TIME AND RESOURCE CONSTRAINTS 

 Due to the dissertation’s goal of evaluating the financial feasibility of substantial 

alternative energy investments in their multi-level spatial contexts, it is necessary to 

select both specific projects and specific study areas. In other words, it is essential to 

perform case studies. This case study approach has limitations for generalization, and it 

looks past any projects or alternative energy innovations that are not included in the 

preidentified menu of options created by the author. However, it is worth pointing out 

that much of the recent research on sustainable energy in HEIs involves small-scale 

investigations (Mohammadalizadehkorde and Weaver, 2020). In that sense, this 

dissertation aligns with the contemporary literature, but it also meaningfully advances 

that literature by taking a comparatively holistic approach that interrogates connections 

between feasible energy projects, financial attractiveness, community priorities, and state 

policies. In other words, the dissertation takes up the challenge of attempting to 

“understand complex inter-relationships” between decision-makers, decision-making 

contexts, and decisions (Hadkinson, P. and Hadkinson, H., 2001). It does so by using a 

methodological framework that can be replicated on other University campuses or entire 

communities, given that the former tends to function and operate much like the latter.  

More generally, case studies, although focused on specific study areas, “are fertile 

grounds for conceptual and theoretical development (Hodkinson, P. and Hodkinson, H., 

2001, p. 7). The application of case studies on a large scale is expensive and time-

consuming if attempted on a large scale (Hodkinson, P. and Hodkinson, H., 2001). An 

example is given by the number of organizations covered by EDF to identify sustainable 
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measures since 2008. Currently, only 450 organizations—including TSU— have 

benefitted from the EDF Climate Corps program that provides a network of qualified 

graduate students as sustainability experts. The identified potential projects by nearly 

1000 graduate students reach 2.1 million metric tonnes on CO2 reduction in 12 years. All 

these significant efforts go along with the fact that per the International Energy Agency, 

even if nations fulfill the Paris Agreement goals, it is still unlikely to keep the warming 

climate below 1.5℃ of increase on the average global temperature (World Energy 

Outlook, 2016).  

8.2 CLUSTER ANALYSIS 

Clustering is an exploratory method with no single optimal approach. Clustering 

algorithms also occasionally find clusters even when there are no natural clusters present 

in the data (Jain, 2010). Cluster validity refers to evaluating the result regarding the 

quality of clustering, which invites the user to verify whether data have any clustering 

tendency (Jain and Dubes, 1988).  

Clustering algorithms work best on either numeric data or exclusively categorical 

data (Shih et al., 2010). One way to overcome this problem is to apply a two-step 

clustering method to find clusters among numeric and categorical data (Shih et al., 2010). 

Nevertheless, the existing clustering algorithms involve some disadvantages or 

weaknesses such as sensitivity to outliers or the initial selection of clusters; the two-step 

method integrates hierarchical and partitioning clustering algorithms with adding 

attributes to cluster objects (Shih et al., 2010). The shortcoming of two-step clustering for 

the k-prototype algorithm is defined by Shih et al. (2010) as follows: (1) After applying a 

binary distance, if the object pairs with the value of the numeric data, the distance 
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between them is zero, otherwise it is one. However, this will not work on categorical data 

types such as “high,” “low,” and “medium” because there is a degree of difference 

between high-medium and high-low pairwise. (2):  

 

“Only one attribute value is chosen to represent [the] whole 

attribute in [the] cluster center. Therefore, the categorical 

value with less appearance seldom gets the chance to 

be shown in [the] cluster center, though these items may 

play an important role during [the] clustering process.  

Additionally, since k-prototype inherits the ideas of k 

means, it will retain the same weakness of k-means” (Shih 

et al., 2010, p. 2) 

 

 The exclusivity of k-means on numeric data type is caused by optimizing a cost 

function defined with Euclidean distance measure between data points and means of 

clusters (Huang, 1997), measured only on numerical data types.  

The use of constructed and artificial data sets is suggested to validate clustering 

algorithms (Huang, 1998). The advantage of artificial data sets is given by the ability to 

control the data set structure. However, artificial data sets may not represent the real 

world, and they are mainly focused on numeric data generation, while the interest should 

be focused on mixed-type data (Huang, 1998). 

 An alternative to clustering is given by visualization techniques (Huang, 1998). 

However, visualization may not be useful when there is no point (coordinate or 

observation) involved, like when only a number is assigned to a block group. Also, the 

weight γ assigned to attributes to avoid favoring them may add additional problems to the 
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K-means method's limitations in the K-prototype. The average standard deviation of 

numeric attributes may be used as a guidance in specifying γ, but it may not be 

considered as a general rule (Huang, 1998). As stated by Huang (1998), “The user’s 

knowledge of the data is important in specifying γ” (Huang, 1998, p. 20). If the 

researcher thinks there is a need to favor a given numeric attribute, that attribute needs a 

small γ. If the categorical attributes are essential, the researcher should set a large γ for 

that categorical attribute. 

8.3 NET PRESENT VALUE 

The selection among multiple energy investments in HEIs is a laborious job 

involving numerous factors, conflicting priorities, different scenarios, and methods. 

Making the same decision sustainable is a more difficult task, which might be affected by 

local and governmental policies. At least one correlate of observations at TSU while 

decreasing electrical consumption might not be reducing its overall energy consumption 

footprint as effectively as possible. Put another way, a potential weakness of SB 898—

and maybe several other master plans in HIEs— is that it only restricts electrical 

consumption. Indeed, gas consumption accounts for a significant portion of energy 

use at TSU (24%). Thus, while the Bill acts as somewhat of a regulatory mechanism for 

moving TSU’s commitment to sustainability beyond words and into action, it might not 

go far enough. Accordingly, financial analyses aimed at quantifying the attractiveness of 

investments into sustainable energy technologies could benefit from being more inclusive 

than SB 898 and incorporating additional forms of energy consumption into their 

calculations. The present dissertation heeds this call and considers both electrical 

and natural gas consumption in its analyses. Consequently, the case studies and their 
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findings have to value TSU and other universities and Texas state legislators who might 

consider drafting a new bill that applies to all fossil fuel-based energy consumption, 

rather than electricity alone.  

A financial analysis protocol always requires a cost-benefit analysis to detect the 

optimal investment choice and estimate the economic value of avoided CO2 (Nesticò and 

Pipolo, 2015).  Mastering the concept of net present value is at the core of many financial 

analyses. “The simplest statement of the NPV rule is that you should discard projects 

with negative NPVs and undertake all projects with positive NPVs” (Ross, 1995).  When 

the financial analysis is not based on NPV, other economic indicators such as IRR or 

payback period are considered. Simultaneously, taking a single project should not prevent 

us from undertaking other projects (Ross, 1995). This is very likely to happen since a 

single lighting system replacement can have the highest NPV value. 

In contrast, other smaller projects, such as replacing motors and pumps, have 

lower values, but in aggregate, they can surpass the NPV value of lighting replacement 

(Mohammadalizadehkorde & Weaver, 2020). Therefore, the question is which project 

should be rejected among the projects with positive NPV? The rules of NPV are subject 

to many other variables. Ross (1995) made it clear with the story of The Good, the bad, 

and the ugly of the NPV. In his paper, a $100 million upfront investment with $10 million 

of profit in a year and a negative $300,000 NPV was rejected by the management 

(Probably because of negative NPV). The same project reached a negative 200,000 NPV 

(better NPV) after a few exchanges of the right to the project (sold by the company) and 

less than a 1% decrease in a one-year interest rate. 
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A thorough accounting of costs is essential, but it does not cover all the details 

regarding how a new policy or measurement affects a state or community. Some 

researchers believe that renewable energy sources, even without incentives, are cost-

effective compared to fossil fuels (Johnson et al., 2013). Still, once the time factor is 

added, they might not seem appealing to decision-makers. Therefore, it is crucial to be 

aware that cost-effectiveness is achievable on both axes of economy and time, as shown 

in solar panel installations at Texas State University in 2016 (Mohammadlizadehkorde & 

Weaver, 2020). Also, equal renewable energy policies might not lead to higher efficiency 

in the implementation process (Hafeznia et al., 2017). Hence, the process of site selection 

should precede financial analysis. Other factors, such as the index of readiness, should be 

included in the study (Hafeznia et al., 2017). Depending on the researchers' methodology, 

the analysis may not include a balanced comparison of costs and benefits (EPA, 2018). 

For example, it may include the costs and the quantity of electricity savings but exclude 

the health benefits of emissions reductions (EPA, 2018). Quantifying these benefits 

would accurately highlight the broader value of energy efficiency or renewable energy 

programs. 

8.4 DATA CONFIDENTIALITY 

Energy consumption data is, in many cases, subject to confidentiality. For 

example, the buildings that participated in the U.S. Energy Information Administration’s 

CBECS survey are kept anonymous, and CBECS respondent information is rigorously 

confidential. To guarantee confidentiality, all building identifiers are deleted from the 

data file before the public use microdata file is created, and the location of each building 

is made available only at the Census division level (groups of four to nine states). Also, 
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building features that could identify a particular responding building, such as the number 

of floors, building square footage, and the number of workers in the building, are masked 

to protect the respondent's identity. This shortcoming negatively affected the process of 

identifying energy consumption in comparing HEI to the buildings represented in 

CBECS. 
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APPENDIX SECTION 

 

Appendix 1 
 

""" 

#K-means in Python 

""" 

 

#Initialization 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

#%matplotlib inline 

 

df = pd.DataFrame({ 

 

    'x': [14, 20, 47, 36, 56, 23, 12, 45, 23, 45, 23, 67, 78, 67, 90, 33, 22, 65, 33, 56, 87, 55, 

53, 24, 21, 11, 8], 

    'y': [20, 56, 33, 56, 78, 45, 56, 76, 89, 23, 62, 43, 59, 43, 59, 33, 42, 53, 38, 39, 51, 93, 

27, 31, 12, 56, 16] 
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}) 

 

np.random.seed(200) 

k = 3 

# centroids[i] = [x, y] 

centroids = { 

    i+1: [np.random.randint(0, 100), np.random.randint(0, 100)] 

    for i in range(k) 

} 

 

fig = plt.figure(figsize=(6, 6)) 

plt.scatter(df['x'], df['y'], color='k') 

colmap = {1: 'r', 2: 'g', 3: 'b'} 

for i in centroids.keys(): 

    plt.scatter(*centroids[i], color=colmap[i]) 

plt.xlim(0, 100) 

plt.ylim(0, 100) 

plt.show() 

 

#Assignment 

 

 

def assignment(df, centroids): 
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    for i in centroids.keys(): 

        # sqrt((x1 - x2)^2 - (y1 - y2)^2) 

        df['distance_from_{}'.format(i)] = ( 

            np.sqrt( 

                (df['x'] - centroids[i][0]) ** 2 

                + (df['y'] - centroids[i][1]) ** 2 

            ) 

        ) 

    centroid_distance_cols = ['distance_from_{}'.format(i) for i in centroids.keys()] 

    df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1) 

    df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance_from_'))) 

    df['color'] = df['closest'].map(lambda x: colmap[x]) 

    return df 

 

df = assignment(df, centroids) 

print(df.head()) 

 

fig = plt.figure(figsize=(5, 5)) 

plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') 

for i in centroids.keys(): 

    plt.scatter(*centroids[i], color=colmap[i]) 

plt.xlim(0, 100) 

plt.ylim(0, 100) 
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plt.show() 

 

## Update Stage 

 

import copy 

 

old_centroids = copy.deepcopy(centroids) 

 

def update(k): 

    for i in centroids.keys(): 

        centroids[i][0] = np.mean(df[df['closest'] == i]['x']) 

        centroids[i][1] = np.mean(df[df['closest'] == i]['y']) 

    return k 

 

centroids = update(centroids) 

 

fig = plt.figure(figsize=(5, 5)) 

ax = plt.axes() 

plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') 

for i in centroids.keys(): 

    plt.scatter(*centroids[i], color=colmap[i]) 

plt.xlim(0, 100) 

plt.ylim(0, 100) 
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for i in old_centroids.keys(): 

    old_x = old_centroids[i][0] 

    old_y = old_centroids[i][1] 

    dx = (centroids[i][0] - old_centroids[i][0]) * 0.75 

    dy = (centroids[i][1] - old_centroids[i][1]) * 0.75 

    ax.arrow(old_x, old_y, dx, dy, head_width=2, head_length=3, fc=colmap[i], 

ec=colmap[i]) 

plt.show() 

 

## Repeat Assignment Stage 

 

df = assignment(df, centroids) 

 

# Plot results 

fig = plt.figure(figsize=(5, 5)) 

plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') 

for i in centroids.keys(): 

    plt.scatter(*centroids[i], color=colmap[i]) 

plt.xlim(0, 100) 

plt.ylim(0, 100) 

plt.show() 

 

# Continue until all assigned categories don't change any more 
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while True: 

    closest_centroids = df['closest'].copy(deep=True) 

    centroids = update(centroids) 

    df = assignment(df, centroids) 

    if closest_centroids.equals(df['closest']): 

        break 

 

fig = plt.figure(figsize=(5, 5)) 

plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k') 

for i in centroids.keys(): 

    plt.scatter(*centroids[i], color=colmap[i]) 

plt.xlim(0, 100) 

plt.ylim(0, 100) 

plt.show() 

 

 

Appendix 2 
 

""" 

K-means clustering in R 

""" 

#install bindr 

#install animation 
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library(dplyr) 

PATH <-"C:/Users/milad/Desktop/Database_15_Variables.csv" 

df <- read.csv(PATH)  

glimpse(df) 

 

#Get rid of all non-numeric variables 

 

df$spatial_id <- NULL 

df$Shape_Length <- NULL 

df$Shape_Area <- NULL 

 

glimpse(df) 

 

summary(df) 

 

set.seed(1000) 

library(animation) 

kmeans.ani(df, 3) 

plot (kmeans.ani()) 

Appendix 3 
 

""" 

K-prototypes clustering for mixed categorical and numerical data 

""" 
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# pylint: disable=super-on-old-class,unused-argument,attribute-defined-outside-init 

 

from collections import defaultdict 

 

import numpy as np 

from joblib import Parallel, delayed 

from scipy import sparse 

from sklearn.utils import check_random_state 

from sklearn.utils.validation import check_array 

 

from . import kmodes 

from .util import get_max_value_key, encode_features, get_unique_rows, \ 

    decode_centroids, pandas_to_numpy 

from .util.dissim import matching_dissim, euclidean_dissim 

 

# Number of tries we give the initialization methods to find non-empty 

# clusters before we switch to random initialization. 

MAX_INIT_TRIES = 20 

# Number of tries we give the initialization before we raise an 

# initialization error. 

RAISE_INIT_TRIES = 100 
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def move_point_num(point, to_clust, from_clust, cl_attr_sum, cl_memb_sum): 

    """Move point between clusters, numerical attributes.""" 

    # Update sum of attributes in cluster. 

    for iattr, curattr in enumerate(point): 

        cl_attr_sum[to_clust][iattr] += curattr 

        cl_attr_sum[from_clust][iattr] -= curattr 

    # Update sums of memberships in cluster 

    cl_memb_sum[to_clust] += 1 

    cl_memb_sum[from_clust] -= 1 

    return cl_attr_sum, cl_memb_sum 

 

 

def _split_num_cat(X, categorical): 

    """Extract numerical and categorical columns. 

    Convert to numpy arrays, if needed. 

    :param X: Feature matrix 

    :param categorical: Indices of categorical columns 

    """ 

    Xnum = np.asanyarray(X[:, [ii for ii in range(X.shape[1]) 

                               if ii not in categorical]]).astype(np.float64) 

    Xcat = np.asanyarray(X[:, categorical]) 

    return Xnum, Xcat 
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def _labels_cost(Xnum, Xcat, centroids, num_dissim, cat_dissim, gamma, 

membship=None): 

    """Calculate labels and cost function given a matrix of points and 

    a list of centroids for the k-prototypes algorithm. 

    """ 

 

    n_points = Xnum.shape[0] 

    Xnum = check_array(Xnum) 

 

    cost = 0. 

    labels = np.empty(n_points, dtype=np.uint16) 

    for ipoint in range(n_points): 

        # Numerical cost = sum of Euclidean distances 

        num_costs = num_dissim(centroids[0], Xnum[ipoint]) 

        cat_costs = cat_dissim(centroids[1], Xcat[ipoint], X=Xcat, membship=membship) 

        # Gamma relates the categorical cost to the numerical cost. 

        tot_costs = num_costs + gamma * cat_costs 

        clust = np.argmin(tot_costs) 

        labels[ipoint] = clust 

        cost += tot_costs[clust] 
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    return labels, cost 

 

 

def _k_prototypes_iter(Xnum, Xcat, centroids, cl_attr_sum, cl_memb_sum, cl_attr_freq, 

                       membship, num_dissim, cat_dissim, gamma, random_state): 

    """Single iteration of the k-prototypes algorithm""" 

    moves = 0 

    for ipoint in range(Xnum.shape[0]): 

        clust = np.argmin( 

            num_dissim(centroids[0], Xnum[ipoint]) + 

            gamma * cat_dissim(centroids[1], Xcat[ipoint], X=Xcat, membship=membship) 

        ) 

        if membship[clust, ipoint]: 

            # Point is already in its right place. 

            continue 

 

        # Move point, and update old/new cluster frequencies and centroids. 

        moves += 1 

        old_clust = np.argwhere(membship[:, ipoint])[0][0] 

 

        # Note that membship gets updated by kmodes.move_point_cat. 

        # move_point_num only updates things specific to the k-means part. 

        cl_attr_sum, cl_memb_sum = move_point_num( 
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            Xnum[ipoint], clust, old_clust, cl_attr_sum, cl_memb_sum 

        ) 

        cl_attr_freq, membship, centroids[1] = kmodes.move_point_cat( 

            Xcat[ipoint], ipoint, clust, old_clust, 

            cl_attr_freq, membship, centroids[1] 

        ) 

 

        # Update old and new centroids for numerical attributes using 

        # the means and sums of all values 

        for iattr in range(len(Xnum[ipoint])): 

            for curc in (clust, old_clust): 

                if cl_memb_sum[curc]: 

                    centroids[0][curc, iattr] = cl_attr_sum[curc, iattr] / cl_memb_sum[curc] 

                else: 

                    centroids[0][curc, iattr] = 0. 

 

        # In case of an empty cluster, reinitialize with a random point 

        # from largest cluster. 

        if not cl_memb_sum[old_clust]: 

            from_clust = membship.sum(axis=1).argmax() 

            choices = [ii for ii, ch in enumerate(membship[from_clust, :]) if ch] 

            rindx = random_state.choice(choices) 
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            cl_attr_sum, cl_memb_sum = move_point_num( 

                Xnum[rindx], old_clust, from_clust, cl_attr_sum, cl_memb_sum 

            ) 

            cl_attr_freq, membship, centroids[1] = kmodes.move_point_cat( 

                Xcat[rindx], rindx, old_clust, from_clust, 

                cl_attr_freq, membship, centroids[1] 

            ) 

 

    return centroids, moves 

 

 

def k_prototypes_single(Xnum, Xcat, nnumattrs, ncatattrs, n_clusters, n_points, 

                        max_iter, num_dissim, cat_dissim, gamma, init, init_no, 

                        verbose, random_state): 

    # For numerical part of initialization, we don't have a guarantee 

    # that there is not an empty cluster, so we need to retry until 

    # there is none. 

    random_state = check_random_state(random_state) 

    init_tries = 0 

    while True: 

        init_tries += 1 

        # _____ INIT _____ 

        if verbose: 
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            print("Init: initializing centroids") 

        if isinstance(init, str) and init.lower() == 'huang': 

            centroids = kmodes.init_huang(Xcat, n_clusters, cat_dissim, random_state) 

        elif isinstance(init, str) and init.lower() == 'cao': 

            centroids = kmodes.init_cao(Xcat, n_clusters, cat_dissim) 

        elif isinstance(init, str) and init.lower() == 'random': 

            seeds = random_state.choice(range(n_points), n_clusters) 

            centroids = Xcat[seeds] 

        elif isinstance(init, list): 

            # Make sure inits are 2D arrays. 

            init = [np.atleast_2d(cur_init).T if len(cur_init.shape) == 1 

                    else cur_init 

                    for cur_init in init] 

            assert init[0].shape[0] == n_clusters, \ 

                "Wrong number of initial numerical centroids in init " \ 

                "({}, should be {}).".format(init[0].shape[0], n_clusters) 

            assert init[0].shape[1] == nnumattrs, \ 

                "Wrong number of numerical attributes in init ({}, should be {})." \ 

                .format(init[0].shape[1], nnumattrs) 

            assert init[1].shape[0] == n_clusters, \ 

                "Wrong number of initial categorical centroids in init ({}, " \ 

                "should be {}).".format(init[1].shape[0], n_clusters) 

            assert init[1].shape[1] == ncatattrs, \ 
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                "Wrong number of categorical attributes in init ({}, should be {})." \ 

                .format(init[1].shape[1], ncatattrs) 

            centroids = [np.asarray(init[0], dtype=np.float64), 

                         np.asarray(init[1], dtype=np.uint16)] 

        else: 

            raise NotImplementedError("Initialization method not supported.") 

 

        if not isinstance(init, list): 

            # Numerical is initialized by drawing from normal distribution, 

            # categorical following the k-modes methods. 

            meanx = np.mean(Xnum, axis=0) 

            stdx = np.std(Xnum, axis=0) 

            centroids = [ 

                meanx + random_state.randn(n_clusters, nnumattrs) * stdx, 

                centroids 

            ] 

 

        if verbose: 

            print("Init: initializing clusters") 

        membship = np.zeros((n_clusters, n_points), dtype=np.uint8) 

        # Keep track of the sum of attribute values per cluster so that we 

        # can do k-means on the numerical attributes. 

        cl_attr_sum = np.zeros((n_clusters, nnumattrs), dtype=np.float64) 
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        # Same for the membership sum per cluster 

        cl_memb_sum = np.zeros(n_clusters, dtype=int) 

        # cl_attr_freq is a list of lists with dictionaries that contain 

        # the frequencies of values per cluster and attribute. 

        cl_attr_freq = [[defaultdict(int) for _ in range(ncatattrs)] 

                        for _ in range(n_clusters)] 

        for ipoint in range(n_points): 

            # Initial assignment to clusters 

            clust = np.argmin( 

                num_dissim(centroids[0], Xnum[ipoint]) + gamma * 

                cat_dissim(centroids[1], Xcat[ipoint], X=Xcat, membship=membship) 

            ) 

            membship[clust, ipoint] = 1 

            cl_memb_sum[clust] += 1 

            # Count attribute values per cluster. 

            for iattr, curattr in enumerate(Xnum[ipoint]): 

                cl_attr_sum[clust, iattr] += curattr 

            for iattr, curattr in enumerate(Xcat[ipoint]): 

                cl_attr_freq[clust][iattr][curattr] += 1 

 

        # If no empty clusters, then consider initialization finalized. 

        if membship.sum(axis=1).min() > 0: 

            break 
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        if init_tries == MAX_INIT_TRIES: 

            # Could not get rid of empty clusters. Randomly 

            # initialize instead. 

            init = 'random' 

        elif init_tries == RAISE_INIT_TRIES: 

            raise ValueError( 

                "Clustering algorithm could not initialize. " 

                "Consider assigning the initial clusters manually." 

            ) 

 

    # Perform an initial centroid update. 

    for ik in range(n_clusters): 

        for iattr in range(nnumattrs): 

            centroids[0][ik, iattr] = cl_attr_sum[ik, iattr] / cl_memb_sum[ik] 

        for iattr in range(ncatattrs): 

            centroids[1][ik, iattr] = get_max_value_key(cl_attr_freq[ik][iattr]) 

 

    # _____ ITERATION _____ 

    if verbose: 

        print("Starting iterations...") 

    itr = 0 

    labels = None 
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    converged = False 

 

    _, cost = _labels_cost(Xnum, Xcat, centroids, 

                           num_dissim, cat_dissim, gamma, membship) 

 

    epoch_costs = [cost] 

    while itr <= max_iter and not converged: 

        itr += 1 

        centroids, moves = _k_prototypes_iter(Xnum, Xcat, centroids, 

                                              cl_attr_sum, cl_memb_sum, cl_attr_freq, 

                                              membship, num_dissim, cat_dissim, gamma, 

                                              random_state) 

 

        # All points seen in this iteration 

        labels, ncost = _labels_cost(Xnum, Xcat, centroids, 

                                     num_dissim, cat_dissim, gamma, membship) 

        converged = (moves == 0) or (ncost >= cost) 

        epoch_costs.append(ncost) 

        cost = ncost 

        if verbose: 

            print("Run: {}, iteration: {}/{}, moves: {}, ncost: {}" 

                  .format(init_no + 1, itr, max_iter, moves, ncost)) 
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    return centroids, labels, cost, itr, epoch_costs 

 

 

def k_prototypes(X, categorical, n_clusters, max_iter, num_dissim, cat_dissim, 

                 gamma, init, n_init, verbose, random_state, n_jobs): 

    """k-prototypes algorithm""" 

    random_state = check_random_state(random_state) 

    if sparse.issparse(X): 

        raise TypeError("k-prototypes does not support sparse data.") 

 

    if categorical is None or not categorical: 

        raise NotImplementedError( 

            "No categorical data selected, effectively doing k-means. " 

            "Present a list of categorical columns, or use scikit-learn's " 

            "KMeans instead." 

        ) 

    if isinstance(categorical, int): 

        categorical = [categorical] 

    assert len(categorical) != X.shape[1], \ 

        "All columns are categorical, use k-modes instead of k-prototypes." 

    assert max(categorical) < X.shape[1], \ 

        "Categorical index larger than number of columns." 
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    ncatattrs = len(categorical) 

    nnumattrs = X.shape[1] - ncatattrs 

    n_points = X.shape[0] 

    assert n_clusters <= n_points, "Cannot have more clusters ({}) " \ 

                                   "than data points ({}).".format(n_clusters, n_points) 

 

    Xnum, Xcat = _split_num_cat(X, categorical) 

    Xnum, Xcat = check_array(Xnum), check_array(Xcat, dtype=None) 

 

    # Convert the categorical values in Xcat to integers for speed. 

    # Based on the unique values in Xcat, we can make a mapping to achieve this. 

    Xcat, enc_map = encode_features(Xcat) 

 

    # Are there more n_clusters than unique rows? Then set the unique 

    # rows as initial values and skip iteration. 

    unique = get_unique_rows(X) 

    n_unique = unique.shape[0] 

    if n_unique <= n_clusters: 

        max_iter = 0 

        n_init = 1 

        n_clusters = n_unique 

        init = list(_split_num_cat(unique, categorical)) 

        init[1], _ = encode_features(init[1], enc_map) 
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    # Estimate a good value for gamma, which determines the weighing of 

    # categorical values in clusters (see Huang [1997]). 

    if gamma is None: 

        gamma = 0.5 * Xnum.std() 

 

    results = [] 

    seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) 

    if n_jobs == 1: 

        for init_no in range(n_init): 

            results.append(k_prototypes_single(Xnum, Xcat, nnumattrs, ncatattrs, 

                                               n_clusters, n_points, max_iter, 

                                               num_dissim, cat_dissim, gamma, 

                                               init, init_no, verbose, seeds[init_no])) 

    else: 

        results = Parallel(n_jobs=n_jobs, verbose=0)( 

            delayed(k_prototypes_single)(Xnum, Xcat, nnumattrs, ncatattrs, 

                                         n_clusters, n_points, max_iter, 

                                         num_dissim, cat_dissim, gamma, 

                                         init, init_no, verbose, seed) 

            for init_no, seed in enumerate(seeds)) 

    all_centroids, all_labels, all_costs, all_n_iters, all_epoch_costs = zip(*results) 
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    best = np.argmin(all_costs) 

    if n_init > 1 and verbose: 

        print("Best run was number {}".format(best + 1)) 

 

    # Note: return gamma in case it was automatically determined. 

    return all_centroids[best], enc_map, all_labels[best], all_costs[best], \ 

        all_n_iters[best], all_epoch_costs[best], gamma 

 

 

class KPrototypes(kmodes.KModes): 

    """k-protoypes clustering algorithm for mixed numerical/categorical data. 

    Parameters 

    ----------- 

    n_clusters : int, optional, default: 8 

        The number of clusters to form as well as the number of 

        centroids to generate. 

    max_iter : int, default: 300 

        Maximum number of iterations of the k-modes algorithm for a 

        single run. 

    num_dissim : func, default: euclidian_dissim 

        Dissimilarity function used by the algorithm for numerical variables. 

        Defaults to the Euclidian dissimilarity function. 

    cat_dissim : func, default: matching_dissim 
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        Dissimilarity function used by the kmodes algorithm for categorical variables. 

        Defaults to the matching dissimilarity function. 

    n_init : int, default: 10 

        Number of time the k-modes algorithm will be run with different 

        centroid seeds. The final results will be the best output of 

        n_init consecutive runs in terms of cost. 

    init : {'Huang', 'Cao', 'random' or a list of ndarrays}, default: 'Cao' 

        Method for initialization: 

        'Huang': Method in Huang [1997, 1998] 

        'Cao': Method in Cao et al. [2009] 

        'random': choose 'n_clusters' observations (rows) at random from 

        data for the initial centroids. 

        If a list of ndarrays is passed, it should be of length 2, with 

        shapes (n_clusters, n_features) for numerical and categorical 

        data respectively. These are the initial centroids. 

    gamma : float, default: None 

        Weighing factor that determines relative importance of numerical vs. 

        categorical attributes (see discussion in Huang [1997]). By default, 

        automatically calculated from data. 

    verbose : integer, optional 

        Verbosity mode. 

    random_state : int, RandomState instance or None, optional, default: None 

        If int, random_state is the seed used by the random number generator; 
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        If RandomState instance, random_state is the random number generator; 

        If None, the random number generator is the RandomState instance used 

        by `np.random`. 

    n_jobs : int, default: 1 

        The number of jobs to use for the computation. This works by computing 

        each of the n_init runs in parallel. 

        If -1 all CPUs are used. If 1 is given, no parallel computing code is 

        used at all, which is useful for debugging. For n_jobs below -1, 

        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one 

        are used. 

    Attributes 

    ---------- 

    cluster_centroids_ : array, [n_clusters, n_features] 

        Categories of cluster centroids 

    labels_ : 

        Labels of each point 

    cost_ : float 

        Clustering cost, defined as the sum distance of all points to 

        their respective cluster centroids. 

    n_iter_ : int 

        The number of iterations the algorithm ran for. 

    epoch_costs_ : 

        The cost of the algorithm at each epoch from start to completion. 
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    gamma : float 

        The (potentially calculated) weighing factor. 

    Notes 

    ----- 

    See: 

    Huang, Z.: Extensions to the k-modes algorithm for clustering large 

    data sets with categorical values, Data Mining and Knowledge 

    Discovery 2(3), 1998. 

    """ 

 

    def __init__(self, n_clusters=8, max_iter=100, num_dissim=euclidean_dissim, 

                 cat_dissim=matching_dissim, init='Huang', n_init=10, gamma=None, 

                 verbose=0, random_state=None, n_jobs=1): 

 

        super(KPrototypes, self).__init__(n_clusters, max_iter, cat_dissim, init, 

                                          verbose=verbose, random_state=random_state, 

                                          n_jobs=n_jobs) 

        self.num_dissim = num_dissim 

        self.gamma = gamma 

        self.n_init = n_init 

        if isinstance(self.init, list) and self.n_init > 1: 

            if self.verbose: 

                print("Initialization method is deterministic. " 
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                      "Setting n_init to 1.") 

            self.n_init = 1 

 

    def fit(self, X, y=None, categorical=None): 

        """Compute k-prototypes clustering. 

        Parameters 

        ---------- 

        X : array-like, shape=[n_samples, n_features] 

        categorical : Index of columns that contain categorical data 

        """ 

        if categorical is not None: 

            assert isinstance(categorical, (int, list, tuple)), "The 'categorical' \ 

                argument needs to be an integer with the index of the categorical \ 

                column in your data, or a list or tuple of several of them, \ 

                but it is a {}.".format(type(categorical)) 

 

        X = pandas_to_numpy(X) 

 

        random_state = check_random_state(self.random_state) 

        # If self.gamma is None, gamma will be automatically determined from 

        # the data. The function below returns its value. 

        self._enc_cluster_centroids, self._enc_map, self.labels_, self.cost_, \ 

        self.n_iter_, self.epoch_costs_, self.gamma = k_prototypes( 
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            X, 

            categorical, 

            self.n_clusters, 

            self.max_iter, 

            self.num_dissim, 

            self.cat_dissim, 

            self.gamma, 

            self.init, 

            self.n_init, 

            self.verbose, 

            random_state, 

            self.n_jobs 

        ) 

 

        return self 

 

    def predict(self, X, categorical=None): 

        """Predict the closest cluster each sample in X belongs to. 

        Parameters 

        ---------- 

        X : array-like, shape = [n_samples, n_features] 

            New data to predict. 

        categorical : Indices of columns that contain categorical data 
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        Returns 

        ------- 

        labels : array, shape [n_samples,] 

            Index of the cluster each sample belongs to. 

        """ 

        assert hasattr(self, '_enc_cluster_centroids'), "Model not yet fitted." 

 

        if categorical is not None: 

            assert isinstance(categorical, (int, list, tuple)), "The 'categorical' \ 

                argument needs to be an integer with the index of the categorical \ 

                column in your data, or a list or tuple of several of them, \ 

                but it is a {}.".format(type(categorical)) 

 

        X = pandas_to_numpy(X) 

        Xnum, Xcat = _split_num_cat(X, categorical) 

        Xnum, Xcat = check_array(Xnum), check_array(Xcat, dtype=None) 

        Xcat, _ = encode_features(Xcat, enc_map=self._enc_map) 

        return _labels_cost(Xnum, Xcat, self._enc_cluster_centroids, 

                            self.num_dissim, self.cat_dissim, self.gamma)[0] 

 

    @property 

    def cluster_centroids_(self): 

        if hasattr(self, '_enc_cluster_centroids'): 
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            return [ 

                self._enc_cluster_centroids[0], 

                decode_centroids(self._enc_cluster_centroids[1], self._enc_map) 

            ] 

        else: 

            raise AttributeError("'{}' object has no attribute 'cluster_centroids_' " 

                                 "because the model is not yet fitted.") 
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