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LOCAL ILL-POSEDNESS OF THE 1D ZAKHAROV SYSTEM

JUSTIN HOLMER

Abstract. Ginibre-Tsutsumi-Velo (1997) proved local well-posedness for the

Zakharov system

i∂tu + ∆u = nu

∂2
t n−∆n = ∆|u|2

u(x, 0) = u0(x),

n(x, 0) = n0(x), ∂tn(x, 0) = n1(x)

where u = u(x, t) ∈ C, n = n(x, t) ∈ R, x ∈ R, and t ∈ R. The proof

was made for any dimension d, in the inhomogeneous Sobolev spaces (u, n) ∈
Hk(Rd) × Hs(Rd) for a range of exponents k, s depending on d. Here we

restrict to dimension d = 1 and present a few results establishing local ill-

posedness for exponent pairs (k, s) outside of the well-posedness regime. The
techniques employed are rooted in the work of Bourgain (1993), Birnir-Kenig-

Ponce-Svanstedt-Vega (1996), and Christ-Colliander-Tao (2003) applied to the

nonlinear Schrödinger equation.

1. Introduction

In this paper, we examine the one-dimensional Zakharov system (1DZS)

i∂tu+ ∂2
xu = nu

∂2
t n− ∂2

xn = ∂2
x|u|2,

u(x, 0) = u0(x),

n(x, 0) = n0(x), ∂tn(x, 0) = n1(x)

(1.1)

where u = u(x, t) ∈ C, n = n(x, t) ∈ R, x ∈ R, and t ∈ R. Local well-posedness in
the inhomogeneous Sobolev spaces (u, n) ∈ Hk(R) ×Hs(R) has been obtained by
means of the contraction method in the Bourgain space

‖u‖XS
k,b1

=
( ∫∫

ξ,τ

〈ξ〉2k〈τ + |ξ|2〉2b1 |û(ξ, τ)|2 dξ dτ
)1/2
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by Bourgain-Colliander [1] and Ginibre-Tsutsumi-Velo [7]. 1 In the latter paper,
the following result is obtained.

Theorem 1.1 ([7, Prop. 1.2]). Problem (1.1) is locally well-posed for initial data
(u0, n0, n1) ∈ Hk ×Hs ×Hs−1 provided that

k ≥ 0, s ≥ − 1
2 ;

−1 ≤ s− k < 1
2 , s ≤ 2k − 1

2

Specifically:

(1) Existence. For all R > 0, if ‖u0‖Hk + ‖n0‖Hs + ‖n1‖Hs−1 < R, then there
exist T = T (R) and a solution (u, n) to (1.1) on [0, T ] such that

‖u‖C([0,T ];Hk
x ) ≤ c‖u0‖Hk ,

‖n‖C([0,T ];Hs
x) + ‖∂tn‖C([0,T ];Hs−1

x ) ≤ c〈‖u0‖Hk〉2(‖n0‖Hs + ‖n1‖Hs−1)

and u ∈ XS
k,b1

, where b1 is given by Table 1.
(2) Uniqueness.2 This solution is unique among solutions (u, n) such that

u ∈ C([0, T ];Hk
x ) ∩XS

k,b1 .

(3) Uniform continuity of the data-to-solution map. For a fixed R > 0, taking
T = T (R) as above, the map (u0, n0, n1) 7→ (u, n, ∂tn) as a map from the
R-ball in Hk×Hs×Hs−1 to C([0, T ];Hk

x )×C([0, T ];Hs
x)×C([0, T ];Hs−1

x )
is uniformly continuous.

The region of local well-posedness in this theorem is depicted in Fig. 1. We shall
outline the [7] proof of Theorem 1.1 in §2 since the estimates are needed in the
proof of Theorem 1.2 in §3.

Our goal in this paper is to establish local ill-posedness outside of the well-
posedness strip, in particular near the optimal corner k = 0, s = −1/2. That
is, we consider the region (1) s > 2k − 1

2 (above the strip), and (2) s < −1/2
(below the strip). In the first region, the wave data (n0, n1) is somewhat smoother
than the Schrödinger data u0. As a result, the forcing term ∂2

x|u|2 of the wave
equation, as time evolves, introduces disturbances that are rougher than the wave
data, and the wave solution n does not retain its higher initial regularity. This
is quantified in Theorem 1.2 below. In the second region, the Schrödinger data
u0 is somewhat smoother than the wave data (n0, n1). As a result, the forcing
term nu of the Schrödinger equation introduces disturbances that are rougher than
the Schrödinger data, and the Schrödinger solution u does not retain its higher
initial regularity. This is quantified in Theorem 1.3 and 1.4 below. These simplistic
explanations are, at least, accurate for k > 0. For k < 0, there are possibly multiple
simultaneous causes for breakdown, although we find that our methods still yield
information in this setting.

1Actually, these papers consider, more generally, the system in dimensions d = 2, 3 and d ≥ 1,
respectively.

2(1.1) can be recast as an integral equation in u alone with W (n0, n1) solving (2.2) appearing
as a coefficient. Then, n can be expressed in terms of u and W (n0, n1), and therefore n need not
enter into the uniqueness claim.
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Figure 1. The enclosed gray-shaded strip, which extends infin-
itely to the upper-right, gives the set of pairs (k, s) for which
well-posedness has been established by [7] (see Theorem 1.1) for
(u0, n0, n1) ∈ Hk × Hs × Hs−1. Solid lines are included in the
well-posedness region, while the dashed line is not. Theorem 1.2
provides an ill-posedness result of type “norm inflation in n” inside
the region bounded by the horizontal dotted line s = −1/2, the
slanted line s = 2k − 1

2 , and the vertical dotted line k = 1. Theo-
rem 1.3 provides an ill-posedness result of type “phase decoherence
in u” along the solid vertical line extending down from the point
(0,−3/2).

We will draw upon and suitably modify techniques developed by Birnir-Kenig-
Ponce-Svanstedt-Vega [2], Christ-Colliander-Tao [5], and Bourgain [3], who ad-
dressed ill-posedness issues for the nonlinear Schrödinger equation. For a survey of
ill-posedness results for nonlinear dispersive equations, see Tzvetkov [10].
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Our first result demonstrates that the boundary line s ≤ 2k− 1
2 in Theorem 1.1

is sharp.

Theorem 1.2. Let 0 < k < 1 and s > 2k− 1
2 or k ≤ 0 and s > −1/2. There exists

a sequence φN ∈ S such that ‖φN‖Hk ≤ 1 for all N and the corresponding solution
(uN , nN ) to (1.1) on [0, T ] with initial data (φN , 0, 0) satisfies

‖nN (t)‖Hs
x
≥ ctNα for 0 < t ≤ T, N ≥ ct−1 (1.2)

where α = α(k, s) > 0. The time interval [0, T ] here is independent of N .

The form of ill-posedness appearing in Theorem 1.2 is referred to as “norm
inflation”. The result is first reduced to the case where k > 0 and s is just above
the line s = 2k − 1

2 . In this case, Theorem 1.1 applied with s = 2k − 1
2 (the wave

initial data is 0) provides the existence of a solution (uN , nN ) on a time interval
T , independent of N , with uniform-in-N control on ‖uN‖XS

k,b1
. The estimates of

[7] will enable us to show that uN is comparable to eit∂2
xφN in a slightly stronger

norm than XS
k,b1

(on this fixed in N time interval) and then Theorem 1.2 follows
from the fact that (1.2) holds with nN = �−1∂2

x|uN |2 replaced by �−1∂2
x|eit∂2

xφN |2,
which can be directly verified.3 The proof is given in §3.

Our second theorem demonstrates lack of uniform continuity of the data-to-
solution map, for any T > 0, as a map from the unit ball in Hk ×Hs ×Hs−1 to
C([0, T ];Hk)×C([0, T ];Hs)×C([0, T ];Hs−1) for k = 0 and any s < − 3

2 . We first
show that if one issue is ignored, we can, in a manner similar to [2], make use of an
explicit soliton class to demonstrate that for any T > 0 there are two waves, close
in amplitude on all of [0, T ], initially of the same phase but that slide completely
out of phase by time T . This form of ill-posedness is termed “phase decoherence”.
The soliton class for (1.1) that we use appears in [8] [11]. The “ignored issue”
pertains to low frequencies of n0(x), and can be resolved by invoking the method
of [5] to construct a “near soliton” class offering more flexibility than the exact
explicit soliton class in the selection of n0(x). This is, however, not straightforward
since (1.1) lacks scaling and Galilean invariance, which was used to manufacture
the solution class in [5].

Theorem 1.3. Suppose k = 0, s < − 3
2 . Fix any T > 0 and δ > 0. Then there is

a pair of Schwartz class initial data tuples (u0, n0, 0) and (ũ0, ñ0, 0) giving rise to
solutions (u, n) and (ũ, ñ) on [0, T ] such that the data is of unit size

‖u0‖Hk , ‖n0‖Hs ∼ 1, ‖ũ0‖Hk , ‖ñ0‖Hs ∼ 1

and initially close
‖u0 − ũ0‖Hk + ‖n0 − ñ0‖Hs ≤ δ

but the solutions become well-separated by time T in the Schrödinger variable

‖u(·, t)− ũ(·, t)‖L∞[0,T ]H
k
x
∼ 1 .

We expect that this result can be extended to all k ∈ R and s < −3/2, although
preliminary efforts were abandoned since the computations became very lengthy
and technical. The proof of Theorem 1.3 appears in §5.

Our final theorem employs a method of Bourgain [3].

3w = �−1f is the solution to �w = (∂2
t − ∂2

x)w = f , w(x, 0) = 0, ∂tw(x, 0) = 0.
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Theorem 1.4. For any T > 0, the data-to-solution map, as a map from the unit
ball in Hk ×Hs ×Hs−1 to C([0, T ];Hk) × C([0, T ];Hs) × C([0, T ];Hs−1) fails to
be C2 for k ∈ R and s < −1/2.

This is a weaker form of ill-posedness than the phase decoherence of Theorem
1.3, although it covers the full region below the well-posedness boundary s = −1/2
of [7]. The proof is given in §6.

2. The local theory

We outline and review the local well-posedness argument in [7] since the estimates
will be needed in the proofs of Theorems 1.2, 1.4.

Let [U(t)u0 ]̂(ξ) = e−itξ2
û0(ξ) and

U ∗R f(·, t) =
∫ t

0

U(t− t′)f(t′) dt′

denote the Schrödinger group and Duhamel operators, respectively. Define the
Schrödinger Bourgain spaces XS

k,α, Y S
k by the norms

‖z‖XS
k,α

=
( ∫∫

ξ,τ

〈ξ〉2k〈τ + |ξ|2〉2α|ẑ(ξ, τ)|2 dξ dτ
)1/2

‖z‖Y S
k

=
( ∫

ξ

〈ξ〉2k
( ∫

τ

〈τ + |ξ|2〉−1|ẑ(ξ, τ)| dτ
)2

dξ
)1/2

.

(2.1)

Consider an initial wave data pair (n0, n1). Split n1 = n1L + n1H into low and
high frequencies4, and set ν̂(ξ) = n̂1H(ξ)

iξ , so that ∂xν = n1H . Let

W+(n0, n1)(x, t) = 1
2n0(x− t)− 1

2ν(x− t) + 1
2

∫ x

x−t

n1L(y) dy

W−(n0, n1)(x, t) = 1
2n0(x+ t) + 1

2ν(x+ t) + 1
2

∫ x+t

x

n1L(y) dy

so that

(∂t ± ∂x)W±(n0, n1)(x, t) = 1
2n1L(x)

W±(n0, n1)(x, 0) = 1
2n0(x)∓ 1

2ν(x) .

By setting n = W+(n0, n1) +W−(n0, n1), we obtain a solution to the linear homo-
geneous problem

∂2
t n− ∂2

xn = 0 t, x ∈ R
n(x, 0) = n0(x), ∂tn(x, 0) = n1(x) n = n(t, x) ∈ R

(2.2)

Let

W± ∗R f(x, t) = 1
2

∫ t

0

f(x∓ s, t− s) ds (2.3)

so that

(∂t ± ∂x)W± ∗R f(x, t) = 1
2f(x, t), W±f(x, 0) = 0, ∂tW±f(x, 0) = 1

2f(x, 0) .

4This decomposition is needed, for otherwise the estimate in Lemma 2.1(2) would have to be
modified to have ‖n1‖Hs in place of ‖n1‖Hs−1 on the right-hand side
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It follows that if we set n = W− ∗R f −W+ ∗R f , then we obtain a solution to the
linear inhomogeneous problem

∂2
t n− ∂2

xn = ∂xf t, x ∈ R
n(x, 0) = 0, ∂tn(x, 0) = 0 n(x, t) ∈ R

Define the one-dimensional reduced wave Bourgain spaces XW±
s,α , Y W±

s as

‖z‖
X

W±
s,α

=
( ∫∫

ξ,τ

〈ξ〉2s〈τ ± ξ〉2α|ẑ(ξ, τ)|2 dξ dτ
)1/2

‖z‖
Y

W±
s

=
( ∫

ξ

〈ξ〉2s
( ∫

τ

〈τ ± ξ〉−1|ẑ(ξ, τ)| dτ
)2

dξ
)1/2

.

(2.4)

Let ψ(t) = 1 on [−1, 1] and ψ(t) = 0 outside of [−2, 2]. Let ψT (t) = ψ(t/T ), which
will serve as a time cutoff for the Bourgain space estimates. For clarity, we write
ψ1(t) = ψ(t). We can now recast (1.1) as

i∂tu+ ∂2
xu = (n+ + n−)u x ∈ R, t ∈ R

(∂t ± ∂x)n± = ∓ 1
2∂x|u|2 + 1

2n1L

(2.5)

where n = n+ + n−, which has the integral equation formulation

u(t) = U(t)u0 − iU ∗R [(n+ + n−)u](t)

n±(t) = W±(t)(n0, n1)∓W± ∗R (∂x|u|2)(t) .

Lemma 2.1 (Group estimates).

(1) Schrödinger. ‖ψ1(t)U(t)u0‖XS
k,b1

. ‖u0‖Hk .
(2) 1-d Wave. ‖ψ1(t)W±(t)(n0, n1)‖X

W±
s,b

. ‖n0‖Hs
x

+ ‖n1‖Hs−1
x

.

Lemma 2.2 (Duhamel estimates). Suppose T ≤ 1.

(1) Schrödinger. If 0 ≤ c1 <
1
2 , 0 ≤ b1, b1 + c1 ≤ 1, then ‖ψTU ∗R f‖XS

k,b1
.

T 1−b1−c1‖f‖XS
k,−c1

.

If 0 ≤ b1 ≤ 1
2 , then ‖ψTU ∗R f‖XS

k,b1
. T

1
2−b1(‖f‖XS

k,− 1
2
∩Y S

k
).

‖U ∗R f‖C(Rt;Hk
x ) . ‖f‖Y S

k
.

(2) 1-d Wave. If 0 ≤ c < 1
2 , 0 ≤ b, b + c ≤ 1, then ‖ψTW± ∗R f‖XW±

s,b
.

T 1−b−c‖f‖XW±
s,−c

.

If 0 ≤ b ≤ 1
2 , then ‖ψTW± ∗R f‖XW±

s,b
. T

1
2−b(‖f‖XW±

s,− 1
2
∩Y W±

s
).

‖W± ∗R f‖C(Rt;Hs
x) . ‖f‖Y W±

s
.

Lemma 2.3 ([7, Lemma 4.3/4.5]). Let k, s, b, c1, b1 satisfy

s ≥ −1
2 , k ≥ 0, s− k ≥ −1,

b, c1, b1 >
1
4 , b+ c1 >

3
4 , b+ b1 >

3
4 ,

s− k ≥ −2c1

Then
‖n±u‖XS

k,−c1
∩Y S

k
. ‖n±‖XW±

s,b
‖u‖XS

k,b1
.
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s− k = −1 b1 = 1
2 − ε b = 3

4 − 3ε
c1 = 1

2 c = 1
4 + 2ε

−1 < s− k < −1/2 b1 = s−k
2 + 1− ε b = 3

4 − 2ε
c1 = − s−k

2 c = 1
4 + ε

− 1
2 ≤ s− k ≤ 0 b1 = 3

4 − 2ε b = 3
4 − 2ε

c1 = 1
4 + ε c = 1

4 + ε

0 ≤ s− k < 1
2 b1 = 3

4 − 2ε b = 3
4 −

s−k
2 − 2ε

c1 = 1
4 + ε c = s−k

2 + 1
4 + ε

Table 1. Values of b1, c1, b, c meeting the criteria of Lemmas 2.3,
2.4 for various intervals of s − k. Note that b1 + c1 ≤ 1 − ε and
b+ c ≤ 1− ε in order to capture a factor T ε from Lemma 2.2. Also
note that b1, b > 1

2 and c1, c < 1
2 for all cases except s− k = −1.

Lemma 2.4 ([7, Lemma 4.4/4.6]). Let k, s, c, b1 satisfy

s− 2k ≤ −1
2 , k ≥ 0, s− k < 1

2 ,

c, b1 >
1
4 , c+ b1 >

3
4 ,

s− k ≤ 2b1 − 1, s− k < 2c− 1
2

Then
‖∂x(u1ū2)‖XW±

s,−c∩Y W±
s

. ‖u1‖XS
k,b1

‖u2‖XS
k,b1

.

To obtain Theorem 1.1, fix 0 < T < 1, and consider the maps ΛS , ΛW±

ΛS(u, n±) = ψ1Uu0 + ψTU ∗R [(n+ + n−)u] (2.6)

ΛW±(u) = ψ1W±(n0, n1)± ψTW± ∗R (∂x|u|2) . (2.7)

For T = T (‖u0‖Hk , ‖n0‖Hs , ‖n1‖Hs−1), a fixed point

(u(t), n±(t)) = (ΛS(u, n±),ΛW±(u))

is obtained in XS
k,b1

×XW±
s,b satisfying

‖u‖XS
k,b1

. ‖u0‖Hk (2.8)

‖n‖XW±
s,b

. ‖n0‖Hs + ‖n1‖Hs−1 + ‖u0‖2Hk (2.9)

by applying Lemmas 2.1, 2.2, 2.3, 2.4 with values for b1, c1, b, c given by Table 1.
Consider first the case s − k > −1. We note from Table 1 that b1, b > 1

2 , and
thus we have the Sobolev imbeddings

‖u‖C(Rt;Hk
x ) . ‖u‖XS

k,b1

‖n±‖C(Rt;Hs
x) . ‖n±‖XW±

s,b
.

(2.10)

Also,
∂tn(x, t) = ∂t(n+ + n−)(x, t) = ∂x(−n+ + n−)(x, t) + n1L(x)

and thus
‖∂tn‖C(Rt;H

s−1
x ) . ‖n±‖XW±

s,b
+ ‖n1‖Hs−1 . (2.11)

Similar estimates apply to differences of solutions.
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Consider now the case s − k = −1, where it is necessary to take b1 < 1
2 . We

return to (2.6) and estimate directly using Lemma 2.2 to obtain

‖u‖C(Rt;Hk
x ) . ‖u0‖Hk + ‖n±u‖Y S

k

and by Lemma 2.3,
‖n±u‖Y S

k
. ‖n±‖XW±

k,b
‖u‖XS

s,b1

where b1, b are as specified in the Table 1, and the right-hand side is appropriately
bounded by (2.8), (2.9). The bounds in (2.10), (2.11) apply in this case since b > 1

2 .
We further note that we can re-estimate u in XS

k, 1
2

in (2.6) to obtain

‖u‖XS

k, 1
2

. ‖u0‖Hk + (‖n0‖Hs + ‖n1‖Hs−1 + ‖u0‖2Hk)‖u0‖Hk . (2.12)

3. Wave norm-inflation for s > 2k − 1
2

Here we prove Theorem 1.2. In Steps 1–3, the result will be established for
0 < k < 7

4 and s > 2k − 1
2 but with s near 2k − 1

2 . In Steps 4–5, the general case
of the theorem is reduced to the case considered in Steps 1–3.

Proof. Let 0 < k < 1. Let

φ̂N,A(ξ) = N
1
2−kχ[−N− 1

N ,−N ](ξ)

φ̂N,B(ξ) = N
1
2−kχ[N+1,N+1+ 1

N ](ξ)

Let φN = φN,A + φN,B . Then ‖φN‖Hk ∼ 1. A solution to the integral equation

uN (t) = ψ1(t)U(t)φN − iψT (t)U ∗R {[W+ ∗R (∂x|uN |2)−W− ∗R (∂x|uN |2)] · uN}(t)
(3.1)

provides a solution to (1.1) with initial data (φN , 0, 0) when nN is defined in terms
of uN as

nN = W+ ∗R (∂x|uN |2)−W− ∗R (∂x|uN |2) (3.2)
By working with the estimates in Lemmas 2.3, 2.4 (taking s = k − σ − 1/2 in the
discussion of §2), we obtain a solution uN to (3.1) in XS

k−σ, 3
4−2ε

for 0 ≤ σ ≤ k, on
[0, T ], where T = T (‖φN‖Hk−σ ) (thus independent of N) satisfying

‖uN‖C([0,T ];Hk−σ
x ) ≤ ‖uN‖XS

k−σ, 3
4−2ε

≤ ‖φN‖Hk−σ ∼ N−σ (3.3)

Step 1. We show that

‖[(W+ −W−) ∗R ∂x|UφN |2](t)‖Hs ∼ tNs−(2k− 1
2 ) for N & t−1 (3.4)

That says that (1.2) holds provided uN (t) is replaced by the linear flow U(t)φN in
(3.2).

To show this, note that in the pairing U(t)φNU(t)φN , there are 4 combinations
U(t)φN,jU(t)φN,k, where j, k ∈ {A,B}. We claim that

[W+ ∗R ∂x(UφN,AUφN,B)]̂(ξ, t) ∼ iξtN1−2ke−itξh1(ξ) (3.5)

where h1(ξ) is the “triangular step function” with peak at ξ = −2N − 1 − 1
N , of

width 2
N , and of height 1

N , i.e.

h1(ξ) =

{
ξ − (−2N − 1− 2

N ) if ξ ∈ [−2N − 1− 2
N ,−2N − 1− 1

N ]
(−2N − 1)− ξ if ξ ∈ [−2N − 1− 1

N ,−2N − 1]
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Here, the symbol ∼ means that the difference between the two quantities has Hs

norm of lower order in N . It then follows by taking complex conjugates in (3.5)
that

[W+ ∗R ∂x(UφN,BUφN,A)]̂(t, ξ) ∼ iξte−itξN1−2kh2(ξ) (3.6)

where h2(ξ) is the “triangular step function” centered at 2N + 1 + 1
N , of width 2

N ,
and of height 1

N , i.e.

h2(ξ) =

{
ξ − (2N + 1) if ξ ∈ [2N + 1, 2N + 1 + 1

N ]
(2N + 1 + 2

N )− ξ if ξ ∈ [2N + 1 + 1
N , 2N + 1 + 2

N ]

Hence

‖[W+ ∗R ∂x(UφN,AUφN,B + UφN,BUφN,A)](t)‖Hs
x
∼ tNs−(2k− 1

2 ) (3.7)

We further claim that the AA and BB interactions for the W+ term are of lower
order in N , i.e. specifically,

‖W+ ∗R ∂x(UφN,jUφN,k)(t)‖Hs ≤ Ns−(2k− 1
2 )−1 for j = k = A and j = k = B

(3.8)
Finally, we claim that all of the interactions AA, AB, BA, and BB for the W−
term are of lower order in N , i.e.

‖[W− ∗R ∂x(UφN,jUφN,k)](t)‖Hs ≤ Ns−(2k− 1
2 )−1 for j, k ∈ {A,B} (3.9)

Combining (3.7), (3.8) (3.9) establishes (3.4). We begin by proving (3.5). Note
that

U(t)φN,A(x) = N
1
2−k

∫
ξ1∈[−N− 1

N ,−N ]

eixξ1e−itξ2
1 dξ1

U(t)φN,B(x) = N
1
2−k

∫
ξ2∈[−N−1− 1

N ,−N−1]

eixξ2eitξ2
2 dξ2

after the change of variable ξ2 7→ −ξ2 in the second equation. For the remainder of
the computation, ξ1 is restricted to [−N − 1

N ,−N ] and ξ2 is restricted to [−N −
1− 1

N ,−N − 1]. By (2.3),

W+ ∗R ∂x(UφN,AUφN,B)(t)

= N1−2k

∫ t

s=0

∫
ξ1

∫
ξ2

i(ξ1 + ξ2)ei(x−s)(ξ1+ξ2)e−i(t−s)(ξ2
1−ξ2

2) dξ1dξ2 ds

= N1−2k

∫
ξ1

∫
ξ2

i(ξ1 + ξ2)eix(ξ1+ξ2)eit(ξ2
1−ξ2

2)g(t, ξ1, ξ2) dξ1dξ2

where

g(t, ξ1, ξ2) =
∫ t

s=0

e−is(ξ1+ξ2)eis(ξ2
1−ξ2

2) ds =
eit(ξ1+ξ2)(ξ1−ξ2−1) − 1
i(ξ1 + ξ2)(ξ1 − ξ2 − 1)

Since ξ1 + ξ2 is confined to a 1
N -sized interval around −2N − 1 and ξ1 − ξ2 − 1

is confined to a 1
N -sized interval around 0, we have that (ξ1 + ξ2)(ξ1 − ξ2 − 1) is

confined to a unit-sized interval around 0. By the power series expansion for ez, we
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have g(t, ξ1, ξ2) ∼ t.

[W+ ∗R ∂x(UφN,AUφN,B)(t)]̂(ξ, t)

= N1−2k

∫
ξ1

∫
ξ2

i(ξ1 + ξ2)δ(ξ1 + ξ2 − ξ)e−it(ξ2
1−ξ2

2)g(t, ξ1, ξ2) dξ1 dξ2

Using that e−it(ξ2
1−ξ2

2) = e−it(ξ1−ξ2−1)(ξ1+ξ2)e−it(ξ1+ξ2) ∼ e−it(ξ1+ξ2) and that
g(t, ξ1, ξ2) ∼ t, we obtain (3.5). (3.8) and (3.9) are proved by a similar computation;
we only present the proof of (3.8) in the case j = k = A. For t ∈ [0, T ],

W+ ∗R ∂x(UφN,AUφN,A)(t) =
∫

τ,ξ

ξ eixξ e
itτ − e−itξ

τ + ξ
g(τ, ξ)dτdξ (3.10)

where

g(τ, ξ) =
∫∫

ξ=ξ1+ξ2
τ=τ1+τ2

[ψ1UφN,A ]̂(ξ1, τ1)[ψ1UφN,A ]̂(ξ2, τ2)

=
∫∫

ξ=ξ1+ξ2
τ=τ1+τ2

ψ̂1(τ1 + ξ21)φ̂N,A(ξ1)ψ̂1(τ2 − ξ22)φ̂N,A(−ξ2)

In this integral, ξ1 and ξ2 are each confined to a 1
N sized interval around −N ,

forcing ξ to lie in a 1
N sized interval around −2N . The ψ̂1(τ1 + ξ21) and ψ̂1(τ2− ξ22)

factors then (essentially) restrict τ1 to a unit sized interval around −N2 and restrict
τ2 to a unit sized interval around N2, so that τ is forced to lie within a unit sized
interval around 0. Consequently,

g(ξ, τ)

{
≤ 1

N if (ξ, τ) ∈ [−2N − 2
N ,−2N ]× [−1, 1]

= 0 otherwise

On the support of g(ξ, τ), the factor |τ + ξ| ∼ N . From (3.10),

‖[W+ ∗R ∂x(UφN,AUφN,A)](t)‖Hs

≤ N1−2k
( ∫

ξ

|ξ|2〈ξ〉2s
[ ∫

τ

|g(τ, ξ)|
|τ + ξ|

dτ
]2

dξ
)1/2

≤ Ns−(2k− 1
2 )−1

Step 2. Also, on this time interval [0, T ] independent of N , we claim that

‖uN − ψ1(t)U(t)φN‖XS
k+σ,b1

≤ ‖φN‖2Hk′‖φN‖Hk+σ ∼ N2(k′−k)+σ (3.11)

where

b1 =

{
3
4 −

k+σ
2 if 0 < k + σ < 1

2
1
2 if 1

2 ≤ k + σ < 5
2

k′ =

{
0 if 0 < k + σ < 1

2
k+σ

2 − 1
4 if 1

2 ≤ k + σ < 5
2

(3.12)

Note that 2(k′ − k) + σ will be < 0 provided σ > 0 is not chosen too large. This
says that uN (t) is well-approximated by the linear flow ψ1(t)U(t)φN in the stronger
norm XS

k+σ.
We now prove (3.11). From (3.1),

‖uN − ψ1UφN‖XS
k+σ,b1

≤

{
‖(W± ∗R ∂x|uN |2) · uN‖XS

k+σ,−c1
if 0 ≤ k + σ ≤ 1

2

‖(W± ∗R ∂x|uN |2) · uN‖XS
k+σ,−c1

∩Y S
k+σ

if 1
2 ≤ k + σ ≤ 5

2
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for b1 as defined above and

c1 =

{
1
4 + k+σ

2 if 0 < k + σ < 1
2

1
2 if 1

2 ≤ k + σ < 5
2

Following with Lemma 2.3,

‖uN − ψ1UφN‖XS
k+σ,b1

≤ ‖W± ∗R ∂x|uN |2‖XW±
s′,b

‖uN‖XS
k+σ,b1

where

s′ =

{
− 1

2 if 0 < k + σ < 1
2

k + σ − 1 if 1
2 ≤ k + σ < 5

2

b =

{
1
2 −

k+σ
2 + ε if 0 < k + σ < 1

2
1
4 + ε if 1

2 ≤ k + σ < 5
2

By Lemma 2.4,

‖W± ∗R ∂x|uN |2‖XW±
s′,b

≤ ‖∂x|uN |2‖XW±
s′,−c

≤ ‖uN‖2XS
k′,b′1

where

c = 1− b =

{
1
2 + k+σ

2 − ε if 0 < k + σ < 1
2

3
4 − ε if 1

2 ≤ k + σ < 5
2

b′1 =

{
1
4 + ε if 0 < k + σ ≤ 1

2
k+σ

4 + 1
8 if 1

2 < k + σ < 5
2

and k′, b1 are defined above. Note that b′1 <
3
4 − 2ε. Combining,

‖uN − ψ1UφN‖XS
k+σ,b1

≤ ‖uN‖2XS
k′,b′1

‖uN‖XS
k+σ,b1

≤ ‖uN‖2XS
k′,b′1

‖uN − ψ1UφN‖XS
k+σ,b1

+ ‖uN‖2XS
k′,b′1

‖ψ1UφN‖XS
k+σ,b1

,

which by (3.3) is less than or equal to

‖φN‖2Hk′‖uN − ψ1(t)U(t)φN‖XS
k,b1

+ ‖φN‖2Hk′‖φN‖Hk+σ

Since ‖φN‖Hk′ ∼ N−(k−k′), provided N is taken large enough and k′ < k, (3.11)
will follow.
Step 3. Here, we establish

‖nN (t)‖Hs ≥ tNs−(2k− 1
2 ) for N ≥ t−1

if 0 < k ≤ 1
4 and 2k − 1

2 < s ≤ 4k − 1/2, or if 1
4 ≤ k < 1 and 2k − 1

2 < s ≤ 4
3k + 1

6 .
To show this, we note that by (3.2) and (3.4), it suffices to show that

‖W± ∗R ∂x(|uN |2 − |ψ1UφN |2)(t)‖Hs ≤ 1 .

Writing

|uN |2 − |ψ1UφN |2 = |uN − ψ1UφN |2 + 2 Re [(uN − ψ1UφN )ψ1UφN ]

we see that it suffices to show that
‖[W± ∗R ∂x|uN − ψ1UφN |2](t)‖Hs ≤ 1

‖[W± ∗R ∂x(uN − ψ1UφN )ψ1UφN ](t)‖Hs ≤ 1

‖[W± ∗R ∂x(ψ1UφN · uN − ψ1UφN )](t)‖Hs ≤ 1

(3.13)
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We focus on the middle estimate (3.13); the other two are handled similarly. As
we describe in detail below, by requiring s to lie sufficiently close to (but above)
2k − 1

2 , we can assign σ > 0 such that

s ≤

{
2(k + σ)− 1

2 if 0 < k + σ < 1
2

k + σ if 1
2 ≤ k + σ < 5

2

(3.14)

and
k′ + (k + σ) ≤ 2k (3.15)

where k′ is given in (3.12). Then proceed to estimate the left-hand side of (3.13)
by Lemma 2.2(2) as

‖uN − ψ1UφN‖XS
k+σ,b1

‖ψ1UφN‖XS
k+σ,b1

By Step 2 and Lemma 2.1(1), the above expression is less than or equal to

‖φN‖2Hk′‖φN‖2Hk+σ ∼ N2(k′−k)N2(k+σ−k) .

By (3.15), it follows that the exponent is less than or equal to zero.
We now provide the details assigning σ in terms of k and s. The condition (3.15)

is equivalent to the restriction

σ ≤

{
k if k ≤ 1

4
1
3k + 1

6 if 1
4 ≤ k

(3.16)

The following assignments meet the criteria (3.16) and (3.14).
• If 0 < k ≤ 1

4 , restrict to s such that 2k − 1
2 < s ≤ 4k − 1/2, and set σ = k.

• If 1
4 ≤ k < 1, then restrict to s such that 2k − 1

2 < s ≤ 4
3k + 1

6 and set
σ = 1

3k + 1
6 .

Step 4. Suppose 0 < k < 1 and s > 2k − 1
2 . Let s′ be such that s′ ≤ s and s′

meets the restrictions outlined in Step 3 with s replaced by s′. Then by Steps 1–3
(with s replaced by s′)

‖nN (t)‖Hs ≥ ‖nN (t)‖Hs′ ≥ tNs′−(2k− 1
2 ) for N ≥ t−1

so we can take α = s′ − (2k − 1
2 ) in the statement of the theorem.

Step 5. Next, suppose k < 0 and s > −1/2. By the reasoning of Step 4, it suffices
to restrict to s < 3

2 . Set 0 < k′′ < 1
2s + 1

4 , and note that s > 2k′′ − 1/2. Clearly
‖uN (t)‖Hk ≤ ‖uN (t)‖Hk′′ , so we can just appeal to the conclusion of Steps 1–4
applied with k replaced by k′′. �

4. A preliminary analysis for s ≤ −3
2

Let f(x) =
√

2 sech(x), which is the unique positive ground state solution to

−f + ∂2
xf + |f |2f = 0 (4.1)

Let fλ(x) = λf(λx) and set

uλ,N (x, t) = eit(λ2−N2)eiNx
√

1− 4N2fλ(x− 2Nt)

nλ,N (x, t) = −|fλ(x− 2Nt)|2

From (4.1), it follows that (uλ,N , nλ,N ) solves (1.1) for all λ ∈ R and − 1
2 < N < 1

2 .
This is the exact soliton class appearing in [8] and [11].
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Our next goal is to prove Theorem 1.3 demonstrating phase decoherence ill-
posedness for k = 0, s < − 3

2 . We first, however, settle for a partial result (Propo-
sition 4.1) using a pair from the above exact explicit soliton class. We include this
result since it is clear and straightforward and exhibits the idea behind the proof
of the full result (Theorem 1.3), which is considerably more technical and appears
in the next section.

Define the norm for Hs(|ξ| ≥M) as

‖φ‖Hs(|ξ|≥M) =
( ∫

|ξ|≥M

|ξ|2s|φ̂(ξ)|2 dξ
)1/2

The limitation of the following partial result is the use of Hs(|ξ| ≥ M) and
Hs−1(|ξ| ≥M) norms as opposed to the full Hs and Hs−1 norms.

Proposition 4.1. Suppose s ≤ −3
2 . Fix any T > 0, δ > 0. Then there exist M(δ)

sufficiently large and N(δ) < 1
2 sufficiently close to 1

2 so that if

λ1 = M, λ2 =
√
M2 +

π

2T

then the solutions are of unit size on [0, T ],

‖uλj ,N (·, t)‖L2
x
∼ 1

‖nλj ,N (·, t)‖Hs(|ξ|≥M) ∼ 1, ‖∂tnλj ,N (·, t)‖Hs−1(|ξ|≥M) ∼ 1
(4.2)

and are initially close

‖uλ2,N (·, 0)− uλ1,N (·, 0)‖L2 ≤ δ (4.3)

‖nλ2,N (·, 0)− nλ1,N (·, 0)‖Hs(|ξ|≥M) ≤ δ

‖∂tnλ2,N (·, 0)− ∂tnλ1,N (·, 0)‖Hs−1(|ξ|≥M) ≤ δ
(4.4)

but become fully separated in the u-variable by time T ,

‖uλ2,N (·, T )− uλ1,N (·, T )‖L2 ∼ 1 (4.5)

Proof. We will selectM = M(δ) sufficiently large later. Take 0 ≤ N < 1
2 sufficiently

close to 1
2 so that (1 − 2N)1/2M1/2 = 1. Then since N ∼ 1

2 we have
√

1− 4N2 ∼
(1− 2N)1/2 and noting that λ1 = M and (1− 2N)1/2M1/2 = 1 gives

‖uλ2,N (·, 0)− uλ1,N (·, 0)‖L2 = (1− 2N)1/2
∥∥f̂( ξ

λ2

)
− f̂

( ξ
λ1

)∥∥
L2

ξ

=
∥∥f̂(λ1ξ

λ2

)
− f̂(ξ)

∥∥
L2

ξ

Take M sufficiently large so that λ1/λ2 is sufficiently close to 1 in order to make
the above expression ≤ δ. Thus (4.3) is established. Next, we establish (4.4). By
the change of variable ξ 7→ λ1ξ

‖nλ2,N (·, 0)− nλ1,N (·, 0)‖2Hs(|ξ|≥M)

= λ3+2s
1

∫
|ξ|≥1

∣∣∣λ2

λ1
(f2)̂

(ξλ1

λ2

)
− (f2)̂(ξ)

∣∣∣2|ξ|2s dξ
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Since s ≤ −3
2 we have λ3+2s

1 ≤ 1 and the above difference is made ≤ δ by again
taking M sufficiently large. Also

‖∂tnλ2,N (·, 0)− ∂tnλ1,N (·, 0)‖2Hs−1(|ξ|≥M)

= N2λ3+2s
1

∫
|ξ|≥1

∣∣∣λ2
2

λ2
1

(f2 ′)̂
(ξλ1

λ2

)
− (f2 ′)̂(ξ)

∣∣∣2|ξ|2(s−1) dξ

(Here, the notation ′ indicates the derivative). Since s ≤ − 3
2 we have λ3+2s

1 ≤ 1
and the above difference is made ≤ δ by again taking M sufficiently large. The
statements (4.2) are proved by similar change of variable calculations. The need for
the restrictions to |ξ| ≥M in (4.4) is clear from these calculations. In fact, one can
show that for s < − 1

2 , we have ‖nλ,N (·, 0)‖Hs ∼ λ as λ → +∞ due to the |ξ| ≤ λ
frequency contribution.

Now we establish (4.5). The key observation here is that while λ2 − λ1 is very
small (as M → +∞), λ2

2 − λ2
1 is of fixed size π/(2T ) and thus eiT (λ2

2−λ2
1) = i is

purely imaginary. Now

‖u2(·, T )− u1(·, T )‖2L2 = ‖u2(·, T )‖2L2 + ‖u1(·, T )‖2L2 − 2 Re
∫

x

u2(x, T )u1(x, T ) dx

but the last term on the right-hand side is

−2 Re eiT (λ2
2−λ2

1)(1− 4N2)
∫

x

λ2f(λ2x)λ1f(λ1x) dx = 0

which, combined with (4.2) gives (4.5). �

5. Schrödinger phase decoherence for s < −3/2

Here, we remove the shortcoming of Proposition 4.1 (high frequency truncated
norms Hs(|ξ| ≥M), Hs−1(|ξ| ≥M) used instead of Hs, Hs−1) and prove Theorem
1.3. The soliton class employed in the proof of Proposition 4.1 involved assigning

n(x, t) = −λ2|f |2(λ(x− 2tN))

and thus n̂(ξ, t) = −λ(|f |2)̂(ξ/λ)e−2itNξ. Replace |f |2 in the definition of n by g
defined by ĝ(ξ) = (|f |2)̂(ξ)χ|ξ|≥1(ξ) (i.e. the restriction to frequencies ≥ 1) and set

ñ(x, t) = −λ2g(λ(x− 2tN))

Then
‖ñ(·, t)‖Hs + ‖∂tñ(·, t)‖Hs−1 ≤ 1, as λ→ +∞

Unfortunately, (u, ñ) is no longer a solution to (1.1). We shall thus adapt the
method of Christ-Colliander-Tao [5] to construct a “near soliton” class that grants
more flexibility in the selection of the wave initial data. The method proceeds
by solving a “small dispersion approximation” to the equation, and by introduc-
ing scaling and phase translation parameters, building the “near soliton” class.
The main new obstacle, in comparison to the work of [5] applied to the nonlinear
Schrödinger equation, is that (1.1) does not possess scaling nor the Galilean (phase
shift) identity. We thus need to carry out the small dispersion approximation for
a modified Zakharov system with the property that when scaling and phase shift
operations are performed, the modified Zakharov system is converted into the true
Zakharov system.

Consider fixed initial data (n0, u0) (to be defined later).
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Step 1. The solution to the small dispersion approximation

i∂tv = n0(x)v

with v(x, 0) = u0(x) is

v(x, t) = e−itn0(x)u0(x)

Step 2. For parameters λ� 1, 0 < ν � 1, − 1
2 < N < 1

2 , consider the initial-value
problem for the modified Zakharov system u = u(λ,ν,N), n± = n

(λ,ν,N)
± ,

i∂tu+ ν2∂2
xu = 1

2

[
n0

(
x+

ν(1 + 2N)
λ

t
)

+ n0

(
x− ν(1− 2N)

λ
t
)]
u+ (n+ + n−)u

λ

(1− 2N)ν
∂tn+ + ∂xn+ = − 1

2 (1 + 2N)∂x|u|2

λ

(1 + 2N)ν
∂tn− − ∂xn− = 1

2 (1− 2N)∂x|u|2

u(x, 0) = u0(x), n±(x, 0) = 0
(5.1)

If k ≥ 1 and (implicit constants here depend on ‖u0‖Hk and ‖n0‖Hk)

T . | ln ν|, λ & ν−5 (5.2)

then, on [0, T ], we have the two estimates

‖u‖L∞T Hk
x

. ν−1/2 (5.3)

‖n±‖L∞T Hk−1
x

.
1− 4N2

λ
(5.4)

To show this, note first that

n+ = − 1
2 (1 + 2N)

∫ tµ+

0

∂x|u|2
(
x− s, t− s

µ+

)
ds

n− = 1
2 (1− 2N)

∫ tµ−

0

∂x|u|2
(
x+ s, t− s

µ−

)
ds

where µ+ = ν(1− 2N)/λ and µ− = ν(1 + 2N)/λ, and thus for k ≥ 1,

‖n±‖L∞T Hk−1
x

≤ (1− 4N2)νT
λ

‖u‖2L∞T Hk
x

(5.5)

By the energy method applied to (5.1), we have

‖∂k
xu(T )‖2L2

x
− ‖∂k

xu(0)‖2L2
x

= −Re i
∫ T

0

∫
x

∂k
x [n0(· · · )u] ∂k

xu dx dt− 2 Re i
∫ T

0

∫
x

∂k
x [n±u] ∂k

xu dx dt

= I + II

Term I will be addressed via the Gronwall inequality, while in estimating II we will
produce a small coefficient.

|I| ≤ ‖n0‖Hk

∫ T

0

‖u(t)‖2Hk
x
dt
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Term II is decomposed as

II = −Re i
∑

α+β=k
α≤k−1

cαβ

∫ T

0

∫
x

∂α
xn± ∂

β
xu ∂

k
xu dx dt− 2 Re i

∫ T

0

∫
x

∂k
xn± u ∂

k
xu dx dt

= IIa + IIb

From (5.5),

|IIa| ≤ T‖n±‖L∞T Hk−1
x

‖u‖2L∞T Hk
x
≤ (1− 4N2)νT 2

λ
‖u‖4L∞T Hk

x
(5.6)

while for IIb, we integrate by parts (here ≈ means up to terms bounded similarly
to (5.6))

IIb = 2 Re i
∫ T

0

∫
x

∂k−1
x n± ∂x[u ∂k

xu] dx dt

≈
∫ T

0

∫
x

∂k−1
x n± ∂

k−1
x (iu∂2

xu− iū∂2
xu) dx dt

= − 1
ν2

∫ T

0

∫
x

∂k−1
x n± ∂

k−1
x ∂t|u|2 dx dt

= − 1
ν2

∫
x

∂k−1
x n±(T ) ∂k−1

x |u|2(T ) dx dt+
1
ν2

∫ T

0

∫
x

∂t∂
k−1
x n± ∂

k−1
x |u|2 dx dt

= IIb1 + IIb2

From (5.5), we have

|IIb1| ≤
(1− 4N2)T

λν
‖u‖4L∞T Hk

x

From (5.1), ∂k−1
x ∂tn± = ∓µ±∂k

xn± ∓ 1
2µ±(1± 2N)∂k

x |u|2, so

IIb2 = ±µ±
ν2

∫ T

0

∫
x

∂k−1
x n± ∂

k
x |u|2dx dt

=⇒ |IIb2| ≤
(1− 4N2)T 2

λ2
‖u‖4L∞T Hk

x

All together, (using L2 conservation as well),

‖u(T )‖2Hk
x
≤ ‖u0‖2Hk + ‖n0‖Hk

∫ T

0

‖u(t)‖2Hk
x
dt+ ε‖u‖4L∞T Hk

x

with

ε =
(1− 4N2)T

λ

(T
λ

+
1
ν

+ νT
)
≤ 1
λ1/2

where the last inequality follows from the assumptions (5.2). By the Gronwall
inequality,

‖u‖2L∞T Hk
x
≤ e‖n0‖Hk T (‖u0‖2Hk

x
+ λ−1/2‖u‖4L∞T Hk

x
) (5.7)

Provided that we have

λ−1/2 . e−‖n0‖Hk T ‖u0‖−2
Hk , (5.8)

we obtain, from (5.7) and a continuity in time argument, the bound

‖u‖2L∞T Hk
x
≤ 2e‖n0‖Hk T ‖u0‖2Hk (5.9)
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Now, the assumptions (5.2) imply (5.7); and (5.9) implies (5.3) by the first of the
assumptions in (5.2).
Step 3. With u = u(λ,ν,N) as defined in Step 2, v as defined in Step 1, and (5.2)
satisfied, we claim that

‖u− v‖L∞T Hk
x

. ν

where the implicit constant depends on ‖u0‖Hk+2
x

and ‖n0‖Hk+2
x

. For this, we appeal
to the result of Step 2 at the level of k + 2 derivatives, and then apply the energy
method to the difference u− v in Hk:

‖∂k
x(u− v)(T )‖2L2

x

= −2 Re iν2

∫ T

0

∫
x

∂k+2
x u ∂k

x(u− v) dx dt

− 2 Re i
∫ T

0

∫
x

∂k
x

[
n0

(
x± ν(1± 2N)

λ
t
)
u− n0(x)v

]
∂k

x(u− v) dx dt

− 2 Re i
∫ T

0

∫
x

∂k
x [n±u] ∂k

x(u− v) dx dt

= I + II + III

Direct estimates using (5.3), (5.4) give

|I| ≤ T 2ν4‖u‖2
L∞T Hk+2

x
+ 1

4‖∂
k
x(u− v)‖2L∞T L2

x
≤ cT 2ν3 + 1

4‖∂
k
x(u− v)‖2L∞T L2

x
.

By (5.3) and (5.4),

|III| ≤ T 2‖n±‖2L∞T Hk
x
‖u‖2L∞T Hk

x
+ 1

4‖∂
k
x(u− v)‖2L∞T L2

x

≤ c(1− 4N2)2T 2

λ2ν
+ 1

4‖∂
k
x(u− v)‖2L∞T L2

x

By rewriting

n0

(
x± ν(1± 2N)

λ
t

)
u− n0(x)v

=
[ ∫ ± ν(1±2N)t

λ

0

∂xn0(x+ s) ds
]
u+ n0(x)(u− v)

term II can be estimated as

|II| ≤ ν(1± 2N)T 2

λ
‖n0‖Hk+1‖u‖L∞T Hk

x
‖u− v‖L∞T Hk

x
+ ‖n0‖Hk

x

∫ T

0

‖(u− v)(t)‖2Hk
x
dt

Combining, and applying the Gronwall inequality, we have

‖u− v‖2L∞T Hk
x

. ecT
[ν(1± 2N)2T 4

λ2
+ T 2ν3 +

(1− 4N2)2T 2

λ2ν

]
The result follows from the assumptions (5.2).
Step 4. For − 1

2 < N < 1
2 , set

u(x, t) = λ(1− 4N2)1/2eixNe−itN2
u(λ,ν,N)(λν(x− 2tN), λ2t)

n±(x, t) = λ2n
(λ,ν,N)
± (λν(x− 2tN), λ2t) .

Then (u, n) solves (1.1), with

n(x, t) = n+(x, t) + n−(x, t) + 1
2λ

2n0(λν(x+ t)) + 1
2λ

2n0(λν(x− t))
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and initial data u(x, 0) = λu0(λνx), n(x, 0) = λ2n0(λνx), ∂tn(x, 0) = 0.
Consider 0 < ν � 1 and λ � 1. Since ‖u(λ,ν,N)(x, t)‖L2

x
= ‖u0‖L2

x
for all t, we

have by change of variable

‖u(x, t)‖L2
x

=
λ1/2(1− 4N2)1/2

ν1/2
‖u0‖L2

x

Also, if n̂0(ξ) = 0 for |ξ| ≤ 1 and λν ≥ 1, then another change of variable gives

‖n(x, 0)‖Hs
x
≤ λ

3
2+sνs− 1

2 ‖n0‖Hs
x

If s < −3/2 and λ and ν satisfy

λ ≥ ν−α, with α = max
( 1

2 − s

−s− 3
2

, 5
)

(5.10)

then ‖n(x, 0)‖Hs
x
≤ ‖n0‖Hs .

Step 5. Fix M � 1 and 0 ≤ ν � 1, to be chosen momentarily. In terms of M and
ν, define the following quantities: Let T = | ln ν|/M2, and set

λ1 = M, λ2 =
√

π

2T
+M2

We note that
eiT (λ2

2−λ2
1) = i (5.11)

is purely imaginary. Note further that

λ2

λ1
=

√
π

2| ln ν|
+ 1 → 1, as ν → 0, independently of M (5.12)

Take N sufficiently close to 1/2 so that

(1− 2N)M
ν

= 1 (5.13)

Take u0(x) ∈ S(R) such that u0(x) = 1 for −1 ≤ x ≤ 1, and n0(x) to be the smooth
function given on the Fourier side as

n̂0(ξ) =


0 if |ξ| ≤ 2
π/2 if 2 ≤ |ξ| ≤ 4
0 if |ξ| ≥ 4

so that in fact
n0(x) =

cos 3x sinx
x

Now consider the solutions u(λ1,ν,N) and u(λ2,ν,N) of the modified Zakharov system
given at the beginning of Step 2, both in terms of the data u0(x) and n0(x). Define,
as in Step 4, the (1.1) solution (u1, n1) in terms of u(λ1,ν,N) and (u2, n2) in terms
of u(λ2,ν,N). By the comments at the end of Step 4,

‖uj(x, t)‖L2
x

= 1,

‖nj(x, 0)‖Hs
x

+ ‖∂tnj(x, 0)‖Hs−1
x

≤ 1

where, in order to meet condition (5.10), we need M = M(ν) ≥ ν−α. By a change
of variable and (5.13),

‖u2(x, t)− u1(x, t)‖L2
x

=
∥∥λ2

λ1
u(λ2,ν,N)

(λ2x

λ1
, λ2

2t
)
− u(λ1,ν,N)(x, λ2

1t)
∥∥

L2
x



EJDE-2007/24 LOCAL ILL-POSEDNESS 19

By (5.12) and the fact that ‖u(λ,ν,N)(x, t)‖L2
x

= ‖u0‖L2
x

for all t and uniformly in
all the parameters, we can take ν = ν(δ) > 0 sufficiently small so that

‖u2(x, t)− u1(x, t)‖L2
x

= ‖u(λ2,ν,N)(x, λ2
2t)− u(λ1,ν,N)(x, λ2

1t)‖L2
x

+O(δ)

By the results of Step 1 and 3, again taking ν = ν(δ) sufficiently small, if 0 ≤ t ≤
| ln ν|/M2, then

‖u2(x, t)− u1(x, t)‖L2
x

= ‖(ei(λ2
2−λ2

1)t n0(x) − 1)u0(x)‖L2
x

+O(δ) (5.14)

Here, the first condition of (5.2) is met, since the T appearing there is our λ2
1t ∼

λ2
2t . | ln v|. We see trivially from (5.14) that

‖u2(x, 0)− u1(x, 0)‖L2
x

. δ

But by (5.11) and (5.14) and the choice of u0(x) and n0(x),

‖u2(x, T )− u1(x, T )‖L∞[0,T ]L
2
x

= O(1)

We further note that

T =
| ln ν|
M2

≤ | ln ν|ν4 → 0 as ν → 0

and therefore we can accommodate an arbitrarily small preselected time, T as in
the statement of the theorem.

6. The Schrödinger flow map is not C2 for s < −1/2

In this section, we give the proof of Theorem 1.4. For fixed H∞ data (u0, n0, n1),
to be specified later, and a parameter γ ∈ R. We consider the initial data

(u
∣∣
t=0

, n
∣∣
t=0

, ∂tn
∣∣
t=0

) = (γu0, γn0, γn1)

and the corresponding 1DZS solutions (u, n) = (uγ , nγ). Clearly

u
∣∣
γ=0

= 0, ∂xu
∣∣
γ=0

= 0, ∂2
xu

∣∣
γ=0

= 0, n
∣∣
γ=0

= 0, ∂xn
∣∣
γ=0

= 0 (6.1)

The solution, written in integral equation form, is:

u(t) = U(t)(γu0)− i

∫ t

0

U(t− t′)[(un)(t′)] dt′

n(t) = W (t)(γn0, γn1)± 1
2

∫ t

0

∂x|u|2(x± s, t− s) ds

from which it follows that

∂γu(t) = U(t)u0 − i

∫ t

0

U(t− t′)[(∂γun+ u ∂γn)(t′)] dt′

∂γn(t) = W (t)(n0, n1)± 1
2

∫ t

0

∂x(∂γu ū+ u∂γu)(x± s, t− s) ds
(6.2)

By (6.1),
∂γu

∣∣
γ=0

= Uu0, ∂γn
∣∣
γ=0

= W (n0, n1) (6.3)

By applying ∂x to (6.2) and again appealing to (6.1), we get

∂x∂γu
∣∣
γ=0

= ∂xUu0, ∂γ∂xn
∣∣
γ=0

= ∂xW (n0, n1) (6.4)
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By applying ∂γ to (6.2), we obtain

∂2
γu(t) = −i

∫ t

0

U(t− t′)[(∂2
γun+ 2∂γu ∂γn+ u ∂2

γn)(t′)] dt′

∂2
γn(t) = ±

∫ t

0

∂x(∂2
γu ū+ 2|∂γu|2 + u∂2

γu)(x± s, t− s) ds

from which we find, together with (6.3)(6.4), that

∂2
γu

∣∣
γ=0

(t) = −2i
∫ t

0

U(t− t′)[Uu0(t′) W (n0, n1)(t′)] dt′

∂2
γn

∣∣
γ=0

(t) = ±
∫ t

0

∂x|U(t′)u0|2(x∓ s, t− s) ds

Let X = Hk × Hs × Hs−1, Y = Hk × Hs. Fix t > 0, and let F : X → Y
be the solution map F (u0, n0, n1) = (u(t), n(t)). Let G : R → X be given by
G(γ) = (γu0, γn0, γn1). Let H(γ) = F ◦ G(γ) so that H : R → Y . Then (here
L(A;B) denotes a linear map A→ B)

DH(γ)︸ ︷︷ ︸
L(R;Y )

= DF (G(γ))︸ ︷︷ ︸
L(X;Y )

◦DG(γ)︸ ︷︷ ︸
L(R;X)

Also
D2H(γ) = D2F (G(γ))︸ ︷︷ ︸

B(X×X;Y )

◦(DG(γ)︸ ︷︷ ︸
L(R;X)

, DG(γ)︸ ︷︷ ︸
L(R;X)

) +DF (G(γ))︸ ︷︷ ︸
L(X;Y )

◦ D2G(γ)︸ ︷︷ ︸
B(R×R;X)

and since D2G(γ) = 0,

D2H(γ)(α1, α2) = D2F (G(γ))((α1u0, α1n0, α1n1), (α2u0, α2n0, α2n1))

Hence

D2F (0)((u0, n0, n1), (u0, n0, n1)) = D2H(0)(1, 1) = (∂2
γu

∣∣
γ=0

(t), ∂2
γn

∣∣
γ=0

(t))

We now note how to prescribe an appropriate sequence (uN,0, nN,0, nN,1) (indexed
by N) to show that D2F (0) ∈ B(X ×X;Y ) is not a bounded (continuous) bilinear
map in the two cases (1) s < −1/2 and (2) s > 2k − 1

2 .
• If s < −1/2,

ûN,0(ξ) = N
1
2−kχ[−N− 1

N ,−N ](ξ),

n̂N,0(ξ) = N
1
2−sχ[2N−1,2N−1+ 1

N ](ξ) +N
1
2−sχ[−2N+1− 1

N ,−2N+1](ξ)

and nN,1 = 0, then (uN,0, nN,0, nN,1) is a sequence such that

‖(uN,0, nN,0, nN,1)‖X ∼ 1,

but
‖∂2

γu
∣∣
γ=0

(t)‖Hk ≥ c(t)N−s− 1
2 .

We note that the second term in the definition of n̂N,0(ξ) is included solely
to make n0(x) real.

• If s > 2k − 1
2 and we set

ûN,0(ξ) = N
1
2−k(χ[−N− 1

N ,−N ](ξ) + χ[N+1,N+1+ 1
N ](ξ))
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and nN,0 = 0, nN,1 = 0, then (uN,0, nN,0, nN,1) is a sequence such that
‖(uN,0, nN,0, nN,1)‖X ∼ 1 but

‖∂2
γn

∣∣
γ=0

(t)‖Hs ≥ c(t)Ns−(2k− 1
2 )

The second was considered in §3 as part of the proof of Theorem 1.2, and thus
reproduces a weaker version of that result. We now carry out a proof of the first
case to establish Theorem 1.4. Since

[∂2
γu

∣∣∣
γ=0

(t)]̂(ξ) =
∫ t

0

e−i(t−t′)ξ2
[UuN,0(t′)W (nN,0, 0)(t′)]̂(ξ) dt′ (6.5)

we need to examine

[UuN,0(t′)W (nN,0, 0)(t′)]̂(ξ)

=
∫

ξ1

e−it′ξ2
1 ûN,0(ξ1) cos(t′(ξ − ξ1))n̂N,0(ξ − ξ1) dξ1

= (e−it′N2
cos(t′(2N − 1)) +O(t′))

∫
ξ1

ûN,0(ξ1)n̂N,0(ξ − ξ1) dξ1

by the support properties of uN,0 and nN,0. Directly evaluating the convolution
gives

(e−it′(N−1)2 + e−it′(N2+2N−1) +O(t′))N1−k−sg(ξ)

where g(ξ) = g1(ξ) + g2(ξ) consists of two triangular step functions, each of height
1/N and width 2/N , centered at N − 1 and −3N + 1, respectively. Specifically,

g1(ξ) =

{
1
N − |ξ − (N − 1)| if |ξ − (N − 1)| ≤ 1

N

0 otherwise

g2(ξ) =

{
1
N − |ξ − (−3N + 1)| if |ξ − (−3N + 1)| ≤ 1

N

0 otherwise

We have by the support properties of g1(ξ) and g2(ξ) and (6.5),

[∂2
γu

∣∣∣
γ=0

(t)]̂(ξ)

= +N1−k−sg1(ξ)
∫ t

0

e−i(t−t′)(N−1)2(e−it′(N−1)2 + e−it′(N2+2N−1)) dt′

+N1−k−sg2(ξ)
∫ t

0

e−i(t−t′)(−3N+1)2(e−it′(N−1)2 + e−it′(N2+2N−1)) dt′

+N1−k−sg(ξ)O(t2)

Evaluating each component separately gives

[∂2
γu

∣∣∣
γ=0

(t)]̂(ξ) = N1−k−sg1(ξ)e−it(N−1)2t+N1−k−sg(ξ)(O(t2) +O(N−1))

Thus, provided t is chosen small and N sufficiently large, the first term is pointwise
dominant, giving

‖∂2
γu

∣∣
γ=0

(t)‖Hk ≥ tN− 1
2−s

completing the proof.



22 J. HOLMER EJDE-2007/24

Acknowledgments. I would like to thank Jim Colliander for his clear explanation
of how to construct counterexamples to bilinear estimates and for other helpful dis-
cussion on this topic. Also, I would like to thank Guixiang Xu for carefully reading
§1–3 of the paper and pointing out numerous misprints and an error. Finally, I
would like to thank the anonymous referee for providing several helpful suggestions
for improvement.

References

[1] J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math.

Res. Notices (1996), no. 11, 515–546. MR MR1405972 (97h:35206)

[2] Björn Birnir, Carlos E. Kenig, Gustavo Ponce, Nils Svanstedt, and Luis Vega, On the ill-
posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equa-

tions, J. London Math. Soc. (2) 53 (1996), no. 3, 551–559. MR1396718 (97d:35233)

[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and appli-
cations to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3

(1993), no. 2, 107–156. MR1209299 (95d:35160a)
[4] Michael Christ, James Colliander, and Terence Tao, Asymptotics, frequency modulation, and

low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003),

no. 6, 1235–1293. MR2018661 (2005d:35223)
[5] Michael Christ, James Colliander, and Terence Tao, Ill-posedness for nonlinear Schrödinger

and wave equations, to appear, Ann. Inst. H. Poincaré Anal. Non Linéaire, arxiv.org preprint
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