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ABSTRACT 

Successful defense responses depend on the timely detection of pathogens and 

rapid transcriptional changes of defense genes. These transcriptional changes are mainly 

controlled by transcription factors binding to the regulatory regions of defense genes. To 

track these transcriptional changes and group these into a few related patterns, I analyzed 

the genome-wide expression profiles of Arabidopsis thaliana plants responding to 

Pseudomonas syringae infection at multiple times points. There are two distinct groups 

of defense genes rapidly upregulated or downregulated, reacting to Pseudomonas 

infection. I clustered these highly dynamical genes by their expression patterns into nine 

groups. I analyzed the gene ontology of each cluster and found that up-regulated clusters 

were mostly represented by traditional defense genes and down-regulated ones included a 

significant number of photosynthesis-related genes. Assessment of the promoter 

sequences also found that upregulated and downregulated clusters have distinct groups of 

cis-elements and their potential binding factors. In sum, my thesis research identified nine 

clusters with separable expression patterns and suggested a few candidate master 

regulators in transcriptional reprogramming associated with biotic stress in Arabidopsis. 
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I. INTRODUCTION 

Molecular Mechanism of Arabidopsis-Pseudomonas syringae Interaction 

The ability of plants to defend themselves against pathogens is truly remarkable, 

given that they are incessantly exposed to pathogens and lack dedicated immune cells and 

adaptive somatic variations. Instead, plants depend upon a combination of defense 

mechanisms to defend themselves against a wide range of potential pathogens in an 

autonomous fashion. In addition to physical and chemical defenses, plant Pattern 

Recognition Receptors (PRRs) recognize conserved pathogen-associated molecular 

patterns (PAMPs) to induce PAMP-triggered immunity (PTI) (Jones & Dangl, 2006; 

Chisholm et al., 2006; Sun & Zhang, 2020). Bacterial flagellin is one of the most studied 

PAMPs in plants. In Arabidopsis, the receptor-like kinase FLS2 elicits a defense response 

when it recognizes a conserved, 22-amino acid epitope (flg22) of bacterial flagellin 

(Zipfel et al., 2004; Helft et al., 2016). Like flagellin, many other bacterial PAMPs are 

recognized by plant PRRs. These include bacterial cell wall and cell membrane 

components, bacterial EF-Tu, and bacterial nucleic acids (Newton et al., 2010; Lee et al., 

2016). Responses associated with PTI include increased cytosolic Ca2+ levels and 

activation of MAP kinase cascades (Blume et al., 2000; Ranf et al., 2011). 

Pathogens dampen or evade these PTI responses by secreting effector molecules 

or virulence factors into plants (Figure 1). The highly virulent Pseudomonas syringae pv. 

tomato DC3000 (Pst), which causes disease in tomato, Arabidopsis, and Nicotiana 

benthamiana, possesses over 30 effectors that are delivered by the type III secretion 

system (Chang et al., 2005; Schechter et al., 2006; Cunnac et al., 2011). R proteins 

specifically recognize these effectors to elicit a more rapid and robust immune response 
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known as effector-triggered immunity (ETI) (Jones & Dangl, 2006; Stuart et al., 2013). 

In contrast to PTI, ETI often results in the hypersensitive response (HR), a programmed 

cell death around the area of infection, which diminishes the nutrient supply to the 

pathogen and restrict its mobility, preventing further infection to other parts of the plant 

(Jones & Dangl, 2006; Kang et al., 2008). Additionally, HR is associated with an 

increase in the defense signaling molecule, salicylic acid (SA), and defense gene 

induction, including several pathogenesis-related (PR) genes (Nazar et al., 2017; 

Hadwiger & Tanka, 2017). Contrary to early expectations that R proteins would be 

receptors for effectors, many R proteins detect effectors indirectly, by sensing changes in 

other host proteins that are targeted by pathogen-derived effectors (Van Der Biezen & 

Jones, 1998; DeYoung & Innes, 2006). 

In Arabidopsis, RIN4 interacts with the disease resistance proteins RPS2 and 

RPM1. The phosphorylation of RIN4 by RPM1-induced protein kinase (RIPK) kinase is 

mediated by the P. syringae Type-III effectors AvrB and AvrRpm1 (Liu et al., 2011; 

Mackey et al., 2002). The phosphorylation of RIN4 at threonine residue (T166) inhibits 

RIN4 interaction with ROC1, resulting in conformational changes of RIN4, which 

initiates RPM1-mediated immune signaling (Li et al., 2014). Alternatively, direct 

cleavage of RIN4 by another P. syringae effector AvrRpt2 inhibits RPM1-mediated 

immune signaling (Afzal et al., 2011). RIN4 binding to RPS2 keeping RPS2 inactivated, 

but AvrRpt2-mediated cleavage releases the inhibition of RPS2, triggering immune 

signaling (Day et al., 2005; Kim et al., 2009).  
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Figure 1. The Zig-Zag Model as Described by Jones & Dangl (2006). This schematic 

diagram of plant innate immunity illustrates sequential plant-pathogen interactions. The 

process begins with the recognition of the pathogen-associated molecular patterns 

(PAMPs) by their cognate PRRs generating PTI (PAMP triggered immunity). Pathogen 

effectors can prevent PAMP recognition, resulting in effector-triggered susceptibility 

(ETS). These effectors become avirulence factors if they are detectable by plant NB-LRR 

protein leading to effector-triggered immunity (ETI). ETS and ETI alternate perpetually 

as pathogens loose old effectors and/or acquire new effectors, and plant develops new 

NB-LRR alleles for the new effectors, respectively. 

 

There are many other mechanisms by which plants recognize the presence of 

effectors. For instance, the C-terminal WRKY domain of Arabidopsis RRS1 interacts 

with P. syringae Type-III effector AvrRps4, activating an RPS4-dependent immune 

response (Sohn et al., 2012). However, the purpose of RRS1 WRKY domain binding to 

W-box DNA sequence is not known (Sarris et al., 2015). Also, executor genes are R 

genes that are transcriptionally activated by transcription activator-like effectors (TALEs) 

produced by different Xanthomonas species. TALEs bind to host regulatory DNA 

sequences, promoting host transcription of key susceptibility factors. Executor gene 
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promoters mimic the promoter regions of these susceptibility factors, leading to the 

initiation of defense responses (Malik & Van der Hoorn, 2016). So far, executor genes 

have only been identified in rice and pepper. However, understanding the sequence 

specificity of TALEs has enabled researchers to develop synthetic executor genes 

mediating immunity against Xanthomonas species and other TALE expressing pathogens 

(Ji et al., 2016; Ji et al., 2018). 

Dynamics of Transcription Under Biotic Stress and its Analysis via NGS (Next-

Generation Sequencing) 

Unlike vertebrate immune systems, individual plant cells must respond to 

challenges from pathogens and defense signals from neighboring cells. Mounting a 

successful defense response to pathogen infection depends heavily on the timely and 

accurate detection of the pathogen and the subsequent induction of defense response 

genes (Hoang et al., 2017; Nath et al., 2019). The speed and specificity of the resulting 

global transcriptional changes indicate a significant role of transcription factors (TFs) in 

controlling these changes. Recent studies have considerably enhanced our understanding 

of the genome-wide transcriptional landscape controlling plant defense responses and 

revealed the roles of pathway-specific TFs in the regulation of defense gene expression. 

The coordinated action of gene-specific TFs and the general transcriptional machinery 

contributes to the defense gene response (Li et al., 2016). Also, defense signaling 

components are often transcriptionally upregulated upon MAMP or effector perception to 

ensure robust and sustained defense response. Thus, understanding the transcriptional 

dynamics associated with defense responses under biotic stress enables researchers to 

engineer more effective approaches to control diseases in plants caused by pathogens. To 
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this end, the genome-wide expression profiles of different plants responding to different 

pathogens have been analyzed. Zhang et al. (2018), investigated the gene expression 

patterns of two susceptible poplar subgenera at the initial infection (6 hpi), biotrophic (36 

hpi), and necrotrophic (96 hpi) phases of Marssonina brunnea infection and by so doing 

showed that transcriptome dynamics correlates with disease progression. Guan et al. 

(2020), in a dual RNA-Seq analysis of ginseng roots responding to Ilyonectria robusta 

infection at 36, 72, and 144 hpi, showed that gene expression patterns were highly related 

to physiological conditions and that defense response persisted for at least 144 hpi. 

Transcriptome data for Arabidopsis responding to pathogen infection, though available 

for many pathogens, is often inadequate. Zhu et al., (2013) captured Arabidopsis 

transcriptome dynamics following fungus Fusarium oxysporum infection at 1 day-post-

inoculation (1 dpi) and 6 dpi. They found that most up-regulated genes at the early stages 

of infection mostly peaked at 6 dpi. Although Lewis et al. (2015) examined the high-

resolution time course of genome-wide expression changes in Arabidopsis post-infection 

with Pst, it was limited to virulent and nonpathogenic strains, failing to capture 

expression changes during ETI. Maleck et al. (2001) monitored gene-expression changes 

in Arabidopsis under different SAR-inducing or -repressing conditions but their study. 

However, their study was limited to only 30% of annotated A. thaliana genes. Mine et al. 

(2018) examined dynamics using time-series RNA-sequencing data of Arabidopsis upon 

challenge with virulent and ETI-triggering avirulent strains. They found that resistant 

mutants and wildtype plants achieved the highest defense gene induction at 6 hpi and 24 

hpi in response to avirulent and virulent Pst infections, respectively.  
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Clustering Analysis of Transcription Dynamics 

Clustering analysis is a machine learning strategy whereby data observations are 

partitioned into groups, so that members of each group/cluster are as similar to each other 

as possible but as different from members of other clusters as possible. There are various 

clustering strategies, all of which work differently, usually yield different results, and are 

optimal for specific applications. Clustering algorithms can be classified into broader 

groups: Hierarchical clustering, Partitioning Relocation Clustering, Density-Based 

Partitioning, Grid-Based Methods, Co-Occurrence of Categorical Data, Constraint-Based 

Clustering, Relation to Supervised Learning, Gradient Descent and Artificial Neural 

Networks, Evolutionary Methods (Berkhin, 2006). By grouping genes (observations) 

with similar expression profiles across samples, cluster analyses can provide insights into 

gene functions and networks. However, there have only been a few published 

computational assessments of RNA-Seq data cluster analyses, considering the huge 

amount of RNA-Seq data that has been generated in recent times. 

Self-Organizing Maps (SOM) is an artificial neural network that has been used for 

clustering. SOM does not rely on distributional assumptions, is robust to noise, handles 

very large datasets with ease, allows assessment of all relationships simultaneously, and 

is applicable to data from a wide range of sources. Different implementations of SOM 

have been used for both clustering and visualization of the patterns of DEGs. Cenik et al. 

(2015) trained a SOM map using gene expression (RNA-Seq) and protein level 

(spectrometry) data and found that each neuron within the SOM contains genes that share 

a similar pattern of expression and protein levels. Zhang et al. (2019) by functional 

annotation of SOM-clustered DEGs, revealed an important role for NAC7 in regulating 
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genes in photosynthesis, chlorophyll degradation, and protein turnover pathways that 

each contribute to the functional stay‐green phenotype. 

Hierarchical cluster (hclust) analysis is a widely adopted clustering strategy where 

groups are assigned based on a dissimilarity measure supplied for all observations. 

Hierarchical clustering is most useful where the ideal number of clusters cannot be 

decided at the start of clustering analysis. In RNA-Seq analysis, it is more widely used 

for sample clustering, but there are significant implementations for gene clustering. Nose 

et al. (2020) clustered differentially expressed genes using the hclust function of 

masigPro, thereby highlighting the effects of day length and temperature on genes related 

to growth and starch metabolism in Japanese cedar (Cryptomeria japonica D. Don). 

“mclust” is a powerful and popular R package, which allows modeling of data as 

a Gaussian finite mixture with different covariance structures and different numbers of 

mixture components for a variety of analyses (Scrucca et al., 2016). It has been used in a 

broad range of contexts, including DNA sequence analysis (Verbist et al., 2015) and gene 

expression data (Nagoshi et al., 2004; Fraley & Raftery, 2006). Coolen et al. (2016) in 

monitoring the dynamics of co‐expressed gene clusters in Arabidopsis, highlighted 

specific mclust-generated clusters and biological processes of which the timing of 

activation or repression was altered by prior stress.  

Growth-Defense Balance in Plants 

Comparative analysis of Arabidopsis transcriptional changes in response to 

treatment with Pst and its nonpathogenic strains at different time points has revealed that 

defense responses are initiated before pathogen multiplication (Mishina, 2007; Lewis et 

al., 2015). The early-induced genes are related to defense responses and salicylic acid 
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(SA) biosynthesis (ref). In contrast, genes associated with photosynthesis-related 

processes are significantly suppressed, suggesting that plants may actively reduce the 

production of photosynthates to restrict the resources available for pathogen growth as an 

additional defense mechanism (Lewis et al., 2015). Transcriptional changes of 

photosynthetic genes are of greater interest because the chloroplast is implicated in the 

defense response in several ways. Also, SA-dependent induction of pathogenesis-related 

(PR) genes and the HR is often dependent on light, but not functional chloroplasts 

(Goodman & Novacky, 1994; Dangl et al., 1996; Griebel & Zeier, 2008). The growth-

defense trade-off (Figure 2) has a significant impact on the agriculture industry since both 

processes are vital for increased plant fitness and thus has an influence on crop yields. A 

better understanding of this process could allow researchers to develop breeding 

strategies to optimize/maximize crop yield and meet the rising global food and biofuel 

demands. Therefore, I investigated the cis-regulatory control of transcriptional control in 

Arabidopsis following infection with virulent and avirulent strains of Pst. 

 

Figure 2. Illustration of Growth-Defense Trade-off in Plants. Growth and defense 

response to biotic and non-abiotic stressors are resource intensive processes. To 

maximize their chances of survival, plants prioritize defense response during pathogen 

infection, thus reducing the resources available for growth. Once defense response is 

complete, growth takes precedence and is referred to as the growth–defense tradeoff. 
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II. MATERIALS AND METHODS 

Sample Preparation and Collection 

To monitor transcriptome dynamics in Arabidopsis under biotic stress, Bordiya et 

al. (unpublished) performed RNA sequencing (RNA-Seq). This technique uses next-

generation sequencing (NGS) to measure the presence and abundance of messenger RNA 

in a biological sample at a given moment. Arabidopsis thaliana L. ecotype Columbia 

(Col-0) plants were grown in soil at 22 °C, 60 % relative humidity, and at 16/8-hour 

light/dark cycle until sample collection. Three-and-half-week-old plants were syringe-

infiltrated with 10mM MgCl2 (Mock), VirPst (5x105 cfu/mL), or AvrPst (5x105 cfu/mL) 

using a needleless syringe, and harvested 1, 6, 24, and 48 hours post-infection (hpi) for 

preparing RNA. These treatments served to highlight differences in response to avirulent 

and virulent pathogen infection at early and latter time points. Additionally, uninfected 

plants (Naïve) and Mock treated plants served to reveal changes due to non-biotic 

disturbances during infection. Total RNA from the leaf tissue was extracted using 

PureLink RNA mini kit (Ambion). mRNAs were enriched with the polyA mRNA 

Magnetic Isolation Module (NEB). According to the manufacturer's protocol, enriched 

RNAs were reverse transcribed, end-repaired, and adapter-ligated using an RNA library 

preparation kit (NEB). Adapter ligation was performed with sample‐specific barcodes. 

RNA‐seq libraries were sequenced using an Illumina HiSeq 4000 at the UT Austin 

Genomic Sequencing and Analysis Facility (GSAF). 

RNA-Seq Data Processing 

Raw single-end sequence reads (100 bp) were de-multiplexed and sequencing 

quality was examined using FastQC v0.11.7 (Andrews, 2010). Raw reads were trimmed 
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for adapters using the Cutadapt software v.2.4 (Martin, 2011). Trimmed sequences of at 

least 40 bp for each sample were aligned to the Arabidopsis Araport11 (Cheng et al., 

2017) reference genome and transcriptome annotation using Hisat2 v2.1.0 (Kim et al., 

2019) with the --dta option and all other parameters set to default. SAM output files were 

compressed to BAM format and sorted using Samtools v1.9 (Li et al., 2009). All 

mapping statistics were obtained using Samtools. Aligned reads for each sample were 

assembled and merged based on the loci to which they mapped using Stingtie v2.1.3b 

(Pertea et al., 2016) using default parameters with the option to natively estimate 

transcript abundance in FPKM. Alternatively, the prepDE.py (python) script, provided by 

the authors of Stringtie, was used to extract read count information. Principal components 

were computed using prcomp from the R package Stats v3.6.2 (Team & Worldwide, 

2002). The first 3 principal components were visualized using the R package 

Scatterplot3D v0.3-41 (Ligges & Mächler, 2002). 

Differential Expression Analysis 

Identification of differentially expressed genes between select conditions was 

achieved using the R package edgeR v3.30.3 (Robinson et al., 2010) with a cut-off 

criterion of 0.5 > log2(fold change) or log2(fold change) > 2; and Benjamini-Hochberg 

false discovery rate (FDR) < 0.05. edgeR employs the “Trimmed Mean of M-values” 

(TMM) normalization of libraries, which is recommended for RNA-Seq data where the 

majority (more than half) of the genes are believed to not be differentially expressed 

between any pair of the samples (Robinson & Oshlack, 2010). TMM normalized 

pseudocounts generated by edgeR were visualized as boxplots using the R Graphics 

v3.6.2 package (Murrelle, 2018). I tested the hypothesis that gene expression values of 
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VirPst and AvrPst infected plants are not equal to Mock expression values at any of the 

selected time points, after accounting for basal (Naïve) expression values. I also tested 

the hypothesis that expression values of VirPst and AvrPst infected plants are not equal. 

Counts of VirPst and AvrPst-induced DEGs per timepoint were visualized as bar plots 

using ggplot2 v.3.3.2 in R (Wickham, 2011).  

Cluster Analysis of Genes Based on Transcriptional Dynamics 

DEGs found in the differential expression analysis were pooled and clustered 

using three algorithms: the hclust and mclust options from the R package masigPro 

v1.60.0 (Nueda et al., 2014), and the SOM function from the kohonen v3.10.0 package 

(Wehrens & Kruisselbrink, 2018). For masigPro based clustering, a regression fit (Q = 

0.05, and θ = 10) was generated for all genes from which the best fit was selected using 

the T.fit function with default values. Significant genes (R2 = 0.5) were extracted using 

the get.siggenes function. Significant genes were then clustered with the see.genes 

function cluster.method options: “Mclust” with k.mclust set to TRUE, and “hclust” with 

k set to 9. For kohonen, the expression matrix was scaled along genes, allowing a focus 

on the differences in the expression patterns instead of expression magnitude, and 

clustered into 9 hexagonal units using the SOM function. All gene expression profile 

visualizations were done using ggplot2. I visually examined individual genes in each 

SOM cluster, selecting for genes that showed high conformance to the mean expression 

profile for all genes in their SOM-assigned clusters.  

GO Enrichment Analysis of DEGs in Up- and Down-regulated Clusters 

Using the elim algorithm with fisher test statistic, topGO package in R (Alexa & 

Rahnenführer, 2009) was used to functionally annotate each cluster against the BioMart 
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database (www.plants.ensembl.org). The top 25 functional GO terms sorted by p-values 

for up- and down-regulated clusters were visualized using ggplot2.  

Promoter Motif Analysis of Genes in Up- and Down-Regulated Clusters 

An upstream sequence in 1kb from the transcriptional start site of all DEGs were 

collected. The collected sequences were sorted into their gene clusters and analyzed using 

MEME suite v5.1.1 tools (Bailey et al., 2009). Using MEME, the motifs appearing in 

most, but not all, sequences (ZOOPS) were collected. Motifs 5 to 25 bp in length, with an 

E-value less than 0.05, were selected. To remove false positives, all sequences collected 

were reshuffled and run through MEME using identical parameters.  

Prediction of Binding Factors for Promoter Motifs in Up- and Down-regulated 

Defense Genes  

Using the AME (Mc-Leay & Bailey, 2010; Franco-Zorrilla et al., 2014) 

implementation in the MEME suite, I tested for the enrichment of known motifs from the 

JASPAR Core Plants (2018) database (Khan et al., 2018), with one-tailed Fisher's exact 

test. E-value was computed as the p-value multiplied by the number of motifs in the input 

with all other parameters were set to default. Only motifs with enrichment E-values no 

greater 10 were be reported.  
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III. RESULTS 

General Statistics and Features of RNA-Seq Data 

The Bordiya et al. (unpublished) RNA-seq dataset totalled approximately 260 

million single-end raw reads across all 39 libraries, with an average of about 6.7 million 

reads per library (Table 1). I confirmed adequate sequencing quality using FastQC; 

average QC30 was 38. Raw reads were then trimmed using Cutadapt to remove the 

TruSeq Indexed adaptor sequences, discarding reads in 40 bases or shorter (Martin, 

2011). I obtained an average of about 6.6 million clean reads per library (Table 1). The 

trimmed reads were then mapped to the most updated Arabidopsis genome sequence, the 

Araport11 version, using Hisat2 with pre-defined default parameters (Kim et al., 2019). 

The Hisat2 “--dta” option was used to tailor reported alignments for downstream 

transcript assembly. I obtained an average of about 6.2 million uniquely mapped reads 

per library (Table 1).  For mapping statistics and further analysis of the alignment files, 

Samtools was employed. 

Table 1. RNA-Seq mapping statistics for Naïve, Mock, VirPst, and AvrPst treated 

samples, 0, 1, 6, 24, and 48 hpi. 

Sample Reads Total 

Trimmed 

Reads 

% 

Trimmed 

Reads 

Uniquely 

Mapped 

Reads 

%Uniquely 

Mapped 

Reads 

Naïve 0H 1 5,812,201 5,802,980 99.8 5,344,584 92.1 

Naïve 0H 2 3,415,509 3,401,414 99.6 3,158,733 92.9 

Naïve 0H 3 4,983,229 4,967,408 99.7 4,597,229 92.5 

Mock 1H 1 5,875,430 5,871,964 99.9 5,531,159 94.2 

Mock 1H 2 4,085,346 4,082,196 99.9 3,807,495 93.3 

Mock 1H 3 3,776,990 3,761,627 99.6 3,516,162 93.5 

Mock 6H 1 3,652,154 3,645,568 99.8 3,382,596 92.8 

Mock 6H 2 5,388,944 5,380,253 99.8 5,007,911 93.1 

Mock 6H 3 6,956,521 6,939,067 99.7 6,488,710 93.5 
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Mock 24H 1 4,144,931 4,135,494 99.8 3,868,920 93.6 

Mock 24H 2 14,684,730 11,948,208 81.4 11,114,939 93.0 

Mock 24H 3 1,752,481 1,749,406 99.8 1,628,793 93.1 

Mock 48H 1 3,726,323 3,718,673 99.8 3,419,213 91.9 

Mock 48H 2 7,505,290 7,479,182 99.7 6,883,290 92.0 

Mock 48H 3 5,102,323 5,067,416 99.3 4,714,937 93.0 

VirPst 1H 1 5,315,963 5,289,047 99.5 4,962,448 93.8 

VirPst 1H 2 8,600,003 8,591,597 99.9 8,065,883 93.9 

VirPst 1H 3 3,023,770 3,019,798 99.9 2,818,531 93.3 

VirPst 6H 1 3,723,865 3,721,826 99.9 3,505,309 94.2 

VirPst 6H 2 3,030,673 3,026,907 99.9 2,833,554 93.6 

VirPst 6H 3 3,597,449 3,550,066 98.7 3,302,347 93.0 

VirPst 24H 1 2,233,772 2,231,424 99.9 2,098,356 94.0 

VirPst 24H 2 6,381,613 6,274,089 98.3 5,894,486 93.9 

VirPst 24H 3 5,487,959 5,473,516 99.7 5,144,169 94.0 

VirPst 48H 1 17,393,736 17,364,187 99.8 16,400,392 94.4 

VirPst 48H 2 8,013,363 7,977,830 99.6 7,448,915 93.4 

VirPst 48H 3 8,349,134 8,341,808 99.9 7,813,445 93.7 

AvrPst 1H 1 6,580,425 6,568,656 99.8 6,175,938 94.0 

AvrPst 1H 2 7,123,224 7,104,395 99.7 6,643,894 93.5 

AvrPst 1H 3 7,173,509 7,158,596 99.8 6,725,074 93.9 

AvrPst 6H 1 8,688,143 8,677,834 99.9 8,151,549 93.9 

AvrPst 6H 2 21,546,807 21,511,849 99.8 20,257,452 94.2 

AvrPst 6H 3 2,900,782 2,895,162 99.8 2,653,631 91.7 

AvrPst 24H 1 1,518,056 1,516,482 99.9 1,382,251 91.1 

AvrPst 24H 2 11,692,560 11,660,692 99.7 10,946,863 93.9 

AvrPst 24H 3 9,217,883 9,211,194 99.9 8,720,200 94.7 

AvrPst 48H 1 1,675,810 1,673,572 99.9 1,552,306 92.8 

AvrPst 48H 2 14,506,721 14,494,538 99.9 13,631,731 94.0 

AvrPst 48H 3 11,626,677 11,621,795 100.0 10,868,194 93.5 

Total 260,264,299 256,907,716   240,461,589   

Sample ID contains treatment, hpi, and replicate information. Uniquely mapped reads are 

mapped to only one region of the Arabidopsis genome. 

 

I assembled and merged reads aligned to distinct gene loci within the Arabidopsis 

genome using Stringtie with default parameters (Pertea et al., 2015). Estimates of 

transcript abundances (in FPKM) and counts tables were natively generated by Stringtie.   
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For the comparison of the expression value distribution, normalized counts were 

visualized as boxplots using R Graphics (Figure 3). To examine the level of 

similarity/dissimilarity in the gene expression profiles of the different treatments and time 

points, a principal component analysis (PCA) was performed using the Stats package and 

visualized as 3D plots in R. (Figure 4). 

 

Figure 3. Distribution of Normalize Reads in the RNA-seq Datasets Using Box Plot 

Representation. Box plots representing log 2 TMM normalized gene expression 

distributions for all CDS in Naïve (green), Mock (blue), VirPst (purple), and AvrPst 

(orange) treated samples. All samples showed a comparable range of gene expression. 

 

 

Genes are Responsive to VirPst and AvrPst Treatments 

I applied a count-based negative binomial model implemented in the R package 

“edgeR”, to identify genes that are differentially expressed during the plant biotic stress 

response (Robinson et al., 2010). I compared gene expression between VirPst and Mock, 

AvrPst and Mock, and VirPst and AvrPst, identifying 2,613, 3,062, and 2,766 

differentially expressed genes (DEGs) (adjusted-p < 0.05), respectively. In total, 4,306 

DEGs were found, out of which 2,310 were up-regulated while 2,038 were down-
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regulated at any of the sampled time points. Amongst these DEGs 1, 3,166, 2,151, and 

1,776 were differentially expressed at 1, 6, 24 and 48 hpi, respectively (Figure 5). The 

majority of the genes up- or down-regulated in response to VirPst treatment were also up-

regulated or down-regulated by AvrPst treatment, while others were unique to each 

treatment (Figure 6). 

  

   

     

Figure 4. Principal Component Analysis Showing Correlation Among Different 

Treatments. Three-dimensional PCA scatter plot of FPKM normalized gene expression 

in Naïve (green), Mock (blue), VirPst (purple), and AvrPst (orange) treated samples at 0, 

1, 6, 24, and 48 hpi. The percentages on each axis represent the percentages of variation 

explained by the first, second, and third principal components, respectively. 
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Figure 5. Bar Plot Showing Counts of DEGs at 1, 6, 24, and 48 Hours Post-infection 

with Mock, VirPst, and AvrPst. Up-regulated genes (grey bar) are significantly induced 

(fold change >= 2; FDR < 0.05) while down-regulated genes (black bars) are 

significantly repressed (fold change <=0.5; FDR < 0.05) in pathogen treated samples as 

compared to Naïve and Mock treated samples. 

 

 

 

 

 

 

Figure 6. Bar Plot Showing Overlaps of DEGs between Pathogen Treatments. VirPst 

induced/repressed DEGs (black) overlap with AvrPst induced/repressed DEGs (white) 

and the overlaps are represented by the grey sections. 
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Defense Genes Displaying Dynamic Transcriptional Changes 

I decided to group DEGs based on the similarity of their expression patterns in 

response to biotic stress using unsupervised clustering. To evaluate each clustering 

strategy for our data set, I tested three clustering strategies as implemented in masigPro 

and kohonen R packages. Using model-based clustering (mclust), hierarchical clustering 

(hclust), and self-organized maps (SOM), I obtained 8, 9, and 9 distinct gene clusters, 

respectively. To examine the reliability of these clustering algorithms, I further resolved 

each cluster generated by the algorithms into sub-clusters; i.e., another clustering round 

of each cluster was performed to see if a different pattern emerges. I define accuracy here 

as the tendency of clusters from each algorithm to maintain their representative 

expression patterns upon sub-clustering. I obtained 77 %, 58 %, and 91 % accuracy from 

mclust, hclust, and SOM, respectively (Figure 8). Our results suggest that SOM was the 

most reliable algorithm for clustering our RNA-seq data. 

Five out of the nine SOM clusters comprised genes up-regulated (U1, U2, U3, 

U4, and U5) to different extents by the treatments. The four remaining clusters were 

down-regulated (D1, D2, D3, and D4; Figure 9). The nine clusters of DEGs showed the 

following characteristics: 

U1. minimum induction by Mock at 6 hpi; rapid but brief induction by AvrPst at 6 hpi; a 

gradual and long-lasting induction by VirPst till 48 hpi; 

U2. brief suppression at 1 hpi by all treatment; marginal induction around two-fold by 

Mock treatment at 6 hpi followed by gradual decrease; comparable induction by 

AvrPst and VirPst at 6 hpi, followed by suppression by AvrPst while further increase 

by VirPst; 



 19 

U3. brief and notable induction by all treatments at 1 hpi; rapid but brief induction by 

AvrPst at 6 hpi; gradual induction by AvrPst peaking at 24 hpi; 

U4. marginal induction by Mock at 1 hpi; gradual and sustained induction by AvrPst 

peaking at 24 hpi; gradual and sustained induction by VirPst treatment till 48 hpi; 

U5. significant induction by all treatments at 1 hpi; basal level afterward by Mock; 

gradual decrease till 48 hpi by AvrPst; rapid reduction to basal level at 6 hpi, 

followed by another peak at 24 hpi by VirPst; 

D1. repressed by all treatments at 1 hpi; further suppression by AvrPst till 6 hpi; while 

returning to the pre-treatment level, marginal induction at 6 hpi by VirPst and Mock; 

additional suppression by VirPst at 24 hpi; 

D2. repressed by all treatments at 1 hpi; further suppression by AvrPst till 6 hpi; return to 

the pre-treatment level by VirPst and Mock while additional suppression by VirPst at 

24 hpi; 

D3. minimally induced by all treatments at 1 hpi; return to the pre-treatment level by 6 

hpi by Mock; rapid suppression at 6 hpi and gradual recovery by AvrPst; gradual 

sustained suppression at 24 and 48 hpi; and 

D4. highly expressed genes before treatment; most rapidly repressed by AvrPst peaking 

at 6 hpi; marginal decrease at 6 hpi by Mock; gradual and sustained decrease by 

VirPst till 48 hpi. 

To further improve confidence in the clusters, I manually examined expression 

profiles for the clustered genes. I filtered for genes whose expression profiles mimicked 

the expression profile of their SOM-assigned cluster (Figure 10). The high-conforming 

genes within each cluster were superimposed and visualized. 
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To functionally categorize our gene clusters, I performed GO analysis using the 

topGo package in R. The most significantly enriched GO terms in the up-regulated 

clusters are stress response-related (Figure 11). For the down-regulated gene clusters, the 

most significantly enriched GO term was photosynthesis. 
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C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Test Accuracy of Clustering Algorithms by Sub-clustering. (A) hclust, (B) 

mclust, and (C) SOM generated clusters were further resolved, resulting in 9 clusters for 

each cluster. Y-axes represent mean feature kilobase per million reads mapped (FPKM) 

within sub-clusters, whereas X-axes represent hpi. Colored lines depict the mean 

expression profiles for each treatment within the clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Contrasting Gene Expression Profiles of SOM Clusters at 0, 1, 6, 24, and 

48 hpi. Y-axes represent mean feature kilobase per million reads mapped (FPKM) within 

each cluster, whereas horizontal axes represent hpi. Colored lines depict the expression 

profiles for each treatment within the clusters. 

 

 

down-regulated up-regulated 
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Figure 9. Clustering Improved by Manual Inspection. Member genes of each SOM 

cluster were manually checked to ensure that they were assigned to the right clusters. 

Poorly conforming genes were discarded, and the surviving genes plotted individually. 

Y-axes represents feature kilobase per million reads mapped (FPKM), whereas horizontal 

axes represent hpi. Colored lines depict the expression profiles for each treatment within 

the clusters. 

up-regulated 

down-regulated 
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Figure 10. Dot Plot of Enriched GO Terms in each Cluster. GO enrichment analysis 

of DEGs was retrieved using topGO. The top 25 most significantly (p < 0.05) enriched 

GO terms in biological process are plotted in descending order of the significant gene 

number. The size of the dots represents the number of DEGs enriched in each GO term in 

each cluster and the color of the dots represent the adjusted p-values. 
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Binding Motifs of Transcription Factor (TF) Binding Sites 

I sought to provide insight into the TF-mediated control of gene expression during 

biotic stress challenge to Arabidopsis by performing a detailed analysis of cis-elements 

within promoter regions of each expression cluster. For each cluster, I analyzed promoter 

sequences, 1 kb upstream of TSS, of associated genes for common motifs, using the 

MEME tool. I found 4, 3, 3, 3, and 5 significant motifs in U1, U2, U3, U4, and U5 

clusters, respectively (Figure 12). For the down-regulated clusters, I found 4, 4, 3, and 5 

significantly enriched motifs in D1, D2, D3, and D4 clusters, respectively. 

I further enriched for known transcription factor binding sites in the JASPAR 

Core Plants (2018) database, using the AME tool from MEME suite. TF binding sites 

with an E-value not less than 10 were selected as known TF binding sites enriched in 

each cluster (Table 2). These TF binding sites were sorted by their likelihood to be false 

positives, which is given as the percentage of motifs labeled as positive (Pos) and 

classified as a true positive (TP). These results were visualized as dot plots, with the color 

of the dots representing the motif binding affinity calculated as p-values in log10. 
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Figure 11. Comparison of Motifs between Up-regulated Clusters. Motif were 

identified in the promoters of genes within each up-regulated cluster, allowing for some 

promoters not to have every motif found. Top 5 motifs that are 5 to 25 bp in length, with 

an E-value less than 0.05, and are not found in shuffled (control) sequences are displayed. 
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Figure 12. Comparison of Motifs between Down-regulated Clusters. Motifs were 

identified in the promoters of genes within each down-regulated cluster, allowing for 

some promoters not to have every motif found. Top 5 motifs that are 5 to 25 bp in length, 

with an E-value less than 0.05, and are not found in shuffled (control) sequences are 

displayed. 
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Figure 13. Comparison of known Transcription Factor Binding Sites between Up-

regulated Clusters. Known TF sites were enriched in the promoters of genes within each 

up-regulated cluster. Enriched binding sites with E-value greater than 10 are displayed as 

dot plots. Binding sites are sorted by their % TP values and sequence logos shown for 

binding site motifs that clustered together. 



 28 

 

Figure 14. Comparison of known Transcription Factor Binding Sites between 

Down-regulated Clusters. Known TF sites were enriched in the promoters of genes 

within each down-regulated cluster. Enriched binding sites with E-value greater than 10 

are displayed as dot plots. Binding sites are sorted by their % TP values and sequence 

logos shown for binding site motifs that clustered together. 
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IV. DISCUSSION 

I analyzed the transcriptome dynamics of wildtype Arabidopsis thaliana 

responding to AvrPst and VirPst infection at 0, 1, 6, 24 and 48 hpi. I identified 4,306 

DEGs in total, with 2,204 and 2,535 being up- and down-regulated, respectively, by 

pathogen treatments at any of the sampled time points. These DEGs were clustered by 

their gene expression patterns into 9 gene groups. These 9 groups were divided to either 

up-regulated and down-regulated. Up-regulated clusters had a total of 2,443 genes which 

display induction of gene expression in pathogen treated samples as compared to Mock 

treated samples. Down-regulated clusters comprised 1,815 genes characterized by a 

repression of gene expression in pathogen treated samples as compared to Mock treated 

samples. Our analyses of promoter sequences of genes within each cluster revealed the 

presence of known functional motifs/TF binding sites that correlate with the observed 

expression data. I observed an enrichment of the core W-box sequence (WRKY binding 

sites), which are known regulators of defense signaling (Eulgem et al., 2000; Euglem & 

Somssich, 2007), and the G-box sequence (bHLH/bZIP binding sites), positive and 

negative regulators of photosynthesis (Kindgren et al., 2012; Chattopadhyay et al., 1998; 

Leivar & Quail, 2011; Leivar & Monte, 2014; Castillon et al., 2007), in up-regulated and 

down-regulated gene clusters, respectively. I also found the P-box core (CTTTT), which 

is bound by Dof proteins (Yanagisawa 2002), in all 9 gene clusters. Together, I believe 

that the enrichment of these TF binding sites in the respective clusters, accounts at least 

in part, for the induction repression patters observed in this study.  
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Transcriptome Dynamics for Defense Genes 

Transcriptome dynamic analysis of Arabidopsis infection with VirPst and AvrPst 

revealed diverse patterns (Figures 9 and 10). These dynamic patterns were largely 

grouped into either up-regulated or down-regulated relative to the pre-treatment level. 

Most up-regulated (U) clusters except for U2 contained genes with very little basal 

expression, suggesting that these genes are tightly suppressed under normal growth 

conditions.  

U1 and U3 clusters were rapidly induced by AvrPst, and their upregulation 

peaked at 6 hpi (Figures 9 and 10). Among the up-regulated defense genes, a majority of 

these defense genes peaked at 6 hpi with AvrPst (Figure 9). It has been shown that 

coronatine, a phytotoxin derived from Pst, is delivered by 6 hpi or earlier, suggesting that 

pathogen-derived virulence factors would be detectable for R proteins before 6 hpi (de 

Torres Zabala et al., 2009). Consistent with this timeline, another kinetic study 

investigating the transcriptome dynamics in response to AvrPst also found that 6 hpi is 

the major time point at which most of the defense genes appear to peak (Mine et al., 

2018). Thus, these observations together with mine suggest that reprogramming 

transcriptome specific to ETI likely occurs before 6 hpi.  

The induction kinetics in Arabidopsis infected with VirPst was significantly 

slowed relative to the ETI counterpart; the induction peak was delayed to 24 hpi or later. 

The delayed induction by VirPst likely is contributed from its battery of virulence factors, 

including effectors that are known to smother PTI-associated transcriptional 

reprogramming (Lewis et al., 2015). However, to accurately assess the impact of the 

virulence factors, I would have needed a transcriptome dataset for PTI. Note that the 
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transcriptome data obtained from the VirPst treatment in this study provides information 

on basal resistance. In essence, this basal resistance is the remaining defense in which 

PTI was negated by the pathogen virulence factors. Thus, the difference between VirPst 

and AvrPst in U1, U3, and U4 clusters may instead be attributed to an R protein initiating 

ETI.  

Plants’ ability to recognize a pathogen effector (a would-be virulence factor) by 

an R protein(s) that induce ETI frequently determines whether the outcome of infection 

results in severe disease (Jones and Dangl, 2006). Interestingly, while ETI is known to be 

much stronger than PTI, the difference is mostly quantitative rather than qualitative (Tao 

et al., 2003, Tsuda et al., 2009), involving largely the same set of defense genes. This 

notion of the quantitative difference was confirmed in my analysis since 88 % of the 

induced genes by AvrPst in U1, U3, and U4 clusters were also induced but later by VirPst 

(Figure 6) 

The down-regulated genes also showed a pattern comparable to the up-regulated 

clusters; i.e., more rapid and robust suppression in response to AvrPst relative to VirPst. 

In contrast to the inducible defense genes, the down-regulated genes are mostly 

constitutive genes, which were briefly repressed to near-zero expression levels at 6 hpi by 

AvrPst infection and much later at 48 hpi, albeit to a lesser degree by VirPst infection. In 

particular, D4 cluster, with very high basal expression level that are 5 to 10 times higher 

than the rest of the down-regulated clusters (Figure 9), has genes displaying rapid 

suppression and subsequent recovery, suggesting that this speedy transcriptome kinetics 

is important in ETI. As analyzed in Figure 11, this group of down-regulated defense 

genes is enriched for GO terms such as “photosynthesis”, “chloroplast organization”, and 
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“electron transport chain”, all of which are all photosynthesis-related. Furthermore, my 

cis-element and binding factor analysis raised the possibility that this suppression could 

be mediated by the G-box and its binding factor PIF (Paik et al., 2017). This ETI-

mediated suppression of photosynthetic genes observed in my study potentially provide a 

molecular mechanism underlying defense-growth trade-off (Figure 2), which has been 

reported for over a decade (Huot et al., 2014; Zou et al., 2005; Smakowska et al., 2016; 

Gerth et al., 2017; ). 

Upon closer examination of the U4 gene cluster, I found that commonly used 

defense marker genes, PR1 (AT2G14610), PR2 (AT3G57260), and PR5 (AT1G75040) 

are present. These same genes were found to be up-regulated throughout defense 

induction, that is, 6 to 24 hpi with AvrPst and 24 to 48 hpi with VirPst treatments. U4, 

however, is the least populous up-regulated cluster displaying rather slower induction-

kinetics relative to U1, U3, and U5. My observation supports the need for marker genes 

representing the groups with early induction kinetics, which comprise most defense 

genes.   

Cis-Elements and their Binding Factors Associated with Biotic Stress  

I found a few DNA-binding motifs to be significantly enriched in promoter 

sequences of each gene cluster (Figure 12 & 13). Using AME, I found well-characterized 

cis-elements/ TF binding sites to be enriched in different clusters. I found the core W-box 

sequence, (T)TGAC(C/T), to be enriched in the promoters of U1, U3, U4, and U5 genes 

but not in down-regulated clusters. The binding of WRKY proteins to W-box is a well-

characterized feature of biotic and abiotic stress response. Consistent with this finding, 

W-boxes have been found in the promoter sequences of various genes that responded to 
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wounding or pathogens, including the genes encoding PR proteins (Ülker and Somssich, 

2004). Hence, I believe that the presence of these WRKY binding sites, is at least in part, 

responsible for the induction of up-regulated genes by AvrPst and VirPst treatments. 

Overrepresentation of W-box motifs may also explain the delayed induction in VirPst 

treatment, as expression of some WRKYs are specifically suppressed by virulent strains 

of P. syringae in an effector-dependent manner (Higashi et al., 2008). 

Inversely, I found the core G-box sequence, (CACGTG), to be enriched in the 

promoters of all down-regulated gene clusters but not in early (U1 and U2) and late (U4) 

up-regulated clusters. The binding of basic leucine zipper (bZIP) and basic helix‐loop‐

helix (bHLH) proteins to G-box is well-characterized (Katagiri & Chua, 1992; Kindgren 

et al., 2012; Castillon et al., 2007). A subgroup of bHLH, phytochrome-interacting 

factors (PIFs), have been shown to contribute to the growth-defense response in plants 

(Paik et al., 2017). In particular, PIF3 has been shown to suppress chloroplast 

development (Stephenson et al., 2009, Liu et al., 2017) and displays transcription 

repression as well as activation activities (Zhang et al., 2013). Therefore, it is feasible 

that increased PIF3 or its homolog in the nucleus in response to pathogen infection could 

suppress photosynthesis and thereby limit growth with the observed suppression kinetics. 

This possibility was confirmed by our recent outcomes: i) overexpression of PIF3 

enhanced bacterial resistance in Arabidopsis and ii) its nuclear level was increased in 

response to AvrPst (Nam & Kang, unpublished).  

Coronatine (COR), a bacterial JA-Ile mimic (Feys et al., 1994), and several 

bacterial effectors have been shown to degrade JAZ repressor proteins (Gimenez-Ibanez 

et al., 2014; Yang et al., 2017; Jiang et al., 2013; Zhou et al., 2015), thus surpressing host 
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defense responses via JA signaling. Also, more studies have shown that in addition to the 

increase in endogenous SA levels during ETI, the JA concentration also spikes at 3 to 9 

hours post-infection (Kenton et al., 2007; Spoel et al., 2007). In the presence of SA, 

NPR3 and NPR4 instigate the proteasome-mediated breakdown of JAZ proteins (Liu et 

al., 2016). This scarcity of JAZ proteins frees up DELLAs (Hou et al., 2010), which in 

turn dimerizes with PIFs and with other bHLH transcription factors (Gallego-Bartolomé 

et al., 2010; Li et al., 2017). This dimerization with DELLA repressors renders PIFs less 

active. In a recent study, DELLA proteins also were shown to promote the degradation of 

all four PIFs through the 26S proteasome pathway under both dark and light conditions 

(Li et al., 2016). This degradation and/or loss of ability of PIFs to bind to target genes 

likely play a regulatory role in modulating photosynthesis/growth although this 

mechaniam in decreasing PIF activities counteracts increase in nuclear PIF3 proteins as 

described above. Thus, the analysis of these regulatory factors over multiple time points 

will provide clear underlying regulatory mechanism for suppressing photosynthesis and 

growth. 

Also, I found the “CTTT” motif to be enriched in the promoter sequences of all 

our clusters. (A/T)AAAG or its complementary sequence is usually found in the binding 

sequence of DNA-binding with one finger (Dof) proteins (Kang & Singh, 2001; 

Yanagisawa 2002). Dof proteins have been implicated in a host of functions ranging from 

plant defense gene expression, to hormone response, growth, amongst others. In some 

cases, closely related Dof proteins have been shown to play opposite roles in regulating 

gene expression. It is therefore not surprising that Dof binding sites were found in both 

up-regulated and down-regulated genes.  
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Clustering Algorithms 

While many strategies have been proposed to group/cluster expression data from 

time-course data, there is no consensus to date on which method is most suitable for a 

given dataset. Spies et al (2019) attempted to compare several available algorithms and 

found splineT and maSigPro performed better than pairwise approaches with less false-

positive candidates. I evaluated the reliability of three clustering strategies to generate 

clusters; two from maSigPro (Nueda et al., 2014) and one from kohonen (Wehrens & 

Buydens, 2007). The self-organized mapping-based method provided the best 

performance, with an accuracy of 91 % (Figure 7). In contrast, the hierarchical method 

yielded an accuracy of 58 %, the lowest of the three tested algorithms. Gaussian mixture 

modelling for model-based method fared slightly better with an accuracy of 77 %. As 

time-course RNA-seq becomes more common, the reliability of the clustering algorithms 

needs to be carefully scrutinized/evaluated, given the lower reproducibility of some 

clustering algorithms found in my study.   

Reprogramming transcriptome is a crucial event in antibacterial defense responses 

(Mine et al., 2018). My time-course transcriptome analysis provided significant insight 

into how two different types of resistance, ETI and basal resistance, operate at the level 

of RNA transcription. Intriguingly, in addition to traditional defense genes with the 

induction kinetics, I uncovered a group of genes that are rapidly suppressed under biotic 

stress, suggesting that this novel type of defense genes also contributes to plant 

resistance. It has been observed that defense responses come with a fitness cost for over a 

decade (Burdon & Thrall, 2003). I propose that optimizing these defense genes with the 
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suppression kinetics would likely facilitate the development of resistance traits without 

yield loss in plants.  
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