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QUASILINEARIZATION AND BOUNDARY VALUE PROBLEMS

FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL

EQUATIONS

PAUL W. ELOE, JAGANMOHAN JONNALAGADDA

Abstract. We apply the quasilinearization method to a Dirichlet boundary

value problem and to a right focal boundary value problem for a Riemann-

Liouville fractional differential equation. First, we sue the method of upper
and lower solutions to obtain the uniqueness of solutions of the Dirichlet bound-

ary value problem. Next, we apply a suitable fixed point theorem to establish

the existence of solutions. We develop a quasilinearization algorithm and con-
struct sequences of approximate solutions that converge monotonically and

quadratically to the unique solution of the boundary value problem. Two ex-

amples are exhibited to illustrate the main result for the Dirichlet boundary
value problem.

1. Introduction

The method of quasilinearization was introduced by Bellman [5, 6] in the 1960s;
the method produces a numerical algorithm that generates approximate solutions
of nonlinear problems with sequences of solutions of linear problems. Under suit-
able hypotheses, the sequences of approximate solutions converge monotonically
and quadratically. In the case of boundary value problems for ordinary differen-
tial equations, under modest hypotheses, the sequences of approximate solutions
converge to a unique solution.

Initially, quasilinearization proved to be useful in the study of initial value prob-
lems for ordinary differential equations and we cite as examples [16, 17, 18, 23].
There are many applications of quasilinearization to boundary value problems for
ordinary differential equations and we cite [1, 2, 11, 12, 14, 21]. More recently,
quasilinearization has become a useful tool in the study of initial value problems
for fractional differential equations; see [7, 8, 9, 19, 20, 24, 26], for example. Khan
[13] has applied the quasilinearization method to a nonlocal boundary value prob-
lem for fractional differential equations of Caputo type. To our knowledge, the
quasilinearization method has received little attention for boundary value prob-
lems for fractional differential equations of Riemann-Liouville type. In this article,
we consider two boundary value problems for fractional differential equations of
Riemann-Liouville type and apply the method of quasilinearization. Specifically, we
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consider a Dirichlet boundary value problem and we consider a right focal boundary
value value problem.

In Section 2 we provide preliminary definitions and we provide known results of
functions satisfying fractional differential inequalities at absolute extreme points.
In Section 3, we employ the method of upper and lower solutions and obtain the
uniqueness of solutions of a two-point Dirichlet fractional boundary value problem
for a Riemann-Liouville fractional differential equation of order 1 < α < 2 under
suitable hypotheses. Then, we apply a suitable fixed point theorem and obtain the
existence of a solution. In Section 4, we construct a sequence of upper solutions and
a sequence of lower solutions, each of which converge monotonically to the unique
solution, and obtain a quadratic rate of convergence. In Section 5, we outline the
application of the quasilinearization method to a two-point right focal boundary
value problem. In Section 6, we exhibit two specific examples to illustrate the
application of Theorem 4.2, the main result of Section 4.

2. Preliminaries

We refer the reader to [10, 15, 22] for thorough presentations on the theory of
fractional differential equations.

Definition 2.1 ([15]). Let 0 < α and a ∈ R. The αth-order Riemann-Liouville
fractional integral of a function y is defined by

Iαa y(t) =
1

Γ(α)

∫ t

a

(t− s)α−1y(s)ds, a ≤ t, (2.1)

provided the right-hand side exists. For α = 0, define Iαa to be the identity map.
Moreover, let n denote a positive integer and assume n−1 < α ≤ n. The αth-order
Riemann-Liouville fractional derivative is defined as

Dα
a y(t) = DnIn−αa y(t), a ≤ t, (2.2)

where Dn denotes the classical nth-order derivative, if the right-hand side exists.

Definition 2.2 ([15]). We denote by C[0, 1] the space of continuous functions y
on [0, 1] with the norm

‖y‖C = max
t∈[0,1]

|y(t)|.

The following theorems are stated and proved (for a minimum value) in [3] and
[25]. They are important results for the application of upper and lower solutions
to fractional differential equations.

Theorem 2.3 ([3]). Assume y ∈ C2[0, 1] attains its maximum value at t0 ∈ (0, 1).
Then, for all 1 < α < 2,

Dα
0 y(t0) ≤ − (α− 1)

Γ(2− α)
t−α0 y(t0).

Moreover, if y(t0) ≥ 0, then Dα
0 y(t0) ≤ 0.

Theorem 2.3 will not apply to the boundary value problems we consider because
the condition y ∈ C2[0, 1] is too strong. The following result provides the same
differential inequality under weaker conditions and is suitable for the application
to the boundary value problems we consider.

Theorem 2.4 ([25]). Assume that y ∈ C[0, 1] satisfies the following conditions:



EJDE-2019/58 RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS 3

(i) Dα
0 y ∈ C[0, 1] for 1 < α < 2;

(ii) y attains its global maximum at t0 ∈ (0, 1).

Then

Dα
0 y(t0) ≤ − (α− 1)

Γ(2− α)
t−α0 y(t0).

Moreover, if y(t0) ≥ 0, then Dα
0 y(t0) ≤ 0.

Theorem 2.5 ([25]). Assume that y ∈ C(0, 1] satisfies the following conditions:

(i) Dν
0u ∈ C[0, 1] for 0 < ν < 1;

(ii) y attains its global maximum at t0 ∈ (0, 1].

Then,

Dν
0y(t0) ≥ 1

Γ(1− ν)
t−ν0 y(t0).

Moreover, if y(t0) ≥ 0, then Dν
0y(t0) ≥ 0.

3. Existence and uniqueness of solutions

Let 1 < α < 2 and assume throughout that f : [0, 1] × R → R is continuous.
Initially, we shall consider the two point Dirichlet boundary value problem for a
Riemann-Liouville fractional differential equation

Dα
0 y(t) = f(t, y(t)), 0 ≤ t ≤ 1, (3.1)

y(0) = 0, y(1) = 0. (3.2)

We begin with the assumption that f is increasing as a function of the second
component and obtain results for the uniqueness of solutions. In the case of sec-
ond order ordinary differential equations, this is a standard assumption to obtain
uniqueness of solutions.

Theorem 3.1. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1] × R → R is continuous and assume fy > 0 on [0, 1] × R. Then a continuous
solution of the fractional boundary value problem (3.1)-(3.2) is unique if it exists.

Proof. Assume for the sake of contradiction that y1 and y2 denote two distinct
continuous solutions of (3.1)-(3.2) in C[0, 1]. Let u = y1−y2. Then u ∈ C[0, 1] and
Dα

0 u ∈ C[0, 1]. Without loss of generality assume that u(t) has a positive maximum
at t0 ∈ [0, 1].

Since u(0) = u(1) = 0, u does not have a positive maximum at t0 = 0 or t0 = 1.
Now, assume t0 ∈ (0, 1). Then, u(t0) > 0. Apply Theorem 2.4 to obtain

Dα
0 u(t0) < 0.

However, y1 and y2 satisfy (3.1), and so

Dα
0 u(t0) = f(t0, y1(t0))− f(t0, y2(t0)) > 0,

since f is increasing in y. Thus, (y1 − y2)(t) does not have a positive maximum at
t0 ∈ [0, 1].

Similarly, y2 − y1 does not have a positive maximum at t0 ∈ [0, 1]. Thus, a
continuous solution of (3.1)-(3.2) is unique if it exists. �
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Definition 3.2. We say w ∈ C[0, 1] is a lower solution of the fractional boundary
value problem (3.1)-(3.2) if w(0) = w(1) = 0, Dα

0w ∈ C[0, 1], and

Dα
0w(t) ≥ f(t, w(t)), 0 ≤ t ≤ 1.

We say v ∈ C[0, 1] is an upper solution of the fractional boundary value problem
(3.1)-(3.2) if v(0) = v(1) = 0, Dα

0 v ∈ C[0, 1], and

Dα
0 v(t) ≤ f(t, v(t)), 0 ≤ t ≤ 1.

Theorem 3.3. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1]×R→ R is continuous and assume fy > 0 on [0, 1]×R. Also, assume w and
v are lower and upper solutions of the fractional boundary value problem (3.1)-(3.2),
respectively. Then,

w(t) ≤ v(t), 0 ≤ t ≤ 1.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. Assume
w is a lower solution and v is an upper solution of the fractional boundary value
problem (3.1)-(3.2), respectively. Assume for the sake of contradiction that w ≤ v
is false. Assume that (w − v)(t) has a positive maximum at t0 ∈ [0, 1].

Since (w − v)(0) = (w − v)(1) = 0, (w − v) does not have a positive maximum
either at 0 or at 1. Now, assume t0 ∈ (0, 1). Then (w− v)(t0) > 0. Apply Theorem
2.4 to obtain

Dα
0 (w − v)(t0) < 0.

However, w and v are lower and upper solutions of the fractional boundary value
problem (3.1)-(3.2), respectively, and so

Dα
0 (w − v)(t0) ≥ f(t0, w(t0))− f(t0, v(t0)) > 0,

since f is increasing in the second variable. Thus, (w−v)(t) does not have a positive
maximum at t0 ∈ [0, 1]. �

Remark 3.4. We chose to prove both Theorems 3.1 and 3.3. It is the case that
Theorem 3.1 is an immediate corollary of Theorem 3.3 since a continuous solution
of (3.1)-(3.2) is also a lower solution and an upper solution of (3.1)-(3.2).

We now turn to the question of existence of solutions of the fractional boundary
value problem (3.1)-(3.2). Bai and Lü [4] derived the Green’s function correspond-
ing to the fractional boundary value problem (3.1)-(3.2) as follows:

G(t, s) =

{
G1(t, s), 0 ≤ t ≤ s ≤ 1,

G2(t, s), 0 ≤ s ≤ t ≤ 1,
(3.3)

where

G1(t, s) = − [t(1− s)]α−1

Γ(α)
,

G2(t, s) =
(t− s)α−1 − [t(1− s)]α−1

Γ(α)
.

Consequently, the fractional boundary value problem (3.1)-(3.2) is equivalent to a
Fredholm integral equation of the second kind

y(t) =

∫ 1

0

G(t, s)f(s, y(s))ds
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in the sense that y ∈ C[0, 1] and y(t) =
∫ 1

0
G(t, s)f(s, y(s))ds if, and only if, Dα

0 y ∈
C[0, 1] and y is a continuous solution of the fractional boundary value problem
(3.1)-(3.2). Further, Bai and Lü [4] obtained the following two properties of the
Green’s function:

• G(t, s) < 0, (t, s) ∈ [0, 1]× [0, 1].

• max0≤t≤1 |G(t, s)| = |G(s, s)| = [s(1−s)]α−1

Γ(α) , s ∈ (0, 1).

Clearly, we have

max
t∈[0,1]

∫ 1

0

|G(t, s)|ds ≤ 1

Γ(α)

∫ 1

0

[s(1− s)]α−1ds =
Γ(α)

Γ(2α)
.

Theorem 3.5. Assume g : [0, 1]× R→ R is continuous and bounded. Then there
exists y ∈ C[0, 1] satisfying

Dα
0 y(t) = g(t, y(t)), 0 ≤ t ≤ 1,

and the boundary conditions (3.2).

Proof. Define the completely continuous operator T : C[0, 1]→ C[0, 1] by

Ty(t) =

∫ 1

0

G(t, s)g(s, y(s))ds,

where G(t, s) is given by (3.3). The complete continuity of T is proved in [4], for
example.

Note that g(t, y(t)) ∈ C[0, 1] for any y ∈ C[0, 1]. So, an application of the
Schauder fixed point theorem implies that the fractional boundary value problem
(3.1)-(3.2) has a continuous solution. To see this, let

M = sup
{∣∣g(t, y)

∣∣ : 0 ≤ t ≤ 1, y ∈ R
}

and let

Ω =
Γ(α)

Γ(2α)
.

Then

‖Ty‖C = max
t∈[0,1]

∣∣Ty(t)
∣∣

= max
t∈[0,1]

∣∣∣ ∫ 1

0

G(t, s)g(s, y(s))ds
∣∣∣

≤ max
t∈[0,1]

∫ 1

0

|G(t, s)|
∣∣g(s, y(s))

∣∣ds ≤MΩ.

Define

U = {y ∈ C[0, 1] : ‖y‖C ≤MΩ}.
Then U is a closed convex subset of C[0, 1] and T : U → U . Thus, the Schauder
fixed point theorem implies there exists a fixed point, y ∈ U of the operator T and
the theorem is proved. �

Theorem 3.6. Assume f : [0, 1] × R → R is continuous. Assume w and v are
lower and upper solutions of the fractional boundary value problem (3.1)-(3.2), re-
spectively, and assume

w(t) ≤ v(t), 0 ≤ t ≤ 1.
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Then there exists a continuous solution y ∈ C[0, 1] of (3.1)-(3.2) satisfying

w(t) ≤ y(t) ≤ v(t), 0 ≤ t ≤ 1.

Proof. Define a truncation of f(t, y) by

g(t, y(t)) =


f(t, v(t)) + y(t)−v(t)

1+(y(t)−v(t)) , if y(t) > v(t),

f(t, y(t)), if w(t) ≤ y(t) ≤ v(t),

f(t, w(t)) + y(t)−w(t)
1+(w(t)−y(t)) , if y(t) < w(t).

Define an operator T : C[0, 1]→ C[0, 1] by

Ty(t) =

∫ 1

0

G(t, s)g(s, y(s))ds.

Note that the truncation g is bounded and continuous on [0, 1] × R and so by
Theorem 3.5 there exists y ∈ C[0, 1], a fixed point of T , satisfying

Dα
0 y(t) = g(t, y(t)), 0 ≤ t ≤ 1,

and the boundary conditions (3.2).
Let y denote a continuous fixed point of the operator T . To complete the proof,

we only show

w(t) ≤ y(t) ≤ v(t), 0 ≤ t ≤ 1.

Then by the definition of the truncation g it follows that y is a continuous solution
of the original boundary value problem (3.1)-(3.2).

We show the details that y − v does not have a positive maximum at t0 ∈ [0, 1].
Assume for the sake of contradiction that y−v has a positive maximum at t0 ∈ [0, 1].
Because of the boundary conditions (3.2), t0 ∈ (0, 1). Then

Dα
0 y(t0) = f(t0, v(t0)) +

y(t0)− v(t0)

1 + (y(t0)− v(t0))
.

Since v is an upper solution of (3.1)-(3.2), it follows that

Dα
0 (y − v)(t0) ≥ y(t0)− v(t0)

1 + (y(t0)− v(t0))
> 0.

Theorem 2.4 applies to y − v so, Dα
0 (y − v)(t0) < 0. Thus, y − v does not have a

positive maximum at t0 ∈ (0, 1). Since, (y − v)(0) = (y − v)(1) = 0.

y(t) ≤ v(t), 0 ≤ t ≤ 1.

The argument to show y(t) ≥ w(t), 0 ≤ t ≤ 1, is completely analogous and so the
theorem is proved. �

The following result is an immediate corollary of Theorems 3.3 and 3.6.

Theorem 3.7. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1] × R → R is continuous and assume fy > 0 on [0, 1] × R. Also, assume w
and v are lower and upper solutions of the fractional boundary value problem (3.1)-
(3.2), respectively. Then, there exists a unique continuous solution y ∈ C[0, 1] of
(3.1)-(3.2) satisfying

w(t) ≤ y(t) ≤ v(t), 0 ≤ t ≤ 1.
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4. The monotone method and quadratic convergence

In this section, we describe the monotone method and obtain a quadratic rate
of convergence. Since the uniqueness and existence results have been obtained in
Section 3, the details presented in this sections are completely standard; see, [12]
or [16]. Thus, we outline the construction. In the first theorem of this section, the
monotone iterates are constructed.

Theorem 4.1. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1]×R→ R is continuous and assume fy > 0 on [0, 1]×R. Also, assume w0 and
v0 are lower and upper solutions of the fractional (3.1)-(3.2), respectively. Then,
there exists a unique continuous solution y ∈ C[0, 1] of (3.1)-(3.2) satisfying

w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1.

Moreover, there exist sequences {wn}, {vn} of lower and upper solutions of the
fractional boundary value problem (3.1)-(3.2), respectively, each of which converges
monotonically to the unique continuous solution y of the fractional boundary value
problem (3.1)-(3.2) and satisfy

wn(t) ≤ wn+1(t) ≤ y(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1, n = 0, 1, . . . .

Proof. Let w0, v0 denote a lower and an upper solution of (3.1)-(3.2), respectively.
Theorem 3.7 applies and there exists a unique continuous solution y ∈ C[0, 1] of
(3.1)-(3.2) satisfying

w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1.

Define the function h(w0, v0; t, y) on [0, 1]× R by

h(w0, v0; t, y) = f(t, w0(t)) + fy(t, v0(t))(y − w0(t))

and consider the boundary value problem for the linear non-homogeneous fractional
differential equation

Dα
0 y(t) = h(w0, v0; t, y(t)), 0 ≤ t ≤ 1, y(0) = y(1) = 0. (4.1)

Note that

h(w0, v0; t, w0(t)) = f(t, w0(t)), 0 ≤ t ≤ 1,

and so,

Dα
0w0(t) ≥ f(t, w0(t)) = h(w0, v0; t, w0(t)), 0 ≤ t ≤ 1. (4.2)

Moreover, there exists c(t) satisfying w0(t) ≤ c(t) ≤ v0(t) such that

f(t, v0(t)) = f(t, w0(t)) + fy(t, c(t))(v0 − w0)(t).

Thus,

f(t, v0(t)) = f(t, w0(t)) + fy(t, c(t))(v0 − w0)(t)

≤ f(t, w0(t)) + fy(t, v0(t))(v0 − w0)(t)

= h(w0, v0; t, v0(t)) 0 ≤ t ≤ 1,

since fy is increasing in y for each t ∈ [0, 1]. Thus,

h(w0, v0; t, v0(t)) ≥ f(t, v0(t)) ≥ Dα
0 v0(t), 0 ≤ t ≤ 1. (4.3)
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In particular, (4.2) and (4.3) imply w0 and v0 are lower and upper solutions of (4.1)
respectively as well. Since, h satisfies the hypotheses of Theorem 3.6, there exists
a continuous solution, w1(t), of (4.1) satisfying

w0(t) ≤ w1(t) ≤ v0(t), 0 ≤ t ≤ 1.

Note that there exists w0(t) ≤ c(t) ≤ w1(t) ≤ v0(t) such that

f(t, w1(t))− f(t, w0(t)) = fy(t, c(t))(w1(t)− w0(t)) ≤ fy(t, v0(t))(w1(t)− w0(t))

and so,
Dα

0w1(t) = h(w0, v0; t, w1(t)) ≥ f(t, w1(t)), 0 ≤ t ≤ 1.

In particular, w1 is a lower solution of (3.1)-(3.2) since w1 ∈ C[0, 1].
Now define the function k(v0; t, y) on [0, 1]× R by

k(v0; t, y) = f(t, v0(t)) + fy(t, v0(t))(y − v0(t))

and consider the boundary value problem for the linear nonhomogeneous fractional
differential equation

Dα
0 y(t) = k(v0; t, y(t)), 0 ≤ t ≤ 1, y(0) = y(1) = 0. (4.4)

Note that
k(v0; t, v0(t)) = f(t, v0(t)), 0 ≤ t ≤ 1,

and
Dα

0 v0(t) ≤ f(t, v0(t)) = k(v0; t, v0(t)), 0 ≤ t ≤ 1.

Thus, v0 is an upper solution of (4.4). Note that there exists c(t) satisfying w0(t) ≤
c(t) ≤ v0(t) such that

Dα
0w0(t) ≥ f(t, w0(t)) = f(t, v0(t)) + fy(t, c(t))(w0(t)− v0(t))

≥ f(t, v0(t)) + fy(t, v0(t))(w0(t)− v0(t))

= k(v0(t); t, w0(t)), 0 ≤ t ≤ 1,

and so, w0 is a lower solution of (4.4). Since k satisfies the hypotheses of Theorem
3.6 there exists a continuous solution, v1(t), of (4.4) satisfying

w0(t) ≤ v1(t) ≤ v0(t), 0 ≤ t ≤ 1.

An application of the mean value theorem again will give

k(v0; t, v1(t)) ≤ f(t, v1(t)), 0 ≤ t ≤ 1.

To see this, for some v1(t) ≤ c(t) ≤ v0(t),

f(t, v1(t)) = f(t, v0(t)) + fy(t, c(t))(v1(t)− v0(t))

≥ f(t, v0(t)) + fy(t, v0(t))(v1(t)− v0(t)).

Thus,
Dα

0 v1(t) = k(v0; t, v1(t)) ≤ f(t, v1(t)), 0 ≤ t ≤ 1,

and v1 is an upper solution of (3.1)-(3.2) since v1 ∈ C[0, 1].
Finally, apply Theorem 3.3 to obtain

w1(t) ≤ v1(t), 0 ≤ t ≤ 1.

Apply Theorem 3.6 with lower and upper solutions, w1 and v1, respectively, keeping
in mind that the continuous solution y obtained in Theorem 3.6 is unique, to obtain

w0(t) ≤ w1(t) ≤ y(t) ≤ v1(t) ≤ v0(t), 0 ≤ t ≤ 1,

where y is the unique solution of the fractional boundary value problem, (3.1)-(3.2).
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The construction of the sequences of lower and upper solutions proceeds by
induction. Assume the sequences {wk}nk=0 and {vk}nk=0 have been constructed
inductively such that for each k,

h(wk, vk; t, y) = f(t, wk(t)) + fy(t, vk(t))(y − wk(t)),

k(vk; t, y) = f(t, vk(t)) + fy(t, vk(t))(y − vk(t)),

where wk is a continuous solution of the fractional boundary value problem

Dα
0 y(t) = h(wk−1, vk−1; t, y(t)), 0 ≤ t ≤ 1, y(0) = y(1) = 0,

vk is a continuous solution of the fractional boundary value problem

Dα
0 y(t) = k(vk−1; t, y(t)), 0 ≤ t ≤ 1, y(0) = y(1) = 0,

and

wk−1(t) ≤ wk(t) ≤ y(t) ≤ vk(t) ≤ vk−1(t), 0 ≤ t ≤ 1, k = 1, . . . , n.

Here wk, vk, k = 0, . . . , n denote a lower solution and an upper solution, respec-
tively, of (3.1)-(3.2), and y is the unique continuous solution of (3.1)-(3.2).

To complete the induction argument, consider the boundary value problem for
the linear nonhomogeneous fractional differential equation

Dα
0 y(t) = h(wn, vn; t, y(t)), 0 ≤ t ≤ 1, y(0) = y(1) = 0. (4.5)

Note that

h(wn, vn; t, wn(t)) = f(t, wn(t)), 0 ≤ t ≤ 1,

h(wn, vn; t, vn(t)) ≥ f(t, vn(t)), 0 ≤ t ≤ 1.

So, wn, vn denote a lower and an upper solution, respectively, of (4.5) as well.
The arguments above to show the existence of a lower solution, w1(t), and an

upper solution, v1(t), and the inequalities

w0(t) ≤ w1(t) ≤ y(t) ≤ v1(t) ≤ v0(t), 0 ≤ t ≤ 1,

are readily adapted to show the existence of a lower solution, wn+1(t), and an upper
solution, vn+1(t), and the inequalities

wn(t) ≤ wn+1(t) ≤ y(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1.

To complete the proof, {wn} and {vn} are monotone sequences of continuous
functions bounded above and below, respectively, on a compact domain. So by
Dini’s theorem, each converges uniformly to w and to v respectively on [0, 1].

k(vn; t, vn+1(t)) = f(t, vn(t)) + fy(t, vn(t))(vn+1 − vn)(t)→ f(t, v(t)) as n→∞,
where the convergence is uniform on [0, 1]. So v = y is the unique continuous
solution of (3.1)-(3.2). Similarly,

h(wn, vn; t, wn+1(t)) = f(t, wn(t))+fy(t, vn(t))(wn+1−wn)(t)→ f(t, w(t)) as n→∞
uniformly on [0, 1] and so, w = y is also the unique continuous solution of (3.1)-
(3.2). �

We now obtain an estimate on the error bound. To obtain the quadratic conver-
gence, assume one further condition on f , that fyy exists and fyy ≥ 0.

For each n, define the error en as follows:

en(t) = vn(t)− wn(t), 0 ≤ t ≤ 1.
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So, 0 ≤ en(t) for 0 ≤ t ≤ 1. Denote by ‖en‖C the error bound

‖en‖C = max
t∈[0,1]

∣∣en(t)
∣∣.

Theorem 4.2. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1]× R→ R is continuous and assume fy > 0 on [0, 1]× R. Assume in addition
that fyy exists and fyy ≥ 0 on [0, 1] × R. Assume w0 and v0 are lower and upper
solutions of the fractional boundary value problem (3.1)-(3.2), respectively. Then,
there exists a unique solution y ∈ C[0, 1] of (3.1)-(3.2) satisfying

w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1.

Moreover, there exist sequences {wn}, {vn} of lower and upper solutions of the
fractional boundary value problem (3.1)-(3.2), respectively, each of which converges
monotonically and quadratically to the unique solution y of the fractional boundary
value problem (3.1)-(3.2) and satisfy

wn(t) ≤ wn+1(t) ≤ y(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1, n = 0, 1, . . . .

Proof. Employ the construction in the proof of Theorem 4.1 and recall

Dα
0wn+1(t) = h(wn, vn; t, wn+1(t)) = f(t, wn(t)) + fy(t, vn(t))(wn+1(t)− wn(t)),

Dα
0 vn+1(t) = k(vn; t, vn+1(t)) = f(t, vn(t)) + fy(t, vn(t))(vn+1(t)− vn(t)).

Then

Dα
0 en(t)

= Dα
0 vn+1(t)−Dα

0wn+1(t)

= [f(t, vn(t))− f(t, wn(t))] + fy(t, vn(t))[vn+1(t)− vn(t)− wn+1(t) + wn(t)]

= [f(t, vn(t))− f(t, wn(t))] + fy(t, vn(t))[en+1(t)− en(t)].

By the mean value theorem, there exists cn(t) satisfying wn(t) < cn(t) < vn(t) such
that

f(t, vn(t))− f(t, wn(t)) = fy(t, cn(t))en(t).

Thus,

Dα
0 en+1(t) = fy(t, cn(t))en(t) + fy(t, vn(t))en+1(t)− fy(t, vn(t))en(t)

= fy(t, vn(t))en+1(t) + [fy(t, cn(t))− fy(t, vn(t))]en(t).

Employ the mean value theorem again for fy(t, cn(t))−fy(t, vn(t)) and there exists
ĉn(t) satisfying

cn(t) < ĉn(t) < vn(t)

such that

fy(t, cn(t))− fy(t, vn(t)) = fyy(t, ĉn(t))(cn(t)− vn(t)).

Then

Dα
0 en+1(t) = fy(t, vn(t))en+1(t) + fyy(t, ĉn(t))(cn(t)− vn(t))en(t).

Note that en+1 satisfies the boundary conditions (3.2) and employ the Green’s
function (3.3). Then

0 ≤ en+1(t)

=

∫ 1

0

G(t, s) [fy(s, vn(s))en+1(s) + fyy(s, ĉn(s))(cn(s)− vn(s))en(s)] ds
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≤
∫ 1

0

G(t, s) [fyy(s, ĉn(s))(cn(s)− vn(s))en(s)] ds

≤
∫ 1

0

|G(t, s)|
∣∣fyy(s, ĉn(s))(cn(s)− vn(s))en(s)

∣∣ds
≤
∫ 1

0

|G(t, s)|
∣∣fyy(s, ĉn(s))

∣∣∣∣(cn(s)− vn(s))
∣∣∣∣en(s)

∣∣ds
≤MΩ

∥∥en∥∥2

C
,

where

M = max{|fyy(t, y(t))|, w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1},

max
t∈[0,1]

∫ 1

0

|G(t, s)|ds ≤ Γ(α)

Γ(2α)
= Ω.

Thus, we have

‖en+1‖C ≤MΩ‖en‖2C
and hence, the rate of convergence is quadratic. �

5. The right focal problem

In this section we shall discuss briefly a fractional boundary value problem

Dα
0 y(t) = f(t, y(t)), 0 ≤ t ≤ 1, (5.1)

y(0) = 0, Dα−1
0 y(1) = 0. (5.2)

We shall refer to the fractional boundary value problem (5.1)-(5.2) as a right focal
boundary value problem.

To obtain the uniqueness, existence and comparison results of Section 3, Theorem
2.4 played the key role. Similar results can be obtained for the right focal problem
and now Theorem 2.4 shares the key role with Theorem 2.5.

Definition 5.1. We say w ∈ C[0, 1] is a lower solution of the fractional boundary
value problem (5.1)-(5.2) if w(0) = Dα−1

0 w(1) = 0, Dα
0w ∈ C[0, 1], and

Dα
0w(t) ≥ f(t, w(t)), 0 ≤ t ≤ 1.

We say v ∈ C[0, 1] is an upper solution of (5.1)-(5.2) if v(0) = Dα−1
0 v(1) = 0,

Dα
0 v ∈ C[0, 1], and

Dα
0 v(t) ≤ f(t, v(t)), 0 ≤ t ≤ 1.

Theorem 5.2. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1] × R → R is continuous and assume fy > 0 on [0, 1] × R. Then a continuous
solution of (5.1)-(5.2) is unique if it exists.

Proof. Assume for the sake of contradiction that y1 and y2 denote two distinct
continuous solutions of (5.1)-(5.2) in C[0, 1]. Let u = y1 − y2. Then, u ∈ C[0, 1]
and Dα

0 u ∈ C[0, 1]. Without loss of generality assume that u(t) has a positive
maximum at t0 ∈ [0, 1].

First, we assume t0 = 0. Since u(0) = 0, u does not have a positive maximum
at t0 = 0. Next, we assume t0 = 1. Then, u(1) > 0. Using Theorem 2.5, we have

Dα−1
0 u(1) > 0.
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This is a contradiction to the boundary conditions, (5.2). Finally, assume t0 ∈ (0, 1).
Then, u(t0) > 0. Using Theorem 2.4, we have

Dα
0 u(t0) < 0.

However, y1 and y2 satisfy (3.1), and so

Dα
0 u(t0) = f(t0, y1(t0))− f(t0, y2(t0)) > 0,

since f is increasing in y. Thus, (y1 − y2)(t) does not have a positive maximum at
t0 ∈ [0, 1]. Similarly, (y1−y2)(t) does not have a positive maximum at t0 ∈ [0, 1]. �

The analogue of Theorem 3.3 is obtained similarly we state the analogous theo-
rem without proof.

Theorem 5.3. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1]×R→ R is continuous and assume fy > 0 on [0, 1]×R. Also, assume w and
v are lower and upper solutions of the fractional boundary value problem (5.1)-(5.2),
respectively. Then

w(t) ≤ v(t), 0 ≤ t ≤ 1.

Before proceeding we construct a Green’s function and fixed point operator.
Consider

Dα
0 y(t) = h(t), y(0) = 0, Dα−1

0 y(1) = 0,

and assume h ∈ C[0, 1]. Then

y(t) = c1t
α−2+c2t

α−1+Iα0 h(t) = c1t
α−2+c2t

α−1+
1

Γ(α)

∫ t

0

(t−s)α−1h(s)ds. (5.3)

The condition y(0) = 0 implies c1 = 0. Now apply the condition Dα−1
0 y(1) = 0.

Apply the operator Dα−1
0 to (5.3) and

Dα−1
0 y(t) = c2Γ(α) +Dα−1

0 Iα0 h(t)

= c2Γ(α) +DI2−α
0 Iα0 h(t)

= c2Γ(α) + I1h(t).

Since Dα−1
0 y(1) = 0, we have

c2 =
−
∫ 1

0
h(s)ds

Γ(α)
.

Thus,

y(t) = − t
α−1

Γ(α)

∫ 1

0

h(s)ds+
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

and the right focal Green’s function denoted by G(α− 1; t, s) has the form

G(α− 1; t, s) =

{
G1(α− 1; t, s), 0 ≤ t ≤ s ≤ 1,

G2(α− 1; t, s), 0 ≤ s ≤ t ≤ 1,

where

G1(α− 1; t, s) = − t
α−1

Γ(α)
,

G2(α− 1; t, s) =
(t− s)α−1 − tα−1

Γ(α)
.
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The fractional boundary value problem (5.1)-(5.2) is equivalent to a Fredholm
integral equation of the second kind

y(t) =

∫ 1

0

G(α− 1; t, s)f(s, y(s))ds

in the sense that y ∈ C[0, 1] and y(t) =
∫ 1

0
G(α − 1; t, s)f(s, y(s))ds if, and only

if, Dα
0 y ∈ C[0, 1] and y is a continuous solution of the fractional boundary value

problem (5.1)-(5.2). It is another straightforward argument to show the fixed point
operator

Ty(t) =

∫ 1

0

G(α− 1; t, s)f(s, y(s))ds

is a completely continuous map under the assumption that f : [0, 1] × R → R is
continuous.

The following properties are easy to observe.

• G(t, s) < 0, (t, s) ∈ [0, 1]× [0, 1].

• max0≤t≤1 |G(t, s)| = |G(s, s)| = sα−1

Γ(α) , s ∈ (0, 1).
•

max
t∈[0,1]

∫ 1

0

|G(t, s)|ds ≤ 1

Γ(α)

∫ 1

0

sα−1ds =
1

Γ(α+ 1)
.

From here, the construction of the quasilinearization method follows as in the con-
struction for the Dirichlet boundary value problem.

Theorem 5.4. Assume f : [0, 1] × R → R is continuous. Assume w and v are
lower and upper solutions of (5.1)-(5.2), respectively, and assume

w(t) ≤ v(t), 0 ≤ t ≤ 1.

Then, there exists a continuous solution y ∈ C[0, 1] of (5.1)-(5.2) satisfying

w(t) ≤ y(t) ≤ v(t), 0 ≤ t ≤ 1.

Theorem 5.5. Assume f : [0, 1] × R → R is continuous, assume ∂f
∂y = fy :

[0, 1]× R→ R is continuous and assume fy > 0 on [0, 1]× R. Assume in addition
that fyy exists and fyy ≥ 0 on [0, 1] × R. Assume w0 and v0 are lower and upper
solutions of (5.1)-(5.2), respectively. Then there exists a unique solution y ∈ C[0, 1]
of (5.1)-(5.2) satisfying

w0(t) ≤ y(t) ≤ v0(t), 0 ≤ t ≤ 1.

Moreover, there exist sequences {wn}, {vn} of lower and upper solutions of (5.1)-
(5.2), respectively, each of which converges monotonically and quadratically to the
unique solution y of (5.1)-(5.2) and satisfy

wn(t) ≤ wn+1(t) ≤ y(t) ≤ vn+1(t) ≤ vn(t), 0 ≤ t ≤ 1, n = 0, 1, . . . .

6. Examples

We close with two specific examples illustrating the application of Theorem 4.2.

Example 6.1. Consider the fractional boundary value problem

Dα
0 y(t) = ey, 0 ≤ t ≤ 1, (6.1)

with the Dirichlet boundary conditions (3.2). So f(t, y) = ey satisfies the hypothe-
ses of Theorem 4.2. Set v0(t) = 0, 0 ≤ t ≤ 1 and set w0(t) = tα−1(t−1) = tα−tα−1,
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0 ≤ t ≤ 1. Clearly, v0(t) is an upper solution of (6.1), (3.2). As for w0, note that
w0(t) ≤ 0, 0 ≤ t ≤ 1, and so, ew0(t) ≤ 1. Dα

0w0(t) = Γ(α+ 1) > 1. Hence, w0(t) is
a lower solution of (6.1), (3.2) and Theorem 4.2 applies to (6.1), (3.2).

Before exhibiting a second example, we point out that the conclusions of Theorem
4.2 remain valid if the condition fyy ≥ 0 on [0, 1]× R is replaced by the condition

fyy(t, y) ≥ 0 if w0(t) ≤ y ≤ v0(t), 0 ≤ t ≤ 1.

Example 6.2. Consider the fractional boundary value problem

Dα
0 y(t) = y3 − 1, 0 ≤ t ≤ 1, (6.2)

with the Dirichlet boundary conditions (3.2). So now fy ≥ 0 on [0, 1] × R. Set
v0(t) = tα−1(1− t) and w0(t) = 0, 0 ≤ t ≤ 1. Then

fyy(t, y) = 6y ≥ 0 if w0(t) ≤ y ≤ v0(t), 0 ≤ t ≤ 1.

For this example, it is clear that w0 is a lower solution. To see that v0 is an upper
solution, note that v0(t) ≥ 0, 0 ≤ t ≤ 1 and so,

Dα
0 v0(t) = −Γ(α+ 1) < −1 ≤ v3

0(t)− 1, 0 ≤ t ≤ 1.
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