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AN EXISTENCE RESULT FOR HEMIVARIATIONAL
INEQUALITIES

ZSUZSÁNNA DÁLYAY & CSABA VARGA

Abstract. We present a general method for obtaining solutions for an ab-
stract class of hemivariational inequalities. This result extends many results
to the nonsmooth case. Our proof is based on a nonsmooth version of the

Mountain Pass Theorem with Palais-Smale or with Cerami compactness con-
dition. We also use the Principle of Symmetric Criticality for locally Lipschitz

functions.

1. Introduction

Let (X, ‖ · ‖) be a real, separable, reflexive Banach space, and let (X?, ‖ · ‖?)
be its dual. Also assume that the inclusion X ↪→ Ll(RN ) is continuous with the
embedding constants C(l), where l ∈ [p, p?] (p ≥ 2, p? = Np

N−p ). Let us denote
by ‖ · ‖l the norm of Ll(RN ). Let A : X → X? be a potential operator with the
potential a : X → R, i.e. a is Gâteaux differentiable and

lim
t→0

a(u+ tv)− a(u)
t

= 〈A(u), v〉,

for every u, v ∈ X. Here 〈·, ·〉 denotes the duality pairing between X? and X. For
a potential we always assume that a(0) = 0. We suppose that A : X → X? satisfies
the following properties:

• A is hemicontinuous, i.e. A is continuous on line segments in X and X?

equipped with the weak topology.
• A is homogeneous of degree p − 1, i.e. for every u ∈ X and t > 0 we

have A(tu) = tp−1A(u). Consequently, for a homogeneous hemicontinuous
operator of degree p− 1, we have a(u) = 1

p 〈A(u), u〉.
• A : X → X? is a strongly monotone operator, i.e. there exists a function
κ : [0,∞) → [0,∞) which is positive on (0,∞) and limt→∞ κ(t) = ∞ and
such that for all u, v ∈ X,

〈A(u)−A(v), u− v〉 ≥ κ(‖u− v‖)‖u− v‖ .
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In this paper we suppose that the operator A : X → X? is a potential, hemicon-
tinuous, strongly monotone operator, homogeneous of degree p− 1.

Let f : Rn×R → R be a measurable function which satisfies the following growth
condition:

(F1) |f(x, s)| ≤ c(|s|p−1 + |s|r−1), for a.e. x ∈ RN , for all s ∈ R
(F1’) The embedings X ↪→ Lr(Rn) are compact (p < r < p?).

Let F : RN × R → R be the function defined by

F (x, u) =
∫ u

0

f(x, s)ds, for a.e. x ∈ RN , ∀s ∈ R. (1.1)

For a.e. x ∈ RN and for every u, v ∈ R, we have:

|F (x, u)− F (x, v)| ≤ c1|u− v|
(
|u|p−1 + |v|p−1 + |u|r−1 + |v|r−1

)
, (1.2)

where c1 is a constant which depends only of u and v. Therefore, the function
F (x, ·) is locally Lipschitz and we can define the partial Clarke derivative, i.e.

F 0
2 (x, u;w) = lim sup

y→u, t→0+

F (x, y + tw)− F (x, y)
t

, (1.3)

for every u,w ∈ R and for a.e. x ∈ R.
Now, we formulate the hemivariational inequality problem that will be studied

in this paper:
Find u ∈ X such that

〈Au, v〉+
∫

RN

F 0
2 (x, u(x);−v(x))dx ≥ 0, ∀ v ∈ X. (1.4)

When the function f : Rn × R → R is continuous, the problem (1.4) is reduced
to the problem:

Find u ∈ X such that

〈Au, v〉 =
∫

RN

f(x, u(x))v(x)dx, ∀ v ∈ X. (1.5)

Such problems have been studied by many authors, see [1, 3, 4, 5, 9, 10, 19, 20].
To study the existence of solutions of the problem (1.4) we introduce the func-

tional Ψ : X → R defined by Ψ(u) = a(u) − Φ(u), where a(u) = 1
p 〈A(u), u〉 and

Φ(u) =
∫

RN F (x, u(x))dx. From Proposition 5.1 we will see that the critical points
of the functional Ψ are the solutions of the problem (1.4). Therefore it is enough to
study the existence of critical points of the functional Ψ. Considering such a prob-
lem is motivated by the works of Clarke [8], D. Motreanu and P.D. Panagiotopoulos
[22] and by the recent book of D. Motreanu and V. Rădulescu [23] , where several
applications are given.

To study the existence of the critical point of the function Ψ is necessary to
impose some condition on function f :

(F2) There exists α > p, λ ∈ [0, κ(1)(α−p)
Cp(p) [ and a continuous function g : R → R+,

such that for a.e. x ∈ RN and for all u ∈ R we have

αF (x, u) + F 0
2 (x, u;−u) ≤ g(u), (1.6)

where lim|u|→∞ g(u)/|u|p = λ.
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(F2’) There exists α ∈ (max{p, p? r−p
p?−p}, p

?) and a constant C > 0 such that for
a.e. x ∈ RN and for all u ∈ R we have

−C|u|α ≥ F (x, u) +
1
p
F 0

2 (x, u;−u). (1.7)

Next, we impose further assumptions on f . First we define two functions by

f(x, s) = lim
δ→0+

essinf{f(x, t) : |t− s| < δ},

f(x, s) = lim
δ→0+

esssup{f(x, t) : |t− s| < δ},

for every s ∈ R and for a.e. x ∈ RN . It is clear that the function f(x, ·) is lower
semicontinuous and f(x, ·) is upper semicontinuous. The following hypothesis on f
was introduced by Chang [7].

(F3) The functions f, f are N -measurable, i.e. for every measurable function
u : RN → R the functions x 7→ f(x, u(x)), x 7→ f(x, u(x)) are measurable.

(F4) For every ε > 0, there exists c(ε) > 0 such that for a.e. x ∈ RN and for
every s ∈ R we have

|f(x, s)| ≤ ε|s|p−1 + c(ε)|s|r−1.

(F5) For the α ∈ (p, p?) from condition (F2), there exists a c? > 0 such that for
a.e. x ∈ RN and for all s ∈ R we have

F (x, u) ≥ c?(|u|α − |u|p).

Remark 1.1. We observe that if we impose the following condition on f ,
(F4’) limε→0+ esssup{ |f(x,s)|

|s|p : (x, s) ∈ RN × (−ε, ε)} = 0,

then this condition with (F1) imply (F4).

The main result of this paper can be formulated in the following manner.

Theorem 1.2. (1) If conditions (F1), (F1’), and (F2)–(F5) hold, then prob-
lem (1.4) has a nontrivial solution.

(2) If conditions (F1), (F1’), (F2’), (F3), and (F4) hold, then problem (1.4)
has a nontrivial solution.

Let G be the compact topological group O(N) or a subgroup of O(N). We
suppose that G acts continuously and linear isometric on the Banach space X. We
denote by

XG = {u ∈ H : gx = x for all g ∈ G}
the fixed point set of the action G on X. It is well known that XG is a closed
subspace of X. We suppose that the potential a : X → R of the operator A : X →
X? is G-invariant and the next condition for the function f : RN × R → R holds:

(F6) For a.e. x ∈ RN and for every g ∈ G, s ∈ R we have f(gx, s) = f(x, s).
In several applications the condition (F1’) is replaced by the condition
(F1”) The embeddings XG ↪→ Lr(RN ) are compact (p < r < p?).

Now, using the Principle of Symmetric Criticality for locally Lipschitz functions,
proved by Krawciewicz and Marzantovicz [14], from the above theorem we obtain
the following corollary, which is very useful in the applications.

Corollary 1.3. We suppose that the potential a : X → R is G-invariant and (F6)
is satisfied. Then the following assertions hold.
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(a) If (F1), (F1”), and (F2)–(F5) are fulfilled, then problem (1.4) has a non-
trivial solution.

(b) If (F1), (F1’), (F2’), F3), and (F4) are fulfilled, then problem (1.4) has a
nontrivial solution.

Next, we give an example of a discontinuous function f for which the problem
(1.4) has a nontrivial solution.
Example. Let (an) ⊂ R be a sequence with a0 = 0, an > 0, n ∈ N? such that
the series

∑∞
n=0 an is convergent and

∑∞
n=0 an > 1. We introduce the following

notation

An :=
n∑

k=0

ak, A :=
∞∑

k=0

ak.

With these notations we have A > 1 and An = An−1 + an for every n ∈ N?. Let
f : R → R defined by f(s) = s|s|p−2 (|s|r−p +An), for all s ∈ (−n− 1,−n]∪ [n, n+
1), n ∈ N and r, s ∈ R with r > p > 2. The function f defined above satisfies the
properties (F1), (F2’), (F3), and (F4). The discontinuity set of f is Df = Z? =
Z \ {0}. It is easy to see that the function f satisfies the conditions (F1) and (F4’),
therefore (F4). Let F : R → R be the function defined by F (u) =

∫ u

0
f(s)ds with

u ∈ [n, n + 1), when n ≥ 1. Because F (u) = F (−u), it is sufficient to consider
the case u > 0. We have F (u) =

∑n−1
k=0

∫ k+1

k
f(s)ds +

∫ u

n
f(s)ds. Therefore, for

F (u) = 1
ru

r + 1
pAnu

p − 1
p

∑n
k=0 akk

p, for every u ∈ [n, n+ 1]. It is easy to see that
F 0(u;−u) = −uf(u) for every u ∈ (n, n+ 1]. i.e. F 0(u,−u) = −ur −Anu

p. Thus,

F (u) +
1
p
F 0(u,−u) = −

(1
p
− 1
r

)
ur − 1

p

n∑
k=0

akk
p ≤ −

(1
p
− 1
r

)
ur.

If we choose C = 1
p −

1
r , α = r > 2, the condition (F2’) is fulfilled.

This paper is organized as follows: In Section 2, some facts about locally Lips-
chitz functions are given; In Section 3 a key inequality is proved; in Section 4 the
Palais-Smale and Cerami condition is verified for the function Ψ; in Section 5 we
prove Theorem 2 and in the last section we give some concrete applications.

2. Preliminaries and preparatory results

Let (X, ‖ · ‖) be a real Banach space and (X?, ‖ · ‖?) its dual. Let U ⊂ X be an
open set. A function Ψ : U → R is called locally Lipschitz function if each point
u ∈ U possesses a neighborhood Nu of u and a constant K > 0 which depends on
Nu such that

|f(u1)− f(u2)| ≤ K‖u1 − u2‖, ∀u1, u2 ∈ Nu.

The generalized directional derivative of a locally Lipschitz function Ψ : X → R in
u ∈ U in the direction v ∈ X is defined by

Ψ0(u; v) = lim sup
w→u t↘0

1
t
(Ψ(w + tv)−Ψ(w)).

It is easy to verify that Ψ0(u;−v) = (−Ψ)0(u; v) for every u ∈ U and v ∈ X.
The generalized gradient of Ψ in u ∈ X is defined as being the subset of X? such

that
∂Ψ(u) = {z ∈ X∗ : 〈z, v〉 ≤ Ψ0(u; v), ∀ v ∈ X},
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where 〈·, ·〉 is the duality pairing between X? and X. The subset ∂Ψ(u) ⊂ X? is
nonempty, convex and w?-compact and we have

Ψ0(u; v) = max{〈z, v〉 : z ∈ ∂Ψ(u)}, ∀ v ∈ X.
If Ψ1,Ψ2 : U → R are two locally Lipschitz functions, then

(Ψ1 + Ψ2)0(u; v) ≤ Ψ0
1(u; v) + Ψ0

2(u; v)

for every u ∈ U and v ∈ X. We define the function λΨ(u) = inf{‖x?‖? : x? ∈ Ψ(u)}.
This function is lower semicontinuous and this infimum is attained, because ∂Ψ(u)
is w?-compact. A point u ∈ X is a critical point of Ψ, if λΨ(u) = 0, which is
equivalent with Ψ0(u; v) ≥ 0 for every v ∈ X. For a real number c ∈ R we denote
by

Kc = {u ∈ X : λΨ(u) = 0, Ψ(u) = c}.

Remark 2.1. If Ψ : X → R is locally Lipschitz and we take u ∈ X and µ > 0, the
next two assertions are equivalent:

(a) Ψ0(u, v) + µ‖v‖ ≥ 0, for all v ∈ X;
(b) λΨ(u) ≤ µ.

Now, we define the following terms.
(i) Ψ satisfies the (PS)-condition at level c (in short, (PS)c) if every sequence

{xn} ⊂ X such that Ψ(xn) → c and λΨ(xn) → 0 has a convergent subse-
quence.

(ii) Ψ satisfies the (CPS)-condition at level c (in short, (CPS)c) if every se-
quence {xn} ⊂ X such that Ψ(xn) → c and (1 + ‖xn‖)λΨ(xn) → 0 has a
convergent subsequence.

It is clear that (PS)c implies (CPS)c.
Now, we consider a globally Lipschitz function ϕ : X → R such that ϕ(x) ≥ 1,

for all x ∈ X (or, generally, ϕ(x) ≥ α, α > 0). We say that
(iii) Ψ satisfies the (ϕ− PS)-condition at level c (in short, (ϕ− PS)c) if every

sequence {xn} ⊂ X such that Ψ(xn) → c and ϕ(xn)λΨ(xn) → 0 has a
convergent subsequence.

The compactness (ϕ−PS)c-condition in (iii) contains the assertions (i) and (ii) in
the sense that if ϕ ≡ 1 we get the (PS)c-condition and if ϕ(x) = 1 + ‖x‖ we have
the (C)c-condition.

In the next we use the following version of the Mountain Pass Theorem, see
Kristály-Motreanu-Varga [17], which contains the classical result of Chang [7] and
Kourogenis-Papageorgiu [16].

Proposition 2.2 (Mountain Pass Theorem). Let X be a Banach space, Ψ : X → R
a locally Lipschitz function with Ψ(0) ≤ 0 and ϕ : X → R a globally Lipschitz
function such that ϕ(x) ≥ 1, ∀x ∈ X. Suppose that there exists a point x1 ∈ X and
constants ρ, α > 0 such that

(i) Ψ(x) ≥ α, ∀x ∈ X with ‖x‖ = ρ
(ii) ‖x1‖ > ρ and Ψ(x1) < α
(iii) The function Ψ satisfies the (ϕ− PS)c-condition, where

c = inf
γ∈Γ

max
t∈[0,1]

Ψ(γ(t)),

with Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = x1}.
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Then the minimax value c in (iii) is a critical value of Ψ, i.e. Kc is nonempty,
and, in addition, c ≥ α.

Let G be a compact topological group which acts linear isometrically on the
real Banach space X, i.e. the action G × X → X is continuous and for every
g ∈ G, g : X → X is a linear isometry. The action on X induces an action of the
same type on the dual space X∗ defined by (gx∗)(x) = x∗(gx), for all g ∈ G, x ∈ X
and x∗ ∈ X∗. Since

‖gx∗‖? = sup
‖x‖=1

|(gx∗)(x)| = sup
‖x‖=1

|x∗(gx)|,

the isometry assumption for the action of G implies

‖gx∗‖? = sup
‖x‖=1

|x∗(x)| = ‖x∗‖?, ∀ x∗ ∈ X∗, g ∈ G.

We suppose that Ψ : X → R is a locally Lipschitz and G-invariant function, i.e.,
Ψ(gx) = Ψ(x) for every g ∈ G and x ∈ X. From Krawcewicz-Marzantowicz [10] we
have the relation

g∂Ψ(x) = ∂Ψ(gx) = ∂Ψ(x), for every g ∈ G and x ∈ X.

Therefore, the subset ∂Ψ(x) ⊂ X∗ is G-invariant, so the function
λΨ(x) = infw∈∂Ψ(x) ‖w‖?, x ∈ X, is G-invariant. The fixed points set of the action
G, i.e. XG = {x ∈ X |gx = x ∀ g ∈ G} is a closed linear subspace of X.

We conclude this section with the Principle of Symmetric Criticality, first proved
by Palais [24] for differentiable functions and for locally Lipschitz proved by Kraw-
ciewicz and Marzantovicz [14].

Theorem 2.3. Let Ψ : X → R be a G-invariant locally Lipschitz function and
u ∈ XG a fixed point. Then u ∈ XG is a critical point of Ψ if and only if u is a
critical point of ΨG = ψ|XG : XG → R.

3. Some basic lemmas

Define the function Φ : X → R by

Φ(u) =
∫

RN

F (x, u(x))dx, ∀u ∈ X, (3.1)

where the function F is defined in (1.1).

Remark 3.1. The following two results are true for the general growth condition
(f1), but it is sufficient to prove them in the case when the function f satisfies the
growth condition |f(x, s)| ≤ c|u|p−1 for a.e. x ∈ RN ,∀ s ∈ R. For simplicity we
denote h(u) = c|u|p−1 and in the next two results we use only that the function h
is monotone increasing, convex and h(0) = 0.

Proposition 3.2. The function Φ : X → R, defined by Φ(u) =
∫

RN F (x, u(x))dx
is locally Lipschitz on bounded sets of X.
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Proof. For every u, v ∈ X, with ‖u‖, ‖v‖ < r, we have

‖Φ(u)− Φ(v)‖

≤
∫

RN

|F (x, u(x))− F (x, v(x))|dx

≤ c1

∫
RN

|u(x)− v(x)|[h(|u(x)|) + h(|v(x)|)]

≤ c2
( ∫

RN

|u(x)− v(x)|p
)1/p[( ∫

RN

(h(|u(x)|)p′dx
)1/p′ +

( ∫
RN

(h(|v(x)|)p′dx
)1/p′]

≤ c2‖u− v‖p[‖h(|u|)‖p′ + ‖h(|v|)‖p′)

≤ C(u, v)‖u− v‖,

where 1
p + 1

p′ = 1 and we used the Hölder inequality, the subadditivity of the norm
‖ · ‖p′ and the fact that the inclusion X ↪→ Lp(RN ) is continuous. We observe that
C(u, v) is a constant which depends only of u and v. �

Proposition 3.3. If condition (F1) holds, then for every u, v ∈ X, then

Φ0(u; v) ≤
∫

RN

F 0
2 (x, u(x); v(x))dx. (3.2)

Proof. It is sufficient to prove the proposition for the function f , which satisfies only
the growth condition |f(x, s)| ≤ c|u|p−1 from Remark 3.1. Let us fix the elements
u, v ∈ X. The function F (x, ·) is locally Lipschitz and therefore continuous. Thus
F 0

2 (x, u(x); v(x)) can be expressed as the upper limit of
(
F (x, y+tv(x))−F (x, y)

)
/t,

where t→ 0+ takes rational values and y → u(x) takes values in a countable subset
of R. Therefore, the map x → F 0

2 (x, u(x); v(x)) is measurable as the “countable
limsup” of measurable functions in x. From condition (F1) we get that the function
x→ F 0

2 (x, u(x); v(x)) is from L1(RN ).
Using the fact that the Banach space X is separable, there exists a sequence

wn ∈ X with ‖wn − u‖ → 0 and a real number sequence tn → 0+, such that

Φ0(u, v) = lim
n→∞

Φ(wn + tnv)− Φ(wn)
tn

. (3.3)

Since the inclusion X ↪→ Lp(RN ) is continuous, we get ‖wn − u‖p → 0. Using [6,
Theorem IV.9], there exists a subsequence of (wn) denoted in the same way, such
that wn(x) → u(x) a.e. x ∈ RN . Now, let ϕn : RN → R ∪ {+∞} be the function
defined by

ϕn(x) = −F (x,wn(x) + tnv(x))− F (x,wn(x))
tn

+ c1|v(x)|[h(|wn(x) + tnv(x)|) + h(|wn(x)|)].
We see that the the functions ϕn are measurable and non-negative. If we apply
Fatou’s lemma, we get∫

RN

lim inf
n→∞

ϕn(x)dx ≤ lim inf
n→∞

∫
RN

ϕn(x)dx.

This inequality is equivalent to∫
RN

lim sup
n→∞

[−ϕn(x)]dx ≥ lim sup
n→∞

∫
RN

[−ϕn(x)]dx. (3.4)

For simplicity in the calculus we introduce the following notation:
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(i) ϕ1
n(x) = F (x,wn(x)+tnv(x))−F (x,wn(x))

tn
;

(ii) ϕ2
n(x) = c1|v(x)|[h(|wn(x) + tnv(x)|) + h(|wn(x)|)].

With these notation, we have ϕn(x) = −ϕ1
n(x) + ϕ2

n(x).
Now we prove the existence of limit b = limn→∞

∫
RN ϕ2

n(x)dx. Using the facts
that the inclusion X ↪→ Lp(RN ) is continuous and ‖wn − u‖ → 0, we get ‖wn −
u‖p → 0. Using [6, Theorem IV.9], there exist a positive function g ∈ Lp(RN ), such
that |wn(x)| ≤ g(x) a.e. x ∈ RN . Considering that the function h is monotone
increasing, we get

|ϕ2
n(x)| ≤ c1|v(x)|[h(g(x) + |v(x)|) + h(g(x))], a.e. x ∈ RN .

Moreover, ϕ2
n(x) → 2c1|v(x)|h(|u(x)|) for a.e. x ∈ RN . Thus, using the Lebesque

dominated convergence theorem, we have

b = lim
n→∞

∫
RN

ϕ2
n(x)dx =

∫
RN

2c1|v(x)|h(|u(x)|)dx. (3.5)

If we denote by I1 = lim supn→∞
∫

RN [−ϕn(x)]dx, then using (3.3) and (3.5), we
have

I1 = lim sup
n→∞

∫
RN

[−ϕn(x)]dx = Φ0(u; v)− b. (3.6)

Next we estimate the expression I2 =
∫

RN lim supn→∞[−ϕn(x)]dx. We have the
inequality ∫

RN

lim sup
n→∞

[ϕ1
n(x)]dx−

∫
RN

lim
n→∞

ϕ2
n(x)dx ≥ I2. (3.7)

Using the fact that wn(x) → u(x) a.e. x ∈ RN and tn → 0+, we get∫
RN

lim
n→∞

ϕ2
n(x)dx = 2c1

∫
RN

|v(x)|h(|u(x)|)dx.

On the other hand,∫
RN

lim sup
n→∞

ϕ1
n(x)dx ≤

∫
RN

lim sup
y→u(x), t→0+

F (x, y + tv(x))− F (x, y)
t

dx

=
∫

RN

F 0
2 (x, u(x); v(x))dx.

Using relations (3.4), (3.6), (3.7) and the above estimates, we obtain the desired
result. �

4. The Palais-Smale and Cerami compactness condition

In this section we study the situation when the function Ψ satisfies the (PS)c

and (CPS)c conditions. We have the following result.

Proposition 4.1. Let (un) ⊂ X be a (PS)c sequence for the function Ψ : X → R.
If the conditions (F1) and (F2) are fulfilled, then the sequence (un) is bounded in
X.

Proof. Because (un) ⊂ X is a (PS)c sequence for the function Ψ, we have Ψ(un) →
c and λΨ(un) → 0. From the condition Ψ(un) → c we get c + 1 ≥ Ψ(un) for
sufficiently large n ∈ N.

Because λΨ(un) → 0, ‖un‖ ≥ ‖un‖λΨ(un) for every sufficiently large n ∈ N.
From the definition of λΨ(un) results the existence of an element z?

un
∈ ∂Ψ(un),
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such that λΨ(un) = ‖z?
un
‖?. For every v ∈ X, we have |z?

un
(v)| ≤ ‖z?

un
‖?‖v‖,

therefore ‖z?
un
‖?‖v‖ ≥ −z?

un
(v). If we take v = un, then ‖z?

un
‖?‖un‖ ≥ −z?

un
(un).

Using the properties Ψ0(u, v) = max{z?(v) : z? ∈ ∂Ψ(u) } for every v ∈ X, we
have −z?(v) ≥ −Ψ0(u, v) for all z? ∈ ∂Ψ(u) and v ∈ X. If we take u = v = un and
z? = z?

un
, we get −z?

un
(un) ≥ −Ψ0(un, un). Therefore, for every α > 0, we have

1
α
‖un‖ ≥

1
α
‖z?

un
‖?‖un‖ ≥ − 1

α
Ψ0(un, un).

When we add the above inequality with c+ 1 ≥ Ψ(un), we obtain

c+ 1 +
1
α
‖un‖ ≥ Ψ(un)− 1

α
Ψ0(un;un).

Using the above inequality, Ψ0(u, v) ≤ 〈A(u), v〉 + Φ0(u,−v), and Proposition 3.3
we get

c+ 1 +
1
α
‖un‖

≥ Ψ(un)− 1
α

Ψ0(un;un)

=
1
p
〈A(un), un〉 − Φ(un)− 1

α

(
〈A(un), un〉+ Φ0(un;−un)

)
≥ (

1
p
− 1
α

)〈A(un), un〉 −
∫

RN

[
F (x, un(x)) +

1
α
F 0

2 (x, un(x);−un(x))
]
dx

≥ (
1
p
− 1
α

)〈A(un), un〉 −
1
α

∫
RN

g(un(x))dx.

The relation lim|u|→∞
g(u)
|u|p = λ assures the existence of a constant M , such that∫

RN g(un(x))dx ≤ M + λ
∫

RN |un(x)|pdx. We use again that the inclusion X ↪→
Lp(RN ) is continuous, that a(u) = 1

p 〈A(u), u〉 and that

a(u) = ‖u‖p〈A(
u

‖u‖
),

u

‖u‖
〉 ≥ κ(1)‖u‖p,

to obtain

c+ 1 + ‖un‖ ≥ (
1
p
− 1
α

)〈A(un), un〉 −
λCp(p)
α

‖un‖p − M

α

≥ κ(1)(α− p)− λCp(p)
α

‖un‖p − M

α
.

From the above inequality, it results that the sequence (un) is bounded. �

Proposition 4.2. If conditions (F1), (F2’) and (F4) hold, then every (CPS)c(c >
0) sequence (un) ⊂ X for the function Ψ : X → R is bounded in X.

Proof. Let (un) ⊂ X be a (CPS)c (c > 0) sequence for the function Ψ, i.e. Ψ(un) →
c and (1+‖un‖)λΨ(un) → 0. From (1+‖un‖)λΨ(un) → 0, we get ‖un‖λΨ(un) → 0
and λΨ(un) → 0. As in Proposition 4.1, there exists z?

un
∈ ∂Ψ(un) such that

1
p
‖z?

un
‖?‖un‖ ≥ −Ψ0(un;

1
p
un).
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From this inequality, Proposition 3.3, condition (F2’) and the property Ψ0(u; v) ≤
〈Au, v〉+ Φ0(u;−v) we get

c+ 1 ≥ Ψ(un)− 1
p
Ψ0(un;un)

≥ a(un)− Φ(un)− 1
p

[
〈Aun, un〉+ Φ0(un;−un)

]
≥ −

∫
RN

[
F (x, un(x)) +

1
p
F 0

2 (x, un(x);−un(x))
]
dx

≥ C‖un‖α
α.

Therefore, the sequence (un) is bounded in Lα(RN ). From the condition (F4)
follows that, for every ε > 0, there exists c(ε) > 0, such that for a.e. x ∈ RN ,

F (x, u(x)) ≤ ε

p
|u(x)|p +

c(ε)
r
|u(x)|r.

After integration, we obtain

Φ(u) ≤ ε

p
‖u‖p

p +
c(ε)
r
‖u‖r

r.

Using the above inequality, the expression of Ψ, and ‖u‖p ≤ C(p)‖u‖, we obtain

κ(1)− εCp(p)
p

‖u‖p ≤ Ψ(u) +
c(ε)
r
‖u‖r

r ≤ c+ 1 + ‖u‖r
r.

Now, we study the behaviour of the sequence (‖un‖r). We have the following two
cases:

(i) If r = α, then it is easy to see that the sequence (‖un‖r) is bounded in R.
(ii) If r ∈ (α, p?) and α > p? r−p

p?−p , then we have

‖u‖r
r ≤ ‖u‖(1−s)α

α · ‖u‖sp?

p? ,

where r = (1− s)α+ sp?, s ∈ (0, 1).

Using the inequality ‖u‖sp?

p? ≤ Csp?

(p)‖u‖sp?

, we obtain

κ(1)− εCp(p)
p

‖u‖p ≤ c+ 1 +
c(ε)
r
‖u‖(1−s)α

α ‖u‖sp?

. (4.1)

When in the inequality (4.1) we take ε ∈
(
0, κ(1)

Cp(p)

)
and use b), we obtain that the

sequence (un) is bounded in X. �

The main result of this section is as follows.

Theorem 4.3. (1) If conditions (F1), (F1’), and (F2)–(F4) hold, then Ψ sat-
isfies the (PS)c condition for every c ∈ R.

(2) If conditions (F1), (F1’), (F2’), (F3), and (F4) hold, then Ψ satisfies the
(CPS)c condition for every c > 0.

Proof. Let (un) ⊂ X be a (PS)c(c ∈ R) or a (CPS)c(c > 0) sequence for the
function Ψ(un). Using Propositions 4.1 4.2, it follows that (un) is a bounded
sequence in X. As X is reflexive Banach space, the existence of an element u ∈ X
results, such that un ⇀ u weakly in X. Because the inclusions X ↪→ Lr(RN ) is
compact, we have that un → u strongly in Lr(RN ).
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Next we estimate the expressions I1
n = Ψ0(un;un − u) and I2

n = Ψ0(u;u − un).
First we estimate the expression I2

n = Ψ0(u;u − un). We know that Ψ0(u; v) =
max{z?(v) : z? ∈ ∂Ψ(u)}, ∀ v ∈ X. Therefore, there exists z?

u ∈ ∂Ψ(u), such that
Ψ0(u; v) = z?

u(v) for all v ∈ X. From the above relation and from the fact that
un ⇀ u weakly in X, we get Ψ0(u;u− un) = z?

u(u− un) → 0.
Now, we estimate the expression I1

n = Ψ0(un;un−u). From λΨ(un) → 0 follows
the existence of a positive real numbers sequence µn → 0, such that λΨ(un) ≤ µn.
If we use the Remark 2.1, we get Ψ0(un, un − u) + µn‖un − u‖ ≥ 0.

Now, we estimate the expression In = Φ0(un;u − un) + Φ(u;u − un). For the
simplicity in calculus we introduce the notations h1(s) = |s|p−1 and h2(s) = |s|r.
For this we observe that if we use the continuity of the functions h1 and h2, the
condition (F4) implies that for every ε > 0, there exists a c(ε) > 0 such that

max
{
|f(x, s)|, |f(x, s)|

}
≤ εh1(s) + c(ε)h2(s), (4.2)

for a.e. x ∈ RN and for all s ∈ R. Using this relation and Proposition 3.3, we have

In = Φ0(un;u− un) + Φ(u;u− un)

≤
∫

RN

[
F 0

2 (x, un(x);un(x)− u(x)) + F 0
2 (x, u(x);u(x)− un(x))

]
dx

≤
∫

RN

[
f(x, un(x))(un(x)− u(x)) + f(x, u(x))(u(x)− un(x))

]
dx

≤ 2ε
∫

RN

[h1(u(x)) + h1(un(x))] |un(x)− u(x)|dx

+ 2cε
∫

RN

[(h2(u(x)) + h2(un(x))] |un(x)− u(x)|dx.

Using Hölder inequality and that the inclusion X ↪→ Lp(RN ) is continuous, we get

In ≤ 2εC(p)‖un − u‖(‖h1(u)‖p′ + ‖h1(un)‖p′)

+ 2c(ε)‖un − u‖r(‖h2(u)‖r′ + ‖h2(un)‖r′),

where 1
p + 1

p′ = 1 and 1
r + 1

r′ = 1. Using the fact that the inclusion X ↪→ Lr(RN )
is compact, we get that ‖un − u‖r → 0 as n → ∞. For ε → 0+ and n → ∞ we
obtain that In → 0.

Finally, we use the inequality Ψ0(u; v) ≤ 〈A(u), v〉 + Φ0(u;−v). If we replace v
with −v, we get Ψ0(u,−v) ≤ −〈A(u), v〉+Φ0(u; v), therefore 〈A(u), v〉 ≤ Φ0(u; v)−
Ψ0(u,−v).

In the above inequality we replace u and v by u = un, v = u−un then u = u, v =
un − u and we get

〈A(un), u− un〉 ≤ Φ0(un, u− un)−Ψ0(un;un − u),

〈A(u), un − u〉 ≤ Φ0(u, un − u)−Ψ0(u, u− un).

Adding these relations, we have the following key inequality:

‖un − u‖κ(un − u)

≤ 〈A(un − u), un − u〉
≤

[
Φ0(un;u− un) + Φ(u;u− un)

]
−Ψ0(un;un − u)−Ψ0(u;u− un)

= In − I1
n − I2

n.
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Using the above relation and the estimations of In, I1
n and I2

n, we obtain

‖un − u‖κ(un − u) ≤ In + µn‖un − u‖ − z?
u(un − u).

If n→∞, from the above inequality we obtain the assertion of the theorem. �

Remark 4.4. It is important to observe then the above results remain true if we
replace the Banach space X with every closed subspace Y of X.

5. Proof of Theorem 1.2

In this section we prove the main result of this paper, whihc is a result of Moun-
tain Pass type. First we prove that the critical points of the function Ψ : X → R
defined by Ψ(u) = a(u)− Φ(u) are solutions of problem (1.4).

Proposition 5.1. If 0 ∈ ∂Ψ(u), then u solves the problem (1.4).

Proof. Because 0 ∈ ∂Ψ(u), we have Ψ0(u; v) ≥ 0 for every v ∈ X. Using the
Proposition 3.3 and a property of Clarke derivative we obtain

0 ≤ Ψ0(u; v) ≤ 〈u, v〉+ (−Φ)0(u; v)

= 〈A(u), v〉+ Φ0(u;−v)

≤ 〈A(u), v〉+
∫

RN

F 0
2 (x, u(x),−v(x))dx,

for every v ∈ X. �

Proof of Theorem 1.2. Using (1) in Theorem 4.3, and conditions (F1)–(F4), it fol-
lows that the functional Ψ(u) = 1

p 〈A(u), u〉−Φ(u) satisfies the (PS)c condition for
every c ∈ R. From Proposition 2.2 we verify the following geometric hypotheses:

∃α, ρ > 0, such that Ψ(u) ≥ β on Bρ(0) = {u ∈ X : ‖u‖ = ρ}, (5.1)

Ψ(0) = 0 and there exists v ∈ H \Bρ(0) such that Ψ(v) ≤ 0. (5.2)

For the proof of relation (5.1), we use the relation (F4), i.e. |f(x, s)| ≤ ε|s|p−1 +
c(ε)|s|r−1. Integrating this inequality and using that the inclusions X ↪→ Lp(RN ),
X ↪→ Lr(RN ) are continuous, we get that

Ψ(u) ≥ κ(1)− εC(p)
p

〈A(u), u〉 − 1
r
c(ε)C(r)‖u‖r

r

≥ κ(1)− εC(p)
p

‖u‖p − 1
r
c(ε)C(r)‖u‖r.

The right member of the inequality is a function χ : R+ → R of the form χ(t) =
Atp−Btr, where A = κ(1)−εC(p)

p , B = 1
r c(ε)C(r). The function χ attains its global

maximum in the point tM = ( pA
rB )

1
r−p . When we take ρ = tM and β ∈]0, χ(tM )], it

is easy to see that the condition (5.1) is fulfilled.
From (F5) we have Ψ(u) ≤ 1

p 〈A(u), u〉 + c?‖u‖p
p − c?‖u‖α

α. If we fix an element
v ∈ H \ {0} and in place of u we put tv, then we have

Ψ(tv) ≤ (
1
p
〈A(v), v〉+ c?‖v‖p

p)t
p − c?tα‖v‖α

α.

From this we see that if t is large enough, tv /∈ Bρ(0) and Ψ(tv) < 0. So, the
condition (5.2) is satisfied and Proposition 2.2 assures the existence of a nontrivial
critical point of Ψ.
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Now when we use (2) in Theorem 4.3, from conditions (F1), (F2’), (F3), and
(F4), we get that the function Ψ satisfies the condition (CPS)c for every c > 0. We
use again the Proposition 2.2, which assures the existence of a nontrivial critical
point for the function Ψ. It is sufficient to prove only the relation (5.2), because
(5.1) is proved in the same way.

To prove the relation (5.2) we fix an element u ∈ X and we define the function
h : (0,+∞) → R by h(t) = 1

tF (x, t1/pu)−C p
α−p t

α
p−1|u|α. The function h is locally

Lipschitz. We fix a number t > 1, and from the Lebourg’s main value theorem
follows the existence of an element τ ∈ (1, t) such that

h(t)− h(1) ∈ ∂th(τ)(t− 1),

where ∂t denotes the generalized gradient of Clarke with respect to t ∈ R. From
the Chain Rules we have

∂tF (x, t1/pu) ⊂ 1
p
∂F (x, t1/pu)t

1
p−1u.

Also we have

∂th(t) ⊂ − 1
t2
F (x, t1/pu) +

1
t
∂F (x, t1/pu)t

1
p−1u− Ct

α
p−2|u|α.

Therefore,

h(t)− h(1) ⊂ ∂th(τ)(t− 1)

⊂ − 1
t2

[
F (x, t1/pu)− t1/pu∂F (x, t1/pu) + C|t1/pu|α

]
(t− 1).

Using the relation (F2’), we obtain that h(t) ≥ h(1) ; therefore,
1
t
F (x, t1/pu)− C

p

α− p
t

α
p−1|u|α ≥ F (x, u)− C

p

α− p
|u|α.

From this inequality, we get

F (x, t1/p) ≥ tF (x, u) + C
p

α− p
[tα/p − t]|u|α, (5.3)

for every t > 1 and u ∈ R. Let us fix an element u0 ∈ X \ {0}; then for every t > 1,
we have

Ψ(t1/pu0) =
1
p
〈A(t1/pu0), t1/pu0〉 −

∫
RN

F (x, t1/pu0(x))dx

≤ t

p
〈Au0, u0〉 − t

∫
RN

F (x, u0(x))dx− C
p

α− p
[tα/p − t]‖u0‖α

α.

If t is sufficiently large, then for v0 = t1/pu0 we have Ψ(v0) ≤ 0. This completes
the proof. �

6. Applications

In the first two examples we suppose that X is a Hilbert space with the inner
product 〈·, ·〉.

Let f : RN × R → R be a measurable function as in the introduction of this
paper.

Application 6.1. We consider the function V ∈ C(RN ,R) which satisfies the
following conditions:

(a) V (x) > 0 for all x ∈ RN
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(b) V (x) → +∞ as |x| → +∞.
Let X be the Hilbert space defined by

X = {u ∈ H1(RN ) :
∫

(|∇u(x)|2 + V (x)|u(x)|2)dx <∞},

with the inner product

〈u, v〉 =
∫

(∇u∇v + V (x)uv)dx.

It is well known that if the conditions (a) and (b) are fulfilled then the inclusion
X ↪→ L2(RN ) is compact [11], therefore the condition (F1’) is satisfied.

Now we formulate the problem.
Find a positive u ∈ X such that for every v ∈ X we have∫

RN

(∇u∇v + V (x)uv)dx+
∫

RN

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.1)

We have the following result.

Corollary 6.2. If conditions (F1), (F2’), (F3), (F4), and (a), (b) hold, the problem
6.1 has a nontrivial positive solution.

Proof. We replace the function f by f+ : RN × R → R defined by

f+(x, u) =

{
f(x, u) if u ≥ 0;
0, if u < 0

(6.2)

and use (2) in Theorem 1.2. �

Remark 6.3. The above result improves a result in Gazolla-Rădulescu [10].

Application 6.4. Now, we consider Au := −4 u+ |x|2u for u ∈ D(A), where

D(A) := {u ∈ L2(RN ) : Au ∈ L2(RN )}.
Here | · | denotes the Euclidian norm of RN . In this case the Hilbert space X is
defined by

X = { u ∈ L2(RN ) :
∫

RN

(|∇u|2 + |x|2u2)dx <∞},

with the inner product

〈u, v〉 =
∫

RN

(∇u∇v + |x|2uv)dx.

The inclusion X ↪→ Ls(RN ) is compact for s ∈ [2, 2N
N−2 ), see Kavian [12, Exercise

20, pp. 278]. Therefore, the condition (F1’) is satisfied.

Now, we formulate the next problem.
Find a positive u ∈ X such that for every v ∈ X we have∫

RN

(∇u∇v + |x|2uv)dx+
∫

RN

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.3)

Corollary 6.5. If (F1), (F2), (F3), and (F4) hold, then problem (6.3) has a
positive solution.

The proof of this corollary is similar to that of Corollary 6.2.
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Remark 6.6. This result improves a result from Varga [28], where the condition
(F5) was used.

Application 6.7. In this example we suppose that G is a subgroup of the group
O(N). Let Ω be an unbounded domain in RN with smooth boundary ∂Ω, and the
elements of G leave Ω invariant, i.e. g(Ω) = Ω for every g ∈ G. We suppose that Ω
is compatible with G, see the book of Willem [29] Definition 1.22. The action of G
on X = W 1,p

0 is defined by
gu(x) := u(g−1x).

The subspace of invariant function XG is defined by

XG := {u ∈ X : gu = u, ∀g ∈ G }.

The norm on X is defined by

‖u‖ =
( ∫

Ω

(|∇u|p + |u|p)dx
)1/p

.

If Ω is compatible with G, then the embeddings X ↪→ Ls(Ω), with p < s < p? are
compact, see the paper of Kobayashi and Otani [13]. Therefore the condition (F2”)
is satisfied.

We consider the potential a : X → R defined by a(u) = 1
p‖u‖

p. This function
is G-invariant because the action of G is isometric on X. The Gateaux differential
A : X → X? of the function a : X → R is given by

〈Au, v〉 =
∫

Ω

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx.

The operator A is homogeneous of degree p − 1 and strongly monotone, because
p ≥ 2.

Now, we formulate the following problem.
Find u ∈ X \ {0} such that for every v ∈ X we have∫

Ω

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx+

∫
Ω

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.4)

We have the following result.

Corollary 6.8. If we suppose that the condition (F6) is true, then the following
assertions hold.

(a) If conditions (F1)–(F5) are fulfilled, then problem (1.4) has a nontrivial
solution.

(b) If conditions (F1), (F2’), (F3), and (F4) are fulfilled, then problem (1.4)
has a nontrivial symmetric solution.

Remark 6.9. The result (a) from Corollary 6.8 is similar to the a result obtained
by Kobayashi, Ôtani [13], but the difference is that in the paper [13] the “Principle
of Symmetric Criticality” was used for Szulkin type functional, see [27].

Application 6.10. In this case we consider Ω = Ω̃×RN , N−m ≥ 2, Ω̃ ⊂ Rm(m ≥
1) is open bounded and 2 ≤ p ≤ N . We consider the Banach space X = W 1,p

0 (Ω)
with the norm ‖u‖ = (

∫
Ω
|∇u|p)1/p. Let G be a subgroup of O(N) defined by

G = idm×O(N −m). The action of G on X is defined by gu(x1, x2) = u(x1, g1x2)
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for every (x1, x2) ∈ Ω̃ × RN−m and g = idm × g1 ∈ G. The subspace of invariant
function is defined by

XG = W 1,p
0,G = {u ∈ X : gu = u, ∀ g ∈ G}.

The action of G on X is isometric, that is

‖gu‖ = ‖u‖, ∀ g ∈ G.
If 2 ≤ p ≤ N , from a result of Lions [18] follows that the embeddings X ↪→
Ls(Ω), p < s < p? are compact. Therefore the condition (f ′′2 ) is true. In this case
condition (F6) will be replaced by

(F6’) f(x, y1, u) = f(x, y2, u) for every y1, y2 ∈ RN−m (N −m ≥ 2), |y1| = |y2|;
i.e., the function f(x, ·, u) is spherically symmetric on RN−m.

We consider the potential a : X → R defined by a(u) = 1
p‖u‖

p. This functional
is G-invariant because the action of G is isometric on X. The Gateaux differential
A : X → X? of the functional a : X → R is given by

〈Au, v〉 =
∫

Ω

|∇u|p−2∇u∇vdx.

The operator A is homogeneous of degree p − 1 and strongly monotone, because
p ≥ 2.

Now, we formulate the following problem.
Find u ∈ X \ {0} such that for every v ∈ X we have∫

Ω

|∇u|p−2∇u∇vdx+
∫

Ω

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.5)

We have the following result.

Corollary 6.11. (a) If conditions (F1)–(F5), and (F6) hold, then problem
(6.5) has a nontrivial solution.

(b) If conditions (F1), (F2’), (F3), (F4), and (F6’) hold, then problem (6.5)
has a nontrivial solution.
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dru Kristály for his helpful discussions.

References

[1] T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problems, Nonlinear Analisys,

TMA 20(1993), 1205-1216.

[2] T. Bartsch, Topological Methods for Variational with Symmetries , Springer-Verlag, Berlin,
Heidelberg, New York, 1993.

[3] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic

problems in RN , Communications of Partial Differential Equations 20(1995), 1725-1741.
[4] T. Bartsch and M. Willem, Infinitely many non-radial solutions of an Euclidian scalar field

equation, J. Func. Anal. 117(1993), 447-460.

[5] T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear problem in RN ,
Arch. Rat. Mech. Anal. 124(1993), 261-276.

[6] H. Brezis, Analyse Fonctionelle, Masson, Paris (1983).

[7] K.-C. Chang, Variational methods for non-differentiable functionals and their applications to
partial differential equations, J. Math. Anal. Appl.80(1981). 102-129.

[8] F. Clarke, Optimization and Nonsmooth Analysis, John Wiley&Sons, New York, 1983.

[9] X.L. Fan, Y.Z. Zhao, Linking and Multiplicity results for the p-Laplacian on Unbounded
Cylinder, Journal of Math. Anal. and Appl., 260(2001), 479-489.



EJDE-2004/37 HEMIVARIATIONAL INEQUALITIES 17
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