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AN EXISTENCE RESULT FOR HEMIVARIATIONAL
INEQUALITIES

ZSUZSANNA DALYAY & CSABA VARGA

ABSTRACT. We present a general method for obtaining solutions for an ab-
stract class of hemivariational inequalities. This result extends many results
to the nonsmooth case. Our proof is based on a nonsmooth version of the
Mountain Pass Theorem with Palais-Smale or with Cerami compactness con-
dition. We also use the Principle of Symmetric Criticality for locally Lipschitz
functions.

1. INTRODUCTION

Let (X, -]|) be a real, separable, reflexive Banach space, and let (X*,|| - ||+)
be its dual. Also assume that the inclusion X < L!(R¥) is continuous with the

embedding constants C(1), where I € [p,p*] (p > 2,p* = NN—f;)). Let us denote
by || - ||; the norm of L'(RY). Let A: X — X* be a potential operator with the

potential a : X — R, i.e. a is Gateaux differentiable and
t _
lim aluttv) —a(u) _ (A(u), ),

t—0 t
for every u,v € X. Here (-,-) denotes the duality pairing between X* and X. For
a potential we always assume that a(0) = 0. We suppose that A : X — X* satisfies
the following properties:

e A is hemicontinuous, i.e. A is continuous on line segments in X and X*
equipped with the weak topology.

e A is homogeneous of degree p — 1, i.e. for every v € X and ¢ > 0 we
have A(tu) = t*P~1 A(u). Consequently, for a homogeneous hemicontinuous
operator of degree p — 1, we have a(u) = I%<A(u)7 u).

e A: X — X*is a strongly monotone operator, i.e. there exists a function
k : [0,00) — [0,00) which is positive on (0,00) and lim;_, k(t) = oo and
such that for all u,v € X,

(A(u) = Av),u =) = &(|lu = v[)[Ju = ol
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In this paper we suppose that the operator A : X — X* is a potential, hemicon-
tinuous, strongly monotone operator, homogeneous of degree p — 1.

Let f : R" xR — R be a measurable function which satisfies the following growth
condition:

(F1) |f(z,s)| < c(|s[P~t + |s|"71), for a.e. € RY, for all s € R
(F1’) The embedings X — L"(R™) are compact (p < r < p*).

Let F: RY x R — R be the function defined by
F(x,u) = / f(z,s)ds, forae xzecRY, VseR. (1.1)
0

For a.e. x € RN and for every u,v € R, we have:

|F(2,u) = F(z,0)] < erlu— o] (JufP~ 4 o~ a7+ o] 1), (1.2)

where ¢; is a constant which depends only of u and v. Therefore, the function

F(z,-) is locally Lipschitz and we can define the partial Clarke derivative, i.e.
F(z,y + tw) — F(z,y)
7 )

FY(z,u;w) = limsup
y—u, t—0+

(1.3)

for every u,w € R and for a.e. x € R.

Now, we formulate the hemivariational inequality problem that will be studied
in this paper:

Find u € X such that

(Au,v) + FY(z,u(z); —v(z))dr >0, VoveX. (1.4)
RN
When the function f : R” x R — R is continuous, the problem ([1.4) is reduced
to the problem:
Find u € X such that

(Au,v) = flzyu(x))v(z)de, YveX. (1.5)
RN

Such problems have been studied by many authors, see [TI, B, 4} 5] @, 10, 19, 20].

To study the existence of solutions of the problem we introduce the func-
tional ¥ : X — R defined by ¥(u) = a(u) — ®(u), where a(u) = %(A(u),u) and
®(u) = [z~ F(z,u(x))dz. From Proposition [5.1| we will see that the critical points
of the functional ¥ are the solutions of the problem . Therefore it is enough to
study the existence of critical points of the functional . Considering such a prob-
lem is motivated by the works of Clarke [§], D. Motreanu and P.D. Panagiotopoulos
[22] and by the recent book of D. Motreanu and V. Radulescu [23] , where several
applications are given.

To study the existence of the critical point of the function ¥ is necessary to
impose some condition on function f:

(F2) There exists a > p, A € [0, %((Xp_)p) [ and a continuous function g : R — Ry,
such that for a.e. € RY and for all u € R we have

OZF(QC,U)+F2O($,U; 7“) SQ(U), (16)

where lim|,| o g(u)/|ul? = A.
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(F2’) There exists « € (max{p, p* pr*__pp}, p*) and a constant C' > 0 such that for

a.e. z € RN and for all u € R we have
1
—Clu|® > F(x,u) + };FQO(J:, u; —u). (1.7)

Next, we impose further assumptions on f. First we define two functions by
f(z,s) = 6lim+ essinf{f(z,t) : |t — s| < &},
—0

f(z,8) = 6lim+ esssup{ f(z,t) : |t — s| < 4},
—0
for every s € R and for a.e. z € RY. It is clear that the function f(z,-) is lower
semicontinuous and f(x,-) is upper semicontinuous. The following hypothesis on f
was introduced by Chang [7].
(F3) The functions f , [ are N-measurable, i.e. for every measurable function
u:RY — R the functions  — f(z,u(z)),z — f(z,u(z)) are measurable.
(F4) For every € > 0, there exists c¢(¢) > 0 such that for a.e. € RV and for
every s € R we have
[f(z,8) < elsP~" +c(e)]s|"
(F5) For the a € (p,p*) from condition (F2), there exists a ¢* > 0 such that for
a.e. x € RN and for all s € R we have
Flz,u) = ¢ (lul® = |ul?).
Remark 1.1. We observe that if we impose the following condition on f,
(F4) lim,_, o+ esssup{ L&+ (2 s) € RV x (—¢,€)} =0,

[s]

then this condition with (F1) imply (F4).
The main result of this paper can be formulated in the following manner.

Theorem 1.2. (1) If conditions (F1), (F1’), and (F2)-(F5) hold, then prob-
lem has a nontrivial solution.
(2) If conditions (F1), (F1°), (F2’), (F3), and (F4) hold, then problem
has a nontrivial solution.

Let G be the compact topological group O(N) or a subgroup of O(N). We
suppose that G acts continuously and linear isometric on the Banach space X. We
denote by

XC¢={uecH:gr=xforall geG}
the fixed point set of the action G on X. It is well known that X¢ is a closed
subspace of X. We suppose that the potential a : X — R of the operator A : X —
X* is G-invariant and the next condition for the function f : RY x R — R holds:
(F6) For a.e. z € RY and for every g € G,s € R we have f(gz,s) = f(z,s).
In several applications the condition (F1’) is replaced by the condition
(F17) The embeddings X¢ < L"(RY) are compact (p < r < p*).
Now, using the Principle of Symmetric Criticality for locally Lipschitz functions,
proved by Krawciewicz and Marzantovicz [14], from the above theorem we obtain
the following corollary, which is very useful in the applications.

Corollary 1.3. We suppose that the potential a : X — R is G-invariant and (F6)
1s satisfied. Then the following assertions hold.
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(a) If (F1), (F1”), and (F2)-(F5) are fulfilled, then problem has a non-
trivial solution.

(b) If (F1), (F1’), (F2’), F3), and (F4) are fulfilled, then problem has a
nontrivial solution.

Next, we give an example of a discontinuous function f for which the problem
(1.4) has a nontrivial solution.
Example. Let (a,) C R be a sequence with ag = 0,a,, > 0,n € N* such that
the series >~ a, is convergent and > - a, > 1. We introduce the following

notation
n o0
An = Zak,A = Zak.
k=0 k=0

With these notations we have A > 1 and A,, = A,_1 + a, for every n € N*. Let
f R — R defined by f(s) = s|s|P~2(|s|""? + A,), for all s € (—n—1,—n]U[n,n+
1),n € Nand r,s € R with » > p > 2. The function f defined above satisfies the
properties (F1), (F2’), (F3), and (F4). The discontinuity set of f is Dy = Z* =
Z\ {0}. It is easy to see that the function f satisfies the conditions (F1) and (F4’),
therefore (F4). Let F : R — R be the function defined by F(u) = [ f(s)ds with
u € [n,n+ 1), when n > 1. Because F(u) = F(—u), it is sufficient to consider
the case u > 0. We have F(u) = 33} :H f(s)ds + [ f(s)ds. Therefore, for
F(u) = 1ur + ;;Anup - % Soh_o axk?, for every u € [n,n+1]. It is easy to see that
FO(u; —u) = —uf(u) for every u € (n,n +1]. i.e. F(u,—u) = —u" — A,uP. Thus,

)ur — ]% Zakkp < —(1 — f)ur.
k=0

—_

Loty = (L1
Flw)+ B =) = =5 —

SRR

P r

If we choose C' = % — 1 a=r>2, the condition (F2’) is fulfilled.

This paper is organized as follows: In Section 2, some facts about locally Lips-
chitz functions are given; In Section 3 a key inequality is proved; in Section 4 the
Palais-Smale and Cerami condition is verified for the function ¥; in Section 5 we

prove Theorem 2 and in the last section we give some concrete applications.

2. PRELIMINARIES AND PREPARATORY RESULTS

Let (X,]| - ||) be a real Banach space and (X*, || - ||.) its dual. Let U C X be an
open set. A function ¥ : U — R is called locally Lipschitz function if each point
u € U possesses a neighborhood N, of v and a constant K > 0 which depends on
N, such that

|f(ur) = flug)| < K|luy —uz|l, Yui, ug € Ny.

The generalized directional derivative of a locally Lipschitz function ¥ : X — R in
u € U in the direction v € X is defined by

U0 (y;v) = limsup 1(\I/(w + tv) — U(w)).
w—u t\,0
It is easy to verify that WO(u; —v) = (—W¥)%(u; v) for every u € U and v € X.
The generalized gradient of ¥ in u € X is defined as being the subset of X* such
that
OU(u) = {z € X*: (2, v) <V (u;v), Vv € X},
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where (-,-) is the duality pairing between X* and X. The subset 0¥ (u) C X* is
nonempty, convex and w*-compact and we have

U0 (u;v) = max{(z,v) : 2 € OV (u)}, Vv € X.
If U1,¥5: U — R are two locally Lipschitz functions, then
(U1 + W2)%(u; v) < W9 (u; v) + Uy(us v)

for every u € U and v € X. We define the function Ay (u) = inf{||z*||« : 2* € ¥(u)}.
This function is lower semicontinuous and this infimum is attained, because OV (u)
is w*-compact. A point u € X is a critical point of ¥, if Agy(u) = 0, which is
equivalent with W°(u;v) > 0 for every v € X. For a real number ¢ € R we denote
by

K.={ue X :Ag(u)=0, ¥(u) =c}.

Remark 2.1. If ¥ : X — R is locally Lipschitz and we take v € X and p > 0, the
next two assertions are equivalent:

(a) WO(u,v) + pljv|| >0, for all v € X;

(b) Aw(u) < p.

Now, we define the following terms.

(i) U satisfies the (PS)-condition at level ¢ (in short, (PS).) if every sequence
{z,} C X such that ¥(z,) — ¢ and Ay (z,) — 0 has a convergent subse-
quence.

(ii) U satisfies the (C'PS)-condition at level ¢ (in short, (CPS).) if every se-
quence {z,} C X such that ¥(z,) — c and (1 + ||z,|)Ae(x,) — 0 has a
convergent subsequence.

It is clear that (PS). implies (CPS)..
Now, we consider a globally Lipschitz function ¢ : X — R such that ¢(z) > 1,
for all z € X (or, generally, p(z) > a, a > 0). We say that

(iii) W satisfies the (¢ — P.S)-condition at level ¢ (in short, (¢ — PS).) if every
sequence {z,} C X such that ¥(x,) — ¢ and ¢(z,)A\v(x,) — 0 has a
convergent subsequence.

The compactness (¢ — PS).-condition in (iii) contains the assertions (i) and (ii) in
the sense that if ¢ = 1 we get the (PS).-condition and if ¢(z) = 1 + ||z|| we have
the (C).-condition.

In the next we use the following version of the Mountain Pass Theorem, see

Kristély-Motreanu-Varga [17], which contains the classical result of Chang [7] and
Kourogenis-Papageorgiu [16].

Proposition 2.2 (Mountain Pass Theorem). Let X be a Banach space, ¥ : X — R
a locally Lipschitz function with U(0) < 0 and ¢ : X — R a globally Lipschitz
function such that p(x) > 1, Vo € X. Suppose that there exists a point x1 € X and
constants p,a > 0 such that
(i) ¥(z) > o, Vo € X with ||z|]| = p
(ii) [|lz1]] > p and ¥(z1) < «
(iii) The function ¥ satisfies the (o — PS).-condition, where

= inf W((t
¢ = Inf max (v(t)),

with T = {y € C([0,1], X) : 7(0) = 0,7(1) = 1.
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Then the minimaz value ¢ in (iii) is a critical value of ¥, i.e. K. is nonempty,
and, in addition, ¢ > «.

Let G be a compact topological group which acts linear isometrically on the
real Banach space X, i.e. the action G x X — X is continuous and for every
g€ G, g: X — X is a linear isometry. The action on X induces an action of the
same type on the dual space X* defined by (gx*)(z) = 2*(gz), forallg € G, z € X
and z* € X*. Since

lga™[l+ = sup [(gz")(z)| = sup |z*(gz)],
lel=1 loll=1

the isometry assumption for the action of G implies

lgz*lls = sup [a"(z)] = [l2"|, V2" € X*, g € G.

llzll=1

We suppose that ¥ : X — R is a locally Lipschitz and G-invariant function, i.e.,
U(gz) = U(x) for every g € G and z € X. From Krawcewicz-Marzantowicz [10] we
have the relation

go¥(z) = 0V (gx) = 0¥ (x), for every g € G and z € X.

Therefore, the subset 0¥ (z) C X* is G-invariant, so the function
A (2) = inf,cpu(e) |w]l«, © € X, is G-invariant. The fixed points set of the action
G,ie. X9 ={re€ X |gr =2 Vg e G} is aclosed linear subspace of X.

We conclude this section with the Principle of Symmetric Criticality, first proved
by Palais [24] for differentiable functions and for locally Lipschitz proved by Kraw-
ciewicz and Marzantovicz [14].

Theorem 2.3. Let ¥ : X — R be a G-invariant locally Lipschitz function and
u € X a fized point. Then v € X is a critical point of ¥ if and only if u is a
critical point of & =1)|xc : X — R.

3. SOME BASIC LEMMAS

Define the function ® : X — R by
b= [ Flou()ds, YueX, (3.1)
RN

where the function F' is defined in (1.1f).

Remark 3.1. The following two results are true for the general growth condition
(f1), but it is sufficient to prove them in the case when the function f satisfies the
growth condition |f(z,s)| < clu[P~! for a.e. z € RN,V s € R. For simplicity we
denote h(u) = clu[P~! and in the next two results we use only that the function h
is monotone increasing, convex and h(0) = 0.

Proposition 3.2. The function ® : X — R, defined by ®(u) = [on F(x,u(z))dz
18 locally Lipschitz on bounded sets of X.
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Proof. For every u,v € X, with |Jul], ||v]] < r, we have

[@(u) — @(v)]|
< /RN |F(z,u(x)) — F(z,v(x))|dx

<o /RN (@) = v(@)|[A(|u()]) + h(lv(2)])]

<al [ u@—o@P) 1] @Qu@)? @) + ([ @) an)'”

RN
< caflu = vllp[[[a(lu]) [y + [[R(0])[lp)
< C(uvv)Hu - v||7

where % + i = 1 and we used the Holder inequality, the subadditivity of the norm
|- |l,» and the fact that the inclusion X — LP(RY) is continuous. We observe that

C(u, v) is a constant which depends only of u and v. O

Proposition 3.3. If condition (F1) holds, then for every u,v € X, then

0 (u;v) < /RN FY(z,u(z);v(x))dx. (3.2)

Proof. Tt is sufficient to prove the proposition for the function f, which satisfies only
the growth condition |f(z,s)| < c|u|P~! from Remark Let us fix the elements
u,v € X. The function F(z,-) is locally Lipschitz and therefore continuous. Thus
F(z,u(x);v(x)) can be expressed as the upper limit of (F(z,y+tv(z))—F(z,y))/t,
where t — 07 takes rational values and y — u(x) takes values in a countable subset
of R. Therefore, the map x* — FY(z,u(x);v(r)) is measurable as the “countable
limsup” of measurable functions in z. From condition (F1) we get that the function
x — F(x,u(x);v(z)) is from L'(RY).

Using the fact that the Banach space X is separable, there exists a sequence
wy, € X with [Jw, — ul| — 0 and a real number sequence t,, — 0%, such that

®°(u,v) = lim P(wn + ) = @(wn).

n—oo tn

(3.3)

Since the inclusion X — LP(RY) is continuous, we get ||w, — u||, — 0. Using [6]
Theorem IV.9], there exists a subsequence of (w,) denoted in the same way, such
that w,(z) — u(z) a.e. x € RY. Now, let ¢, : RY — R U {400} be the function
defined by

‘Pn(x) = _F(x’ wn(l‘) i tnvt(:‘)) — F(z, wn(x))

+ arf(@)|[A(lwn (@) + tho(z)]) + A(lwn (2)])]-

We see that the the functions ¢, are measurable and non-negative. If we apply
Fatou’s lemma, we get

/ liminf @, (x)dz Sliminf/ on(z)dz.
RN RN

n—oo n—oo
This inequality is equivalent to

/ lim sup[—p, (z)]dz > limsup/ [—pn(z)]dx. (3.4)
R RN

N n—oo n— o0

For simplicity in the calculus we introduce the following notation:
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tn b
(ii) @7 (z) = cro(@)|[h(jwn () + tnv(2)]) + A([wn (@)])]-
With these notation, we have o, (x) = —pk (1) + ¢2 (2).

Now we prove the existence of limit b = lim,, f]RN 2 (z)dz. Using the facts
that the inclusion X «— LP(RY) is continuous and ||w, — u| — 0, we get ||w, —
ull, — 0. Using [6, Theorem IV.9], there exist a positive function g € LP(RY), such
that |w,(z)| < g(x) a.e. € RN, Considering that the function h is monotone
increasing, we get

lon(@)] < erlo(@)l[i(g(z) + [v(@)]) + h(g(2))], ae. zeRY.

Moreover, ©2(x) — 2¢i|v(z)|h(|u(z)]) for a.e. z € RY. Thus, using the Lebesque
dominated convergence theorem, we have

b= lim 2 (x)dx = /]RN 2¢q |v(x)|h(Ju(x)])dx. (3.5)

If we denote by I; = limsup,, . [pn[—¢n(z)]dz, then using (3.3) and (3.5), we
have

(1) 90711(96) _ F(x,wn(x)+tpv(x))—F(z,w,(x)) .

I = limsup /RN [—n(z)]de = ®°(u;v) — b. (3.6)

n—oo
Next we estimate the expression Iy = [pn limsup,, . [—¢n(z)]dz. We have the
inequality

/ lim sup[}: (z)]dx —/ lim 2 (z)dz > Is. (3.7)
R R

N n—oo N N—00

Using the fact that w,(x) — u(x) a.e. x € RY and ¢, — 0, we get

/R lim 2 ()dz = 261 /RN (@) |h(|u(@)])da.

N N—00
On the other hand,
F t -F
/ lim sup ¢} (z)dx < / lim sup (z,y + tv(z)) (z,9) da
RN n—oo RN y—u(x), t—0+ t
= [ Bty ote)is
RN

Using relations (3.4), (3.6)), (3.7) and the above estimates, we obtain the desired
result. O

4. THE PALAIS-SMALE AND CERAMI COMPACTNESS CONDITION

In this section we study the situation when the function ¥ satisfies the (PS).
and (CPS). conditions. We have the following result.

Proposition 4.1. Let (u,) C X be a (PS). sequence for the function ¥ : X — R.
If the conditions (F1) and (F2) are fulfilled, then the sequence (uy) is bounded in
X.

Proof. Because (uy,) C X is a (PS). sequence for the function ¥, we have ¥(u,) —
¢ and Ay (un) — 0. From the condition ¥(u,) — ¢ we get ¢+ 1 > U(u,) for
sufficiently large n € N.

Because Ag(un) — 0, [|un| > ||un||Aw(un) for every sufficiently large n € N.
From the definition of Ay (u,) results the existence of an element 2} € 0V (u,),
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such that Ay(u,) = ||z} [lx. For every v € X, we have |z; (v)| < ||z [l«[[v],
therefore ||z ||«[[v]| > —25 (v). If we take v = u,, then ||z |[«[|unll > =23, (un).
Using the properties W9(u,v) = max{z*(v) : z* € ¥ (u) } for every v € X, we

have —z*(v) > —WO%(u,v) for all z* € ¥ (u) and v € X. If we take u = v = u,, and
2* =z, we get —z} (un) > —V%(uy, up). Therefore, for every oo > 0, we have

1 1 1

unll = 25, Dl > 0o, )
When we add the above inequality with ¢ + 1 > ¥(u,,), we obtain

1 1,
c+1+ a||un|| > U(uy,) — E\Ij (Un; up,)-

Using the above inequality, ¥9(u,v) < (A(u),v) + ®°(u, —v), and Proposition
we get

p
1 1 1 0 s —Unp\T X
> (= HAn) un) - /RN [P, un(@)) + S B (2 un(2); —tn ()] d
1 1 1
> (= DA ) =+ [ s (@)

The relation lim|,|_ o % = )\ assures the existence of a constant M, such that
Jan 9(un(z))de < M + X [on |un(2)|Pde. We use again that the inclusion X —
LP(RY) is continuous, that a(u) = %(A(u),u) and that

u u
a(u) = |[ul"(A(5—), ) = () [Jull”,
[lwll ™ Jlull
to obtain
1 1 ACP(p) M
1 n >(=——=)(4 n)yYn/) — 7 |[|Un P——
e Ll 2 (5 = 2 (An), ) = 2P |
k(1) (a —p) — ACP(p) M
> [unll” = —-.
a a
From the above inequality, it results that the sequence (u,,) is bounded. O

Proposition 4.2. If conditions (F1), (F2’) and (F4) hold, then every (CPS).(c >
0) sequence (u,) C X for the function ¥ : X — R is bounded in X.

Proof. Let (uy,) C X bea (CPS). (¢ > 0) sequence for the function ¥, i.e. ¥(u,) —
cand (14 ||un|)Aw(uy) — 0. From (14 ||uy||) A (un) — 0, we get ||un||Aw () — 0
and Ag(un) — 0. As in Proposition there exists z;; € 0W(uy,) such that

1 1
Sz llunll 2 — 00 (s Sun):
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From this inequality, Proposition condition (F2’) and the property W°(u;v) <
{Au,v) + ®°(u; —v) we get

71 0w, u
> a(un) — ®(uy) — % [(Aun,un> + (I)O(Un; *Un)}

> — /RN [F(:mun(x)) + %Fg(ac?un(x); —un(x))]dx
> C||Un||3-

Therefore, the sequence (u,) is bounded in L*(RY). From the condition (F4)
follows that, for every ¢ > 0, there exists c(¢) > 0, such that for a.e. z € RV,

€ p 7
Flau@) < Jlu@)l” +

After integration, we obtain

c(g)

13
P(u) < ];Hullﬁ + T”UH:'

Using the above inequality, the expression of ¥, and ||ul|, < C(p)||u||, we obtain

k(1) — eCP(p) ce), ,
#IIUHP < U(u) + = lully < e+ 1+ [lully.

Now, we study the behaviour of the sequence (||luy||). We have the following two
cases:

(i) If r = @, then it is easy to see that the sequence (||luy]|,) is bounded in R.

(ii) If r € (o, p*) and o > p*prf_pp, then we have

lally < Ml § 2 - a2
where r = (1 — s)a + sp*,s € (0,1).
Using the inequality ||u|\;’f* < C*P" (p)]|Ju)|*P", we obtain

1 — CP N *
PO =D o < 41 4 L = v (1)
P r
When in the inequality 1' we take € € (0, C”p(a)) and use b), we obtain that the
sequence (uy,) is bounded in X. O

The main result of this section is as follows.

Theorem 4.3. (1) If conditions (F1), (F1’), and (F2)-(F4) hold, then ¥ sat-
isfies the (PS). condition for every c € R.
(2) If conditions (F1), (F1’), (F2’), (F3), and (F4) hold, then U satisfies the
(CPS). condition for every ¢ > 0.

Proof. Let (un) C X be a (PS).(c € R) or a (CPS).(c > 0) sequence for the
function ¥(u,). Using Propositions it follows that (u,) is a bounded
sequence in X. As X is reflexive Banach space, the existence of an element u € X
results, such that u, — u weakly in X. Because the inclusions X «— L"(RY) is
compact, we have that u, — u strongly in L"(RY).
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Next we estimate the expressions I} = WO (u,;u, —u) and I2 = O (u;u — uy,).
First we estimate the expression I2 = WO(u;u — u,). We know that WO(u;v) =
max{z*(v) : z2* € ¥ (u)}, Vv € X. Therefore, there exists 2z € I¥(u), such that
WO(u;v) = 23(v) for all v € X. From the above relation and from the fact that
un, — u weakly in X, we get WO(u;u —uy,) = 25 (u — uy,) — 0.

Now, we estimate the expression I} = WO(u,,;u, —u). From Ay (u,) — 0 follows
the existence of a positive real numbers sequence p, — 0, such that Ag(u,) < pi,.
If we use the Remark we get U0 (up, u, — u) + pn|jun, — ul| > 0.

Now, we estimate the expression I,, = ®°(un;u — uy,) + ®(u;u — uy,,). For the
simplicity in calculus we introduce the notations hi(s) = |s|P~! and ha(s) = |s|".
For this we observe that if we use the continuity of the functions h; and hs, the
condition (F4) implies that for every € > 0, there exists a c¢(¢) > 0 such that

max {|f(x, 5)|, (2, 5)|} < ehi(s) + c(e)ha(s), (4.2)
for a.e. x € RY and for all s € R. Using this relation and Proposition we have
Ly = % (upn; u — up) + @ (usu — uy)

< [ B un()iun(o) - ua) + F (o, u(e)iu(o) - ()] da
RN

< [, L) (o) = u(o) + Fla u(@) (o) — v o))] da
<2 [ (@) + by @) o) = ()

*-QCE]QN [(ha(u(@)) + ho(un(2))] [un(z) — u(z)|dz.

Using Hoélder inequality and that the inclusion X — LP(RY) is continuous, we get

I < 2eC(p)lun — ull(1ha (w)llpr + (71 (un)llp)
+ 2¢(e)lun — ull»(h2(w)llr + [1h2(un)llm),
where % + 1% =1and 2 + L = 1. Using the fact that the inclusion X < L"(RY)
is compact, we get that ||u, — ul|, — 0 as n — oo. For ¢ — 01 and n — oo we
obtain that I, — 0.

Finally, we use the inequality W9 (u;v) < (A(u),v) + ®°(u; —v). If we replace v
with —v, we get WO (u, —v) < —(A(u),v)+®°(u;v), therefore (A(u),v) < ®°(u;v)—
VO (u, —v).

In the above inequality we replace v and v by u = u,,v = u—u, then u = u,v =
U, —u and we get

(Aun),u — tp) < B (tp, v — up) — VO (up; up — u),
(A(u),uy, —u) < B (u, up —u) — U9 (u,u — uy).
Adding these relations, we have the following key inequality:
[[un —ullk(un —u)
< (A(up — u),uy —u)
< [@%(unsu — up) + (w5 u — up) | — VO (up;un —u) — V(w5 u — uy,)
=1I,-1I} -T2
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Using the above relation and the estimations of I,,, I} and IZ2, we obtain
un — ullk(un —u) < Iy + pnllun — ull = 25 (up — u).
If n — oo, from the above inequality we obtain the assertion of the theorem. ([l

Remark 4.4. It is important to observe then the above results remain true if we
replace the Banach space X with every closed subspace Y of X.

5. PROOF OF THEOREM

In this section we prove the main result of this paper, whihc is a result of Moun-
tain Pass type. First we prove that the critical points of the function ¥ : X — R
defined by ¥(u) = a(u) — ®(u) are solutions of problem ([1.4]).

Proposition 5.1. If 0 € 0¥ (u), then u solves the problem (1.4).

Proof. Because 0 € 0¥ (u), we have W'(u;v) > 0 for every v € X. Using the
Proposition 3.3] and a property of Clarke derivative we obtain

0 < ¥O0u;v) < (u,v) + (—®)°(u;v)

= (A(u),v) + @°(u; —v)

S<AOOJO+:/ F9(, u(z), —v(x))dz,

RN
for every v € X. (]

Proof of Theorem[I.2 Using (1) in Theorem [4.3] and conditions (F1)—(F4), it fol-
lows that the functional ¥(u) = L(A(u),u) — ®(u) satisfies the (PS), condition for
every ¢ € R. From Proposition |7i2| we verify the following geometric hypotheses:

Ja,p >0, suchthat U(u) > on B,(0) ={ue X : |u| = p}, (5.1)
U(0) =0 and there exists v € H \ B,(0) such that ¥(v) < 0. (5.2)

For the proof of relation (5.1)), we use the relation (F4), i.e. |f(z,s)| < ¢els[P~ +
c(e)|s["~1. Integrating this inequality and using that the inclusions X — LP(RY),
X — L"(RY) are continuous, we get that

r(1) —eC(p) 1 r
> M =20 () )~ L@ C)ul;

W) —C)y L
Bl — Se@C ) ull

The right member of the inequality is a function y : R — R of the form x(t) =

AtP — Bt", where A = w, B = 1¢(e)C(r). The function x attains its global

maximum in the point ¢y = (%)ﬁ. When we take p =ty and 8 €]0, x(¢ar)], it

is easy to see that the condition (|5.1)) is fulfilled.
From (F5) we have ¥(u) < %(A(u), u) + c*||ullh — c*[Jullg. If we fix an element

v € H\ {0} and in place of u we put tv, then we have

>

1 * * o el
U(tv) < (5@4(“)7@) + cHvlp)t? — o]l

From this we see that if ¢ is large enough, tv ¢ B,(0) and ¥(tv) < 0. So, the
condition (5.2)) is satisfied and Proposition assures the existence of a nontrivial
critical point of W.
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Now when we use (2) in Theorem from conditions (F1), (F2%), (F3), and
(F4), we get that the function ¥ satisfies the condition (CPS), for every ¢ > 0. We
use again the Proposition [2.2] which assures the existence of a nontrivial critical
point for the function W. It is sufficient to prove only the relation , because
(5.1) is proved in the same way.

To prove the relation we fix an element v € X and we define the function
h:(0,+00) — R by h(t) = +F(z,t!/Pu) — Cﬁt%71|u|a. The function A is locally
Lipschitz. We fix a number ¢ > 1, and from the Lebourg’s main value theorem
follows the existence of an element 7 € (1,¢) such that

h(t) — h(1) € O¢h(7)(t — 1),

where 0; denotes the generalized gradient of Clarke with respect to ¢ € R. From
the Chain Rules we have

1
O F(x,tYPu) C 78F(x,t1/pu)t%71u.
p
Also we have
1 1 1 a_
dh(t) C —t—ZF(ml/Pu) + ;aF(x,tl/Pu)tp Yu — Cte ~2ul®.

Therefore,
h(t) — h(1) C Ouh(T)(t — 1)

1
C-% [F(w,tl/”u) — tYPudF (, Y/ Pu) + C|t1/pu|a} (t—1).

Using the relation (F2’), we obtain that h(t) > h(1) ; therefore,

1 o
ZF(z, tYPu) — C—L 45 u|* > Fz,u) — C—L—|uf*.
t a—p a—Dp
From this inequality, we get
F(a, tY7) > tF(z,u) + C—L—[t/P — {]|u|*, (5.3)
a—=p

for every t > 1 and u € R. Let us fix an element ug € X \ {0}; then for every t > 1,
we have

1
U(tPug) = 5<A(t1/puo)vtl/puo> — | F(x,t"Pug(x))da
RN
<

(Aug, up) — t/ F(z,up(z))dx — CL[ta/p — t]]|uo|&.
RN a—Dp

|+

If ¢ is sufficiently large, then for vy = t'/Pug we have ¥(vg) < 0. This completes
the proof. [

6. APPLICATIONS

In the first two examples we suppose that X is a Hilbert space with the inner
product (-, -).
Let f : RY x R — R be a measurable function as in the introduction of this
paper.
Application 6.1. We consider the function V € C(R™,R) which satisfies the
following conditions:
(a) V(z) >0 for all z € RY
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(b) V(z) — 400 as |z]| — +o0.
Let X be the Hilbert space defined by
X ={ue H'ERY): [(Vu@)P +V(@)lulo)P)dz < oo),
with the inner product
(u,v) = /(VuVU + V(z)uv)dx.

It is well known that if the conditions (a) and (b) are fulfilled then the inclusion
X < L%(RY) is compact [I1], therefore the condition (F1°) is satisfied.

Now we formulate the problem.
Find a positive u € X such that for every v € X we have

/ (VuVo + V(z)uv)dr + / FY(z,u(x); —v(z))dz > 0. (6.1)
RN RN
We have the following result.

Corollary 6.2. If conditions (F1), (F2’), (F3), (F4), and (a), (b) hold, the problem

[6-1] has a nontrivial positive solution.

Proof. We replace the function f by fy : RN x R — R defined by

e
and use (2) in Theorem 1.2 O
Remark 6.3. The above result improves a result in Gazolla-Radulescu [10].
Application 6.4. Now, we consider Au := — A u + |z|?u for u € D(A), where
D(A) :={u e L*(RY) : Au € L*(RM)}.
Here | - | denotes the Euclidian norm of RY. In this case the Hilbert space X is

defined by
X ={ue’RY): / (IVul? + |e?u?)de < oo},
RN
with the inner product
(u,v) = / (VuVo + |z|2uv)dz.
RN
The inclusion X — L*(RY) is compact for s € [2, 2), see Kavian [12, Exercise
20, pp. 278]. Therefore, the condition (F1’) is satisfied.

Now, we formulate the next problem.
Find a positive u € X such that for every v € X we have

/ (VuVo + |z|*uv)da —i—/ FY (2, u(z); —v(x))dz > 0. (6.3)
RN RN

Corollary 6.5. If (F1), (F2), (F3), and (F4) hold, then problem (6.3) has a
positive solution.

The proof of this corollary is similar to that of Corollary
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Remark 6.6. This result improves a result from Varga [28], where the condition
(F5) was used.

Application 6.7. In this example we suppose that G is a subgroup of the group
O(N). Let © be an unbounded domain in R with smooth boundary 9, and the
elements of G leave  invariant, i.e. g(Q) = for every g € G. We suppose that {2
is compatible with G, see the book of Willem [29] Definition 1.22. The action of G
on X = W, is defined by

gul@) == u(g~"x).
The subspace of invariant function X is defined by

X¢:={ueX:gu=u, Vg€ G }.
The norm on X is defined by

full = ([ (7 + uyaz)

If Q is compatible with G, then the embeddings X «— L*(Q), with p < s < p* are
compact, see the paper of Kobayashi and Otani [I3]. Therefore the condition (F2”)
is satisfied.

We consider the potential ¢ : X — R defined by a(u) = %HUHP. This function
is G-invariant because the action of G is isometric on X. The Gateaux differential
A: X — X* of the function a : X — R is given by

(Au,v) = / (|IVulP~>VuVo + [ulP?w) da.
0

The operator A is homogeneous of degree p — 1 and strongly monotone, because
p=>2.

Now, we formulate the following problem.

Find uw € X \ {0} such that for every v € X we have

/ (IVulP2VuVo + [ulPuv) dz + / F(z,u(x); —v(z))dz > 0. (6.4)
0 Q

We have the following result.

Corollary 6.8. If we suppose that the condition (FG) is true, then the following
assertions hold.

(a) If conditions (F1)-(F5) are fulfilled, then problem (1.4)) has a nontrivial
solution.

(b) If conditions (F1), (F2’), (F3), and (F4) are fulfilled, then problem (1.4)

has a nontrivial symmetric solution.

Remark 6.9. The result (a) from Corollary [6.§is similar to the a result obtained
by Kobayashi, Otani [I3], but the difference is that in the paper [I3] the “Principle
of Symmetric Criticality” was used for Szulkin type functional, see [27].

Application 6.10. In this case we consider Q = QxRN N—m >2,Q C R™(m >
1) is open bounded and 2 < p < N. We consider the Banach space X = W, ?(Q)
with the norm [ul| = ([, |Vu|P)}/P. Let G be a subgroup of O(N) defined by
G =id™ x O(N —m). The action of G on X is defined by gu(x1,z2) = u(z1, g122)
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for every (x1,x2) € Q x RN~ and g = id™ x g1 € G. The subspace of invariant
function is defined by

XG:WS”g:{uEX:gu:u, Vg e G}
The action of G on X is isometric, that is
lgull = [lull, Vg € G.
If 2 < p < N, from a result of Lions [I8] follows that the embeddings X —

L*(9Q),p < s < p* are compact. Therefore the condition (f4') is true. In this case

condition (F6) will be replaced by

(F6") f(x,y1,u) = f(x,y2,u) for every y1,y2 € RN"™ (N —m > 2), [y1| = |yal;
i.e., the function f(x,-,u) is spherically symmetric on RY-™,
We consider the potential a : X — R defined by a(u) = %||u||p. This functional
is G-invariant because the action of G is isometric on X. The Gateaux differential
A: X — X* of the functional a : X — R is given by

(Au,v) :/ |Vu|P~2VuVoudz.
Q

The operator A is homogeneous of degree p — 1 and strongly monotone, because
p=2

Now, we formulate the following problem.
Find w € X \ {0} such that for every v € X we have

/\Vu\p_QVqudx—l—/ FY(x,u(z); —v(z))dz > 0. (6.5)
Q Q

We have the following result.

Corollary 6.11. (a) If conditions (F1)-(F5), and (F6) hold, then problem
(6.5)) has a nontrivial solution.
(b) If conditions (F1), (F2’), (F3), (F4), and (F6’) hold, then problem
has a nontrivial solution.
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