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On certain nonlinear elliptic systems with
indefinite terms *

Ahmed Bensedik & Mohammed Bouchekif

Abstract

We consider an elliptic quasi linear system with indefinite term on
a bounded domain. Under suitable conditions, existence and positivity
results for solutions are given.

1 Introduction

The purpose of this article is to find positive solutions to the system

—Apu = m(x)%—i(u,v) in Q

—Agv = m(x)aa—f(u,v) in (1.1)

u=v=0 on o)

where (2 is a bounded regular domain of R¥, with a smooth boundary 052,
Apu = div(|Vu[P72Vu) is the p-Laplacian with 1 < p < N, m is a continuous
function on Q which changes sign, and H is a potential function which will be
specified later.

The case where the sign of m does not change has been studied by F. de
Thélin and J. Vélin [9]. These authors treat the system (1.1) with a function H
having the following properties

e There exists C > 0, for all z € Q, for all (u,v) € D3 such that 0 <
H(z,u,v) < C([ul? + [v]")

e There exists C' > 0, for all z € Q, for all (u,v) € Ds such that H(z,u,v)
C/

IN

e There exists a positive function a in L>(Q), such that for each x € Q and
(u,v) € Dy NRZ, H(x,u,v) = a(x)u*oft!
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where

Dy = {(u,v) ER*: |u| > A or [v| > A},
Dy = {(u,v) € R®\D; : [u| > § or |v| > 6},

and D3 = R?\(D; U Dy) with A >6>0,1<p' <p*: N ,and 1 < ¢ < g*.
They established the existence results under the COndlthnb

1 1 1 1
ot —|——ﬁ+ >1 and at —|—ﬁ+

D q p* q*

<1

by using a suitable application of the variational method due to Ambrosetti-
Rabinowitz [2]. M. Bouchekif [4] generalized the work of F. de Thélin and
J.Velin [9] for the large class of functions of the form

H(u,v) = alul” + c[v]® + blu[* o]+

where «, 3 > 0; v, d > 1 and a, b and c are real numbers. The case where the
system (1.1) is governed by a single operator A, has been studied by Baghli [3].

Our aim is to extend to the system (1.1) the results obtained in the scalar
case (see [5]). Our existence results follow from modified quasilinear system in
order to apply the Palais-Smale condition (P.S.) and then the Moser’s Iterative
Scheme as in T. Otani [6] or in F. de Thélin and J. Vélin [9]. We consider only
weak solutions, and assume that H satisfies the following hypothesis.

(H1) H € CY(RT x RT)
(H2) H(u,v) = o(uP +v9) as (u,v) — (07,07)
(H3) There exists Ry > 0 and p, 1 < p < min(p*/p, q*/q), such that

uOH vOH

PR DR

> ou (u,v) > pH(u,v) > 0V(u,v) € RL xR, uP+v? > Ry.

2 Preliminaries and existence results

The values of H(u,v) are irrelevant for u < 0 or v < 0. We set

/|Vu|pda:+ /|Vv|qu—/m dx

defined on E := W, ?(Q) x Wy?(Q). The solutions of the system (1.1) are
critical points of the functional I. Note that the functional I does not satisfy
in general the Palais-Smale condition since

u0H vOH
B, H(u,v) = E%(u’v) + E%(u,v) — uH (u,v)
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is not always bounded. In order to apply Ambrosetti-Rabinowitz Theorem [2],
we modify H so that the corresponding B, H (u,v) becomes bounded. Let
H (u,v)

A(R) = max { T

:Rgup—i—quR—i—l}
and

H _1
Cr= max{ sup ‘—a (u, v)‘ + 2ppA(R)(R + 1)“+1 v sup  [nR(T);
uP4+vi<R+1 OU R<r<R+1

OH 1
sup | S ()] + 2quA(R)(R+ DTTE sup  n(r)] |
uP+vi<R+1 v R<r<R+1

where nr € C1(R) is a cutting function defined by

=1 ifr<R
nr(r)< <0 ifR<r<R+1
=0 ifr>R+1.

Our main result is the following:

* ok

p*q
Theorem 2.1 Assume that (H;)i=1.23 hold and Cr = o( RP* =)@ =a") for
R sufficiently large. Then the system (1.1) has at least one nontrivial solution
(u,v) in EN[L>(Q)]? with u and v positive.

Before proving this theorem, we truncate the potential function H.

The modified problem
Let R > Ry be fixed, and set
Hp(u,v) :=nr(u? + v H(u,v) + (1 = nr(u” +0*)) A(R) (u” + v?)",
By construction Hg is C! and nonnegative. Let
Mp:=(R+1) o B (R (u? +v?)(H (u,v) — A(R)(uP + v9)")]
+ max  B,H(u,v),

uP+vi<R+1
Lemma 2.2 Hpg satisfies (H1)-(H3) and the following estimates
0 < B,Hp(u,v) < Mg, V(u,v) € R* x RY, (2.1)
0H
o (w0)| < Cr o+ pp AR (P + 0T,
OH w (2.2)
=5 (w0)| < Cr o+ pg AR (P +01)7, (u,v0) € R,
Hp(u,v) > mR—IZf(up + o) V(u,v) € RT x RY, such that uP + v > Ry,
(2.3)

with mp, := min{H (u,v);u? +v? = Ry}.
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Proof. (H1) and (H2) can be easly verified for Hg. We verify for (H3) as
follows: For any v > 1,we have

B,Hp(u,v)
= (W + ")y (0 + ) H (u, v) — ACR)(wP + v1)¥] + (P +v7) By H (u,v),
for Ry < uP +v? < R;
B,Hg(u,v) = B,H(u,v) > B, H(u,v) >0 forl<v<p
for R<uwP+vI<R+1;
B,Hg(u,v) > nr(uP+v?) B, H(u,v) > nr(uP+v?)B,H(u,v) > 0 for 1 <v < y;

finally for u? +v? > R+ 1, B,Hg(u,v) = 0 for any v > 1. Thus (H3) holds for
Hpg.
Conditions (2.1) and (2.2) result from straightforward computations. Using
(H3), we have
Ro

Hpg(u,v) > n;—u(up—i—vq)” ,V(u,v) € RY xRY such that u” +v? > Ry. (2.4)
0

In fact, put f(t) := HR(tl/pu,t%v) with u? +v? > Ry then

1/p 1
(@ :1 u%(tl/p%t%v)th v%(tl/l’uﬂgév)
tL p  Ou ¢ o s
SE A1) forall >ty = —0 (< 1),

~

uP 4+ v?

Integrating (2.5) between t¢ and ¢, we obtain

t tH
f(t) > forall t>t (2.6)
f(to) ~ tg
and taking ¢ =1 in (2.6), we have
uP + pa)k
o) = £1) = 2 )
0
and f(to) = Hg(ui,v1) = H(ui,v1), where uy = (ufqu)l/”u, and
vy = (M,Ri_&)q)l/qv. Consequently,
i t b = i H b b
upgggRof( o(u,v)) o oin (u,v)

hence (2.4) follows. Now, consider the modified system

0H ,
—Apu = m(a:)TuR(u,v) in Q
—Agv = m(z)aaﬁ(u,v) in Q (2.7)
v

u=v=0 ondN
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which has an associated functional Ir defined on E as
1 1
Ir(u,v) = —/ |VulPdx + —/ |Vv|qdac—/m(m)HR(u, v)dz.
P Ja qJa Q

Lemma 2.3 Under the hypotheses (H1)-(H3), the functional Ir satisfies the
Palais-Smale condition.

Proof. Let (un,vy,) be an element of F such that Ir(un,v,) is bounded and
I (tn, vn) — 0 strongly in W5 P (Q) x W5 "7 () (dual space of E).
Claim 1. (up,v,) is bounded in E. In fact, for any M, we have

1 1
M < 7/ |Vun\pd:c+f/ |an\qu7/m(:c)HR(un,vn)d:c < M,
P Ja q.Ja Q
and for € € (0,1), we have again

1 1
e < —/ |Vun|pdx+—/ IV |7de
pPJa q.Ja

u, OHR vy, OHp
_ Un O R .
/Qm(x)[p 7 (Un, Uy) + < o (Un,vy)|dz < €

Then we obtain

1 1
“—/ |vun\de+“—/ Vv, |9da
p Q q Q

IN

M;Lf/ﬂm(x)BuHR(u,v)dx

Mp+ 1+ |m|oMpg(meas )

IN

where |m|p := max _(|m(z)|). Hence (un,vy,) is bounded in E.
TEQ

Claim 2. (up,v,) converges strongly in E. Since (un,vy) is bounded in F,

there exists a subsequence denoted again by (uy,, v,) which converges weakly in

E and strongly in the space L¢(Q2) x L"(2) for any ¢ and 7 such that, 1 < ¢ < p*

and 1 <7 < ¢*. jFrom the definition of I, we write

/(|Vun|p_2Vun — |V P2V V (uy, — w)dx
Q

= <I§%(umvn) - I;%(ulvvl)’ (un —u1,0))

+/Qm(a:) [%(un,vn) - %(uz,vl)} (ty, — wp)d.

By assumptions on I, (Ii(tn,vn) — Ig(ur, v1), (u, — u,0)) converges to 0 as
n and [ tend to +o0o. In what follows, C' denotes a generic positive constant.
Now, we prove that

0H 0H
Chy = /Qm(a:)[a—f(un,vn) - a—uR(ul,vl)](un —uy)dx
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converges to 0 as n and [/ tend to +00. We have

OHp OHR
< —_— i _
|G| < Imlo/ﬂ[ 5y (o Un)| | == (ur, o) [Jun — urldz

and
H
1% )l wld

= / (Cr + mpA(R) [P~ (fun P + 027"~y — wi]de
Q

IN

2#*103/(1 F un P+ [t [P 0| ) |y, — | de
Q

IA

2“_103[/ |thr, — wy|d +/ [ |12~ |y — wy|de
Q Q
+/ [ [P 00 |7 1 —ul|dx}.
Q
Using Holder’s inequality and Sobolev’s embeddings, we obtain

OHR
AR

P— l/P
< 2¢71Cg(meas Q)T1 [ [tp, — ul|pda:}
Q

|ter, — wy|dx

up—1 1

+2”_1C’R[/ |un|“pdx} " [/ |un—ul\“pdm‘}E
N p=1 ? p=1 1
+2“_ICR[/Q|UTL|W)(1$} " [/Q|vn|”qu} . [/Q\un—uﬂ“pda: "

(because (u,) € Wy P(Q) and up < p*, (v,) € Wy?(Q) and pg < ¢*). Then

0Hp
| et e

Similarly, we obtain

lun — wldz < Cllup —wl|r @) + Cllun — wil|lur(0)-

/ |— ug, vp)||uy — wlde < Cllup — wi||pr @) + Cllun — wil|Lur ),

and so |Cy 1| < |m|o(C|lun, — wi||ze + Clltn, — wi]|Lrr). Hence Cy,; converges to
0 as n and ! tend to +oo.

We have the following algebraic relation [8]
|‘71h1‘* Y7ul|p

< C[(IVun P2Vt — VP72 Vu)V (1t — )] (VP + [V ?) 2,
(2.8)
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p forl<p<2
2 for2<p
equality in the right hand side, we obtain

where s = . Integrating (2.8) on 2, and using Hélder’s in-

P
1,p

llwn —

S O|:/ (‘vun|p*2vun7|Vul|p*2vul)v(un7ul)dxi| 2 (||un||zl)7p+”u”|zl;,p)17%'
Q
Now since

/(|Vun|p_2Vun — |V [P2 V)V (u, —w)dz — 0
Q

as n and [ tend to 400, the sequence (u,) converges strongly in W, (). Sim-
ilarly we prove that the sequence (v,,) converges strongly in VVO1 1(Q).

The next lemma shows that [r satisfies the geometric assumptions of the
Mountain-Pass Theorem.

Proposition 2.4 Under assumptions (H1)-(H3) we have

1. There exist two positive real numbers p,o and a neighborhood V, of the
origin of E, such that for any element (u,v) on the boundary of V,:
Ir(u,v) >0 > 0.

2. There exist (¢,0) in E such that Ig(¢,0) <O0.

Proof. From (H2) and taking into account that Hg(u,v) = H(u,v) for u? +
v?9 < R, we can write

Ve > 0,30 > 0:uf +v? <. = Hp(u,v) < e(u? +v7),
and since Hg(u,v)/(uP 4+ v?)* is uniformly bounded as u? 4+ v? tends to 400
IM(e,R) > 0:uP +v? > 6. = Hp(u,v) < M(u? +v?)*.
Then for every (u,v) in RT x RT we have
Hp(u,v) < e(u?f +v7) + M (uP + v?)*.

Hence

/Qm(x)HR(u,v)dx

< |mlo [5/(1#) +v?)dx + M/ (u? + vq)”dx}
Q Q
< |mlo [/ (euP + 27 MuP*)dx + / (ev? + 2“_1M1}q”)daz}
Q Q
< Clmlo[e(lull} , + lvll{ ¢) + M([ulli, + [lW]Y5)]-
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For Ir(u,v), we obtain

1 _
Ig(u,v) > ||u||’1’,p[5 = Clmlo(e + M|[ully5,™)]

1 -
+Hv||‘i,q[a = Clmlo(e + M|jv[l{)] = o >0,

for every (u, v) in the sphere S(0, p) of E where p is such that 0 < p < min(py, p2)
with

_[é—i]w;—p and —[;_i]uq;—q
p= pMClmly M P2 = gMCim|o M

with e sufficiently small.
2. Choose (¢,0) € E such that: ¢ >0, 8 > 0,

suppo C QF, suppfd C Q7

where QF = {z € Q;m(x) > 0}. Hence, for ¢ sufficiently large,

t t
Ip(tY/Pg, t1/19) = p7||¢||’i’,p+5|\9||§‘7q—/Qm(x)HR(tl/pgb,tl/qe)dx

IN

t[||¢||1f,p N ||9||‘f,q] MRy / m(@) (& + 07 da
p q Ry Jo

and so limy_, oo TR(tY/P¢,11/90) = —o00, (because p > 1). By continuity of I
on E, there exists (¢,0) in E\ B(0,p) such that Ir(¢,0) < 0. By the usual
Mountain-Pass Theorem, we know that there exists a critical point of Iz which
we denote by (ug,vg), and corresponding to a critical value cg > o. Since
(u},v}), where uj, :== max(ug,0), is also solution for the system (SHr), we
assume ug > 0 and vy > 0. Positivity of ur and vy follows from Harnack’s in-
equality (see J. Serrin [7]). We prove now that, under some conditions, (ug,vg)

is also solution of the system (2.7).

3 Existence results

We adapt the Moser iteration used in [6, 9] to construct two strictly unbounded
sequences (Ag)gen and (ug)ren such that (ug,vr) satisfies

UR € LM+ (Q) UR € LAw+ (Q)
f { vpe D) [ e yp € D ().

Bootstrap argument

Proposition 3.1 Under the assumptions of Theorem 2.1, there exist two se-
quences (A\r)r and (pg)r such that

1. For each k, ur and vg belong to L () and L"* () respectively
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2. There exist two positive constants Cp, and Cy such that

lurllco < limsup||urlza < Cp, and |vr|le <limsup |vg|pe < Cj.
k—+o0 —+too

Lemma 3.2 Let (ap)ren and (bg)ren be two positive sequences satisfying, for
each integer k, the relations

-1 b -1
prar  au=l gy 40 PmD) (3.1)
A 1k Ik Ak
IfuR and vg are in LM (Q) and L**(Q) respectively, Apy1 < (14+2)mp, pgr <
(1+2 )7Tq with 1 < mp, <p* and 1 < my < g*, then we have:

Ak41
g

lurl e < {0 [1+ ST [CrlmlolunlR + Ionlli)] 7} F - (32)

Fr+1

by, 1
lowllztss < Ko {0y [+ ] [Calmlo(umlly + Joalli)] T} % (33)

where ||z is [|2]| Lo () and Kp, K, 0,, and 8, are positive constants.

Proof. Remark that if, for an infinite number of integers k, ||ug||s, <1 then
lur|lsc <1 and proposition 1 is proved. So we suppose that ||ug|[s, > 1 for all
k € N. Let ¢,, n € N, be C' functions such that

Co(s)=s if s<n
Cu(s)=n+1 if s>n+2
0<(¢\(s)<1 if seR".

Put u, = (,(ug), then ult® e WP(Q) N L>®(Q) and up satisfies the first
equation of the system (2.7). Multiply this equation by ult% and integrate
over §) to get

OHpR

~Apuguptrde = /m(x)—(uR,vR) Lrak gy
Q ou

2“*103\771\0/52(14—#“ 1—|—uR 11}%‘ Dyl tardg.

Q

IN

Since u, < ugr, we have
/ —Apug.ulT*dr
Q
< 2“_1CR|m|0{ / up " dx —|—/ Ak o —|—/ ub kU qu}
Q Q
Using Holder’s inequality, we obtain

_Ldag
/—ApuR.u}fa’“dx < 2"*1C’R|m|0{(measQ)1 & HUR”%\:_%"‘”URH%IZ’;
Q

-+ —
HlurlB a2}
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We shall show below that pu + ap = Ag. Since |lug||x, > 1, we get

/ —Ayug.uLtdr
Q

< 2471 CRmlo max(1, meas Q) [2[|ugll3* + [lur|5* [orl/%~1].

Moreover, using the relation (3.1), we obtain

) — A
url5F* Jorl| %9 < Jlurll3* + [logl|i:,

so, with ¢g := 3 max(1, meas (),

[ ~Agunadieds <2 aClmlolunl+ onll): (34)
On the other hand we have
/Q—ApuR.u}fakdx = (1+ak)/Q|VuR|p(,’l(uR)qu"'dx
> (1 a) | [VurP (Gum)Puttds
= (1+ak)/ﬂ|Vun|puf;’“dx
and thus
/Q—ApuR.u}f“kdx2/9|Vun|puzkdx. (3.5)

14 2k
Since un * € WP (Q), the continuous imbedding of W, **(€) in L™ () implies
the existence of a positive constant ¢ such that

2k o = 2k 1/p
(f 1 m1a) ™ < of [ v par)
Q Q

. ag ar 1/p
= c[1+;](/§2un"|Vun|pdx) : (3.6)

IN

By assumption, we have Ay < jg := [1 + %"]wp. Then

1 1
n . < (meas Q)™ ||un|;,, where my = —
lonlass, < (meas )™ |, e ol (e

and thus

A A
lunllngg, < Epllunlli™

where K, is a positive constant greater than (meas Q)™s 41 independently of
the integer k. By the relation (3.6),

Ak41

a 1/p ay
a3 < et + 21 [ w1V, aa) ] (3.7)
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Combining the inequalities (3.4)-(3.7), we deduce

Ak+1
1+ %k

Ak+1 ag N\ 1/
oan 2+ SKp{ep[H;]{0R|m|o<||uR||§:+||vR|¢z:>} } ,

Akt1

with 0, = Q%Cé/pc. Hence, by letting n — 400, we obtain (3.2). Similarly we
show (3.3).

Construction and definition of (), and (u).

Here we construct the sequences (Ag)x and (ug)r using tools similar as those
in [O] or [TV]. The first terms of each sequence cannot be determined directly
by using the Rellich-Kondrachov continuous imbedding result. So, we first con-
struct two other sequences (M) and (fig)r, such that for each k, ug and vg

belong to L (Q) and L#*(Q) respectively. By a suitable choice of kq, Xko and
Lk, determine the first terms of (Ag)x and (uk)

Construction of (\;), and (7).

Suppose p < ¢, and fix a number s, such that ¢p/p* < s < 1/u. Put
—~ 1 *
c °p

2+2§'
Remark that? >1,1< ,upé <pTandl< ,uqa < ¢*. Now, we take Xk = up@k
and fiy = pqC*. By definition of (a,,), we have

pta, p—1

~— +——¢q=1
Ak Hi

then ap = Xk — pp. Similarly, we find by = fix — qpu.

Lemma 3.3 For each integer k, ur € L (Q) and vy € L ().

Proof. By induction. For k = 0, :\\0 = up < p*, lo = pg < ¢", and since
(ur,vr) € E, by the Sobolev imbedding theorem, we have ur € L (Q) and
VR € LHo (Q)
Suppose that the proposition is true for all integers k&’ such that 0 < k' < k.
Take R R
mp, = upC  and m, = pqC.

Since ug € Lj\k(Q) and

ag

Ne—ppy A& o A N
1+ ]mf:H+4—5—ﬂw£5wm0+u%0“lfu%CZumﬁ“

Le. [1+ %&|mp > X;H_l, Lemma 3 allows us to write ug € kaﬂ(Q) and vp €
Lir+1(Q).
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Construction of (\;)r and (ug)r Put

where the integer ko is chosen so as to have § > 0. The sequences (\g)r and
() are defined by Ax = pfi and pg = qfk, where

C
= ——[sCF! —1)].
fe= Al + (p—1)]
We remark that the three last sequences are strictly increasing and unbounded.
Furthermore (f)) satisfies the relation fr11 = C[fr — (. — 1)].

Proof of Proposition 2. 1. We show by induction that for all integer k,
ugr € LM (Q) and vy € L**(Q). For k =0,

pC ¢ Nip Ak N
)\ = = — | — —1 — | O 0 :A
0 =pfo 0_1[C+(u )] P [Nu | = Akos
and similarly, po = fig,-
By Lemma 4, ug € L*(Q) and vg € LH°(Q). Suppose that (ugr,vr) €
LA+ (Q2) x LM+(Q). First we establish that A\, = ay + pp. By condition (3.1),

+a -1 a
_ptan, m p_ 94 o 4

1 - £ 2 4 F -,
Ak Lk Ak Bk Ak M,Ufk
thus
Gk Y
pfr [k

which implies ax, = p(fr — p) = A\ —pp, and similarly pr = b +qu = q(fr — p).
Now when we take m, = Cp and m, = C'q, we then have

a
[+ %], = (14 i = 1)Cp = Pfis = M

and similarly [1+%’€]7rq = pig+1. Since (ug,vg) € LM () x L**(€2), we conclude,
according to Lemma 3, that

(UR,UR) S LAk+1 (Q) X L‘ukJrl(Q).
So ug € LM (), and vg € L** (), for all integer k.

2. Now we prove that ur and vy are bounded. By Lemma 3, we have

Ake+1
A ag Y 1/ g
lurl N < 5 {0 [0+ Z{Crlmlo(un R + omlif)} 772

Fr+1

by A 1 [
Jorllis: < K04 [1+ 21 Crimlolunllt +loalf)}
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We remark that N
k+1
H—a—k = pC and
P q

Consequently,

A Ak 1pC AC
lurllyy ) < 29K05 [1+ ;]io (ImloCr)® max (Jurllyi®, [lvrllit®),

bi1qC
ogllik < 29K,02° 1+ f]q (ImloCr)© max (lurll*, [vrll4:).

Mot
We have
1+%:1+%_1+fk—u< o 1[g+u—110’“~
Take c o5
=m[5+u—1}[KP+Kq]
and 0 := 2|m|o max(6},07), then we can write

C ~kqC ~C A c
max (|lurl 3 orllses: ) < (A7) CHCCE max (|lurlS ol 52 ).
We construct an iterative relation

Epp1 <rp+CE

where Ej, = lnmaX(HuRHA’“ [ogllt), and 7, = ak + b, with a = InC?° and
b = In[A90CR]¢. Proceeding step by step, we find

Epp1 < rp+Crp_1+ C’Qrk_Q 4+ C’kro + C’kHEQ

k
C]H_IE() + ZCirk,i.

=0

IN

Ei 1

Let us evaluate
k
o = g C'ry_i.
i=0

We have ri_; = a(k — i) + b = ak + b — ai, then

o = (akerZ faZzCl
=0

bCH 2 + (a — )C’““H — C)ak — [C(a +b) —b]
(C—1) '

Since C > 1, and a, b are positive, we have

bCF+2 4 (a — b)Ck+1
o= (C—1)?
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then

bOF+2 a—>b
Epp1 < ——— 4+ CH Y ———— 4+ Ey.
k+1_(0_1)2+ [(0_1)24- o]
By an appropriate choice for the constants K, and K,, we ensure that
b—a
— > F,.
(Cc—-12 ="
Recall that
A10CR . c 6

hence Ej 1 < bC*+2/(C—1)2. By the definition of Ej,; and the last inequality,

we obtain
bck+2

A1 flurllng, < Erpr < (G

thus
bck+2
1 < —.
n HUR||/\1€+1 = )‘k+1(c — 1)2

Letting k — 400, we find

I ffunflee € =L or Infurlle < —ob
Roo_pé(cfl)) Roo_(spz-
Similarly
N
In||lvg < —b.
[vR o 7

We deduce the existence of constants C}, and C; such that:

lurlloe < Cp and [vg[le < Cy.

Take

N N
Cp = exp Wb, and Cy =exp Wb.
Then C, and C,, are greater than 1, which is compatible with the remark
noted at the beginning of the proof of Lemma 3. This completes the proof of

proposition 1.

Proof of Theorem 2.1. If |lug|® + ||vr||% < R, then (ug,vg) furnishes a
solution of the system (1.1). We have

N

5pb;

[urlb + [lvrli < Ch + Cd < 2exp
so it is sufficient to have 2exp %b < R for R large enough, to get (ug,vr)
solution of the initial system (1.1). Replacing b by its expression, we obtain

CN R -
(A90CR) o < 5 ie.
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But § can be chosen such that
R\

> _ - £
cN " T o= —9 "

‘e
-~ —— M . .
and we can take Cp < B2 2 —9 _ Then (ug,vg) is solution of system (1.1)
) 2CN 9 A
if
p*q*
Cgr = 0<R(P**P)((I**Q)H>

for R sufficiently large.

Examples
Now, we present functions satisfying the hypotheses in our main result.
For 1 <~ <min(5-, £-), let
H(u,v) = (uf +v7)7

be defined on R?. Then H satisfies the hypotheses of Theorem 2.1.

For a, 3 >0, & + &5 > 1 and &8 + 25l < 1 et

H(u,v) = u®Tlof+t,

be defined on R%. Then H satisfies the hypotheses of Theorem 2.1.
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