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ABSTRACT 

      As big data becomes the norm of various industrial applications, the complexity 

of database workloads and database system design has increased significantly. To address 

these challenges, conventional relational databases have been constantly improved and 

NoSQL databases such as MongoDB and Cassandra have been proposed and 

implemented to compete with SQL databases. In addition to traditional metrics such as 

response time, throughput, and capacity, modern database systems are posing higher 

requirements on energy efficiency due to the large volume of data that need to be stored, 

queried, updated, and analyzed. While decades of research in the database and data 

processing communities has produced a wealth of literature that optimize for 

performance, research on optimizations for energy efficiency has been historically 

overlooked and only very few studies have investigated the energy efficiency of database 

systems. To the best our knowledge, currently no comprehensive studies analyze the 

impact of query optimizations on performance and energy efficiency across both SQL 

and NoSQL databases. In fact, the energy behavior of many basic database operations 

(e.g. insertion, deletion, searching, update, indexing, etc) remains largely unknown due to 

the lack of accurate power measurement methodologies for various databases and 
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queries. In this thesis, we developed a tool that can accurately measure the real-time 

power consumption of queries running on both SQL and NoSQL databases and 

investigated a series of query optimization techniques for improving the energy-

efficiency of both Relational Databases and NoSQL Parallel databases. We used both 

widely acceptable benchmarks (e.g. Yahoo! Cloud Server Benchmark) and customized 

datasets (converted from 100GB of Twitter data) in our experiments to evaluate the 

effectiveness of optimization techniques. We performed cross database analysis on SQL 

based database (MySQL) and NoSQL based databases (MongoDB and Cassandra) to 

compare their performance and energy efficiency. Additionally, we studied a variety of 

optimization techniques that can improve energy efficiency without compromising 

performance on the databases derived from the Twitter data. Using these techniques, we 

were able to achieve significant energy savings without performance degradation.
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1. INTRODUCTION 

Energy efficiency is an emerging critical design and operational criteria for computing 

environments that includes data centers, small clusters, and even stand-alone servers. 

Database Management Systems (DBMSs) running in server environments have largely 

ignored energy efficiency, but we can no longer afford such oversight. For example, 

Google currently processes over 2.5 million queries per minute which means that the 

rapid accumulation of power required for these queries not only cost money but also 

resources [1]. Today, People express their opinions and views on Twitter and emerging 

events or news are often followed almost instantly by a burst in Twitter volume, which 

provides a unique opportunity to gauge the relation between expressed public sentiment. 

Therefore, Twitter has become another exemplary big dataset where many social media 

analytics tools (e.g. sentiment analysis [2]) are being used to determine attitude of people 

towards a product, idea, and so on. However, analyzing such humungous volume of data 

with accuracy and efficiency is very costly thus requires the databases to be highly 

efficient in terms both performance and energy efficiency.  

The goal of this research is to study optimization techniques that can harness high 

performance in an energy efficient way. Retrieving information promptly and cost-

effectively from massive amount of data stored in a large-scale database opens a wide 

range of research issues that percolate through nearly all aspect of a DBMS, including 
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query evaluation strategies, query optimization, query scheduling, physical database 

design, and dynamic workload management. 

The current research and practices on databases emphasizes more on performance than 

energy efficiency. Fallacies and misconceptions abound due to the lack of research on 

database energy efficiency. For example, many database researchers believe that energy 

optimization is merely a byproduct of performance optimization while other researchers 

argue that performance optimization and energy optimization are conflicting goals (i.e. 

performance needs to be sacrificed to save energy or vice versa) [29]. The research 

questions we would like to answer include 1) Is performance efficiency equivalent to 

energy efficiency? Will there be a win-win situation for both performance and energy 

consumption? 2) What are the correlations of performance, power and energy when 

optimizing databases? How to identify these correlations? The research goal of this thesis 

is to investigate the performance-energy tradeoff by finding answers to these questions 

and revealing the correlations of performance, power and energy on optimizing 

databases. We also explore optimization techniques used in relational as well as parallel 

databases [3] to make them more energy efficient without degrading performance. 

To evaluate a diverse set of query optimization techniques on the aforementioned 

databases, we develop a tool on the NSF funded Marcher system that can accurately 

measure the real-time power consumption of various queries running on MySQL, 



 3 

MongoDB and Cassandra databases. The queries generated by the above databases are 

submitted to the Marcher system as an executable file. The Marcher system and power 

measurement methodology will be discussed in detail in Chapter 4. 

For each experiment, we evaluate the performance and energy efficiency of two queries 

running over the same dataset where one query utilizes optimization techniques and other 

without any optimizations. We execute each query numerous times to make sure outliers 

are eliminated. Finally, we use the Greenup, Powerup and Speedup metrics (Please refer 

to Chapter 4 Section 4.2.1 for definitions) to analyze the results. We use both widely 

acceptable benchmarks (e.g. Yahoo! Cloud Server Benchmark) and customized datasets 

(converted from 100GB of Twitter data) in our experiments to evaluate the effectiveness 

of optimization techniques.  

The major contributions of this thesis are summarized below: 

1) We conduct a comprehensive study (first of its kind to the best of our knowledge) on 

various databases namely MySQL, MongoDB and Cassandra to study the optimization 

techniques to improve performance as well as energy efficiency. 

2) We develop a tool that can accurately measure the real-time power consumption of 

various queries running on MySQL, MongoDB and Cassandra databases.   

3) We present a methodology using Greenup, Powerup and Speedup to reveal the 

correlations between performance, power and energy efficiency of the databases. 



 4 

4) We perform cross database comparison using both the Yahoo! Cloud Server 

Benchmark (YCSB) [4] and the customized Twitter datasets to evaluate the performance 

and energy efficient of MySQL, MongoDB and Cassandra at different scenarios. 

5) We study the impact of DVFS [5,6] on the energy consumption of databases. 

The rest of the thesis is organized as follows. In Chapter 2, we present the literary review 

of the research related to energy efficiency of databases. Chapter 3 provides an overview 

of relational and NoSQL databases. In Chapter 4, we analyze the system, metrics and 

benchmarks used for power measurement and database efficiency evaluation. In Chapter 

5, we study optimization techniques for performance and energy efficiency of MySQL. In 

Chapter 6, we analyze and study techniques to optimize queries running on MongoDB 

using the Twitter data. In Chapter 7, we analyze and study techniques to optimize queries 

running on Cassandra. In Chapter 8, we extend our analysis towards relational database 

MySQL and provide various techniques for achieving high performance and power 

efficiency. In Chapter 9, we conduct a comparison analysis of all three databases. Finally, 

chapter 10 summarizes this work, draws conclusions and discusses future research 

directions. 
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2. RELATED WORK 

The power consumption in databases or green databases has just started drawing attention 

from the research community. The 2008 Claremont Report [7] suggested energy-aware 

databases as a promising research topic. Various other topics such as energy 

quantification of database servers, benchmarking, cost-based query plan evaluation are 

also reported. Tsirogiannis et al. identified factors in databases that had an important 

impact on power consumption [8]. Lang et al. investigated the design of energy efficient 

DBMS clusters in [11]. Zu et al. provided insights on redesigning the DBMS kernel for 

power-saving purposes [12]. Based on these results, they provided suggestions on how to 

make the database system more power efficient. Subramaniam and Feng et al. studied the 

energy proportionality of servers in the context of a distributed NoSQL data store and 

measured the power consumption and performance of a Cassandra cluster using power 

and resource provisioning techniques [13].  

Previous studies primarily focused on how to improve database energy efficiency by 

modifying the hardware. For example, Schall et al. proposed to use solid state disks 

(SSDs) instead of magnetic disks (HDDs) [14] to store data. Graefe et al. suggested using 

memory devices instead of rotating disks, reducing RAM by using hash memory, and 

enabling or disabling memory banks to save energy. Despite the opportunities to reduce 

energy consumption through hardware, the work claimed that the best way is through 
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database server software. Graefe et al. discussed further ways to reduce energy 

consumption, such as data compression, I/O scheduling and placement, and parallelism 

[15]. A few studies have explored using software approaches (e.g. optimizing queries, 

modifying resource patterns, and/or managing storage) to improve energy efficiency 

[9,16,17,18,19] of databases. Goncalves et al. implemented two techniques, Processor 

Voltage and Frequency Control (PVC) and Improved Query Energy-efficiency by 

Introducing Explicit Delays (QED), on MySQL, which improved energy efficiency but 

also notably increased the response time [16]. These techniques and studies have shown 

that the mechanisms used to conserve energy often compromise performance [19, 21]. 

Other studies that do recognize the tradeoffs between performance and energy have only 

addressed the issue by setting a static response time goal and finding the optimal energy 

efficient query plan to balance it [19,20]. For example, Xu et al. designed a basic power 

aware query optimizer that picks the best query plan based on performance and power 

consumption [21]. Xu et al. also developed the power-aware throughput control (PAT) 

mechanism that reduced energy usage by 51.3% [17]. However, Tsirogiannis et al. 

concluded that optimizing performance and optimizing energy efficiency are similar 

goals that can be done without having to fix any variables. The work shows that the 

tradeoff between energy efficiency and performance exists because studies erroneously 

do not take into consideration peripheral components' power and idle CPU power [10]. 
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The previous literature has provided numerous suggestions on how to optimize databases 

for better performance and energy efficiency. However, the majority of them focused on 

upgrading to the newest hardware, redesigning the database management system 

(DBMS), or optimizing traditional SQL based relational databases.  

This research is orthogonal to previous literature because we aim to investigate 

optimizations and techniques at the software level that can improve the energy efficiency 

of databases. In addition, we evaluate both traditional relational database systems as well 

as NoSQL parallel database systems. To the best of our knowledge not much 

investigation has been done to study techniques for improving energy efficiency of 

NoSQL parallel databases. This thesis provides a number of innovative insights from this 

new perspective. 
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3. INTRODUCTION TO RELATIONAL AND NOSQL DATABASES 

In today's world, it is almost impossible to think of any application that does not make 

use of databases. From simple games to business-related tools, including web sites, 

certain type(s) of data is processed, recorded, and retrieved with each operation. 

Database Management Systems (DBMS) are the higher-level software, working with 

lower-level application programming interfaces (APIs), that take care of these operations. 

To help with solving different kind of problems, new kinds of DBMSs have been 

developed for decades. It includes relational and non-relational or NoSql databases along 

with applications implementing them (e.g. MySQL, PostgreSQL, MongoDB, Redis, etc). 

In this chapter, we will discuss about architecture and various features of relational and 

NoSql databases [34]. 

3.1 Overview of Relational databases 

In this section, we briefly introduce relational databases and their features. 

Relational databases have dominated the software industry for a long time providing 

mechanisms to store data persistently, concurrency control, transactions, mostly standard 

interfaces and mechanisms to integrate application data, reporting. A relational database 

is a collection of data items organized as a set of formally-described tables from which 

data can be accessed or reassembled in many ways without having to reorganize the 

database tables.  

In other words, it is a set of tables containing data fitted into predefined categories. Each 
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table (which is sometimes called a relation) contains one or more data categories in 

columns. Each row contains a unique instance of data for the categories defined by the 

columns. When a database is described as relational, it has been designed to conform to a 

set of practices called the rules of normalization. A normalized database is one that 

follows the rules of normalization. For example, in an organization, there are employees 

who work in specific departments. Each employee and department has a number and a 

name. This information can be organized in a table as shown in Table 3-1. 

Table 3-1: Sample Employee Information 

 

EmpNo Ename DeptNo DeptName 

101 Bob 10 Marketing 

102 David 20 Purchase 

103 Evelyn 10 Marketing 

104 Doug 30 Sales 

If we structure data this way and make certain changes to it, there will be few problems. 

For example, deleting all the employees in the Purchasing department will eliminate the 

department itself. Using the principles of normalized relational databases, we can 

eliminate these problems by restructuring Employee and Department data in Table 3-1 

into two separate tables (DEPT and EMP), as shown in Tables 3-2 and 3-3.  

Table 3-2: A Sample Relational DEPT Table 

DeptNo DeptName 

10 Marketing 

20 Purchase 

30 Sales 
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Table 3-3: A Sample Relational EMP Table 

EmpNo EmpName 

101 Bob 

102 David 

103 Elevyn 

104 Doug 

3.1.1 MySQL 

MySQL is a database query language designed for the retrieval and management of data 

in a relational database. SQL stands for Structured Query Language. The scope of SQL 

includes data insert, query, update, delete, schema creation and data access 

control. SQL statements are used to perform tasks such as update data on a database, or 

retrieve data from a database. 

3.2 Overview of NoSql Databases 

Over the last few years we have seen the rise of a new type of databases, known as 

NoSQL databases. NoSql databases are challenging the dominance of relational 

databases. NoSQL means Not Only SQL, implying that when designing a software 

solution or product, there are more than one storage mechanism that could be used based 

on the needs. NoSQL does not have a prescriptive definition but there are a set of 

common observations which can help define it.  

 Not using the relational model 

 Running well on clusters 

https://en.wikipedia.org/wiki/Database_schema
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 Mostly open-source 

 Schema-less  

The rise of the web as a platform also created a vital factor change in data storage as the 

need to support large volumes of data by running on clusters. Also, relational databases 

were not designed to run efficiently on clusters. NoSQL databases can broadly be 

categorized in four types. 

1. Key-Value databases: 

Key-value stores are the simplest NoSQL data stores to use from an API perspective. The 

client can either get the value for the key, put a value for a key, or delete a key from the 

data store. The value is a blob that the data store just stores, without caring or knowing 

what's inside; it's the responsibility of the application to understand what was stored. 

Structure of key-value database is shown in Figure 3-1. Since key-value stores always use 

primary-key access, they generally have great performance and can be easily scaled. 

Some of the popular key-value databases are Riak, Redis and CouchBase. 

http://basho.com/riak/
http://redis.io/
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Figure 3-1: Key-Value Databases 

2. Document databases: 

Documents are the main concept in document databases. The database stores and 

retrieves documents, which can be XML, JSON, BSON, and so on. These documents are 

self-describing, hierarchical tree data structures which can consist of maps, collections, 

and scalar values. Some of the popular document databases we have seen 

are MongoDB, CouchDB and Terrastore. 

3. Column family stores: 

Column-family databases store data in column families as rows that have many columns 

https://www.mongodb.org/
http://couchdb.apache.org/
https://code.google.com/p/terrastor
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associated with a row key as shown in Figure 3-2. Column families are groups of related 

data that is often accessed together. Each column family can be compared to a container 

of rows in an RDBMS table where the key identifies the row and the row consists of 

multiple columns. The difference is that various rows do not have to have the same 

columns, and columns can be added to any row at any time without having to add it to 

other rows. Some of the popular column family stores are Cassandra and HBase. 

 

Figure 3-2: Column Family Stores 

4. Graph Databases: 

Graph databases allow you to store entities and relationships between these entities. 

Entities are also known as nodes, which have properties. In graph databases, traversing 

the joins or relationships is very fast. The relationship between nodes is not calculated at 

query time but is persisted as a relationship. Traversing persisted relationships is faster 

than calculating them for every query. Some of the popular graph databases are Infinite 
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Graph, FlockDB and Neo4j.  

In this thesis, we will limit our experiments to two of the most popular NoSQL databases 

MongoDB and Cassandra to investigate various optimization techniques which helps in 

gaining energy efficiency. 

3.2.1 MongoDB 

MongoDB is an open-source document database that provides high performance, high 

availability, and automatic scaling. scaling. MongoDB organizes its data in the following 

hierarchy: database, collection and document. A database is a set of collections and a 

collection is a set of documents. Collections are analogous to tables in relational 

databases. Unlike a table, however, a collection does not require its documents to have 

the same schema. The organization of data in MongoDB is shown in Figure3-3. 

 

Figure 3-3: Organization of data in MongoDB 
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A record in MongoDB is a document, which is a data structure composed of field and 

value pairs. The values of fields may include other documents, arrays, and arrays of 

documents. MongoDB documents are like JSON objects. Sample JSON object is 

depicted in Figure 3-4. 

 

Figure 3-4: JSON Object 

3.2.2 Cassandra 

Apache Cassandra is a free and open-source distributed database management system 

designed to handle large amounts of data across many commodity servers, providing high 

availability with no single point of failure. It is a column family database that stores data 

in column families as rows that have many columns. In Cassandra, all nodes play an 

identical role; there is no concept of a master node, with all nodes communicating with 

each other via a distributed, scalable protocol called "gossip." To improve availability, 

each data item can be replicated at N different hosts, where N is the replication factor. 

Cassandra’s built-for-scale architecture means that it is capable of handling large 

amounts of data and thousands of concurrent users. To add more capacity, new nodes can be 

added to an existing cluster. 
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Data is written to Cassandra in a way that provides both full data durability and high 

performance. Data written to a Cassandra node is first recorded in an on-disk commit log 

and then written to a memory-based structure called a memtable. When a memtable’s size 

exceeds a configurable threshold, the data is written to an immutable file on disk called 

an SSTable. Figure 3-5 shows how data is written in Cassandra. 

 

Figure 3-5: The Cassandra Write Path source ([23]) 

For a read request, Cassandra consults an in-memory data structure called a Bloom filter 

that checks the probability of an SSTable having the needed data. Figure 3-6 shows how 

a read request is handled in Cassandra. 
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Figure 3-6: The Cassandra Read Path (source [23]) 
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4. SYSTEMS, METRICS AND BENCHMARKS 

In Chapter 3, we introduced various database systems that we will be investigating for 

energy efficiency and performance. In this chapter, we will study systems, metrics and 

benchmarks used in our experiments to measure the energy efficiency of databases.  

4.1 Marcher System Configurations 

All experiments presented in this thesis are executed on nodes of the Marcher system, 

which is provided as part of the NSF funded Marcher project. Marcher is a power-

measurable heterogeneous cluster system containing general-purpose multicores, GPU 

K20 accelerators and Intel Xeon Phi (MIC) coprocessors, as well as DDR3 main memory 

and hybrid storage with hard drives and SSDs. Marcher is equipped with complementary, 

easy to deploy component-level power measurement tools for collecting accurate power 

consumption data of all major components (e.g CPU, DRAM, Disk, GPU, and Xeon Phi). 

To reduce the cost and time of designing and manufacturing external power sensors, we 

leveraged the built-in power sensors provided by some of the computing components. 

These power sensors are available for CPUs, GPUs and Xeon Phis, which can be 

accessed via the Intel RAPL interface, the NVIDIA Management Library (NVML) 

interface, and the Intel MICAccess API respectively.  

All power results presented in this thesis are generated by using "Log_power_to_file" 

API which takes a script file containing query to be executed as a parameter. 
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"Log_power_to_file" uses the mentioned power sensors to measure power consumption 

of various components of a system. We are primarily interested in CPU and DRAM 

power. Although, the Marcher System can also provide disk power, we do not include it 

because database queries are not I/O intensive therefore disk power remains identical 

most of the time. 

 

 

 

 

 

 

 

Figure 4-1: Architecture of the Marcher System 

We used a cluster of two nodes for our experiments. System specification of each node 

has been provided in Table 4-1. 

 

 

 

 

Log_marcher_to_file -n query.sh 

 

RAPL API RAPL API 

The Marcher 

System 

PODAC 
NVML 

 API 

MICAccess 

API  
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Table 4-1: System Specifications 

OS CentOS 7 

Processor 

Intel Xeon processor E5-2600 and E5-2600 

v2 family 

CPU Cores 16 

Threads/Core 2 

Chips Enabled 2 

Cores Per Chip 8 

Power Governor Performance 

CPU Memory Size 32 GB 

File Sharing System NFSv3 

Average Idle Power 89.69 Watt 

 

4.2 Power Measurement Metrics 

In this chapter, we study the Greenup, Powerup and Speedup (GPS-UP in short) metrics, 

which allow software developers intuitively understand the correlations of performance, 

power, and energy for software optimizations [25]. The GPS-UP metrics can categorize 

almost all software optimizations. GPS-UP metrics are three numbers calculated for each 

software run to evaluate the relationship between energy, power and runtime.  
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4.2.1 Speedup, Greenup and Powerup Metrics 

The Speedup concept covers any comparison between two implementations of the same 

query whether it is a parallel or serial code. Assume we have two implementations of an 

query. One of them is an un-optimized query and the other is an optimized query for 

better performance or energy consumption. Speedup of the optimized version is defined 

as 

Speedup = 
Tϕ

To
, (1) 

where Tϕ is the total execution time of non-optimized query, and To is the total execution 

time of the optimized query. Similarly, Greenup is the ratio of the total energy 

consumption of the non-optimized query (Eϕ) over the total energy consumption of the 

optimized query (Eo). Greenup is analogous to Speedup as it reflects how green the 

optimized code is in term of energy consumption. 

Greenup = 
Eϕ

Eo
, (2) 

Assuming, Pϕ is the average power consumed by the non-optimized query and Po is the 

average power consumed by the optimized query, we can define Eϕ and Eo as 

Eϕ = Tϕ*Pϕ        Eo = To*Po (3) 

By substituting Eq.3 in Eq.2, we get 

Greenup = 
TϕPϕ

Eo
 =  

Speedup ∗ Pϕ

Po
                                 (4) 
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Greenup and Speedup defines the measure of the energy and performance respectively. 

Eq.4 introduces a new ratio to define the average power consumption ratio, namely 

Powerup. 

Powerup = 
P0 

Pϕ
 = 

Speedup 

Greenup
                (5) 

Powerup implies the power effects of an optimization. A less than 1 Powerup implies 

power savings while a greater than 1 Powerup indicates that the optimized code 

consumes more power in average.  

4.2.2 GPS-UP Software Categories 

We can compare any two queries to find out which one is better in terms of performance 

and energy efficiency using Greenup, Powerup and Speedup metrics. This method 

provides a unique way to evaluate the impact of the optimization on performance, power 

and energy efficiency. We can categorize impact of optimized query based on powerup 

and speedup as follow: 

1. Powerup < 1, and Speedup > 1 indicates optimizations run faster and consumes less 

power, leading to more energy savings as both time and power have decreased. 

2. Powerup = 1, and Speedup > 1 indicates optimizations have better performance but on 

average consume the same amount of power. We usually get this category in serial 

optimizations. This category justifies why some developers only focus on performance 

and neglect energy efficiency. It is usually found in CPU intensive applications where 
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energy and time scale linearly.  

3. Powerup > 1, Speedup > 1, and Speedup > Powerup indicates better performance at the 

expense of consuming more power. Since the Speedup obtained is more than the power 

penalty spent, the optimized code still saves energy.  

4.3 YCSB Benchmark 

In this section, we will discuss about the Yahoo! Cloud Server Benchmark (YCSB) used 

for our experiments to compare performance and energy efficiency of databases. YCSB 

is an open-source specification and program suite for evaluating retrieval and 

maintenance capabilities of computer programs. It is often used to compare relative 

performance of database management systems. However, we will be studying not only 

the performance of the databases but also the energy efficiency of databases using our 

Marcher System. 

4.3.1 Why YCSB 

YCSB has long been the de facto open standard for comparative performance evaluation 

of data stores. Many factors go into deciding which data stores to use including basic 

features, data model, and performance characteristics on a given type of workload. It’s 

critical to compare multiple data stores intelligently and objectively so that sound 

architectural decisions can be made. 

From the perspective of a generic, database-neutral, performance evaluation utility, 

YCSB is currently the de-facto comparative benchmark for SQL and NoSQL data stores. 
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It includes support for a wide range of database bindings and is commonly used to 

compare their performance for a set of desired workloads.  

4.3.2 YCSB Setup 

In this subsection, we will discuss in detail about how to set up YCSB.  

YCSB consists of two parts: 

1. The YCSB Client, an extensible workload generator. 

2. The core workloads, a set of workload scenarios to be executed by the generator. 

YCSB includes a set of core workloads that define a basic benchmark for cloud systems. 

The core workloads consist of six different workloads as shown in Table 4-2.  

Table 4-2: YCSB Workloads 

YCSB Workloads 

Workload Type Operation 

A Update Heavy Read: 50%, Update: 50% 

B Read Heavy Read: 95%, Update: 5% 

C Read Only Read: 100% 

D Read Latest Read: 95%, Insert: 5% 

E Short Ranges Scan: 95%, Insert: 5% 
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All six workloads have a data set which is similar. Workloads D and E insert records 

during the test run. Thus, to keep the database size consistent, we ran the workloads in 

following sequence: 

1. Load the database, using workload A's parameter file (workloads/workloada) and the 

"-load" switch to the client. 

2. Run workload A (using workloads/workloada and "-t") for a variety of throughputs. 

3. Run workload B (using workloads/workloadb and "-t") for a variety of throughputs. 

4. Run workload C (using workloads/workloadc and "-t") for a variety of throughputs.  

5. Run workload F (using workloads/workloadf and "-t") for a variety of throughputs. 

6. Run workload D (using workloads/workloadd and "-t") for a variety of throughputs. 

This workload inserts records, increasing the size of the database. 

7. Delete the data in the database. 

8. Reload the database, using workload E's parameter file (workloads/workloade) and 

the "-load switch to the client. 

9. Run workload E (using workloads/workloade and "-t") for a variety of throughputs. 

This workload inserts records, thus increasing the size of the database. 

We ran the above workloads for MySQL, MongoDB and Cassandra in order to study 

performance and power usage of the various databases under similar workload 

conditions.  
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4.4 Database Analysis using Twitter Data 

YCSB provides an effective and efficient platform to compare various databases with 

ease. However, datasets used by the benchmark were fairly simple with a single table or 

one field document which we feel is almost non-existent use case in real world scenarios. 

Also, YCSB is limited in terms of executing complex queries. 

We wanted to analyze databases with more complicated data and index landscape with 

much more extensive querying. For achieving that we required a highly available large 

set of data which we could easily extract and input in our databases for our experiments. 

We used Twitter data for our experiments. 

Twitter is a massive social networking site tuned towards fast communication. Users on 

Twitter generate over 400 million Tweets every day. Twitter's popularity as an 

information source has led to the development of applications and research in various 

domains. Researchers have used Twitter to predict the occurrence of earthquakes and 

identify relevant users to follow to obtain disaster related information. Some of these 

Tweets are available to researchers and practitioners through public APIs at no cost.  

A sampled view of Twitter can be easily obtained through the APIs.  

For our analysis, we used Streaming APIs to collect Twitter data. Streaming APIs 

provides a continuous stream of public information from Twitter. These APIs use the 

push strategy for data retrieval. Once a request for information is made, the Streaming 

APIs provide a continuous stream of updates with no further input from the user. These 
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streams can be extracted in JSON which is a lightweight data interchange format which 

can later be consumed by databases using relevant transformations.  

4.5 Dynamic Voltage and Frequency Scaling (DVFS) 

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving 

technology which aims to lower a component's power state while still meeting the 

performance requirement of the running workload. Some of the governors supported by 

Linux kernel are as follows: 

1. Performance: This CPUfreq governor sets the CPU statically to the highest frequency 

within the borders of scaling_min_freq and scaling_max_freq. 

2. Powersave: This governor sets the CPU statically to the lowest frequency within the 

borders of scaling_min_freq and scaling_max_freq. 

3. Ondemand: Ondemand governor sets the CPU depending on the current usage. To do 

this the CPU must have the capability to switch the frequency very quickly. Some papers 

studied the effect of using DVFS to save energy [36]. To determine the effect of DVFS 

we conducted our experiments on various databases by executing queries using 

"performance" and "ondemand" governors. 
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5. PERFORMANCE AND ENERGY ANALYSIS OF MYSQL 

In this chapter, we focus on analyzing relational database in depth using the Twitter data. 

SQL statements are used to retrieve data from the MYSQL relational database. We can 

get the same results by writing different SQL queries. But use of the best query is 

important when performance and energy efficiency is considered. Relational databases 

have been studied for decades to determine the tradeoffs between energy and performance 

[22,24,30,31,32]. Different methods for query processing and optimization are used as per 

the data size and the complexity of queries.  

Database performance is one of the most challenging aspects of an organization's 

database operations. A well-designed application may still experience performance 

problems if the SQL query it uses is poorly constructed. It is much harder to write 

efficient SQL queries than to write functionally correct SQL queries. As such, SQL query 

optimization can help significantly improve a system's performance and energy 

efficiency. The key to tuning SQL queries is to minimize the search path that the database 

traverses to find the data. 

As the amount of data increases, the performance decreases and the execution time and 

energy consumption increases. Therefore, optimization of these queries becomes 
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essential since the speed of user response and running performance of database system 

determine the vitality of information system.  

5.1 Twitter data analysis using MySQL 

To analyze MySQL database for performance and power efficiency using complicated 

data and extensive querying, we streamed about 100 GB of Twitter data using Streaming 

APIs. Thereafter, we designed a normalized database and imported Twitter data into the 

tables. Various optimization techniques studied to improve performance and energy 

efficiency are described in the following section. 

5.2 Query Optimization Techniques 

SQL tuning is a phenomenally complex subject. Many books have been written about the 

nuances of Oracle SQL tuning; however, there are some general guidelines that every 

database developer follows to improve the performance of their systems. The goals of 

SQL tuning focus on improving the execution optimization of database system, which 

plays an important role and runs through the entire life cycle of database applications. 

There are various optimization techniques, which can be implemented to make the SQL 

queries run faster and consume less energy. The goal of optimizing any SQL statement 

includes delivering quick response times using less CPU resources, and reducing I/O 

operations. The following content provides best practices for optimizing the performance 

of SQL queries. 
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5.2.1 Indexing  

Unnecessary full-table scans cause a huge amount of unnecessary I/O and can drag-down 

an entire database. The tuning expert first evaluates the SQL based on the number of 

rows returned by the query. The most common tuning remedy for unnecessary full-table 

scans is adding indexes [26]. The Primary Key for a table acts as a default index. 

Additional indexes can be added to a table depending upon the data size it holds. Other 

type of indexes like Standard b-tree indexes, bitmapped and function-based indexes can 

also eliminate full-table scans. For analyzing the above technique, we created normalized 

tables and created index on the fields being used for data manipulation. For example, to 

get the count of users for a location, we ran the following query using indexes and 

without using indexes. 

select count(*) as tweets from location_details where location='San Diego'; 

The query results are presented in Table 5-1 and Figure 5-1. 

Table 5-1: Non-indexed vs Indexed Search Query in MySQL 

Non-Indexed Vs Indexed Search 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Non-

indexed 
142.8777 3.721247 531.6832 

66.3442 0.9492 69.8942 

Indexed 135.62 0.05609 7.606926 
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Figure 5-1: Non-indexed vs Indexed Search Query in MySQL 

As depicted in Figure 5-1, indexing helped in gaining a speedup of about 66X and 

greenup of almost 70X. Using this optimization technique, we not only gained high 

performance but also saved energy. 

We extended the similar experiment for delete operation to study the effect of indexing 

on other query operations. Results for the same are displayed in Table 5-2 and Figure 5-2. 
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Table 5-2: Non-indexed vs Indexed Delete Query in MySQL 

Non-Indexed Vs Indexed Delete Query 

Query Power 

(W) 

Time (s) Energy (J) 
Speedup Powerup Greenup 

Non-indexed 67.887 3.120975 211.8736 
13.4708 0.7789 17.2927 

Indexed 52.883 0.231684 12.25212 

 

 

Figure 5-2: Non-indexed vs Indexed Delete Query in MySQL 

Here, indexing helped in gaining performance by 13X and reducing energy consumption 

by 17X. Since each index keeps the indexed fields stored separately, it makes finding the 
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right entries particularly easy. The database finds the entries in the index then cross-

references them to the entries in the tables. This cross-referencing takes time but is faster 

than scanning the entire table. This contributes to lower execution times and reduces 

power consumption. 

There was another scenario where we found indexing helpful in attaining high 

performance and high energy efficiency. The following query was used to find the most 

tweeted user. 

SELECT username, count(*) AS count FROM tweet_details GROUP BY username 

ORDER BY count DESC LIMIT 1; 

The results of the above query is shown in Table 5-3. 

Table 5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL 

Non-Indexed Vs Indexed Query 

Query Power W) Time (s) Energy (J) Speedup Powerup Greenup 

Non-indexed 75.8749 135.0396 10246.12 
33.0759 0.8218 40.2436 

Indexed 62.361 4.082716 254.6023 

As per Table 5-3 and Figure 4-3, we observed that indexed query has speedup 33 times 

more than that of non-indexed query and greenup of about 40X. Also, greenup is more 

than speedup in this query. This is mainly because in this case, indexed query not only 

runs faster but also consumes less power, leading to more energy savings as both time 

and power have decreased. This kind of performance boost typically occurs for queries 
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which rely more on the cache rather than CPU. 

 

Figure 5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL 

5.2.2 Avoid using Select * Clauses 

The dynamic SQL column reference (*) gives you a way to refer to all of the columns of 

a table. Do not use the * feature because it is very inefficient -- the * has to be converted 

to each column in turn. The SQL parser handles all the field references by obtaining the 

names of valid columns from the data dictionary and substitutes them on the command 

line, which is time consuming. To verify the assumption, we ran the following queries. 
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SELECT * FROM location_details l,user_details u WHERE u.username=l.username 

AND l.location='Houston'; 

Query without using '*': 

SELECT u.screen_name,l. tweet_id FROM location_details l, user_details u  

WHERE u.username=l.username AND l.location='Houston'; 

Here, as indicated from Table 5-4 and Figure 5-4, query "without using select *" has a 

speedup 1.0683 times more than query with "select *" clause and greenup of 1.2185 

times. It means that the query "without using select *" not only runs faster but also 

consumes less power, leading to more energy savings as both time and power have 

decreased. 

Table 5-4: Query execution using select * clauses in MySQL 

Select * Clauses 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

With 

Select * 
66.6615 3.84684 256.4361 

1.0683 0.8767 1.2185 
Without 

Select * 
58.444 3.600677 210.438 
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Figure 5-4: Query execution using select * clauses 

5.2.3 IN vs EXISTS 

The EXISTS function searches for the presence of a single row that meets the stated 

criteria, as opposed to the IN statement that looks for all occurrences. There was a wide 

gap in performance of the queries using the above-mentioned clauses. Queries for the 

same are presented in the following page. 
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Query using 'IN': 

SELECT l.tweet_id FROM location_details l WHERE l.username IN(SELECT 

u.username FROM user_details u) AND l.location='Houston'; 

Query using 'EXISTS': 

SELECT l.tweet_id FROM location_details l WHERE EXISTS(SELECT '1' FROM  

user_details u WHERE u.username=l.username) AND l.location='Houston'; 

For the mentioned technique, we observed that query using EXISTS clause is a clear 

winner(as indicated in Table 5-5 and Figure 5-5). It provides a speedup of 146 times than 

query using IN clause and greenup of 208 times. We note that greenup is a lot more than 

speedup of query using EXISTS clause. This particularly happens because of the way 

EXISTS clause works. In case of EXISTS clause, EXISTS do a partial scan of the table 

as it can stop after it finds the very first matching row. However, IN clause scans every 

row in the entire table to determine if they match the criteria. The ability to stop working 

after finding the first row that meets the criteria of the WHERE clause is what 

makes EXISTS so efficient. 

Table 5-5: IN vs EXISTS 

IN vs EXISTS 

Query Power W) Time (s) Energy (J) Speedup Powerup Greenup 

Using 'IN' 68.9364 13.59254 937.0208 

146.3404 0.7010 208.7463 Using 

'EXISTS' 
48.3275 0.092883 4.4888 



 38 

 

 

Figure 5-5: IN vs EXISTS 

5.3 Impact Analysis of DVFS on optimized queries  

To study the impact of DVFS on query execution, we ran several queries by setting CPU 

frequency to "performance" and "ondemand" governors. As explained in Chapter 4, 

"performance" and "ondemand" are two CPU frequency governors supported by linux 

keernels. In case of "performance" governor, CPU is set to the highest frequency whereas 

in case of "ondemand" governor CPU frequency varies depending on the current usage. 

To study the impact of DVFS on optimized queries, we conducted following 

experiments. Figure 5-6 shows the behavior of MySQL insert query. 
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' 

Figure 5-6: Impact analysis of DVFS on MySQL insert query 

As observed in Figure 5-6, power consumption for "performance" governor is almost 

twice as compared to "ondemand" governor. Even though query execution takes a little 

longer when run using "ondemand" governor, nonetheless it is more energy efficient. We 

can conclude that lower execution time does not always mean that it will be more energy 

efficient. Power utilization and execution time are equally important in determining 

energy efficiency. 

Another query where we compared "performance" and "ondemand" governor was 

MySQL update query. The trace for the same is shown in Figure 5-7. 
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Figure 5-7: Impact analysis of DVFS on MySQL update query 

We observed that in case of "performance" governor, both power consumption and query 

execution time were high as compared to "ondemand" governor. This can be explained as 

sometimes higher power and processing speeds can result in slowdown [35]. The 

slowdowns occur at higher frequencies when the early arrival of a single thread causes 

the atomic journal commit to lock with less batched threads than in the lower frequency 

case. In the lower frequency case, the difference between the lead thread and other 

threads is much smaller, therefore less time is spent in waiting. Slower processor 
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frequencies effectively increase the number of threads that access the shared resource 

while reduce the overall commits required at higher processor frequencies. 

5.4 Conclusion  

This chapter summarized various optimization techniques which not only helped in 

improving performance but also energy efficiency. We unfolded few interesting findings 

that contribute towards enhancing energy efficiency. Firstly, indexed query not only runs 

faster but also consumes less power, leading to more energy savings as both time and 

power have decreased. We gained a speedup of almost 30X in some cases using this 

technique. Secondly, we observed that how a query works internally is also a contributing 

factor in saving power. In case of IN vs EXISTS clause, the internal functioning of 

EXISTS clauses helped in attaining a speedup of 146 times than IN clause. Lastly, we 

studied the impact of DVFS on query execution. We found that lower execution time 

does not always lead to high energy efficiency. Power utilization and execution time are 

equally important in determining energy efficiency. Also, higher power and processing 

speeds can result in slowdown sometimes due to longer waiting times in synchronizing 

events. 
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6. PERFORMANCE AND ENERGY ANALYSIS OF MONGODB 

 

In this chapter, we focus on analyzing MongoDB which is a NOSQL/non-relational 

database in depth using Twitter data. There are many factors that can affect database 

performance and responsiveness including index use, query structure, data models and 

application design, as well as operational factors such as architecture and system 

configuration. MongoDB provides the following capabilities which makes it a highly 

efficient database for large data stores. 

1. Document-Oriented Storage - MongoDB stores its data in JSON-style objects. This 

makes it very easy to store raw documents from Twitter’s APIs. 

2. Index Support - MongoDB allows for indexes on any field, which makes it easy to create 

indexes optimized for your application. 

3.  Straightforward Queries - MongoDB’s queries, while syntactically much different from 

SQL, are semantically very similar. In addition, MongoDB supports MapReduce, which 

allows for easy lookups in the data. 

6.1 Twitter Data Analysis using MongoDB 

To analyze MongoDB using Twitter data, we need to create a collection in MongoDB to 

store Twitter streams. Since, MongoDB uses JSON to store its documents, we can import 

the data from Twitter API using the following command: 
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mongoimport --db Twitter_db --collection "Twitter_data" --type json --file 

filename.json 

Here, "mongoimport" is a utility that is packaged with MongoDB that allows to import 

JSON documents. “Twitter_db” refers to the database with “Twitter_data” as collection.  

To get the power reading using the Marcher system, we used PyMongo [38] API to run 

queries. PyMongo is a Python distribution containing tools for working with MongoDB. 

6.2 Query Optimization Techniques 

To make our documents quickly accessible and perform various operations on the large 

amount of data stored in our collection, it is important to optimize queries. There are 

many factors that can affect database performance and energy efficiency including index 

use, query structure, data models and application design, as well as operational factors 

such as architecture and system configuration. The following sub-sections describe 

techniques for optimizing application performance as well as energy efficiency of 

MongoDB. 

6.2.1 Covered Queries 

Indexes improve the efficiency of read operations by reducing the amount of data that 

query operations need to process. This simplifies the work associated with fulfilling 

queries within MongoDB. A covered query is a query that can be satisfied entirely using 

an index and does not have to examine any documents. An index covers a query with the 
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following conditions: 

 all the fields in the query are part of an index, and 

 all the fields returned in the results are in the same index. 

For analyzing the above technique, we created index on “user.location” field using the 

following query: 

db.Twitter_data.ensureIndex({'user.location':1}) 

Then, we scanned all the documents using the covered query. The results have been 

provided in Table 6-1 and Figure 6-1. 

Table 6-1: Unoptimized vs covered query in MongoDB  

Un-optimized vs Covered queries 

Query Power(W) Time(s) Energy (J) 
Speedup Powerup Greenup 

Un-

optimized 
126.6609 162.7915 20619.32 

276.1452 0.5541 498.3509 

Covered 70.1851 0.589514 41.3751 
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Figure 6-1: Unoptimized vs covered query in MongoDB 

As indicated by the power trace and Table 6-1, covered query has a speedup of 276 times 

more than un-optimized query. Greenup is nearly 478 times more in case of covered. We 

also observe that greenup is much higher as compared to speedup. This occurs if the input 

size is small enough to fit into the cache. MongoDB keeps the most recently used data in 

DRAM. Therefore, if we have created indexes for the query and working data set fits in 

DRAM, MongoDB serves all queries from memory. Hence, less main memory is utilized 

and more power is saved. 
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6.2.2 Non-indexed vs Indexed queries 

Once documents are inserted into a collection, querying them will be slow if MongoDB 

does not know which fields in the document are to be optimized for faster lookup. One of 

the most important concepts to understand fast access of a MongoDB collection is 

indexing. The indexes we choose will depend on data to be queried. We ran the same 

experiment using the following query for indexed and non-indexed field 

"user_mentions”.  

db.Twitter_data.remove({"entities.user_mentions.id" : "574834900"}) 

As evidenced from the data provided in the Table 6-2 and Figure 6-2, decrease in the run 

time improved performance by gaining a speedup of 283 times. We also observed a high 

greenup of 44 times more than un-optimized query. This is also contributed by the way 

caches are handled in MongoDB. Since MongoDB keeps the most recently used data in 

DRAM, therefore, if we have created indexes for the query and working data set fits in 

DRAM, MongoDB serves all queries from memory. Hence, less main memory is utilized 

and more power is saved. 

Table 6-2: Non-indexed vs Indexed Delete query in MongoDB 

Non-indexed vs Indexed Delete query 

Query Power 

(W) 

Time(s) Energy(W) 
Speedup Powerup Greenup 

Non -

indexed 

130.5215 165.2470 21568.29 
283.2482 0.5975 474.0064 

Indexed 77.9913 0.5834 45.5021 
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Figure 6-2: Non-indexed vs Indexed Delete query in MongoDB 

We conducted another experiment to demonstrate the impact of indexing using insert 

query. The results for the same are displayed in Table 6-3 and Figure 6-3. 

Table 6-3: Non-indexed vs Indexed Insert query in MongoDB 

Non-indexed vs Indexed Delete query 

Query 
Power 

(W) 
Time(s) Energy(W) Speedup Powerup Greenup 

Non -

indexed 
136.8845 0.64429 88.19331 

1.0403 0.5252 1.9807 

Indexed 71.8965 0.6193 44.5255 
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Figure 6-3: Non-indexed vs Indexed Insert query in MongoDB 

As observed from Table 6-3 and Figure 6-3, indexing not only reduces the execution time 

of the query but also significantly reduces the power consumption. Indexed insert query 

has a greenup of almost 1.9 times more than non-indexed insert query. 

6.2.3 Ordered vs Unordered queries 

The next parameter that we examined was ordered and unordered bulk write operations 

[27,28]. Bulk write operations create a list of write operations to perform in bulk, which 

can be either ordered or unordered. Bulk operations builder used to construct a list of 

write operations to perform in bulk for a single collection. To instantiate the builder, use 
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either db.collection.initializeOrderedBulkOp() or 

db.collection.initializeUnorderedBulkOp() method. 

As shown in Table 6-4 and Figure 6-4, we observe that unordered updates not only take 

longer to execute but also consumes more power. The key to increasing speed on updates 

is to note how MongoDB gives a lot of control over how database operations are 

acknowledged by a server. This ranges from checking through acknowledgment that the 

operation has been acted on and up to confirming the operation has been written to the 

journal. This reflects how concerned the client is with the progress of the write –the more 

concern, the longer it will take for the various write operations to complete or fail. This is 

particularly low in case of ordered updates, leading to high energy efficiency. 

Table 6-4: Ordered and Unordered Query in MongoDB 

Ordered and Unordered Queries 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Unordered 80.792 1.081976 87.415 
1.8665 0.9753 1.9137 

Ordered 78.798 0.579669 45.67676 

https://docs.mongodb.com/v3.2/reference/method/db.collection.initializeOrderedBulkOp/#db.collection.initializeOrderedBulkOp
https://docs.mongodb.com/v3.2/reference/method/db.collection.initializeUnorderedBulkOp/#db.collection.initializeUnorderedBulkOp
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Figure 6-4: Ordered and Unordered Query in MongoDB 

6.2.4 Projection Optimization using aggregation  

MongoDB provides a rich set of aggregation operations that examine and perform 

calculations on the data sets. Running data aggregation on the MongoDB instance 

simplifies application code and limits resource requirements. Like queries, aggregation 

operations in MongoDB use collections of documents as an input and return results in the 

form of one or more documents. The pipeline provides efficient data aggregation using 

native operations within MongoDB, and is the preferred method for data aggregation. 

MongoDB also provides map-reduce operations to perform aggregation.  In general, 

map-reduce operations have two phases: a map stage that processes each document 

https://docs.mongodb.com/v3.0/reference/glossary/#term-collection
https://docs.mongodb.com/v3.0/core/map-reduce/
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and emits one or more objects for each input document, and a reduce phase that combines 

the output of the map operation. Optionally, map-reduce can have a finalize stage to 

make final modifications to the result. Like other aggregation operations, map-reduce can 

specify a query condition to select the input documents as well as sort and limit the 

results. However, in general, map-reduce is less efficient and more complex than the 

aggregation pipeline. We used aggregation pipeline to find the most tweeted user from 

the MongoDB collection using following query. 

db.Twitter_data.aggregate([{"$project": { 

  "_id": 0, "entities.user_mentions" :1}}, {"$unwind": "$entities.user_mentions"}, 

        {"$group": {"_id": "$entities.user_mentions.screen_name", 

            "count": {"$sum": 1}}}]) 

The results of the above experiment are as shown in Table 6-5 and Figure 6-5. 

Table 6-5: Un-optimized vs Aggregated Query in MongoDB 

Un-optimized vs Aggregated Query 

Query Power(W) Time(s) Energy(W) Speedup Powerup Greenup 

Un-optimized 124.3553 287.6416 35769.76 

2.4548 0.5749 4.2698 

Optimized 71.49538 117.1723 8377.278 
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Figure 6-5: Un-optimized vs Aggregated Query in MongoDB 

Aggregation proved to be quite energy efficient for complex queries. We gained a 

speedup of 2.4 times and greenup of 4.2 times for aggregated queries. As depicted in 

Figure 6.5, unoptimized query takes longer to execute and consumes more power 

compared to optimized query using aggregation. The aggregation pipeline can determine 

if it requires only a subset of the fields in the documents to obtain the results. If so, the 

pipeline will only use those required fields, reducing the amount of data passing through 

the pipeline. Since, we have limited data in the pipeline, it fits into the dataset of 

MongoDB leading to lesser main memory references. As a result,we save power and 

contribute to high energy efficiency. 
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6.2.5 Sharding 

The next technique we used was sharding servers. Sharding is a method for distributing 

data across multiple machines. MongoDB uses sharding to support deployments with 

very large data sets and high throughput operations. MongoDB supports horizontal 

scaling through sharding. Horizontal scaling involves dividing entire dataset and load 

them over multiple servers. Additional servers can be added to increase capacity if 

required. While the overall speed or capacity of a single machine may not be high, each 

machine handles a subset of the overall workload, potentially providing better efficiency 

than a single high-speed high-capacity server. Since expanding the capacity of the 

database only requires adding additional servers as needed (scale out). It can lower the 

overall cost than scale up to a high-end server. The trade-off is increased complexity in 

infrastructure and maintenance for the deployment. We used cluster with two nodes to 

measure performance and energy efficiency. The results are presented in Table 6-6. 

Table 6-6: Single vs distributed shared server in MongoDB 

Single vs distributed sharded server 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Single Server 77.5889 281.4785 21839.62 

3.0828 1.8051 1.7077 

Sharded Server 140.060 91.3054 12788.32 

 

https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://docs.mongodb.com/manual/reference/glossary/#term-sharding
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For the sharded server, we observed that even though the execution time was reduced to 

almost half after distributing data on two nodes, power consumption was high. Multi-

node servers help in gaining performance by distributing work over multiple nodes, 

however there is an increase of power consumption because of the idle power of nodes 

that are not contributing any work to the program execution. 

6.3 Impact Analysis of DVFS on optimized queries  

To study the impact of DVFS, we carried out several experiments to compare the 

performance and power usage for CPU frequency governor as ondemand and 

performance. Some of the experiments have been presented below to show the impact of 

DVFS. 

In one of the experiments, we studied the impact of governors on execution of the query 

to find the most tweeted user using aggregation as shown in Figure 6-6. 
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Figure 6-6: Impact of DVFS on query execution in MongoDB 

 

We observed lot of parallelism in case of MongoDB owing to its distributed nature. 

However, in case of "ondemand governor", power consumption was less as compared to 

"performance" governor. 

We conducted another experiment to analyze the effect of DVFS on search query. Same 

has been depicted in Figure 6-7. 
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Figure 6-7: Impact of DVFS on query execution in MongoDB 

We observed high power spikes in case of "performance" governor since it utilized 

highest CPU frequency. There was lesser power in case of "ondemand" governor. 

6.4 Conclusion  

In this chapter, we studied various optimization techniques that contributes to high 

performance and high energy efficiency. Firstly, we observed that indexes improve the 

efficiency of read operations by reducing the amount of data that query operations need 

to process. We gained a speedup of more than 270 times for indexed queries. Similarly, 

for indexed insert query greenup of almost 1.9 times was observed. Secondly, we found 
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that ordered updates were 0.97 times more energy efficient than un-ordered bulk updates. 

The key to increasing performance for updates depends on how fast database operations 

are acknowledged by the server. Thirdly, we gained a speedup of 2.4 times and greenup 

of 4.2 times for aggregated queries. Aggregation pipeline reduces the amount of data 

passing through the pipeline leading to smaller datasets that fits into the caches of 

MongoDB and lesser main memory references. As a result,we save power and contribute 

to high energy efficiency. Fourthly, we found that multi-node servers help in gaining 

performance by distributing work over multiple nodes, however there is an increase of 

power consumption because of the idle power of nodes which are not contributing to the 

program execution. Lastly, we also studied the impact of DVFS on query execution and 

found that "ondemand" governor optimizes CPU utilization, thus contribute towards 

energy efficient query.  
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7. PERFORMANCE AND ENERGY ANALYSIS OF CASSANDRA 

 

In this chapter, we focus on analyzing Cassandra which is a NOSQL/non-relational 

database, using Twitter data. There are many factors that can affect database performance 

and responsiveness including index use, query structure, data models and application 

design, as well as operational factors such as architecture and system configuration.  

7.1 Twitter Data Analysis using Cassandra 

To analyze Twitter data using Cassandra, we streamed Twitter data using Streaming APIs 

and created keyspaces in Cassandra database to store them. We used PyCassa [37], is a 

Thrift-based python client library for Apache Cassandra to execute Cassandra queries to 

measure power on the Marcher System. Various optimization techniques studied have 

been described in the following sub-sections. 

7.2 Query Optimization Techniques 

This section illustrates techniques for optimizing application performance and energy 

efficiency for Cassandra.  

Cassandra works optimally when the data we need to access is already in memory. Disks 

are comparatively slow. Therefore, when data needs to be read from disk, it works best 

when it is performed as a single sequential operation. To design an effective data model 

in Cassandra, it’s good to keep the following best practices in mind: 
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 Use clustering columns in the tables so that rows are ordered on disk in the same order 

they are read. 

 Use the built-in caching mechanisms to limit the number of reads from disk. 

The following sub-sections provide in-depth analysis of various optimization strategies 

used to improve performance and energy efficiency of Cassandra. 

7.2.1 Tuning the row caches 

With row caching enabled, Cassandra will detect frequently accessed partitions and store 

rows of data into DRAM to reduce the data access it needs from disks. This results in 

some great optimizations. We can specify the number of rows to cache per partition. To 

study the impact of row caches, we analyzed several queries.  

Row caching was quite helpful in case of optimizing an update query. The results are 

shown in Table 7-1 and Figure 7-1. 

Table 7-1: Un-optimized vs Optimized Update Cassandra Query 

Un-optimized vs Optimized Update Query 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Un-optimized 135.7991 51.6214 7010.14 

150.8515 0.9247 163.1257 

Optimized 125.5811 0.3422 42.97385 
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Fig 7-1: Un-optimized vs Optimized Update Cassandra Query 

As indicated by Table 7-1 and Figure 7-1, execution time of optimized query is quite low 

as compared to unoptimized query. We observed a speedup of 150 times and greenup of 

163 times in case of optimized query taking advantage of row caching.  

We conducted another experiment to study the impact of row caching by executing search 

query. Results are provided in Table 7-2 and Figure 7-2. 

Table 7-2: Un-optimized vs Optimized Search Cassandra Query 

Un-optimized vs Optimized Search Query 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Un-optimized 125.9736 54.1462 6820.992 

1.4335 0.9728 1.4736 

Optimized 122.5507 37.7695 4628.679 
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Fig 7-2: Un-optimized vs Optimized Search Cassandra Query 

We observed a speedup of 1.43 times and and energy efficiency of 1.47 times in case of 

optimized query. Also, as per the Figure 7-2, we observe extensive parallelism in query 

execution path. This can be explained by the distributed nature of Cassandra database 

design. Cassandra is implemented as a peer-to-peer distributed system across 

homogeneous nodes where data is distributed among all nodes in the cluster.  
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7.2.2 Compaction 

Cassandra periodically merges multiple SSTables into a smaller set of larger SSTables 

using a process called compaction. Compaction merges row fragments together, removes 

deleted columns, and rebuilds primary and secondary indexes. Since the SSTables are 

sorted by the row key, this merge is efficient (no random disk I/O). Once a newly merged 

SSTable is complete, the input SSTables are marked as obsolete and eventually deleted 

by the JVM garbage collection (GC) process. However, during compaction, there is a 

temporary spike in disk space usage and disk I/O. Compaction has impact on read 

performance in two ways. While a compaction is in progress, it temporarily increases 

disk I/O and disk utilization which can influence read performance for reads that are not 

fulfilled by the cache. However, after a compaction has been completed, off-cache read 

performance improves because there are fewer SSTable files on disk that need to be 

checked in order to complete a read request. Cassandra includes compaction strategies 

and each is optimized for a different use case. Size Tiered Compaction Strategy (STCS) 

triggers a compaction when multiple SSTables of a similar size are present. Additional 

parameters allow STCS to be tuned to increase or decrease the number of compactions it 

performs and how tombstones are handled. This compaction strategy is good for insert-

heavy and general workloads as depicted Table 7-3 and Figure 7-3. 
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Table 7-3: Un-optimized vs Optimized Insert Cassandra Query 

Un-optimized vs Optimized Insert Query 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Un-optimized 137.7482 1.2294 169.3476 

2.6302 0.9347 2.8137 

Optimized 128.7654 0.4674 60.18495 

 

 

Figure 7-3: Un-optimized vs Optimized Insert Cassandra Query 

As indicated in Table 7-3 and Figure 7-3, we gained a speedup of 2.6 times and greenup 

of 2.8 times in case of optimized query. As discussed, high performance and low power 
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consumption is contributed by Size Tiered Compaction Strategy (STCS). 

Another strategy for compaction is Leveled Compaction Strategy (LCS). This strategy 

groups SSTables into levels, each of which has a fixed size limit which is 10 times larger 

than the previous level. SSTables are of a fixed, relatively small size (160MB by default) 

so if Level 1 might contain 10 SSTables at most, then Level 2 will contain 100 SSTables 

at most. SSTables are guaranteed to be non-overlapping within each level – if any data 

overlaps when a table is promoted to the next level, overlapping tables will be re-

compacted. This compaction strategy is the best for read-heavy workloads (because 

tables within a level are non-overlapping, LCS guarantees that 90% of all reads can be 

satisfied from a single SSTable) or workloads where there are more updates than inserts. 

We used this strategy to find the most tweeted user. The following queries were executed 

to find the most tweeted user. 

CREATE OR REPLACE FUNCTION state_group_and_count( state map<text, int>, 

type text ) CALLED ON NULL INPUT RETURNS map<text, int> LANGUAGE java 

AS ' Integer count = (Integer) state.get(type);  if (count == null) count = 1; else 

count++; state.put(type, count); return state; ' ; 

CREATE OR REPLACE AGGREGATE group_and_count(text) SFUNC 

state_group_and_count STYPE map<text, int> INITCOND {}; 

select group_and_count(screen_name) from tweet.tweet_shard; 
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The results of the above query are displayed in Table 7-4 and Figure 7-4. 

Table 7-4: Un-optimized vs Optimized Cassandra Query 

Un-optimized vs Optimized queries 

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

Un-optimized 142.2996 831.8498 118371.9 

4.5151 0.8735 5.1687 

Optimized 124.3047 184.2364 22901.45 

 

 

Fig 7-4: Un-optimized vs Optimized Cassandra Query 

As shown in Table 7-4 and Figure 7-4, optimizeed query has a speedup of 4.5 times and 

greenup of 5 times as compared with non-optimized query. Also, powerup is less than 1. 
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This emphasizes the power saving benefits by leveraging cache size of the system and the 

chunk size of datasets that can minimize cache miss rate. Also, LCS guarantees that 90% 

of all reads can be satisfied from a single SSTable. 

7.3 Impact Analysis of DVFS on optimized queries  

In this section, we analyze the impact of DVFS on query execution in Cassandra. We 

study "performance" and "ondemand" governors for CPU frequency to understand and 

explore the factors that contribute to higher energy efficiency. 

We conducted an experiment using an insert query to study the effect of DVFS. The 

results are shown in Figure 7-5. 

 

Fig 7-5: Impact of DVFS on Insert query execution in Cassandra 
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According to Figure 7.5, for "performance" governor, both power consumption and query 

execution time were high as compared to "ondemand" governor. This can be explained as 

sometimes higher power and processing speeds can result in higher execution time [35]. 

The slowdowns occur at higher frequencies when the early arrival of a single thread 

causes the atomic journal commit to lock with less batched threads than in the lower 

frequency case. In the lower frequency case, the difference between the lead thread and 

other threads is much smaller, therefore less time is spent in waiting. Slower processor 

frequencies effectively increase the number of threads that access the shared resource 

while reduce the overall commits required at higher processor frequencies. 

We conducted another experiment to study the impact of DVFS on performance and 

energy efficiency using a delete query. The results are shown in Figure 7-6.  



 68 

 

Fig 7-6: Impact of DVFS on Delete query in Cassandra 

We observe sharp power spikes for both the "performance" and "ondemand" governors. 

However, power consumption in case of "ondemand" governor is lesser as compared to 

performance governor making it more energy efficient. 

7.4 Conclusion  

This chapter summarized various optimization techniques in Cassandra to improve 

performance and energy efficiency. We particularly explored techniques that contribute 

to better energy efficiency. Firstly, we observed that Cassandra works optimally when the 

data to be accessed is already in memory. This can be achieved by using clustering 

columns in the tables so that rows are ordered on disk in the same order they are read. 
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Secondly, we can use the built-in caching mechanisms to limit the number of reads from 

disks. Thirdly, on enabling row caching, Cassandra detects frequently accessed partitions 

and store rows of data into DRAM to limit reads from disk. Fourthly, compaction 

improves off-cache read performance since there are fewer SSTable files on disk to be 

read to complete read request after compaction. Lastly, we studied the impact of DVFS 

on energy efficiency of query execution. We found that high CPU frequency can result in 

slowdown sometimes due to longer waiting times for synchronizing write commits. 

Slower processor frequencies effectively increase the number of threads that access the 

shared resource by reducing the number of commits required by higher processor 

frequencies. 
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8. COMPARISION OF SQL, MONGODB AND CASSANDRA 

 

In this chapter, we focus on cross database comparison of three databases studied in the 

previous chapters.  

8.1 Cross database comparison using YCSB Benchmark 

We performed a series of performance and energy analysis on Apache Cassandra, 

MongoDB and MySQL using the Yahoo! Cloud Serving Benchmark (YCSB). When it 

comes to performance, it should be noted that there is (to date) no single “winner takes 

all” among the databases studied or any other database engine for that matter. Depending 

on the use cases and deployment conditions, it is almost always possible for one NoSQL 

database to outperform another and yet lag its competitor when the rules of engagement 

change. While it is always recommended that anyone assessing a database’s performance 

should test it under specific use cases and deployment conditions intended for a particular 

production application, general competitive benchmarks of usual-and-customary 

application workloads can be useful to evaluate different databases. 

Each test started with an empty database which was then loaded with an initial set of 

randomly generated data. Once the data was loaded, each workload (described below) ran 

in sequence. In between each workload sometimes database health and readiness checks 

were performed. For example, tests for Cassandra checked for any ongoing compaction 

processes, and waited until those completed before continuing to the next workload. 
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When running the YCSB benchmark on the three databases (MySQL, Cassandra, and 

MongoDB), we acquired multiple power readings from the Marcher system for all the 

workloads, which are depicted in graphs presented below along with energy efficiency. 

For Workload A, energy consumption of various databases is presented in Figure 8-1. 

 

Figure 8-1: Cross-database comparison using YCSB Workload A 

Although MySQL uses less power, the greater amount of time taken to complete the 

workload leads to a higher total energy usage. Similarly, Cassandra uses less time but has 

a higher power usage, so the energy efficiency is lower as well. MongoDB, on the other 

hand, is able to shorten its run time as well as use less power than Cassandra, which is an 

indication of a much more energy efficient database. Furthermore, Figure 8-1 shows that 

for the first approximate 350 records, all three databases use higher levels of power, an 

indication of parallelization. However, while Cassandra and MySQL discontinued many 

parallel processes, MongoDB was able to successfully complete the run quickly and with 

better energy efficiency. Power usage of all the workloads have been consolidated in the 
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Table 8-1. 

Table 8-1: Cross-database comparison using YCSB 

Workloads 

MongoDB Cassandra MySQL 

Power(W) Time(s) Power(W) Time(s) Power(W) Time(s) 

A 1211.3719 12.9392 3102.3698 33.3806 4037.7207 46.7543 

B 1212.0568 12.6675 3085.7648 32.9867 4075.1242 47.2474 

C 1219.7487 12.8663 3152.9750 33.8913 4097.5581 47.1394 

D 1242.8923 12.9538 3070.0029 32.9745 4077.8034 47.6150 

E 1224.6925 12.8508 3176.5620 34.13622 4169.83203 48.2778 

It is evident from Table 8-1 that MongoDB is most efficient for almost all the workloads 

in terms of performance as well as energy. MongoDB consumes approximately 85% less 

power than Cassandra and almost 92% less power than MySQL for the same workloads 

run under similar conditions. 

8.2 Cross database comparison using Twitter data 

In this section, we conduct a cross database comparison using Twitter data. To measure 

the energy efficiency of three databases, we used query to find the most tweeted user. 

The results of the query are presented in Table 8-2 and Figure 8-2. 
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Table 8-2: Cross-database comparison for most tweeted user 

 

Most Tweeted User 

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

MySQL 62.361 4.0827 254.6013 45.12609 1.993308 89.95021 

MongoDB 76.6249 117.123 775.9282 1.573016 1.622249 29.5149 

Cassandra 124.3047 184.2363 22901.44  

 

 

Figure 8-2: Cross-database comparison to find the most tweeted user 

As per the power readings presented in Table 8-2, MySQL seems to be most efficient in 

terms of execution time as well as power whereas Cassandra is least efficient. MySQL 

has a speedup of 45 times and greenup of 90 times as compared to Cassandra. MongoDB 
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seems to be less efficient than MySQL as aggregation is used to find the most tweeted 

users which is slower as compared to groupby and order by functions used in MySQL to 

carry out the same task. In Cassandra, although extensive parallelism is involved in 

executing the query to find the most tweeted user, there is an overhead in additional 

scripts used for carrying out these tasks due to the insufficient support of aggregation 

functions. Cassandra is particularly not suitable for such kind of querying.  

We futher extended our experiment to analyze the behaviour of update query in all three 

databases. Results are shown in Table 8-3 and Figure 8-3. 

Table 8-3: Cross-database comparison of Update query 

Update Query 

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

MySQL 63.6411 6.91431 440.0343    

MongoDB 78.7984 0.5796 45.67155 11.92945 0.807645 9.634757 

Cassandra 69.2863 2.1702 150.3651 3.186024 0.918524 2.926439 
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Fig 8-3: Cross-database comparison of Update query 

As shown in Table 8-3 and Fig 8-3, we can observe that Mongodb is most energy 

efficient and MySQL is least efficient. We do not observe any drastic difference between 

the power consumption of the three databases, however MongoDB seems to be quite 

efficient in terms of query execution time. MongoDB has a speedup of 11.9 times and 

greenup of 9.6 times as compared to other databases. Also, we observe powerup >1 

which indicates that we achieved better performance at the expense of consuming more 

power. Since the Speedup obtained is more than the power penalty spent, the optimized 

code still saves energy. This type of behavior is particularly observed in case of parallel 

executions. 
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Our next experiment, compared the energy efficiency of the delete query using three 

databases. Results are shown below in Table 8-4 and Figure 8-4. 

Table 8-4: Cross-database comparison of Delete query 

Delete Query 

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

MySQL 56.7188 0.3748 21.25821 1.2916 2.135482 2.7582 

MongoDB 79.5758 0.2348 18.6844 2.0617 1.522096 3.1381 

Cassandra 121.122 0.4841 58.63516    

 

  

Fig 8-4: Cross-database comparison of Delete query 
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As shown in Table 8-4 and Figure 8-4, again Mongodb is the most efficient database in 

case of delete query exectution and Cassandra seems to be the least efficient one. 

Indexing in Mongodb contributes to its shorter execution time and lower power 

consumption, thereby making it highly energy efficient. 

Another experiment was done to sudy the behaviour of insert query for all three 

databases. The results are presented in Table 8-5 and Figure 8-5. 

Table 8-5: Cross-database comparison of Insert query 

Insert Query 

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

MySQL 56.3147 0.3196 17.99818 1.4624 2.286533 3.3439 

MongoDB 57.3588 0.3542 20.31649 1.3195 2.244911 2.9623 

Cassandra 128.7654 0.4674 60.18495    
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Table 8-5: Cross-database comparison of Insert query 

 

The results of insert query are shown in Table 8-5 and Fig 8-5. We observe that 

MongoDB and MySQL have overlapping power consumptions. However, MySQL is 

more efficient with a speedup of 1.4 times and greenup of 3.3 times as compared to 

Cassandra.  

Finally, we compared the databases using search query. Results are presented in the 

following Table 8-6 and Figure 8-6.  
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Table 8-6: Cross-database comparison of Search query 

Search Query 

Database  Power(W) Time(s) Energy(J) Speedup Powerup Greenup 

MySQL 130.0075 2.2467 292.0879 0.9426 16.8099 15.8457 

MongoDB 70.1851 0.5895 41.37412 1.7461 64.0659 111.8661 

Cassandra 122.5507 37.7669 4628.36    

 

 

Fig 8-6: Cross-database comparison of Search query 
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As indicated by results given in Table 8-6 and Figure 8-6, Mongodb performs the best 

and consumes the least amount of energy. It takes advantage of its full indexing 

technique to attain high energy efficiency. We observe speedup of 64 times and greenup 

of 111 times when compared to Cassandra. 
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9. CONCLUSION 

In this thesis, we conducted a comprehensive study on optimizing databases for higher 

performance and lower energy consumption via software approaches. We first developed 

a tool that can obtain accurate real-time power consumption information of various 

queries running on both relational databases and NoSQL databases. We then studied a 

series of optimization techniques (for MySQL, MongoDB, and Cassandra respectively) 

that can reduce energy consumption without compromising performance. Last but not the 

least, we compare the performance and energy efficiency of all three databases and 

evaluate their advantages and disadvantages at different scenarios.  

A number of important conclusions can be drawn from this research project.  

First, MongoDB is a very efficient NoSQL database. It exceeds MySQL and Cassandra 

for almost all YCSB workloads and most of the Twitter data queries in terms of both 

performance and energy efficiency. However, there are scenarios where MySQL proved 

to be more efficient than NoSQL databases due to its simplicity and relational design. 

Meanwhile, Cassandra has excellent single-row read performance as long as eventual 

consistency semantics are sufficient for the use-case but its performance degrades as 

reads spans to multiple rows. It should be noted that the YCSB benchmark as well as the 

Twitter data queries do not cover all possible workloads. There is no single winner in all 

tasks and scenarios. Depending on the use cases and deployment conditions, it is almost 
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always possible for one database to outperform another and yet lag its competitor when 

the rules of engagement change.  

Second, performance optimization is neither equivalent to nor conflicting with energy 

efficiency optimization. Using the Greenup, Powerup and Speedup metrics, we have 

found numerous examples where performance and energy efficiency are improved 

simultaneously (i.e. a win-win situation) and many of these cases showed that the 

performance improvement is not proportional to energy efficiency improvement (i.e. they 

are not equivalent). It appears that optimization techniques that can improve the data 

access rate at caches are more likely to improve energy efficiency more than performance 

because the power cost to access data is reduced as well. 

Third, DVFS has a large impact on the energy efficiency of databases. In most cases, 

DVFS helps to improve energy efficiency without compromising performance. We also 

observed that high CPU voltage and frequency can sometime hurt both performance and 

energy efficiency. It is highly recommended that DVFS should be enabled whenever 

possible, which is probably the easiest way for database administrators to save energy 

without degrading performance. 
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10. FUTURE WORK 

In the future, we will expand our experiments to more databases with bigger and more 

complex data sets. With wider range of experiments, we will find more optimization 

techniques leading to energy efficient databases with high performance. In this study, we 

performed our experiments on maximum of two nodes. In the future, we would like to 

extend our experiments to a cluster of nodes to analyze performance and energy 

efficiency tradeoffs. 
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