
ENERGY EFFICIENCY ANALYSIS AND OPTIMIZATION OF RELATIONAL AND

NOSQL DATABASES

by

Divya Mahajan

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2016

Committee Members:

Ziliang Zong, Chair

Yijuan Lu

Guowei Yang

COPYRIGHT

By

Divya Mahajan

2016

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Divya Mahajan, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

Dedicated to my family, whose support and encouragement during my graduate studies

motivated me to complete this thesis.

v

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Ziliang Zong for his guidance, support and

feedback. Also, I would like to extend my appreciation for my thesis committee Dr.

Yijuan Lu, and Dr. Guowei Yang.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiv

ABSTRACT .. xv

CHAPTER

1. INTRODUCTION .. 1

2. RELATED WORK ... 5

3. INTRODUCTION TO RELATIONAL AND NOSQL DATABASES 8

3.1 Overview of Relational databases ... 8

3.1.1 MySQL .. 10

3.2 Overview of NoSql databases ... 10

3.2.1 MongoDB... 14

3.2.2 Cassandra ... 15

4. SYSTEMS, METRICS AND BENCHMARKS ... 18

4.1 Marcher System Configurations ... 18

4.2 Power Measurement Metrics .. 20

4.2.1 Speedup, Greenup and Powerup Metrics 21

4.2.2 GPS-UP Software Categories .. 22

4.3 YCSB Benchmark ... 23

4.3.1 Why YCSB? ... 23

vii

4.3.2 YCSB Setup ... 24

4.4 Database Analysis using Twitter data ... 26

4.5 Dynamic Voltage and Frequency Scaling (DVFS) 27

5. PERFORMANCE AND ENERGY ANALYSIS OF MYSQL 28

5.1 Twitter data analysis using MySQL ... 29

5.2 Query Optimization Techniques ... 29

5.2.1 Indexing ... 30

5.2.2 Avoid Using Select * Clauses .. 34

5.2.3 IN vs EXISTS .. 36

5.3 Impact Analysis of DVFS on optimized queries 38

5.4 Conclusion .. 41

6. PERFORMANCE AND ENERGY ANALYSIS OF MONGODB 42

 6.1 Twitter data analysis using MongoDB ... 42

6.2 Query Optimization Techniques ... 43

6.2.1 Covered queries .. 43

6.2.2 Non-Indexed vs indexed/covered queries 46

6.2.3 Ordered vs unordered queries .. 48

6.2.4 Projection optimization using aggregation 50

6.2.5 Sharding ... 53

6.3 Impact Analysis of DVFS on optimized queries 54

 6.4 Conclusion .. 56

 7. PERFORMANCE AND ENERGY ANALYSIS OF CASSANDRA 58

7.1 Twitter data analysis using Cassandra .. 58

7.2 Query Optimization .. 58

7.2.1 Tuning the row caches ... 59

7.2.2 Compaction .. 62

7.3 Impact Analysis of DVFS on optimized queries 66

7.4 Conclusion .. 68

8. COMPARISION OF SQL, MONGODB AND CASSANDRA 70

8.1 Cross database comparision using YCSB Benchmark 70

8.2 Cross database comparision using Twitter Data 72

viii

9. CONCLUSION ... 81

10. FUTURE WORK .. 83

 REFERENCES ... 84

ix

LIST OF TABLES

Table Page

3-1: Sample Employee Information. ... 9

3-2: A Sample Relational DEPT Table... 9

3-3: A Sample Relational EMP Table .. 10

4-1: System Specifications.. 20

4-2: YCSB Workloads .. 24

5-1: Non-indexed vs Indexed Search Query in MySQL... 30

5-2: Non-indexed vs Indexed Delete Query in MySQL ... 32

5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL 33

5-4: Query execution using select * clauses in MySQL ... 35

5-5: IN vs EXISTS .. 37

6-1: Unoptimized vs covered query in MongoDB.. 44

6-2: Non-indexed vs Indexed Delete query in MongoDB .. 46

6-3: Non-indexed vs Indexed Insert query in MongoDB ... 47

6-4: Ordered and Unordered Query in MongoDB ...49

6-5: Un-optimized vs Aggregated Query in MongoDB ... 51

x

6-6: Single vs distributed shared server in MongoDB .. 53

7-1: Un-optimized vs Optimized Update Cassandra Query ... 59

7-2: Un-optimized vs Optimized Search Cassandra Query .. 60

7-3: Un-optimized vs Optimized Insert Cassandra Query .. 63

7-4: Un-optimized vs Optimized Cassandra Query .. 65

8-1: Cross-database comparison using YCSB workloads .. 72

8-2: Cross-database comparison for most tweeted user.. 73

8-3: Cross-database comparison of Update query .. 74

8-4: Cross-database comparison of Delete query ... 76

8-5: Cross-database comparison of Insert query... 77

8-6: Cross-database comparison of Search query ... 79

xi

LIST OF FIGURES

Figure Page

3-1: Key-Value Databases .. 12

3-2: Column Family Stores ... 13

3-3: Organization of data in MongoDB .. 14

3-4: JSON Object .. 15

3-5: The Cassandra Write Path ... 16

3-6: The Cassandra Read Path .. 17

4-1: Architecture of the Marcher System ... 19

5-1: Non-indexed vs Indexed Search Query in MySQL... 30

5-2: Non-indexed vs Indexed Delete Query in MySQL ... 32

5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL 34

5-4: Query execution using select * clauses ... 36

5-5: IN vs EXISTS .. 38

5-6: Impact analysis of DVFS on MySQL insert query ... 39

5-7: Impact analysis of DVFS on MySQL update query.. 40

6-1: Unoptimized vs covered query in MongoDB.. 45

xii

6-2: Non-indexed vs Indexed Delete query in MongoDB .. 47

6-3: Non-indexed vs Indexed Insert query in MongoDB ... 48

6-4: Ordered and Unordered Query in MongoDB ...50

6-5: Un-optimized vs Aggregated Query in MongoDB ... 52

6-6: Impact of DVFS on query execution in MongoDB .. 55

6-7: Impact of DVFS on search query execution in MongoDB 56

7-1: Un-optimized vs Optimized Update Cassandra Query ... 60

7-2: Un-optimized vs Optimized Search Cassandra Query .. 61

7-3: Un-optimized vs Optimized Insert Cassandra Query .. 63

7-4: Un-optimized vs Optimized Cassandra Query .. 65

7-5: Impact of DVFS on Insert query execution in Cassandra ... 66

7-6: Impact of DVFS on Delete query in Cassandra .. 68

8-1: Cross-database comparison using YCSB Workload A ... 71

8-2: Cross-database comparison to find the most tweeted user .. 73

8-3: Cross-database comparison of Update query .. 75

8-4: Cross-database comparison of Delete query ... 76

8-5: Cross-database comparison of Insert query... 78

xiii

8-6: Cross-database comparison of Search query ... 79

xiv

LIST OF ABBREVIATIONS

Abbreviation Description

CPU - Central Processing Unit

GPU - Graphic Processing Unit

YCSB - Yahoo Cloud Server Benchmark

DVFS - Dynamic Voltage and Frequency Scaling

DRAM - Dynamic Random Access Memory

xv

ABSTRACT

 As big data becomes the norm of various industrial applications, the complexity

of database workloads and database system design has increased significantly. To address

these challenges, conventional relational databases have been constantly improved and

NoSQL databases such as MongoDB and Cassandra have been proposed and

implemented to compete with SQL databases. In addition to traditional metrics such as

response time, throughput, and capacity, modern database systems are posing higher

requirements on energy efficiency due to the large volume of data that need to be stored,

queried, updated, and analyzed. While decades of research in the database and data

processing communities has produced a wealth of literature that optimize for

performance, research on optimizations for energy efficiency has been historically

overlooked and only very few studies have investigated the energy efficiency of database

systems. To the best our knowledge, currently no comprehensive studies analyze the

impact of query optimizations on performance and energy efficiency across both SQL

and NoSQL databases. In fact, the energy behavior of many basic database operations

(e.g. insertion, deletion, searching, update, indexing, etc) remains largely unknown due to

the lack of accurate power measurement methodologies for various databases and

xvi

queries. In this thesis, we developed a tool that can accurately measure the real-time

power consumption of queries running on both SQL and NoSQL databases and

investigated a series of query optimization techniques for improving the energy-

efficiency of both Relational Databases and NoSQL Parallel databases. We used both

widely acceptable benchmarks (e.g. Yahoo! Cloud Server Benchmark) and customized

datasets (converted from 100GB of Twitter data) in our experiments to evaluate the

effectiveness of optimization techniques. We performed cross database analysis on SQL

based database (MySQL) and NoSQL based databases (MongoDB and Cassandra) to

compare their performance and energy efficiency. Additionally, we studied a variety of

optimization techniques that can improve energy efficiency without compromising

performance on the databases derived from the Twitter data. Using these techniques, we

were able to achieve significant energy savings without performance degradation.

 1

1. INTRODUCTION

Energy efficiency is an emerging critical design and operational criteria for computing

environments that includes data centers, small clusters, and even stand-alone servers.

Database Management Systems (DBMSs) running in server environments have largely

ignored energy efficiency, but we can no longer afford such oversight. For example,

Google currently processes over 2.5 million queries per minute which means that the

rapid accumulation of power required for these queries not only cost money but also

resources [1]. Today, People express their opinions and views on Twitter and emerging

events or news are often followed almost instantly by a burst in Twitter volume, which

provides a unique opportunity to gauge the relation between expressed public sentiment.

Therefore, Twitter has become another exemplary big dataset where many social media

analytics tools (e.g. sentiment analysis [2]) are being used to determine attitude of people

towards a product, idea, and so on. However, analyzing such humungous volume of data

with accuracy and efficiency is very costly thus requires the databases to be highly

efficient in terms both performance and energy efficiency.

The goal of this research is to study optimization techniques that can harness high

performance in an energy efficient way. Retrieving information promptly and cost-

effectively from massive amount of data stored in a large-scale database opens a wide

range of research issues that percolate through nearly all aspect of a DBMS, including

 2

query evaluation strategies, query optimization, query scheduling, physical database

design, and dynamic workload management.

The current research and practices on databases emphasizes more on performance than

energy efficiency. Fallacies and misconceptions abound due to the lack of research on

database energy efficiency. For example, many database researchers believe that energy

optimization is merely a byproduct of performance optimization while other researchers

argue that performance optimization and energy optimization are conflicting goals (i.e.

performance needs to be sacrificed to save energy or vice versa) [29]. The research

questions we would like to answer include 1) Is performance efficiency equivalent to

energy efficiency? Will there be a win-win situation for both performance and energy

consumption? 2) What are the correlations of performance, power and energy when

optimizing databases? How to identify these correlations? The research goal of this thesis

is to investigate the performance-energy tradeoff by finding answers to these questions

and revealing the correlations of performance, power and energy on optimizing

databases. We also explore optimization techniques used in relational as well as parallel

databases [3] to make them more energy efficient without degrading performance.

To evaluate a diverse set of query optimization techniques on the aforementioned

databases, we develop a tool on the NSF funded Marcher system that can accurately

measure the real-time power consumption of various queries running on MySQL,

 3

MongoDB and Cassandra databases. The queries generated by the above databases are

submitted to the Marcher system as an executable file. The Marcher system and power

measurement methodology will be discussed in detail in Chapter 4.

For each experiment, we evaluate the performance and energy efficiency of two queries

running over the same dataset where one query utilizes optimization techniques and other

without any optimizations. We execute each query numerous times to make sure outliers

are eliminated. Finally, we use the Greenup, Powerup and Speedup metrics (Please refer

to Chapter 4 Section 4.2.1 for definitions) to analyze the results. We use both widely

acceptable benchmarks (e.g. Yahoo! Cloud Server Benchmark) and customized datasets

(converted from 100GB of Twitter data) in our experiments to evaluate the effectiveness

of optimization techniques.

The major contributions of this thesis are summarized below:

1) We conduct a comprehensive study (first of its kind to the best of our knowledge) on

various databases namely MySQL, MongoDB and Cassandra to study the optimization

techniques to improve performance as well as energy efficiency.

2) We develop a tool that can accurately measure the real-time power consumption of

various queries running on MySQL, MongoDB and Cassandra databases.

3) We present a methodology using Greenup, Powerup and Speedup to reveal the

correlations between performance, power and energy efficiency of the databases.

 4

4) We perform cross database comparison using both the Yahoo! Cloud Server

Benchmark (YCSB) [4] and the customized Twitter datasets to evaluate the performance

and energy efficient of MySQL, MongoDB and Cassandra at different scenarios.

5) We study the impact of DVFS [5,6] on the energy consumption of databases.

The rest of the thesis is organized as follows. In Chapter 2, we present the literary review

of the research related to energy efficiency of databases. Chapter 3 provides an overview

of relational and NoSQL databases. In Chapter 4, we analyze the system, metrics and

benchmarks used for power measurement and database efficiency evaluation. In Chapter

5, we study optimization techniques for performance and energy efficiency of MySQL. In

Chapter 6, we analyze and study techniques to optimize queries running on MongoDB

using the Twitter data. In Chapter 7, we analyze and study techniques to optimize queries

running on Cassandra. In Chapter 8, we extend our analysis towards relational database

MySQL and provide various techniques for achieving high performance and power

efficiency. In Chapter 9, we conduct a comparison analysis of all three databases. Finally,

chapter 10 summarizes this work, draws conclusions and discusses future research

directions.

 5

2. RELATED WORK

The power consumption in databases or green databases has just started drawing attention

from the research community. The 2008 Claremont Report [7] suggested energy-aware

databases as a promising research topic. Various other topics such as energy

quantification of database servers, benchmarking, cost-based query plan evaluation are

also reported. Tsirogiannis et al. identified factors in databases that had an important

impact on power consumption [8]. Lang et al. investigated the design of energy efficient

DBMS clusters in [11]. Zu et al. provided insights on redesigning the DBMS kernel for

power-saving purposes [12]. Based on these results, they provided suggestions on how to

make the database system more power efficient. Subramaniam and Feng et al. studied the

energy proportionality of servers in the context of a distributed NoSQL data store and

measured the power consumption and performance of a Cassandra cluster using power

and resource provisioning techniques [13].

Previous studies primarily focused on how to improve database energy efficiency by

modifying the hardware. For example, Schall et al. proposed to use solid state disks

(SSDs) instead of magnetic disks (HDDs) [14] to store data. Graefe et al. suggested using

memory devices instead of rotating disks, reducing RAM by using hash memory, and

enabling or disabling memory banks to save energy. Despite the opportunities to reduce

energy consumption through hardware, the work claimed that the best way is through

 6

database server software. Graefe et al. discussed further ways to reduce energy

consumption, such as data compression, I/O scheduling and placement, and parallelism

[15]. A few studies have explored using software approaches (e.g. optimizing queries,

modifying resource patterns, and/or managing storage) to improve energy efficiency

[9,16,17,18,19] of databases. Goncalves et al. implemented two techniques, Processor

Voltage and Frequency Control (PVC) and Improved Query Energy-efficiency by

Introducing Explicit Delays (QED), on MySQL, which improved energy efficiency but

also notably increased the response time [16]. These techniques and studies have shown

that the mechanisms used to conserve energy often compromise performance [19, 21].

Other studies that do recognize the tradeoffs between performance and energy have only

addressed the issue by setting a static response time goal and finding the optimal energy

efficient query plan to balance it [19,20]. For example, Xu et al. designed a basic power

aware query optimizer that picks the best query plan based on performance and power

consumption [21]. Xu et al. also developed the power-aware throughput control (PAT)

mechanism that reduced energy usage by 51.3% [17]. However, Tsirogiannis et al.

concluded that optimizing performance and optimizing energy efficiency are similar

goals that can be done without having to fix any variables. The work shows that the

tradeoff between energy efficiency and performance exists because studies erroneously

do not take into consideration peripheral components' power and idle CPU power [10].

 7

The previous literature has provided numerous suggestions on how to optimize databases

for better performance and energy efficiency. However, the majority of them focused on

upgrading to the newest hardware, redesigning the database management system

(DBMS), or optimizing traditional SQL based relational databases.

This research is orthogonal to previous literature because we aim to investigate

optimizations and techniques at the software level that can improve the energy efficiency

of databases. In addition, we evaluate both traditional relational database systems as well

as NoSQL parallel database systems. To the best of our knowledge not much

investigation has been done to study techniques for improving energy efficiency of

NoSQL parallel databases. This thesis provides a number of innovative insights from this

new perspective.

 8

3. INTRODUCTION TO RELATIONAL AND NOSQL DATABASES

In today's world, it is almost impossible to think of any application that does not make

use of databases. From simple games to business-related tools, including web sites,

certain type(s) of data is processed, recorded, and retrieved with each operation.

Database Management Systems (DBMS) are the higher-level software, working with

lower-level application programming interfaces (APIs), that take care of these operations.

To help with solving different kind of problems, new kinds of DBMSs have been

developed for decades. It includes relational and non-relational or NoSql databases along

with applications implementing them (e.g. MySQL, PostgreSQL, MongoDB, Redis, etc).

In this chapter, we will discuss about architecture and various features of relational and

NoSql databases [34].

3.1 Overview of Relational databases

In this section, we briefly introduce relational databases and their features.

Relational databases have dominated the software industry for a long time providing

mechanisms to store data persistently, concurrency control, transactions, mostly standard

interfaces and mechanisms to integrate application data, reporting. A relational database

is a collection of data items organized as a set of formally-described tables from which

data can be accessed or reassembled in many ways without having to reorganize the

database tables.

In other words, it is a set of tables containing data fitted into predefined categories. Each

 9

table (which is sometimes called a relation) contains one or more data categories in

columns. Each row contains a unique instance of data for the categories defined by the

columns. When a database is described as relational, it has been designed to conform to a

set of practices called the rules of normalization. A normalized database is one that

follows the rules of normalization. For example, in an organization, there are employees

who work in specific departments. Each employee and department has a number and a

name. This information can be organized in a table as shown in Table 3-1.

Table 3-1: Sample Employee Information

EmpNo Ename DeptNo DeptName

101 Bob 10 Marketing

102 David 20 Purchase

103 Evelyn 10 Marketing

104 Doug 30 Sales

If we structure data this way and make certain changes to it, there will be few problems.

For example, deleting all the employees in the Purchasing department will eliminate the

department itself. Using the principles of normalized relational databases, we can

eliminate these problems by restructuring Employee and Department data in Table 3-1

into two separate tables (DEPT and EMP), as shown in Tables 3-2 and 3-3.

Table 3-2: A Sample Relational DEPT Table

DeptNo DeptName

10 Marketing

20 Purchase

30 Sales

 10

Table 3-3: A Sample Relational EMP Table

EmpNo EmpName

101 Bob

102 David

103 Elevyn

104 Doug

3.1.1 MySQL

MySQL is a database query language designed for the retrieval and management of data

in a relational database. SQL stands for Structured Query Language. The scope of SQL

includes data insert, query, update, delete, schema creation and data access

control. SQL statements are used to perform tasks such as update data on a database, or

retrieve data from a database.

3.2 Overview of NoSql Databases

Over the last few years we have seen the rise of a new type of databases, known as

NoSQL databases. NoSql databases are challenging the dominance of relational

databases. NoSQL means Not Only SQL, implying that when designing a software

solution or product, there are more than one storage mechanism that could be used based

on the needs. NoSQL does not have a prescriptive definition but there are a set of

common observations which can help define it.

 Not using the relational model

 Running well on clusters

https://en.wikipedia.org/wiki/Database_schema

 11

 Mostly open-source

 Schema-less

The rise of the web as a platform also created a vital factor change in data storage as the

need to support large volumes of data by running on clusters. Also, relational databases

were not designed to run efficiently on clusters. NoSQL databases can broadly be

categorized in four types.

1. Key-Value databases:

Key-value stores are the simplest NoSQL data stores to use from an API perspective. The

client can either get the value for the key, put a value for a key, or delete a key from the

data store. The value is a blob that the data store just stores, without caring or knowing

what's inside; it's the responsibility of the application to understand what was stored.

Structure of key-value database is shown in Figure 3-1. Since key-value stores always use

primary-key access, they generally have great performance and can be easily scaled.

Some of the popular key-value databases are Riak, Redis and CouchBase.

http://basho.com/riak/
http://redis.io/

 12

Figure 3-1: Key-Value Databases

2. Document databases:

Documents are the main concept in document databases. The database stores and

retrieves documents, which can be XML, JSON, BSON, and so on. These documents are

self-describing, hierarchical tree data structures which can consist of maps, collections,

and scalar values. Some of the popular document databases we have seen

are MongoDB, CouchDB and Terrastore.

3. Column family stores:

Column-family databases store data in column families as rows that have many columns

https://www.mongodb.org/
http://couchdb.apache.org/
https://code.google.com/p/terrastor

 13

associated with a row key as shown in Figure 3-2. Column families are groups of related

data that is often accessed together. Each column family can be compared to a container

of rows in an RDBMS table where the key identifies the row and the row consists of

multiple columns. The difference is that various rows do not have to have the same

columns, and columns can be added to any row at any time without having to add it to

other rows. Some of the popular column family stores are Cassandra and HBase.

Figure 3-2: Column Family Stores

4. Graph Databases:

Graph databases allow you to store entities and relationships between these entities.

Entities are also known as nodes, which have properties. In graph databases, traversing

the joins or relationships is very fast. The relationship between nodes is not calculated at

query time but is persisted as a relationship. Traversing persisted relationships is faster

than calculating them for every query. Some of the popular graph databases are Infinite

 14

Graph, FlockDB and Neo4j.

In this thesis, we will limit our experiments to two of the most popular NoSQL databases

MongoDB and Cassandra to investigate various optimization techniques which helps in

gaining energy efficiency.

3.2.1 MongoDB

MongoDB is an open-source document database that provides high performance, high

availability, and automatic scaling. scaling. MongoDB organizes its data in the following

hierarchy: database, collection and document. A database is a set of collections and a

collection is a set of documents. Collections are analogous to tables in relational

databases. Unlike a table, however, a collection does not require its documents to have

the same schema. The organization of data in MongoDB is shown in Figure3-3.

Figure 3-3: Organization of data in MongoDB

 15

A record in MongoDB is a document, which is a data structure composed of field and

value pairs. The values of fields may include other documents, arrays, and arrays of

documents. MongoDB documents are like JSON objects. Sample JSON object is

depicted in Figure 3-4.

Figure 3-4: JSON Object

3.2.2 Cassandra

Apache Cassandra is a free and open-source distributed database management system

designed to handle large amounts of data across many commodity servers, providing high

availability with no single point of failure. It is a column family database that stores data

in column families as rows that have many columns. In Cassandra, all nodes play an

identical role; there is no concept of a master node, with all nodes communicating with

each other via a distributed, scalable protocol called "gossip." To improve availability,

each data item can be replicated at N different hosts, where N is the replication factor.

Cassandra’s built-for-scale architecture means that it is capable of handling large

amounts of data and thousands of concurrent users. To add more capacity, new nodes can be

added to an existing cluster.

 16

Data is written to Cassandra in a way that provides both full data durability and high

performance. Data written to a Cassandra node is first recorded in an on-disk commit log

and then written to a memory-based structure called a memtable. When a memtable’s size

exceeds a configurable threshold, the data is written to an immutable file on disk called

an SSTable. Figure 3-5 shows how data is written in Cassandra.

Figure 3-5: The Cassandra Write Path source ([23])

For a read request, Cassandra consults an in-memory data structure called a Bloom filter

that checks the probability of an SSTable having the needed data. Figure 3-6 shows how

a read request is handled in Cassandra.

 17

Figure 3-6: The Cassandra Read Path (source [23])

 18

4. SYSTEMS, METRICS AND BENCHMARKS

In Chapter 3, we introduced various database systems that we will be investigating for

energy efficiency and performance. In this chapter, we will study systems, metrics and

benchmarks used in our experiments to measure the energy efficiency of databases.

4.1 Marcher System Configurations

All experiments presented in this thesis are executed on nodes of the Marcher system,

which is provided as part of the NSF funded Marcher project. Marcher is a power-

measurable heterogeneous cluster system containing general-purpose multicores, GPU

K20 accelerators and Intel Xeon Phi (MIC) coprocessors, as well as DDR3 main memory

and hybrid storage with hard drives and SSDs. Marcher is equipped with complementary,

easy to deploy component-level power measurement tools for collecting accurate power

consumption data of all major components (e.g CPU, DRAM, Disk, GPU, and Xeon Phi).

To reduce the cost and time of designing and manufacturing external power sensors, we

leveraged the built-in power sensors provided by some of the computing components.

These power sensors are available for CPUs, GPUs and Xeon Phis, which can be

accessed via the Intel RAPL interface, the NVIDIA Management Library (NVML)

interface, and the Intel MICAccess API respectively.

All power results presented in this thesis are generated by using "Log_power_to_file"

API which takes a script file containing query to be executed as a parameter.

 19

"Log_power_to_file" uses the mentioned power sensors to measure power consumption

of various components of a system. We are primarily interested in CPU and DRAM

power. Although, the Marcher System can also provide disk power, we do not include it

because database queries are not I/O intensive therefore disk power remains identical

most of the time.

Figure 4-1: Architecture of the Marcher System

We used a cluster of two nodes for our experiments. System specification of each node

has been provided in Table 4-1.

Log_marcher_to_file -n query.sh

RAPL API RAPL API

The Marcher

System

PODAC
NVML

 API

MICAccess

API

 20

Table 4-1: System Specifications

OS CentOS 7

Processor

Intel Xeon processor E5-2600 and E5-2600

v2 family

CPU Cores 16

Threads/Core 2

Chips Enabled 2

Cores Per Chip 8

Power Governor Performance

CPU Memory Size 32 GB

File Sharing System NFSv3

Average Idle Power 89.69 Watt

4.2 Power Measurement Metrics

In this chapter, we study the Greenup, Powerup and Speedup (GPS-UP in short) metrics,

which allow software developers intuitively understand the correlations of performance,

power, and energy for software optimizations [25]. The GPS-UP metrics can categorize

almost all software optimizations. GPS-UP metrics are three numbers calculated for each

software run to evaluate the relationship between energy, power and runtime.

 21

4.2.1 Speedup, Greenup and Powerup Metrics

The Speedup concept covers any comparison between two implementations of the same

query whether it is a parallel or serial code. Assume we have two implementations of an

query. One of them is an un-optimized query and the other is an optimized query for

better performance or energy consumption. Speedup of the optimized version is defined

as

Speedup =
Tϕ

To
, (1)

where Tϕ is the total execution time of non-optimized query, and To is the total execution

time of the optimized query. Similarly, Greenup is the ratio of the total energy

consumption of the non-optimized query (Eϕ) over the total energy consumption of the

optimized query (Eo). Greenup is analogous to Speedup as it reflects how green the

optimized code is in term of energy consumption.

Greenup =
Eϕ

Eo
, (2)

Assuming, Pϕ is the average power consumed by the non-optimized query and Po is the

average power consumed by the optimized query, we can define Eϕ and Eo as

Eϕ = Tϕ*Pϕ Eo = To*Po (3)

By substituting Eq.3 in Eq.2, we get

Greenup =
TϕPϕ

Eo
 =

Speedup ∗ Pϕ

Po
 (4)

 22

Greenup and Speedup defines the measure of the energy and performance respectively.

Eq.4 introduces a new ratio to define the average power consumption ratio, namely

Powerup.

Powerup =
P0

Pϕ
 =

Speedup

Greenup
 (5)

Powerup implies the power effects of an optimization. A less than 1 Powerup implies

power savings while a greater than 1 Powerup indicates that the optimized code

consumes more power in average.

4.2.2 GPS-UP Software Categories

We can compare any two queries to find out which one is better in terms of performance

and energy efficiency using Greenup, Powerup and Speedup metrics. This method

provides a unique way to evaluate the impact of the optimization on performance, power

and energy efficiency. We can categorize impact of optimized query based on powerup

and speedup as follow:

1. Powerup < 1, and Speedup > 1 indicates optimizations run faster and consumes less

power, leading to more energy savings as both time and power have decreased.

2. Powerup = 1, and Speedup > 1 indicates optimizations have better performance but on

average consume the same amount of power. We usually get this category in serial

optimizations. This category justifies why some developers only focus on performance

and neglect energy efficiency. It is usually found in CPU intensive applications where

 23

energy and time scale linearly.

3. Powerup > 1, Speedup > 1, and Speedup > Powerup indicates better performance at the

expense of consuming more power. Since the Speedup obtained is more than the power

penalty spent, the optimized code still saves energy.

4.3 YCSB Benchmark

In this section, we will discuss about the Yahoo! Cloud Server Benchmark (YCSB) used

for our experiments to compare performance and energy efficiency of databases. YCSB

is an open-source specification and program suite for evaluating retrieval and

maintenance capabilities of computer programs. It is often used to compare relative

performance of database management systems. However, we will be studying not only

the performance of the databases but also the energy efficiency of databases using our

Marcher System.

4.3.1 Why YCSB

YCSB has long been the de facto open standard for comparative performance evaluation

of data stores. Many factors go into deciding which data stores to use including basic

features, data model, and performance characteristics on a given type of workload. It’s

critical to compare multiple data stores intelligently and objectively so that sound

architectural decisions can be made.

From the perspective of a generic, database-neutral, performance evaluation utility,

YCSB is currently the de-facto comparative benchmark for SQL and NoSQL data stores.

 24

It includes support for a wide range of database bindings and is commonly used to

compare their performance for a set of desired workloads.

4.3.2 YCSB Setup

In this subsection, we will discuss in detail about how to set up YCSB.

YCSB consists of two parts:

1. The YCSB Client, an extensible workload generator.

2. The core workloads, a set of workload scenarios to be executed by the generator.

YCSB includes a set of core workloads that define a basic benchmark for cloud systems.

The core workloads consist of six different workloads as shown in Table 4-2.

Table 4-2: YCSB Workloads

YCSB Workloads

Workload Type Operation

A Update Heavy Read: 50%, Update: 50%

B Read Heavy Read: 95%, Update: 5%

C Read Only Read: 100%

D Read Latest Read: 95%, Insert: 5%

E Short Ranges Scan: 95%, Insert: 5%

 25

All six workloads have a data set which is similar. Workloads D and E insert records

during the test run. Thus, to keep the database size consistent, we ran the workloads in

following sequence:

1. Load the database, using workload A's parameter file (workloads/workloada) and the

"-load" switch to the client.

2. Run workload A (using workloads/workloada and "-t") for a variety of throughputs.

3. Run workload B (using workloads/workloadb and "-t") for a variety of throughputs.

4. Run workload C (using workloads/workloadc and "-t") for a variety of throughputs.

5. Run workload F (using workloads/workloadf and "-t") for a variety of throughputs.

6. Run workload D (using workloads/workloadd and "-t") for a variety of throughputs.

This workload inserts records, increasing the size of the database.

7. Delete the data in the database.

8. Reload the database, using workload E's parameter file (workloads/workloade) and

the "-load switch to the client.

9. Run workload E (using workloads/workloade and "-t") for a variety of throughputs.

This workload inserts records, thus increasing the size of the database.

We ran the above workloads for MySQL, MongoDB and Cassandra in order to study

performance and power usage of the various databases under similar workload

conditions.

 26

4.4 Database Analysis using Twitter Data

YCSB provides an effective and efficient platform to compare various databases with

ease. However, datasets used by the benchmark were fairly simple with a single table or

one field document which we feel is almost non-existent use case in real world scenarios.

Also, YCSB is limited in terms of executing complex queries.

We wanted to analyze databases with more complicated data and index landscape with

much more extensive querying. For achieving that we required a highly available large

set of data which we could easily extract and input in our databases for our experiments.

We used Twitter data for our experiments.

Twitter is a massive social networking site tuned towards fast communication. Users on

Twitter generate over 400 million Tweets every day. Twitter's popularity as an

information source has led to the development of applications and research in various

domains. Researchers have used Twitter to predict the occurrence of earthquakes and

identify relevant users to follow to obtain disaster related information. Some of these

Tweets are available to researchers and practitioners through public APIs at no cost.

A sampled view of Twitter can be easily obtained through the APIs.

For our analysis, we used Streaming APIs to collect Twitter data. Streaming APIs

provides a continuous stream of public information from Twitter. These APIs use the

push strategy for data retrieval. Once a request for information is made, the Streaming

APIs provide a continuous stream of updates with no further input from the user. These

 27

streams can be extracted in JSON which is a lightweight data interchange format which

can later be consumed by databases using relevant transformations.

4.5 Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS) is an advanced power-saving

technology which aims to lower a component's power state while still meeting the

performance requirement of the running workload. Some of the governors supported by

Linux kernel are as follows:

1. Performance: This CPUfreq governor sets the CPU statically to the highest frequency

within the borders of scaling_min_freq and scaling_max_freq.

2. Powersave: This governor sets the CPU statically to the lowest frequency within the

borders of scaling_min_freq and scaling_max_freq.

3. Ondemand: Ondemand governor sets the CPU depending on the current usage. To do

this the CPU must have the capability to switch the frequency very quickly. Some papers

studied the effect of using DVFS to save energy [36]. To determine the effect of DVFS

we conducted our experiments on various databases by executing queries using

"performance" and "ondemand" governors.

 28

5. PERFORMANCE AND ENERGY ANALYSIS OF MYSQL

In this chapter, we focus on analyzing relational database in depth using the Twitter data.

SQL statements are used to retrieve data from the MYSQL relational database. We can

get the same results by writing different SQL queries. But use of the best query is

important when performance and energy efficiency is considered. Relational databases

have been studied for decades to determine the tradeoffs between energy and performance

[22,24,30,31,32]. Different methods for query processing and optimization are used as per

the data size and the complexity of queries.

Database performance is one of the most challenging aspects of an organization's

database operations. A well-designed application may still experience performance

problems if the SQL query it uses is poorly constructed. It is much harder to write

efficient SQL queries than to write functionally correct SQL queries. As such, SQL query

optimization can help significantly improve a system's performance and energy

efficiency. The key to tuning SQL queries is to minimize the search path that the database

traverses to find the data.

As the amount of data increases, the performance decreases and the execution time and

energy consumption increases. Therefore, optimization of these queries becomes

 29

essential since the speed of user response and running performance of database system

determine the vitality of information system.

5.1 Twitter data analysis using MySQL

To analyze MySQL database for performance and power efficiency using complicated

data and extensive querying, we streamed about 100 GB of Twitter data using Streaming

APIs. Thereafter, we designed a normalized database and imported Twitter data into the

tables. Various optimization techniques studied to improve performance and energy

efficiency are described in the following section.

5.2 Query Optimization Techniques

SQL tuning is a phenomenally complex subject. Many books have been written about the

nuances of Oracle SQL tuning; however, there are some general guidelines that every

database developer follows to improve the performance of their systems. The goals of

SQL tuning focus on improving the execution optimization of database system, which

plays an important role and runs through the entire life cycle of database applications.

There are various optimization techniques, which can be implemented to make the SQL

queries run faster and consume less energy. The goal of optimizing any SQL statement

includes delivering quick response times using less CPU resources, and reducing I/O

operations. The following content provides best practices for optimizing the performance

of SQL queries.

 30

5.2.1 Indexing

Unnecessary full-table scans cause a huge amount of unnecessary I/O and can drag-down

an entire database. The tuning expert first evaluates the SQL based on the number of

rows returned by the query. The most common tuning remedy for unnecessary full-table

scans is adding indexes [26]. The Primary Key for a table acts as a default index.

Additional indexes can be added to a table depending upon the data size it holds. Other

type of indexes like Standard b-tree indexes, bitmapped and function-based indexes can

also eliminate full-table scans. For analyzing the above technique, we created normalized

tables and created index on the fields being used for data manipulation. For example, to

get the count of users for a location, we ran the following query using indexes and

without using indexes.

select count(*) as tweets from location_details where location='San Diego';

The query results are presented in Table 5-1 and Figure 5-1.

Table 5-1: Non-indexed vs Indexed Search Query in MySQL

Non-Indexed Vs Indexed Search

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Non-

indexed
142.8777 3.721247 531.6832

66.3442 0.9492 69.8942

Indexed 135.62 0.05609 7.606926

 31

Figure 5-1: Non-indexed vs Indexed Search Query in MySQL

As depicted in Figure 5-1, indexing helped in gaining a speedup of about 66X and

greenup of almost 70X. Using this optimization technique, we not only gained high

performance but also saved energy.

We extended the similar experiment for delete operation to study the effect of indexing

on other query operations. Results for the same are displayed in Table 5-2 and Figure 5-2.

 32

Table 5-2: Non-indexed vs Indexed Delete Query in MySQL

Non-Indexed Vs Indexed Delete Query

Query Power

(W)

Time (s) Energy (J)
Speedup Powerup Greenup

Non-indexed 67.887 3.120975 211.8736
13.4708 0.7789 17.2927

Indexed 52.883 0.231684 12.25212

Figure 5-2: Non-indexed vs Indexed Delete Query in MySQL

Here, indexing helped in gaining performance by 13X and reducing energy consumption

by 17X. Since each index keeps the indexed fields stored separately, it makes finding the

 33

right entries particularly easy. The database finds the entries in the index then cross-

references them to the entries in the tables. This cross-referencing takes time but is faster

than scanning the entire table. This contributes to lower execution times and reduces

power consumption.

There was another scenario where we found indexing helpful in attaining high

performance and high energy efficiency. The following query was used to find the most

tweeted user.

SELECT username, count(*) AS count FROM tweet_details GROUP BY username

ORDER BY count DESC LIMIT 1;

The results of the above query is shown in Table 5-3.

Table 5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL

Non-Indexed Vs Indexed Query

Query Power W) Time (s) Energy (J) Speedup Powerup Greenup

Non-indexed 75.8749 135.0396 10246.12
33.0759 0.8218 40.2436

Indexed 62.361 4.082716 254.6023

As per Table 5-3 and Figure 4-3, we observed that indexed query has speedup 33 times

more than that of non-indexed query and greenup of about 40X. Also, greenup is more

than speedup in this query. This is mainly because in this case, indexed query not only

runs faster but also consumes less power, leading to more energy savings as both time

and power have decreased. This kind of performance boost typically occurs for queries

 34

which rely more on the cache rather than CPU.

Figure 5-3: Non-indexed vs Indexed Query to find most tweeted user in MySQL

5.2.2 Avoid using Select * Clauses

The dynamic SQL column reference (*) gives you a way to refer to all of the columns of

a table. Do not use the * feature because it is very inefficient -- the * has to be converted

to each column in turn. The SQL parser handles all the field references by obtaining the

names of valid columns from the data dictionary and substitutes them on the command

line, which is time consuming. To verify the assumption, we ran the following queries.

 35

SELECT * FROM location_details l,user_details u WHERE u.username=l.username

AND l.location='Houston';

Query without using '*':

SELECT u.screen_name,l. tweet_id FROM location_details l, user_details u

WHERE u.username=l.username AND l.location='Houston';

Here, as indicated from Table 5-4 and Figure 5-4, query "without using select *" has a

speedup 1.0683 times more than query with "select *" clause and greenup of 1.2185

times. It means that the query "without using select *" not only runs faster but also

consumes less power, leading to more energy savings as both time and power have

decreased.

Table 5-4: Query execution using select * clauses in MySQL

Select * Clauses

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

With

Select *
66.6615 3.84684 256.4361

1.0683 0.8767 1.2185
Without

Select *
58.444 3.600677 210.438

 36

Figure 5-4: Query execution using select * clauses

5.2.3 IN vs EXISTS

The EXISTS function searches for the presence of a single row that meets the stated

criteria, as opposed to the IN statement that looks for all occurrences. There was a wide

gap in performance of the queries using the above-mentioned clauses. Queries for the

same are presented in the following page.

 37

Query using 'IN':

SELECT l.tweet_id FROM location_details l WHERE l.username IN(SELECT

u.username FROM user_details u) AND l.location='Houston';

Query using 'EXISTS':

SELECT l.tweet_id FROM location_details l WHERE EXISTS(SELECT '1' FROM

user_details u WHERE u.username=l.username) AND l.location='Houston';

For the mentioned technique, we observed that query using EXISTS clause is a clear

winner(as indicated in Table 5-5 and Figure 5-5). It provides a speedup of 146 times than

query using IN clause and greenup of 208 times. We note that greenup is a lot more than

speedup of query using EXISTS clause. This particularly happens because of the way

EXISTS clause works. In case of EXISTS clause, EXISTS do a partial scan of the table

as it can stop after it finds the very first matching row. However, IN clause scans every

row in the entire table to determine if they match the criteria. The ability to stop working

after finding the first row that meets the criteria of the WHERE clause is what

makes EXISTS so efficient.

Table 5-5: IN vs EXISTS

IN vs EXISTS

Query Power W) Time (s) Energy (J) Speedup Powerup Greenup

Using 'IN' 68.9364 13.59254 937.0208

146.3404 0.7010 208.7463 Using

'EXISTS'
48.3275 0.092883 4.4888

 38

Figure 5-5: IN vs EXISTS

5.3 Impact Analysis of DVFS on optimized queries

To study the impact of DVFS on query execution, we ran several queries by setting CPU

frequency to "performance" and "ondemand" governors. As explained in Chapter 4,

"performance" and "ondemand" are two CPU frequency governors supported by linux

keernels. In case of "performance" governor, CPU is set to the highest frequency whereas

in case of "ondemand" governor CPU frequency varies depending on the current usage.

To study the impact of DVFS on optimized queries, we conducted following

experiments. Figure 5-6 shows the behavior of MySQL insert query.

 39

'

Figure 5-6: Impact analysis of DVFS on MySQL insert query

As observed in Figure 5-6, power consumption for "performance" governor is almost

twice as compared to "ondemand" governor. Even though query execution takes a little

longer when run using "ondemand" governor, nonetheless it is more energy efficient. We

can conclude that lower execution time does not always mean that it will be more energy

efficient. Power utilization and execution time are equally important in determining

energy efficiency.

Another query where we compared "performance" and "ondemand" governor was

MySQL update query. The trace for the same is shown in Figure 5-7.

 40

Figure 5-7: Impact analysis of DVFS on MySQL update query

We observed that in case of "performance" governor, both power consumption and query

execution time were high as compared to "ondemand" governor. This can be explained as

sometimes higher power and processing speeds can result in slowdown [35]. The

slowdowns occur at higher frequencies when the early arrival of a single thread causes

the atomic journal commit to lock with less batched threads than in the lower frequency

case. In the lower frequency case, the difference between the lead thread and other

threads is much smaller, therefore less time is spent in waiting. Slower processor

 41

frequencies effectively increase the number of threads that access the shared resource

while reduce the overall commits required at higher processor frequencies.

5.4 Conclusion

This chapter summarized various optimization techniques which not only helped in

improving performance but also energy efficiency. We unfolded few interesting findings

that contribute towards enhancing energy efficiency. Firstly, indexed query not only runs

faster but also consumes less power, leading to more energy savings as both time and

power have decreased. We gained a speedup of almost 30X in some cases using this

technique. Secondly, we observed that how a query works internally is also a contributing

factor in saving power. In case of IN vs EXISTS clause, the internal functioning of

EXISTS clauses helped in attaining a speedup of 146 times than IN clause. Lastly, we

studied the impact of DVFS on query execution. We found that lower execution time

does not always lead to high energy efficiency. Power utilization and execution time are

equally important in determining energy efficiency. Also, higher power and processing

speeds can result in slowdown sometimes due to longer waiting times in synchronizing

events.

 42

6. PERFORMANCE AND ENERGY ANALYSIS OF MONGODB

In this chapter, we focus on analyzing MongoDB which is a NOSQL/non-relational

database in depth using Twitter data. There are many factors that can affect database

performance and responsiveness including index use, query structure, data models and

application design, as well as operational factors such as architecture and system

configuration. MongoDB provides the following capabilities which makes it a highly

efficient database for large data stores.

1. Document-Oriented Storage - MongoDB stores its data in JSON-style objects. This

makes it very easy to store raw documents from Twitter’s APIs.

2. Index Support - MongoDB allows for indexes on any field, which makes it easy to create

indexes optimized for your application.

3. Straightforward Queries - MongoDB’s queries, while syntactically much different from

SQL, are semantically very similar. In addition, MongoDB supports MapReduce, which

allows for easy lookups in the data.

6.1 Twitter Data Analysis using MongoDB

To analyze MongoDB using Twitter data, we need to create a collection in MongoDB to

store Twitter streams. Since, MongoDB uses JSON to store its documents, we can import

the data from Twitter API using the following command:

 43

mongoimport --db Twitter_db --collection "Twitter_data" --type json --file

filename.json

Here, "mongoimport" is a utility that is packaged with MongoDB that allows to import

JSON documents. “Twitter_db” refers to the database with “Twitter_data” as collection.

To get the power reading using the Marcher system, we used PyMongo [38] API to run

queries. PyMongo is a Python distribution containing tools for working with MongoDB.

6.2 Query Optimization Techniques

To make our documents quickly accessible and perform various operations on the large

amount of data stored in our collection, it is important to optimize queries. There are

many factors that can affect database performance and energy efficiency including index

use, query structure, data models and application design, as well as operational factors

such as architecture and system configuration. The following sub-sections describe

techniques for optimizing application performance as well as energy efficiency of

MongoDB.

6.2.1 Covered Queries

Indexes improve the efficiency of read operations by reducing the amount of data that

query operations need to process. This simplifies the work associated with fulfilling

queries within MongoDB. A covered query is a query that can be satisfied entirely using

an index and does not have to examine any documents. An index covers a query with the

 44

following conditions:

 all the fields in the query are part of an index, and

 all the fields returned in the results are in the same index.

For analyzing the above technique, we created index on “user.location” field using the

following query:

db.Twitter_data.ensureIndex({'user.location':1})

Then, we scanned all the documents using the covered query. The results have been

provided in Table 6-1 and Figure 6-1.

Table 6-1: Unoptimized vs covered query in MongoDB

Un-optimized vs Covered queries

Query Power(W) Time(s) Energy (J)
Speedup Powerup Greenup

Un-

optimized
126.6609 162.7915 20619.32

276.1452 0.5541 498.3509

Covered 70.1851 0.589514 41.3751

 45

Figure 6-1: Unoptimized vs covered query in MongoDB

As indicated by the power trace and Table 6-1, covered query has a speedup of 276 times

more than un-optimized query. Greenup is nearly 478 times more in case of covered. We

also observe that greenup is much higher as compared to speedup. This occurs if the input

size is small enough to fit into the cache. MongoDB keeps the most recently used data in

DRAM. Therefore, if we have created indexes for the query and working data set fits in

DRAM, MongoDB serves all queries from memory. Hence, less main memory is utilized

and more power is saved.

 46

6.2.2 Non-indexed vs Indexed queries

Once documents are inserted into a collection, querying them will be slow if MongoDB

does not know which fields in the document are to be optimized for faster lookup. One of

the most important concepts to understand fast access of a MongoDB collection is

indexing. The indexes we choose will depend on data to be queried. We ran the same

experiment using the following query for indexed and non-indexed field

"user_mentions”.

db.Twitter_data.remove({"entities.user_mentions.id" : "574834900"})

As evidenced from the data provided in the Table 6-2 and Figure 6-2, decrease in the run

time improved performance by gaining a speedup of 283 times. We also observed a high

greenup of 44 times more than un-optimized query. This is also contributed by the way

caches are handled in MongoDB. Since MongoDB keeps the most recently used data in

DRAM, therefore, if we have created indexes for the query and working data set fits in

DRAM, MongoDB serves all queries from memory. Hence, less main memory is utilized

and more power is saved.

Table 6-2: Non-indexed vs Indexed Delete query in MongoDB

Non-indexed vs Indexed Delete query

Query Power

(W)

Time(s) Energy(W)
Speedup Powerup Greenup

Non -

indexed

130.5215 165.2470 21568.29
283.2482 0.5975 474.0064

Indexed 77.9913 0.5834 45.5021

 47

Figure 6-2: Non-indexed vs Indexed Delete query in MongoDB

We conducted another experiment to demonstrate the impact of indexing using insert

query. The results for the same are displayed in Table 6-3 and Figure 6-3.

Table 6-3: Non-indexed vs Indexed Insert query in MongoDB

Non-indexed vs Indexed Delete query

Query
Power

(W)
Time(s) Energy(W) Speedup Powerup Greenup

Non -

indexed
136.8845 0.64429 88.19331

1.0403 0.5252 1.9807

Indexed 71.8965 0.6193 44.5255

 48

Figure 6-3: Non-indexed vs Indexed Insert query in MongoDB

As observed from Table 6-3 and Figure 6-3, indexing not only reduces the execution time

of the query but also significantly reduces the power consumption. Indexed insert query

has a greenup of almost 1.9 times more than non-indexed insert query.

6.2.3 Ordered vs Unordered queries

The next parameter that we examined was ordered and unordered bulk write operations

[27,28]. Bulk write operations create a list of write operations to perform in bulk, which

can be either ordered or unordered. Bulk operations builder used to construct a list of

write operations to perform in bulk for a single collection. To instantiate the builder, use

 49

either db.collection.initializeOrderedBulkOp() or

db.collection.initializeUnorderedBulkOp() method.

As shown in Table 6-4 and Figure 6-4, we observe that unordered updates not only take

longer to execute but also consumes more power. The key to increasing speed on updates

is to note how MongoDB gives a lot of control over how database operations are

acknowledged by a server. This ranges from checking through acknowledgment that the

operation has been acted on and up to confirming the operation has been written to the

journal. This reflects how concerned the client is with the progress of the write –the more

concern, the longer it will take for the various write operations to complete or fail. This is

particularly low in case of ordered updates, leading to high energy efficiency.

Table 6-4: Ordered and Unordered Query in MongoDB

Ordered and Unordered Queries

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Unordered 80.792 1.081976 87.415
1.8665 0.9753 1.9137

Ordered 78.798 0.579669 45.67676

https://docs.mongodb.com/v3.2/reference/method/db.collection.initializeOrderedBulkOp/#db.collection.initializeOrderedBulkOp
https://docs.mongodb.com/v3.2/reference/method/db.collection.initializeUnorderedBulkOp/#db.collection.initializeUnorderedBulkOp

 50

Figure 6-4: Ordered and Unordered Query in MongoDB

6.2.4 Projection Optimization using aggregation

MongoDB provides a rich set of aggregation operations that examine and perform

calculations on the data sets. Running data aggregation on the MongoDB instance

simplifies application code and limits resource requirements. Like queries, aggregation

operations in MongoDB use collections of documents as an input and return results in the

form of one or more documents. The pipeline provides efficient data aggregation using

native operations within MongoDB, and is the preferred method for data aggregation.

MongoDB also provides map-reduce operations to perform aggregation. In general,

map-reduce operations have two phases: a map stage that processes each document

https://docs.mongodb.com/v3.0/reference/glossary/#term-collection
https://docs.mongodb.com/v3.0/core/map-reduce/

 51

and emits one or more objects for each input document, and a reduce phase that combines

the output of the map operation. Optionally, map-reduce can have a finalize stage to

make final modifications to the result. Like other aggregation operations, map-reduce can

specify a query condition to select the input documents as well as sort and limit the

results. However, in general, map-reduce is less efficient and more complex than the

aggregation pipeline. We used aggregation pipeline to find the most tweeted user from

the MongoDB collection using following query.

db.Twitter_data.aggregate([{"$project": {

 "_id": 0, "entities.user_mentions" :1}}, {"$unwind": "$entities.user_mentions"},

 {"$group": {"_id": "$entities.user_mentions.screen_name",

 "count": {"$sum": 1}}}])

The results of the above experiment are as shown in Table 6-5 and Figure 6-5.

Table 6-5: Un-optimized vs Aggregated Query in MongoDB

Un-optimized vs Aggregated Query

Query Power(W) Time(s) Energy(W) Speedup Powerup Greenup

Un-optimized 124.3553 287.6416 35769.76

2.4548 0.5749 4.2698

Optimized 71.49538 117.1723 8377.278

 52

Figure 6-5: Un-optimized vs Aggregated Query in MongoDB

Aggregation proved to be quite energy efficient for complex queries. We gained a

speedup of 2.4 times and greenup of 4.2 times for aggregated queries. As depicted in

Figure 6.5, unoptimized query takes longer to execute and consumes more power

compared to optimized query using aggregation. The aggregation pipeline can determine

if it requires only a subset of the fields in the documents to obtain the results. If so, the

pipeline will only use those required fields, reducing the amount of data passing through

the pipeline. Since, we have limited data in the pipeline, it fits into the dataset of

MongoDB leading to lesser main memory references. As a result,we save power and

contribute to high energy efficiency.

 53

6.2.5 Sharding

The next technique we used was sharding servers. Sharding is a method for distributing

data across multiple machines. MongoDB uses sharding to support deployments with

very large data sets and high throughput operations. MongoDB supports horizontal

scaling through sharding. Horizontal scaling involves dividing entire dataset and load

them over multiple servers. Additional servers can be added to increase capacity if

required. While the overall speed or capacity of a single machine may not be high, each

machine handles a subset of the overall workload, potentially providing better efficiency

than a single high-speed high-capacity server. Since expanding the capacity of the

database only requires adding additional servers as needed (scale out). It can lower the

overall cost than scale up to a high-end server. The trade-off is increased complexity in

infrastructure and maintenance for the deployment. We used cluster with two nodes to

measure performance and energy efficiency. The results are presented in Table 6-6.

Table 6-6: Single vs distributed shared server in MongoDB

Single vs distributed sharded server

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Single Server 77.5889 281.4785 21839.62

3.0828 1.8051 1.7077

Sharded Server 140.060 91.3054 12788.32

https://docs.mongodb.com/manual/reference/glossary/#term-sharding
https://docs.mongodb.com/manual/reference/glossary/#term-sharding

 54

For the sharded server, we observed that even though the execution time was reduced to

almost half after distributing data on two nodes, power consumption was high. Multi-

node servers help in gaining performance by distributing work over multiple nodes,

however there is an increase of power consumption because of the idle power of nodes

that are not contributing any work to the program execution.

6.3 Impact Analysis of DVFS on optimized queries

To study the impact of DVFS, we carried out several experiments to compare the

performance and power usage for CPU frequency governor as ondemand and

performance. Some of the experiments have been presented below to show the impact of

DVFS.

In one of the experiments, we studied the impact of governors on execution of the query

to find the most tweeted user using aggregation as shown in Figure 6-6.

 55

Figure 6-6: Impact of DVFS on query execution in MongoDB

We observed lot of parallelism in case of MongoDB owing to its distributed nature.

However, in case of "ondemand governor", power consumption was less as compared to

"performance" governor.

We conducted another experiment to analyze the effect of DVFS on search query. Same

has been depicted in Figure 6-7.

 56

Figure 6-7: Impact of DVFS on query execution in MongoDB

We observed high power spikes in case of "performance" governor since it utilized

highest CPU frequency. There was lesser power in case of "ondemand" governor.

6.4 Conclusion

In this chapter, we studied various optimization techniques that contributes to high

performance and high energy efficiency. Firstly, we observed that indexes improve the

efficiency of read operations by reducing the amount of data that query operations need

to process. We gained a speedup of more than 270 times for indexed queries. Similarly,

for indexed insert query greenup of almost 1.9 times was observed. Secondly, we found

 57

that ordered updates were 0.97 times more energy efficient than un-ordered bulk updates.

The key to increasing performance for updates depends on how fast database operations

are acknowledged by the server. Thirdly, we gained a speedup of 2.4 times and greenup

of 4.2 times for aggregated queries. Aggregation pipeline reduces the amount of data

passing through the pipeline leading to smaller datasets that fits into the caches of

MongoDB and lesser main memory references. As a result,we save power and contribute

to high energy efficiency. Fourthly, we found that multi-node servers help in gaining

performance by distributing work over multiple nodes, however there is an increase of

power consumption because of the idle power of nodes which are not contributing to the

program execution. Lastly, we also studied the impact of DVFS on query execution and

found that "ondemand" governor optimizes CPU utilization, thus contribute towards

energy efficient query.

 58

7. PERFORMANCE AND ENERGY ANALYSIS OF CASSANDRA

In this chapter, we focus on analyzing Cassandra which is a NOSQL/non-relational

database, using Twitter data. There are many factors that can affect database performance

and responsiveness including index use, query structure, data models and application

design, as well as operational factors such as architecture and system configuration.

7.1 Twitter Data Analysis using Cassandra

To analyze Twitter data using Cassandra, we streamed Twitter data using Streaming APIs

and created keyspaces in Cassandra database to store them. We used PyCassa [37], is a

Thrift-based python client library for Apache Cassandra to execute Cassandra queries to

measure power on the Marcher System. Various optimization techniques studied have

been described in the following sub-sections.

7.2 Query Optimization Techniques

This section illustrates techniques for optimizing application performance and energy

efficiency for Cassandra.

Cassandra works optimally when the data we need to access is already in memory. Disks

are comparatively slow. Therefore, when data needs to be read from disk, it works best

when it is performed as a single sequential operation. To design an effective data model

in Cassandra, it’s good to keep the following best practices in mind:

 59

 Use clustering columns in the tables so that rows are ordered on disk in the same order

they are read.

 Use the built-in caching mechanisms to limit the number of reads from disk.

The following sub-sections provide in-depth analysis of various optimization strategies

used to improve performance and energy efficiency of Cassandra.

7.2.1 Tuning the row caches

With row caching enabled, Cassandra will detect frequently accessed partitions and store

rows of data into DRAM to reduce the data access it needs from disks. This results in

some great optimizations. We can specify the number of rows to cache per partition. To

study the impact of row caches, we analyzed several queries.

Row caching was quite helpful in case of optimizing an update query. The results are

shown in Table 7-1 and Figure 7-1.

Table 7-1: Un-optimized vs Optimized Update Cassandra Query

Un-optimized vs Optimized Update Query

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Un-optimized 135.7991 51.6214 7010.14

150.8515 0.9247 163.1257

Optimized 125.5811 0.3422 42.97385

 60

Fig 7-1: Un-optimized vs Optimized Update Cassandra Query

As indicated by Table 7-1 and Figure 7-1, execution time of optimized query is quite low

as compared to unoptimized query. We observed a speedup of 150 times and greenup of

163 times in case of optimized query taking advantage of row caching.

We conducted another experiment to study the impact of row caching by executing search

query. Results are provided in Table 7-2 and Figure 7-2.

Table 7-2: Un-optimized vs Optimized Search Cassandra Query

Un-optimized vs Optimized Search Query

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Un-optimized 125.9736 54.1462 6820.992

1.4335 0.9728 1.4736

Optimized 122.5507 37.7695 4628.679

 61

Fig 7-2: Un-optimized vs Optimized Search Cassandra Query

We observed a speedup of 1.43 times and and energy efficiency of 1.47 times in case of

optimized query. Also, as per the Figure 7-2, we observe extensive parallelism in query

execution path. This can be explained by the distributed nature of Cassandra database

design. Cassandra is implemented as a peer-to-peer distributed system across

homogeneous nodes where data is distributed among all nodes in the cluster.

 62

7.2.2 Compaction

Cassandra periodically merges multiple SSTables into a smaller set of larger SSTables

using a process called compaction. Compaction merges row fragments together, removes

deleted columns, and rebuilds primary and secondary indexes. Since the SSTables are

sorted by the row key, this merge is efficient (no random disk I/O). Once a newly merged

SSTable is complete, the input SSTables are marked as obsolete and eventually deleted

by the JVM garbage collection (GC) process. However, during compaction, there is a

temporary spike in disk space usage and disk I/O. Compaction has impact on read

performance in two ways. While a compaction is in progress, it temporarily increases

disk I/O and disk utilization which can influence read performance for reads that are not

fulfilled by the cache. However, after a compaction has been completed, off-cache read

performance improves because there are fewer SSTable files on disk that need to be

checked in order to complete a read request. Cassandra includes compaction strategies

and each is optimized for a different use case. Size Tiered Compaction Strategy (STCS)

triggers a compaction when multiple SSTables of a similar size are present. Additional

parameters allow STCS to be tuned to increase or decrease the number of compactions it

performs and how tombstones are handled. This compaction strategy is good for insert-

heavy and general workloads as depicted Table 7-3 and Figure 7-3.

 63

Table 7-3: Un-optimized vs Optimized Insert Cassandra Query

Un-optimized vs Optimized Insert Query

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Un-optimized 137.7482 1.2294 169.3476

2.6302 0.9347 2.8137

Optimized 128.7654 0.4674 60.18495

Figure 7-3: Un-optimized vs Optimized Insert Cassandra Query

As indicated in Table 7-3 and Figure 7-3, we gained a speedup of 2.6 times and greenup

of 2.8 times in case of optimized query. As discussed, high performance and low power

 64

consumption is contributed by Size Tiered Compaction Strategy (STCS).

Another strategy for compaction is Leveled Compaction Strategy (LCS). This strategy

groups SSTables into levels, each of which has a fixed size limit which is 10 times larger

than the previous level. SSTables are of a fixed, relatively small size (160MB by default)

so if Level 1 might contain 10 SSTables at most, then Level 2 will contain 100 SSTables

at most. SSTables are guaranteed to be non-overlapping within each level – if any data

overlaps when a table is promoted to the next level, overlapping tables will be re-

compacted. This compaction strategy is the best for read-heavy workloads (because

tables within a level are non-overlapping, LCS guarantees that 90% of all reads can be

satisfied from a single SSTable) or workloads where there are more updates than inserts.

We used this strategy to find the most tweeted user. The following queries were executed

to find the most tweeted user.

CREATE OR REPLACE FUNCTION state_group_and_count(state map<text, int>,

type text) CALLED ON NULL INPUT RETURNS map<text, int> LANGUAGE java

AS ' Integer count = (Integer) state.get(type); if (count == null) count = 1; else

count++; state.put(type, count); return state; ' ;

CREATE OR REPLACE AGGREGATE group_and_count(text) SFUNC

state_group_and_count STYPE map<text, int> INITCOND {};

select group_and_count(screen_name) from tweet.tweet_shard;

 65

The results of the above query are displayed in Table 7-4 and Figure 7-4.

Table 7-4: Un-optimized vs Optimized Cassandra Query

Un-optimized vs Optimized queries

Query Power(W) Time(s) Energy(J) Speedup Powerup Greenup

Un-optimized 142.2996 831.8498 118371.9

4.5151 0.8735 5.1687

Optimized 124.3047 184.2364 22901.45

Fig 7-4: Un-optimized vs Optimized Cassandra Query

As shown in Table 7-4 and Figure 7-4, optimizeed query has a speedup of 4.5 times and

greenup of 5 times as compared with non-optimized query. Also, powerup is less than 1.

 66

This emphasizes the power saving benefits by leveraging cache size of the system and the

chunk size of datasets that can minimize cache miss rate. Also, LCS guarantees that 90%

of all reads can be satisfied from a single SSTable.

7.3 Impact Analysis of DVFS on optimized queries

In this section, we analyze the impact of DVFS on query execution in Cassandra. We

study "performance" and "ondemand" governors for CPU frequency to understand and

explore the factors that contribute to higher energy efficiency.

We conducted an experiment using an insert query to study the effect of DVFS. The

results are shown in Figure 7-5.

Fig 7-5: Impact of DVFS on Insert query execution in Cassandra

 67

According to Figure 7.5, for "performance" governor, both power consumption and query

execution time were high as compared to "ondemand" governor. This can be explained as

sometimes higher power and processing speeds can result in higher execution time [35].

The slowdowns occur at higher frequencies when the early arrival of a single thread

causes the atomic journal commit to lock with less batched threads than in the lower

frequency case. In the lower frequency case, the difference between the lead thread and

other threads is much smaller, therefore less time is spent in waiting. Slower processor

frequencies effectively increase the number of threads that access the shared resource

while reduce the overall commits required at higher processor frequencies.

We conducted another experiment to study the impact of DVFS on performance and

energy efficiency using a delete query. The results are shown in Figure 7-6.

 68

Fig 7-6: Impact of DVFS on Delete query in Cassandra

We observe sharp power spikes for both the "performance" and "ondemand" governors.

However, power consumption in case of "ondemand" governor is lesser as compared to

performance governor making it more energy efficient.

7.4 Conclusion

This chapter summarized various optimization techniques in Cassandra to improve

performance and energy efficiency. We particularly explored techniques that contribute

to better energy efficiency. Firstly, we observed that Cassandra works optimally when the

data to be accessed is already in memory. This can be achieved by using clustering

columns in the tables so that rows are ordered on disk in the same order they are read.

 69

Secondly, we can use the built-in caching mechanisms to limit the number of reads from

disks. Thirdly, on enabling row caching, Cassandra detects frequently accessed partitions

and store rows of data into DRAM to limit reads from disk. Fourthly, compaction

improves off-cache read performance since there are fewer SSTable files on disk to be

read to complete read request after compaction. Lastly, we studied the impact of DVFS

on energy efficiency of query execution. We found that high CPU frequency can result in

slowdown sometimes due to longer waiting times for synchronizing write commits.

Slower processor frequencies effectively increase the number of threads that access the

shared resource by reducing the number of commits required by higher processor

frequencies.

 70

8. COMPARISION OF SQL, MONGODB AND CASSANDRA

In this chapter, we focus on cross database comparison of three databases studied in the

previous chapters.

8.1 Cross database comparison using YCSB Benchmark

We performed a series of performance and energy analysis on Apache Cassandra,

MongoDB and MySQL using the Yahoo! Cloud Serving Benchmark (YCSB). When it

comes to performance, it should be noted that there is (to date) no single “winner takes

all” among the databases studied or any other database engine for that matter. Depending

on the use cases and deployment conditions, it is almost always possible for one NoSQL

database to outperform another and yet lag its competitor when the rules of engagement

change. While it is always recommended that anyone assessing a database’s performance

should test it under specific use cases and deployment conditions intended for a particular

production application, general competitive benchmarks of usual-and-customary

application workloads can be useful to evaluate different databases.

Each test started with an empty database which was then loaded with an initial set of

randomly generated data. Once the data was loaded, each workload (described below) ran

in sequence. In between each workload sometimes database health and readiness checks

were performed. For example, tests for Cassandra checked for any ongoing compaction

processes, and waited until those completed before continuing to the next workload.

 71

When running the YCSB benchmark on the three databases (MySQL, Cassandra, and

MongoDB), we acquired multiple power readings from the Marcher system for all the

workloads, which are depicted in graphs presented below along with energy efficiency.

For Workload A, energy consumption of various databases is presented in Figure 8-1.

Figure 8-1: Cross-database comparison using YCSB Workload A

Although MySQL uses less power, the greater amount of time taken to complete the

workload leads to a higher total energy usage. Similarly, Cassandra uses less time but has

a higher power usage, so the energy efficiency is lower as well. MongoDB, on the other

hand, is able to shorten its run time as well as use less power than Cassandra, which is an

indication of a much more energy efficient database. Furthermore, Figure 8-1 shows that

for the first approximate 350 records, all three databases use higher levels of power, an

indication of parallelization. However, while Cassandra and MySQL discontinued many

parallel processes, MongoDB was able to successfully complete the run quickly and with

better energy efficiency. Power usage of all the workloads have been consolidated in the

 72

Table 8-1.

Table 8-1: Cross-database comparison using YCSB

Workloads

MongoDB Cassandra MySQL

Power(W) Time(s) Power(W) Time(s) Power(W) Time(s)

A 1211.3719 12.9392 3102.3698 33.3806 4037.7207 46.7543

B 1212.0568 12.6675 3085.7648 32.9867 4075.1242 47.2474

C 1219.7487 12.8663 3152.9750 33.8913 4097.5581 47.1394

D 1242.8923 12.9538 3070.0029 32.9745 4077.8034 47.6150

E 1224.6925 12.8508 3176.5620 34.13622 4169.83203 48.2778

It is evident from Table 8-1 that MongoDB is most efficient for almost all the workloads

in terms of performance as well as energy. MongoDB consumes approximately 85% less

power than Cassandra and almost 92% less power than MySQL for the same workloads

run under similar conditions.

8.2 Cross database comparison using Twitter data

In this section, we conduct a cross database comparison using Twitter data. To measure

the energy efficiency of three databases, we used query to find the most tweeted user.

The results of the query are presented in Table 8-2 and Figure 8-2.

 73

Table 8-2: Cross-database comparison for most tweeted user

Most Tweeted User

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup

MySQL 62.361 4.0827 254.6013 45.12609 1.993308 89.95021

MongoDB 76.6249 117.123 775.9282 1.573016 1.622249 29.5149

Cassandra 124.3047 184.2363 22901.44

Figure 8-2: Cross-database comparison to find the most tweeted user

As per the power readings presented in Table 8-2, MySQL seems to be most efficient in

terms of execution time as well as power whereas Cassandra is least efficient. MySQL

has a speedup of 45 times and greenup of 90 times as compared to Cassandra. MongoDB

 74

seems to be less efficient than MySQL as aggregation is used to find the most tweeted

users which is slower as compared to groupby and order by functions used in MySQL to

carry out the same task. In Cassandra, although extensive parallelism is involved in

executing the query to find the most tweeted user, there is an overhead in additional

scripts used for carrying out these tasks due to the insufficient support of aggregation

functions. Cassandra is particularly not suitable for such kind of querying.

We futher extended our experiment to analyze the behaviour of update query in all three

databases. Results are shown in Table 8-3 and Figure 8-3.

Table 8-3: Cross-database comparison of Update query

Update Query

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup

MySQL 63.6411 6.91431 440.0343

MongoDB 78.7984 0.5796 45.67155 11.92945 0.807645 9.634757

Cassandra 69.2863 2.1702 150.3651 3.186024 0.918524 2.926439

 75

Fig 8-3: Cross-database comparison of Update query

As shown in Table 8-3 and Fig 8-3, we can observe that Mongodb is most energy

efficient and MySQL is least efficient. We do not observe any drastic difference between

the power consumption of the three databases, however MongoDB seems to be quite

efficient in terms of query execution time. MongoDB has a speedup of 11.9 times and

greenup of 9.6 times as compared to other databases. Also, we observe powerup >1

which indicates that we achieved better performance at the expense of consuming more

power. Since the Speedup obtained is more than the power penalty spent, the optimized

code still saves energy. This type of behavior is particularly observed in case of parallel

executions.

 76

Our next experiment, compared the energy efficiency of the delete query using three

databases. Results are shown below in Table 8-4 and Figure 8-4.

Table 8-4: Cross-database comparison of Delete query

Delete Query

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup

MySQL 56.7188 0.3748 21.25821 1.2916 2.135482 2.7582

MongoDB 79.5758 0.2348 18.6844 2.0617 1.522096 3.1381

Cassandra 121.122 0.4841 58.63516

Fig 8-4: Cross-database comparison of Delete query

 77

As shown in Table 8-4 and Figure 8-4, again Mongodb is the most efficient database in

case of delete query exectution and Cassandra seems to be the least efficient one.

Indexing in Mongodb contributes to its shorter execution time and lower power

consumption, thereby making it highly energy efficient.

Another experiment was done to sudy the behaviour of insert query for all three

databases. The results are presented in Table 8-5 and Figure 8-5.

Table 8-5: Cross-database comparison of Insert query

Insert Query

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup

MySQL 56.3147 0.3196 17.99818 1.4624 2.286533 3.3439

MongoDB 57.3588 0.3542 20.31649 1.3195 2.244911 2.9623

Cassandra 128.7654 0.4674 60.18495

 78

Table 8-5: Cross-database comparison of Insert query

The results of insert query are shown in Table 8-5 and Fig 8-5. We observe that

MongoDB and MySQL have overlapping power consumptions. However, MySQL is

more efficient with a speedup of 1.4 times and greenup of 3.3 times as compared to

Cassandra.

Finally, we compared the databases using search query. Results are presented in the

following Table 8-6 and Figure 8-6.

 79

Table 8-6: Cross-database comparison of Search query

Search Query

Database Power(W) Time(s) Energy(J) Speedup Powerup Greenup

MySQL 130.0075 2.2467 292.0879 0.9426 16.8099 15.8457

MongoDB 70.1851 0.5895 41.37412 1.7461 64.0659 111.8661

Cassandra 122.5507 37.7669 4628.36

Fig 8-6: Cross-database comparison of Search query

 80

As indicated by results given in Table 8-6 and Figure 8-6, Mongodb performs the best

and consumes the least amount of energy. It takes advantage of its full indexing

technique to attain high energy efficiency. We observe speedup of 64 times and greenup

of 111 times when compared to Cassandra.

 81

9. CONCLUSION

In this thesis, we conducted a comprehensive study on optimizing databases for higher

performance and lower energy consumption via software approaches. We first developed

a tool that can obtain accurate real-time power consumption information of various

queries running on both relational databases and NoSQL databases. We then studied a

series of optimization techniques (for MySQL, MongoDB, and Cassandra respectively)

that can reduce energy consumption without compromising performance. Last but not the

least, we compare the performance and energy efficiency of all three databases and

evaluate their advantages and disadvantages at different scenarios.

A number of important conclusions can be drawn from this research project.

First, MongoDB is a very efficient NoSQL database. It exceeds MySQL and Cassandra

for almost all YCSB workloads and most of the Twitter data queries in terms of both

performance and energy efficiency. However, there are scenarios where MySQL proved

to be more efficient than NoSQL databases due to its simplicity and relational design.

Meanwhile, Cassandra has excellent single-row read performance as long as eventual

consistency semantics are sufficient for the use-case but its performance degrades as

reads spans to multiple rows. It should be noted that the YCSB benchmark as well as the

Twitter data queries do not cover all possible workloads. There is no single winner in all

tasks and scenarios. Depending on the use cases and deployment conditions, it is almost

 82

always possible for one database to outperform another and yet lag its competitor when

the rules of engagement change.

Second, performance optimization is neither equivalent to nor conflicting with energy

efficiency optimization. Using the Greenup, Powerup and Speedup metrics, we have

found numerous examples where performance and energy efficiency are improved

simultaneously (i.e. a win-win situation) and many of these cases showed that the

performance improvement is not proportional to energy efficiency improvement (i.e. they

are not equivalent). It appears that optimization techniques that can improve the data

access rate at caches are more likely to improve energy efficiency more than performance

because the power cost to access data is reduced as well.

Third, DVFS has a large impact on the energy efficiency of databases. In most cases,

DVFS helps to improve energy efficiency without compromising performance. We also

observed that high CPU voltage and frequency can sometime hurt both performance and

energy efficiency. It is highly recommended that DVFS should be enabled whenever

possible, which is probably the easiest way for database administrators to save energy

without degrading performance.

 83

10. FUTURE WORK

In the future, we will expand our experiments to more databases with bigger and more

complex data sets. With wider range of experiments, we will find more optimization

techniques leading to energy efficient databases with high performance. In this study, we

performed our experiments on maximum of two nodes. In the future, we would like to

extend our experiments to a cluster of nodes to analyze performance and energy

efficiency tradeoffs.

 84

REFERENCES

[1] "Google Search Statistics." Internet Live Stats. N.p., 13 July 2016. Web. 13 July

2016.

[2] "Stream Analytics Twitter Sentiment Analysis Trends." Jeff Stokes., 29 September

2016.

[3] Oracle8 Parallel Server Concepts & Administration Documentation,Release 8.0

[4] BF. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. "Benchmarking

Cloud Serving System with YCSB." Proceedings of the 1st ACM symposium on Cloud

computing - SoCC '10, 2010, pp.143-154.

[5] https://en.wikipedia.org/wiki/Dynamic_frequency_scaling

[6] Etienne Le Sueur and Gernot Heiser, “Dynamic Voltage and Frequency Scaling: The

Laws of Diminishing Returns”.

[7] Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer, Michael J.

Carey, Surajit Chaudhuri, AnHai Doan, Daniela Florescu, Michael J. Franklin, Hector

Garcia Molina, Johannes Gehrke, Le G, Laura M. Haas, Alon Y. Halevy, Joseph M.

Hellerstein, Yannis E. Ioannidis, Hank F. Korth, Donald Kossmann, Samuel Madden,

Roger Magoulas, Raghu Ramakrishnan, Sunita Sarawagi, Michael Alexander S. Szalay,

Gerhard WeikumThe Claremont Report on Database Research, 2008

[8] "Electric Power Monthly." EIA. N.p., n.d. Web. 16 Sept. 2016

https://www.eia.gov/electricity/monthly/epm table grapher.cfm?t=epmt 5 3

[9] S. Harizopoulos, M. A. Shah, J. Meza, and P. Ranganathan. Energy efficiency: The

new holy grail of data management systems research. In CIDR, 2009.

[10] D. Tsirogiannis, S. Harizopoulos and M. Shah. "Analyzing the energy efficiency of a

database server." Proceedings of the 2010 international conference on Management of

data - SIGMOD '10, 2010, pp.231-232.

[11] Willis Lang, Stavros Harizopoulos and Jignesh M. Patel, “Towards Energy-Efficient

Database Cluster Design”, University of Wisconsin,2012.

https://en.wikipedia.org/wiki/Dynamic_frequency_scaling

 85

[12] Z. Xu, Y. Tu, and X. Wang. "Power-Aware Throughput Control for Database

Management System." 10th International Conference on Autonomic Computing (ICAC

`13), 2013, pp. 315-324.

[13] Balaji Subramaniam and Wu-chun Feng."On the Energy Proportionality of

Distributed NoSQL Data Stores". Department. of Computer Science, Virginia Tech.

[14] T. Harder, V. Hudlet, and D. Schall. "Enhancing Energy Efficiency of Database

Applications Using SSDs." Proceedings of the Third C* Conference on Computer

Science and Software Engineering C3S2E '10, 2010, pp. 1-6.

[15] G. Graefe. "Database Servers Tailored to Improve Energy Efficiency." Proceedings

of the 2008 EDBT workshop on Software engineering for tailor-made data management

SETMDM `08, 2008, pp. 24-28.

[16] R. Gon_calves, J. Saraiva, and O. Belo. "Defining Energy Consumption Plans for

Data Querying Processes." IEEE Fourth International Conference on Big Data and Cloud

Computing (BdCloud), 2014, pp. 641-647.

[17] Y. Tu, X. Wang, B. Zeng, and Z. Xu. "A System for Energy-Efficient Data

Management." ACM SIGMOD Record, vol. 43(1), pp. 21-26, Mar. 2014.

[18] S. Harizopoulos, MA. Shah, J. Meza, and P. Ranganathan. "Energy Efficiency: The

New Holy Grail of Data Management System Research." 4th Biennial Conference on

Innovative Data Systems Research (CIDR), 2009.

[19] O. Belo, R. Gon_calves, and J. Saraiva. "Establishing Energy Consumption Plans for

Green Star-Queries in Data Warehousing Systems." 2015 IEEE International Conference

on Data Science and Data Intensive Systems, 2015, pp. 226-231.

[20] R. Goncalves, J. Saraiva, and O. Belo. "Defining Energy Consumption Plans for

Data Querying Processes." IEEE Fourth International Conference on Big Data and Cloud

Computing (BdCloud), 2014, pp. 641-647.

[21] Z.Xu. "Building a Power-Aware Database Management System." Proceedings of the

Fourth SIGMOD PhD Workshop on Innovative Database Research (IDAR 2010), 2010,

pp. 1-6.

 86

[22] Z. Xu, Y. Tu, and X. Wang. "PET: Reducing Database Energy Cost via Query

Optimization. "VLDB Journal, vol. 5(12), pp. 1954-1957, Aug. 2012.

[23] http://www.slideshare.net/joshmckenzie/Cassandra-21-read-write-path

[24] Kandhan, and JM. Patel. "Rethinking Query Processing for Energy Efficiency:

Slowing Down to Win the Race." IEEE Computer Society Technical Committee

on Data Engineering, 2011.

[25] S. Abdulsalam, Z. Zong and Q. Gu, "Using the Greenup, Powerup, and Speedup

metrics to evaluate software energy efficiency." Green Computing Conference and

Sustainable Computing Conference (IGSC), 2015 Sixth International, 2015.

[26] "Indexes." MongoDB Documentation. N.p., n.d. Web. 11 Aug. 2016.

https://docs.MongoDB.com/manual/indexes/

[27] "Bulk Write Operations." MongoDB Documentation. N.p., n.d. Web. 11 Aug. 2016.

https://docs.MongoDB.com/manual/core/bulk-write-operations/

[28] "Bulk()." MongoDB Documentation. N.p., n.d. Web. 11 Aug. 2016.

https://docs.MongoDB.com/manual/reference/method/Bulk/

[29] R. Niemann, N. Koratis, R. Zicari, and R. Gobel. "Does query performance lead to

energy efficiency? A comparative analysis of energy efficiency of database operations

under different workload scenarios." Internet: http://arxiv.org/abs/1303.4869, 2013

[Jul. 05, 2016]

[30] Z. Xu, Y. Tu, and X. Wang.” Exploring Power-Performance Tradeoffs in Database

Systems." ICDE Conference, 2010.

[31] Z. Xu, Y. Tu, and X. Wang. “Online Energy Estimation of Relational Operations in

Database Systems." IEEE Transactions on Computers, vol. 64(11), pp.3223-3236, Nov.

2015.

[32] D. Florescu and D. Kossmann. “Rethinking Cost and Performance of Database

Systems."ACM Sigmod Record, vol. 38(1), pp. 43-48, Mar. 2009.

http://www.slideshare.net/joshmckenzie/cassandra-21-read-write-path
https://docs.mongodb.com/manual/indexes/
https://docs.mongodb.com/manual/core/bulk-write-operations/
https://docs.mongodb.com/manual/reference/method/Bulk/

 87

[33] M. Korkmaz, A. Karyakin, M. Karsten. “Towards Dynamic Green-Sizing for

Database Servers." Int'l Workshop on Accelerating Data Management Systems Using

Modern Processor and Storage Architectures (ADMS), 2015.

[34] https://www.thoughtworks.com/insights/blog/nosql-databases-overview

[35] Hung-Ching Chang, Bo Li, Matthew Grove and Kirk W.Cameron, “How Processor

Speedups Can Slow Down I/O Performance”

[36] Ashish Mishra, Nilay Khare. “Analysis of DVFS Techniques for Improving the GPU

Energy Efficiency”. Open Journal of Energy Efficiency, 2015, 4, 77-86

[37] http://pycassa.github.io/pycassa/

[38] https://api.mongodb.com/python/current/

https://www.thoughtworks.com/insights/blog/nosql-databases-overview
http://pycassa.github.io/pycassa/

