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ALMOST PERIODIC SOLUTIONS FOR HIGHER-ORDER
HOPFIELD NEURAL NETWORKS WITHOUT BOUNDED

ACTIVATION FUNCTIONS

FUXING ZHANG, YA LI

Abstract. In this paper, we consider higher-order Hopfield neural networks

(HHNNs) with time-varying delays. Based on the fixed point theorem, Lya-

punov functional method, differential inequality techniques, and without as-
suming the boundedness on the activation functions, we establish sufficient

conditions for the existence and local exponential stability of the almost peri-

odic solutions. The results of this paper are new and they complement previ-
ously known results.

1. Introduction

Consider the following higher-order Hopfield neural networks (HHNNs), with
time-varying delays,

x′i(t) = −cixi(t) +
n∑

j=1

aij(t)gj(xj(t− τij(t)))

+
n∑

j=1

n∑
l=1

bijl(t)gj(xj(t− σijl(t)))gl(xl(t− νijl(t))) + Ii(t),

(1.1)

for i = 1, 2, . . . , n, where n corresponds to the number of units in a neural network,
xi(t) corresponds to the state vector of the ith unit at the time t, ci > 0 represents
the rate with which the ith unit will reset its potential to the resting state in
isolation when disconnected from the network and external inputs, aij(t) and bijl(t)
are the first- and second-order connection weights of the neural network, τij(t) ≥ 0,
σijl(t) ≥ 0 and υijl(t) ≥ 0 correspond to the transmission delays, Ii(t) denote the
external inputs at time t, and gj is the activation function of signal transmission.

Due to the fact that high-order neural networks have stronger approximation
property, faster convergence rate, greater storage capacity, and higher fault toler-
ance than lower-order neural networks, high-order neural networks have been the
object of intensive analysis by numerous authors in recent years. In particular,
there have been extensive results on the problem of the existence and stability of
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equilibrium points and periodic solutions of HHNNs (1.1) in the literature. We
refer readers to [1, 2, 7, 8] and the references cited therein. The assumption

(T0) for each j ∈ {1, 2, . . . , n}, gj : R → R is bounded, i.e., there exists a
constant Lj such that

|gj(u)| ≤ Lj , for all u ∈ R (1.2)

has been considered as a fundamental condition for the existence and stability
of equilibrium points and periodic solutions solutions of HHNNs (1.1). To the
best of our knowledge, few authors have considered the problems of periodic and
almost periodic solutions of HHNNs (1.1) without the assumptions (T0). Thus, it
is worth while to investigate the existence and stability of almost periodic solutions
of HHNNs (1.1) in this case.

In this paper we shall study the existence and stability of almost periodic solu-
tions for (1.1). By applying the fixed point theorem, Lyapunov functional method
and differential inequality techniques, we derive some new sufficient conditions en-
suring the existence and local exponential stability of the almost periodic solution
of (1.1). These results are new and they complement previously known results.
In particular, an example is also provided to illustrate the effectiveness of the new
results.

Throughout this paper, for i, j, l = 1, 2, . . . , n, it will be assumed that Ii, aij ,
bijl, τij , σijl, νijl : R → R are almost periodic functions, and there exist constants
τ , aij , bijl and Ii such that

τ = max
{

max
1≤i,j≤n

sup
t∈R

τij(t), max
1≤i,j,l≤n

sup
t∈R

σijl(t), max
1≤i,j,l≤n

sup
t∈R

νijl(t)
}
,

sup
t∈R

|bijl(t)| = bijl, sup
t∈R

|aij(t)| = aij , sup
t∈R

|Ii(t)| = Ii.
(1.3)

We also assume that the following conditions hold:
(H1) For each j ∈ {1, 2, . . . , n}, there exists a nonnegative constant Lg

j such that
gj(0) = 0, |gj(u)− gj(v)| ≤ Lg

j |u− v|, for all u, v ∈ R.
(H2) Assume that there exist nonnegative constants L, q and δ such that

L = max
1≤i≤n

{Ii
ci
}, δ = max

1≤i≤n
{c−1

i [
n∑

j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l ]} < 1,

L

1− δ
≤ 1, q = max

1≤i≤n

{
c−1
i

( n∑
j=1

aijL
g
j +

2L
1− δ

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l

)}
< 1.

For convenience, we introduce the following notation. We use x = (x1, x2, . . . , xn)T

in Rn to denote a column vector, in which the symbol (T ) denotes the trans-
pose of a vector. We let |x| denote the absolute-value vector given by |x| =
(|x1|, |x2|, . . . , |xn|)T , and define ‖x‖ = max1≤i≤n |xi|. A vector x ≥ 0 means
that all entries of x are greater than or equal to zero. x > 0 is defined similarly.
For vectors x and y, x ≥ y (resp. x > y) means that x− y ≥ 0 (resp. x− y > 0).

For the rest of this paper, we set

{xj(t)} = (x1(t), x2(t), . . . , xn(t))T ,

B = {ϕ|ϕ = {ϕj(t)} = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T },
where ϕ is an almost periodic function on R. For all ϕ ∈ B, we define the induced
module ‖ϕ‖B by ‖ϕ‖B = supt∈R ‖ϕ(t)‖. Therefore B is a Banach space.
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The initial conditions associated with system (1.1) are of the form

xi(s) = ϕi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n, (1.4)

where ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T ∈ C([−τ, 0];Rn).

Definition. [3, 4] Let u(t) : R → Rn be continuous in t. u(t) is said to be almost
periodic on R if, for any ε > 0, the set T (u, ε) = {δ : |u(t + δ) − u(t)| < ε, for
all t ∈ R} is relatively dense, i.e., for ∀ε > 0, it is possible to find a real number
l = l(ε) > 0, for any interval with length l(ε), there exists a number δ = δ(ε) in
this interval such that |u(t+ δ)− u(t)| < ε, for for all t ∈ R.

The remaining part of this paper is organized as follows. In Section 2, we shall
derive new sufficient conditions for the existence of almost periodic solutions of
(1.1). In Section 3, we present some new sufficient conditions for the local expo-
nential stability of the almost periodic solution of (1.1). In Section 4, we shall
give some examples and remarks to illustrate our results obtained in the previous
sections.

2. Existence of Almost Periodic Solutions

Theorem 2.1. Let conditions (H1) and (H2) hold. Then, there exists a unique
almost periodic solution to (1.1) in the region B∗ = {ϕ|ϕ ∈ B, ‖ϕ− ϕ0‖B ≤ δL

1−δ},
where

ϕ0(t) =
{ ∫ t

−∞
exp(−cj(t− s))Ij(s)ds

}
=

( ∫ t

−∞
exp(−c1(t− s))I1(s)ds,

∫ t

−∞
exp(−c2(t− s))I2(s)ds,

. . . ,

∫ t

−∞
exp(−cn(t− s))In(s)ds

)T

.

Proof. For each ϕ ∈ B, we consider the almost periodic solution xϕ(t) to the
nonlinear almost periodic differential equations

x′i(t) = −cixi(t) +
n∑

j=1

aij(t)gj(ϕj(t− τij(t)))

+
n∑

j=1

n∑
l=1

bijl(t)gj(ϕj(t− σijl(t)))gl(ϕl(t− νijl(t))) + Ii(t),

(2.1)

for i = 1, 2, . . . , n. Then τij(t), bij(t) and Ii(t) are almost periodic functions.
According to [3, pp. 80-112] and [4, pp. 90-100], we know that the auxiliary system
(2.1) has exactly one almost periodic solution

xϕ(t) = (xϕ
1 (t), xϕ

2 (t), . . . , xϕ
n(t))T

=
( ∫ t

−∞
e−c1(t−s)

[ n∑
j=1

a1j(s)gj

(
ϕj(s− τ1j(s))

)
+

n∑
j=1

n∑
l=1

b1jl(s)gj(ϕj(s− σ1jl(s)))gl(ϕl(s− ν1jl(s))) + I1(s)
]
ds,
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. . . ,

∫ t

−∞
e−cn(t−s)

[ n∑
j=1

anj(s)gj(ϕj(s− τnj(s)))

+
n∑

j=1

n∑
l=1

bnjl(s)gj(ϕj(s− σnjl(s)))gl(ϕl(s− νnjl(s))) + In(s)
]
ds

)T

.

Now, we define a mapping T : B → B by setting

T (ϕ)(t) = xϕ(t), ∀ϕ ∈ B.

Since B∗ = {ϕ ∈ B, ‖ϕ− ϕ0‖B ≤ δL
1−δ}, it is easy to see that B∗ is a closed convex

subset of B. According to the definition of the norm of Banach space B, we get

‖ϕ0‖B = sup
t∈R

max
1≤i≤n

{ ∫ t

−∞
Ii(s) exp(−ci(t− s))ds

}
≤ sup

t∈R
max

1≤i≤n
{Ii
ci
}

= max
1≤i≤n

{Ii
ci
} = L.

Therefore, for for all ϕ ∈ B∗, we have

‖ϕ‖B ≤ ‖ϕ− ϕ0‖B + ‖ϕ0‖B ≤ δL

1− δ
+ L =

L

1− δ
≤ 1. (2.2)

In view of (H1), we have

|gj(u)| ≤ Lg
j |u| for all u ∈ R, j = 1, 2, . . . , n. (2.3)

Now, we prove that the mapping T is a self-mapping from B∗ to B∗. In fact, for
all ϕ ∈ B∗, from (2.2) and (2.3), we obtain

‖Tϕ− ϕ0‖B

= sup
t∈R

max
1≤i≤n

{
|
∫ t

−∞
e−ci(t−s)

[ n∑
j=1

aij(s)gj(ϕj(s− τij(s)))

+
n∑

j=1

n∑
l=1

bijl(s)gj(ϕj(s− σijl(s)))gl(ϕl(s− νijl(s)))
]
ds|

}
≤ sup

t∈R
max

1≤i≤n
{
∫ t

−∞
e−ci(t−s)

[ n∑
j=1

aijL
g
j‖ϕ‖B +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l ‖ϕ‖

2
B

]
ds}

≤ sup
t∈R

max
1≤i≤n

{
∫ t

−∞
e−ci(t−s)

[ n∑
j=1

aijL
g
j

L

1− δ
+

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l (

L

1− δ
)2

]
ds}

≤ sup
t∈R

max
1≤i≤n

{
∫ t

−∞
e−ci(t−s)

[ n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l

]
ds

L

1− δ
}

≤ max
1≤i≤n

{c−1
i

[ n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l

]
} L

1− δ

=
δL

1− δ
,
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where δ = max1≤i≤n{c−1
i [

∑n
j=1 aijL

g
j +

∑n
j=1

∑n
l=1 bijlL

g
jL

g
l ]}. This implies that

T (ϕ)(t) ∈ B∗. Next, we prove that the mapping T is a contraction mapping on B∗.
In view of (2.2) and (H1), for all φ, ψ ∈ B∗, we have

|T (φ(t))− T (ψ(t))|

=
(
|(T (φ(t))− T (ψ(t)))1|, . . . , |(T (φ(t))− T (ψ(t)))n|

)T

=
(
|
∫ t

−∞
e−c1(t−s)

[ n∑
j=1

a1j(s)(gj(φj(s− τ1j(s)))− gj(ψj(s− τ1j(s))))

+
n∑

j=1

n∑
l=1

b1jl(s)
(
gj(φj(s− σ1jl(s)))gl(φl(s− ν1jl(s)))

− gj(ψj(s− σ1jl(s)))gl(ψl(s− ν1jl(s)))
)]
ds|, . . . ,

|
∫ t

−∞
e−cn(t−s)

[ n∑
j=1

anj(s)(gj(φj(s− τnj(s)))− gj(ψj(s− τnj(s))))

+
n∑

j=1

n∑
l=1

bnjl(s)
(
gj(φj(s− σnjl(s)))gl(φl(s− νnjl(s)))

− gj(ψj(s− σnjl(s)))gl(ψl(s− νnjl(s)))
)]
ds|

)T

≤
( ∫ t

−∞
e−c1(t−s)

[ n∑
j=1

a1jL
g
j sup

t∈R
|φj(t)− ψj(t)|

+
n∑

j=1

n∑
l=1

b1jl(|gj(φj(s− σ1jl(s)))gl(φl(s− ν1jl(s)))

− gj(ψj(s− σ1jl(s)))gl(φl(s− ν1jl(s)))|
+ |gj(ψj(s− σ1jl(s)))gl(φl(s− ν1jl(s)))

− gj(ψj(s− σ1jl(s)))gl(ψl(s− ν1jl(s)))|)
]
ds,

. . . ,

∫ t

−∞
e−cn(t−s)

[ n∑
j=1

anjL
g
j sup

t∈R
|φj(t)− ψj(t)|

+
n∑

j=1

n∑
l=1

bnjl(|gj(φj(s− σnjl(s)))gl(φl(s− νnjl(s)))

− gj(ψj(s− σnjl(s)))gl(φl(s− νnjl(s)))|
+ |gj(ψj(s− σnjl(s)))gl(φl(s− νnjl(s)))

− gj(ψj(s− σnjl(s)))gl(ψl(s− νnjl(s)))|)
]
ds

)T

≤
( ∫ t

−∞
e−c1(t−s)[

n∑
j=1

a1jL
g
j sup

t∈R
|φj(t)− ψj(t)|

+
n∑

j=1

n∑
l=1

b1jlL
g
jL

g
l (sup

t∈R
|φl(t)|+ sup

t∈R
|ψj(t)|)‖φ− ψ‖B ]ds, . . . ,
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−∞
e−cn(t−s)[

n∑
j=1

anjL
g
j sup

t∈R
|φj(t)− ψj(t)|

+
n∑

j=1

n∑
l=1

bnjlL
g
jL

g
l (sup

t∈R
|φl(t)|+ sup

t∈R
|ψj(t)|)‖φ− ψ‖B ]ds

)T

≤
(
c−1
1 (

n∑
j=1

a1jL
g
j +

2L
1− δ

n∑
j=1

n∑
l=1

b1jlL
g
jL

g
l )‖φ− ψ‖B ,

. . . , c−1
n (

n∑
j=1

anjL
g
j +

2L
1− δ

n∑
j=1

n∑
l=1

bnjlL
g
jL

g
l )‖φ− ψ‖B

)T

,

which implies

‖T (φ)− T (ψ)‖B ≤ max
1≤i≤n

{c−1
i (

n∑
j=1

aijL
g
j +

2L
1− δ

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l )}‖φ− ψ‖B

= q‖φ− ψ‖B .

Note that q = max1≤i≤n{c−1
i (

∑n
j=1 aijL

g
j + 2L

1−δ

∑n
j=1

∑n
l=1 bijlL

g
jL

g
l )} < 1; it is

clear that the mapping T is a contraction. Therefore the mapping T possesses a
unique fixed point Z∗ ∈ B∗, TZ∗ = Z∗. By (2.1), Z∗ satisfies (1.1). So Z∗ is an
almost periodic solution of (1.1) in B∗. The proof is complete. �

3. Stability of the almost periodic solution

In this section, we establish some results for the stability of the almost periodic
solution of (1.1).

Theorem 3.1. Let

max
1≤i≤n

{c−1
i [

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l (1 + 2

L

1− δ
)]} < 1.

Suppose that all the conditions of Theorem 2.1 are satisfied. Then (1.1) has exactly
one almost periodic solution Z∗(t) = (x∗1(t), x

∗
2(t), . . . , x

∗
n(t))T ∈ B∗. Moreover,

Z∗(t) is locally exponentially stable, the domain of the attraction of Z∗(t) is the set

G1(Z∗) = {ϕ|ϕ = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T ∈ C([−τ, 0]; Rn), ‖ϕ− ϕ∗‖1 < 1},

where ϕ∗ = {ϕ∗j (t)}, ϕ∗j (t) = x∗j (t), j = 1, 2, . . . , n, t ∈ [−τ, 0], and ‖ϕ − ϕ∗‖1 =
sup−τ≤s≤0 max1≤j≤n |ϕj(s) − ϕ∗j (s)|. Namely, there exist constants λ > 0 and
M > 1 such that for every solution Z(t) = {xj(t)} to system (1.1) with initial
value ϕ = {ϕj(t)} ∈ G1(Z∗), we have

|xi(t)− x∗i (t)| ≤M‖ϕ− ϕ∗‖1e−λt, ∀t > 0, i = 1, 2, . . . , n.

Proof. From Theorem 2.1, system (1.1) has exactly one almost periodic solution
Z∗(t) = {x∗j (t)} ∈ B∗. Let Z(t) = {xj(t)} be an arbitrary solution of system (1.1)
with initial value ϕ = {ϕj(t)} ∈ G1(Z∗), let y(t) = {yj(t)} = {xj(t) − x∗j (t)} =
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Z(t)− Z∗(t). Then

y′i(t) = −ciyi(t) +
n∑

j=1

aij(t)(gj(xj(t− τij(t)))− gj(x∗j (t− τij(t))))

+
n∑

j=1

n∑
l=1

bijl(t)(gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

− gj(x∗j (t− σijl(t)))gl(x∗l (t− νijl(t)))), i = 1, 2, . . . , n.

(3.1)

Since max1≤i≤n{c−1
i [

∑n
j=1 aijL

g
j +

∑n
j=1

∑n
l=1 bijlL

g
jL

g
l (1 + 2 L

1−δ )]} < 1, we can
easily get

−ci +
n∑

j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jL

g
l (1 + 2

L

1− δ
) < 0, i = 1, 2, . . . , n, (3.2)

which implies that we can choose a positive constant λ such that

(λ− ci) +
n∑

j=1

aijL
g
je

λτ +
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (e

2λτ + 2eλτ L

1− δ
) < 0, (3.3)

for i = 1, 2, . . . , n. We consider the Lyapunov functional

Vi(t) = |yi(t)|eλt, i = 1, 2, . . . , n. (3.4)

Calculating the upper right derivative of Vi(t) along the solution y(t) = {yj(t)} of
system (3.1) with the initial value ϕ̄ = ϕ−ϕ∗, we have from (2.2), (2.3), (3.1) and
(H1) that

D+(Vi(t))

≤ −ci|yi(t)|eλt +
[ n∑

j=1

|aij(t)||gj(xj(t− τij(t)))− gj(x∗j (t− τij(t)))|

+
n∑

j=1

n∑
l=1

|bijl(t)||gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

− gj(x∗j (t− σijl(t)))gl(x∗l (t− νijl(t)))|
]
eλt + λ|yi(t)|eλt

≤ (λ− ci)|yi(t)|eλt +
n∑

j=1

|aij(t)|Lg
j |yj(t− τij(t))|

+
[ n∑

j=1

n∑
l=1

|bijl(t)|(|gj(xj(t− σijl(t)))gl(xl(t− νijl(t)))

− gj(x∗j (t− σijl(t)))gl(xl(t− νijl(t)))|+ |gj(x∗j (t− σijl(t)))gl(xl(t− νijl(t)))

− gj(x∗j (t− σijl(t)))gl(x∗l (t− νijl(t)))|)
]
eλt

≤ (λ− ci)|yi(t)|eλt + [
n∑

j=1

aijL
g
j |yj(t− τij(t))|

+
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (|yj(t− σijl(t))||yl(t− νijl(t))

+ x∗l (t− νijl(t))|+ |x∗j (t− σijl(t))||yl(t− νijl(t))|)]eλt
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≤ (λ− ci)|yi(t)|eλt +
[ n∑

j=1

aijL
g
j |yj(t− τij(t))|

+
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (|yj(t− σijl(t))||yl(t− νijl(t))|

+ |yj(t− σijl(t))|
L

1− δ
+

L

1− δ
|yl(t− νijl(t))|)

]
eλt, (3.5)

where i = 1, 2, . . . , n. Set

‖ϕ− ϕ∗‖1 = sup
−τ≤s≤0

max
1≤j≤n

|ϕj(s)− ϕ∗j (s)| > 0.

Since ‖ϕ− ϕ∗‖1 < 1, we can choose a positive constant M > 1 such that

M‖ϕ− ϕ∗‖1 < 1, (M‖ϕ− ϕ∗‖1)2 < M‖ϕ− ϕ∗‖1. (3.6)

It follows from (3.4) that

Vi(t) = |yi(t)|eλt < M‖ϕ− ϕ∗‖1, for all t ∈ [−τ, 0], i = 1, 2, . . . , n.

Now we claim that

Vi(t) = |yi(t)|eλt < M‖ϕ− ϕ∗‖1, for all t > 0, i = 1, 2, . . . , n. (3.7)

Contrarily, there must exist an i ∈ {1, 2, . . . , n} and ti > 0 such that

Vi(ti) = M‖ϕ− ϕ∗‖1 and Vj(t) < M‖ϕ− ϕ∗‖1, ∀t ∈ [−τ, ti),

for j = 1, 2, . . . , n. It follows that

Vi(ti)−M‖ϕ− ϕ∗‖1 = 0 and Vj(t)−M‖ϕ− ϕ∗‖1 < 0, ∀t ∈ [−τ, ti),

for j = 1, 2, . . . , n. This together with (3.5), yields

0 ≤ D+(Vi(ti)−M‖ϕ− ϕ∗‖1)
= D+(Vi(ti))

≤ (λ− ci)|yi(ti)|eλti +
[ n∑

j=1

aijL
g
j |yj(ti − τij(ti))|

+
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (|yj(ti − σijl(ti))||yl(ti − νijl(ti))|

+ |yj(ti − σijl(ti))|
L

1− δ
+

L

1− δ
|yl(ti − νijl(ti))|)

]
eλti

= (λ− ci)|yi(ti)|eλti +
n∑

j=1

aijL
g
j |yj(ti − τij(ti))|eλ(ti−τij(ti))eλτij(ti)

+
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l

(
|yj(ti − σijl(ti))|eλ(ti−σijl(ti))|yl(ti − νijl(ti))|

× eλ(ti−νijl(ti))eλσijl(ti)eλνijl(ti)e−λti

+ |yj(ti − σijl(ti))|eλ(ti−σijl(ti))eλσijl(ti)
L

1− δ

+
L

1− δ
|yl(ti − νijl(ti))|eλ(ti−νijl(ti))eλνijl(ti)

)
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≤ (λ− ci)M‖ϕ− ϕ∗‖1 +
n∑

j=1

aijL
g
je

λτM‖ϕ− ϕ∗‖1

+
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l ((M‖ϕ− ϕ∗‖1)2e2λτe−λti

+M‖ϕ− ϕ∗‖1eλτ L

1− δ
+

L

1− δ
M‖ϕ− ϕ∗‖1eλτ )

≤
[
(λ− ci) +

n∑
j=1

aijL
g
je

λτ +
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (e

2λτ + 2eλτ L

1− δ
)
]
M‖ϕ− ϕ∗‖1.

Thus, we have

0 ≤ (λ− ci) +
n∑

j=1

aijL
g
je

λτ +
n∑

j=1

n∑
l=1

bijlL
g
jL

g
l (e

2λτ + 2eλτ L

1− δ
)

which contradicts (3.3). Hence, (3.7) holds. It follows that

|yi(t)| < M‖ϕ− ϕ∗‖1e−λt, t > 0, i = 1, 2, . . . , n.

This completes the proof. �

4. An Example

In this section, we give an example to demonstrate the results obtained in pre-
vious sections.

Consider the following HHNNs with delays:

x′1(t) = −x1(t) +
1
16

(sin t)g1(x1(t− sin2 t)) +
1
16

(cos 3t)g2(x2(t− 7 sin2 t))

+
1
8
(cos t)g1(x1(t− 5 sin2 t))g2(x2(t− 2 sin2 t)) +

3
4

sin(
√

2t),

x′2(t) = −x2(t) +
1
16

(sin 2t)g1(x1(t− cos2 t)) +
1
16

(cos 8t)g2(x2(t− 5 sin2 t))

+
1
8
(cos 4t)g1(x1(t− sin2 t))g2(x2(t− 4 sin2 t)) +

3
4

cos(
√

2t),

(4.1)
where g1(x) = g2(x) = |x|. Observe that c1 = c2 = Lg

1 = Lg
2 = 1, aij = 1

16 ,
i, j = 1, 2, b112 = b212 = 1

8 , bijl = 0, i, j, l = 1, 2, ijl 6= 112, ijl 6= 212. Then

L =
3
4
, δ = max

1≤i≤2
{c−1

i [
2∑

j=1

aijL
g
j +

2∑
j=1

2∑
l=1

bijlL
g
jL

g
l ]} =

1
4
< 1,

q = max
1≤i≤2

{c−1
i (

2∑
j=1

aijL
g
j +

2L
1− δ

2∑
j=1

2∑
l=1

bijlL
g
jL

g
l )} =

3
8
< 1,

max
1≤i≤2

{c−1
i [

2∑
j=1

aijL
g
j +

2∑
j=1

2∑
l=1

bijlL
g
jL

g
l (1 + 2

L

1− δ
)]} =

1
2
< 1.

Therefore, By Theorem 3.1, system (4.1) has a unique almost periodic solution
Z∗(t) in the region ‖ϕ − ϕ0‖B ≤ 0.25. Moreover, Z∗(t) is locally exponentially
stable, the domain of the attraction of Z∗(t) is the set G1(Z∗).
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We remark that (4.1) is a very simple form of HHNNs. Since g1(x) = g2(x) = |x|,
one can observe that the condition (T0) is not satisfied. Therefore, all the results in
[1, 2, 5, 6, 7, 8, 9] and the references cited therein can not be applicable to system
(4.1). This implies that the results of this paper are essentially new.
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