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ABSTRACT

STOKES’ THEOREM: CALCULUS OF DIFFERENTIAL FORMS

by

Christopher Elliot Johnson, B.S.
Texas State University—San Marcos

December 2004
SUPERVISING PROFESSOR TERENCE MCCABE

This thesis connects a number of fields of mathematics in relation to Euclidean
n-space. It defines the meanings of differentiation for functions between these spaces and
gives an exposition of the inverse function theorem. One also finds the definition for
integration of real valued function defined on a Euclidean n-space. These definitions of
differentiation and integration are precursors to the topics of differential forms and
integration of forms over chains that stand out as the main ideas developed herein. A
great deal of effort is spent on developing the algebraic structure of differential forms
including the non-trivial associative property of the wedge product. The final chapter ties

the previous chapters together nicely in a result known as Stokes’” Theorem.
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CHAPTER 1

INTRODUCTION

The general Stokes’ Theorem is named for Sir George Gabriel Stokes (1819 —
1903). While he is not the originator of the premise and conclusion presented in the
theorem that bears his name, 1t is not a grossly inaccurate designation. After sitting for the
Mathematical Tripos, Cambridge mathematics graduates were given an opportunity to
further distinguish themselves by competing for the Smith’s Prize. From 1849 to 1882, it
was Stokes’ duty to set one paper for this competitive exam, and on it he asked for a proof
of the theorem that the examinees began to refer to as Stokes” Theorem. Despite this
deviation from the standard nomenclature of mathematical theorems, Stokes is indeed tied
to this theorem in a more remarkable way.

G. G. Stokes published hundreds of papers on mathematics and physics, won many
extraordinary awards, and worked in the most prestigious academic positions of his day.
Beyond his academic accomplishments he is said to have been well-regarded by his
colleagues and students. Even while in the position of Lucasian Professor of Mathematics
at Cambridge he made a declaration to offer help to anyone at Cambridge who found
themselves ;Lroubled by probl/ems in mathematics. These were not empty words. He led
many to be successful through encouragement and suggestion of problems. It is through
his capacity as a dutiful professor that his eternal link to Stokes” Theorem was establish.
Two of his most famous pupils were James Clerk Maxwell and William Thomson also
called Lord Kelvin.

In fact, 1t was William Thomson who seems to have been the first to state the

theorem 1n the post-script of a letter he wrote to Stokes. After Cambridge, Thomson went



to Panis where his colleagues included Cauchy, Liouville, and Sturm, among others.
Liouville had perhaps the most influence on Thomson for suggesting that he work to unite
the ideas of Faraday, Coulomb, and Poisson. While Thomson followed the suggestion of
Liouville, it is Maxwell who succeeded in creating a unified theory of electromagnetism.
It is the physical phenomena summarized by Maxwell using the theorem proposed by
Thomson and bearing the name of Stokes that has tied these three men together in the
most interesting and profound way.

The theorem has evolved much since the time of Stokes due mainly to the advent of
differential forms. Forms have been hailed as a powerful tool in making fundamentals of
electromagnetic field theory intuitive. Just as vectors are important for representing
displacement and velocity, differential forms are useful for representing field intensity and
flux density. Furthermore, differential forms allow Stokes’ Theorem to not only nicely
relate the grad, curl, and div, but 1n fact replace the Divergence Theorem altogether.

This paper uses the construct of differential forms to express and prove a version of
Stokes’ Theorem that involves the all essential difficulties. It builds from scratch much of
the mathematical ideas necessary to define and prove the theorem. We will follow the
approach of Michael Spivak. Like most good books on mathematics, Spivak’s Calculus
on Manifolds carefully lays out a sequence of ideas while omitting much of the detail in
showing their validity. This style brings enjoyment to a wide audience by allowing
advanced readers to progress swiftly through the ideas without becoming bored with the
intricate details and by giving the novicé readers a chance to thoroughly understand the
ideas through working out the details for themselves. This thesis works out many of the

details.

Preliminary Notation
We start this section on notation with the real number system —which we will

denote with the symbol R —since it is the foundation for all that we will build in this



paper. We mention next a generalization of the real number system often referred to as
Euclidean n-space and denoted by R”. We neglect the particulars of the mathematical
structure and subtleties since they are standard, but we do want to mention a notational
convention. We use bold print for elements of R” also called vectors, and we use
superscript for the real number components of a vector. For example, whenever we write
x € R”, x represents an n-tuple of real numbers (x!, x2, ..., x*) where x* € R for each
ie{l,?2,...,n}.

We will use the usual absolute value symbols exclusively for real numbers. For
example, we write |x| for the absolute value of a real number x. For the usual Euclidean
norm of a vector x € R”, we write [|x}|. We will make these definition formal.

Definition 1.1 For a number x € R the absolute value of x, written |x|, is equal to x
whenever x = 0 and —x whenever x < 0.

Definition 1.2 For a vector x € R” the norm of x = (xl, xz, .o, X)), written ||x|], 1s

n
the real number equal to / e )2 .
1=1

We will use elementary properties of the absolute value and norm. Other more
profound properties we will expound upon in a proof. As an example and exposition of

our symbol conventions so far, we prove the following necessary theorem.

n
Theorem 1.1 Suppose x € R”. If x = (x, 2, ..., ™), then [|x|] < X |x'| and

1=

3 Il <Vl

Proof. Let = (x!, x2, ..., x") € R". We will show the first conclusion by
n 2 n 2
exhibiting lx))? as part of (Z {x’l) , Where (Z Ix’l) is a sum of non-negative terms. The
1=1 =1

principle square root of each side of this inequality will yield the desired result. We

n 2
expand (Z [« I) below.

=1
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The terms written on the descending-diagonal in the arrangement above are exactly

n n
||x||2 written as 2, (x’)2 = Y, |¥*| Ix*|. We make this explanation formal. Since the terms
=1 =1
' . . n-1 n
above the descending-diagonal can be written ), |[|x| >, |x/]|, the terms below the
=1 J=t+1
-1
descending-diagonal can be written Z [x*| >, |x||, and each is non-negative then,
1=2 J=1

1=1 =1 =1+1 =1

n 2
P = 3 | ] < z el et + z (le 5 |xf|)+2 [leZ lel] (z |x’|) .

In particular, xl? < (Z x* I) so we arrive at our first conclusion ||x|| < Z 2.
- =1

n
For the second conclusion we will exhibit n ||x[|> - (Z |x’|) = 0, which quickly"

' 2
n n
leads to the result. We can look at the expansion n Y |x'| |x*| — (Z {x! |) in the
1=1 =1

arrangement below.
Pl et = el et ]+ 2] = et 2] e+ T = e ] +
e H R I e P B e D B e N b I e e [ e R P [ Pl I

+

+
L R P F P I e [ e e e [ B N P R B P o

Each term on the descending diagonal of the above arrangement is identically zero
and each remaining difference has a pair the sum of which makes a perfect square. For
each i, je({l, 2, ..., n} with i # , we have the difference |x*| |x'| — |x/| |x'| which can be
factored as |x*| (Jx*| — |¥/]), the difference |x’| |x/| — |x*| |»/| which can be factored
—|x | (Ix | = Ix ]), and the sum of these two factored differences can be further factored as

(x = o/ 1)2. We can formally write

n-1
z[z (lxl—xfl)]—n2|xnxl—(2 lxl)

=1 \y=1+1



n 2 n n n

In particular, (El lx’l) <n El [x'] |x'], thus follows El X <vVn El bt x| =
\/; llxli, the second conclusion. B

Using the work in the proof, we can see that equality in the first conclusion holds
whenever is on an axis, that is, whenever x = (0, 0, ..., x, ..., 0) for some
ie{l, 2, ..., n}; equality in the second conclusion holds whenever x is the corner of a
generalized cube centered at 0 = (0, 0, ..., 0), that is, wherever |x'| — |x/| = O for each
i, je{l, 2, ..., n}; and equality throughout holds when eithern = 1 or x = 0.

The next bit of notation we will introduce is that of the inner product. This brings us
to the first instance of two vectors being used simultaneously. When we need to
distinguish only two or a few vectors we will often use different letter symbols, but when
the number of different letter symbols becomes unruly, we will instead use subscripts.

Definition 1.3 For x, y € R", the inner product of and y, written (x, y) is equal to

I 4,1

y.

M=

X
1

~
I

Linear Algebra & Functions

We write the usual basis for R” as {e1, e3, ..., €,}. For example,
ex=(0,1,0,0) e R* where the 1 is in the second position indicated by the 2 in e;.

Definition 1.4 A function A: R” —R™ 1s called linear if for each a, 8 € R and
eachx, yeR” wehave M(a-x + B-y) = a-Ax) + 5-A(p).

When a basis for each vector space is specified, a linear function between those
vector spaces has a matrix representation. We refrain from making a theorem here,
leaving it to the linear algebraists, however, the coming importance of a clear
understanding of linear functions warrants an exposition of the implication for the
purposes of this paper as well as an example. In the case of a linear function A : R” —R™
the ith column of the m X n matrix A = (g,;))forie (1,2, ..., m}and j€ {1, 2, ..., n}is
determined by the m coefficients of A(e,) when it is written as a linear combination of the

basis vectors. Suppose A : RZ— R3 and let x € R2. Each of A(e;) and A(e) is an element



of R3, therefore we can uniquely write each as a sum of 3 coefficients and the three

standard basis elements for R3. We write A(e1) = a1 -1 + a1 - + as] - €3,

1
x
Mex)=ap-e; +axy-e +a32-e3,x=( )le -e1 + x* -ep, and we are set to show

x2

how it works.

We start by writing x as a linear combination of the basis elements of R2,
Ax) = A(x! - e; +x% -e). Next we apply the linearity of A which yields
Ax! e +x2-ep) = x! -A(eq) + x% - A(ez). We can substitute the umque vector

representation of A(e;) and A(e) from above and note the result is just the matrix product

of A-x,
an a2 ai an 1
1 2 1 2 X
X -Jt(el) + Mex)=x" -l ay [+x°-|axn |=|ayn axn 2 =A-x.
X
as as3 azl asx

A is determined completely from the basis elements of R? with no dependence on
our arbitrary ; therefore, for each x € RZ, A(x) = A-x. Here after if a basis is known for
both the domain and codomain, we will use either representation of a linear function
whenever convenient. We continue now with an important theorem about a certain type of
boundedness in regard to linear functions between Euclidean vector spaces.

Theorem 1.2 If A: R" —R™ is a linear transformation, then there exists a number
M such thatif e R” then |AX)|| = M |Ix]].

Proof. Suppose A :R” ——R™ is a linear transformation. Since we have the usual
basis for Euclidean vector spaces, we know there exists a matrix representation of the
linear transformation and we call it A = (a,;). We define K as
max {30 lails Yomq lal, -... Zeeq laml}. Note K is determined from the columns 1n A.
For each column, the absolute value of the components is summed and the largest of these
sums is K.

Pick M =vn Kandlet €R".

We write under the influence of linear transformation A in the equivalent and

more convenient form:



1

ai - an X

AMx)=A-x= [ = Z:’il (Z;lzl a; x)e,

aml e amn xn

so JA()|| = ||Zm1 (27=1 a,; x’) e,||. By the triangle inequality and properties of
1=
normed vector spaces, [[ZZI (Zhey @y X7) e = ZZl (7.1 @, x7) lle,l. For each
’ m m .
i€ {l,2 om) llell =150 " (X aylllell= D, I(Z)y a, ). Again by
the triangle inequali " e J "o ). W h
e triangle inequality, Zl=1 |(Z‘,J=1 a,; x)| < lel (ZFI la,;| 1x/]) . We regroup the
X m
larger sum by j and factor out |x/| to give lel (Z;‘=1 la, | 1x/]) = ;’:1 (/] 7%y lag D).
Now for each j € {1, 2, ..., n}, by our choice of K, ¥~ |a, ;1 < K from which follows
Z;’=1 (I 7%y lay ) < 27=1 |x/| K = (27=1 |x/]) K. Finally from Theorem 1.1, we have
o W =Vl so (22 WD K < Vn K llxll = M |lx]].
We have shown that given a linear transformation A : R* —R™ we were able to

choose a number M so that for each x € R” |[A(x)|| = M ||x||. &



CHAPTER II

DIFFERENTIATION AND INTEGRATION

In this chapter, we build on our previous understanding of the calculus of function
of real vanables. We start with a discussion of differentiation of functions between
various Euclidean n-spaces. We then spend a good deal of energy on the Inverse Function
Theorem as 1t is one of those ubiquitous theorems underlying much of the applications of
calculus In the final section we 1nvestigate classic notions of integration, and in particular
the Fundamental Theorem of Calculus in one dimension as it is this theorem which Stokes’
Theorem 1s an analogy to in higher dimensions.

A thorough understanding of this chapter 1s essential for the rest of this thesis. We
have 1n fact constructed rigorous proofs for each of the results within this chapter,
however, we refrain from presenting a good number of these as they would distract from

the goal of this paper. We include statements of definitions and theorems as reference, and

we give an occasional proof.

Differentiation

We first ask what'differentiable could mean 1n an abstract setting such as R”. We
recall 1n the real number setting a real valued function being differentiable at a number
p means there 1s a line that 1s the best approximation to  at p. Generalized, a function
f:R"”—R"™ being differentiable at a point p means there 1s a linear function that 1s the

best approximation to  at p.



Definition 2.1 A function f:R"™— R™ is differentiable at p € R" if there exists a

linear transformation A : R” —R™ so that if £ > O then thereisa d > Oso that if x e R"

I/ )/ PI-[Mx)-APIL

with ||x — a|| < 6 then lx—pll

One often substitutes the vector £ = x — p into Definition 2.1 and carries out some
simplifications. It is often convenient to define differentiable as satisfying the following

limit;

Iim
h—0
A function f:R” —R™ 1s differentiable on A ¢ R" 1f f 1s differentiable at p for

W prh)-fp)-Mbli _
lIA] o

each p € A.
Theorem 2.1 If a function f:R” —R™ is differentiable at p € R” there is a
unique linear transformation A : R” — R so that if & > 0 then there 1s a 6 > 0 so that 1f

x € R" with ||x - al| < § then IOLTPALEXPIL < 4 We denote A by D/(p) and call 1t

the derwvative of f at p.

We have seen that whenever a linear transformation 1s defined between two vector
spaces each with a basts, then there is a matrix representation for that linear
transformation.

Definition 2.2 For differentiable function f:R" —R™ at p € R" the matrix
representation of D f(p) : R" — R™ is called the Jacobian Matrix and is denoted f’ (p).

Theorem 2.2 If a function f:R"” —R™ 1s differentiable at p € R” then f 1s
continuous at p.

Proof. Let f: R"—R™ be differentiable at p € R”. Since D f(p) is the derivative
of fat p, then we need only show }llil(l) IIDf(p) (h)|| = 0. Since D f(p) is a linear
transformation, then by Theorem 1.2 pick a number M such that ||Df(p) (h)|| < M ||h|| for
all h e R". Let & > 0. Pick 6 > O such that § = 7. Let k € R” such that ||| < 5. We have

IDf(p) (Wl < M |\kll, M ||k|| < M6 = &. &
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Theorem 2.3 If a function f: R” —R™ is differentiable at p € R” and

g:R™—R! is differentiable at f(p) € R™, then go f : R” — R/ is differentiable at p, and
D(ge f) (p) = DE(f(P))°Df(p).

Theorem 2.4 If a function f:R” —R™ is constant, then Df(p) = 0.
Theorem 2.5 If a function f: R” — R™ is a linear transformation, then D f(p) = f.

From consideration in linear algebra, we have seen for f : R” — R™ there are m
unique component functions f® : R” —R™, and we can use this to define partial
derivatives

Theorem 2.6 A function f:R" —R™ is differentiable at p € R" if and only 1f

f':R" —R is differentiable at p for each i € {1, 2, ..., m}.

Theorem 2.7 If functions f, g: R” — R™ are each differentiable at p € R" then
f + g is differentiable at p, and D(f + g) (p) = Df(p) + Dg(p).
Theorem 2.8 If functions £, g : R” — R™ are each differentiable at p € R” then

f -8 is differentiable at p, and D(f - ) (p) = g(p) Df(p) + f(p) Dg(p)-

Theorem 2.9 If functions f, g:R"” —R"™ and each of f and g is differentiable at

p €R” and g(p) # 0 then f/ g is differentiable at p, and D(f/g) (p) = £22/ ([?(;ﬁ ) Dgp)

Definition 2.3 If f:R” —R is a function the ith partial derivative of f at p € R”
[, p=x, PO f@ P

p-x

is lim
xXr-p

Theorem 2.10 If D, (D, f(p)) and , (D, f(p)) are continuous in an open set

, if the limit exists, and is denoted ; f(p).

containing p, then D, (D, f(p)) = D, (D, f(p)).

Theorem 2.11 Let A ¢ R”. If the maximum or mimimum of f: A—R occurs at a

point p in the interior of A and D, f(p) exists, then D, f(p) = 0.
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Theorem 2.12 If a function f:R” —R™ is differentiable at p € R", then D, f* (p)

existsie{l,2, ...,n}and j€{l, 2, ..., m},and f* (p) is the mxn matrix
Dif'(®) Daf' ) - Duf'(p)
Dif* @) Dyf? () - Duf* () |

Dy f" () Dy f™ (@) -+ Duf™(p)

Definition 2.4 A function f:R”"” — R™ is continuously differentiable at p € R" if
there exists an open set A c R” with p € A such thatif x € A, then | f* (x) exists and
D, f* (p) is continuous for j€ {1, 2, ..., nfand i € {1, 2, ..., m}.

Theorem 2.13 If a function f:R”—R"™ is continuously differentiable at p € R",

then f(p) exists.

The Inverse Function Theorem

In this section we begin by discussing some aspects of the Inverse Function
Theorem. This ranges from importance of the several hypotheses to examples of 1ts uses.
This is a constructive and considerably more accessible albeit long proof compared to the
relatively short and less insightful versions of the proof that involve Banach's Fixed Point
Lemma. We first consider a concise statement for the purposes of informal presentation.

Inverse Function Theorem: Suppose f:R” —R" is a continuously differentiable
function on some open subset O of R”. If p € O and det [ f'(p)] # 0, then there exists open
sets U and V of R” sothat: p € U, f(U) =V, f~1 : V—U exists and f~1(V) = U,
and (f71Y (@) =[f"*f " (@] foreachg V.

We first make several remarks on various of the hypotheses and conclusions. Our
goal is to establish some bijection and that only has a chance if the domain and codomain
have the same dimension. Secondly, we have the important hypothesis of continuously
differentiable on an open set. To 1llustrate this, suppose we reword the theorem so that f
is only defined on O and differentiable only at p € O. Define the function

f : (_ﬂ-, ﬂ.)_)(_ﬂ, T[) by
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sin x 1f x1s rational
x if xisirrational.

£ ={

This function 1s differentiable only at O and its dertvative is 1, not zero, but there is
no open subset U so that is bijective on that set because for any irrational number y in
the range there 1s a rational and irrational in the domain that both map to y, so one can
never pick out a set on which ! 1s a well defined function.

Note also that hypotheses may be sufficient, but not necessary for a bijective
function to exist. For example f: R — R defined by f(x) = x> has f’(0) = 0 and yet
f‘1 :R — R defined of course by f(x) = \3/; 18 a well defined function. What does
necessarily follow though 1s that f~!cannot be differentiable at 0.

To build a familiarity for the general problem, we will examune the Inverse
Function Theorem in the setting of functions of real vanables. We will maintain the
wording of the more general setting. The wording will seem awkward since oi)en
connected proper subsets 1n the setting of the real line have the simpler terminology of
segments or rays, still the consistent wording will serve to connected the simpler case to
the general case.

Theorem 2.14 Suppose f: R— R is a continuously differentiable function on
some open subset O of R. If p € O and f’(p) # 0O, then there exists open sets U and V of
R so that:

l.pelU,

2. f(U)=YV,

3. L V—U exists and (V) = U, and
4.(FY @=1ff @) foreachqeV.

Proof. Let p € O such that f’(p) # 0. We will assume that f'(p) > 0, the other case
following simularly. Since f” is continuous on O and % f'(p) > 0, then by a definition of
continuous there 1s a number 6 > 0 so that if x € O with 0 < |x — p| < ¢ then
I/ x) - f(p) < % f'(p). We pick Y =0\ (p—-6, p+9). Since p € O and

p € (p—96, p+06)and each of these is open, then p € U and U is open as the finite
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intersection of open sets 1s open.

Since is differentiable at each x € O, then by Theorem 2.2, is continuous on O.
In particular since ¢ C O, then is continuous on U, and by previous theorems from
topology, the continuous image of a segment (an open compact, connected set) is a
segment. Since U is a segment and  is continuous on U, then we pick V = f(U) and
from topology V is necessarily a segment and hence an open set.

We next show is invertible. Let x, y € U such that x < y. Since is continuous on
[x, ¥] and differentiable on (x, y), then by the mean value theorem for derivatives of real
value functions, there exists s € U so that f'(s) (y — x) = f(3) — f(x).

Since s € U, then |s — p| < 8, so | f'(s) — f'(p)| < % f'(p). Since
7)) - f(p)l < % f(p), then by a property of absolute value inequalities,
—% Fp<f-rfp< % f'(p), which from algebra follows
2 () < f'(s) < 3 f'(p). Indeed, since 0 < 5 f'(p)and 3 f(p) < f'(s), then f'(s) > 0.

We have f/(s) > 0 and since y > x then y — x > 0, so f/(s) (y — x) > 0. Now
F6)6-0=f0) - f)and £/() (y - 1) > 0,50 f(3) - f(x) > 0 and in particular
f() > f(x). We have show for arbitrary x, y € U with x < y, that f(x) < f(y). This is to
say that 1s strictly increasing on ¢ or is injective with domain ¢/ and range V. Since
YV = f(U), then is surjective. Finally sincé f:U—V is a bijection, then there exists a
function f~1 : V— U so that f~1(V) = U.

It remains to show that £~! is continnously differentiable on V. Let g € <V, then
there is p € U such that f(p) = q. Since lim,.,, | 2L Le-/p) f @) _ g (p)| = 0 and for each

xeU, f(x)+ f(p), then theorems from analysis give, hmx_) » [ f(x)_ f(p) f’%p) | =0

Since hmx_)p [ f(x)— f(P) — f' (p) | =0and is continuous, then

limy.q | I —l(y;:f;_l(q) FZ f-l o) | = 0. This established the theorem for the special case of a

function of a real variable. B
The generalization of our simple case is hardly trivial. In fact, about the only aspect

that maintains a semblance of the previous case is the statement of the theorem. Therein
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change each R to R” and the generalized notion of differentiable requires f'(p) + 0 to
become det[ f/(p)] £ 0. We first prove a lemma.

Theorem 2.15 Let A c IR” be a rectangle and let f: A— R” be continuously
differentiable. If there 1s a number M such thatfor ¢, ye {1, 2, ..., n}, D, f' (x)| = M for
all e Int(A), then |f(x) — f()| < nMlx - ylforall ,ye A

Proof. Suppose there is a number M such thatfor i, j e {1, 2, ..., n},

ID; f' (x)] <= M for all x € Int(A). To more clearly explain the proof, we prove the theorem
for n = 3 before giving a more concise proof of the general case.

Let each of p and g be elements of the interior of A. Without loss of generality we
will assume p' < ¢’ for each i € {1, 2, 3} allowing us to write [p’, ¢'] without ambiguity.

Recall for each x € A we can write
ale))
f@ = f* @
FAe))
for umque functions f* : R3® —R with 1 e (1, 2, 3}, and since D  f(x) exists for each
x € Int(A) then by Theorem 2.12 D f(x) has the Jacobian Matrix form
D f'®) Dy f'@ Dsfl@
f @) =|D1 f2(x) Dy f*x) Djjf* ) |=D,[f )
D1 f*(x) D2 f* @) D3 f>(x)
For each i € {1, 2, 3}, we can write f* (g) — /(p) 1n an equivalent manner that

defines three real valued functions on [p*, ¢'] c R giving us the power to apply the mean

value theorem. Note
ff@-Fw =7q, % -1 p)
+1@". ¢ P - '@ PP P
+/@" ¢ ) - 1@ ¢ p)
since the first term of each difference has 1ts additive inverse in the following
difference, the only exception is the last difference. What is left is precisely the

left-hand-side. There are three functions f1( -, p?, p*): [p!, ¢! 1—R,

g, -, p¥):p? ?1—R, and fig', %, -): [p?, ¢®1—R, and for each 1 € {1, 2, 3}
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and each x € (¢, ¢'), each of Dy fl(x, p?, p*), D2 f(¢*, x, p®), and D3 fl(q', 4%, %)
exists. We can therefore apply the mean value theorem, applicable only to functions from
R toR, and choose z11 € [p!, ¢'1, z12 € [p?, ¢*], and z13 € [p?, ¢°] so that
It @t 2 ) - F1oh P2 Pl = lg' - Py s P PP,
11'@". 4 P - 1@ PP P = 1a - PP1ID2 (@', 212, PP, and
Ir@" & @) - 1@ &, PPl =18 - P*lIDs (g, ¢, z3)l.
Since |D, f* (x)| = M for all x € Int(A), then
171t 2% ) - 1@ PR Pl sl - pliM,
it . P - 7@ PP PP <1g® - p*I M, and
Ifiq'. ¢ - @' ¢ P <le - I M.
From earlier considerations, without the absolute value, each of the differences on

3
the left adds to precisely f! (q) — /*(p), then |1 (g) - A(P)| = X |¢* — p'| M and since
=1

3
lg" — 'l < lig — pl| then Zl lg' ~ p'| M <3M ||g - pll and so |f! (q) — f*(p)| < 3M |iq - pll.
l=

The same conclusion can be drawn for f2 and f3. From Theorem 1.1 we have

3 3
L@ — fpll < Z_]l lf g - Ff(p) = 2,1 3M |lq — pll. Since there are three terms 1n this

sum, then [|f(g) - f@®)Il < 3* M llq - pll.

The general case follows similarly. Leti € {1, 2, ..., n}. We write

f@-fm= JZflf(ql, o g, P P -G L e P Q)

where the first term of each difference has its additive inverse in the difference that
follows in the sum; the only exception is the last difference. Just as 1n the example, we
have n functions from a compact and connected subset of R to R. We can therefore apply
the mean value theorem and choose z;; in [p/, ¢/] or [¢/, p’], which ever makes sense, to

conclude

Ifl(ql’ M q‘], p‘l+1, ety pn)—fl(ql, M4 qj.—‘l’ pj9 ey pn)l
2)
= [qj _pjl |Dj fl(ql’ ey qj—lv le? PJ+1, LERE] Pn)l
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Since D, f* (x)| < M for all x € Int(A), then from (2)

‘fl(ql’ reey qja Pj+l: seey pn)'—fl(qla seny qJ“l, Pj, tevy pn)’ = |qj —PJIM- (3)
n
From (1) and (3), we have |f* () — f(p)l = X |¢/ — p/| M, and since
J=1

l¢/ — p’| < llg — pll for each j e {1, 2, ..., n}, then
If" (@ - f ()l < nM liq - pll. @)
Finally, from Theorem 1.1, || f(g) — f(p)Il < Zn]l If* (@) — f(p)|, then with (4) we
=
establish the result || f(g) — f(p)ll < nZ M |lg— p||.

Theorem 2.16 Suppose f: R” — R" is a continuously differentiable function on
some open subset O of R”. If p € O and det [f” (p)] # O, then there exists open sets U and
V of R” so that:

l.pelU,

2. f(U)=V,

3. f~1:V—U exists and f~1(V)=U, and
4.(fY @ =1t @ foreachge V.

Proof Let p € O such that det{ f* (p)] # 0. We will call the linear transformation
£’ (p) by A. To further simplify the situation we note that A~! exists since det[ f’ (p)] # 0
and by the chain rule DA o £) (p) = DA™Y (f(p))eDf(p) = A" e Df(p) = A1 0. Since
the theorem being true for =1 o £ will imply the theorem is true for £, since 27! is a linear
transformation, then we can assume that D f(p) is the identity transformation.

First we show there exists a closed rectangle ‘W with p € Int(‘W}) so that for each
x € ‘W, withx # p, f(x) + f(p).

Assume for each closed rectangle ‘W with p € Int(‘W), there is an x € ‘W, with
x # p so that f(x) = f(p). By the assumption, for each i € N, pick
X, € [p1 - -}-, pl+ %—]x... x[p" - %, pt+ %] different from p so that f(x,) = f(p). We
have then a sequence {x,}2; such that llgg X, = p. )

Now since each of f and A is continuous at p and since lim x, = p, then
=00



17

Iim f(x;) = f(p) and Itm A(x,) = A(p). Since the norm 1s also a continuous operator then
1200 =00

lim M@=m=—p= /- Mp=x)ll _ i JMe=2) Now since 77 (p) exasts then the limit on the

1—00 . —pll oo lx—pll
left hand side is exactly zero, so we have lim W
1—00 4

Wc,_l—ﬁ € R and since 2 1s linear, then llilg Hl(ﬁﬂ)“ =0.

= 0. Now since foreachi e N,

Define the sequence {z,},2; foreachie N by z, € W Since for each i € N,
llz,|l = 1, then {z,};2; is a sequence 1n the compact set B = {x € R” | 1 = |x[}, thus there is a
subsequence {z,j }j‘;l such that Jh_)nf}o z;, exists, call it z. Since B is closed and for each j €N,
z, € B, then z € B. Since z € B, then |zl = 1 and hence 7 + 0.

Since 113?0 L, =, Jlgglo llA(z,)Il = 0, and A 1s continuous, then A(z) = 0. Since 1 is a
linear transformation then A(z) = 0 1mplies that z = 0. We have shown then that z = 0 at
the same time z # 0. Thus our assumption must be false, and we conclude its negation.

There exists a closed rectangle ‘W with p € Int(‘W7) so that for each x € ‘W with
x# p, fx) % f(P).

Next we show there exists a closed rectangle Wy with p € Int(‘W5) so that for each
xe W, detf/ (x)] #0.

) We use that det : R" x... ntimes... xR"” — R 1s continuous and that f’ (x) exists for
each x € O. Since det[ f’ (p)] £ 0 then % |det[ f* (p)]| > 0. Since det 1s continuous and
% |det[f” (p)]] > O there 1s a number 0 > 0 so thatif x € O and ||x — p|| < 6, then
|detl /7 (x)] — det[f" (p)]} < —;— |det[ /” (p)]| and in particular det[ " (x)] # O.
We pick W, = {x € Ol |p - x| =< ——\/gzn foreach:=1, 2, ..., n}. Thus is also

written as the rectangle [p’ - ‘/‘257 , Pt + ‘/g_n ]x . x[p” - \/g_n , Pt + \/—‘25_”—] Finally, if

xe Wy, then llp— x|l = \/Z; (p! —x’)2 and since foreach:1 e {1, 2, ..., n},

n n 2
Ip' - x| < 7g_?then\/zl_1 (- xt)* s\/z (%) =3 <6,s0llp-xll<é
- =1

and det[ /" (x)] # 0. We have established a closed rectangle W, with p € Int(‘W5) so that

foreach €W, det[f’ (x)]+0
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Next we will show there exists a closed rectangle ‘W3 with p € Int(‘W3) so that for
eachx € W3 ID, f* (@) - D, f* (p)| < 5or foreachi, je{1,2, ..., n).

We use that  is continuously differentiable on O. Since the notion of continuous is
independent of the norm given to a space, for each x € O, we define
ILF @I = ZLI (Z;;l ID, f' (x)]) where D, f' is the entry in the ith row, jth column of
f’ (%). Since 2% >0and is continuously differentiable, there is a number 6 > 0 so that
if x € O with [lx = pll <6, then Il @ - ' @I =), ey 1D, £ @D, f ) <
2_1z2" Since this is a finite sum of non-negative numbers, then each term must be smaller
than -2-%17 Using § we pick ‘W3 in the identical way we chose ‘W;. Let
W3 = {x € 0| [P = x| < —;/%{— foreachi=1,2, ..., n} As before, if x € ‘W3, then
llx — pll < 6 and by the choice of 6, then |D; f* (x) ~ D; f' (p)I < -2% for each
i, je{l, 2, ..., n}. We have chosen a closed rectangle ‘W3 with p € Int(‘W3) so that for
eachx e W3 |D, f' (x) - D, f' (p)l < 7;—2 foreachi, je{l,?2, ..., n}. 7

Let W = Wi Wy (‘Ws. We write W = [wq, wi,]%... x[wy 1, w, /] is a closed
rectangle.

Next, if each of 1 and x; is an element of ‘W, then we will show that
ller —x2ll < 211 (x1) — Fx)ll.

Let x1, x; € ‘W. By the simplification made at the start of this proof, we have A as
the identity map. If for each x € ‘W, we define g(x) = f(x) — x, then g is continuously
differentiable on ‘W, and |D, g’ (x)| =D, f* (x) - 6;[ =1|D, f* (x) - D, f' (p)|. Were 6; is
the Kronecker Delta. If x € W then € Wjso|D, f' (x)-D; f* (p)l < ”:Zlnz‘ Thus if
xeW,ID, g @) < 7

By Theorem 2.15, we conclude that ||g(x2) — g(x2)l| < n? 2}12 [lx2 — x1|| which

simplifies to ||g(x2) — g(x2)|| < % lx2 — x1]|. Now by a property of the norm we have
b1 = x2ll = I/ (1) = fle)ll < If(x1) — %1 = (f(x2) — x2)II. Since g(x) = f(x) — x, then
I/ (x1) = x1 — (f(x2) — x2)ll = llg(x1) — g(x2)l]. Altogether then

lx1 —x20l = L f(x1) — flx)ll < % |lx2 — x1l|, which transforms with algebra to
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1 — 220l = 2{1f(x1) = fx2)Il-
We have shown for each of x; and x, an element of ‘W, then

e — 2l = 2|1/ (x1) = flxe2)l

We now pick our image set V. Since ‘W is a rectangle then ‘W is compact and
since the boundary of ‘W, call it B(W), is a closed subset in ‘W (since it is the
complement of the Int(“W) which is the largest open subset of ‘W) then B(‘W) is compact.
Since is continuous, then f(B(‘W)) 1s compact. Furthermore since f(B(‘W)) is compact,
then it is closed. Since p € Int(‘W), then p ¢ B(‘W), so f(p) ¢ f(B(‘W)). Finally since
f(B(W)) is compact and f(p) ¢ f(B(‘W)), then there is a number § > 0 such that
8 <inf {Ilf(p) - F@l | x € BEW)}. We pick V = {y | lly - f®)ll < $}.

Next we show if y € V and x € B(W), then ||y — f(p)ll < lly = fF(0)ll.

Let y € V and x € B(W). Since y € V, then ||y — f(p)ll < %. Now since
6 <inf {{lf(p) - fF@Il | x € B(W)}, then 6 < || f(x) ~ f(p)ll and
Ifx)y—Fll =y — fFpll > 6 — —‘25— = %. By properties of the usual norm,

/@) = FpIl = 1lf () - yll < IIf(x) - yll. Together then |ly — f(@)Il < lly - fOIl.

Now we show if y € V, there is a unique x € ‘W such that f(x) = y.

Let y € V. Define g: W—R by g(x) = |ly — f@)|)> = ZLI O - f’(x))z. gis
continuous since is and therefore g is bounded on W and moreover there exists x € W
so that g(x) = inf {range of g}.

Assume x € B(W), then since g(p) = lly — F(D)II*, g(x) = lly — f®)|I*, then by
above we have g(p) < g(x). This contradicts g(x) being the minimum. The only alternative
then is that x € Int(‘W).

Since W c R”, the inf {range of g} = g(x) occurs at x € Int(‘W), and D, g(x) exists
for each j e {1, 2, ..., n}, then by Theorem 2.11 D ; &(x) = 0. By Theorem 2.3, it follows
that  g(x) = 120" =1 (x)) D, f' (x) = 0for each j (1, 2, ..., n}. We know from
that ‘W was chosen so that det(D, f* (x)) # 0; thus, (' — f* (x)) = 0 for each

ie{l,2,...,n}.Since y' = ff (x)foreachie {1, 2, ...,n},then y= f(x). fx;, x, e W
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such that y = f(x1) = f(x2), then from above [|x; — x2]| <2 |[f(x1) — f(x2)]| = 0. By
property of norm, it follows that x; — x2 = 0 so x; = x, and we have established the claim.

We are now ready to choose U. Since for each y € V, there is a unique x € ‘W,
then we can construct a well-define a function ~!:V— W. Pick
U = {x € Int(W) | f~1 (y) = xfor some y € V}. We can show the first three conclusions
of our theorem.

First, p € U since p € Int(‘W) and f(p) € V.

Second, if x € U, then x = f~! (y) for some y € V so f(U) cV.Nowif y eV,
then y = f(x) for some x € U, so V C f(U). The dual inclusions gives (U)=V.

Third, if y € V, then f~! (y) = x for some x € U, so f~1(V) CU. If x € U then
f(x) = y for some y € V. Since oy eflV)andx= f‘1 (fx) = f‘1 (y), then
x € f~1(V) so we have f1(V)=U.

Finally we show if £ € V, then (f~1) (¢) exists and is [/ (/"L @)]"".

Let t € V. Pick s € U such that f(s) = ¢. Since is continuously differentiable on
U and s € U, then call u = f (s). Since s € U C W, then det[ [’ (s)] + 0, so we also have

the inverse linear transformation u~!. Since f’ (s) exists, we have

L @)= ©-ux=sll _ ¢

lim =

Py
Define ¢ : R” —R” by ¢(h) = f(s + h) — f(s) — u(h). For each x, x —s € R" so
o(x —8) = f(x) — f(s) — u(x — 5). We apply u~ ! to arrive at
,u‘1 (px —5)) = /,t‘l (f(x) = f(s)) — (x — 5). Since we have f(x) = y for each x € U and
Tt =xforeachy eV, thenp™ (o(/ 1)~ £~ ®)
= -0~ o) - o).
To establish our claim, we need to show that lim 1= 0=0=U" O-/" O _ ¢ e

ot =]
et @t )-F1 ol
lly-tll

et -fto)=pt -0-(1 () - f71 @) Since p! is a linear

transformation, then by the chain rule, we show lim ﬂ%ﬂ =0.
y-t

e/ =F @l e = @O . W =1~

Ity -t m-rt ol iy~

= (0 since

can do this by showing lim
y-t

L@l for each y e V. Since

Now
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lim 22%=9U — 0 and since £~ is continuous, then lim I D= Ol _ g gy
e i lly=2l
conclusions above, |lx — s|| < 2 || f(x) — f(s)|| for each x € U, thus Wf(}alc’;—f'(_silT < 2 for each
x € U except s. Since f is continuous and for each y €V, M—(ﬁ’ﬁ—ﬂ <2, then
lim _Ilf;(”y)_ti'_ﬂ exists call it y. Now since each of lim I~ D=L O 559
yt y-2l| y-ot [ty

VAR S) ot AR ) e P |70l 6) o A ) I VA )y A )| o () —
{VILI} = exists, then lyIE} TEXOSRAG] Ty existsand is 0-y = 0.
This shows lin% e & _t)_l(]}yc-_ltl(]y)_f “ @I _ ( and we have established the final claim.

Yy

Integration

We begin our discussion of integration with functions of real variables. We press
forward to establish the Fundamental Theorem of Calculus since it is the analogy of
Stokes’ Theorem in the setting of real numbers and since it is uspd in the proof of Stokes’
Theorem. Unlike differentiation, integration on rectangles in R” is quite similar to R. We
give only the definitions and prove Fubini’; Theorem.

Deﬁnition 2.5 A subdivision of the interval [a, b] is a finite subset of [a, b] denoted
by D with the property that each of a and b belong to D. We usually denote D by {x,}_,,
where xo = a, x,, = b, and for each index i between 1 and # inclusive, x,_1 < x,.

Definition 2.6 A refinement K of a subdivision of the interval [a, b]isa
subdivision of [a, b] where C K.

Theorem 2.17 If D is a subdivision of [a, b}, then D is a refinement of D.

Theorem 2.18 If X is a refinement of H and H is a refinement of the subdivision D

of [a, b], then K is a refinement of

Theorem 2.19 If each of D and D, is a subdivision of [a, b], then Dy |J D, is a
subdivision of [a, b} and Dy |J D, is a refinement of D;.

Definition 2.7 If D = {x,};_ is a subdivision of [a, b], {#,}}~ is an interpolation

sequence of Dif foreachie{1,2,...,n},x1 <t <x,.
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Definition 2.8 For a function f: [a, b)] — R, if there exists a number A such that for

each ¢ > O there is a subdivision D of [a, b] such that if H = {x,}]_ is a refinement of

3 f(t) Ax— A

=1

< g, then we say f is

and {#,}\_; is an interpolation sequence of H,

b
A-integrable or simply integrable on [a, b] and we denote the number A by f fdx.

a

Theorem 2.20 If f is a function defined on [a, &] such that L b f dj exists, then f is

bounded on [a, b].

Theorem 2.21 If each of f and g is a function defined on [a, b] such that fa b fdj
exists and ng d j exists, then fabf + g d j exists.
Theorem 2.22 If fis a function defined on [a, b], ¢ is a number such that

C b b .
a < ¢ < b, and each fa f exists and j; f exists, then L [ exists.

Definition 2.9 Suppose f is a function defined on [a, b] such that fa b J exists. We
define [*f =~ ['f.
Theorem 2.23 If f: [a, b] —R is a continuous function and & 1s a number such

that f(a) < k < f(b), then there is a number p € [a, b] such that f(p) = k.

Theorem 2.24 Suppose f is a function defined on [a, b]. The following statements
are equivalent:

@ [77dj

(b) If £ > 0 then there exists a subdivision D = {x,}/, of [a, b] such that if
H = {y,},, is a refinement of D and {z,},_; and {s,}}_, are interpolating sequences for D
and H, respectively, then |3,_;, f(t;) Ax, — 22, f(s) Ayl <e.

(c) If £ > 0 then there exists a subdivision of [a, b] such that if each of

H ={x}j—y and K = {y,};2, 1s arefinement of and {£,}}; and {s,}/Z; are interpolating

sequences for H and K, respectively, then |}, f(t.) Ax, — X%, f(s) Ayl <e.

Theorem 2.25 Suppose f is a function defined on [a, c] such that fa ¢ fdjexists. If

. b ..
b is a number such that a < b < ¢, then fa f dj exists.
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Theorem 2.26 Suppose f is a function defined on [a, b] such that fa b fdjexists. If
k is a number such that for each x € [a, b] g(x) = k- f(x), then g is a function defined on
[a, b such that [ g dj=k- [ fdj.

Theorem 2.27 Suppose f: [a, b] - R. If fis continuous, then fa b f exists.

Theorem 2.28 Suppose f: [a, b] » R.If fis continuous, then there is an x € [a, b]
such that f(x) (b -a) = [ 1.

Theorem 2.29 Suppose f: {a, b] - R. If fis continuous, a < p < b, and for each
x€(a, b), g(x)= fp * f dt, then for each x € (a, b), g’ (x) exists and 18 f(x).

Proof. Let f be a continuous function. Since f is continuous on [a, ], then by
Theorem 2.27 fa b f dt exists. Let p be a number such that a < p < b. Since for each
x € (a, p), f is continuous on [x, p], then by Theorem 2.27, for each x € (a, p), — fx P fdt
exists and by Definition 2.9 1s fp § fdt If x = p, then j;) * fdt =0 and thus exists. Since for
each x € (p, b), f is continuous on [p, x], then for each x € (p, x), fpr dt exists.
Regardless of the relative position of p, for each x € (a, b), fp " f dt exists. So we can
define a function g on (a, b) such that for each x € (a, b), g(x) = fp § fdt.

Let g € (a, b) and pick f(q) as candidate for g’ (¢).

Let £ be a positive number.

Since f is continuous on [a, 4], then f is uniformly continuous on [a, b]. Since f is
uniformly continuous on [a, b] and & > 0, pick § > 0 such that if each of x, y € [a, b] and
|x =yl <6, then | f(x) - f()] < &.

Let x € [a, b] such that O < |x — g] < 6. Now we should at this point consider a
number of cases based off the relative positions of p, g, and x on the number line. The
essential difficulty is the same regardless of the case, so we examine each case up to this
difficulty and then draw the cases together in a one-for-all conclusion. In each case, we

use Definition 2.9 and Theorem 2.25 without additional mention.
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Caselp=gq.
Lr-fr 70 7
If g < x, then ”x_q” = "x_q :}”L_z.lfx<q,then
Lrpr_-fro _Lr_ 47
x=q —(g-x) g-x  x=q’
Casell p < q.
A 2 O S
If g < x, then p < xs0 ”xq” = ”x_q” = x"_q. then
L A it A Y O A Lr-fr o-fr [7
”x_q" = x_q” = e x" .If x < gand x = p, then x“q” =4 T x"_q.If
NN f" N
x < gand x> p, then ”x_q” = ”x_qq :x"_q.
Case Ill p > q.
A e T Y
Ifx<gq,thenx < pso ”x_ x_q” =S T a4
N T o ‘f
thenf”x_j: = L qj: = xj;qjt=%;7.1fx>qandx=p,then
Lr-r o[ _ ff the L7 ff+ff ff
x-qg = x—q en x—-q = x—q x-q

No matter the case, if we allow f f to be meaningful when x < ¢ as we have done

ff—f"f_ff

in Definition 2.9, then the result 1s

hmx_,q (M) exists.

. We continue with showing

q
_ f
|£ E0-8@) _ fq )| = f — f(¢)|. From our case consideration this can be

x-q

X

7"—5 — f(gq)|. Since f is continuous, by Theorem 2.28 we choose ¢ between x

fxf ff

written as

and q such that f(¢) =

=|f@®) - f(g)|. Since

x<t<qorq<t<xand |x —g| <9, then |t—q|<5. Since |t — g| < J, then by our choice

x—q

of 6, | f(2) — f(q)l < & Together | £2-6@ g‘q) - fi@| <e.

We have shown that for £ > 0, we chose a § > 0 so that for x € [a, b] with

g(x) g(q)

0 < [x—gql| < ¢, then exists and is

- f(@)] < & This 15 to say lim,,, (£2=52)

exists, g(q) exists as f is continuous on [a, b], and since

f(g). Since lim,_,, (__(,’%__%(‘2)

g € (a, b), we say g is differentiable at . We write g’(q) = f(g). Since g was arbitrary in
(a, b), then for all x € (a, b), g is differentiable and g’ (x) = f(x). B
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Theorem 2.30 Suppose f: [a, b] » R. If fis continuous on [a, b] and for each
x €@ b), T'(x) = f(x), then [*f dx=T(®) - T(@).

Proof Let f be a continuous function on [a, b]. By Theorem 2.29 there exists a
function T : [a, b] - R so that for each x € (a, b), T’ (x) = f(x).

Let p € (a, b) and for each x € (a, b) define g(x) = fp § f dt. By Theorem 2.29, for
each x € (a, b), g’ (x) = f(x).

Since for each x € (a, b), T’ (x) = g’ (x) , then there is a number k such that for each
x € [a, b, T() = g(x) + k. Since b € [a, b] and g(b) = [ b £ dt, then T(h) = [ P rde+k.
Since a € [a, b] and g(a) = fpafalt, then T(a) = fp“f dt + k. Now since T(b) = fpbf dit+k
and T(a) = fp * fdt +k, then T() ~ T(a) = fp b rdi- fp * f dt. Since by Definition 2.9,
—fpafdtz fapfdtandbyTheorem 225 fpbfaft+_[lpfdlt= fabfdt,then
fp b fdt— fp “ fdt= fa b f dt. The results of these last two statements together give
T®)-T@)= [ fdr.m

Theorem 2.31 Suppose f:[a, b] —» R is a function such that fa b f dx exists. If each
of and M is a number such that for each x € [a, b], L < f(x) < M, then
Lo-a)= [ fdx<Mb-a).

Theorem 2.32 Suppose f: [a, b] - R is a function. If fa b f d j exists and for each
x€la, b], Tx)= fa * fdj,then T is continuous.

Proof Suppose [ b £ d j exists and for each x & [a, b], T(x) = [ *fdj. Since L brdj
exists and for each x € [a.b], a < x < b, then by Theorem 2.25 for each x € [a.b], fa * fdj
exists. Thus 7: [a, b] = R is well defined.

Let p € [a, bl and & > 0.

Since fa b f djexists, then by Theorem 2.20 there is a number M > 0 such that if
q € la, b}, then | f(g)| < M.

Pick 0 < < 7. Let g € [a, b} such that 0 < |g - p| < 6.

Since for each x € [a, b], T(x) = J; * fdjand since p, g € [a, b], then

IT(q) - T(p)l = | [ fdj~ [Ffdj| Since by Definition 2.22 —fapfdj:fpafdj,then
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U;qfdj—-fapfdﬂ = [faqfcl]+fpafclj|. Slnceeachoffaqfdjandfpafaljexists,thenby
Theorem 2.25 [ fdj+ fpafalj= qufdij. Since faqfa?j+fpafal/j= qufdj, then
lfaqfdj+fpafa¥j| = |fp"fdj|. Since for each x € [a, b], |f(x)| < M and p, q € [a, b], then
for each x between p and g inclusive, | f(x)| < M. Since for each x between p and g
inclusive, —-M < f(x) < M and fp a f d j exists, then by Theorem 2.31,

-M(q - p) <qufdj<M(q—p). Now since 0 < |g — p| < 6 and

-M(g-p) < qufazj'< M(q - p), then —M§ < qufdj<M6and |fp"fafj| < Mé. Since

0 <6 < 47, then M6 < M 47 = &. Altogether [T(q) — T(p)| < &.

We have shown that for £ > 0, we could chose a ¢ > 0 so that for arbitranly
established g € [a, b] where 0 < |g — p| < 6, then |T(g) — T(p)| < £. We conclude that T is
continuous at p. Since p was arbitrary in [a, b], we conclude T is continuous on {a, b]. X

Definition 2.10 A partition of the rectangle R = [a1, b1]%---x[a,, by] cR" isa
finite subset P = D1 xDy x--- xD,, where D, is a subdivision of [a,, b,] for each
iefl,?2,...,n}.

If there are N1 + 1 elements in D1, N2 + 1 elements 1n D,, and N, + 1 elements 1n
D,,, then there are (N7 + 1) (N2 +2) ---(N, + 1) elements in P and the partition creates
Ni-Njp---- - N, = m sub-rectangles in R. We choose to define the integral of a real valued
function over a rectangle in Euclidean n-space building on the previous work.

Definition 2.11 A refinement H = Hy xHy x--- x H,, of a partition
P = Dy xDjy x---xD,, of the rectangle R = [ay, b1]x[ay, by]x---x[a,, b,] satisfies ,isa
refinement of subdivision ; of [a,, b} foreachi e {1, 2, ..., njor simply H is a partition
of R where P C H.

For a partition of a rectangle and a refinement of a partition we have theorems
analogous to Theorems 2.17,2.18, and 2.19, e.g., suppose | = {x" }ﬁ‘zl, Dy = {x2 }f?:l,

...,and D, = {x* }f::l ,and P = Dy x---xD,,, then P is a refinement of P, et cetera.
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Definition 2.12 For a partition P of a rectangle R = {a;, b1]x[az, b2]x--x[ay, b,]

k

and a refinement = Hy x---xHy of P with H, = {xlj/ }zj—O for each je {1, 2, ..., n}, then
=

- for interpolation sequences {tll1 }f ’_1 of Hy, {t,z2 }Zz_l of Hy, ...,and {f} }fn_l of H, we define

1= = n n=
k k, kR o

(o x{e Y xx{yi) = { @, 2, ...ene_ ) } to be an
1= p=1 =1

interpolating sequence of H.

Definition 2.13 For a rectangle R = [a1, b1]x[ay, by ]x---x[a,, b,] and a function

f:R—R, if there exists a number A such that for each & > 0 there is a partition P of R

ky

such that if H = {x! }l1=0

n x - x{x} }f‘”_o 18 a refinement of P and {t, ,, . , }isan

mterpolating sequence of

b (k& Ko
2 (Z ("‘(Z_lf(ttl n zn)A(xll)A(xbz)"‘A(xl"))“‘))"A

=1 \5p=1

integrable on R and we denote the number A by f fdR.
R

We could also produce alternate definitions for integrable on a rectangle, then state

< g, then we say f is

and prove many of the previous theorems regarding the integral of a real valued function
on a closed interval in the setting of a real valued function on a closed rectangle. We will
not since the proofs are similar albeit more cumbersome. We will assume them and refer
to the simpler and one new result for rectangles. What we need is a way to calculate

f f dR in the manner that Theorem 2.30 allowed us to calculate fa b fx)dx.
3 /

Fortunately we can use the same theorem to carry out the calculation of f fdR
R

without any new theory. For example, if R = [a;, b1]x[a, bo]land f: R— R isa
continuous function, then we can define A; : [a1, b1]—R by A(xhH = faiz f(x1 , X2y dx*
which is well-defined by Theorem 2.27 since if x! € [a1, b1], then f(x!, x?)isa
continuous real valued function on [a3, b2]. Aj is continuous since the integral operator
is continuous by Theorem 2.32, therefore, by Theorem 2.27 fa [:‘ A1 (1) dx! exists and we
write fa [:1 ( fa I:Z fixl, x%) (lxz) dx!. The question that remains is, “Is fR J dR the same as

fa ljl ( fa iz fGt, x?)dx*)dx'?”, and the answer to this question and a corollary of it, will be



our last theorem 1n this section on integration of real valued functions. The theorem 1s a
special case of a more general theorem known as Fubini’s Theorem.
Theorem 2.33 Suppose R = {ay, b1]x[az, ba]x---x[a,, by] and f: R—R 15

. . b,, bz bl 1 2 1
continuous, then I{fcﬂRls equal to fa ( faz (fal fit, 2%, ., X dx )a?xz)...a?x”
Proof. We prove this by induction on n. For n = 1, there 1s nothing to show. We

make our base case for n = 2.

Define A; : [a1, bi]—R by Aj(x1) = fa’ff(xl, x%)dx*. Note A; (x1) is
well-defined for each x! € [ay, b1 ] since if x! € [ay, b1], then f(x!, -) 1s a continuous
real valued function on [ay, b2] by Theorem 2.27. A; is continuous since the integral
operator is continuous by Theorem 2.32, therefore, by Theorem 2.27, L l:1 A1 xH dx!

exists and 1s fabl (fabz Fxt, x2) dx?) dx! call 1t Z,. Also by the assumption [ f d R exusts
1 2
R

call it Z;.

lete>0

Since fR f dR exists and % > 0, then we pick a partition P = Fy xFy of R so that if
each of H = {x}1 }i‘=0 and Hy = {)6,22 }:?:o 1s a refinement of F; and F», respectively, and

ks
{{(z‘}1 , t122 )} ka } - 1s an interpolating sequence of refinement Hy x [, then

Z Z fal,2)axl ax2 - 7i| <

£
I =1 12—1 3

b
Since f Ap(x!) dx! exists and % > 0, pick subdivision D of [a;, b1 ] such that if

a

k. 2 . .
H = {x] } ! oisa refinement of D; and {t! }' . is an interpolating sequence of H, then
1 ul, =1 D g seq
=

z Ai(ehydx - 2| <

£ LetH = {x,l1 }fl_o be a refinement of Dy |J F; and let {tllI }fl_l
1y =1 1= 1=

be an interpolation sequence of H. Therefore,

Dydxt - 2z5| < £. (1)

I =1

by
Since foreach i; €{1, 2, ..., k1 }, ff(t1 x; )clx’2 exists and > (, then

&
3bi-a1) b1-ar)

pick subdivision K, of [a1, b1] such thatif H, = {x2 }Ioz

Y 1s a refinement of K, and

=0
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{tlzz} 1s an mterpolation sequence of H, , then Z f (t1 t2 ) Ax;’; — A (t,ll) < m.

Iy=

Pick Dy = Lj K, . D, is arefinement of K, foreach iy €{1, 2, ..., k1} by

151 =1
Theorem 2.19. Let H, = {x2 }f2_1 be a refinement of D U F, and {2 }fz_ | bean
2= =
interpolation sequence of H,.

First, since Hj is a refinement of F; and H) is a refinement of F,, then Hy xH, 1s a

refinement of P, and {{(t1 t2 )} } e is an interpolation sequence of Hy xHy so
Iy =

z 2 fal 2)yaxl axt -zy| < £ ()
131 =1 Iz =1
Second, since Hj 1s a refinement of K, foreach 1y €{1, 2, ..., k1} and {z (£ s }l

then for each 11 € {1, 2, ..., k1}, Z f(t1 tz %Z—Al(t}l) <

12—

8 .
] and in particular

k

Al - TGy < Elf(t}l J2)axE < Al + '3“(?7“) Since for each
-

nell,?2, .. k} Ax,ll > 01t follows

ko ke
2| 2 f(t1 tZ)Ax ) < Z (Al( ﬁ) 11 = 2 A (] )Axlll_,_%

11=1 lz=1 11_ ll-—
and
ky
3 (3 s ) Xzzz)Axl <3 (41@) - 55557 ) o, = 3 A ax - £,
n=1\p=1 =1 n=1
Therefore,

5 (§ f@k, 2)ax2 ) 3 Ay(@}) ax]

ll=l

<2 3)

12— ll“

From the tnangle inequality we have the first inequality

z z @, 2)ax Ax,zz‘

n=1n=1

N (z f(t}l,ti)Ax,z) - Ar(t}) axl

I =1 12=1

|Z1 - 25| =

l]—-

Z Ay dxt -

11——

the final inequality from (1), (2), and (3); thus, |Z; — Z»| < &. We conclude that

z £ £
22 <§+§‘+§

Z1 = Zp. We have established the result for the base case n = 2.

We have now the inductive hypothests:

Lin("'fcziz(Linf(xl’xz’ ___,xn)dxl)dxz)mdxn
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= [ [ LGN R, ) dat d? e d,

a, ’
By the supposition, f . f: fal:"f(xl, X2, ..., X" dx! dx® .- dx™" exists call 1t
by by
Z,. Define A, (x"1) = fan fa;fa" Feeb, 22, . 2 XY dxt dx? .- dx*, for each
1 € [ay1, bus1], which is well defined by our inductive hypothesis and even

continuous by consideration of Theorem 2.32. Since A, is continuous on [@,+1, bn+1],

bn+1
then f Apr1 (1) dx™ exists, call it Z;.

(%]

Lete > 0.

Since Z exists and 5 > 0, we pick a partition P; = Fy xF x-+-xFpy1 of

. k t
Rus = a1, b1]x[az, by]x - x[ans1, bus1] such that if H = {x} J'_ x---x @)= isa
k+ - . -
refinement of P1 and { {@, .. t{”})}l L } ' is an interpolating sequence of H,
m 1= 1=

kn+1
then | Y, Z fal, ey axl oAl - Z1l<§

ln+1—1 =l n+ n+

Since Z; exists and % > 0, pick a subdivision ,.1 of [@p+1, but1] such that if

H,q= {x"”} " 1s arefinement of ,,7 and {t"“} ! 1s an nterpolation sequence of

ln+l a1

Z Apa () 2t - 7,

Ins1 =1

D1 U Fpye1 and let {t,’f:} }k"+l be an interpolation sequence of H,.1. We thus have

ky,
H,.1, then < %.LetHpy = {x,”‘:l1 3 ! , be a refinement of
n 1=

3 Aua ) axt -2 <

i1 =

For each 1,41 €{1,2, ..., kps1}s

3 4

faI:" faizf‘:"f(xl, x2, ..., X", t{f‘ﬂ)cﬂxl dx? ... dx" exists and since m >0,
then there exists a partition P, , of R, = [a;, b1]x---x[ay,, b,], such that if
H= {x,ll }i‘=0 X oo x {xl} }i’;o is a refinement of P, and { {(t,l1 Y ey t{i)}f’_l m}f:=1 is an
interpolating sequence of H, then

k 4 1 n n+l 1 &

1,,Z=1 llz_;l f(tl1 D P )Ax,I . —Api (’zm )| < et

Let P, = (U =1 Pl ) Thus P, is a refinement of P, for each

in+1 € {13 21 LER) kn+1 } Let Hn = {lex }f:l { } s be a refinement of

tn1

ky
P, J (Fyx---xF,)and let{ {( )}f‘_1 --}l . be an interpolating sequence of H,.
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First we have = H, xH,,,1 is arefinement of Fj x---xF,, xF,.1 and

k; n+1 «
{ {(z‘}1 y aees 1.‘,”*11)}1l 1 } . 1s an interpolation sequence of H; therefore,
n+ 1= Ing1 =
kn+1

ky
Yo X fal, o mhaxd axttl -z,

T Ty
tne1 =1 n=1

<£. (5)

Second, since H, is a refinement of P, , for each 1,41 € {1, 2, ..., ky41} and

k ha
{ {(tzll s )}tl 1 } | is an interpolating sequence of H,, then
n 1= In=
k, k
1 +1 1 +1 £
12—1 e lz—lf(tll, ooy t;f,’ tlriwl )Axll “.sz —An+1(t;:l+1 ) < m’
(A 1=
1n particular
n+1 ___.£
A”+l(t1n+1 )+ 3 (brr1—ani1) <
k

7

ky
Yo X fal, g, et axl oax, <

Iny1
1,=1 =1

An+1 (tztf:ll ) + 3 Gns "

1=0nsy)

kn+1 kn kl
1 n +1 1 +1
Z (Z ot Zlf(tzla -'5tln’t;:+l )Axh '“Ax{tz)szwl <

=1\, =1 h=
ks n+1 & +1
l 21:- (Ans1 @D + G —ai) ) o,
n+l =
ks n+l +1, €
= Z An+1 (tln+1 )AxZH-I + ?
Iy =1
and
haa (K < 1 +1y A1 1
2|2 X f, Lt ) Axy, eaxg | AT >
L1 =1 \1,=1 n=1
Fags n+l & n+l
l ?_ (A1 G1D = 5y ) ax)
n+l1—

kn+1
= % A ox -3

Lnsy =1
thus
knil g f(tl P tn+1)Ax1 CeA n+l _ kil A (tn+1)Axn+1 < £ 6
=1 =1 12 2002 My Pl U xln+1 op=1 n+l lna1 Ine1 3 ( )
We have
kn+1 kl
1Z1 - 2] < |74 - 2_1 ~--lZ_1f(t,11, e 81, Y Ax] a4
nel = 1=
ks k 1 n o ontly Aol el +1y 7 on+l
Z Z f(tll’ ""tln’ tln+1 )A’xll .“Axln+1 - Z A”"'l(t{in )A.Xﬁ“ +
=1 =1 Ine1=1
o Ao (1) pnt]
ln§=1 n+1(ln+l )A I+l _b
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which, from (4), (5), and (6), is less than 5 + 5 + 5. That is |Z; — 23| < & for arbitrary
&> 0s0Z; = Z,. By the principle of proof by induction we have our result. &
Theorem 2.34 Suppose R = [ay, bi]x[ap, bp}x---x[ay, byl and f: R— R 1s
continuous, then fb"--' fb'"' fab:'-- fblf(xl,xz, e XAXY o dXS o dX - dX s
equal to [ [¥ e [Mo [ FOL, 22, L A dx e dit o d e A
Proof. We let Z; be the first integral and Z; be the second. Let € > 0. Since Z;
exists and 5 > 0, then there exists a partition Py of R such that if
H = {x! }Z’zo X x{xlt }f:=1 is a refinement of Py and {--- {7} , ..., )}f‘l=1 ---}lu=1 is an

interpolation sequence of ,then

Ky k ks

EED DR Z fal, . @)axl ax axl -axt —Zy| < £. Since Z,

m=l =1 =1 =1 2
exists and < 5 > 0, then there exists a partition P of R such that if
H={x! }k1 x---x{x" Y s a refinement of P, and { {( )}k1 }k is an
hiy=0 n =1 2 U u=l Jy =1
interpolating sequence of ,then
Ky ks k .
PIRRITED MY Y Z F@, ) axl e axS A~ 2| < 2
1,=1 =1 ;=1 =1
k ,
Let H = {x,1 }l X x{x7 }f" ) be a refinement of P; |J P, and let
1= n ﬂ=
k
1 k "
{ {, . t,’i )}111=1 }t _ be an interpolating sequence of
We observe
kn kt k_y kl 1 1
3o 3 e Y e Y f(tz , --wttn)szl Ale: ...Axft A‘x;i -
1,=1 =1 ;=1 y=1
k, k, k, . .
)IRRTEED ST W Z f(tzl --wtzrf,)szl .'.Axfl ...Ax-l?: Axﬁ -Z1l=0

=1 =1 =1 =1

since for each term f(t,l1 R 49 sz, e AXy ---Ax,’[ ---Ax; in the first summation, there is
the term — f(t,l1 s By) Ax,ll ~Ax; ---Ax; ---Ax] 1n the second summation, but by
commutativity of multiplication

—fal, ) axl enxl axy AR == L B ax e AxS e Ax] AT

5

The following observation will yield the desired result:

k, k ks
Zy -l <|\Zy = 3 Y - D z @,y axk axd axd eax |+

=1 =1 =1 n=1



ks ki ks ki 1 1 ;
S
Z ces Z o Z coe f(tll""’tZ)Axll ...Axl: ...Axl‘ ...Ax;’ —
1,=1 =1 ;=1 =1
kn ks ks

k
) IRITED ST YARPS 21 f(lel’ ___,tZ)Axlll ...Axt[ e AXS AR =7
1

=1 ;=1 =1 =
kn ks ky ky 1 ] .
Z es Z aes Z e Zlf(tll""’l{:)Axll "'sz,"'Axi ...AxZ_ZZ

1,=1 ;=1 =1 =

Therefore |Z; — Z;| < € for abritrary & > 0 and we conclude Z; = Z,. &

&
<5 +0+
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CHAPTER III

DIFFERENTIAL FORMS

We start by defining tensors. After some work, we specialize to alternating tensors.
Next, we develop the wedge product to work with alternating tensors. Finally, we
introduce fields and put these together with alternating tensors to build the construct
called differential forms. At the last of this chapter we define the differential operator to

build new forms from old ones.

k-tensors

Linear functions carried individual vectors from one vector space to another in a
particular manner that made the transformation linear. Multilinear functions will carry a
finite number of vectors in one vectors space to a finite number of vectors in another, and
they will carry these vectors in a manner that resembles a linear transformation for each
one.

We will denote the k-fold product R” xR” x ---xR" by ®R™Y*. To elaborate, if
v € (R")*, then v is comprised of k ordered vectors chosen from R”. For example,
(( g ), ( _81 ), (i )) € (R2)3. A k-tensor can be defined as a multilinear function from ([R”)k
toR.

Definition 3.1 A function T : (IR”)k — R is a k-tensor if for each position
ie{l,2, ...k, T(xq,....,a,+b,....x) =Ty, ...,a, ..., xx) + T(x1, .... by, ..., Xp)

and T(xq1, ..., @-X;, ..., xp) = aT(xq, ..., X, ..., X;) where a €R.

34
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A well-known example of a k-tensor is the determinant, which acts on z columns
and n rows (easily thought of as n vectors each with # components) and returns a real
number. We will give another example. Define T : ([RZ)2 —R by

T(x, y) = (¢! + x2) (¢! + y?). We claim T 1s a 2-tensor. Following the definition of T, we

1 1 1
calculate T(( ZZ 1:2 ), (iz )) = (@ +bY) + (@ + B?) ! +y?)

= @ +b) O )+ @+ D) G+ = a0t +y)+ a0l +y?)

1 1 1 1
+01G + )+ PPl +9?) = T(( Zz ), (iiz )) + T(( Zz ), (iz )) and similarly

1 1, p1 1 1 1 1
10 R (9 (9 6 /5 ‘
T , =T , + T , , which satisfies the first
(( x2 ) (a2 +b? x? a? ) x? . b?
condition of berng multilinear. Also, T(a- ( x2 ), (iz )) = (ax! + ax®) 3! +y?)

X
1 1
= a(x! + ) O +¥?) = a'T(( * ), ( Y )) and similarly for & in the second position. T’

2y

satisfies the conditions of Definition 3.1, so T 1s a 2-tensor. One can see from this simple
example how unruly notation with tensors might become when answering n-dimensional
questions for large n.

Definition 3.2 Let T*(R") be the set of all k-tensors under “+” and “” defined for
S, Te TR, 1,x2, ..., % €R", and @ € Rby
S+71)(x1,x9, ..., x) = S(x1, x2, ..., X¢) + T(x1, x2, ..., X¢) and
(@-S) (x1, x2, ..., xp) = aS(x1, X2, ..., X¢).

From the definition, adding two k-tensors together amounts to adding the real
number images together and multiplying a k-tensor by a real number a turns out simply to
be the usual real number multiplication of real number image of the k-tensor with a. We
define a new operation between k-tensors and /-tensors.

Definition 3.3 For § € T*R™), T € T'R™), and x1, X2, ..., X;+; € R", define the
tensor product “®” by S® T'(x1, X2, .., Xp1) = SX1, X2, oy Xk) T(Xk415 X425 +--s Xkt1)-

We build some familiarity with k-tensors, their grouping in vector spaces, and the

tensor product between those vector spaces. As is the usual convention applied to our
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situation, multiplication takes precedence over addition and so in consideration of order in

expressions with multiple operations we apply “®” before we apply “+”.

Theorem 3.1 Suppose S, S1, S, € TER™), T, Ty, Tr € THR"), and U € T™R").

The following are properties:

L1 +592)T=510T+5 T
2851 +1)=SQT1+S® T,
3.5 QU =S (T ®U)
4.(@-RT=5S@ @l =aS®T)

Proof. Let 1, X3, ..., Xk+1+m € R”. The following manipulations are easy to follow

using Definitions 3.1, 3.2, 3.3, and properties of the real number system.

1.

S1+82)T(x1, ooy Xp4r) =81 +82) 1, vy X)) T(Xps15 -ovs Xsr)
=[S1(x1, ooy x6) + 82001, vy X T(Xkea 15 - v Xked)

=811, eoes XK) Tk 15 ey Xpgt) +
SZ('x].: "'9xk) T(xk'l'l’ sy xk+l)

=S1®T(x1,y oovy Xpr1) + S2 QT (X1, «vy Xpas)
=1 ®T+S5,QT) (x1, -y Xpt1)
2. ST +To) (X1, -ees Xpwt) =81, wovy %) (T1 + T2) (ks 15 -oo5 Xic)
=81, v XT1 K15 +ovs Xprt) + T2t 15 -5 Xir)
=81, «oos X6) T1 (K15 «oos Xgt) +
SOty vees X)) T (g1 oovy Xial)
=SQ®T1(x1, ..., Xg1) + SO Ta(x1, .., Xg+1)

=T +SQ®T)(x1, ...\ Xga1)
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3.(8®@N) @ Ux1, «oos Xprtem) =S OT) (X1, -vvs Xpit) UKkt --vs Xatam)

=815 e X) Ta 15 ooos X)) Ukt -5 Xadam
=815 s X)) (T O U) (X415 +evs Xictltm)
= S@T @ U) (31, - Kestsm)

4 (@-S)®T)(x1, -y Xk1) = (@-S) (X1, ooy Xp) T(Xpa 15 --v5 Xpr1)
=aS(x1, ooy X)) T(Xpeg1s oees Xptl)
=a(S®T)(x1, ..., Xr+1)
=81, ooey Xp) AT X1 -eey Xiewl)
=81, oo, 2 (@ T) Xkt 15 -+, Xhad)

=S ® @ - 1) (x1, -.., Xp41)

We interject a concept referred to as the dual of a vector space as it will be helpful
in establishing a basis for T kR™).

Definition 3.4 For R" the dual, denoted (R")", is the set of linear functions from R”
to R. As elements of R” are called vectors, elements of (R")* are called linear functionals.

Our first step after creating this dual vector space is to establish a basis.

Definition 3.5 A projection function n* : R” — R is defined for each x € R” by
mx)=x'forie{l,?2,..., n}.

The projection functions output the magnitude and direction of the ith basis
element. For example in R2, the vector w = (-2, 3) has the expansion in terms of the
standard basis for RZ of w = —2-e; + 3- €3, and 7! (w) = =2 while 7% (w) = 3.

Theorem 3.2 The set of projection functions form a basis for (R”)*.

Suppose ay, @, ..., a, €R and (anl a, n’) (x) = 0 for each x € R. We cleverly pick

1=

a particular x € R, namely a such that @' = g, foreach i € {1, 2, ..., n}. Since

n n n n R n n
(Z a, -n’) (@) = 0and (Z a, -ﬂ’)(a) =Ya-7w@=Yad=Y aa,theny a?=0.
=] 1=1 =1 =1 =1 =1

n
Since 3, a,2 =0, then a, = 0 for each i € {1, 2, ..., n}. We have established the set
=1
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{711, w2, ..., "'} is linearly independent.

Next we show {7!, 72, ..., 7"} spans (R")*. Let ¢ € (R")* and & R”. Using the
usual basis for R” and the linear properties of ¢, we write
p(x) =play-e; +ay-ex+ - +an-ep) = ay-g(er) +ay-p(ez) + -+ + an -@(en). Now if

x*=0foriel,?2, ..., n}, then pick b, = 1 otherwise we pick b, € R such that b, = ﬁf;))

foreachi e {1, 2, ..., n}, then p(x) = aj by -7t (X) + ap by -2 (X) + -+« + a, b, - 7" (x). We
can chose ¢, € R, by ¢, =a, b, foreachi € {1, 2, ..., n}, and we have
p@X) =c1 -7 X +cp T (X) 4+ cpn" (X). 0

Sometimes questions about a vector space can be more easily answered by working
in the dual and applying conclusions to the vector space. The reason why applying
conclusions is valid comes from the surprising relationship between a finite dimension
vector space and its dual.

Theorem 3.3 There is a bijective linear function from R” to (R”)* .

Proof. For each x € R” define ¢, : R” — R by ¢,(y) = (x, y) for each y € R".

We first show ¢, € (R")" foreachx e R". Letx, y,zeR” and @, B € R,
prla-y+ B-2) =(x, -y + B-2). From properties of the inner product
x,a-y+B-2y=alx, y)+ B, 2) =ae:(y)+ B (z). We have shown for each x € R",
@y is a linear function from R” to R.

Define T :R" — (R™)* for each x € R” by T(x) = ¢ . Next we will show that T is
injective.

Suppose T(x) = T(y) for x, y € R”. By definition of T, ¢, (a) = @y (a) for all ¢ € R".
In particular, ¢x(x) = ¢, (x) and @ (y) = ¢, (). Since x(x) = ¢, (x), then (x, x) = (y, x),

n
similarly, (x, y) = (¥, ¥). Since {x, x) = (y, x), then 0 = }; x*(x' — ¥*), and since
=1

n
(x, y) =(y, ¥, then 0 = Y y'(x' —y'). The difference gives
=1

n n
0= X -y)-yE -y)=) - y’)z. We have here the sum of non-negative
=1

=1

terms equal to zero, therefore each term must be zero. Hence x* = y* for each
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ie{l,?2, ..., n}. This is to say that x = y , and we conclude that T is injective.

Now assume ¢ € (R”)*. Using the set of projection functions {x1, 72, ..., m,} as the
basis, we write ¢ as the unique linear combination of basis elements, i.e.,

Q= xlm +x2 my + -+ + X" m,, where x* €R for each 1 € {1, 2, ..., n}. These claims can
all be substantiated by common knowledge of linear algebra. We apply ¢ and its
equivalent linear combination of basis elements to an arbitrary y € R” and arrive at

o) = (&t -xt +x2 -7 + .- + X" - ™) (y). Using the standard definition of point-wise
addition for functions, we write (x! -l + x% - 72 + --- + ¥ -7%) (y) as

2 al () +x2 22 (y) + - + 2" 7" (y). Since 7' (y) = y* for each y € R” and

ie{l,2, ..,nhthenx! 2l N+ 22 M+ -+ "7 (M =xl Yy + 2y + .- + XY
From the meaning of the usual inner product, we know x! y! + x2 y2 + ... + x* y* = (x, y).
Since x 1s umque and y 1s arbitrary, then ¢ = ¢, = T(x). We have shown for each element
@ of (R™)*, there is an element x of R” so that T(x) = ¢. We conclude T is surjective.

Since T:R”— (R")* is linear, injective, and surjective, we conclude that 7" is a
bijective Iinear function from R” to (R")*. &

We recall that a k-tensor is a function that behaves multi-linearly and pairs k vectors
from R” with a real number. In light of our definition for the dual of R”, we see that a
1-tensor 1s merely an element of (R”)*. Moreover the collection of all 1-tensors, TIR™),
is the same as (R")*. At first this does not seems like a moving realization, but then we
use our defimtion for the tensor product “®” and with a great deal of complexity, we find
that we can build any &-tensor space out of elements from the dual of R”.

We start by considering the simplest k-tensor space that exemplifies the
complexities of the general case but keeps the number of tensor terms to a manageable
size. Consider w € T2(R?) and x;, x; € R3. We use the usual basis of R3 to redescribe
our two arbitrary vectors as a unique linear combination of the basis elements:

X1 =aji1-€1+ayp-€x+ai3-e;3 and xp = @my-e+arr-exy+axz-e; for a,, € R,



ie{l,?2},je{l,2,3}. We apply w to the linear expansion of x; and x, and carefully

apply the multilinear property of w. |
w(xy, X2) =wlay)-ey1+ajp-e+dayz-e3,ay)-€ +ay-€—ay3-e3)
=ay wle, ay1-e1+axp-e; -~ ay3-e3)+
wlap-e+ajz-e3,ax1-€ +axn-ey+ays-es)
=ay, az1 wley, e1)+ayy wler, azp-ey +az3-e3)+
ajpwiey, ayy-ey +azp-e)+ay3-e3)+
ajpwles, ar)-e1+axp-er+ays-e3)
=ay,1 az) wlel, e1) +ay) axp wley, €) +ay1 a3 wiey, e3) +
aip az) wies, e1)+ap wley, axn-e2 +ays-e3) -
ajp ap) wies, e1)+ayp wles, azp-e2 ~az3-e3)
=ay) a,) wley, e1) +ayy azp wley, e2)+ay1 a3 wle, e3) +
ajp ap1 wiey, e1) +aip axy wey, ) —ap a3 wiey, e3) +

ar1p azy wies, e1) +a1p ax wies, e) ~arp a3 wies, e3)

3 3
= Z (Z a1,11 aZ,z; w(ell » elz ))

i =1 Iy =1

Next we experiment by applymng 7' ® 7/ to  and x; for i, j € {1, 2, 3}.
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rl @nl (x1, x2)
=rl@n! (a1,1-e1 +ai1p-ex +a13-e3,az1-€1 %azz -ep +ax3-e3)
=nl(a1y-e1 +a12-ex +aiz-e3)ml(ay1-e1 +azp-er +az3-e3)
= (a1, m'(e1) + a1 w(e2) + ar 3 7l (e3))-

(@y; mt(er) +app wl(er) + ap3 wl(e3))
=(@1-1+a12-0+a12-0)(az1-1+a21-0+az3-0)
=ayax

1 o2 _

mRn (X1, X2) =ai1 a2
1 o3 _

@’ (X1, X2) =a1) a3
2 ol _

T Qm (X1, X2) =ai2 a1

mt @n* (X1, X2) = a1

nt @n (x1, x2) =ajp a3
3 o1 _

mQm (X1, X2) =ai3a2;1
3 o2 _

0 Qm” (X1, X2) = a3 a2
3 o3 _

QM (X1, X2) =a13 a3

3 3
We combine these results with w(x1, x2) = X ( 2 a1y, az,, we,, e, )) to show
=1\ =1

3 (3
w(xy, x3)= 2, (Z ™ @' (x1, x2) w(e, , e,) |, which is a linear combination of the
=1 \1,=1

elements from the {7' ® 7/ |1 < i, j < 3}. We conclude that the {#' ® 7/ |1 < i, j < 3} span

T2(R3). Next we show that this set is linearly independent.

3 (3
Suppose 0 = 3, ( 2 Ay, T ® n’z], where each a,, ,, € R and 0 in this context is

5] =] 12=1

the 2-tensor that takes pairs of elements of R3 to the number 0. We must show each

3 3
ay ., =0. Weapply 2, (Z a, 4, ™ ®7r’2) to ey and eg.

l1=1 =



3 (3
0 :(Z (Z a, 5, ™ ®7r’2))(81,91)

11=1 12=1

Mo

3
1 ( Z—l all,lz [(ﬂll ® ﬂ.lz) (el ’ el)])

L

Mw

3
= (Z al],l2 71-!1 (el)ﬂlz (el))
1 lz=1

u
= a1 7' (1) 7! (er) +ara 7t (e) 7 (e1) + a3 7' (e1) 7 (e1) +
az1 7 (e) w! (e1) +app 7% (1) 72 (e1) + az3 w% (e1) 7 (e1) +
a3 7 (e) 7! (e1) + azp 7 (e1) 7 (e1) +az3 7 (e1) 7 (1)
=ai1-1-1+a121-0+a;31-0+
a210-1+a320-0+a30-0+
a310-1+a320-0+4a330-0

=ai

We have shown that a1 ; = 0. We can apply the same 2-tensor to e; and e to show
a1 = 0. Following the pattern, we can apply the same 2-tensor to ¢, and e,, to show
a, ,, =0for i, iy € {1, 2, 3}. Since each aq,, ,, = 0, we conclude that the
{m'®n’/ |1 <i, j<3}is alinearly independent set.

We have shown that in the case of T2Z(R3), the basis1s {r ® 7 |1 <1, j <3}, so
T2(R3) has dimension 3% or 9. This example 15 good to work through before trying to
understands the general case. We will show {7t @ --- @7%* |1 < iy, ..., ; < n} is a basis
for T*([R"), which will therefore have dimension #* From this last comment on the
dimension of T*(R"), we can see how quickly the number of terms 1n a linear
combination of the basis elements will grow to an unmanageable size. We must therefore

gather our wits in the use summation notation and carefully follow our example of

T2(R3) to prove the following theorem.

4?2
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Theorem 3.4 Suppose T k(R™) is the k-tensor space of R”, and {e1, ey, ..., €,} is
the usual basis for R”. If {r!, 2, ..., 7"} is the usual basis for (R")*, then the set of k-fold
tensor products {7 ® --- @n* |1 < iy, ..., iy < n} is a basis for TERM).

Proof. Let {rx!, n%, ..., "} be the usual basis for (R*)*, which means if & R”, then
mx)=x'forie {1‘, 2, ..., n}. Let w be a k-tensor in T*(R"), and let x;, .\22, .o Xybek
vectors in R™. If foreach i € {1, 2, ..., k}, we write x, as a linear combination of elements
from {e1, ez, ..., ey}, then , =a,1 €1 +a,2 €2 + - +a,, €, with a,; R for each
iefl,2, ..., ktand je{l, 2, ..., n}. We apply w to our k vectors from R” and following

lessons learned from the example T 2(R3), we find

n n n
W(X1, X2, .oy Xp) = 2, (Z [Z A1y, G2, Oy, W€, €4,y oney e,k)) ) Based on our
n=1\p=1 =1

experience from the example T2(R3), it is not difficult to inductively see that
T2 @ @t (X1, X2, ..., Xk) = a1y, G2, Ak, foreachiy, n, ...ix (1,2, ..., n},

so we make this substitution and have

n n
(X1, ..., Xp) = 2, ((Z Q@ (x1, ..., xp) wle,, ..., e,k)) ) Since the

11:1 lk=1

vectors X1, X2, ..., X; were arbitrary then

n n n
w= ), (Z (Z we,, e, ..., e, ) 7" ®7r’2®---®7r"<)~-~). Since w was arbitrary in

=1 \p=1 n=1

T*@R™), then we have shown the {7 @ --- ® 7' |1 < iy, ..., i < n} span TFR").

Next we show the {#" ® ---@7* |1 < iy, ..., iy < n} is linearly independent.

Suppose 0 = zn; (zn; (Zn:

Qg g T O Qe ®7r”‘) ) where the zero here
=1 \rp=1 =1

is the k-tensor that takes elements of R” to the number 0. We apply this k-tensor to &

elements chosen (with repetition allowed) from {ey, e3, ..., e,} c R".

n n n
0= lzl lzl lzla“’”’ I g @2 ® ...®7le) ) (ejl’ € s ejk)

1= 2= k=
n n n

= Zl Zl Zlalulz, ’lk.ﬂ'll QA2 Q- (ejl’ejz""’e,]k)
n=1\5= u=
n n n

= Z Z ves Z al],lz,. :lk .7-[11 (e]l)ﬂ-lz (eh) ...ﬂlk (e_]k) ves
=1 12=1 lk=1 )



From the example, every term in this complex sum turns out to be zero except the

one where i; = j; for every [ € {1, 2, ..., k}; hence the sum collapses to the single term
@, 1. .- Wehave shown that0 =a, , , foreach ji, ja, ..., jr €{1,2, ..., n} since
our choice of ¢, ¢,,, ..., €, €{e1, e, ..., €;,} C R" was arbitrary. We conclude the

" ®@---@a* |1 <ip, ..., ir <n}islinearly independent.

Since {7 @ ---@n** |1 <1y, ..., i < n}is alinearly independent set of order n*
that spans T*(R™), we conclude that {7 ® --- @7 |1 <1y, ..., it < n} is a basis for
Tk(R™), which has dimension n*.

In the example and theorem, we have brought an importance of the dual space to
light. We can build any k-tensor space or subspace from elements of (R”)*, which from

Theorem 3.3, is structurally the same as R”.

Alternating k-tensors

In this section we take the next step in increasing the complexity of our work
Ironically, we do this by investigating a subset of the k-tensor space we just developed in
the last section. Specializing will bring k-tensors together with the concept of differential
forms, a key idea in the generalized Stokes’ Theorem.

Definition 3.6 A k-tensor w € T*(R") is alternating if for 1, x5, ..., x; € R”,
W(XT 5 coes Xpy eeenn Xy oy Xg) = =X, oees Xy oony Xp, ..o, Xg) TOr i £ j with
i,je{l,2, ..., k}.

The next natural step after defining a special type of k-tensor 1s to collect all the
special k-tensors of this type together. We designate this collection A¥(R"). If
w, ¢ € AK(R") and a € R then

(W+ @) (X1, s Xiy ey Xy oy Xg)
==1-wX1, o0y Xy ooy Xyy oony Xg) +
=L-(xy, s Xy s Xy ey x;)

=-1-(w+¢)(x, s Xpy ey X, cees Xg)
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SO W+ ¢ = —(w+¢)and

(@ W) (X1, eeey Xpy oaes Xpy oeey X)
= AW(X1, ooy Xgy ey Xy onny Xg)
=A =X, ey Xy ey Xpy ey X))
==1-aw(X1, ..., X, .0y Xiy onny Xg)
=—(@-wW) X1, s Xy oens Xpy onny Xg)

soa-w=—(a-w).
By the elementary theorems of linear algebra A*¥(R"™)is then a subspace of T kR™
or vector space in its own right.

We will be interested 1n finding a basis, but surprisingly will find the quest even
more challenging than the one to find a basis for T*(R"). We cannot build the basis
elements with ® out of the projection function 7' . R” — R because if each of a k and
I-tensor is alternating, their tensor product 1s not necessarily alternating We start the quest
by defining a function that pairs a k-tensor with an alternating k-tensor To make the
definition we need to be reminded of some background in Group Theory.

Recall S, is usually reserved in Group Theory to represent the symmetric group of
permutations on n symbols If 123456 is a sequence of six symbols, then 153426 is a
transposition, as well as a permutation, because exactly two symbols are interchanged.
The sequence 632154 1s another permutation that can be achieved from 123456 by the
following sequence of transpositions:

1) transposing the symbols in the first and fourth positions, 423156;

2) transposing the symbols in the first and sixth positions, 623154;

3) transposing the symbols in the second and third positions, 632154.

While one can see the order of this sequence is not unique, from group theory we
know every permutation can be decomposed into a minimum number of transpositions.
The permutation 632154 required 3 transpositions, and we call 1t odd since the number of

transpositions is an odd number We call some other permutation even, if it can be
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decomposed into an even number of transpositions. Now for our last note on group theory
before we make our definition, if o € S, then sgn(o) = 1 if o is even and sgn(c) = —1 if
o is odd.

Definition 3.7 For w € T*(R") we define Alt(w) € A*R") for x1, x2, ..., X, € R"
by Alt(w) (x1, X2, ..., Xk) = % Ggs SEN(0) - W(Xgr(1)s Xo(2)s ++-» X (k))-

¢

Now we must show that the definition for Alt(-) does indeed produce and
alternating k-tensor. This essentially turns into an observation of the fact, but we make ita
Theorem. |

Theorem 3.5 If w € T*(R"), then Alt(w) € AFR").

Proof. letw € T k(@R")and x1, X, ..., Xy € R". Since sgn(o) is determined by the
number of transpositions o~ can be decomposed into, then composing ¢ with an additional
transposition will simply change the sign of sgn(c). Therefore, if o € S and (i, j) 1s the

transposition that interchanges i and j for i, j € {1, 2, ..., k}, then sgn(o - (i, 7)) = —sgn(o).

Alt(w) (x1, ..., x;, X, oo X2)

=& 3 Se(0) WXa(t), s Xo())s +es K)o o> Xor))
O'ESk

= zlr 2 Sg(o - (i, ) O(Xg(1ys +vvs Xo(t)s -=-» Xor(g)s +-+» Xor(k))
O'ESk

=75 2 —SEUO) W(Xg(1)s s Xg(t)s +-er Xo(j)s ++0> o))
oeS;

= —7617 2. SENT) W(Xg(1)s +vvs Xor@)s +-vs Xo(j)s +++s Xor(k))
O'ESk

= —Alt(w) (X1, ..0r Xpy ooy Xy oeey Xg)
We have shown w is alternating which allows the conclusion Alt(w) € AFR™).
Now what effect does Alt(-) have on a k-tensor that 1s already alternating? We will

investigate this in an example and then generalize it in a theorem. Suppose w € ASR™).
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Alt(w) (x1, x2, X3)

= -317 2 sgn(0) W(Xo(1y, Xo2)s Xo(3)) Def 3.7
oeSss -
= % (w(x1, X2, X3) — w(X], X3, X2) + W(¥X3, X1, X2) expanding the sum

—w(x3, X2, X1) + w(xy, X3, X1) — w(x2, X1, X3))

£ (1, X2, X3) + (X1, X2, X3) — (X1, X3, X2) Def 3.6

+ w(X1, X2, X3) — w(X2, X1, X3) + w(X2, X1, X3))

L (lx1, x2, X3) + w(x1, X2, X3) + (X1, X2, X3) Def 3.6
+w(x1, X2, ¥3) + (X1, X2, X3) + (X2, X1, X3))

= + (6w(x1, X2, X3))

= w(xy, X2, X3) ]

Through the process of making the order of the sequence of x,, x;, x; identical for
each of the 3! terms all the —1 coefficients become + 1. In words, if it takes an odd
number of transpositions to obtain a particular permutation then it takes odd number of
transpositions to undo the permutation so —1-~1 = +1. Similarly for an even
permutation, 1-1 = +1. In the language of group theory, a permutation and its inverse
have the same sign, i.e., sgn(o) = sgn(o’l). This is the basis for the following theorem.

Theorem 3.6 If w € A*([R"), then Alt(w) = w.

Proof. Suppose w € AFR™). Let x1, X3, ..., x; € R". For each o € S,
sgn(o) sgn(o™1) =1 and WX o1y(1)> ¥ 0-1)(12), s X 1y () = WXL, X2, oony Xg)-

Alt(w) (x1, X2, ..., Xg)

= % 2 Sgn(0) W(Xe(1y, Xo(2)s +--> Xr(k))
oSk

1 -
T UES SgIl(O') Sgn(o' 1 ) (,L)(X(o.o.-l Y1) Xgo1)(2)s -+ X(oo™) (k))
k

s
7 Kk wlxy, x2, ..., X))
) :w(xlax29 resy xk)
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where the factor k! comes from the fact that S; has k! elements and hence k! terms
in the sum over the elements in S;. We conclude that Alt(w) = w. &

We see in this theorem where the factor 7617 comes from in the definition of Alt(-).
The factor is not necessary to make a k-tensor alternating as can be seen from Theorem
3.5, but to make Theorem 3.6 true, it is necessary. We use both the previous theorems for
our next theorem.

Theorem 3.7 If w € T*(R"), then Alt(Alt(w)) = Alt(w).

By Theorem 3.5, Alt(w) € A¥R™). Since Alt(w) € A¥(R"), then by Theorem 3.6
Alt(Alt(w)) = Alt(w). 1

Continuing on our quest to write a basis for A¥(R”), we must take care of the
original problem in that for w € A*R™) and v € A'R"™), w® v is not necessarily part of
A (R™). We therefore use our definition of Alt(-) together with ® to write a new tensor
product between alternating tensors called the wedge product.

Definition 3.8 For w € AFR”) and v € A/R"), we define the wedge product w Ay

as & Alt(w ®v).

To gain experience with the wedge product, we work out several properties of this
new binary operation. The proofs are all trivial in theory since they involve mostly
definitions to follow the reasoning, however, there is a great complexity in the meaning of
the notation.

Theorem 3.8 Suppose w, wi, wy € AXR™), 1, 71, 12 € A{R™), and @ € R. The
following are properties of the wedge product:

L) (i +w)An=w1 +nAwy +1,
2)or(m+m)=wrn +wan,
Javan=wAran =alwAn),
4ywrn==D"gr0.

Proof. Let x1, X3, ..., Xty €R”.



Y

(w1 + W) AN(XT, -ons Xptl)

(k+)!

(k+I)!

_ (k)
OESku
_ kD 1 Z
= T 1
ko (k) e
(kD! 1 2
= TR kD!
ki (k4D i
(k-+1)! 1
kY (kD)
(k+I)!

= & Alt(wy @ 1) (x15 -

= w1 AL, ..y Xipl) + @2 ATI(XY, -

= (w1 An+wr AT (XL,

= o Altlw) + w2) ®@m) (xy, -

- Altlw1 ® 17+ w2 ® 1) (X1, -

Y sgn(o) wy ®N(Xe(1ys -

TESku

ooy Xl)

o> Xkad)

oy Xietl)

sgn(o) (w1 @ N(Xg(1)s ---» Xo (ki)

=& A T sen(o) (@1 @7+ w2 @N) (Kot -os XolkrD)

+wy @N(Xe(1)ys ++-» Xorker))))

sgn(o) w1 @ N(Xa(1ys --+» Xo(k+l))

(k+I)!

o Xgr) + g Altlwz ®1) (x1, -

o Xkt 1)

o Xa(krl))

o Xktl)

Def 3.8
Thrm 3.1

Def 3.7

Def 3.2

Def3.7

Def 3.8
Def 3.2
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2) w A (1 + 1) (X1 oees Xpar)

k+)!

=T Alt(w ® (71 +172)) (X1, ---5 Xk+d) Def 3.8
= D AW
= o m+w®m) X1, ..., Xkl Thrm 3.1
_ (kD! 1
S ZS sgn(0) (w @ N1 + w®Mn2) (Xe(1ys --- Xok+l)) Def 3.7
TEI4+1
k+1)! 1
= (/;2 [Z0)] 2 sgn(O) (W ®n (Xo(1y, - Xo(k+l)) + Def 3.2
TESk
W® M (Xg(1)s +++» Xokes)))
k+I)! 1
= (sz? Ty X sgno)wemn (K1) > Xo(kat) +
oES
k+1)! 1
(le? 0] 2 Ww®m (Xo1), - Xo(k+1))
oES

= DAV @ ) (X1, e Xprt) + S Al ®T72) (X1, -, Xpst)  Def 3.7

]
= WAN (X1, - Xil) + O AT (XL, oens Xiesl) Def 3.8
= (WA +WAR) (XL, s Xkil) Def 3.2

3) alw An) (X1, ey Xirl)

=a &0 Alw@n) (%1, ..., Xerd) Def 3.8
=a g,—‘c—:’—?,'— (k—}rl—)T JE%W sgn(o) W @ N(X(1y, «--» Xorhrd)) Def 3.7
= L’,‘(}‘_f%'- (_ki_l)—" Jg}m sgn(o) a(w @ M (Xg(1)s ---» Xo(k+l))

= %ﬁ?—' ﬁ Ue%m sgn(o) (- w) ® 1) (Xa(1)s --+» Xo(k+1)) Thrm 3.1
= & Ali(a- ) ® 1) (X1, -, Xirl) Def 3.7

= (a-w) ATXL, -, Xiel) Def 3.8
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4) 6()/\77(.‘,'1, [ERE} xk+l)

(k+D)!

= - Al ®1n) (1, -5 Xgs1) Def 3.8 -
= & o 5 S0 @ oty o Ty Fot) o Kotkan) DS 3T
= (1;;5‘)' ﬁ UEZSk lsgn(ff ) W(X(1)s -+ > Xor(l)) MX (k1) s === » Xor(ferl)) Def 3.3
= % ﬁr UEZSk ngn(O') NXok+1)s > Xo(krD)) QXa(1)s ---» Xo(k))

= G ’('1241._1)| Ue%k” Sg(0) 1 @ W(Xr(k+1)s ---» Xo(ksl)> Xo(1)s ---» X))  Def 3.3
= (ﬁll')' Alt(n ® W) (X415 ---s Xktls Xols -5 Xk) Def 3.7
= ED 1Y Al ® W) (%1, X - Xiesls X2, -.or X2) Thrm3.5
= (D (12T Al ® W) (X1, X2y XetLs -oos Xtds X3, ooy Xe) Thrm3.5

= %-T% (D) D! Alt(y ® w) (X1, X2+ Xk Xkt1s --vs Xksl Xk1, Xk) Thrm3.5

= %)—' (-—1)kl At @ w) (X1, X2, «vy Xky Xgals -os Xitl) Thrm3.5
:(—l)kln/\w(xl, vees Xitl) Def 3.8

The properties above will be essential to progress on our quest for a basis for
A¥(R™). We have one last property of the wedge product‘that turns out to be no triviality.
We would like the wedge product to be associative to make it a useful tool in building our
basis.

Theorem 3.9 Suppose w € T*[R") and 7 € T!(R"). If Alt(w) = 0, then
Alt(w ®n) = 0 and Alt(n ® w) = 0.

Proof. Suppose Alt(w) = 0.

LetG={oeSiulotk+i)y=k+ifori=1,2,...,1}. Suppose o, T € G. Since
teG,thenforie(l, 2, ..., I}, 7(k + i) = k + i. Since Si4; is a group then 7! € Spey and

ek +i) =t k+1). Now r L vk + i) =k +i) =k+isok+i=1" (k+1i). We have



52

shown 7}

€ . As the litmus test of a subset being a subgroup we must show or~! € G.
This is obvious by applying o ! to k+ifori e {1, 2, ..., I}. Therefore G is a subgroup of
Sr+1. Since G is 1n essence the permutation group on k symbols, then |G| = k!.

We recall from group theory that for some o~ € Si; a right coset is
Go = {go | g € G}, and the right cosets partition Si.;. Since the definition of Alt(-) gives
us a sum over Sg.;, we will group this sum by right cosets and make a generalizable
conclusion for each grouped sum. To do this we pick a subset S of Si; where each
element of S is in a distinct coset from any other element in S and each right coset has a
representative element 1in S. We have then |S| is the same as the number of nght cosets.
We write then Alt(w ®77) = (Tii)"' > ( >, sgn()we® 77).

1eS \oeGr

Let T € S. Gr is aright coset of Sg4;. Let x1, x2, ..., X3y € R”.

By Definition 3.3, Tk_il-ﬂ'— UEGT Sgn(0) W @ N(Xy (1), --v» Xor(ktl)) =
TI?J%IY Ug,Gr SgN(07) WXy (1)s ---» Xor(k)) N Xk +1) 5 ---» Xo(k+s))- Since |G| = k! then each
ceGrisg tforie{l, 2, ..., k' and g, € G. We rename each vector by applying 7, so

foreachie{l,2, ...,k and je {1, 2, ...,k + 1}, X5, 1) (j) = Wg,(;)- We use this to rewrite
our sum. -(E%-,)—. ZGT $gn(o) W(Xg(1y, -5 Xo(k)) N X (ks 1)s ---» Xo(rd)) =
e
K .
(Ti‘l)—v Zl sgn(g; ) w(Wg,(1)s +--» Wg,()) TWg, (k+1)» ---» We,k+p))- Note that by an argument
I=
that follows the sum of odd and odd or even and even 1s even while the sum of odd and
even 1s odd, we write sgn(g, 7) = sgn(g,)sgn(r) foreach i € {1, 2, ..., k!}. Also since for
eachie{l,2,... k', gtk+)=k+jforjelk+1, ..., k+1} then
kt
(,Hl_—l)' §1 sgn(g: 7) W(Wg,(1)s ---» We,(0)) NWg,(k+1)5 > Wg,(k+D)
kt
= @ 12:]1 sgn(g,) sgn(r) W(Wg,(1), ---» Wg,(0)) MWk15 ---» Whel)
i
=sgn(7) N(W+15 ---» Whsl) % 2. sgn(g;) wWg,1ys ---» We,(k))
(k+D) 1
= sgn(T) P(Wi+1» «--» Whtl) (klft_'l)' Alt(w) (wy, ..., wg). Now by the supposition Alt(w) = 0,

S0 = Sg(T) NWis1, --.r Whet) gy Altw) W1, .., wg) = 0.
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Since we were considering an arbitrary 7 € S, then Y, sgn(o) w ® 1 = 0 for each
oeGt

7€ S, hence Alt{lw ® 1) = TkiW TZG‘,S (GEGT sgn(c) w® 7]) = _(I—c_+1-W T%S (0) = 0. We conclude
that Alt(w ® n7) = 0. It is a similar argument to show that if we used the subgroup of
permutation elements that fix 1, ..., k we could show Alt( ® w) = 0 too! B

Theorem 3.10 If w, 7 € T* (R™), then Alt(w — 1) = Alt(w) — Alt() and
Alt(w + 1) = Alt(w) + Alt().

Proof. letw, n € T* R™) and x1, x2, ..., Xy € R™. By Definition 3.7,

Altlw —m (x1, ..., Xp) = 761-,- 2 sgn(o) (@ = 1) (Xg1y» ---» Xok))- By Definition 3.2

O'ESk
+ 2 sgn(0) (@~ 1) X 1), - Xotty)
O'ESk

= % ZS sgn(0) (W(Xp(1), ---»> X (k) = NXer(1)» ---» Xo()))- We regroup the sum and

[ea(SA 7
distribute 737 and have % ZS SgN(0) (W(Xg(1)s +ovs X)) = NXo(l)> -++» Xo(k)))

oedy

= 7cl-'_ 2, sgn(o) C‘)(-"70'(1), ceey xa(k)) - % > sgn{o) Il(xg-(l), ces xa(k)), which using

oS, TS,

Definition 3.7 again gives Alt(w) — Alt(57). Similarly for “+”. n
Theorem 3.11 If € T (R™), n € T'R"), and 6 € T™(R"), then
AltAltlw @) ® ) = Alt{w ® 7 ® ) and Alt(w @ Alt(n ® 6)) = Altllw @ ® 6)
Proof. Let w € TF (R™), n € T!(R™), and § € T™(R"). Since
Alt(Alt(w ®17)) = Alt(w ® 17) by Theorem 3.7, then Alt(Alt(w ® 17)) — Alt(w ®177) = 0. Since
Alt(w — i) = Alt(w) — Alt{np) by Theorem 3.10, then
Alt(Alt(w ® 1)) — Alt(w @ 17) = Alt(Alt(w ® 1) — w ® 1), and since
Alt(Alt{w ® 1)) — Alt{w @ i7) = 0, then Alt(Alt(w ® n) — w @ i7) = 0. Since
Alt(Alt(w @ 1) — w ® ) = 0, then by Theorem 3.9, Alt((Alllw ® 1) ~ w® 1) @ 6) = 0. Now
by the first of the four tensor product properties of Theorem 3.1, we can distribute the
tensor product on the right so the last equation is equivalent to
AltAllw @) ® - w®n®0) = 0. We reapply Theorem 3.10 to have
AltAIw @) ®F) — Altlw®n®0) =0 or Alt(Alt(w ® 1) @ 0) = Alt(w @ ® §). We have

our first conclusion. The argument for the second conclusion is similar. B
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We are now ready to show the wedge product is associative.

Theorem 3.12 If w € T*

@AM Af=wn( ).

(R™), 7 € T'(R™), and 6 € T™(R™), then

Proof. Let w € T R™), n € T!(R™), and 6 € T™(R").

(WA Al =

(k+-1+m)!

G Altllw Am) ©6) Def 3.8
(el Al Altw @) ®6)  Def 3.8
%%7% ED AlAlw @) ®6)  Def3.7
&hm) Alt(w ® 1 ® 6) Thrm3.11
(lemy G Ali(w @ Al ®©6) Thrm 3.11
s Alt(w ® G Altn®6))  Def 3.7
ot Alt(w ® (7 £ 6)) Def3.8
PINCIN) Def 3.8

This was the final hurdle on our quest to find a basis for A*(R"). As with finding a

basis for T*R"), we will begin

with an example. We shall consider A3(R>) with

{e1, €2, €3, e4, es} the standard basis for R® and {z!, n2, 73, n*, 75} the standard basis for

R3)*. We hope to use our wedge product to build a set of elements of the form

7t and Ak with i, j, ke {1, 2, 3, 4, 5} that will span A3RD).

Firstnoteif i = j, j=k,ori =k, then ©* A7t/ A 7% = 0. For example, since by

Theorem 3.8 part 4 7! Azl An?

(o1, %2, x3) = (=DM 2l Azl An? (x1, X2, x3)

(interchanging the 1 in the first position and the 1 in the second position) and since for

a € R satisfying a = —a implies

a = 0 then it follows that 7! A7l Az2 = 0. Thus tell us

that any basis element of the form 7* A7/ A 7% with 1, j, ke {1, 2, 3, 4, 5} will have i # j

and j+ kandi+k.

Second note 7 A/ Ank

—n) ' An* by Theorem 3.8 part 4. We see that any
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set containing 7' An/ Az* and 7/ A ' A % would not be linearly independent. This is to
say that if each of 7' A 7/t A 7% and 2 A 7’2 A7t is an element in a basis for A3(R?),
then iy, ji, k1 cannot be a permutation of is, j3, k3.

Now that we know which elements of the form 7* A 7/ A 7% with
i, j,kefl,2,3,4, 5} we cannot have in a basis for A3 ([R5 ), we will put together the
remaining elements and determine if they form a basis. We notice that according to our
criterion, to be an element of the basis, we are choosing i, j, k£ from {1, 2, 3, 4, 5}
unordered without repetition, which of course is a combination of 5 elements taken 3 ata

time. So the order of such a basis would be 5 choose 3 or gr(gs—'_—g—)T = 10. We claim

LA AR, At a2 ant, sl am? ard, i Am an®, 7l A aAnd,

RAT AT, A AT, AT AT, B2 Ar* AR, 1 A And)

is a basis for A3(R>). We see the need for some notation so we write

{m'" A2 A |1 < iy <ip <13 <5}, and we say whenever 7' Az2 A --- A7t satisfies
i1 <ip <. <iy,thenw't Ax”2 A --- A7™ is in standard form. We proceed to show

{7 Az2 Am3 |1 <0 <ip <i3 <5} spans A3(R?) and 1s linearly independent. We don't
have to start completely from scratch since we know already that A3(R3) ¢ T3 (R?).

Letwe A3R3)and 1, x2, x3 € R5. Since A3RS) ¢ T3R5), then w € T3RY),

5 5 5
and since we have a basis for T3(R5), then w = ( > ( 2 by @0 @nh )),

3] =1 12=1 l3=1

which could have as many as 125 terms so we hold on to a mild level of abstraction. Since

w € A3(R), then by Theorem 3.6 w = Alt(w). From these last two conclusions, we have

5 (5 /(5
w= Alt( >, ( >, ( 2 by, @0 @t ])) An extensive use of Theorem 3.10, yields

1 =1 lz=1 I3 =1

5 5 5
the conclusion w = 3, ( >, ( 2 Altb, 4, -7 @72 @7 ))) We will consider an

ll=1 12=1 l3=1

arbitrary one of the 125 terms. From Definition 3.7 it is easy to see that
Alt(a-w) = a- Alt(w) for a € R and w € T*(R™), thus,

Ali(b,, - @n2 @nB) = b, ,, ., Alt(n" @2 @ n*) for each iy, iy, i3 € {1, 2, 3, 4, 5}.

JA2.03
Now from Definition 3.8 and Theorem 3.12, for each i}, i3, i3 € {1, 2, 3, 4, 5},

by 1, Alt(n" @72 @78) = by, 4, (11_4',%';11')—' ("' A2 A "3), this being a scalar product of
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our arbitrary term. We have already shown that b, ,, ,, %':% @ A2 An3)=0

whenever 11 = ip or i} = i3 or ip = i3. So we have w as the sum of only 60 potentiaily
non-zero terms since we have 5 choices for iy, then 4 choices for i, and only 3 choices
left for i3. For each combination of the three symbols chosen from {1, 2, 3, 4, 5}, we have

3! or six permutations. For example six of the terms from our 60 potentially non-zero

1 3

terms are as follows: b3 ?1,- gl At A + bz 317 T AT 2 axl An?

Ai‘[2+ bo13 —31'-71' AT AT +

2 3

1 3 1 3 2
ba3y FFAAT

At + b3 3—1, o axt an? + b3y —317 73 An? ant. We use Theorem 3.8
part 4 to put 770 A77@ A 7703) in standard form written as sgn(c) - 7! A 7% Az for

oeSs.Soweleta, ,,,, = 2 Do) o) o0s) % sgn(o). We write all of our alternating
0'€S3

tensors in standard form, take our 60 terms divide them into 10 groups each of 6 terms of
the same alternating tensor 7" A7’z A "% in standard form. We use the distributive
property of real numbers and make the substitution of

A1y = bo) o) o) % sgn(o) so we have ten real numbers a,, ., ,, each scalar

ged3

product with one of the ten corresponding 7't Ax'2 A7 in standard form. Thus we have

written our sum originally involving a theoretical 125 terms as a sum involving only 10

3 4 5

terms. That is w = G T AT AT = app 7t AR AT +

1243 3
n=1\=4+1 \z=,+1

2 5 1 3 4

6112471'1 /\7T2/\7T4+a125711/\7r AT +A134 7T AT AT +a135711/\7z3 A7T5+

3 4 3 5

AT +a2357r2/\7r AT 3

a1457r1/\7r4/\7r5+a234ﬂ2/\7r +a2457T2/\7T4/\7T +

3 an* Am°, and consequently we have written w as a linear combination of elements

azqs
from {7 A2 AzB |1 i) <ip <i3 <5},
It remains to show {n"* A2 Az |1 <y <ip < i3 <5} is alinearly independent

set. We write the sum of elements from the set {7t A2 A% |1 i1 <ip <13 <5}ma

rather elaborate but well defined manner. Suppose

3 ( 4 5

n=1\n=n+1 \n=n+1
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3 4 5
We apply > ( > ( >, 0111213-7'(“/\7[’2A7Tl3))t0(ejl,eh,eh)Whel'C

=1 \ip=1y+1 \i3=1,+1

J1- j2, j3 €11, 2, 3, 4, 5}. A typical term in the sum is a;, ,, ,, - 7" A7 AT (e,,¢,,€e,).

From the definition of wedge product, Alt, and tensor product this term is the sum

(1+1+1) 1
Gynn TTD AR
(o

Z sgn(o) " (e4(;,)) T2 (€o(},)) T (€0(yy))-

The 1-tensor factor #'* (ey(;,)) = 0 unless o(j1) = i1, in which case it is 1. The same
is true for the other two factors; thus, since there is only one term in the original sum
where ji, j2, j3 is a permutation of iy, i3, i3, nine of the terms are zero and for the
remaining term expanded as the sum of six elements with the definition of wedge product,
Alt, and tensor product as above, five of these terms are zero and the only quantity
remaining is a,, ,, ,, . Since the 3-tensor was defined to map every ordered triplet of vectors

from R> to the number zero, then it must be the case that a, = 0. We repeat this

i3
process 10 times for the other possible combinations of (e, , ¢;,, €,, ), and will show each
of the coefficients must be zero.

Now we have sufficient understanding to prove the general theorem. We collect the
set of elements 7't A7x'2 A--- Ah with iy, Ip, ..., i € {1, 2, ..., n} 1n standard form, that
is, with iy, iy, ..., i satisfying i; <1 and iz <i3 and ... and i;_1 < i; and write this all as
{ThAar2 Ao nm® il sy <ip <.+ <y <nk

Theorem 3.13 Let 7/ : R” — R be the projection functions of Definition 3.5. A
basis for AXR™) is {m A2 A A% |1 <0 <ip < -+ <ig < n}.

Proof. We first show {m" Az'2 A - Az |1 <] <ip < --- < i < n} spans and then
is linearly independent.

Let w € A¥(R™). From the ideas present in the above example, we see that

n n n
w= Y, (Z (Z biy,. o Alt(n" @7 @ --- ®7r”‘)] ) with n* terms in the sum
=1 \1;=1 =1
before expounding on the meaning of Alt(-). Furthermore,

b, %,— S ARR A ATTE )) ) at which point we see all but
l]—_—l 12=1 lk=1

n!/(n —k)! of the terms are zero. Now if weleta,,,, , = X %,— sgn(o) b1y o (2) - -0 (k)
O'ESk
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then we will have n!/ (k! (n — k)!) groups each of k! terms and as we see from the patterns

(n—k)+1 ((n—k)+2 n
of the example above that w = 3} ( > ( 2 Gy g TUARZI A Aﬂ’*] )

y=1 L= +1 13=l_1+1

with each 7t Az A --- A % written in standard form. We have an arbitrary element
w € A¥(R™) written as a linear combination of elements from
(A" A2 Ao AR |1 <0 <ip < -+ < i < n}, s0 we conclude that this set spans AFRM).

Now we suppose that

(n-k)+1 ((n—k)+2 n
w= 2 ( Y ol X ey, e MT’ZA'--Aﬂ”‘)---)andw(x)=Oforall
=1 \p=n+l1 3=l +1
x eR”x---R” (k-times). We apply w to (e),. €5, ..., €5). This forces aj, , 5 =0as

explained in the example above. Repeating this for each permutation of ji, j, ..., jk
satisfying ji < ja < -+ < jx, weforce each a,, ,,,, =0foreachiy, iz, ..., iy €(1,2, ..., n}
satisfying i; <ip < --- <. This verifies that
{At A2 A--oaT |1 201 <ip <--- < < n}is alinearly independent set. B

We have at last a basis fc;r AKR™). We see in the proof that the number of elements

n
in the basis 1s k—,(—;"_—k)T = ( ) Thus there are no alternating tensors on R” if k >n. If n =k

k
we have a basis containing only one element.

Fields and Forms

In this section we begin by defining a field and then defining a form in terms of a
field. The differential k-form 1s of particular interest in the proof of Stokes’ Theorem.

Definition 3.9 The tangent space of R” at p € R” is the collection of ordered paris
(p, v) € {p} xR" and denoted R” with elements denoted v .

Definition 3.10 Fora e R and v, w), € ([R”)p we define v, + wp, = (v + W)y and
a-v, = (a-v)p.

With these definition the claim that (R"), is a vector space since it is not empty,
and it is closed under addition and scalar multiplication. (R”) » has a usual basis

{(e1) b (e2) P (e,) p} and many other constructs analogous to R”. Of particular note 1s
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the usual inner product (, ) » for (R™) b which is defined by (v, wp)p = (v, w). The inner
product is an essential construct since it is usedin connecting a vector space with its dual
as in Theorem 3.3. Without the inner product defined in this way, it is not clear how the
dual (([R”)p)* should be defined. With this definition of the usual inner product for (R”) s
if we define ¢, : ([R")p — R for a unique x, € ([R”)p by ¢x, (yp) = (xp, yp> for each
¥, € R") p> then analogous to what we have shown in Theorem 3.3, ([R”)p is isomorphic
to (R"™) p )*. With this clarification it is now clear that the basis for ((R” )p)* 1s the set of
linear functionals 7' (p) that project a vector v, onto basis vector (¢;) for each
iefl,2,...,n}. Thatis (7' (p)) (vp) = ((el)p, vp) ={(e,vy=Vvforeachie(l,2,...,n}

In other words, (R") P is essentially R” with origin p, but rather than re-center the
origin, Definition 3.9 allows us to overlay pieces of various tangent spaces consisting of
only one efement and aligned them at their common orgin to produce what is called a
vector field.

Definition 3.11 A vector field is a function F consisting of pairs (p, F (v)) for
peR”and Fv) =v, e R") .

For example, suppose F is a function defined for p € R? by F(p) = (2, -3) .Fisa
constant field of vectors.

We can also write (2, —3) p = 2-(e1) p = 3-(e2) , so we can choose two component
functions F! : R” —R and F2 : R” —R so that F! (p) =2 and F? (p) = -3 for each
p € R", and we can define the vector field F for each p € R” by
F(p) = F! (p)-(e1), + F 2 (p)-(e2) . We would call this vector field constant since each F*
is constant. In general we describe a vector field F(p) = Znil F' (p)-(e) p foreach p e R"

=

with component functions F* : R” — R. We classify each in terms of the component
functions. If each component function is constant, then F is called constant. To simplify
the statement of theorems hereafter, to say a function is differentiable will mean that a
function has continuous partial derivatives of all orders. A function with this degree of

differentiability is referred to as C™.
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Before defining a k-form, we should make clear the meaning of AF((R™) »)- Many
authors assume that it is understood what 1s meant by AF((R") ) through analogy to the
constructs of similar appearance and form. We do little more 1n the sense of rnigor, but to
appeal to our sense of the meaning, we elaborate on some results.

Definition 3.12 Let w, & € A* (R™),), 7 € A' (R™),),
1)p> 2)ps o5 ki) p € R™)p, 1), = (@, + by), = (@), + (b)), and a- (), = (a- W),
forie{l, 2, ..., k} and some (@), (b,)p € ([R")p and a € R, then we define the following:

Law((1)p, <oy Wps ooos WR)p) = 0((V1)ps -, (@), -5 (V) p) +
(V1) ps oer Br)ps e ),),
2.a-((V)ps -os W)ps s W) p) = (V1) s wovs @ (W) s - (V1))
= (V1) s -er (@ Vs o 2 (V0),),
3@+ ) ((1)ps s W)y ooy WE)p) = W((V1) s ey 1)y s (VD) +
H(PD)ps ves W) s oees (V1) ),
4. (@M ((V1)ps s Wrs) p) = (V1) s -0 W)p) MVt 1) s --os Whst)p)s
5. (VD) ps oes s ooy (7)) 0 e (VR)p)
= =W((V)ps oo () s ey 00 s oo (V1))
(interchange 1 and j with ¢ # j),
6. Alt(W) (1), (2)p» - V)p) = UESk sgn(0) W((Pa) o s o) ,)-

With some experience, these abstract definitions, 1n terms of the tangent space of
R” at p, all seem very natural. Still 1t gives us a point of reference as the notation
continues to harbor increasigly complex meaning. We did not mention the wedge
product since it is defined in terms of Alt(-) and “®”, which are now well defined in (4.)
and (6.) above. What remains somewhat unclear 1s what is meant by a function
w: (R™) p)k —sR. We clarify this 1n our suggestion of a basis for A*((R") p). In the same
manner that we constructed our usual basis for A¥(R") using “» " and the usual basis for
(R™)*, we can construct a basis for A% ((R") p) using “A” and the usual basis for ((R") p)*.

We have the {n"* (p)Aar2(p)A--- A7 (p)|1 < iy <ip < -+ <1 < n} as the basis for
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A (RM ) which is reasonable following the pattern of extending our other tensor
constructs from R” to (R”) . Now the definition of a k-form follows easily.

Definition 3.14 A differential form or k-form is a function w consisting of pairs
(p, w(p)) where p € R" and w(p) € A* (R™),).

In other words, a differential form is a mapping for each point p in a Euclidean
vector space R” to alternating k-tensors of the tangent space of R” at the same point p.
From Definition 3.14 we se an emerging connection between vector fields and differential
forms. With vector fields, we associated to each point in R”, a vector, now with
differential forms, we associated to each point in R”, an alternating k-tensor. Just as we
could wrte each vector field F as the sum of certain component functions, one for each
basis element of (R") p» We can also write each differential form w as the sum of certain
component functions, one for each basis element of AR (R™) p). If w is a differential form
:R*—R,

on R", then for each p € R”, there are component functions w, ,,

{1 iy <ip <--- <1 <n}such that

(—k)+1 ((n—-k)+2 n
( 2 ( 2 Wy, oy (P)A(P)AT2(P)A - ATH (P))'“)-

L=t +1

w(p) =

n=1 12=ll+1

Just as with F, we have the same considerations in describing w as contmuous,
differentiable, et cetera depending on the component functions w;, ,, . 4,-
Definition 3.15 If w and ¢ are k-forms on R”, 7 is an /-form on R”, and

f:R" —R, then for each p € R”,
1. w + ¢ is defined by (w + &) (p) = w(p) + & p),
2. f-wis defined by (f - w) (p) = f(p)- w(p), and
3. wAnisdefined by (wAn) (p) = w(p) An(p).
Now that we have made the definitions, we consider the consequences.
Suppose f : R” —R is differentiable, then for each p € R*, Df(p) € AlR").
Notice Df(p) : R” — R is linear by Definition 2.1, and the alternating criterion is

automatic since k = 1, that is there are not two positions to interchange. Of course since

the basis for AL(R?) is the basis for the dual of R” which we are writing as



62

{rl, 7%, ..., 7"}, then Df(p) = Zn‘,l a, ¢t for some a, € R and we say Df(p) is an alternating
1=

1-tensor. For a differentiable function f: R” — R, we define d f for each p € R” by

d f(p) = D f(p), and furthermore, i1f v, € (R") , we define d f(p) (vp) = D f(p) (v), thus,

d f is a 1-form as it takes vectors of R” to alternating tensors of ANRM p) that in turn

take elements of (R") p tO numbers. This has immediate consequence for our notation.

Since foreach i € {1, 2, ..., n}, #* is a function from R” to R, then

dn' (p) (vp) = D' (p) (v). Foreachi € {1, 2, ..., n}, D’ is the same at every point in R”

and has the Jacobian matrix 1x#n with zeros for all entries except the ith entry is 1.

Therefore for each i € {1, 2, ..., n}, D' (p) () = (e,, v} =V' = 7' (), in particular

dn' (p) = n*(p) for each p € (R”) . If in the classical tradition we rename the function 7’

as x', then {dx' (p), dx* (p), ..., dx" (p)} is just the usual basis for ((R™),)*, the dual of

(R"™) . Furthermore, we now write each k-form w as

(n-k)+1 {(n—-k)+2 n
Z ( Z ...( Z wl]lz lk.d_xll/\dxl?. /\...Adxlk)...).

=t +1

w =

=1l \g=y+1

The following theorem summarizes the notation and 1s used often in what follows.
Theorem 3.14 If /: R" — R is differentiable, then
df =D f-dx' + Dy f-dx*+ - + D, f-dx".
Proof. Let f:R” —R be differentiable and p, v € R". We have defined
d f(p) (v ) = Df(p) (v) and since f 1s differentiable (C*) and we have the usual basis for
R™ and R, then Df(p) = (D1 f(p) --- Dy f(p)). We restate D f(p) (v) as
(D1 f(p), ..., Dpf(p))-v= 2nj D, f(p)v'. Since we have shown in previous discussion

1=1
that dx' (p) (v,) = v, then lz:‘,l D, f(pVv' = 12;1]1 D, f(p)dx' (p) (v,). Since p and v were
arbitrary then we have d f = znjl D, f-dx.u
=
We back up for a moment to the simple setting of k-tensors to introduce a new
notation that will carry our current notationally complex constructs to the next level.

Definition 3.16 For a linear transformation f : R” —R™ and T € T*R™), we

define f*: TFR"™) — T*R™) by f* T(v1, va, ..., i) = T(f(»1), fF2), ..., FV).
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This is perfectly reasonable and meaningful, but to further convince ourselves, we
show the following.
Theorem 3.15 If f: R” —R"™ is a linear transformation, S € T*(R™) and
T e T'R™), then f*(S®T)=f*S® f*T.
Proof. Let vy, ..., Vit €R™. f*(S®T) (v1, ..., Vir) = (S®T) (f(v1)s ..., fWk41))
by Definition 3.16. Then (S® T) (f(v1), ..., f(Vk+)) =
S(fv1), ..., fV)) T(f(Vix1)s ..., f(Vx+1)) by Definition 3.3. Finally
S, oo fO)) T(frs1)s --s fe)) = 5 SO, ooy W) f* TWkats -, Vis1) bY
Definition 3.16, and f* S(v1, ..., &) f* TOVke1, ---» Virt) = [FSQ f* T(vy, ..., Vga1) by
Definition 3.3. 0
Theorem 3.16 If f: R” —R"™ 1s a linear transformation, w € A*(R™) and
ne A'R™), then f*(wAn) = f* w A f* 1.
Proof. Let vy, vy, ..., Vi €R™. fflwAan) (v, ..., Vi) =
(WA (f(¥1), ---, f(Vr41) by Definition 3.16. Next (w A1) (f(¥1), ..., f(vie))) =
D Al @ 1) (f(V1), .., f(¥ea)) by Definition 3.8. Then
ED Alt(w @ 1) (f(1), - fOa)) = EH AL/ 0 ® f* 1) (91, .., Viat) DY
Definition 3.7 and Theorem 3.15. Pulling back out with Definition 3.8
G AL 0® ) 01, oo Vir) = f* @A F*R(GL, ooy Vsr))- W
Recall for a differentiable function f: R” —R™, Df(p) : R" — R™ is a hinear

transformation by Theorem 2.1.

Definition 3.17 For a differentiable function f:R” — R™, we define
F iR — R™)g by fi (vp) = DF(P) ) 4y Torv e R™.

We need to reiterate Definition 3.16 for A¥((R") P) and we make 1t a new definition
so we can refer to it easily in the context of k-forms without pondering its extension from

k-tensors as is done in Definition 3.16.



Definition 3./18 For a differentiable function f: R” — R™ and a k-form w on R™
and p € R”, we define f* : A¥ (R™)z \)— A*(R™),) by (f* w) (p) for
®Dps - ), € R™) by
(F* @) (@) ((V1)s s )p) = WD) (£ (1)), -oes fo (@1)p).
Theorem 3.17 Suppose f:R” —R™ is differentiable, w, w;, w, are k-forms on
R™, npis an /-form on R™, and g: R™ — R then:
1. f*(dx") = Zn]lDJ frodxt,
=
2. f*(w1 +w2) = fH(w1) + f*(w2),
3. f*(g-w)=(g°f) f*w,and
4 frflwam=fronfn.
Proof. Let peR” and v, )p> W2)ps s W) € (R™),,.
l.Letie {1, 2, ..., m}. Since f:R" —R™ is differentiable and dx* is a 1-form on
R™, then by Defimtion 3.18, f* dx' (p) (vp) = dx' (f(p)) (f,(vp)). Considering the

supposition of f, by Definition 3.17, f, (v,) = (Df(p) (v)) ) and by Theorem 2.12,
Dif'® Daf'® - Duf' ) (¥
D 2 D 2 - D 2 2
Df(P) (V) - 1 f: (p) 2 f (P) ) nf: (P) . V: R
Dy f*(p) D2 f" (@ -+ Duf™ (@) WV
Computing the dot product and placing that vector at f(p) yields

n n n

S (vp) = (Z D, f (v, X D, AV, ..., X D, f™ (P)VJ] - Since dx' f(p) is by
/=1 /=1 /=1 1)

definition the projection function that for wy(; € (R™) #(p) 81Ves its projection onto

(e;) ) then given that £, (v,) € R™) f(p) 35 given above,
dx' (f(p)) (f,(vp)) = 12:1 D, f' (p)v/, the ith entry in f, (v,). Furthermore, for
je{l,2,...,n},dx (p) (v )=/, then we make this substitution for v/ and arrive at our
result: dx* ((p) (/,(v)) = ,21 D, /' (p)dx! (p) ()

2. Since f:R" —R™ is differentiable and w; + w; 1s a k-form on R™, then by

Definition 3.18, f* (w1 + w2) (p) ((v1) , ..., (%) )
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= (w1 + w2) (f(P) (£, (1)), -, £,((Vi)p))- In general the right hand side is a rather
involved sum of ( rZ ) terms, but for an arbitrary term we have

(w1 +w2), o, F(P) ~dx" (f(p)) A -+ Adx* (f(p)) for component function

(W1 +w), R™ —R. Now (w; + wy), ., (f(p)) can be evaluated point-wise for
component functions (W1), 4> (W2),, 4 R™ —s R which exist since each of w; and w,
is a k-form on R™. Therefore (w1 + w2),, , ~dx'* A--- Adx* =

(1), 4 *+(W2), ) dx" A--- Adx™. Now we take the right hand side and apply it to
a point f(p) € R™ which gives us a k-tensor in A* (R™) f(p))» Which we can apply to an
element T € (R™) (p) )k and get a real number. Observe

(@1), . 4 F@)+ @), ., f(P)-dX" f(P) A -+ ~dx™ f(p) € A¥ (R™)f,) and since
dx" f(pyA--- ~dx* f(p) (t) €R, then (dx" f(p)A--- Adx™ f(p)) (1) distributes over
the sum ((w1),, ,, f(p)+ (w2), , f(p))and we have shown the arbitrary term

(W1 +wp), o dX Ao Adx® = (w1),  dX" A AdXE + ‘

m
(w2),, .4 ~dx" A+ Adx*. Thus our rather involved sum of ( ) terms can be expanded

k

as the sum of two sums of ( ’Z ) terms, and grouped by component functions for w; and
wy. We have supplied as basis for the identity (w; + w2) (f(P)) (£, (V1)) ---, [.((W),)) =
(1) (@) (L ((1)p)s o5 [()p)) + @2) (F () (£ (1)), -, [ ((VK) ). Applying
Definition 3.18 in the opposite manner as at the start and in consideration of the
point-wise definition for the sum of k-forms, then the right hand side of the previous
equation becomes (f*(w1) + f*(w2)) (P) (1), ---» (Wk)p)-

3. Since f:R" —R"™ is differentiable and g - w is a k-form on R™, then by
Definition 3.18, f*(g-w) (p) (V1)p, ---, (Wk)p) = (8- w) (F(P) (£, ((V1)p)s -5 £ (i) p))-
Since g : R™ —R and w is a k-form on R™, then by Definition 3.15 Part 2,

(&-w) (f(P) = g(f(p)) - w(f(P)), thus, (g - @) (f(P) (/.((W1)p), ..., fl(Wi)p)) =
8NP f* o(f (PN ((V1)p, -, Wk)p)-

4. Since f:R"” —R™ is differentiable and each of w and 5 is a k-form and /-form,
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respectively on R™, then by Definition 3.18, f*(w A1) (p) ((V1)ps s Wra)p) =
(wAn) () (V1) ), ..., f.((vks1) ). Since each of w and 7 is a k-form and /-form,
respectively on R™ then by Defimition 3.15 Part 3, (w A 1) (f(p)) = o(f(p)) ~ n(f(p)).

From the previous identity, we have (w A1) (f(p)) (f.((v1) p), ooy [ (Wran) p)) =
(w(fP) An(f(p)) (f,((»1) ), ..., [.((k+1) )). The right had side of the last equality can
be wnitten as G- 2l T sgn(0) (@(f (@) @ n(f@N) (e (1)), - £ ((hs) )

O-ESIH-I

using Definitions 3.8 and 3.12 Part 6. Each term of the sum becomes

sgn(o) w(f(p) (f (W1)p)s -5 LRI M 0 @) (fi (Whs1)p)s -5 [ (k41 p)) BY
Defimition 3.12 Part 4. Reapplying Definition 3.18, each term becomes

sgn(o) f* w(p) (V1)p, ---» Wi)p) * 1) (Wkx1)p, -, Wkat) ). We retrace or steps: by
Definition 3.12 Part 4, each term 1s sgn(o) (f* o ® f ) (p) ((vl)p, (vk+1)p), by

Definition 3.12 Part 6, the sum becomes (kkf% Alt(f* w® f ) (n )p, eeey (Vpat) p), which

by Defimition 3.8 1s (f* w A f* 1) ((vl)p, cees (vk+l)p). ]

Recall that for a differentiable function f:R" —R, we defined d f for each p € R”
by d f(p) = Df(p). A k-form 1s differentiable if each of the component functions is
differentiable. We extend the 1dea of d to differentiable k-forms.

Definition 3.19 For a differentiable k-form w the differential of w, dw 1s defined by

(n—k)+1 {(n—k)+2
(3|

=4 +1

n
Y dwy, o Adxh /\dxlz/\---/\dx’k)...).

k
;=1 L=l +1

Sinceforl <ij <ip <---<ip=neachw,, :R" — R is differentiable, then by

3
Theorem 3.14, dw,,,, , = Zn)l Dy w,,,, o -dx® We write out the terms in an example
a=
to make the differential operator a bit less formidable. In the example, let n =4 and k = 3,
then we have (:) = 4 terms 1n the expansion of w:
dw=dwips-dx' Adx®> Adx® + dwipg -dxt Adx? Adx* + dwizg-dxt Adx® ~dx?

+dw234 . dx?‘ A alx3 A a?x4.

Next we use Theorem 3.14 and expand each dw,, , ,, .
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dw=
(D1 w123 dxt + Dy w13 dx® + D3 w123 -dx3 + D4 w123 -dx4) Adx! Adx® Adx® +
(D1 w124 -dx! + Dy w14 - dx? + D3 w14 -dx3 + Dy wiog - an4) Adx! Adx® Adx* +
(D1 w134+ dx! + Dy wy34- dx* + D3 wi3q - dx? + D4y wizg- an4) Adxt Adx® Adx* +
(D1 wa34 dx! + Dy wo3q -dx? + D3 wr3q dx3 + D4 woy3a -afx4) AdxXE Adx3 ndx®
We can use Theorem 3.8 Part 1 to distribute the wedge on the right and then

Theorem 3.8 Part 4 to make zero any term with a repeated wedge product, for example
dx! adx' adx* Adx® =0.

dw=Ds w3 -dx* ndx! Adx® Adx® +
D3 wing dx3 Adxt Adx® Adx* +
Dy wizg -dxt adxt adx® Adx® +
Dy wyzg - dx* Adx? ndx® Adx?
We finally rearrange each wedge product using Theorem 3.8 Part 4 and collect like

terms; in this case there is only one distinct basis element remaining.
dw = (-Dy4 w133 + D3 wiag — Dy w34 + Dy w234)-c17x1 Adx* Andx3 Adx*
The example shows that the result of applying 4 to a 3-form was a 4-form. That is

the idea! The differential operator makes a k-form into a (k + 1)-form.
Theorem 3.18 If each of w and ¢ is a k-form on R”, then d(w + &) = dw + dd.
Proof. Let each of w and & be a k-form on R”. By Definition 3.19, d(w + &) gives
us a sum of terms of the form d((w + ), ,, ., ) ~rdx" Adx'? A--- Adx*. Now

dlw+3),,. . J=dw,, 4+, y)since (W+&), , , =Wy, 4+ for

3 182 &

certain functions w,, ,, , andd, , , thatexists since each of w and ¢ is a k-form on R".
n
By Theorem 3.14, d(wll 23 I + 011 123 "lk) = Zl Da(wll 1 I + (911 1) lk) ’d.xa’ and by
a=

Theorem 2.7, Dy(w,, ,, 4 + &, w) = Do(wy, o, . 4)+Da(dy,,,. ) for each a; thus,

Iy

n
d(w, ., ., + 011 D Zl[Da(wtl L w)+ Dy(,., & )]-dx®. By repeated use of
a= .

n
Theorem 3.8 Part 1, (Z [Do(wy, 1, 3)+Do(@,,, )] -dx“)/\alx’l Adx2 A Adxt =

a=1

n
2 [Do(wy, 3)+ Doy, 3)]-dx* Adx" Adx™ A --- Adx", and by the distributive

a=1

property of real numbers,
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n
Z [Da’(wh 23 lk)+Da(0l1 153 lk)]'dxa/\Cﬂxll Adx2 A ndxh =

a=1

n
Y Do(@y 1y .0) - dx® adxht Adx ae adx +
a=1

anl Do(dy,4, 4,) - dx*rdx" Adx™ ~--- Adx*. Replacing each term in the original sum
a=
by the right-hand-side of the last equation, then arranging the sum and forming two
groups—terms involving w,, ,, . ;, and terms involving &, ,, , —we have our result. §

Theorem 3.19 If w is a k-form on R” and 7 is an /-form on R”, then
dwrn)=dwrn+ (—l)ka)/\afn.

Proof. This result follows from the rule for the derivative of a product
(Theorem 2.8), the asymmetric commutativity of wedge products (Theorem 3.8), and the
previous theorem (Theorem 3.18). 1

An explicit proof occupies a great deal of space, and it is an exercise in following
definitions and manipulating symbols; thus, in this rare case we refrained from giving
such a proof.

Theorem 3.20 If w is a differentiable k-form on R”, then d(d(w)) = 0.

Proof. Let w be a differentiable k-form on R”. We take each term
d(wy,, 5 )~dx" Adx -+ Adx* from Definition 3.19 , and by Theorem 3.14

n '
dw, . 4)= [21 Dy(w, 4, ) -alx"‘]. We apply the definition and theorem again so
a=

n n
ddw,, ,k))=[ ﬁz . DpDo(wy, ,k))-a?xﬁ/\afx"]. Since the limits of this double

=1 a=

sum are the same, then for each a and B, there 1s a term Dg(Do(wy, 1, 1,))- dxP ~dx®
and a term Dy (Dg(w;, 4, ..., ) -dx® A dxP. Now since wy, 1, 1y is differentiable (C*), then
by Theorem 2.2, for each a and B, each of Dg(Dy(w;, 1, 5 ))and  o(Dg(wy, ,, 4))18
continuous; thus, by Theorem 2.10 Dg(Dy(w;, 4, ) = Da(Dg(wy, 1, 4))- Since for each
aand B dxP Adx® = —dx® A dxP by Theorem 3.8 Part 4, then

Do (Dg(wiy 1, 1)) -dx® A dxP = ~Dg(Do(wy, 1, . ) -dxP A dx®. Finally then in the
expansion of d(d(w,,,, ), foreachterm g(Dg(w,, 4, . 4)) -dxP A dx® there is, by the

last conclusion, its additive inverse, the term Do (Dg(wy, 4, .4,)) - dx® A dxP; thus,
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d(d(w,, ,, ) =0.Therefore, for each term 1n the expansion of d(d(w)), we have
d(d(w, ., ) =0, making the whole term zero, and we conclude d(d(w)) = 0. ¥

Theorem 3.21 If w 1s a differentiable k-form on R” and f:R"” —R™ is
differentiable, then f*(dw) = d(f* w).

Definition 3.20 A k-form w 1s called closed if dw = 0.

Definition 3.21 A differentiable k-form w is called exact if w = dn for some form 7.

Theorem 3.22 If w is an exact k-form on R", then w is closed.

Proof. Let w be an exact k-form on R”. Since w 1s exact, then by Definition 3.21,
then w = dn, for some form 7. Applying d we have dw = d(dn) and by Theorem 3.20,
d(dn) = 0; thus, dw = 0, which 1s to say that w is closed by Defimition 3.20. &



CHAPTER IV

INTEGRATION ON CHAINS

In this chapter we press forward most expeditiously to the final result of this thesis,
Stokes’ Theorem. We make a number of definitions to make precise what is meant by

integrating forms over chains.

n-chains

Definition 4.1 A singular n-cube is a continuous function c¢: [0, 1]* — A, for
AcR™

We are familiar with some singular 1-cubes. Examples of these are number
functions such as f: [0, 1]— [0, 2] where f = {(x, 2x) |0 = x < 1}. The standard n-cube,
which will be most important for the purposes of this paper, is the inclusion mapping
I": [0, 1" —R", that is I" (x) = x for each € R". We note that in Definition 4.1 since
[0, l]k is compact and c is continuous then ¢({0, 1]") is compact, however, n1s not
necessarily m as is the case for the standard n-cube.

Definition 4.2 For each i € {1, 2, ..., n} and & € {1, 2} we define the (i, @)-face of
the standard n-cube I" as the (n - 1)-cube I, ,, : [0, 171 — R” defined for each
xe[0, 11" by Iy ) = P!, ..., 7 e, o, L, D).

Note since there are two faces for each i € {1, 2, ..., n}, then for the standard
n-cube, there are 2 n different faces. To understand this important concept we investigate

the faces of 2. The four faces 1(2

o) 'R —R? are as follows:

70
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I 0 (x) = (0, x1),
Ay =, ),
%5 = (1, 0),
Iy =1, D).

Each of these has a natural orientation as x

increases from O to 1, but they are
differing, so when we make the definition of the boundary of 12, for example, we
introduce (—1)""? to give each face the same orientation.

Definition 4.3 For a singular n-cube c: [0, 1" — A (A c R™) the boundary of c is
defined dc = z”;l (—1) colll gy + (— 1) col .

=

Definition 4.4 An n-chain in A c R™ is a formal linear combination of singular
n-cubes in A c R™ with integer coefficients.

Definition 4.5 For a singular n-chain ¢ = a3 ¢1 + a3 ¢ + -+ + a,, ¢, the boundary
of cis defined dc = a1 dcy +ap dcy + -+ + ay, Ocyy,. /

Definition 4.6 For a k-form w on [0, 11¥, w has the form f-dx! A --- A dx* and we

define f w= f f.

o1 [o1r

Definition 4.7 If w is a k-form on A and c is a singular £-cube 1n A, then we define
f w= f ¢t w.
¢ oy

m
Definition 4.8 If w is a k-form on A and c is a singular k-chain in A withc = } a, ¢,
=1

m
for a, € Z and singular k-cubes ¢, in A, then we define f w= aq f w.
c 1=1 ¢

Theorem 4.1 If x* is the 1-form on R” with dx’ (p) € Al((IR")p) for each p e R”
defined by dx' (p) (vp) = V' for v € R", and k = n, then I{‘,ﬂ) (dx')=0if i = jand
If, o) (dx') = dx'if i # j.

Proof. Since I{‘J’a) [0, l]k—1 —R* and dx’ is a 1-form on R¥, then by
Definition 3.18, If, ) : A' (R¥)p () — AL (R*),). Let pe R and v, € R*) .
Defimition 3.18 defines (If, 5" dx') () (vp) to be dx' (If, 4y (P)) (I, 09), (¥p)), and
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Definition 3.17 defines (Ifw))* (vp) to be (DI{‘J’G) (p (v)) We note the component

o @)
functions of Ié,a) are as follows:

I P R SR by 2,V (x) = 2!

(1.@) (7@

-1 _ -1) _
I(kla)J :R¥1—5R by (k/a)(' (x)zxf 1
Iy REL SR by I Y () = @

e G G+
Gy RET—SRbY I, a) (¥) =

(9] _ %) —
16,0[) ‘R¥1 SR by 6,0) (x)zxk 1

So D (@) (p) has the following kx (k — 1) Jacobian Matrix form.
10 .--0000-.--00
010000 -0

o

00-~1000--0090
00010000
jthrow—-» j0 0 .- 0000 - 00
600001000
060000100

0

— e

00 0000 -
00.--0000--01 ‘
This is the same as inserting a row of zeros before the jth row of the identity matrix.

We dot this matrix with the vector v € R¥1 to arrive at the vector

oL v2, w00, L v e RE. Thus dix! (I, o) () (U z)) () is the ith

osition of (v!, v2, ..., w1, 0, v, ..., v*"1). If i = j, the ith position is 0 and if i # j, the
p p

ith position is v*. Since each of and p is arbitrary then we have established our result. &
Theorem 4.2 If f: [0, l]k——>[R anda=0ora=1thenfori, je{l,2,..., k},

[ Iy (f-dxt aendx™t adx*t A adxb)is Oif j# iand
[O,I]k-l

[ el o, ) dxt e dxkif j =i

[0.13*
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Proof. Let f: [0, 1]k——>[R anda=0ora=1.Lets, je({l,2,...,k}. By
Theorems 3.17 Part 3and 4, { )" (f-dx! - ndx’™ Adx™ A ndxt)=
Foll oy T oy @Ax) n oo AT " (@XTYATE " (@) Ao A TE 7 (dX5).

In one case assume ¢ # j. Thus je {1, ...,i— 1,1+ 1, ..., k} and by Theorem 4.1
I{‘J’a)*(dxl) A A I{‘J’a)*(dx“l) A I(kj,a)*(afx’“) A TE " (dxF) = 0, so in particular,

f I{‘m)*(f-dxl A AdXVAdXTE A - adXE) = 0.
[O,I]k—l
In the alternative case, assume i = j. We have f 016,0) x) = f(xl, ey &y e, xk),

with « in the ith position, and by Theorem 4.1,
I&a)*(dxl) A A I{‘jﬂ)*(dx’_l) A I{‘Jﬂ)*(afx’“) Aeee Alfj’a)*(dxk) =
dxt Ao ndx Y Adx Tt A adiE, so

f 16’0)*(f-dx1 Ao ndX TV Adxt A adxFR) =
[O’I]k—-l
f fob, L, L x) dxt A AdXTY A DT A A dXE,
[O,I]k_l
which reduces to the integrated integral

_[)lm j(‘)lfol--- folf(xl, s @y ey XYL - AT AL - AR by Definition 4.6 and

Theorem 2.33 At the same time f f(xl, ey @y ey XY dxY - dXE 1S
[o,11*

fol--- folfol--- fol(folf(xl, U 2 xk)clx’)(lxl o dx L dxt .. dx* where a is 1n the
ith position, and since folf(xl, ey @y sy xk)afx‘ = f(xl, ey @y ey X5) foldx’ by
Theorem 2.26 and folcﬂx’ = 1 by Theorem 2.30, then our iterated integral reduces to
fol'-- folfol~-~f01f(xl, ey @y ey XY dxt - A AXY - dx*. We have shown the
result in the alternate case, and established the theorem. B

Theorem 4.3 If w 1s a differentiable (k — 1)-form on [0, 1}¥ and 7* is the standard

k-cube in [0, 1]k, then fcla) = fa).
I orr
Proof. Let w 1s a differentiable (k — 1)-form on [0, 1]k and I* is the standard k-cube

1 [0, 1. Since w 1s a (k — 1)-form on [0, 1], then we can simplify the form of w 1n

terms of its basis in Definition 3.14 and write
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k
w=Y w -dx' A AdxVadx*l A AdxF. Starting with the left-hand-side of our
=1

result, we have f dw = f I*(dw).
It [0,1)

k k
Firstdw =3 Y D, w,-dx’ adx! a--- ndx™t ndx*1 A ndxt by
1=1j=1

k
Defimition 3.19, which simplifies to }, D, w, -dx* Adxt Ao ndx P Adxt A adt
=1

by a corollary to Theorem 3.8 Part 4, any wedge product with a repeated basis element is
zero, thus the only term of the inner sum to survive the differential operator is the one
where j = 1, since dx' 1s omutted in the wedge product. A second application of
Theorem 3.8 Part 4 allows us to arrange dx' Adx! A--- Adx* P adx*1 A AdxFin

standard form with the coefficient (—1)""'. We have then
k

do=3 DD w, -dxt A adx*.
=1

k
Second I*(dw) = 3, (—1)"' D, w,o0)-I* dx' A --- AT* dx* by Theorem 3.17 Parts
1=1

k
3and 4 Part 1 of Theorem 3.17 gives I*dx' = ¥, D, 19 . dx/ where I? 1s the ith
J=1

component function of I, so © (x) = x'. It follows then that ;/® = 01f j # iand

k
D, IV =1if y=i,thus 3, D, IV -dx/ = dx'. Also since I(x) = x, then , w,°I = D, w,.
J=1

k
We see then that I*(dw) = Y, (<11 D, w,-dx* A - Adx*.
=1

Now [ I*(dw)= zk (1) D, w,-dx! A --- ndx*, but the right hand side 1s
0.1 o
equivalent to Zk] -1 [ D,w,-dx' A ndx* by Theorems 2.21 and 2.26. We use
=1 10,11
Definition 4.6 and Theorem 2.33 to wnite [ D, w; -dx! A+~ adx* as
[0,11*

fol .- fol D ow,d xl . dxk, but the corollary to Theorem 2.33, Theorem 2.34 allows us to
equivalently write fol--- fol fol... folj(-)lD, w, dx' dx' - dx' dx*1 ... dxF. The
Fundamental Theorem of Calculus, Theorem 2.29 gives fOID, w, dx' =

w, &t 1, D e, L0, x*) with 1 and O 1n the ith positions. Now as was

the case in Theorem 4.2, fola),(xl, ey @y o, X)X = w0, L, ., X foldx’ =
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w,(xl, s Xy ey xk) for @ =0, 1 in the 1th position. Therefore _];)1 D, w,dx =

folw,(xl, v 1 X dx - folw,(xl, o0y 0, ..., X*) dx'. We make this substitution back
in f01~-~ folfolu- folfolD, w, dx* dx' - dx~1 dx*! ... dx*, move dx* back into position
with Fubini’s Theorem and have

f D,w, - dxt A ndxF =
[0,11*
f w,x, 1 L —w i, 0, ey XKy edxt A AdXE
[0,11*

Using Theorem 2.21 we have

[ oGt 1, by dxt A adxk -

[0.17*
f w,(xl, U | R xk)-afx1 Aees /\clxk,
[0.1*
k
which we put back into our sum ), (——1)’“1 f D, w,-dx! A --- AdxF to end with
=1 [0’1]k
k
T EDTE ol 1 ) dx A Adx +

=1 10,1

1 [ oGt .0, xE) dxl A adt
[0.11*
after distributing (—1)""'.
Now we investigate the right-hand-side of our result. First f w= f @I w by
oI* [O’I]k-l

*

k
Definition 4.7. Next (0IF) w = ¥, (=1)' I¥ 4, w + (= 1" I¥ |, w) by Definitions 4.3
p) (2.0) ((8))

* k i * *

and3.12and [ @) w=3 |-1) [ Ko o+ [ ), w} as the
[0’1]k-l = [0,1]k_1 [O’I]k—-l

integral of a sum is the sum of integrals by Theorem 2.21. For @ = 0, 1,

k
oy =I(’§,a>*[2 wy-dxt aAdXTIAdI T A Acﬂxk], which is
J=1
k *
z Ié‘;,a) (@, -dx! A ~dx/"t Adx/*t Ao A dxF) by Theorem 3.17, and we have two of
J=1

these sums, one for @ = 0 and one for @ = 1. Now
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k *
[ Fy=3% [ Ky -dxtaade™t adx*l A adsb),
(0,17 J=1 [0,11"!
but each term in this sum is identically zero except for the ith term which is

f wxl, .. a, ..., *ydx! - dx* with « in the ith position by Theorem 4.2. Therefore
[0,11¢
we have

Zk) 0 [ Eo w+D" [ Ky o=
=1 (0,11 0,17+
Ek: -1 [ ol .., 0, ., ) dxl - dx +
= [o.1*
D[ @Gl o 1, Xk A dk
[0.11*
This is precisely the expression we obtained for the left-hand-side; thus, we have

established our result. 1

Stokes’ Theorem

Theorem 4.4 If w is a differentiable (k — 1)-form on an open set A C R" and cis a

k-chain in 4, then [dw = [w.
c ac

Proof. Let w be a (k — 1)-form on an open set A € R” and ¢ be a k-chain in A with

m
¢ =), a, ¢ for a, € Z and singular k-cubes ¢, in A. By Definition 3.19, dwis a
=1

m m
differentiable k-form so by Definition 4.8, [dw = ), a, [dw. Smce dc = ), a, dc, by
¢ =1 1=1

G

m
Defimtion 4.5 and dc is a (k — 1)-chain, then by Definition 4.8, f w=2, aq f w.
dc =1 g,

Therefore the theorem is true if f dw= f w for each i. For a particular i,
c dc,

fdw= | c¢*(dw)by Definition 4.7 and since ¢,*(dw) = d(c,* w) by Theorem 3.21,
G (0.1 -
then f ¢ (dw) = f d{c,” w) = fcl(c,* w). On the other hand, fa) = fc,* w. We
[0,11* [0,11* It ac, oIt
have shown 1n Theorem 4.3 that f d(c,* w) = f ¢,* w; thus, we established the final result
k ﬁIk
of this paper.
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