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ABSTRACT

STOKES’ THEOREM: CALCULUS OF DIFFERENTIAL FORMS

by

Christopher Elliot Johnson, B.S.

Texas State University-San Marcos 

December 2004

SUPERVISING PROFESSOR TERENCE MCCABE

This thesis connects a number of fields of mathematics in relation to Euclidean 

// space. It defines the meanings of differentiation for functions between these spaces and 

gives an exposition of the inverse function theorem. One also finds the definition for 

integration of real valued function defined on a Euclidean «-space. These definitions of 

differentiation and integration are precursors to the topics of differential forms and 

integration of forms over chains that stand out as the main ideas developed herein. A 

great deal of effort is spent on developing the algebraic structure of differential forms 

including the non-trivial associative property of the wedge product. The final chapter ties 

the previous chapters together nicely in a result known as Stokes’ Theorem.
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CHAPTER I

INTRODUCTION

The general Stokes’ Theorem is named for Sir George Gabriel Stokes (1819 -  

1903). While he is not the originator of the premise and conclusion presented in the 

theorem that bears his name, it is not a grossly inaccurate designation. After sitting for the 

Mathematical Tripos, Cambridge mathematics graduates were given an opportunity to 

further distinguish themselves by competing for the Smith’s Prize. From 1849 to 1882, it 

was Stokes’ duty to set one paper for this competitive exam, and on it he asked for a proof 

of the theorem that the examinees began to refer to as Stokes’ Theorem. Despite this 

deviation from the standard nomenclature of mathematical theorems, Stokes is indeed tied 

to this theorem in a more remarkable way.

G. G. Stokes published hundreds of papers on mathematics and physics, won many 

extraordinary awards, and worked in the most prestigious academic positions of his day. 

Beyond his academic accomplishments he is said to have been well-regarded by his 

colleagues and students. Even while in the position of Lucasian Professor of Mathematics 

at Cambridge he made a declaration to offer help to anyone at Cambridge who found 

themselves troubled by problems in mathematics. These were not empty words. He led 

many to be successful through encouragement and suggestion of problems. It is through 

his capacity as a dutiful professor that his eternal link to Stokes’ Theorem was establish. 

Two of his most famous pupils were James Clerk Maxwell and William Thomson also 

called Lord Kelvin.

In fact, it was William Thomson who seems to have been the first to state the 

theorem in the post-script of a letter he wrote to Stokes. After Cambridge, Thomson went
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to Pans where his colleagues included Cauchy, Liouville, and Sturm, among others. 

Liouville had perhaps the most influence on Thomson for suggesting that he work to unite 

the ideas of Faraday, Coulomb, and Poisson. While Thomson followed the suggestion of 

Liouville, it is Maxwell who succeeded in creating a unified theory of electromagnetism.

It is the physical phenomena summarized by Maxwell using the theorem proposed by 

Thomson and bearing the name of Stokes that has tied these three men together m the 

most interesting and profound way.

The theorem has evolved much since the time of Stokes due mainly to the advent of 

differential forms. Forms have been hailed as a powerful tool in making fundamentals of 

electromagnetic field theory intuitive. Just as vectors are important for representing 

displacement and velocity, differential forms are useful for representing field intensity and 

flux density. Furthermore, differential forms allow Stokes’ Theorem to not only nicely 

relate the grad, curl, and div, but in fact replace the Divergence Theorem altogether.

This paper uses the construct of differential forms to express and prove a version of 

Stokes’ Theorem that involves the all essential difficulties. It builds from scratch much of 

the mathematical ideas necessary to define and prove the theorem. We will follow the 

approach of Michael Spivak. Like most good books on mathematics, Spivak’s Calculus 

on Manifolds carefully lays out a sequence of ideas while omitting much of the detail in 

showing their validity. This style brings enjoyment to a wide audience by allowing 

advanced readers to progress swiftly through the ideas without becoming bored with the 

intricate details and by giving the novice readers a chance to thoroughly understand the 

ideas through working out the details for themselves. This thesis works out many of the 

details.

Preliminary Notation

We start this section on notation with the real number system—which we will 

denote with the symbol IR—since it is the foundation for all that we will build in this
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paper. We mention next a generalization of the real number system often referred to as 

Euclidean n-space and denoted by IR". We neglect the particulars of the mathematical 

structure and subtleties since they are standard, but we do want to mention a notational 

convention. We use bold print for elements of DR" also called vectors, and we use 

superscript for the real number components of a vector. For example, whenever we write 

x e  IR", x represents an «-tuple of real numbers (x1, x2, x11) where x' e  IR for each

i e  {1, 2, ..., «}.

We will use the usual absolute value symbols exclusively for real numbers. For 

example, we write |x| for the absolute value of a real number x. For the usual Euclidean 

norm of a vector x e  IR", we write ||x||. We will make these definition formal.

Definition 1.1 For a number x e R  the absolute value of x, written |x|, is equal to x 

whenever x > 0 and - x  whenever x < 0.

Definition 1.2 For a vector x e  IR" the norm of x = (x1, x2, ..., x"), written ||x||, is

r*  2
the real number equal to Z  (x‘) ■

V «=1
We will use elementary properties of the absolute value and norm. Other more 

profound properties we will expound upon in a proof. As an example and exposition of 

our symbol conventions so far, we prove the following necessary theorem.
n

Theorem 1.1 Suppose x e  DR”. If x = (x1, x2, ..., x"), then ||x|| < 2  W \ and
1=1

z  IX*| < Vn \\x\\.
1=1

Proof. Let = (x1, x2, ..., x") € IR". We will show the first conclusion by 

exhibiting ||x||2 as part of ^2 |x'|j , where ^2 

principle square root of each side of this inequality will yield the desired result. We
i n  \2

expand ^2  |x'|J below.

t 'lj\xl Misa  sum of non-negative terms. The
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lx1! lx1! + lx1! lx2! +•••+ |xM lx" | + 
lx2! lx1! + |x21 lx21 +•••+ |x2||x"| +

+

+
\xn\ lx1! + \xn\ |x2| + ...+  |x" ||jc"|

The terms written on the descending-diagonal in the arrangement above are exactly 
n 2 n||x||2 written as 2  (x') = £  |xl| |x'|. We make this explanation formal. Since the terms

i=i ¡=1
n- 1

above the descending-diagonal can be written Z1
1=1

descending-diagonal can be written £
i=2

W\ Z |xyl
. 1=1
n- 1

lx11 £  lx-7! I, the terms below the 
i=‘+i )

, and each is non-negative then,

f n y n ( i-1 >
lx1! Z l*'l + Z l*'l Z l*7l

k J~l+l j ,=2 v 1=1 J
\\x\\ = Z |x!l |x!| < Z  I*11 Ix ' l+Z

1 = 1 1 = 1 Z=1
, , - ,2 « 

" l r  1 11 so we arrive at our first conclusion ||x[| < Z |x!|.
¡=1

2

..................................................= ( I ' 4

In particular, ||x||z < ^2 |x!lj

2 ( n VFor the second conclusion we will exhibit n ||x|| -  Z |x'l S: 0, which quickly
n / n \2

leads to the result. We can look at the expansion « Z lx* 1 |x*| -  Z  lx*I in the
i= l Vï= i  )

arrangement below.
lx11 lx11 -lx11 lx11 + |x2||x2| - | x 1||x2| +•••+ |x " ||x " |- |x 1||x"| + 
lx1! lx11 -  |x2| lx1! + |x2||x2| - |x 2||x2| +•••+ |x” | |x " |- |x 2||x"| +

+

+
|jc1| |jc1| - | x " | | x 1| +  |x2 | |x 2 | - | x w| |x 2 | + — +  \rfl\\xn\ - \ x n\\xn\

Each term on the descending diagonal of the above arrangement is identically zero

and each remaining difference has a pair the sum of which makes a perfect square. For

each i, j  e  {1, 2, ...,«} with i 4 , we have the difference |x' | |x' | -  |x71 lx* | which can be

factored as |x'| (|x'| -  |x7|), the difference \xJ\ \xJ\ -  |x'| lx-7! which can be factored

— |x | (|x | — |x |), and the sum of these two factored differences can be further factored as
2

(|x!| -  \xJ\) . We can formally write
n-1

o<z
i=i

' £  ( ix 'i - ^ D 2 
V./=,+1 J

= n Z \xl\\xl
i=l

n
Z 1**1
d=l

2
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In particular, ( 2  l-x'l) 2  [x! I |x* I, thus follows 2  / 2  Ix'lk'l =
Vi=i ; ¡=i ¡=i \  ¡=1

V« IMI, the second conclusion, l

Using the work in the proof, we can see that equality in the first conclusion holds 

whenever is on an axis, that is, whenever x -  (0, 0, xl, ..., 0) for some

1 e  {1, 2, equality in the second conclusion holds whenever x  is the comer of a

generalized cube centered at 0 = (0, 0, ..., 0), that is, wherever \xl | -  |xy | = 0 for each 

i, ;  e  {1, 2, ...,«}; and equality throughout holds when either n -  1 or x = 0.

The next bit of notation we will introduce is that of the inner product. This brings us 

to the first instance of two vectors being used simultaneously. When we need to 

distinguish only two or a few vectors we will often use different letter symbols, but when 

the number of different letter symbols becomes unruly, we will instead use subscripts.

Definition 1.3 For j c j e R " ,  the inner product of and y, written {x, y ) is equal to
n

2  x‘ f -
1=1

Linear Algebra & Functions

We write the usual basis for R" as {e\ , e%, ..., enj. For example,

02 = (0, 1, 0, 0) e  IR4 where the 1 is in the second position indicated by the 2 in .

Definition 1.4 A function A: IR" —>Rm is called linear if for each a, J3 e  IR and 

each r j e  R" we have A (a -x + ft-y) = a- A(x) + [5 • A(y).

When a basis for each vector space is specified, a linear function between those 

vector spaces has a matrix representation. We refrain from making a theorem here, 

leaving it to the linear algebraists, however, the coming importance of a clear 

understanding of linear functions warrants an exposition of the implication for the 

purposes of this paper as well as an example. In the case of a linear function A: IR" —>IRm 

the ith column of the m x n  matrix A = (atJ) for i e  {1, 2, ..., m) and y e  {1,2, ..., n) is 

determined by the m coefficients of A(e,) when it is written as a linear combination of the 

basis vectors. Suppose A: IR2—>IR3 and let x  e  R2. Each of A(ei) and A(e2) is an element
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of (R3, therefore we can uniquely write each as a sum of 3 coefficients and the three 

standard basis elements for IR3. We write A(ei) = a\\ -e\ + 021 -e2 + <231 -03,

how it works.

We start by writing x  as a linear combination of the basis elements of IR2,

A(x) = A(x' • e\ +x2 -e2). Next we apply the linearity of A which yields 

Afx1 -e\ + xz • «2) = x 1 • A(ci) + x2 • A(e2). We can substitute the unique vector 

representation of A(ei) and X(e2) from above and note the result is just the matrix product 

of A ■ x,

our arbitrary ; therefore, for each x  e  IR2, A(jc) = A ■ x. Here after if a basis is known for 

both the domain and codomain, we will use either representation of a linear function 

whenever convenient. We continue now with an important theorem about a certain type of 

boundedness in regard to linear functions between Euclidean vector spaces.

Theorem 1.2 If A: IR" —»IR7” is a linear transformation, then there exists a number 

M  such that if e  IR" then ||A(*)|| < M  ||jc||.

Proof. Suppose A: IR" —»IR7" is a linear transformation. Since we have the usual 

basis for Euclidean vector spaces, we know there exists a matrix representation of the 

linear transformation and we call it A -  (ajy). We define K as

max {YjT=\ I «/I I, YjT=\ 1(2/21 > •••, Z “ i \am\}- Note K is determined from the columns m A. 

For each column, the absolute value of the components is summed and the largest of these 

sums is K.

Pick M -  ^fn K and let elR".

We write under the influence of linear transformation A in the equivalent and

A(e2) - a i 2 -ei +022^2 +a32-e-},x = = x1 • e\ + x2 -e2, and we are set to show

more convenient form:
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A(x) = A-x  =
'«11 •’* a ln ' ' jc1 '

< am\ * * &mn/ -yM\ X  J
= Y Z i

so ||A(jc)|| = ||^  (2 ”=i aij x]) ei ||- By the tnangle inequality and properties of

normed vector spaces, [[^T ^ (2"=1 at¡ x 1) e,\\ < |(Z"=1 «¡y *7)l 11«,||. For each

i  e  { 1 ,  2, . . . ,  m}, ||«{|| =  1 ,  so K 2 " = i  « „  * 7 ) l  11«,II =  2 Z i  l ( 2 ”= !  x ; ) | - A g a i n  b y
Z m \~itn

l(2y=i <*ij xJ)\ ^  2 j i=1 ^y= i kyl I*7!) • We regroup the

larger sum by y and factor out W  | to give j (Z”=1 1«,yl l*7l) = E"=i (I*7IZ ”  11«,y I)- 

Now for each y e  {1,2, ..., «}, by our choice of K, Z ”Li l«,yl -  A' from which follows 

Z"= 1 (I*71 Z fli lfliyl) -  Z ”= 1 I*71 A" = (Zy=i I*71) K. Finally from Theorem 1.1, we have 

Z"=i W\ *  M , so (Z^=1 l*7l) K * K ||x[[ = M ||x||.

We have shown that given a linear transformation A: 1R” —> IRm we were able to 

choose a number M  so that for each re IR "  ||A(jc)|| < M  ||x||. I



CHAPTER II

DIFFERENTIATION AND INTEGRATION

In this chapter, we build on our previous understanding of the calculus of function 

of real variables. We start with a discussion of differentiation of functions between 

various Euclidean «-spaces. We then spend a good deal of energy on the Inverse Function 

Theorem as it is one of those ubiquitous theorems underlying much of the applications of 

calculus In the final section we investigate classic notions of integration, and in particular 

the Fundamental Theorem of Calculus in one dimension as it is this theorem which Stokes’ 

Theorem is an analogy to in higher dimensions.

A thorough understanding of this chapter is essential for the rest of this thesis. We 

have in fact constructed rigorous proofs for each of the results within this chapter, 

however, we refrain from presenting a good number of these as they would distract from 

the goal of this paper. We include statements of definitions and theorems as reference, and 

we give an occasional proof.

Differentiation

We first ask what differentiable could mean in an abstract setting such as R". We 

recall in the real number setting a real valued function being differentiable at a number 

p means there is a line that is the best approximation to at p. Generalized, a function 

/ :  R" —> IRm being differentiable at a point p  means there is a linear function that is the 

best approximation to at p.

8
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Definition 2.1 A function / :  IR" —>IRm is differentiable at p  e  IR" if there exists a 

linear transformation A: IR" —> IR7" so that if s  > 0 then there is a 5 > 0 so that if * e  IR" 

with ||* -  fl|| < 5 then -W®  < £.

One often substitutes the vector h - x - p  into Definition 2.1 and carries out some 

simplifications. It is often convenient to define differentiable as satisfying the following

limit:

limo
Mp+h)-f(P)-m\\

\ \ i ' \
=  0.

A function / :  IR" —> IR7" is differentiable on A c  IR" if /  is differentiable at p  for 

each p  e  A.

Theorem 2.1 If a function / :  IR” —>[Rm is differentiable at p  e  IR” there is a 

unique linear transformation X : OR" — so that if s  > 0 then there is a 6 > 0 so that if 

* e  IR" with ||* -  a|| < <5 then 11 --t(p)] 11 < £ \ye denote A by Df(p) and call it

the derivative of /  at p.

We have seen that whenever a linear transformation is defined between two vector 

spaces each with a basis, then there is a matrix representation for that linear 

transformation.

Definition 2.2 For differentiable function / :  IR" —> IR7" at p  e  IR" the matrix 

representation of D f(p ) : IR" —> IR7" is called the Jacobian Matrix and is denoted f  (p).

Theorem 2.2 If a function / :  IR" —> R m is differentiable at p  e  IR" then /  is 

continuous at p.

Proof. Let / :  IR" —> R7" be differentiable at p  e  IR". Since Df(p ) is the derivative

of /  at p, then we need only show lim \\Df(p) (/i)|| = 0. Since Df(p ) is a linear
0

transformation, then by Theorem 1.2 pick a number M such that \\Df(p) (h)\\ < M ||/i|| for 

all Z ieR". Let e > 0. Pick 6 > 0 such that 6 = Let h e  IR" such that \\h\\ < S. We have 

IIDfip) m \  * M  ||A||, M \\h\\ < MS = s. M
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Theorem 2.3 If a function / :  IR" —»IR7" is differentiable at p  e  IR" and 

g : IR7" —»IR* is differentiable at f(p)  e  IR7", then g ° f : IR" —»IR* is differentiable at p, and 

D(gof) (p) = D(g(f(p)))oDf(p).

Theorem 2.4 If a function / :  IR" —»IR7" is constant, then Df(p) -  0.

Theorem 2.5 If a function / :  IR" —»IR7” is a linear transformation, then Df(p) -  f .

From consideration in linear algebra, we have seen for / :  IR" —>Rm there are m 

unique component functions f®  : IR" —>[Rm, and we can use this to define partial 

derivatives

Theorem 2.6 A function / :  IR" —»IR7" is differentiable at p  e  IR" if and only if 

f  : IR" —>IR is differentiable at p  for each i e  {1, 2,

Theorem 2.7 If functions / ,  g : IR" —»IR7” are each differentiable at p  e  IR" then 

/  + g is differentiable at p, and D(f  + g) (p) = Df(p ) + Dg(p).

Theorem 2.8 If functions / ,  g : IR" — > IR7" are each differentiable at p  e  IR" then 

f - g  is differentiable at p, and D(f  -g)(p) = g(p) Df(p) + f(p) Dg(p).

Theorem 2.9 If functions / ,  g : IR” —»IR7” and each of /  and g is differentiable at 

p e  IR" and g(p) ± 0 then f i g  is differentiable at p, and D(f / g) (p) = 8(P)Pf(^fU>)Dg(j>) _

Definition 2.3 If / :  IR" —> IR is a function the ith partial derivative of /  at p  e  IR"

is lim Ap ’ , p  ̂ fjjg iimit exists, and is denoted , f(p).
¿-*p‘ p

Theorem 2.10 If D, (Dj f(p)) and 3 {D, f(p)) are continuous in an open set 

containing p, then Dt (D} f(p)) = Dj(Dt /(/?)).

Theorem 2.11 Let A c  IR". If the maximum or mimmum of / :  A —»IR occurs at a 

point p  in the interior of A and D, f ( p ) exists, then D, f(p) = 0.
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Theorem 2.12 If a function / :  IR” —>lRm is differentiable at p  e  DR”, then Dj f  (p) 

exists i e  {1, 2, n} and j  e  {1, 2, m}, and f  (p) is the mxn  matrix

' D x f i p )  D2 f ( p )  -  Dn f (Pr  
D i f 2 (P) D2 f 2 {p) -  Dn f 2 (p)

^Dx f m {p) D2 f m ip) -  Dn f m ip ) ;

Definition 2.4 A function / :  IR” —> [Rm is continuously differentiable at p  e  IR” if 

there exists an open set A c  IR” with p e A  such that if x  e  A, then y / '  (x) exists and 

D, f  {p) is continuous for y e  {1, 2, «} and i e  {1, 2, m).

Theorem 2.13 If a function / :  IR” —»IR7” is continuously differentiable at p  e  IR”, 

then f(p)  exists.

The Inverse Function Theorem

In this section we begin by discussing some aspects of the Inverse Function 

Theorem. This ranges from importance of the several hypotheses to examples of its uses. 

This is a constructive and considerably more accessible albeit long proof compared to the 

relatively short and less insightful versions of the proof that involve Banach's Fixed Point 

Lemma. We first consider a concise statement for the purposes of informal presentation.

Inverse Function Theorem: Suppose / :  IR" —>R” is a continuously differentiable 

function on some open subset O of IR”. If p  e  O and det [/'(p)] t  0, then there exists open 

sets U  and 'V of IR” so that: p e i l ,  f(Tl) = <V, f ~ ] : <V — >%l exists and / -1 (<V)  = Tl, 

and (J-1)' (q) = [ / '  ° / _1 {q)\~l for each q e  «V.

We first make several remarks on various of the hypotheses and conclusions. Our 

goal is to establish some bijection and that only has a chance if the domain and codomain 

have the same dimension. Secondly, we have the important hypothesis of continuously 

differentiable on an open set. To illustrate this, suppose we reword the theorem so that /  

is only defined on O and differentiable only at p e. O. Define the function

/ :  (-7T, 7r) — > (-7t, n) by
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r sin x if x is rationalPS \ _ 1
l x if x is irrational.

This function is differentiable only at 0 and its derivative is 1, not zero, but there is 

no open subset 'Z/ so that is bijective on that set because for any irrational number y in 

the range there is a rational and irrational in the domain that both map to y, so one can 

never pick out a set on which is a well defined function.

Note also that hypotheses may be sufficient, but not necessary for a bijective 

function to exist. For example / :  IR —>R defined by /(x) = x3 has /'(0 ) = 0 and yet 

/ “ ’ : R —>R defined of course by /(x) = -sfx is a well defined function. What does 

necessarily follow though is that / “’ cannot be differentiable at 0.

To build a familiarity for the general problem, we will examine the Inverse 

Function Theorem in the setting of functions of real variables. We will maintain the 

wording of the more general setting. The wording will seem awkward since open 

connected proper subsets in the setting of the real line have the simpler terminology of 

segments or rays, still the consistent wording will serve to connected the simpler case to 

the general case.

Theorem 2.14 Suppose / :  R —>R is a continuously differentiable function on 

some open subset O of R. If p  e  O and f { p )  + 0, then there exists open sets rU and ' V of 

R so that:

1. PG^U,

2. f m = <v,

3. f ~ l : 'V —>fU exists and f ~ l ("V) = <Z/, and

4. CT1)' (q) = [ / ' for each q e 'V .

Proof. Let p e  O such that f  (p) + 0. We will assume that f ( p )  > 0, the other case 

following similarly. Since f  is continuous on O and j  f ( p ) > 0, then by a definition of 

continuous there is a number 5 > 0 so that if x 6 O with 0 < |x -  p\ < 6 then 

|/'(x) -  f (p ) \  < \  f(p ) -  We pick <14 = O f) (p -  8, p + 6). Since p e O  and 

p e  (p -  6, p + S) and each of these is open, then p g U  and 1 / is open as the fimte
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intersection of open sets is open.

Since is differentiable at each x e O, then by Theorem 2.2, is continuous on O. 

In particular since 11 QO, then is continuous on 11, and by previous theorems from 

topology, the continuous image of a segment (an open compact, connected set) is a 

segment. Since 11 is a segment and is continuous on 11, then we pick *V = f i l l )  and 

from topology <V is necessarily a segment and hence an open set.

We next show is invertible. Let x ,y  e 1I such that x < y. Since is continuous on 

[x, y] and differentiable on (x, y), then by the mean value theorem for derivatives of real 

value functions, there exists s e  11 so that f  is) i y - x )  -  fiy) -  f(x).

Since s e 1I, then -  p\ < 8, so \ f  (.v) -  f'ip)\ < j  f { p ) .  Since 

\ f  (5) -  f'(p) | < j  f i p ) ,  then by a property of absolute value inequalities,

- j  f i p )  < f  i s ) - f i p )  < j  f i p ) ,  which from algebra follows 

j  f i p ) < f(,s) < j  f ( p ) .  Indeed, since 0 < \  f i p )  and \  f ( p )  < then f ( s )  > 0.

We have f'(s) > 0 and since y > x then y -  x > 0, so f '(s) (y -  x) > 0. Now 

f '(s)  (y -  x) = /(y) -  /(x) and f  (s) (y -  x) > 0, so /(y) -  fix)  > 0 and in particular 

fiy)  > fix). We have show for arbitrary x,y<=1l with x < y, that fix)  < fiy). This is to 

say that is strictly increasing on 11 or is injective with domain 11 and range <V. Since 

'V = f iH) ,  then is surjective. Finally since / :  H  — is a bijection, then there exists a 

function f ~ l : 'V —>1 f  so that f ~ l ifV) -  H.

It remains to show that / -l is continuously differentiable on 'V. Let q e  *V, then 

there is p e  11 such that f ip)  = q. Since l im .^  | ^ X)~JpP) -  f i p ) | = 0 and for each 

xE.1 l,  fix)  + fip),  then theorems from analysis give, lirn ^p | /(x)-f(p) ~ Jlf)  I =

Since lim ^^ | ~ fjp)  I = ^ ancl is continuous, then

lim-y-  ̂| ^ ^yZq ^  _ I = estabhshed the theorem for the special case of a

function of a real variable. I

The generalization of our simple case is hardly trivial. In fact, about the only aspect 

that maintains a semblance of the previous case is the statement of the theorem. Therein
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change each IR to R" and the generalized notion of differentiable requires f  ip) + 0 to 

become detj/' ip)) + 0. We first prove a lemma.

Theorem 2.15 Let A c  IR" be a rectangle and let / : A —>R" be continuously 

differentiable. If there is a number M  such that for i, j  e  {1, 2, n}, \ D} f  (x)| < M for

all e  Int(A), then |/(x) - / ( y ) | < n2 M  |x - y | for all , y e  A.

Proof. Suppose there is a number M  such that for i, j  g {1, 2,

\Dj f  (x)| < M  for all x  e  Int(A). To more clearly explain the proof, we prove the theorem 

for n -  3 before giving a more concise proof of the general case.

Let each of p  and q be elements of the interior of A. Without loss of generality we 

will assume pl < q‘ for each i e  {1, 2, 3} allowing us to write \pl, ql] without ambiguity. 

Recall for each x e  A we can write

f ix)

for unique functions f  : R3

< f
f i x )

. f i x )
► R with i <= {1, 2, 3}, and since Df(x) exists for each

x g Int(A) then by Theorem 2.12 Df{x) has the Jacobian Matrix form

' D i f l (x) D2 f l (x) D3 f 1 (x)'
/  (x) = D\ f 1 (x) D2 f 2 (x) D3 f 2 (x) -  (Dj f l (x)).

^ f H x )  D2 / 3 (x) D3 / 3 (x),
For each i g {1, 2, 3}, we can write f  (q) -  f (p )  m an equivalent manner that 

defines three real valued functions on [pl, ql\ c  R giving us the power to apply the mean 

value theorem. Note

/ 1 ( q ) - f ( p )  = f i q 1, p 2, p 3) - f \ p K  p 2, p 3) 
+ / ( q i , q 2 , p 3) - f 1(q1, p 2 , p 3)
+ /(# 1, <?2> q3) -  q2, p3)

since the first term of each difference has its additive inverse in the following 

difference, the only exception is the last difference. What is left is precisely the 

left-hand-side. There are three functions f l { •, p2, p3): [pl , q1} —>R, 

f l (ql , ■ , p3) : [p2, q2]—>R, and f 1̂ 1, q2, ■): [p3, q3]—*R, and for each i g {1, 2, 3}
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and each x e . ( p l, ql), each of D\ f l {x, p2, p 3), D2 f x(ql , x, p3), and £>3 f x(qx ,q 2,x) 

exists. We can therefore apply the mean value theorem, applicable only to functions from 

IR to IR, and choose z\\ e  [p1, ql ], z 12 e  [p2, q2], and Z13 e  [p3, q3] so that

l / V , p2, p 3) - f \ p \  p2, p 3)I = \ql - p x\\D\ f \ z i u p \ p 3)I,

I / V ,  q2, p3) - / W ,  p3)I = \q2 - p 2\ \Di f H q K z u ,  p 3)\, and 

l / V >  q2, q 3) -  f l {qX,q 2, p 3)\ = \q3 -  p3\ |D3 f l {ql , q2, zn)\.

Since |Dj f  (x)| < M  for all x e  Int(A), then

I/1 (ql , p 2, p 3) - f 1(p1, p 2, p 3) | < | q1 -  p X\M,

I /1 (ql , q2, p3) -  f ( q 1, p2, p3)\ < |q2 - p 2\M, and

I f H q 1, q2, q3) -  f H q 1, q2, p3) I ^ \q3 - p 3\m .

From earlier considerations, without the absolute value, each of the differences on
3

the left adds to precisely f l (q) -  /  (p), then I /1 (q) -  f  (p)\ < 2  \ql -  p l\M and since
1=1

Iql - p l\< \ \q -  p\\ then 2  \ql -  p l\M < 3M \\q -  p\\ and so I /1 (q) -  / (p)\ < 3M \\q -  p\\. 
1=1

The same conclusion can be drawn for / 2 and f 3. From Theorem 1.1 we have
3 3

11/(9)_ f(P)\\ -  X I f  (q) -  f ( p ) I ^ X 3M ||q -  p||. Since there are three terms m this
1=1 1=1

sum, then \\f(q) -  f(p)\\ < 3 2 M \\q -  p\\.

The general case follows similarly. Let i e  {1, 2, ..., 11}. We write

f  ( .q) -f(p) = X f ( q \  qJ, PJ+\  Pn) - f \ q l , .... PJ, .... p") (1)
7=1

where the first term of each difference has its additive inverse in the difference that 

follows in the sum; the only exception is the last difference. Just as in the example, we 

have n functions from a compact and connected subset of IR to IR. We can therefore apply 

the mean value theorem and choose ztJ in [pJ, qJ] or [qJ, pJ], which ever makes sense, to 

conclude

l / V ,  . . . ,qJ, PJ+1, . .. ,p ”) - / V ,  - , q J~l , PJ, . . . ,Pn)I
(2)

= \qJ -  pJ\\Dj f ( q l , . . . ,qJ l , z lJ, p J+1, ■■■, p")|.
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Since |Dj f  (x)| < M for all x  e  Int(A), then from (2)

\ f i q \  p '+1, . . . ,pn) - f ( q l ...... f - \ p f  pn)\<\qJ -  pJ\M. (3)
n

From (1) and (3), we have \ f  (?) -  f  ip)| ^ 2  |qJ -  pJ\M, and since
7=1

IqJ - p J\< \ \q -  p\\ for each j  e  {1, 2, ..., n}, then

I f  (?) -  f i P )I ^ nM ||? -  p\\. (4)

Finally, from Theorem 1.1, ||/(?) -  f{p) || < £  \ f  (q) -  f { p ) |, then with (4) we
i = \

establish the result ||/(?) -  f (p ) || <n2 M \\q -  p\\. ■

Theorem 2.16 Suppose / :  IR” — is a continuously differentiable function on 

some open subset O of If p  e  O and det [ / ' (p)] + 0, then there exists open sets U  and 

*V of IR” so that:

\ . P <=nj,

2.  f m  = <V,

3. / - 1 : <V — >*U exists and / _1 (<V) = <U, and

4. i f - 1) iq) = [ / ' ° f~ l (?)]"’ for each q e  <V.

Proof Let p  s O  such that det[/' ip)) 4- 0. We will call the linear transformation 

f  ip) by A. To further simplify the situation we note that A-1 exists since det[/' {p)) ± 0 

and by the chain rule D(A_1 °/ )  (p) = D(A“1) ifip))°Df(p) -  A-1 °Df{p) = A-1 °A. Since 

the theorem being true for A-1 °/  will imply the theorem is true for / ,  since A-1 is a linear 

transformation, then we can assume that Dfip)  is the identity transformation.

First we show there exists a closed rectangle *Wi with p e  IntCTF] ) so that for each 

x  e  *Wi with x + p, f ix )  + fip).

Assume for each closed rectangle *W with p  e  Int(TV), there is an x  e  *W\ with 

x  + p  so that f ix )  -  fip).  By the assumption, for each i e  N, pick 

jc, e  \pl -  y ,  p 1 + y ] x ... x [pn -  j ,  pn + y ] different from p  so that f ix,) = fip). We 

have then a sequence {jc, such that lim x, = p.
Z—>oo

Now since each of /  and A is continuous at p  and since lim x, = p, then
z-> 00
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lim / ( x,) = f(p)  and lim A(x,) -  A ip). Since the norm is also a continuous operator thenoo Z—>oo
lim ll/0>+^--P)-/(^)-A(/?~xdll _ jjm JlMf.zi i.lli Now since f  (p) exists then the limit on the
l—>oo l'Xl P" l->oo *'Xi
left hand side is exactly zero, so we have lim = 0. Now since for each i g N,Z-> OO 'IX' P"

e  K and since A18 lmear’ then;™ llA( iS ir ) l l  = °-

Define the sequence (z! j“ 1 for each ; g N by z, e  -pz^fj- • Since for each i e  N,

||z,|| = 1, then {zt}™i is a sequence in the compact set B = {x e  IR" 11 = |x|}, thus there is a 

subsequence {z, }“  such that lim z, exists, call it z. Since B is closed and for each j  g N,J 7“ y->CO 1

zt g £, then z e  5. Since z e B , then |z| = 1 and hence z + 0.

Since lim zt -  , lim ||A(zz )|| = 0, and A is continuous, then A(z) = 0. Since A is ay-»oo 7 y->oo 7
linear transformation then A(z) = 0 implies that z = 0. We have shown then that z = 0 at 

the same time z + 0. Thus our assumption must be false, and we conclude its negation.

There exists a closed rectangle TVi with p  g Int(TVi) so that for each x  g TVi with

x + p, f(x) i  fip).

Next we show there exists a closed rectangle TV2 with p  g Int(TV2) so that for each 

x  g TV2 det[/' (x)] + 0.

We use that det : IR” x ... n times... x IR” —> IR is continuous and that f  (x) exists for 

each x g O. Since det[/' (/>)] + 0 then y  |det[/' (/?)]| > 0. Since det is continuous and 

j  |det\ f  (p)]| > 0 there is a number 5 > 0 so that if x g O and ||x -  /;|| < 6, then 

|det[/' (x)] -  det[ f  (p)]\ < y  |det[/' (p)]| and in particular det[/' (x)] t  0.

We pickTV2 = |x  g O \pl -  x'| < for each 1 = 1, 2, ..., nj. This is also 

wntten as the rectangle pl -  JL— , pl + j x .. x |p" -  , pn + j. Finally, if

x g TV2 , then ||p -  x|| = ^  (pl -  x1)2 and since for each 1 g {1, 2, ..., n),

- * '1 < u k •t h e n s = i <6- 3 0 <i5

and det[/' (x)] + 0. We have established a closed rectangle TV2 with p  g Int(TV2) so that 

for each g TV2 det[/' (x)] + 0
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Next we will show there exists a closed rectangle <W/3 with p  e  Int(Ty3 ) so that for 

each x e  *W3 \D; f  (x) -  D, f  (p)| < for each i, j  e  {1, 2, n}.

We use that is continuously differentiable on O. Since the notion of continuous is 

independent of the norm given to a space, for each x e  O, we define 

II/' (x)|| = ^  i (2 ”=l IDj f  (*)l) where D} f  is the entry in the ith row,/th column of 

/ '  (x). Since 2^r > 0 and is continuously differentiable, there is a number 6 > 0 so that 

if x e  O with ||x -  p|| < 6, then | |/ ' (x) -  f  (p)|| = (Z”= 1 \Dj f  (*) ~ D} f  (p)\) <

2^5-. Since this is a finite sum of non-negative numbers, then each term must be smaller 

than 2 Using 6 we pick 'W?, in the identical way we chose 'Wt.  Let 

’Wj, = |x  e  O I pl -  x'| < for each i -  1, 2, ..., raj. As before, if x e  W 3, then 

||x -  p \ \<5  and by the choice of S, then |Dj f  (x) -  Dj f  (p)\ < for each 

i, j  e  {1, 2, ..., ra}. We have chosen a closed rectangle 'TU3 with p  e  Intf^W  ̂) so that for 

each x e  W 3 \Dj f  (x) -  D} f  (p)\ < -¿ r  for each i, j  e  {1, 2, ..., «}.

Let = *W\ p) fl TL3. We write 'W = \w\ /, w\ r] x ... x [wn /, wn r] is a closed

rectangle.

Next, if each of 1 and X2 is an element of ’W ,  then we will show that 

||x1 - x 2||< 2 ||/ (x i) - /(x 2 ) ||.

Let x i, X2 e  'W. By the simplification made at the start of this proof, we have A as 

the identity map. If for each x e  <W, we define g(x) = f(x) -  x, then g is continuously 

differentiable on 'W, and |D} gl (x)| = \Dj f  (x) -  <S* | = |Dy f  (x) -  D} f  (p)\. Were Sj is 

the Kronecker Delta. If x e  'W  then e  *'W/3 so |Dy f  (x) -  Dj f  (p)\ < -^¡r- Thus if 

x e W ,  \Dj gl (x)| < 2^-.

By Theorem 2.15, we conclude that Hgfe) -  g(x2)|| < ra2 ||x2 -  xi || which 

simplifies to ||g(x2) -  g(x2)|| < j  ||x2 -  xi ||. Now by a property of the norm we have 

11*1 ~ *2II -  ll/(xi) - / ( x 2)|| < ||/(*i) -*1  -  (/(x2) - x 2)||. Since g(x) = /(x) - x ,  then 

ll/(*i) -  xi -  (/(x2) -  x2)|| = ||g(*i) -  g(x2)||. Altogether then 

ll*l — *2II — ll/(*l) -  /(*2)ll ^ j  11*2 _ *1II, which transforms with algebra to
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| |x i - x 2| |< 2 ||/ ( x 1) - / ( x 2)||.

We have shown for each of xi and x2 an element of TV, then 
| |x i - x 2| |< 2 | | / ( x i ) - / ( x 2)||

We now pick our image set *V. Since TV is a rectangle then TV is compact and 

since the boundary of 'IV, call it BCW), is a closed subset in TV (since it is the 

complement of the Int(TV) which is the largest open subset of 'IV) then BCW) is compact. 

Since is continuous, then f(B((IV)) is compact. Furthermore since f(B(fW)) is compact, 

then it is closed. Since p  e  Int(TV), then p  <£ BCW), so f(p)  <£ f(BCW)). Finally since 

/(6(TV)) is compact and f(p) £ f(BCW)), then there is a number 6 > 0 such that 

<5 < inf {||/(to -  /(x)|| | x € fi(TV)}. We pick 'V = {y \ \ \ y -  / to l l  < f }.

Next we show if y e. <V and x e  BCW), then ||y -  /(toll < ||y -  /(x)||.

Let y g *V and x  e  BCW). Since y e  *V, then ||y -  /(toll < . Now since

5 < inf {|| f(p) -  /(x)|| I x e  BCW)}, then <5 < ||/(x) -  /(toll and 

||/(x) -  /(toII -  IIy -  /(toll > 8 -  j  = j -  By properties of the usual norm,

II/to  -  / to l l  "  II/to  -  y\\ ^  II/to -  y\l Together then \\y -  f(p)\\ < ||y -  /(x)||.

Now we show if y e  *V, there is a unique x e  TV such that /(x) = y.

Let y e W .  Define g : TV—*!R by g{x) = ||y -  /(x)||2 = (y‘ ~ / ' t o ) 2- g is

continuous since is and therefore g is bounded on 'W  and moreover there exists x e  *W 

so that g(x) = inf {range of g}.

Assume x e  BCW), then since g(p) = ||y -  f(p)\\2, g(x) = ||y -  /(x)||2, then by 

above we have g(p) < g(x). This contradicts g(x) being the minimum. The only alternative 

then is that x e  Int(TV).

Since 'IV c  1R”, the inf {range of g} = g(x) occurs at x e  Int('lV), and Dj g(x) exists 

for each y e  {1,2, ...,«}, then by Theorem 2.11 Dj g(x) = 0. By Theorem 2.3, it follows 

that j g(x) -  2"=1 2 (yl -  f  to ) D} f  (x) = 0 for each j e | l , 2 ,  ...,«}. We know from 

that TV was chosen so that det(Dy f  (x)) + 0; thus, (yl -  f  (x)) = 0 for each 

i e. {1, 2, ..., n). Since y‘ = f  (x) for each i e  {1, 2, ..., n], then y = /(x). If xi, x2 e  TV
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such that y = f ( x \ ) = /(x 2), then from above ||xi -  x2|| < 2 ||/(x i) -  /(x 2)|| = 0. By 

property of norm, it follows that xj -  x2 = 0 so xi = x2 and we have established the claim.

We are now ready to choose fU. Since for each y  e  'V, there is a unique x e  'W, 

then we can construct a well-defme a function -1 : 'V — > <W.  Pick 

i /  = { re  Int(*W) | / _1 (y) = xfor some y e  rV). We can show the first three conclusions 

of our theorem.

First, p  e  'll since p  e  Int('W) and f(p)  s  <V.

Second, if x e  *ZZ, then x = f ~ l (y) for some y e  *V so f^U)  £ 'V- Now if y e  *V, 

then y = /(x) for some x £ 1/, so T  c  /('Z/). The dual inclusions gives pi/) = *V.

Third, if y e  <V, then / _1 (y) = x for some x e i / ,  so / _1 (<V) c  'Z/. If x s U  then 

/(x) = y for some y e ’V.  Since f ~ l (y) e  / _1 (*V) and x = / -1 (/(x)) = f ~ l (y), then 

x e  / _1 (*V) so we have / -1 (<V) = i / .

Finally we show if t e  <V, then ( / -1 /  (t) exists and is [ / ' ( /_1 (/))] 1.

Let t e  *V. Pick s e i /  such that /(s) = i. Since is continuously differentiable on 

U  and s e  'Ll, then call p = f  (s). Since s <atl c  TF2, then det[/' (5)] + 0, so we also have

the inverse linear transformation p~l . Since f  (s) exists, we have 

II (*)- W-M*-»)ll _ q

Define ip : 1R" —» IR" by tp{h) = f(s + h)~ f(s) -  p(h). For each x, x -  s e IR” so 

(p(x - s )  = f(x) -  f(s) -  p(x -  s). We apply p~l to arrive at

p~l (<p(x -  s)) = jU-1 (/(x) -  f(s)) -  (x -  s). Since we have /(x ) = y for each x e HA and 

f~ l (y) = x for each y e T ,  then p~l (y) -  f~ l (t)))

-  „-1» (y -  0  -  ( /_1 (y) -  / _1 (0).

To establish our claim, we need to show that lim
y-*t

i r 1 (y)-/-1 m \  _ n w „
1LMI ”  u- we

can do this by showing lim ^  ^ ~= 0 since

P~l ( (y) -  f ~ l (*))) = p~l ( y - t ) -  {f - 1 (y) -  f~ l {t)). Since /T 1 is a linear

=  0.transformation, then by the chain rule, we show lim ^  ^
y~*t 1LMI

Now M r 1 (r)-r1 (b)ii _ M r 1 o o -r1 «)» n r1 w - r 1 ton
ILMI II/-1 «II llr-ill for each j e T .  Since
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u M ir£ l
ÏÏÏÏ ill'll

= 0 and since /  1 is continuous, then hm
y-*t

HAT1 W -r1 (0)11 _
ILMII = 0. By

conclusions above, ||x -  s|| < 2 ||/(x) -  /(s)|| for each r e i / ,  thus I1/W-/WII < 2 for each

r e l /  except s. Since /  is continuous and for each y e  *V, ^  ^  <  2, then

lim ^  ^  exists call it y. Now since each of lim ^  andy->t II y rn y~>t llj-ill

limy^t
II /-1 (y)-.r L  e x i s t s  t h e n  l i m  O ' ) - / -1 m  .  ^  WI1 e x i s t s  a n d  i s  0 ^  -  0exists, then hm i^ y  exists and is U-y -  U.

This shows lim
ŷ >t

Hat1 (y-t)-(r' (y)-r l (0)11 _
lb -ill = 0 and we have established the final claim.

Integration

We begin our discussion of integration with functions of real variables. We press 

forward to establish the Fundamental Theorem of Calculus since it is the analogy of 

Stokes’ Theorem in the setting of real numbers and since it is used in the proof of Stokes’ 

Theorem. Unlike differentiation, integration on rectangles in R” is quite similar to R. We 

give only the definitions and prove Fubini’s Theorem.

Definition 2.5 A subdivision of the interval [a, b] is a finite subset of [a, b] denoted 

by D with the property that each of a and b belong to D. We usually denote D by {x;}”_0, 

where xo -  a, xn = b, and for each index i between 1 and n inclusive, x,_i < x(.

Definition 2.6 A refinement K of a subdivision of the interval [a, b] is a 

subdivision of [a, b\ where c  K.

Theorem 2.17 If D is a subdivision of [a, b], then D is a refinement of D.

Theorem 2.18 If K is a refinement of H and H  is a refinement of the subdivision D 

of [a, b\, then K is a refinement of .

Theorem 2.19 If each of D\ and is a subdivision of [a, b], then D\ (J Di is a 

subdivision of [a, b] and D\ U Z>2 is a refinement of D \ .

Definition 2.7 If D -  {xj”=0 is a subdivision of [a, b], is an interpolation

sequence of D if for each i e  {1, 2, ..., n), x,_i <tt < xt.
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Definition 2.8 For a function / :  [a, b] —>IR, if there exists a number A such that for 

each s > 0 there is a subdivision D of [a, b] such that if H -  {x,}"=0 is a refinement of

and ft,}"= j is an interpolation sequence of H, I  / f t )  Ax, -  A 
¡=1

< e, then we say /  is

A-integrable or simply integrable on [a, b] and we denote the number A by f f  dx.
a

rbTheorem 2.20 If /  is a function defined on [a, b] such that I /  d j  exists, then /  isJci
bounded on [a, b\.

rbTheorem 2.21 If each of /  and g is a function defined on [a, b] such that Ja f d j  

exists and f j ’g d j  exists, then JT*/  + g d j  exists.

Theorem 2.22 If /  is a function defined on [a, b], c is a number such that

Xc rb rbt f  exists and Jc f  exists, then Ja f  exists.

rbDefinition 2.9 Suppose /  is a function defined on [a, b] such that J /  exists. We

define

Theorem 2.23 If / :  [a, b] —>(R is a continuous function and & is a number such 

that f(a) < k<  f(b), then there is a number p e  [a, b] such that f(p)  = k.

Theorem 2.24 Suppose /  is a function defined on [a, b]. The following statements 

are equivalent:

(a ) £ f * j

(b) If e > 0 then there exists a subdivision D = { j , }'L0 of [a, b\ such that if

H -  {yi}%o is a refinement of D and ft }”=1 and f t ,}'” j are interpolating sequences for D 

and H, respectively, then IH”=) / f t )  Ax, -  Z?=i f(s,) Ay,\ < s.

(c) If s  > 0 then there exists a subdivision of [a, b] such that if each of

H = {x,}"=0 and K = (y,}[n=Q is a refinement of and and are interpolating 

sequences for H  and K, respectively, then |£?=1 / f t )  Ax, -  YHL\ f ( si) Ay,| < s.

rCTheorem 2.25 Suppose /  is a function defined on [a, c] such that Ja f d j  exists. If
rbb is a number such that a <b < c, then Ja f d j  exists.
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rbTheorem 2.26 Suppose /  is a function defined on [a, b] such that }a f d j  exists. If 

k is a number such that for each x e  [a, b] g(x) = k ■ f{x), then g is a function defined on 

[a, b] such that d j  = k • dj.

rbTheorem 2.27 Suppose / :  [a, b] -> IR. If /  is continuous, then Ja f  exists.

Theorem 2.28 Suppose / :  [a, b] -» IR. If /  is continuous, then there is an x e  [a, b] 

such that f{x) (b -  a) = JT*/ .

Theorem 2.29 Suppose / :  [a, b\ -»IR. If /  is continuous, a< p <b, and for each
pXx e  (a, b), gix) = I /  dt, then for each x e  (a, ¿), g'(x) exists and is /(x).jp

Proof. Let /  be a continuous function. Since /  is continuous on [a, b\, then by
rbTheorem 2.27 }a f  d t  exists. Let p  be a number such that a < p <b. Since for each 

x e  (a, p), /  is continuous on [x, p], then by Theorem 2.27, for each x € (a, p), - f  d t  

exists and by Definition 2.9 is f  dt. If x = p, then j ^ f d t -  0 and thus exists. Since for 

each x e  ip, b), f  is continuous on [p, x], then for each x e  (p, x), J * f  d t  exists. 

Regardless of the relative position of p, for each x e  (a, b), jp f d t  exists. So we can
pXdefine a function g on (a, b) such that for each x e  (a, b), g(x) = Jp f d t .

Let q e  (a, b) and pick fiq) as candidate for g' iq).

Let s  be a positive number.

Since /  is continuous on [a, b\, then /  is uniformly continuous on [a, b]. Since /  is 

uniformly continuous on [a, b] and e > 0, pick 5 > 0 such that if each of x, y e  [a, b] and 

|x — y\ < 6, then |fix) -  /(y)| < e.

Let x e  [a, b\ such that 0 < |x -  q\ < 5. Now we should at this point consider a 

number of cases based off the relative positions of p,q,  and x on the number line. The 

essential difficulty is the same regardless of the case, so we examine each case up to this 

difficulty and then draw the cases together in a one-for-all conclusion. In each case, we 

use Definition 2.9 and Theorem 2.25 without additional mention.
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Case I  p = q.

f f - f f  f f - 0 / VIf 9 < *■ then = i _ . If * < q, then

V - V  -£ f - °  S t  f f
x-g -(g-x) q-x x-q

Case II p < q.

f f - f f  f f + f t  f fIf <7 < x, then p < x so — . If x < q and x < p, then 

J p f z i L  = 4  = l £ L  = L i ,  if x < ?and x = p , then = ^ 2  = ^ - . I f
x-q x-q x-q x-q  ^ x~# x-# x-g

r / - r /  17+17 J 7
x < q and x > ;?, then 

Cose III p >  q.

x-q
P_ __ JP uq _ Jg

x-q x-q

f / - f /  - f 7  f 7
I f x i . j . t h e n . K p s o ^ - j ^  = = - ¿ j -  = If x >  qzndx < p,

0 - 0  - S H t  - S t  S t
llle n  , , ,

S i - S i  « S t  S t
x-q x-q x-q '

x-q

If x>  q and x > p, then

If x > gand x = p, then

f f - f f  f j + f f  f f
x-q

— p q — f±l 
x-q x-q

pxNo matter the case, if we allow J /  to be meaningful when x < q as we have done

f f - f f  f fin Definition 2.9, then the result is p _ p -  -s — . We continue with showing
X  Cj JC ¿7

lim*_>9 ( g(x)xZfq)) exists.

written as

^ - m \

f f

f f - f f
x-q ■ m . From our case consideration this can be

. Since /  is continuous, by Theorem 2.28 we choose t between x

f f  f f
Since / ( i ) = i ?and q such that f(t) = . Since f(t) -  »then

f f
= \f{t) - M \ .  Since

x < t  <q  or q < t  <x  and \x -  q\ < 8, then \ t - q \<  8. Since \ t - q \<  8, then by our choice

of 8, | /(/) -  f(q) | < s. Together gW -g(g)
x-q ■ f(q)\ < e.

We have shown that for £ > 0, we chose a 8 > 0 so that for x e  [a, b] with

0 < ¡x -  q\ < 8, then gCO-gC?)
x-q

' g(x)-g(q) '

-  f{q) | < £. This is to say limx_>? ( ) exists and is

f(q). Since lim*-^ ( g(*xI f q)) exists, g(q) exists as /  is continuous on [a, b\, and since 

q e  (a, b), we say g is differentiable at q. We write g'(q) = f(q). Since q was arbitrary in 

{a, b), then for all x e  (a, b), g is differentiable and g'(x) = f(x). ■
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Theorem 2.30 Suppose / :  [a, b] -> IR. If /  is continuous on [a, b] and for each 

x e  (a, b), T'(x) = /(x), then [bf d x  = T(b) -  T(a).

Proof Let /  be a continuous function on [a, b\. By Theorem 2.29 there exists a 

function T : [a, b] -> IR so that for each x e  {a, b), T' (x) = /(x).

Let p e  (a, b) and for each x g {a, b) define g(x) = Jp f d t .  By Theorem 2.29, for 

each x g (a, b), g' (x) = /(x).

Since for each x g (a, b), T'(x) = g '(x ), then there is a number k such that for each 

x e  [a, b], T(x) = g(x) + k. Since b g [a, b] and g{b) -  [b f  dt, then T(b) -  fb f d t  + k.dp Jp
Since a g [a, b] and g(a) = ¿ f  dt, then T(a) = Jfa/  dt  + k. Now since T(b) = j b f  d t  + k 

and T(a) -  J ^ f d t  + k, then T(b) -  T(a) = J b f  d t  -  f  dt. Since by Definition 2.9,

-  f af  d t  -  fpf  d t  and by Theorem 2.25 f f  d t  + [pf  d t  = t f d t ,  thenJp J(X Jp J(2 JQ,
Xb pcl pbf  d t  -  Jp f  d t  -  Ja f  dt. The results of these last two statements together give 

T(b) -  T(a) = ¿ f d t .  I
rbTheorem 2.31 Suppose / :  [a, b\ -* IR is a function such that Ja f  dx  exists. If each 

of and M  is a number such that for each x e  [a, b], L < /(x) < M, then 

L(b - a ) < J bf d x <  M(b -  a).

pbTheorem 2.32 Suppose / :  [a, b\ -»IR is a function. If Ja f d j  exists and for each
Jrx1 f d j ,  then T is continuous.a

pb px pbProof Suppose ja f  d j  exists and for each x e  [a, b\, T(x) = Ja f d  j. Since Ja f d j  

exists and for each x e  [a.b], a < x< b, then by Theorem 2.25 for each x e  [a.b\, ¿ f d j  

exists. Thus T : [a, b\ -» R is well defined.

Let p G [a, b] and s  > 0.
rbSince Ja f d j  exists, then by Theorem 2.20 there is a number M > 0 such that if 

q G [a, b\, then \f(q)\ < M.

Pick 0 < 6  < Let q g [a, b] such that 0 < \q -  p\ < 6.

Since for each x g [a, b\,T(x) = Ja f d  j  and since p ,q &  [a, b], then 

\T(q) -  T(p)\ = f d j [  Since by Definition 2.22 - ¿ f d j  = ¿ f d j ,  then
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\ £ f d i ~ I a  f d i\ = \ £ f d] + $ p f d j\- Since each of f f f d j  and jT / d j  exists, then by 

Theorem 2.25 J\qf d j + $ “f d j  = J ^ / d j .  Since J qf d j  + J ^ f d j  = J ^ f d j ,  then 

\ J ^ f d j  + J p f d j \  = | J qf  dj\. Since for each x e  [a, b], |/(x)| < M  and p, qe. [a, b], then 

for each x between p  and q inclusive, \f(x)\ < M. Since for each x between p  and q 

inclusive, - M  < f(x) < M  and fqf  d j  exists, then by Theorem 2.31,

-M(q  -  p) < J p f d j  < M(q -  p). Now since 0 < \q -  p\ < 6 and

-M(q -  p) < J q f  d j  < M(q -  p), then -M S  < J q f  d j  < MS and | Jf9/  d j\ < MS. Since

0 < S < jj-, then MS < M  -¡g- = s. Altogether \T(q) -  T(p)\ < s.

We have shown that for s  > 0, we could chose a 5 > 0 so that for arbitrarily 

established q e  [a, b] where 0 < \q -  p\ < S, then \T(q) -  T(p)\ < s. We conclude that T is 

continuous at p. Since p was arbitrary in [a, b], we conclude T is continuous on [a, b). I 

Definition 2.10 A partition of the rectangle R = [a\,b\]y.---x.[an, bn] c  IR” is a 

finite subset P -  D\ xZ?2 x ■■■*Dn where Dl is a subdivision of [a,, bt] for each

1 e  {1, 2, ..., n).

If there are N\ + 1 elements in D \ , IV2 + 1 elements m ¿>2, and Nn + 1 elements m 

Dn, then there are (N1 + 1) (N2 + 2) • ■■(Nn + 1) elements in P and the partition creates

N\ ■ N j ...... Nn = m sub-rectangles in R. We choose to define the integral of a real valued

function over a rectangle in Euclidean «-space building on the previous work.

Definition 2.11 A refinement H = Hi xHi  x • • • xHn of a partition 

P = D\ xT>2 x---xDn of the rectangle R = [a\, ¿i]x[«2, ¿2] x b„\ satisfies t is a

refinement of subdivision ; of [a:, b,] for each i e  {1,2, ..., «}or simply His  a partition 

of R where P c  H.

For a partition of a rectangle and a refinement of a partition we have theorems

analogous to Theorems 2.17, 2.18, and 2.19, e.g., suppose 1 = {xh , D2 = [xh }^=i,
kand Dn = {x'n },"=1, and P = D\ x • • • x Dn, then P i s a  refinement of P, et cetera.
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Definition 2.12 For a partition P of arectangle R = \a\, b\ ] x [a2, ¿2] x -" x [fln> bn] 

and a refinement = H\ x • • • x //„ of P with Hj = {x̂  for each y e  {1, 2, n), then

for interpolation sequences {txh }*' of H \ , {r2 }kJ_x of //2, ..., and {t” of Hn we define

K ' . i x f t - l t l  = { -  {(ft1,. i ) ) L )  ‘ , - } ’ » b eanV 1 l2 — 1 ' j — 1
interpolating sequence of H.

Definition 2.13 For a rectangle R -  [a\, b\ ]x[a2, 62]x---x[a,i, bn\ and a function 

f : R  —>IR, if there exists a number A such that for each s  > 0 there is a partition P of R 

such that if H = {x]i }*‘ x • • • x {xf }*" is a refinement of P and {th t , } is an 

interpolating sequence of ,
ki ( ka ( ( kn >\ 'A
2  2  —  2  f{thl2 J a (x“ ) a (x^ ) - a (x‘») -A < s, then we say /  is

i1=1V¡2=1V Vi„=l ) ))

integrable on R and we denote the number A by J f  dR.
R

We could also produce alternate definitions for integrable on a rectangle, then state

and prove many of the previous theorems regarding the integral of a real valued function

on a closed interval in the setting of a real valued function on a closed rectangle. We will

not since the proofs are similar albeit more cumbersome. We will assume them and refer

to the simpler and one new result for rectangles. What we need is a way to calculate

J f d R  in the manner that Theorem 2.30 allowed us to calculate f b/(x) dx.
R a

Fortunately we can use the same theorem to carry out the calculation of J f d R
R

without any new theory. For example, if R -  [a\ , ¿ 1] x [a2, ¿2] and f ' R  —> R is a 

continuous function, then we can define A\ : [a\ , b\ ] —>[R by A1 (x1) = f *2 /(x 1, x2) d x 2 

which is well-defined by Theorem 2.27 since if x1 e  [a\ , b\], then /(x 1, x2) is a

continuous real valued function on [a2, ¿2]. Ai is continuous since the integral operator
bis continuous by Theorem 2.32, therefore, by Theorem 2.27 f 1 A\(x1) d x 1 exists and we 

write f bl ( f bi/(x 1, x2) d x2) d x 1. The question that remains is, “Is JRf  dR  the same as 

f bt ( f b2 / ( xl > -*2) d x2) d x 1 ?”, and the answer to this question and a corollary of it, will be
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our last theorem in this section on integration of real valued functions. The theorem is a

special case of a more general theorem known as Fubini’s Theorem.

Theorem 2.33 Suppose R -  [a\, ¿ i]* [a2, &2] x-" x [««, bn\ and f  :R —>IR is

continuous, then J f d R  is equal to JT*" (— j ^ 2(J^‘ f ( x l , x2, ..., xf1) ¿fx1) dx2) dx" .
R

Proof. We prove this by induction on n. For n = 1, there is nothing to show. We 

make our base case for n = 2.

Define Ai : \m , bx ] —»1R by Ai (x1) = [h /(x 1 , x 2)d x 2. Note A\ (x1) is 

well-defined for each x1 e  [a\ , b\ ] since if x1 e  [a\ , b\ ], then /(x 1, •) is a continuous 

real valued function on [ai, bi] by Theorem 2.27. Ai is continuous since the integral

operator is continuous by Theorem 2.32, therefore, by Theorem 2.27, f 1 A \ (x1) d x l
b bexists and1S fa ‘(£  2 /(A1, x2)d x 2) d x 1 call itZ2- Also by the assumption f  f d R  exists

call it Z \ .

Let s > 0

Since JRf d R  exists and f >  0, then we pick a partition P = F\ x F2 of /? so that if

each of H\ -  {x} }*' and Hi = [xf f 2 is a refinement of F\ and Fi, respectively, and2 A2
h>h=Q l2 ’ll =0

U(tj , t2 )}*' } 2 is an interpolating sequence of refinement H\ x/72, thenl 1 2 li-i.fi -I

< f .2  2  f ( t \  , t2 ) AX* AX2 -  Zi
l\ — 1 /. ■■ 1

Since f  Ai(x1) d x 1 exists and j  > 0, pick subdivision Di of [a\, b\ ] such that if
a,

H = {x*}; ‘_0 is a refinement of D\ and {i* }; '=1 is an interpolating sequence of H, then

2  Ai{tlh )d x h — Z2
¡,=1

< y . Let H  = {x̂  }f’_0 be a refinement of D\ U F\ and let {t]h }^_j11*1

be an interpolation sequence of H. Therefore,
k. .
2  A] (t\ 
h=\

- z 2 <  -  
^  3  • (1)

Since for each ¿1 e  {1, 2, ..., k\ }, f  f{f\ , x2 ) d xh exists and
3  (b\ - a , )

> 0, then
a2

2 Apick subdivision Kh of \a\ , b{\ such that if Hh = {xf2}; _Q is a refinement of and
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{tf }/C2 , is an interpolation sequence of Hh , then2 In—l 2  A t } , t l 2) Axl  — A t C r J )
«2=1

<
3  (¿>i - f l i )  '

*vz
Pick D2 = U  . D2 is a refinement of for each q e  {1, 2, ..., k\ } by 

¡1=1
Theorem 2.19. Let Hi = {xf2 be a refinement of D2 U F2 and Ul }^_j be an 

interpolation sequence of Hi-

First, since H\ is a refinement of F\ and Hi is a refinement of F2, then H\ x/ /2 is a 

A Arefinement of P, and {{(r1 , t})}; '=1}  ̂ is an interpolation sequence of H\ x//2 so

2  2  A t}  » ) Ax} Ax} -  Zi
Zl = 1  ¿2 =  1

<  —  
^  3  ‘ (2)

Second, since Hi is a refinement of Kh for each i\ e  {1, 2, ..., &i} and {t} }^=l,

then for each i\ e  {1, 2, ..., k\ },

h
2  -A i( iJ )

¡2 =  1
<

3  (b\ - a , ) <  2  A t } > £ )  <  A i  (t} )  +
¡2=1 3(*i-ai)

3(*i-a,)

Since for each

and in particular

11 e  {1, 2, ..., ¿1}, Axl > 0 it follows

2  ( 2  f ( t \ , t \ ) A x \ O a x 1 <  2  ( A  1 )  +  3 ( , £_ a i ) ) A x *  =  2  A i i i J j A o c J  + f
Zi = 1  Vz2 = l  /  Zi = 1  Zi = 1

and

2  ( 2  A t } , t\ ) ax|  ] ax1 < 2  (Ai ( i j )
Z^—1 \Z2 — 1 '  l\— 1

3̂ L _ ) ax1 = 2  A l(^)A xl -
Zl - 1

€_
3 •

Therefore,

2  ( 2  / ( ^ ^ | ) A4 ) A4  “ 2  Al(tl)AX
h = l \ i 2 = l  )  H = 1

<  -  
^  3  • ( 3 )

From the triangle inequality we have the first inequality

iz i - z a i  ^ Z l  -  2  2  A t }  , t l  ) AX,1, Axl
Zl =1 Z2 = l

+ 2  (2 A t } ,  t}2) a x A a x }  -  2  A | ( r
>1 =1 Vz2=l / zx = 1

¡, ) AX1

+ 2  Ai (i?) ¡ix'1 -  Zi
*1=1

< A + A + Aa ' o ' a

the final inequality from (1), (2), and (3); thus, |Zj -  Zi\ < s. We conclude that 

Zi = Zi. We have established the result for the base case n = 2.

We have now the inductive hypothesis:

£  (• ■ • £  ( £  f  (X1 ’ ^ * ■ ■ •» *") d *1) dx2) • • • dxr'
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= fbn... f*2 f b" f(x ^ , x2, ..., xll)d x i dx2 ••• d xn.Jan Jan

By the supposition, J bn+1 ••• f j ’2 f b" f ( x l , x2, ..., xn)d x 1 dx2 ••• dxn+l exists call it 

Zi. Define A„+i(x”+1) = f • • • f*2 f b”/(x 1, x2, xn, x”+1) «fx1 <ix2 ••• <ix", for each 

x"+1 e  [a„+i, bn+1], which is well defined by our inductive hypothesis and even 

continuous by consideration of Theorem 2.32. Since An+\ is continuous on [an+\, bn+1],
bn+\

then f  An+i (x"+1) d x”+1 exists, call it Z2.
&n+l

Let s  > 0.

Since Zi exists and y  > 0, we pick a partition Pi = Pi xp2 x • • • xF,1+] of 

Rn+1 = [au bi]y.[a2, b2]x---x[an+i, bn+1] such that if H  = fx* }*'=0 x • • • x {x^1 is a

refinement of Pi and {• • • {(i*, ..., )}^_ • • •} ”+1 is an interpolating sequence of H,
li ~ ln+i = 1

kfi+1 k2
then E ••• E /(*/,> ■ C i1) Ax/, '*■ - z i < f  ■

««+1=1 «1=1
Since Z2 exists and y  > 0, pick a subdivision n+\ of [an+\ , &„+i ] such that if 

Hn+1 = {xf+i }*"+1_i is a refinement of w+i and { t ^  }*n+1_1 is an interpolation sequence of

H„+1, then E  An+1(xn+1) A x ^ - Z 2
ln+1 =1

< y . Let Hn+\ = {xf+i }*"+1_i be a refinement of

1 Ai 1Dn+i U Fn+1 and let {t^ } "+ be an interpolation sequence of Hn+\ . We thus have

'n+1 ”*t
For each i„+i e  {1, 2, ..., kn+l},

E A„+l(x”+1) Axf+l - z 2 <
3 • ( 4 )

f bn f h  f bnf(x ^ 9 x2, xn, t ^ ) d x ^  d x2 *•* dxn exists and since .{h ----- r- > 0,Ja* Jan J K *«+i 7 3 (bn+l-an+l)

then there exists a partition Pl#i+1 of Rn = [a i, b\ ] x • -• x [an, bn\  such that if 

H  = {xj x • • • x {x" }J=0 is a refinement of P,„+1 and {• • • {(^ )}*‘=1 • ••}^=i is an

interpolating sequence of H, then

*«=! 'i=i
< 3 ibn+1 "n+1)

Let P„ = (Ut;+;=i P;„+1 )• Thus Pn is a refinement of P,n+1 for each 

in+1 e  {1, 2, ..., &„+i}. Let Hn = fx* }̂ ‘=0 x • • • x {x^1 }^+'=0 be a refinement of 

Pn U (Pi x xFn) and let {• • • \(t] , ..., if )}*'_, • • •} ” be an interpolating sequence of Hn
l  1 n i j - 1 >i 1
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First we have = Hn *Hn+\ is a refinement of F\ x • • • xFn xFn+1 and 

{••• {{t}x, -.} "+1 is an interpolation sequence of H\ therefore,
7̂1+1 1̂
2  -  2  - . C 1 ) “ .1, • • • “ £ ? - Z i  <  f -

i/I+1—1 Zl~l
Second, since Hn is a refinement of PZ/j+1 for each in+\ e  {1, 2, ..., &w+i} and

r 1 k\{• • • {(f, if ) } , • • • }  is an interpolating sequence of , then
1 1 n ZX —1 } in =  \

z  -  2  /<»?,■- . i . c , 1) “ ?, •■•■k - ' W C , 1)¡„=i «1=1
in particular

A n+ l ( C i 1 ) +  3

( 5 )

< 3 (Pn+l &n+1)

 ̂(̂ rt+1 #n+l)
K1 1 

• 2 / ( « ; , . tn

n = i

C ^ A J C .1 •
ln+l ' h • * A x f

ln I “ i t ,1 <

An+l (C * ) +ln+1 '  3 (¿ „ + i-a „ + i) '

Z (ab, i ( C 1) +
*«+i=i

3 {bn+1 n̂+1) ) “ A 1

= 2 ' a„+1( C i ) aC 1 +
n̂+1 — 1

and
k,

ln+ 1
Z Z ••• X / ( i j ,  C  C 1)^ * 1: - ^ ¡  k i  >+1=1V1„=1 «1=1 /

2 , (A * ,(C ‘)Wl —1
______________  .n+ 1
3 (¿ „ + i-a „ +1) 1 “ A *«+i

) ax;

= z*«+i=i
thus

«̂+i
z

ln+ 1 —1
x , a »,1, . ■-  f

1 Z i = l  Zn+ 1 =  1

We have

< (6)

+
kn+i

|Zi - z 2| < Zi -  £  • • • x  fit} ,, ■■■, C  C 1)
*/i+l=l *1=1

7̂1+1 /̂1+1
2  -  2  /(»>...... « : > * ;  - k :,1 -  2 , a»+i (c ‘ ) a< 1i

¿n+1 ~ 1 1̂_1 ln+l~ 1

ln+1 — 1
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which, from (4), (5), and (6), is less than y  + y  + y- That is \Z\ -  Z21 < s  for arbitrary 

e > 0 so Z\ = Z%. By the principle of proof by induction we have our result. ■

Theorem 2.34 Suppose R= [a\, ¿i]x[i?2, ¿2] x " ' x [a„, bn] and f : R —>IR is 

continuous, then JT*" ••• ■■■ f ^ s — J ^ ' f i x 1, x2, ..., x 'J d x 1 ■■■ dx!* — dx* •■• dxn is

equal to ••• j ^ s ••• JT*' ••• ^ ‘/(x 1, x2, ..., xP)dxl •■■ dx? ••■dx? •■■ dxn .

Proof. We let Zi be the first integral and Z2 be the second. Let s  > 0. Since Z\ 

exists and > 0, then there exists a partition Pi of R such that if 

H  = {*} }*'=0 x • • • x {xfn }^=1 is a refinement of Pi and {• • • {(*£ , ..., % )}*‘=1 • is an 

interpolation sequence of , then

2  ••• 2  ••• 2  ••• 2  f i t } ,  Ax* —Ax? •••ax' —ax" - Z i < y . SinceZ2
ln= 1 Z ,= l  Zj =  l  Zj = 1

exists and -f > 0, then there exists a partition P2 of P such that if 

H = {x!11}*I=0x---x{xfn}J=i is a refinement of P2 and {— {(ij , — ,^ )}* ‘=1 — is an 

interpolating sequence of , then

2  ••• 2  ••• 2  ••• 2  fit] , [ ) A x j  •••ax' - ax? —ax? - Z 2
>„=i is=l i,=1 «,=1

Let / /  = {x? }*’_0 x — x {x£ be a refinement of Pi IJ P2 and let 

{• • • {(r? , .. •, t” )}^=] • • •}  ̂ be an interpolating sequence of .

We observe
k„ k, ks ki
2  ... £  ••• 2  ••• 2 f i t } ,  ..., ifn)AxJ -AX? -AX? —Ax£ -

ln=  1 i r = l  «5 =  1 * 1 = 1

2  ••• 2  ••• 2  ••• 2  fit} , . . . , t?)Ax}  •••ax' —ax? •••ax? - Z i = 0
i„=1 iJ=i j,=i ;,=i

< -  ^ 2 •

since for each term f i t }  , ..., i? ) A x }  • --Ax? • • - Ax' • -  Ax? in the first summation, there is 

the term - f i t }  , ..., t” ) Ax' • • • Ax' • • • ax? • -  Ax? m the second summation, but by 

commutativity of multiplication

- f i t } ,  i?„)Ax' • • • A x }  Ax? -A x? = - / ( i J ,  ..., Z?„)Ax' -AX? •••AX? -AX?. 

The following observation will yield the desired result:

|Z i- Z 2|< Zl 2  —2 "• 2 . ••• 2  f i t } ,  . . ; t " )A x }  •••AX? •••AX? •••AX?n
In=1 i f = l  is = l  h = l
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• • •  E  • • •  E  • • •  E  / ( f j ,  • • • ,  t ? J AXh ' " Axl  ' " AXi  " ' AX?n -
[ lt - \  ls = l  lx = 1

E E ••• E ••• E /(*,*, •■•Axj •■■Axf ■■•AX? -Z i
¡„=i is=i ;,=i i,=i

• • •  E  ••• E  ••• E  f ( t \ ,  ■■■, tl)Ax] ---Ax’ •••Axf •••ax” - z 2
* „ = i  ,J = 1 z , = l  ¡ , = 1

< f + 0 + f

Therefore ]Zi -  Z2| < s  for abntrary s > 0 and we conclude Z\ = Z2. ■



CHAPTER III

DIFFERENTIAL FORMS

We start by defining tensors. After some work, we specialize to alternating tensors. 

Next, we develop the wedge product to work with alternating tensors. Finally, we 

introduce fields and put these together with alternating tensors to build the construct 

called differential forms. At the last of this chapter we define the differential operator to 

build new forms from old ones.

A:-tensors

Linear functions earned individual vectors from one vector space to another in a 

particular manner that made the transformation linear. Multilinear functions will carry a 

finite number of vectors in one vectors space to a finite number of vectors in another, and 

they will carry these vectors in a manner that resembles a linear transformation for each 

one.

We will denote the ¿-fold product IRn xlRn x ••• xR" by (IR"/\ To elaborate, if 

v e  (IR" )*, then v is comprised of k ordered vectors chosen from R". For example,

jj e  (R2)3. A ¿-tensor can be defined as a multilinear function from (IR")*

to IR.

Definition 3.1 A function T : (IR")* —>IR is a ¿-tensor if for each position 

i'e{  1,2, ...,k},T(x  i, = T(xu  ..., xk) + T{x\,

m&T(x\, . . . ,a -x„  ...,Xk) = aT(x\, ..., x t, ..., x^) where a  e  IR.

34
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calculate 71

A well-known example of a ¿-tensor is the determinant, which acts on n columns 

and n rows (easily thought of as n vectors each with n components) and returns a real 

number. We will give another example. Define T : (1R2) —>R by

T{x, y) = (x1 + x2) (y1 + y2). We claim T is a 2-tensor. Following the definition of T, we 

a 1 +  b l

,a2 + b2 ) \y"
-  (a1 + b l ) (y1 + y2) + (a 2 + b 2) (y1 + y2) = a 1 (y1 + y2) + a2 (y* + y2)

+ i,l (Vl + y 2) + ir (y ‘ + y2) = i j f  ), ( j', )j + 7-(( j, ( j j  and similarly

=  H ( ^ ) ■ ( i ) )  +  C 2 ) ; ( ^ ) ) • W h iC hS anrf,eS ,he f,rS ,

condition of being multilinear. Also, T^a ‘  ̂*2 )’ ( y2 )) = âxl + ax^  O’1 + J2)

= aix1 +x2) (y1 + y2) = ^2 j ’ ^ 2  )) an<̂  s>milarly f°r a  in the second position. T

satisfies the conditions of Definition 3.1, so T is a 2-tensor. One can see from this simple 

example how unruly notation with tensors might become when answering «-dimensional 

questions for large n.

Definition 3.2 Let T*(R”) be the set of all ¿-tensors under “+” and defined for 

S, T e  T ^R "), 1, *2, ..., jc* e  R” , and a  e  Rby 

(S + T ) (x i ,x 2, . . . ,x k) = S(x 1, jc2, . . . ,x k) + T (x i ,x2, ...,**) and 

(or-5)(xi, x2, ..., xk) = aS(xi,X2, xk).

From the definition, adding two ¿-tensors together amounts to adding the real 

number images together and multiplying a ¿-tensor by a real number a  turns out simply to 

be the usual real number multiplication of real number image of the ¿-tensor with a. We 

define a new operation between ¿-tensors and /-tensors.

Definition 3.3 For S e  T*(R”), T e  T Z(R"), and jci, X2, ..., xk+i e  R", define the

tensor product by S <8>T(xi, X2, ..., xk+i) = S(x\, x2, ..., xk) T(xk+\, xk+2, . . . ,x k+i).

We build some familiarity with ¿-tensors, their grouping in vector spaces, and the 

tensor product between those vector spaces. As is the usual convention applied to our
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situation, multiplication takes precedence over addition and so in consideration of order in 

expressions with multiple operations we apply “<2>” before we apply

Theorem 3.1 Suppose S, Si, S2 e  T*(R"), T, Tu T2 e  T z0RB), and U e  T m(R"). 

The following are properties:

1. (Si + S2) ® T — S \® T  + S2 ® T

2. S® (T\ + T2) = S ®T\ + S ®T2

3. (S® T) ® U = S ® (T ® U)

4. (or • S) <8> T = S ® (aT) = or(S 0  T)

Proof. Let i , x 2, ..., Jtk+i+m e  IR". The following manipulations are easy to follow 

using Definitions 3.1, 3.2, 3.3, and properties of the real number system.

1. (Si + S2)®T(x i , ...,Xk+i) = (Si +S2)(xi, ..., xk)T(xk+u ..., xk+i)

[Si (xi, ..., xk) + S2 (xi, ..., xk)] T{xk+\ , ..., Xfc+1)

= Si(xi, . ..,x k)T(xk+i, ..•, Xk+i) +
S2 Ĉ i) * • ■ > xk) T(xk+1 , ..., Xfc+i)

= Si 0T (xi, . . . ,xk+i) + S2 ®T(xi, . . . ,xk+i)

= (S\®T + S2 ®T)(xi, . . . ,xk+i)

2. S®{T\ +T2)(x i ,  . . . ,xk+i) =S(x i ,  . . . ,xk){T\ + T2)(xk+1, . . . ,xk+i)

= S(xi, ..., xk)[T\(xk+\, . . . ,xk+i) + T2(xk+1 , . . . ,xk+[) 

=  S(X 1 , . . . ,xk)Ti{xk+x, . . . ,xk+i) +

S(xi, ..., xk) T2 (x̂ +i , ..., xk+i) 

= S®Ti(xi, . . . ,xk+i) + S®T2(xi, . . . ,xk+i)

= (S®Ti + S® T2)(x i, . . . ,x k+i)
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3.(5,®7’)(8it/(xi, . . . ,x k+i+m) =(S<S>T)(xi, ..., xM ) U(xk+M, ..., xk+i+m)

= 5'(x}, ..., xk) T(xk+\ , ..., Xfc+i) U(xfc+i+i, ..., xk+i+m 

= S(xi, ..., xk) (T 0  U) (x*+i, ..., xk+i+m)

— S ® (T <S> U) (xj, ..., xk+i+m)

4. ((a • 5 )® r ) (x i , ..., xk+i) =(a-S)(xi, . . . ,x k)T(xk+1, . . . ,x k+i)

= aS(xi, ..., xk) T(xk+1, ..., xk+[)

= a(S®T)(xi, . . . ,x k+i)

= 5(xi, . . . ,x k)aT(xk+1, ..., xk+i)

= S(xi, . . . ,xk)(a-T)(xk+i, . . . ,x k+[)

= (S®(a-T))(xi, ..., xk+i)

We interject a concept referred to as the dual of a vector space as it will be helpful 

in establishing a basis for T^(IR").

Definition 3.4 For IR" the dual, denoted (!R")*, is the set of linear functions from IR” 

to IR. As elements of IR” are called vectors, elements of (IR”)* are called linear functionals. 

Our first step after creating this dual vector space is to establish a basis.

Definition 3.5 A projection function nl : R” —> R is defined for each x e  R” by 

nl (x) = xl for i e  {1, 2, ..., n}.

The projection functions output the magnitude and direction of the ith basis 

element. For example in R2, the vector co = (-2, 3) has the expansion in terms of the 

standard basis for R2 of co = - 2  • e\ +3-ez, and tt1 (co) = -2  while n2(id) = 3.

Theorem 3.2 The set of projection functions form a basis for (R” )*.

Suppose a\,az , . . . ,a n e  R and a, nl j (x) = 0 for each x e  R. We cleverly pick 

a particular x e  R, namely a such that a1 = at for each iE  {1, 2, ...,n). Since 

[ e  «/ -Tr') («) = 0 and ( 2  at (a) = £  a, -nl (a) = E at a1 = E a, a,, then E «i2 = 0.
\l=1 ) \Z=1 / 1=1 1=1 1=1 1=1n
Since El ai2 = 0» then al = 0 for each i e {1, 2, ..., n). We have established the set

1 = 1
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{nl , n2, ..., tt”} is linearly independent.

Next we show {n1 , n 2, ..., zr”} spans (IR")*. Let <p e  (IR")* and e  IR". Using the 

usual basis for IR” and the linear properties of tp, we write

<p(x) = <p(a\ -e\ +a2 -e2 + ■•■ + an ■en) = a\ -ip(e\) + a,2 -pief) + ■•■ + an -<p(en). Now if 

xl = 0 for i e  {1, 2, n], then pick b, = 1 otherwise we pick bt e  IR such that bt -

for each i e  {1, 2, n}, then <p(x) = a\ b\ -ir1 (x) + a2 b2 -n2 (x) + ■■• + an b„ -nn (x). We

can chose ct e  IR, by ct = at bt for each z e  {1, 2, ..., n}, and we have

(p(X) = Cl • 7T1 (X) + C2 ' 7T2 (x) H----- h Cn -jf1 (x). I

Sometimes questions about a vector space can be more easily answered by working 

in the dual and applying conclusions to the vector space. The reason why applying 

conclusions is valid comes from the surprising relationship between a finite dimension 

vector space and its dual.

Theorem 3.3 There is a bijective linear function from IR" to (IR”)* .

Proof. For each x e  IR” define px : IR” —>IR by tpxiy) = (•*:, y) for each y e  IR”.

We first show <px e  (IR”)* for each x e  IR”. Let x, y, z e  IR” and a, fi e  IR,

(px(a ■ y + fi ■ z) = (x, a  ■ y + fi ■ z). From properties of the inner product

(x, a ■ y + ¡3■ z) -  a  (x, y) + f  (x, z) -  a<px(y) + f  tp (z). We have shown for each x e  IR”,

(px is a linear function from IR” to IR.

Define T : IR” —> (IR”)* for each x e  IR” by T{x) = tp . Next we will show that T is 

injective.

Suppose T(x) = T(y) for x, y e  DR”. By definition of T, (px(a) -  <py{a) for all a e  IR”. 

In particular, <px(x) = <py(x) and <px(y) = <py(y). Since <px(x) = <py(x), then <x, x) = (y, x),
n

similarly, <x, y) = (y, y). Since (x, x) = (y, x), then 0 = £  xl(xl -  / ) ,  and since
1=1n

(x, y) = (y, y), then 0 = 2  y‘(xl - / ) .  The difference gives
1=1

n n 2
0 = 2  xl(xl -  y1) -  y‘(xl -  y‘) = 2  (x‘ _ y‘) • We have here the sum of non-negative

t=l i=l

terms equal to zero, therefore each term must be zero. Hence xl = yl for each
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i e  {1, 2, This is to say that x = y , and we conclude that T is injective.

Now assume <p e  (IR")*. Using the set of projection functions {tti, n2, ..., tt«} as the 

basis, we write <p as the unique linear combination of basis elements, i.e., 

ip = jc1 n\ + x2 7T2 + — I-x" n„ where x' e  IR for each i e  {1, 2, ..., n). These claims can 

all be substantiated by common knowledge of linear algebra. We apply <p and its 

equivalent linear combination of basis elements to an arbitrary j e R "  and arrive at 

tp{y) -  (x1 -7T1 + x2 -tt2 + + x" -nn) (y). Using the standard definition of point-wise

addition for functions, we write (x1 • n 1 + x2 ■ n2 H----- h xn -nn) (y) as

x17T1 (y) + x2 n2 (y) + — h x" nn (y). Since nl (y) -  yl for each j e R "  and 

i  e  {1, 2, ..., n}, then x1 n1 (y) + X2 7T2 (y) + + xf1 (y) = x1 y1 +X2 y2 + +x" yn.

From the meaning of the usual inner product, we know x1 y1 + x2 y2 + ■ ■ ■ + x” yn = (x, y). 

Since x is unique and y is arbitrary, then tp -  <px = T(x). We have shown for each element 

(p of (IRW)*, there is an element x of IR” so that T(x) = <p. We conclude T is surjective.

Since T : IR" — * (DR”)* is linear, injective, and surjective, we conclude that T is a 

bijective linear function from IR" to (IR")*. I

We recall that a ^-tensor is a function that behaves multi-linearly and pairs k vectors 

from IR" with a real number. In light of our definition for the dual of IR", we see that a 

1-tensor is merely an element of (IR")*. Moreover the collection of all 1-tensors, T^R "), 

is the same as (IR")*. At first this does not seems like a moving realization, but then we 

use our defimtion for the tensor product “<g>” and with a great deal of complexity, we find 

that we can build any ^-tensor space out of elements from the dual of IR".

We start by considering the simplest ¿-tensor space that exemplifies the 

complexities of the general case but keeps the number of tensor terms to a manageable 

size. Consider a> e  T 2(IR3) and x i , X2 e  IR3. We use the usual basis of IR3 to redescnbe 

our two arbitrary vectors as a unique linear combination of the basis elements: 

xi = -e\ + a i,2 -«2 + a l,3 ‘e3 and *2 = «2,1 m̂i +<*2,2 ' e2 + fl2,3 ‘e3 for ahJ e  IR,
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i e  {1, 2}, j  e. {1, 2, 3}. We apply a> to the linear expansion of *i and X2 and carefully 

apply the multilinear property of a>.

u>(xi, X2) = «*(«1,1 •e\ +fli,2 -e2 + «1,3 -C3 , «2,1 -e\ +a2,2 '^2 “ «2,3 ^ 3 )

= « 1 4  o>(ci, fl2,i • e\ + 02,2 • ̂ 2 * «2,3 • 0 3 ) +

«>(«1,2 ■ ®2 + «1,3 *C3 , «2,1 'Cl + «2,2 ’«2 + «2,3 ’ «3 )

= «1,1 «2,1 «>(Cl, « l )  + «1,1 «»(Cl, «2,2 '«2 +«2,3 *«3) +

«1,2 «>(C2, «2,1 ' Cl + «2,2 ’ e2 + «2,3 • C3 ) +

«1,2 «>(C3 , «2,1 ‘Cl + «2,2 '«2 + «2,3 ^ 3 )

= « 1 4  « 2,1 co(e 1 , c i) + « 1 4  « 2,2 «»(A , ^2 ) + « 1,1 «2,3 «>(«1 , 0 3 ) +

«1,2 «2,1 0i(e2, Ci) + « 1,2 «1(̂ 2, «2,2 -e2 + «2,3 '« 3 ) -  

«1,2 «2,1 «>(«3» Cl) + « 1 4  «»(C3 , «2,2 ' C2 -  «2,3 ^ 3 )

= «1,1 «2,1 «*(Cl, Cl) + «1,1 «2,2 «*(Cl, «2 ) + «1,1 «2,3 «l(Cl, C3 ) +

«1,2 «2,1 «>(̂ 2, Ci) + a i ,2 «2,2 «>(C2, C2 ) «1,2 «2,3 «>(C2, C3 ) J-

«1,2 «2,1 «>(C3, C i)+ « 1,2 «2,2 «>(C3, C2 ) t- « 1 4  «2,3 «>(«3, C3 )

Next we experiment by applying nl ®n] to \ and X2 for i, j  e  {1, 2, 3}.
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7T1 <g» 7T1 (Xi, X2)

= tt1 <S>tt1 (ai,i • e\ + «1,2 • ei + «1,3 • £3, «2,1 • e\ + «2,2 • ¿2 + «2,3 • £3) 

= 7T3 («1,1 -Cl + «1,2 • (¡2 + «1,3 ' £3) («2,1 -̂ 1 + «2,2 ' e2 + «2,3 ' eT>)

= («1,1 ^ (eO  + a i^  7r1(^2) + «l,3^1f e ) ) ’

(«2,1 ^ ( e i )  + «2,2 ^ (« 2) + «2,3 Xl (e3))

= (ai,i • 1 + «1,2 • 0 + «1,2 • 0) («2,1 • 1 + «2,1 • 0 + «2,3 • 0)

= «1,1 «2,1

7T1 ®n2 (xi, X2) = «1,1 «2,2

7T1 ®7T3 (Xl, X2 ) = « 1,1 «2,3 

7T2  0 7 T1 (Xl, X2 ) = «1,2 «2,1 

n2 07T2 (Xl, X2 ) = « 1,2 «2,2 

7T2 <g>7T3 (X i,X 2) = «1,2 «2,3

7T3 (glTT1 (Xl, X2) = fli,3 « 2,1

7T3 ® n2 (X i, X2) = « 1,3 «2,2

7T3 <8 > 7T3 (X i, X2) =ai,3«2,3 
3 / 3

We combine these results with (jj(x \ , X2) = E  2
/1 ==1 \Z2 —1

3 ( 3 'j
a>(xi, X2 ) = 2  E ^  ® tt*2 (xi , X2 ) «»(e,,, e,2) , which is a linear combination of the

1\ - 1 Vi2=l /
elements from the {tt' ® tt-7 11 < i, j  < 3}. We conclude that the {nl ®n] 11 < i, j  < 3} span

T 2(IR3). Next we show that this set is linearly independent.
3 / 3  \

«1,., a2,i2 oj(eh , e h )\ to show

Suppose 0 = 2  I 2  «i, ¡2 xh <8> tt'2 I, where each ah h e  IR and 0 in this context is
¡1=1 V!2 = l ’ )

the 2-tensor that takes pairs of elements of [R3 to the number 0. We must show each 
3 / 3

«¡i,¡2 = 0. We apply 2  2  «¡,,i2 n1'
l\—\ \l2 — 1

j to e\ and e\.
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o = ®7Ti2jj(<?i, ei)

= Z  ( 2  ah,l2[{nh ®nh)(ei,e\)}\
h= 1 \/2=l /

= E ( 2  «ilA tt'1 (^i ) tt12 (ei)]
ii=iVi2=i /

= 01,17T1 O i)^ 1 (« l)  + «l,2 tt1 0?l)7T2 (ei) + ai,3 7T1 0t ) tt3 («l) + 

«2,1 7T2 («1) 7T1 {e\) + (32,2 W2 («1) 7T2 (^l) + «2,3 7T2 ( « 1 ) 7T3 (<?] ) + 

«3,1 (ei) 7T1 ( ¿ 1 ) + « 3,2 7T3 (ei) n2 (<?i) + « 3,3 7r3 (iq) 7r3 (<q) 

— «1,1 *1*1+ «1,2 1 ' 0 "1" «1,3 1 • 0 +

«2,1 0 • 1 + «2,2 0 • 0 + «2,3 0 -0  +

«3,1 0 • 1 + «3,2 0 • 0 + «3,3 0 • 0

= «1,1

We have shown that «1,1 = 0. We can apply the same 2-tensor to e\ and ei to show 

«1,2 = 0. Following the pattern, we can apply the same 2-tensor to eh and eh to show 

ah ,,2 = 0 for ¿i, ¿2 g {1, 2, 3}. Since each ah l2 = 0, we conclude that the 

{nl <g> nJ 11 < i, j  < 3} is a linearly independent set.

We have shown that in the case of T 2(R3), the basis is {n <2>tt | 1 < i, j  < 3}, so 

T 2(IR3) has dimension 32 or 9. This example is good to work through before trying to 

understands the general case. We will show {nh ® ••• ®nh 11 < i\ , ..., < n} is a basis

for T*(R"), which will therefore have dimension nk From this last comment on the 

dimension of T*(R"), we can see how quickly the number of terms in a linear 

combination of the basis elements will grow to an unmanageable size. We must therefore 

gather our wits in the use summation notation and carefully follow our example of 

T 2(IR3) to prove the following theorem.



43

Theorem 3.4 Suppose T*(R”) is the ¿-tensor space of R”, and {ej, e2, en\ is 

the usual basis for Rn. If {tt1, n1, irn} is the usual basis for (R")*, then the set of ¿-fold 

tensor products {nh <g> • • • <g>i f k 11 < i\ , ik < n] is a basis for T*(R").

Proof. Let [n1, n2, ..., i f1} be the usual basis for (R")*, which means if £ R", then 

i f  (x) = xl for i £ {1, 2, n). Let a» be a ¿-tensor in T*(R”), and let x\, X2, ..., xk be ¿

vectors in R". If for each i £ {1,2, ..., ¿}, we write xt as a linear combination of elements 

from {e\ , e2, ..., en}, then ; = alt\ e\ + al2 e2 + ■■■ + ain en with al} e  R for each 

¿£{1,2, ..., ¿} and y e  {1,2, ..., n}. We apply a> to our ¿ vectors from R” and following 

lessons learned from the example T 2(R3), we find
n f  n i n

0>(x 1, x2, ..., xk) = Z  £  ••• Z  «1
Z l = l  1*2 =  1 \h =  1

experience from the example T 2(IR3), it is not difficult to inductively see that

,*i ,z2 ak,ik , €i2 , 4 " . Based on our

n 1 ®JT‘ ® 7f k (x \ ,x2, ..., Xk) = a\>h a2,i2 • • -akM, for each ¿i, i2, ■ -■ ik £ {1, 2, ..., n],

)7f k (xi, . . . ,x k)u)(eh , ..., <?,.) ••• . Since the

so we make this substitution and have
n (  (  n

a)(xi, . . . ,xk)=  Z  ••• E nh ®
*1 = 1  V \lk =  l

vectors x \ ,x 2, xk were arbitrary then
n { n ( n \

(x> = 2 E ••• E uife,, el2, ..., eh )-nh ®nh ® ■■■ ®nlk ••• I. Since co was arbitrary inl\ 9 *l2 ’ * * *lk >
*1=1 V*2=l V**=l )

T k(Rn), then we have shown the {nh 0  * • • 0  nh 11 <i\, ..., i* < n} span T^OR").

Next we show the {7xh ® • • • 0  11 < i\ , ..., < n) is linearly independent.
n i  n f  n \  \

Suppose 0 = 2  2  *** 2  a*i,*2,. ' nh ®nl2 ® ® nlk “ * where the zero here
*1=1\*2 = 1 V*jfc = 1 / /

is the ^-tensor that takes elements of Rn to the number 0. We apply this ^-tensor to k 

elements chosen (with repetition allowed) from {e\, en} c  R n.

0 = e J e ^ - ^ E ^ ha , a ® ■■■®nlk j —j(«y,, ej2,

= E ( E  •••(E alul2> ,h -n1' ®nl*®---®nlk {e}l, e h , . . . ,e ]k) \ - - \
*1=1 \*2=1 \*Jt =1 / /

= E E
*1 —1 \*2 —1

f n
E ««,A>. a -**1 4 ) ^  («*)■

\*̂ =1 («a ) ] - ]

= a7 i  1J2» »7*
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From the example, every term in this complex sum turns out to be zero except the 

one where ii -  ji for every / e  { 1, 2, ..., ¿}; hence the sum collapses to the single term 

ah,j2,- • We have shown that 0 = ah > tJk for each y i, 72, • • •, y* e  {1, 2, ..., ra} since

our choice of eJt, ej2, ..., eJt e  {e\, e^, ..., enj c  IR” was arbitrary. We conclude the 

{nh <S> — 11 < zj, ..., i* < «} is linearly independent.

Since {nh <g> • • • <8> 11 < z'i, ..., ik ^ n) is a linearly independent set of order nk

that spans T k(IR”), we conclude that {nH ®---®nlk 11 < i\ , ..., < n) is a basis for

T^flR”), which has dimension nk. 1

In the example and theorem, we have brought an importance of the dual space to 

light. We can build any ^-tensor space or subspace from elements of (IR”)*, which from 

Theorem 3.3, is structurally the same as IR”.

Alternating fc-tensors

In this section we take the next step in increasing the complexity of our work 

Ironically, we do this by investigating a subset of the ^-tensor space we just developed in 

the last section. Specializing will bnng ¿-tensors together with the concept of differential 

forms, a key idea in the generalized Stokes’ Theorem.

Definition 3.6 A ¿-tensor a> e  T k (IR”) is alternating if for 1 , X2, ..., e  IR”,

co(xi, ...,.x7, . . . ,x k) = -io(xi, ...,Xj, ..., JC*) for with

i, y e  {1, 2, ..., ¿}.

The next natural step after defining a special type of ¿-tensor is to collect all the 

special ¿-tensors of this type together. We designate this collection Ak(IR”). If 

o>, <p e  A*(IR") and a e  IR then

(C0 + (f>)(Xl, ...,Xj, . . . ,xk)

= -\-o)(xx, ..., x,, . . . ,xu ..., xk) +

-1  -<p{x\, . . . , X j ,  . . . , x t, . . . ,x k)

= - l- ( iU  + 0) ( * i ,  ..., Xj, . . . ,x t, . . . ,xk)
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so a) + 4> = -  (<u + <p) and

(a-oj)(xi, x t, ..., Xj, ..., xk)

= aco(xi, xu ..., xk)

= a--a)(x i,

= -1  -ao»(xi, x7, x;, x*)

= -(a-a»)(xi, Xj, ..., x„ ..., Xk)

so a-to = - ( a-a>).

By the elementary theorems of linear algebra A^(R”) is then a subspace of T*(IR”) 

or vector space in its own right.

We will be interested m finding a basis, but surprisingly will find the quest even 

more challenging than the one to find a basis for (DR”). We cannot build the basis 

elements with <g> out of the projection function nl . IR" —>1R because if each of a k and 

Z-tensor is alternating, their tensor product is not necessarily alternating We start the quest 

by defining a function that pairs a /c-tensor with an alternating ^-tensor To make the 

definition we need to be reminded of some background in Group Theory.

Recall Sn is usually reserved in Group Theory to represent the symmetric group of 

permutations on n symbols If 123456 is a sequence of six symbols, then 153426 is a 

transposition, as well as a permutation, because exactly two symbols are interchanged.

The sequence 632154 is another permutation that can be achieved from 123456 by the 

following sequence of transpositions:

1) transposing the symbols in the first and fourth positions, 423156;

2) transposing the symbols in the first and sixth positions, 623154;

3) transposing the symbols in the second and third positions, 632154.

While one can see the order of this sequence is not unique, from group theory we 

know every permutation can be decomposed into a minimum number of transpositions. 

The permutation 632154 required 3 transpositions, and we call it odd since the number of 

transpositions is an odd number We call some other permutation even, if it can be
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decomposed into an even number of transpositions. Now for our last note on group theory 

before we make our definition, if cr e  then sgn(cr) = 1 if cr is even and sgn(cr) = -1  if 

cr is odd.

Definition 3.7 For w e T *  (IR") we define Alt(cu) e  A* (IR") for xi , X2, ..., xk e  IR"

by Alt(cu) (*1, X2, x/c) — -jj 2  sgn(cr)• ĉ x^ d , xa(1), ..., xa(k)).
creSk

Now we must show that the definition for Alt( •) does indeed produce and 

alternating ^-tensor. This essentially turns into an observation of the fact, but we make it a 

Theorem.

Theorem 3.5 If cu e  T*(IR"), then Alt(w) e  A*(R").

Proof. Let co e  T*(IR") and x i , X2, ..., xk e  IR”. Since sgn(cr) is determined by the 

number of transpositions cr can be decomposed into, then composing cr with an additional 

transposition will simply change the sign of sgn(cr). Therefore, if cr e  S# and (i, j) is the 

transposition that interchanges i and j  for i, j  e  {1, 2, ...,&}, then sgn(cr• (i, j)) -  -sgn(cr).

Alt(cu) (xi, ...,Xj, X;, ..., x*)

~ sgn(cr) it»(Xo-(i), ..., Xq-q), ..., Xq-^ , . ..» x ^ ))
<reSk

=  ~jjj 2  sgnfcr• (/, j ) ) a)(Xo-(i), ..., Xq-̂ j, ..., x -̂q), ..., Xq- ^ )
creSk

~ ~j7\ 2  — Sgn(cr) <̂)(x0-(l), • • •, Xfj-̂ i), ..., Xg-Qj, .. •, Xq-^  )
<reSk

~ ~~ay Sgn(cr) ioiXo-dj, ..., Xcr̂ j, ...,Xo-(y), ..., Xq-^  )
<reSk

= -Alt(cu) (xi, ...,x „  ...,Xj, . . . ,x k)

We have shown co is alternating which allows the conclusion Alt(cu) e  A*(IR").

Now what effect does Alt( •) have on a /c-tensor that is already alternating? We will 

investigate this in an example and then generalize it in a theorem. Suppose co e  A3(IR").
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Alt(iu) (xi, x2, x3)

= j r  E sgn(o-) ojixa-d), x ^ ,  xa(3))
creSs

Def 3.7

= -g- (oi(xi, x2, x3) -  oj(x \ , x3, x2) + o>(x3, x i , x2) expanding the sum 
-  0>(X3, x2, xi) + co(x2, x3, xi) -  U>(X2, xi, x3))

= j  ((o(Xit x2, x3) + o>(xi, x2, x3) -  w(xi, x3, x2)
+ 0)(x\ , x2, x3) -  to(x2, Xl, X3) + (0(x2, Xl, x3))

Def 3.6

= j  (a>(xi, x2, x3) + a»(xi, x2, x3) + w(xi, x2, x3)
+ w(xi, x2, x3) + o>(xi, x2, x3) + oj(x2, xi, x3))

Def 3.6

= j  (6co(x i , x2, x3))

= a)(xi,x2,x 3)

Through the process of making the order of the sequence of xu Xj, xk identical for 

each of the 3! terms all the -1  coefficients become +1. In words, if it takes an odd 

number of transpositions to obtain a particular permutation then it takes odd number of 

transpositions to undo the permutation s o - l - - l  = + l. Similarly for an even 

permutation, 1 • 1 = +1. In the language of group theory, a permutation and its inverse 

have the same sign, i.e., sgn(cr) = sgn(cr_1). This is the basis for the following theorem.

Theorem 3.6 If to e  Ak (TRn), then Alt(o>) = to.

Proof. Suppose to e  Â ’([R"). Let x i , x2, ..., xk e  IRW. For each <re.Sk, 

sgn(cr) sgn(cr_1) = 1 andm(x(tr<ri)(1), x(cro-i)(2), •••, x((r<rim ) = 0){xx, x2, .... x*).

A ltM  (xl5 x2, ..., xk)
= jr  E  sgn(cr) ̂ (Xo-d), xfr(2), ..., x ^  )

creSk

~ £t 2  Sgn(<r) Sgn((T )dL)(x̂ crcr ^{qrcr ^(Z)’ ••■>**'(crcr
(reSk
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where the factor k ! comes from the fact that S* has k ! elements and hence k ! terms 

in the sum over the elements in S^. We conclude that Alt(iu) = to. ■

We see in this theorem where the factor -jf comes from in the definition of Alt( •). 

The factor is not necessary to make a ^-tensor alternating as can be seen from Theorem 

3.5, but to make Theorem 3.6 true, it is necessary. We use both the previous theorems for 

our next theorem.

Theorem 3.7 If to e  T*(Rn), then Alt(Alt(m)) = Alt(cu).

By Theorem 3.5, Alt(a>) e  Ak(\Rn). Since Alt(cu) e  Aa(R”), then by Theorem 3.6 

Alt(Alt(a>)) = Alt(w). l

Continuing on our quest to write a basis for A/c(R”), we must take care of the 

original problem in that for to e  A*(R”) and v e  A^R"), to <2> v is not necessarily part of 

Ak+l (R"). We therefore use our definition of Alt( •) together with (8) to write a new tensor 

product between alternating tensors called the wedge product.

Definition 3.8 For to e  A*(R”) and v e  A^R"), we define the wedge product wav 

as ^jr§~ Alt(m®v).

To gain experience with the wedge product, we work out several properties of this 

new binaiy operation. The proofs are all trivial in theory since they involve mostly 

definitions to follow the reasoning, however, there is a great complexity in the meaning of 

the notation.

Theorem 3.8 Suppose to, toi, (02 e  A*(R"), tj, jji, 172 e  Al(Rn), and a  e  R. The 

following are properties of the wedge product:

1. ) (0>1 + (02) A 7j = tOl + 7/ A 0»2 + 77,

2. ) to a (t]i + 772) = to a 771 + oj a tj2,

3. ) ato a 77 = oj a ajj = a(to a tj),

4. ) to A T] = ( - \)kl JJ Ato.

Proof. Let jci, X2, ..., x^+i e  R".
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1) (coi + a>2) AV(*l> ■■■> xk+l)

= Alt((o>i + ùj2) 0  rf) (x i, ..., xk+i) Def 3.8

-  Alt(coi ®T] + ü)2®Tl)(Xi, ..., Xk+l) Thrm3.1

= Z sgn(cr) (üJi®r¡ + ÜJ2 ® rj) (xŒ(l), xa(k+i))
creSk+l

Def 3.7

= iJjyjc ahy  Z sgn(cr) (a»i 0  , ..., ) 
creSt+i

Def 3.2

+ Î02 0  //(-Kcr(l) , • ■ ■, X^k+l)))

= (ÎT? (jfcii). Z sgn(o-) ûjj 0  77(^(l), • • •, xa{k+T))
creSjc+i

+ S  (Jt+0< 2  Sgn(o-) ÛJ2 0  T¡(Xcr(l), x0-(£+/)) 
(reSk+i

= Alteri 0  TJ) (xi, ..., **+/) + %  J Alt(a>2 0  ?/) (xi, ..., **+/) Def 3.7

= ^1 a ?7(x i, ..., Xk+l) + <¿>2 A î?(*l, ■■■,Xk+l) Def 3.8

= (û>l A  77 + Û72 A  ?7) (*1, **+/) Def 3.2
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2) O) A (77j + T ] 2 ) ( X \ ,  . . . , X ¡ c+i )

=  Alt(o7 <8 > (771 + 772)) O l , . . . ,  Xk+l) Def 3.8

= Alt(o> ® 771 + Ü > ® J J 2 ) ( X I ,  x k+i) Thrm3.l

= ^ 7 T  Z Sgn(cr) ( 0 7  (g) 771 + Ù7 ® 772) (Xo-d), ..., Xa-ik+i))
(TBSk+i

Def 3.7

= (/,_[/)! Z sgn(or) (w ® 771 (*o<l). - .  *<**+/)) +
creSk+i

ù ) ® i ]2 (Xo-(l), Xcr(k+ l)))

= -^rf- a L  Z sgn(cr)û)®771 (Xo-d). ■ ■ ■. X cr(k+D) +
creSt+i

/! (£+/)! Z  C ù ® î ]2 (Xr(l) , ..., x a(£+/))
CrE.Sk+i

Def 3.2

= Alt(co <g> 771 ) (x i, ..., xk+i) + Alt(w ® %) (*i, ..., xk+¡) Def 3.7

=■ CO A î]i (Xl, . . . ,  Xk+l) + CO AT¡2 (Xl, Xk+l) Def 3.8

-  (CO A îjl + CO A 772) (X l , Xk+l) Def 3.2

3) a(coAT¡) (xi, Xk+i)

=  f l^ lA lt (w ® J 7)(xi, . . . ,x k+i) Def 3.8

= a ^ r$ - (kl v  Z sgn(o-) co ® 77( ^ 1) , . . . ,  x a{k+[))
creSk+i

= {Jÿ jr  (k+iy Z sgn(o-) a(co <g> 77) (x^i), . -., xa{k+i))
cre.Sk+i

Def 3.7

-  ^TTT Z sgn(cr) ((a ■ co) <8> 77) (x^ d , . . . ,  Xo-(*+o )
cr&Sk+i

Thrm3.1

= Alt((a • w) ® 77) (xi, . . . ,  x*+/) Def 3.7

=  (a-co)ATj(xi, . . . ,  Xk+i) Def 3.8
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4) OJAT](Xl, ..., xk+i)

= Alt(w <g> if) (xi, ..., xk+i) Def 3.8

= ^ r j f  jkhy 2  sgn(cr)co<g> j](Xo-a), ..., x(r(k), xa(k+l), x ^ + i )) Def 3.7
o-eSk+i

= T r jr  JkW  2  sgn(cr)c o i x ^ , ..., x ^ k)) r](xa-gc+1>, ..., xa{k+l)) Def 3.3
cr^Sk+i

= 'W '  Jkhf  2  Sgn(cr) ^(^o-^+l), Xa-^+1)) coiXo-d), ..., Xo-w)
creSk+i

= - -(¿aT 2  sgn(cr) TJ <g> co(xa-(k+i), ..., xa{k+i), Xo-d), ..., xa{k)) Def 3.3
creSk+i

= A\t(r]®co)(xk+i, . . . ,x k+i,Xo.i, . . . ,x k) Def 3.7

= ^jrjr ( -1 )1 Alt(rj<8>io)(xi, xk+i, . . . ,x k+i ,x 2, ..., x k) Thrm3.5

= (-1 )21 Alt(i]<8)(0)(x i ,X 2, x k+i, . . . ,x k+i , x 3, ..., x k) Thrm3.5

= -frjr  ( - 1)(̂ “2) /Alt(?7 0 cu)(xi, jc2. ...,x*-2,x*+i, ...,x*+/,xjt_i,xjt) Thrm3.5 

= -̂ frTT ( -  1)W Alt(7? <g> w) (*!, x2, ..., x*, x*+1, ..., x*+/) Thrm 3.5

= (-  l)w 7] a w(xi, ..., x*+i) Def 3.8

The properties above will be essential to progress on our quest for a basis for 

A*([Rn). We have one last property of the wedge product that turns out to be no triviality. 

We would like the wedge product to be associative to make it a useful tool in building our 

basis.

Theorem 3.9 Suppose co e  T*(IRn) and rj e  T Z([R"). If Alt(cu) = 0, then 

Alt(o> ® rj) -0  and Alt(i/ ®w) = 0.

Proof. Suppose Alt(u>) = 0.

Let G = {cr e  Sk+i I c(k  + i) = k + /for i -  1, 2, ..., /}. Suppose cr, r  e  G. Since 

r  e  G, then for i e  {1, 2, ..., /}, r(k + i ) - k  + i. Since Sk+i is a group then r _1 e  Sk+i and 

r “1 t (k + i) = t_1 (k + 0- Now t-1 r  (k + i) = i{k + i) = k + iso k  + i -  r _1 (k + i). We have
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shown r _1 e  .As the litmus test of a subset being a subgroup we must show err-1 e  G. 

This is obvious by applying err-1 to k + i for i g {1, 2, ...,/}. Therefore G is a subgroup of 

Sk+i- Since G is m essence the permutation group on k  symbols, then |G| = Id.

We recall from group theory that for some cr e  Sk+i a right coset is 

Gcr = {gcr | g  e  G}, and the right cosets partition Sk+i- Since the definition of Alt( •) gives 

us a sum over Sk+i, we will group this sum by right cosets and make a generalizable 

conclusion for each grouped sum. To do this we pick a subset S of Sk+i where each 

element of S is in a distinct coset from any other element in S and each right coset has a 

representative element in S. We have then |S| is the same as the number of right cosets.

We write then Alt(o> ®  77) =  yrhyr E  I E  sgn(cr) co <g> n .
( ’  tieS \o-eGr /

Let r  e  S. G t  is aright coset of Sk+i. Let *1, x%,

By Definition 3.3, E  sgn(o-) co ® ?7(Xr(i), ..., x^ + q) =

TEfsr E  sgn(cr) oj(xa{X), ..., xcr{k))T](xoik+1), ..., Xo-ot+o). Since |G| =  k\  then each
(t e Gt

cr e  Gt is gi t  for / g {1, 2, ...,£!} and gt e  G. We rename each vector by applying r, so 

for each i e  {1,2, ..., A !} and j  € {1, 2, ..., k + l], X(gi T)(j) -  wgi(j). We use this to rewrite

our sum. E  sgn(<x) c o ix ^ ,  ..., x0.(k))j](x0-(k+i), ..., x ^ , ) )  =
cteGt

1 k'2  sgn(& r) co(wgt(i), ..., wgi(k)) 7](wgt(k+1), ..., wgAk+t)). Note that by an argument 

that follows the sum of odd and odd or even and even is even while the sum of odd and 

even is odd, we write sgn(", r) = sgn(g;) sgn(r) for each / e  {1, 2, ..., &!}. Also since for 

each i e  (1, 2, ..., k !}, gt(k + j) = k + j  for j  e  {k + 1, k + l}, then 

1 *'j k W  E  sgn(gt T)a>(wgt<x>, . . . ,  wgi(k))Tj(wgi(k+i), . . . ,  ( * + / > )

1 k<
= jo itjr  E  s g n ( g , ) s g n ( r ) i u ( w & ( i ) ,  . . . ,  wgi(k)) j](wk+1, . . . ,  w k+i) 1

1= sgn(T)i/(w*+i, ..., wk+i) 2  sgn(g«)w(wft(i), ...,

= sgn(r) Tj(wk+1, ..., wk+i) jj^fy Alt(cj) O i , ..., wk). Now by the supposition Alt(cu) = 0, 

so = sgn(r)j/(wjfc+i, ..., wk+i) Alt(iu)(wi, ..., wk) = 0.
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Since we were considering an arbitrary r  e.S, then E  sgn(cr) co® tj = 0 for each
cteGt

r e S ,  hence Alt(w <g> rf) = Z  Z sgn(cr) co®rj\- Z (0) = 0. We conclude 

that Alt(a» ® i])-0 .  It is a similar argument to show that if we used the subgroup of 

permutation elements that fix 1, ..., k we could show Alt(^ <g> co) = 0 too! I 

Theorem 3.10 If co, tj e  T k (IR”), then Alt(iu - tj) = Alt(cu) -  Alt(//) and 

Alt(u> + ij) -  Alt(w) + A\t(j]).

Proof. Let co, t] e  T k (IR") and xi, x ,̂ ..., xk e  IR". By Definition 3.7,

Alt(o> -  77) (x i, ..., xk) = jr  Z  sgn(cr) (co -  rf) (x^i), ..., x ^ )) . By Definition 3.2
(TESk

jr  2  sgn(cr) (co -  if) (xaa), x0-((t))
creSk

= jr  Z sgn(cr) (cjCxo-q), . . . ,x a(k)) -  77(*o-(i), ..., x ^ ))). We regroup the sum and
CTESk

distribute ~  and have Z sgn(tr) (¿¿(x^ d , ..., x^*)) -  ?7(*<r(i), • • ■, **<*)))
(TESk

= TT Z sgn(cr) coiXa-d), ..., xa(k)) -  TT z  sgn(<x)TjiXo-d), ..., xa(k)), which using
<T<sSk creSk

Definition 3.7 again gives Alt(u>) -  Alt(?7). Similarly for “+”. ■

Theorem 3.11 If co e  T k (IR"), rj e  <T'/(IR/i), and 6 e  T^OR"), then 

Alt(Alt(o) ®rf)®6) = Alt(a) ® tj® 6) and Alt(A> ® Alt(/7 <g> 6f) = Alt(tu ® ij® 6)

Proof. Let c o e T k (IR"), 77 e  T'flR"), and 6 e  T m(R"). Since 

Alt(Alt(a> ® rf)) = Alt(cu ® rf) by Theorem 3.7, then Alt(Alt(a> ® iff) -  Alt(tu ® rf) = 0. Since 

Alt(o) -  if) -  Alt(o>) -  Alt(?7) by Theorem 3.10, then 

Alt(Alt(ui ® rff) -  Alt(o> ®rf) — Alt(Alt(a> ®rf)-co®rf), and since 

Alt(Alt(u> ® iff) -  Alt(<u ® rf) = 0, then Alt(Alt(a» ® rf) -  co ® rf) = 0. Since 

Alt(Alt(u> ®ij)-co®i]) = 0, then by Theorem 3.9, Alt((Alt(a> ® rf) -  co ® if) <g> 6) = 0. Now 

by the first of the four tensor product properties of Theorem 3.1, we can distribute the 

tensor product on the right so the last equation is equivalent to 

Alt(Alt(iu ® i]) ® 6 -  co ® i] ® 6) = 0. We reapply Theorem 3.10 to have 

Alt(Alt(iu ®ij)®6)~  Alt(L> ®rj® 6) = 0 or Alt(Alt(iu ® rf)® 0)-  Alt(a> ®i}®0). We have 

our first conclusion. The argument for the second conclusion is similar. ■



We are now ready to show the wedge product is associative. 

Theorem 3.12 If a> e  T k (RB), tj e  T l(Rn), and 0 e  T m(Rn), then
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(a> A J]) A 0 = O) A (ij A 0).

Proof. Let w e T 4 (R"), 17 e  T'CR"), and 0 e  T m(IR”).

(CO AT]) A 6  =
(k+l+my 
(k+iy ml Alt((o> a  77) <g> 0 ) Def 3.8

(k+l+my 
(k+iy ml Alt(^FTT Alt(m ® 7/) ® 6) Def 3.$

_  (k+i+my (k+iy 
~ (k+l)' m' ¿1 /' Alt(Alt(o> <8> 77) <8> 0) Def 3.7

(k+l+my 
kf /’ m’ Alt(a» ®rj®6) Thrm3.11

_  (k+l+my (l+my
~  k'(l+m y l'm> Alt(a><gi Alt(77 ® 0)) Thrm3.ll

_  Qk+l+my 
b  (i+my Alt(cu ® (77 a  0)) Def 3.8

,=  0} A (77 A 0) Zte/3.8

This was the final hurdle on our quest to find a basis for A*(IR"). As with finding a 

basis for T*(IR"), we will begin with an example. We shall consider A3(IR5) with 

{e\ , e2, C3, £4, £5} the standard basis for IR5 and {nl , n2, n2, n4, n5} the standard basis for 

(1R5)*. We hope to use our wedge product to build a set of elements of the form 

tt1 a 7r̂  a +  with i, j, k <e {1, 2, 3, 4, 5} that will span A3(IR5).

First note if i = j, j  -  k, or i -  k, then nl a nJ a nk = 0. For example, since by 

Theorem 3.8 part 4 n1 a +  a ?r2 (xi, X2, JC3) = (— l )11 +  a +  a jt2 (jci , x%, xf) 

(interchanging the 1 in the first position and the 1 in the second position) and since for 

a g IR satisfying a -  - a  implies a = 0 then it follows that a n l a n2 -  0. This tell us 

that any basis element of the form nl a nJ a nk with 1, j, k e  {1, 2, 3, 4, 5} will have i + j  

and j  t  k and i + k.

Second note nl a n] a nk = - n J a nl a i f  by Theorem 3.8 part 4. We see that any
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set containing n l a  nJ a  7^ and nJ a  n l a  n k would not be linearly independent. This is to 

say that if each of n h a  nh a  nk' and n h a  n-h a  nk?- is an element in a basis for A3 (IR5), 

then ¿i, j \ , k\ cannot be a permutation of ¿2, h ,  k2.

Now that we know which elements of the form n l a  nJ a  7ft with 

i, j, k e  {1, 2, 3, 4, 5} we cannot have in a basis for A3(IR5), we will put together the 

remaining elements and determine if they form a basis. We notice that according to our 

criterion, to be an element of the basis, we are choosing i, j, k from {1, 2, 3, 4, 5} 

unordered without repetition, which of course is a combination of 5 elements taken 3 at a 

time. So the order of such a basis would be 5 choose 3 or -gi-girgyr = 10- We claim

{7 T 1 A  7T2  A  7T3  , 7T1 A 7 T 2  A  7T4 ,  7T1 A  7T2  A 7 T 5 , 7T^ A  7T3  A  7T4 , 7T1 A  7T3  A  7T5 ,

7T1 A  7T4  A  7T5 , 7T2  A  7T3  A  7T4 ,  7T2  A  7T3  A  JJ5 , 7T2  A  7T4  A  7T5 , 7T3  A  7T4  A  7T5  }

is a basis for A3(IR5). We see the need for some notation so we write

{nh a nh Anh 11 < ¿i < ¿2 < ij, ^ 5}, and we say whenever nh a nh a • • • a satisfies 

h < «2 < ••• < i*, then nh a nh a • • • a nh is in standard form. We proceed to show 

\nh a  nh Anh 11 < i'i < ¿2 < h  ^ 5} spans A3([R5) and is linearly independent. We don't 

have to start completely from scratch since we know already that A3(IR5) c  T 3([R5).

Let co e  A3(R5) and i, x2, *3 e  IR5. Since A3(IR5) c  T 3(IR5), then co e  T 3(R5),

and since we have a basis for T 3(!R5), then co = 2  I 2  I 2  bhM3 ■nh ®n l2 <gi nh
ij =1 \i2 = l Vi3=l

which could have as many as 125 terms so we hold on to a mild level of abstraction. Since
\5 (-id 5 

co -  Alt 

the conclusion co

co e  AJ (IR3), then by Theorem 3.6 co-  Alt(w). From these last two conclusions, we have 
( 5 ( 5 ( 5  ^

. An extensive use of Theorem 3.10, yields
Vi2 = l  Vz3 =

5 ( 5
2
1—1 \l2~ 1 V% =

2
Vi!=l

2 ( 2  bh,i2,¡3 ® 71-12 ®tt'3))
2 = l V i 3 = l  ) ) )

2  I 2  Ak(A , h • nh <8 7Th (8 nh) 11. We will consider an
,=iu,=i ’ ’ / /

arbitrary one of the 125 terms. From Definition 3.7 it is easy to see that 

Alt(a • co) = ci • Alt(tii) for a e  IR and co e  T*(IR”), thus,

Alt (bluhj3 -7th ®n l2 ®nh ) = bh hh AltOF1 ®7r'2 <8 nh ) for each i\, i2, ¿3 e  {1, 2, 3, 4, 5}.

Now from Definition 3.8 and Theorem 3.12, for each ¿1, ¿2, ¿3 e  U, 2, 3, 4, 5},

bh h ,3 A\t{nh <8 n‘2 <8>7t13) -  bh h h (nh a  nh a  nh ), this being a scalar product of
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our arbitrary term. We have already shown that bh ,2 h (nh a tt‘2 a tF3 ) = 0

whenever i\ = i% or i\ = ¿3 or ¿2 = «3 . So we have a> as the sum of only 60 potentially 

non-zero terms since we have 5 choices for i \ , then 4 choices for ¿2 , and only 3 choices 

left for ¿3 . For each combination of the three symbols chosen from {1, 2, 3, 4, 5}, we have 

3! or six permutations. For example six of the terms from our 60 potentially non-zero 

terms are as follows: ¿123 jr  tt1 a n2 a n3 + ¿132 tt1 a tt3 a n1 + ¿213 n2 An1 An2 + 

¿231 jr  7T2 A 7T3 a 7T1 + ¿312 37 ?r3 A 7T1 a jt2 + ¿321 j f  7T3 a  it2 a  7T1 . We use Theorem 3.8 

part 4 to put a a  in standard form written as sgn(cr) • tt1 a n2 a  7r3 for

o- e  S3 . So we let a,, hh = 2  jr sgn(cr). We write all of our alternating
creS3

tensors in standard form, take our 60 terms divide them into 10 groups each of 6 terms of 

the same alternating tensor nh a  nLl a  nh in standard form. We use the distributive 

property of real numbers and make the substitution of

ah hh = 2  ¿0-(i,)o-(i2)o-(z3) jr  sgn(cr) so we have ten real numbers ah h h each scalar
cte53

product with one of the ten corresponding n h a  n l2 a  n h in standard form. Thus we have 

written our sum originally involving a theoretical 125 terms as a sum involving only 10

terms. That is a> = 2  ( 2  ( 2  aix i2 ¡3 'nh A A ) ]= «123 7T1 a  jr2 a  7r3 +
l\—\ \Z2—^1+1 VZ3 =Z2■+" 1 / /

«124  7T1 a  7T2 A 7T4 +  £*125 7T1 A f t 2 ATT5 + « 134 n 1 A 7T3 A JT4 +  <2135 7T1 A 7T3 A ?r5 +

«145 7T1 a  7T4 A 7T5 +  a234  7T2 A  7T3 A 7T4 +  £¿235 7T2 A 7T3 A 7T5 +  «245 7T2 A 7T4 A 7T5 +

«345 7? a  n4 a  7T5, and consequently we have written 10 as a linear combination of elements 

from {nh An12 atF3 | 1 < i\ < ¿2 < ¿3 < 5}.

It remains to show {nl] a  nh Anh \ \ < i\ < ¿2 < ¿3 < 5} is a linearly independent 

set. We write the sum of elements from the set {nli a  nh a 11 < ¿1 < ¿2 <13 < 5} in a 

rather elaborate but well defined manner. Suppose

1 Ì 2  Ì 2  « ,
l\ —1 \l2~ij+1 VÌ3—Ì2+I l l2 h *7T1 A7T2 A7T = 0.
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We apply £  [ £  [ £  a
=1 V/2=zi +i Vi

h h h • nh A 7Th A JTh j j t° (e.h > e.h > e.h ) where*1=1 >12=1!+1 \Z3=Z2+1
j \ , h > h  e  U, 2, 3, 4, 5}. A typical term in the sum is ah l213 -n1' a tt'2 a nh (en , e/2, eh ). 

From the definition of wedge product, Alt, and tensor product this term is the sum

ah h h W r r  (i+i+i)' ^  sgnlo-) n1' (eo-o,))nh (e(r(j2)) (eo-{j3))•
aeS3

' The 1-tensor factor nh {e(T{h)) = 0 unless cr{j\) = i\ , in which case it is 1. The same 

is true for the other two factors; thus, since there is only one term in the original sum 

where j \ , j%, jj, is a permutation of i\ , ¿2, h , nine of the terms are zero and for the 

remaining term expanded as the sum of six elements with the definition of wedge product, 

Alt, and tensor product as above, five of these terms are zero and the only quantity 

remaining is ah h H. Since the 3-tensor was defined to map every ordered triplet of vectors 

from [R5 to the number zero, then it must be the case that ah h h = 0. We repeat this 

process 10 times for the other possible combinations of {eh , ej2, ej3), and will show each 

of the coefficients must be zero.

Now we have sufficient understanding to prove the general theorem. We collect the 

set of elements nh a nh a • • • a nh with i\, ¿2, ..., 1* e  {1, 2, ..., n) in standard form, that 

is, with ¿1, ¿2, ..., ik satisfying ¿1 < 12 and ¿2 < h  and ... and ik-\ < ik and write this all as

{nh An12 a • • • a nlk 11 < zi < ¿2 < • • • <ik ^ n}.

Theorem 3.13 Let nJ : 1R" —>1R be the projection functions of Definition 3.5. A 

basis for A*(IR") is {nh a nl2 a • • • a nlk | 1 < ¿1 < ¿2 < ••• < ik ^ n}.

Proof. We first show {nh a jth a • • • a nh 11 < i\ < ¿2 < • • • < ^  < «} spans and then 

is linearly independent.

Let oj e. Ak(Rn). From the ideas present in the above example, we see that

(O
n ( n i n

= É  I É ■"[ É  ^hh ■ h
¡1=1 Vz2=l

Alt(7r!> ® n l2 ® - " 0 nh ) j ... j with nk terms in the sum

before expounding on the meaning of Alt( •). Furthermore,
n ( n

*>= Z 2
h= 1 V*2 = l

É b h ,2 h j r  (nh att‘2 a  ••• a  n h ) 
h: =1

n ! /  (n -  k) ! of the terms are zero. Now if we let a¡1 ¡2. .h

at which point we see all but

=  2  JT Sgafo-) ¿o-(l)o-(2)- ■ cr(k) 
<reSk
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then we will have n ! /  (k! (n -  k) !) groups each of k ! terms and as we see from the patterns
(n-k)+1 i(n-k)+2 i n  \ \

of the example above that io = Z  Z ••• Z ah i2 i* ' nh AnH A •" •••
¿1=1 Vj2=Zl+l Vi3 +1 / /

with each nh a nh a ••• a 7t!* written in standard form. We have an arbitrary element 

oj e  A*(IR") written as a linear combination of elements from

{nh a n ‘2 a  ■■■ A n ‘k 11 <  i'i <  ¿2 < ••• < k  ^  «}, so we conclude that this set spans A^(IR"). 

Now we suppose that
(n-k)+l f(n-k)+2 / n \ \

a) = Z I Z ” • Z ah iz h 'n‘l Anh a ••• att'* I ••• and a>(x) = Ofor all
¿1=1 V ¿2 1  ■+“ 1 ¿̂3 =¿̂ „1 +1 / /

x e  IR” x • • -IR” (^-times). We apply co to (eJl ,e j2, ..., eJk). This forces j2 = 0 as 

explained in the example above. Repeating this for each permutation of j \ ,  j%, jk 

satisfying j\ < j 2 < ■ ■ ■ < jk , we force each ahl2l3 = 0  for each iu  i2, ■■■, z'/£ e  {1, 2, ..., n) 

satisfying i\ < ¿2 < ■■■ < ik - This verifies that

{nh a a • • • a nh \ 1 < i\ < ¿2 < • • ■ < ik ^ n} is a linearly independent set. 1

We have at last a basis for Ak(Rn). We see in the proof that the number of elements

( Tl \
J. Thus there are no alternating tensors on IR" if k > n. If n = k 

we have a basis containing only one element.

Fields and Forms

In this section we begin by defining a field and then defining a form in terms of a 

field. The differential &-form is of particular interest in the proof of Stokes’ Theorem.

Definition 3.9 The tangent space of IR" at p e IR" is the collection of ordered pans 

(p, v) e  {/>} xQR" and denoted IR" with elements denoted v .

Definition 3.10 For a e  IR and vp, wp e  (JR")p we define vp + wp ~{v + w)p and 

a-vp = (a-v)p.

With these definition the claim that (IR")  ̂ is a vector space since it is not empty, 

and it is closed under addition and scalar multiplication. (IR")  ̂has a usual basis 

{{e\)p , O2)p , (en)p} and many other constructs analogous to IR". Of particular note is
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the usual inner product (, )p for (R")^ which is defined by (vp , wp)p = <v, w). The inner 

product is an essential construct since it is used in connecting a vector space with its dual 

as in Theorem 3.3. Without the inner product defined in this way, it is not clear how the 

dual (([R")p* should be defined. With this definition of the usual inner product for (R”)^, 

if we define <pXp : (Rn)p — >R for a unique xp e  (R")p by <pXp (yp) = (xp, yp) for each 

yp e  (R”)p , then analogous to what we have shown in Theorem 3.3, (R”)  ̂ is isomorphic 

to ((R”)p)*. With this clarification it is now clear that the basis for ((R")p)* is the set of 

linear functionals nl (p) that project a vector vp onto basis vector (et) for each 

i e  {1, 2, ..., n}. That is {nl (p)) (vp) = <(e,)p, vp) = (et, v) = vl for each i e  {1, 2, ..., n}.

In other words, (R”)^ is essentially R” with origin p, but rather than re-center the 

origin, Definition 3.9 allows us to overlay pieces of various tangent spaces consisting of 

only one element and aligned them at their common origin to produce what is called a 

vector field.

Definition 3.11 A vector field is a function F consisting of pairs (p, F(v)) for 

p e R n andF(v) = vp e  (R") .

For example, suppose F is a function defined for p  e  R2 by F(p) -  (2, -3 ) . F is a 

constant field of vectors.

We can also wnte (2, -3)p -  2 - (e\)p -  3 - (02) , so we can choose two component 

functions F l : Rn —>R and F2 : R” —>R so that F1 (p) = 2 and F2 (p) = -3  for each 

p  e  R", and we can define the vector field F for each p  e  R” by

F(p) = Fl (p) • (e\)p + F2 (p) ■ (e2) . We would call this vector field constant since each Fl
n

is constant. In general we describe a vector field F(p) = 2  Fl (p) ■ (e,)„ for each p  <E R"
1=1

with component functions F‘ : R" —> R. We classify each in terms of the component 

functions. If each component function is constant, then F is called constant. To simplify 

the statement of theorems hereafter, to say a function is differentiable will mean that a 

function has continuous partial derivatives of all orders. A function with this degree of 

differentiability is referred to as C°°.
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Before defining a A:-form, we should make clear the meaning of A*((R")p). Many 

authors assume that it is understood what is meant by A*((R”)p) through analogy to the 

constructs of similar appearance and form. We do little more in the sense of rigor, but to 

appeal to our sense of the meaning, we elaborate on some results.

Definition 3.12 Let a>, & e.Ak ((R”)p), 17 e  A 1 ((R")p),

(vi)p , (v2)p , ..., (vk+i)p e  (R % , M p  = (a, + bl)p = (a;)p + (b,)p and a-{vt)p = (a-vl)p 

for z e  {1,2, ..., k\ and some (a,)p , (b,)p e. (R")p and a e  IR, then we define the following: 

..., {Vi)p, ..., 0n )p) = u{(v\)p , •••,  (at)p, ■■■, (n ) p) +

w((vi)p, ..., (bt)p, ..., (vk)p),

2. a-a>((vi)p , ..., (v;)p, (vk)p) = a>((vi)p , ...,a-(v,)p, ..., (vk)p)

= oj((vi)p, ..., {a-v^p, , (vk)p),

3. (cn + d)((vi)p , ..., (vt)p , ..., (vk)p) = eo>((vi)/?, ..., (v,)p , ..., (v*^)+

<?((vi)p, .... (v,)^, ..., (vk)p),

4. (m®77)(Oi)/,, ..., (vk+i)p) = a>((vi)p , ..., (vk)p) T]((vk+i)p, ..., (vk+i)p),

5. n>((vi)p, ..., (v;)p , ..., (Vj)p, ..., (vk)p)

= -^((vi)^ , ..., (Vj)p, ..., (v;)p, ..., (vk)p) 

(interchange z and y with 1 + y),

6. Alt(rn) ((vi)p , (v2)p, ..., (v*)p) = -¿j 2  sgn(cr)-a)((Vo-(i)) , ..., (v^*)) ).

With some expenence, these abstract definitions, in terms of the tangent space of 

R" at p, all seem very natural. Still it gives us a point of reference as the notation 

continues to harbor increasingly complex meaning. We did not mention the wedge 

product since it is defined in terms of Alt( •) and “®”, which are now well defined in (4.) 

and (6.) above. What remains somewhat unclear is what is meant by a function 

io: ((Rn)p)k —>R. We clarify this in our suggestion of a basis for A^((R,!)p). In the same 

manner that we constructed our usual basis for A*(R") using “ a  ” and the usual basis for 

(Rw)*, we can construct a basis for Ak ((R”)p) using “ a  ” and the usual basis for ((R")p)*. 

We have the {nh (p) a  nh (p) a  • • • a  nh (p) | 1 < z'i < z2 < • ■ • < ik < n} as the basis for
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Ak ((IRn)p), which is reasonable following the pattern of extending our other tensor 

constructs from R" to (R") . Now the definition of a ¿-form follows easily.

Definition 3.14 A differential form or k-form is a function to consisting of pairs 

(p , to(p)) where p s R n and to(p) e  A k ((Rn)p).

In other words, a differential form is a mapping for each point pin a Euclidean 

vector space R” to alternating ¿-tensors of the tangent space of R" at the same point p. 

From Definition 3.14 we se an emerging connection between vector fields and differential 

forms. With vector fields, we associated to each point in R", a vector, now with 

differential forms, we associated to each point in R”, an alternating ¿-tensor. Just as we . 

could write each vector field F as the sum of certain component functions, one for each 

basis element of (R")p, we can also write each differential form a» as the sum of certain 

component functions, one for each basis element of Ak ((Rn)p). If to is a differential form 

on R", then for each p e. R”, there are component functions coh h lt : R" —>R,

{1 < ;'i < ¿2 <■■■< ik < n} such that
(n-k)+1 ({n-k)+2 ( n

u(p)=  Z Z ••• Z 0)hl2, lk(p)-7t1' (p)A7t,i {p)A-- -  (p)
i\ =1 V^^i+l ^¿—̂¿-i“̂ l

Just as with F, we have the same considerations in describing to as continuous, 

differentiable, et cetera depending on the component functions toh h . h .

Definition 3.15 If to and & are ¿-forms on R”, jj is an /-form on R", and 

/ :  R” —>R, then for each p  e  R”,

1. to + & is defined by (to + &) (p) = to(p) + &(p),

2. f - to  is defined by ( /  • to) (p) -  f(p) ■ to(p), and

3. to a  tj is defined by (to a  tj) (p) -  to(p) a  rj(p).

Now that we have made the definitions, we consider the consequences.

Suppose / :  R” —>R is differentiable, then for each p  e  R”, Df(p) e  A1 (R").

Notice Df(p'): Rn —>R is linear by Definition 2.1, and the alternating criterion is 

automatic since ¿ = 1, that is there are not two positions to interchange. Of course since 

the basis for A^R") is the basis for the dual of R” which we are writing as
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{nl , 7r2, 7r"}, then Df(p) = £  ^  ?r! for some a, e  IR and we say Df(p)  is an alternating
¡=1

1-tensor. For a differentiable function / :  IR" —>R, we define d f  for each p  e  R" by 

d  f(p)  = Df(p), and furthermore, if vp e  (R") , we define d  f(p) (vp) = Df(p ) (v), thus, 

d f  is a 1-form as it takes vectors of R" to alternating tensors of A1 ((R")p) that in turn 

take elements of (R")^ to numbers. This has immediate consequence for our notation. 

Since for each Z e  {1,2, ..., n}, nl is a function from R" to R, then 

dn 1 (p) (vp) = Dn1 (p) (v). For each i e  {1,2, ..., n}, Dn1 is the same at every point in R" 

and has the Jacobian matrix I y-n with zeros for all entries except the /th entry is 1. 

Therefore for each Z e  {1,2, ...,«}, Dn1 (p) (v) = (e„ v> = vl = rf{v), in particular 

d n l (p) = nl(p) for each p  e  (R") . If in the classical tradition we rename the function nl 

as xl, then {dxl (p), dx 2 (p), ..., dxn (p)} is just the usual basis for ((R")^)*, the dual of 

(R") . Furthermore, we now write each Worm co as
(n-k)+1 f(n-k)+2 (  n A

O J -  2  E  ••• E  Ik - d x h A d x h A  ••• A d x h •••
. Zf —1 \Z2=Zi+l \Zjt—Zjt_l+1 /

The following theorem summarizes the notation and is used often in what follows. 

Theorem 3.14 If / :  R" —>R is differentiable, then 

d f  = D\ f - d x l + £>2 f - d x 2 + + Dn f - d x n.

Proof Let / :  R" —>R be differentiable and p, v e R " . We have defined 

d f tp )  (v ) = Dftp)  (v) and since /  is differentiable (C°°) and we have the usual basis for 

R" and R, then Df(p) = ( D\ f(p) ■■■ D„ f ( p ) ). We restate D f(p)  (v) as
n

( f(p), Dn f ( p ) ) • v = 2  Dt f(p) vl. Since we have shown in previous discussion
j=i

that d x 1 (p) (vp) = v1, then 2  D, f(p) vl = 2  D, f(p) d x 1 (p) (vp). Since p  and v were
1=1 1=1 

n
arbitrary then we have d f  = 2  A  f  -dx1. ■

¡=l
We back up for a moment to the simple setting of Wensors to introduce a new 

notation that will carry our current notationally complex constructs to the next level.

Definition 3.16 For a linear transformation / :  R" —>Rm and T e  T*(Rm), we 

define /* : T*(R")—>T*(Rm) by /* T(vu  v2, .... v*) = T(f{Vl), f(v2), .... f(vk)).
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This is perfectly reasonable and meaningful, but to further convince ourselves, we 

show the following.

Theorem 3.15 If / :  R" —>Rm is a linear transformation, S e  T*(Rm) and 

T e  T l(Rm), then f*(S ®T) = f * S ® f *  T.

Proof. Let vi, ..., vk+l e  R". /*(S<8> T) (vj, ..., vk+i) -  (S®T) (f(v\ ), ..., f (vk+i)) 

by Definition 3.16. Then (S®T) f/(v,), ..., /(v*+,)) =

5(/(vi), ..., f(vk)) T(f(vk+1), ..., /(v*+;)) by Definition 3.3. Finally 

S(f (v i), ..., f ( v k)) T(f(vk+i), . . . , f (vk+i)) = f S ( v i, ..., v^)/* T(v*+i, ..., v*+;)by 

Definition 3.16, and/* 5(vi, ..., vk) f* T(vk+1, vk+i) = f * S ® f *  T{v\, . . . ,vk+i) by

Definition 3.3. I

Theorem 3.16 If / :  R” —>RW is a linear transformation, a» e  A/:(Rm) and 

?7 e  A'CR7”), then f*(co  a  77) =  f *  oj a  / *  77.

Proof. Let vi, V2, v̂ +; e  R". /* (oj a 77) (vi, ..., v*+/) =

(a; a 77) (/(v i), ..., f(vk+i)) by Definition 3.16. Next (m a 77) (/(v i), ..., f{vk+i)) =

^jrjr Alt(a> <g> 77) (/(v j) , . . . ,  f(vk+i)) by Definition 3.8. Then 

■M-Alt(u7<g)77)(/(v i), . . . , f (vk+l))= Alt(/*a>0 /* '77)(v1, ..., v/i+/) by

Definition 3.7 and Theorem 3.15. Pulling back out with Definition 3.8

Alt(/* <0®f*T])(Vl, ...,V k+l) = f*OJAf* 77((Vl, ..., vk+l)). ■

Recall for a differentiable function / :  Rw —> Rm, D f(p ) : R” —> Rm is a linear 

transformation by Theorem 2.1.

Definition 3.17 For a differentiable function / :  R” —>Rm, we define 

f * : (IR”) —»(Rm)/( ) by /* fvp) = (Df(p) (v))f(p) for v e  R".

We need to reiterate Definition 3.16 for A*((R")p) and we make it a new definition 

so we can refer to it easily in the context of Morins without pondering its extension from 

Mensors as is done in Definition 3.16.
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Definition 3.18 For a differentiable function / :  IR" —> IR7" and a Morm co on IR7" 

and p  e  IR", we define f* : Ak ((lRm)/( }) —> A*((R")p) by (f* at) (p) for 

(vi)p , ..., (yk)p e  OR") by

if* a>) (p) ((v\)p, ..., (vk)p) = oo(f{p)) ...,/*  ((v*),)).

Theorem 3.17 Suppose / :  IR" —>IRm is differentiable, co, a>\, co2 are Morms on 

IR7", tj is an /-form on IR7", and g : Rw —>IR then:

1 , f* (d x l) = £  D j f - d x J ,
y=i

2 - / * ( & > !  + ^ 2 )  = / * ( w l ) + / * ( <y2)>

3. /*(g • <o) = (g°/) •/* tu, and

4. f*(0JA 11) = f*a jA f*  TJ.

Proof. LetpeIR " and vp , (v ,)^  (v2)p, e  (R")p.

1. Let i g {1, 2, . . m\. Since / :  IR" —>IRm is differentiable and d x l is a 1-form on 

IR7”, then by Definition 3.18, f* dx l (p) (vp) = dx ‘ (Jip)) (.f(vp))- Considenng the 

supposition of / ,  by Definition 3.17, f  (vp) = (Df(p ) (v))f(p) and by Theorem 2.12,

rDxf l ip) D2 f l (p) Dn f l (p) ' 'v 1 '

Df(p)(v) = £1 f  (p) D2 f 2 (p) ... Dn f 2 (p) V2

f m (p) D2 f m (jp) ... Dn f n {p) , ,v",
Computing the dot product and placing that vector at f(p)  yields

i n  n n \
/* (Vp) = 2  D j f 1 (P)vf  2  Dj f 1 (p) vJ, ..., 2  Dj f m (p) v-f

v=l J= 1 3=1
. Since d x l f(p)  is by

f(p)
definition the projection function that for W/(P) e  (IR"')/(;,) gives its projection onto

(®* V(p)>then §iven that /* (vp) e  (Km)/(P) as given above,

d x l {f  {p)) (f„(vp)) = 2  D j f  ip) vJ, the ith entry in f  (vp). Furthermore, for 
y=i

j  e {1, 2, ...,«}, dxJ {p) (v ) = v7, then we make this substitution for v7 and arrive at our

result: d x l (f ( p )) ( f  j v p j) = 2  D j f  (p) dxJ (p) (vp).
3= 1

2. Since / :  IR" —> IR7" is differentiable and co\ + o>2 is a Morm on IR7", then by 

Definition 3.18, f*(o\  + oof) (p) ((vi) , .... (v*) )
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= <A>1 + 0J2) i f  ip)) (/*(Oi )p), . . . , /* ((v*)^)). In general,the right hand side is a rather
¡m \

involved sum of  ̂ j terms, but for an arbitrary term we have

(coi + a)2)h , ifip)) • dx1' i f  (p)) a • • • a d x lk i f  ip)) for component function

(o»i + ¿02), , : IRm —>IR. Now (co\ + 0)2)1 h ifip)) can be evaluated point-wise for

component functions ico\ )h , , ia>2)h h ’■ IRm —» IR which exist since each of co\ and 0J2

is a ¿-form on Rm. Therefore (aq + 012)1, , • d x1' a • • • a d x ik =

( ( c t > i , + io>2)h , ) • dxh a • • • a . Now we take the right hand side and apply it to 

a point f ip)  e  [R"! which gives us a ¿-tensor in Ak ((!Rm)^ pf), which we can apply to an 

element r  e  ((!Rm)f(P))k and get a real number. Observe

((^ l),,. h fiP) + ("2),, ,lk fip)) -dx1' f ip)  a •••a d x lk f ip)  e  Ak HRm)f(p)) and since 

idx1' f ip )  a • • • a d x lk fip)) (r) <e IR, then idxh f ip)  a • • • a d x lk fip))  (r) distributes over 

the sum ((uq), , f ip)  + (o»2)it , /(/?)) and we have shown the arbitrary term

(oq +(i>2)h , -ifx*1 a ••• A<ix** = (oq);i h - dx) 1 a ••• a J x'* +

( ffl \
J terms can be expanded

l m \as the sum of two sums of  ̂ j terms, and grouped by component functions for oq and 

o)2- We have supplied as basis for the identity (oq + co2) ifip)) i f f i v i ) p), ..., f j f y k)p)) = 

io>i)if ip)) i l i i v i ) p), / , « , ) )  + ico2) ifip)) ( f j i v i )p)  .... U i v k)p)). Applying

Definition 3.18 in the opposite manner as at the start and in consideration of the 

point-wise definition for the sum of ¿-forms, then the right hand side of the previous 

equation becomes (/*(oq) + /*(o>2)) ip) iiv])p, ..., ivh)p).

3. Since / :  R” —> [Rra is differentiable and g ■ to is a ¿-form on IROT, then by 

Definition 3.18, f*ig-co) ip) ((vi)p , ..., ivk)p) = ig-co) ifip)) ifxiivi)p), ..., f j f y k)p)). 

Since g : 1ROT —>[R and a» is a ¿-form on !ROT, then by Definition 3.15 Part 2 , 

ig ■ (O) ifip)) = g i f  ip)) ■ ojifip)) thus, (g ■ co) ifip)) i l  ((V! )p), ...,/*  i(yk)p)) = 

i§'“/ ) ip)■ r < 4 f i p ) ) CCvi)p, ..., (V*),).

4 . Since / :  IR" —> tRm is differentiable and each of co and ij is a ¿-form and /-form,
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respectively on Rm, then by Definition 3.18, / * (to a rj) (p) ((vj)p , (vk+i)p) =

(to a  rj) (f ( p )) (f.t ((v\ ) ), ((Vi+/) )). Since each of to and rj is a Morm and /-form,

respectively on Rm then by Definition 3.15 Part 3, (to a  if) (f(p)) = to(f(p)) a  rj(f(p)). 

From the previous identity, we have (co a  r/) (f ( p )) (/„((vi)^), ..., ff((vk+i)p)) =

A V(f(P))) C/*((v i) fj(vk+i) ))• The right had side of the last equality can

be written as l(*+!)’
k'l' ' (£+/)' 2  sgn(cr) (to(f(p)) ® t](f(p))) (/* ( O h ( ( v * + / ) - ) )

creSt,
using Definitions 3.8 and 3.12 Part 6. Each term of the sum becomes

sgn(<r)*>(/(/>) (/* ((vO,), ..., ACCv*) )̂)) ?7(/(P)) (/* (Oh+i)p , .... fj.(vk+[)p)) by

Defimtion 3.12 Part 4. Reapplying Definition 3.18, each term becomes

sgn(cr)/* tj(p) ((v,)p, ..., (vk)p)f* J](p) ((vk+1)p , ..., (vk+i)p). We retrace or steps: by

Definition 3.12 Part 4, each term is sgn(cr) (f* to® f  rj) (p) ((v\)p , ..., (vk+i)p), by

Definition 3.12 Part 6, the sum becomes Alt(/* 00® f  tj) ((vj)p , ..., (vk+i)p), which

by Defimtion 3.8 is (/* a) a f*jj) ((vi)p , ..., (vk+i)p). ■

Recall that for a differentiable function / :  R" —>R, we defined d f  for each p e  R" 

by df(p) = Df(p). A Morm is differentiable if each of the component functions is 

differentiable. We extend the idea of d  to differentiable Morms.

Definition 3.19 For a differentiable Morm to the differential of to, dto is defined by
(«-/:)+! ( (n-k)+2 ( n

2  2
l\ — 1 \l2~l\ +1

2
\lk-ljc~l +1

d(x)i 1 h h A  d x h A  d x h A  * * • A  d x h I * * •

Since for 1 < i\ < ¿2 < • • • < ¿* < w each ?2 iifc : IR” —> [R is differentiable, then by
n

Theorem 3.14, da)h H h = 2  /2 ik • dxa We wnte out the terms in an example
Qf=l

to make the differential operator a bit less formidable. In the example, let n = 4 and & = 3, 

then we have ^ ) = 4 terms m the expansion of cj:

da) =  dco 123 • d x l a  d x 2 a  d x 3 +  do j\24 • ¿ ix1 a  d x 2 a  <ix4 +  da)\34 • ¿ ix1 a  d x 3 a  d x4

+d(i)234 * d x 2 a  d x 3 a  f i x 4 .

Next we use Theorem 3.14 and expand each ¿iiu  ̂*213.
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da> =
(D\ £¿123 * d x 1 + D2 £¿123 * dx2 + £>3 <1>123 * dx3 + £>4 £¿123 • <ix4) A ¿lx1 a  dx2 A dx3 +
(£>1 &>124 * fix1 + 7)2 ¿¿124 * dx2 + D3 (±>124- • dx* + £>4 £¿124 ' dx4) A ¿X1 A dx2 a  dx4 +
(D\ £¿134 • ¿1X1 + D2 £¿ 134 * dfx2 + D3 £¿134 • £fx3 + £>4 £¿134 • £fX4) A d x 1 A <f X3 A dx4 +

(£>1 £¿234 • d x 1 + D2 £¿234 * dx 2  + D3 £¿234 ' dx* + £>4 £¿234 * X4) A dX2 A ¿lx3 A ¿|x4

We can use Theorem 3.8 Part 1 to distribute the wedge on the right and then 

Theorem 3.8 Part 4 to make zero any term with a repeated wedge product, for example

d x * a  d x * a  d x 2, a  d x 3 -  0.

doj =  Z>4 u > i2 3  -<lx4 a  ¿lx1 a  ¿lx2 a  ¿lx3 +

D3 U>124 • ilx3 A  d x 1 A  ¿lx2 A  ¿fx4 +
Di (O134 • dx2 a  d x 1 a  ¿¿x3 a  ¿fx4 +

Z > i a>234 • d x 1 a  d x 2 a  ¿lx3 a  d x4

We finally rearrange each wedge product using Theorem 3.8 Part 4 and collect like

terms; in this case there is only one distinct basis element remaining.

dco = (-£>4 ¿ t> i23 + D3 <¿>124 -  ^2 U>i34 + D\ <¿>234)  • d x 1 a  dx2 a  ¿lx3 a  ¿lx4
The example shows that the result of applying d  to a 3-form was a 4-form. That is 

the idea! The differential operator makes a &-form into a (k + l)-form.

Theorem 3.18 If each of 10 and & is a Morm on IR”, then d(a> + &) -  da> + dd. 

Proof. Let each of a> and & be a ¿-form on IR". By Definition 3.19, d(a> + &) gives 

us a sum of terms of the form d((a> +  &)h h , )  a  d x 1' a  d x h a  • • • a  d x h . Now 

d  ((a> + &\  ,2. . ,k) = d  (ioh ,2 . lk + &tl ,2. lt ) since (co + d)h h ,k = ¿j „ ,2. lk + *2 lk for

certain functions a>h h and 0,j /2 h that exists since each of co and d is a /v-form on IR”.
n

By Theorem 3.14, d(a)h h lk + &h ,2 = H Da(ojh h lk + &h ,2 lk) -dxa and by
a= 1

Theorem 2.7, £><*(01,, ,2 + 5l} ,2
n

¡2 . ik + i2 . 1*) = 2
a=l

Theorem 3.8 Part 1, ( £  [£>„(01,, ,2 
Va=l

) = Da(ojh l2 , lk) + Da{dh h _ lk) for each or; thus, 

h h lk) + Da(dh h lk)]-dxa. By repeated use of 

h ) + Da(dh h ik)]  *dxP 1 a dx1' a dx‘2 a  *• * a dx?k
n
2  [Da(o>h h Jk) + Da(dh ,2 h )]  • d x a a  d x 1' a  d x h a  • • • a  d x ‘k, and by the distributive

or—1

property of real numbers,
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2  [D a (coh h  h ) +  D a {dh h ,k)]  • dxP a  f i x ' 1 a  d x h a  • • • a  d x h =
a — 1 

n
2  Da{oJhH _"lk) -dxa a d x h a d x h a ---a d x h +

a =  1
n
2  D a {&h h h )-dxP a  d x h a  iix'2 a  • • • a  d x lk. Replacing each term in the original sum

Of— 1

by the right-hand-side of the last equation, then arranging the sum and forming two 

groups—terms involving coh h ik and terms involving &h h h —we have our result. ■ 

Theorem 3.19 If tu is a fc-form on R” and ij is an /-form on R", then 

d(co ajj) -  doj a  tj + { - \ ) k co a dt].

Proof. This result follows from the rule for the derivative of a product 

(Theorem 2.8), the asymmetric commutativity of wedge products (Theorem 3.8), and the 

previous theorem (Theorem 3.18). ■

An explicit proof occupies a great deal of space, and it is an exercise in following 

definitions and manipulating symbols; thus, in this rare case we refrained from giving 

such a proof.

Theorem 3.20 If a» is a differentiable Morm on Rn, then d{d{<o)) -  0.

Proof. Let co be a differentiable Morm on R". We take each term 

d(coh h ik) a  d x h a d x h a  ••• a  dxh from Definition 3.19 , and by Theorem 3.14 

d (coh l2 lk) = [ 2  Da(coh h ¡k) • d x a 1. We apply the definition and theorem again so
[ n n 1

2  2  ^ ik))  ■ d x ^  a  d x a  I. Since the limits of this double
y S = l  a =  1 J

sum are the same, then for each a  and [i, there is a term Dp(Da{coh lk))-dx@ a  dx°

and a term Da{Dp(coh ,2 ...,t )) • d x a a  dx@. Now since coh l2 h is differentiable (C°°), then 

by Theorem 2.2, for each a  and each of Dp(Da(coh l2 ,k)) and a(Dp(coh ,2 ,k)) is 

continuous; thus, by Theorem 2.10 Dp(Da(coh h ,k)) = Da(Dp(coh ,2 lk)). Since for each 

a  and /? dx@ a  d x a = - d x a a  dx^  by Theorem 3.8 Part 4, then 

^a(Dp((oh l2 jk))-dxa a  dx@ = -Dp(Da(col] ,2 . h )) • dx^  a  dxa. Finally then in the 

expansion of d(d(coh h lk)), for each term p{Da(coh h . lk)) ■ dx^  a  dxa there is, by the 

last conclusion, its additive inverse, the term Da(Dp(coh h ,,lk)) • dxa a  dx$\ thus,
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d (d (oh h h )) = 0. Therefore, for each term in the expansion of d(d(o)), we have 

d (d (oh ¡2 h )) = 0, making the whole term zero, and we conclude d(d(co)) = 0. ■

Theorem 3.21 If a» is a differentiable k-iorm on R” and / :  R" — > Rm is 

differentiable, then f*(do) = d(f* o).

Definition 3.20 A Morm oj is called closed if dco = 0.

Definition 3.21 A differentiable Morm co is called exact if to = dtj for some form tj.

Theorem 3.22 If co is an exact Morm on R", then co is closed.

Proof. Let co be an exact Morm on R". Since co is exact, then by Definition 3.21, 

then co = drj, for some form tj. Applying d  we have d o  = d ( d tj) and by Theorem 3.20, 

d(drj) = 0; thus, d o  = 0, which is to say that o  is closed by Definition 3.20. I



CHAPTER IV

INTEGRATION ON CHAINS

In this chapter we press forward most expeditiously to the final result of this thesis, 

Stokes’ Theorem. We make a number of definitions to make precise what is meant by 

integrating forms over chains.

n-chains

Definition 4.1 A singular n-cube is a continuous function c : [0, 1]" —»A, for 

A c R m.

We are familiar with some singular 1-cubes. Examples of these are number 

functions such as / :  [0, 1] — > [0, 2] where /  = {(x, 2 x) | 0 < x < 1}. The standard n-cube, 

which will be most important for the purposes of this paper, is the inclusion mapping 

7” : [0, 1]" —>R'\ that is 7” (x) -  x for each e  R". We note that in Definition 4.1 since 

[0, 1]* is compact and c is continuous then c([0, 1]*) is compact, however, n is not 

necessarily m as is the case for the standard n-cube.

Definition 4.2 For each i e {1,2, ..., n} and a e  {1, 2} we define the (i, a)-face of 

the standard n-cube 7" as the (n -  l)-cube 7 ^  : [0, l]”-1 —>R” defined for each 

x e  [0, I f - 1  by 7 ^  (x) = 7M(x1, ..., x!_1, a, xl, ...,x "_1).

Note since there are two faces for each i e  {1, 2, ..., n}, then for the standard 

n-cube, there are 2 n different faces. To understand this important concept we investigate 

the faces of I2. The four faces I2j a^: R —> R2 are as follows:

70
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7a,o)(x l) = (°> x*)>

I2hl)(xl ) = ( l , x l ),

7?2,0)(x1) = (x*> °)>

7f2,l)(x l) = (x l> !)■

Each of these has a natural orientation as x 1 increases from 0 to 1, but they are

differing, so when we make the definition of the boundary of 72, for example, we

introduce (-  l)l+a to give each face the same orientation.

Definition 4.3 For a singular «-cube c : [0, 1]” — > A (A c  Rm) the boundary of c is

defined dc = £  (-1)' c°/£0) + (-1),+1 c°/£;1).
1=1

Definition 4.4 An n-chain in A c  Rm is a formal linear combination of singular

«-cubes in A c  Rm with integer coefficients.

Definition 4.5 For a singular «-chain c = a\ c\ + «2 c2 + — 1- am cm the boundary

of c is defined dc = a\ dc\ + <22 dc% + •■■ +am dcm.

Definition 4.6 For a ¿-form oj on [0, 1]*, co has the form /  • d x l a  • • • a  dxk and we

define f  oj = f  f .
[0,1]* [0,1]*

Definition 4.7 If to is a ¿-form on A and c is a singular ¿-cube in A, then we define

= f  c* °>- 
c [0,1]* m

Definition 4.8 If <x> is a ¿-form on A and c is a singular ¿-chain in A with c -  £ a, ct
1=1m

for f l j e Z  and singular ¿-cubes ct in A, then we define = £  at Jco.
C * =  1 ct

Theorem 4.1 If d x l is the 1-form on R” with d x ‘ (p ) e. A1 ((R*')^) for each /? e  R” 

defined by d x l (p) (vp) = vl for v e  IR", and ¿ = «, then Ik/a) (dxl) = 0 if i = j  and

I(ja}*(dxl) = dx l if i t  j.

Proof. Since : [0, l]*“1 —>[R* and dx l is a 1-form on IR*, then by 

Definition 3.18, / J a) : A1 ((R*),^ (p)) —»A1 ((R*“1)^). Let p  e  IR*“1 and vp e  (R*“1) . 

Definition 3.18 defines (IqA)* d x l) (p ) (vp) to be d x l (I^a) (p)) (v,p))> aQd
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Definition 3.17 defines (vp) to be (DIk]a) (p) (v))Jk We note the component

functions of are as follows:

jk  (1)
hi,a) :Rk-1 >R by /o.«)(1) W = x1

rk 0 - D .
hi,a)

rk 0)
hj,a)

k 0+D 
(J,a)

rk
l<J,a)

m

IR*“1 -->Rby f ^ )(/“1) (■jc) = xJ~

:R*_1 — R b y / J ^ f * :) = or

:R*_1 ^ R b y  / U ° +1) (jc) = xJ

R*"1--^R by k(jJ k) (x) = xk~1

hj,a)

y'th row

kx ( k - 1) Jacobian Matrix form.
n 0 0 0 0 0 ... o 0 \

0 1 0 0 0 0 ... o 0

0 0 ..7 1 0 0 0 ... o 0
0 0 0 1 0 0 ... o 0
0 0 0 0 0 0 ... o 0
0 0 0 0 1 0 ... o 0
0 0 0 0 0 1 ... o 0

0 0 0 0 0 0 ... i 0
0 ... 0 0 0 0 ... 0 1,

This is the same as inserting a row of zeros before the /th row of the identity matrix.

We dot this matrix with the vector v e  R*_1 to arrive at the vector

(v1, v2, ..., v7_1, 0, vJ, ..., v*_1) e  Rk. Thus dx l (^Ja) (p)) ((IkJA)) (vp)) is the ¿th

position of (v1, v2, ..., vy_1, 0, v7, ..., vk~l ). If i = j, the ¿th position is 0 and if i t  j, the

¿th position is vl. Since each of and p  is arbitrary then we have established our result. ■

Theorem 4.2 I f / :  [0, 1]*—>R and or = 0 or a  = 1 then for i, j  e  {1, 2, ..., &},

f  ' d x 1 a ••• a d x l~l a d x l+l a ••• A<fx*)is0if j ±  ¿and
[0,1]*-'

f  f ( x l , a, . . . ,xk) d x l ■ ■ ■ dxh if j  = i.
[0,1]*
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Proof. Let /  : [0, I f  —> 1R and a  = 0 or a = 1. Let ¡ , ; e { l ,2 ,  ...,&}. By 

Theorems 3.17 Part 3 and 4, Q,a)* (/-dx1 a ••• a d x !~l a d x l+i a ••• a d x k) =

f ° r(j,a) ■f(j,a)*(dxl ) A ■■■ A I(],a) A fy.a)*(d x ‘+l) A •” Al{j,a) id ^ ) -

In one case assume 1 1  j. Thus j  <e {1, i -  1, i + 1, £} and by Theorem 4.1

I(ja} { d x l ) a ••• a Ikja)* idx?-1 ) a [kja)* (dxl+1) a ••• a lQaj*(dxk) = 0, so in particular,

J  ‘dxl  A ■" A d x l~1 A d x l+1 A ••• A i ^ )  = 0.
[O.lf- 1

In the alternative case, assume z = y. We have f° I( j>a) (x) = /(x 1, ..., a, .. , x*), 

with or in the zth position, and by Theorem 4.1,

I0^)*(d x l ) A "• A/0,a)*(<ixi_1) A/0,a)*(if;c!+1) A "■ AlQ,a)*(dxk) =

d x 1 A ••• Aif%ï_1 Aifxï+1 A ••• A ifx*, so

f  ' d x 1 A A d x 1 1 A£f%!+1 A ••• Adxk) =
[0,1 f"1

J  f i x 1, . ., or, ..., xk) -d x1 a ••• A i r 1"1 A d x l+1 a ••• Adxk, 
to,if-1

which reduces to the integrated integral

i)1 "’ i)1 X* " ' X* ’ ■■■’ a ’ ■ ■ • ’ x*)dxl  ’" <̂ x,+1 • • • ifv1 by Definition 4.6 and

Theorem 2.33 At the same time f  f i x 1, ..., or, ..., xk) d x 1 ••• d  x* is
[0,1]*

fo-fofo-fodo1̂ 1’ ■■■’ x ^ d x ^ d x 1 ■■■ d x 1" 1 d x l+1 ■■■dxk where or is in the

zth position, and since JT1 f i x 1, ..., a, . . . ,xk)dx? = f i x 1, ..., a, . . . ,xk) Iodx‘ by
ri

Theorem 2.26 and JQ d x 1 = 1 by Theorem 2.30, then our iterated integral reduces to 

X1*" J o i r "  fof(x1’ a ’ xk) dxl d x l~l dx l+1 ••• dxk. We have shown the 

result in the alternate case, and established the theorem. ■

Theorem 4.3 If wis a differentiable ik -  l)-form on [0, \]k and Ik is the standard

&-cube in [0, 1]*, then fdo j  -  f  a>.
Ik dlk

Proof. Let to is a differentiable ik -  l)-form on [0, 1]* and Ik is the standard /c-cube 

in [0, 1]*. Since co is a ik -  l)-form on [0, Y\k, then we can simplify the form of co in 

terms of its basis in Definition 3.14 and write
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o) — X  (°i  - d x 1 a  ••• a  d x l 1 a  d x'+1 a  ••• a ¿/xk. Starting with the left-hand-side of our
i=l

result, we have fdco = f  I* (do).
[0,if

k k
First <fa) = £  E A  o, -dx3 a J x1 a ••• a J x*- 1 Ai#x'+1 a a ^  by 

¡ = 1 . 7 = 1
k

Definition 3.19, which simplifies to Z  A  o, ■ dxl a ¿fx1 a • • • a dxl~l a ¿fx!+1 a • • • a
i=l

by a corollary to Theorem 3.8 Part 4, any wedge product with a repeated basis element is 

zero, thus the only term of the inner sum to survive the differential operator is the one 

where j - i ,  since dxl is omitted in the wedge product. A second application of 

Theorem 3.8 Part 4 allows us to arrange dxl a dx1 a • • • a dxl~l a dxl+l a ■ • • a dxk in 

standard form with the coefficient (-  l)i_1. We have then

d o  = Z  (-l)*-1 A  o, ■dx1 a ••• Adxk.
1 =  1

k iSecond I*(do) = Z  ((-1) A  w, “/)•/*
Z =  1

k
3 and 4 Part 1 of Theorem 3.17 gives /* dx1 -  ' ZD,  Î > - dx3 where i {l) is the zth

j= 1
component function of I, so ^ (x) = xl. It follows then that } A  = 0 if j  d i and

k
D, I  ̂ = 1 if j  = i, thus E D, F 3 •dx3 = dx1. Also since I(x) = x, then , o ,° I  = D, o,. 

M
k

We see then that I*(do) = Z ( - 1)'”1 A  0Ji 'dx1 a ••• a dxk.
i=l

r  ^
Now f I*(do))= I 2  ( - i y -1 A  -¡i*1 A •" A dxk, but the right hand side is

r«,-,* J  ¡=i

v I* dxZ by Theorem 3.17 Parts

[0,1]'
[0 ,1]*

equivalent to Z  1)! 1 f  D,co, • d x 1 a  • • • a  dxk by Theorems 2.21 and 2.26. We use
i= l

[0,1]*

Definition 4.6 and Theorem 2.33 to write f  D, o, • d x 1 a  • • • a  dxZ as
[0,1]*

Jq1 • ■ • Jq1 A  <*>i d x 1 dxk, but the corollary to Theorem 2.33, Theorem 2.34 allows us to

equivalently write Ĵ 1 • • • ■ ■ ■ Ĵ 1 D, to, d x 1 d x 1 ■ ■ ■ d x l~l d x I+1 • • • dxk. The
ri

Fundamental Theorem of Calculus, Theorem 2.29 gives JQ D, a>, d x 1 -

^»¡(x1, ..., 1, xk) -  o,(xl , ..., 0, ..., x*) with 1 and 0 in the zth positions. Now as was

the case in Theorem 4.2, Ĵ 1 a>, (x1, a, ..., xk) dx l = o , (x1, ..., a, xk) dx? =
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cot(x1, a, ..., xk) for a = 0, 1 in the zth position. Therefore Dt ool d x 1 =

..., 1, ...,x!c) d x l -  J^coiix1, ..., 0, xk) d x l. Wemakethis substitution back

in j f - j f X 1- J T 1 Ĵ 1 A  co, d x 1 d x 1 ••• ¿fx'-1 <ix!+1 ••• dxk, move dxf back into position

with Fubini’s Theorem and have

f  Di a>l -dx1 a ••• Adxk =
[0,1]*

J  OĴ X1, 1, X*) -(¿¡(x1, ..., 0, xk) -dx1 A ••• A dxk.
[0,1]*

Using Theorem 2.21 we have

f  ojjix1, ..., 1, ..., x*) -ifx1 a ••• a <$x* -  
[0,1]*

f  (¿¡(x1, ..., 0, ..., xk)-d x 1 a ••• a dxk,
[0,1]*

A:
which we put back into our sum £  ( - 1)'-1 f  Dl to, ■ d x 1 a  • • • a  dxk to end with

!=1 [0,1]* 
k

2  (-1)1-1 f  (¿»¡(x1, 1, xk) -d x l a ■■■ Adxk +
1=1 [0,if

( - iy  f  (¿¡(x1, ..., 0, ..., xk) -d x 1 A ••• Aifx*
[0,1]*

after distributing (-1) ¡-I

Now we investigate the right-hand-side of our result. First f  co -  f  (dlk)*a>by
c)[k [ 0 , l f - ‘

k
Definition 4.7. Next (dlk) a» = £  ((-1)' l kho>* <u + ( -  1)I+1 l kt l)* to) by Definitions 4.3

1=1(
and 3.12 and f  (d lk)* to =f_']

[0, 1]*
i=i

c-iy f  /f;,0)V+(-iy+1 f  i ka ) *o>
[0,1]* [0,1]*

as the

integral of a sum is the sum of integrals by Theorem 2.21. For a  = 0, 1,

l (i,a) O) ■ I(ia) I 2  u , - d x l A ••• A dxJ 1 A dxJ+i A ••• A dxk‘(m) I , which is

2  Ik̂ a)* (ojj • d x 1 a • • • a dxJ 1 a dxJ+1 a • • • a dxk) by Theorem 3.17, and we have two of 
7=1
these sums, one for or = 0 and one for or = 1. Now
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k
f  J(i,a) = 2  f  (Mj ' d x l a  ••• Ad.X]~l AdxJ+1 A  ••• Adxk),

[0,1]*"‘ J=1 [0,l]f"‘
but each term in this sum is identically zero except for the zth term which is

J  tofx1, a, x/1) zfx1 • • • ifx* with a  in the zth position by Theorem 4.2. Therefore 
[0,1]*
we have

k
2
i=i

(-1)' f  I([0) o> + ( - l ) !+1 f  to
[0,1] [0,1]

k
2  (“ iy f  tofx1, ..., 0, ..., x/c) d x 1 dx^ + 
i=1 [0,1]A

(-1 )!+1 f  tofx1, 1, ..., xk) d x l dxk.
[0,1 f

This is precisely the expression we obtained for the left-hand-side; thus, we have

established our result. ■

Stokes’ Theorem

Theorem 4.4 If a» is a differentiable (k -  l)-form on an open set A c R "  and c is a 

¿-chain in A, then f  doj = fto.
c dc

Proof. Let to be a (k -  l)-form on an open set A c R "  and c be a ¿-chain in A with
m

c - Y j ai ci for a, e Z  and singular ¿-cubes c, in A. By Definition 3.19, dco is a
f=l m m

differentiable Morm so by Definition 4.8, Jdco = Z  ai f  do). Since dc = £  at dct by
C I=1 C, i=l

m
Definition 4.5 and dc is a (k— l)-chain, then by Definition 4.8, fco = £  at

dc Z=1 dct

Therefore the theorem is true if fd to  = Jo» for each z. For a particular z,
c, dc,

f d to  = f  c,*(dto) by Definition 4.7 and since c,*(doj) = d ( c f  to) by Theorem 3.21, 
c ‘ [0,1]*

then f  cf(dto) = f  d ( c f  to) = fd(c,* to). On the other hand, f  to = f  c,* to. We 
[0,1]* [0,1]* /* 3c, dlk

have shown in Theorem 4.3 that f  d(c,* to) = f  c f  to\ thus, we established the final result
t dIk

of this paper. ■
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