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Some properties of Palais-Smale sequences with
applications to elliptic boundary-value problems *

Chao-Nien Chen & Shyuh-yaur Tzeng

Abstract

When using calculus of variations to study nonlinear elliptic boundary-
value problems on unbounded domains, the Palais-Smale condition is not
always satisfied. To overcome this difficulty, we analyze Palais-Smale
sequences, and use their convergence to justify the existence of critical
points for a functional. We show the existence of positive solutions us-
ing a minimax method and comparison arguments for semilinear elliptic
equations.

80 Introduction

The goal of this paper is to investigate the existence of positive solutions for a
class of elliptic boundary value problems of the form:

Au—a(z)u + f(z,u) =0, ue Wy?>(Q), (0.1)

where Q C RY is a connected unbounded domain with smooth boundary 9.
Our approach to (0.1) involves the use of variational method of a mini-max
nature. We seek solutions of (0.1) as critical points of the functional .J associated
with (0.1) and given by

() = /Q [%(|Vu|2 + a(@)u?) — F(z, w)]da, 0.2)

where F(x,y) = foy f(z,m)dn.
It is assumed that the function a(z) is locally Holder continuous and satisfies

a; > a(r) >ay >0 forallxe. (0.3)
The basic assumptions for the function f are

(f1) f € C1(Q x R,R) and lim, o f(wT’y) = 0 uniformly in € Q.
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(f2) There is a constant a3 such that |g—£(a},y)| <az(l+ |y[P~?) for all z € Q
andyGR,where1<p<%ifN>2and1<p<ooifN:l,2.

(f3) There is a A > 0 such that 0 < (A +2)F(z,y) < f(z,y)y for all x € Q and
y € R\{0}.

Let E = Wy*(€) be the completion of C§°(€2) under the norm
Jul = ([ (ala)u + [Vuf*)do)' 2 (0.4
Q

The assumptions listed above imply that J € C!(E,R). Moreover, standard
arguments from elliptic regularity theory show that critical points of J on E
are classical solutions of (0.1). To prove the existence of critical points of func-
tionals like (0.2), one generally needs some compactness as embodied by the
Palais-Smale condition (PS) or one of its variants. (PS) says whenever {J(um)}
is bounded and J'(us,) — 0 as m — oo, the sequence {u,,} possesses a conver-
gent subsequence. Unfortunately, when one deals with elliptic boundary value
problems on unbounded domains, (PS) does not always hold. For example, if
Q2 =R2 a(zr) =1 and f(z,y) = |y[P~ly, it is known that there is a positive
solution u(x) of (0.1). The sequence of translates v, (x) = u(x + 2, ) does not
possess a (strongly) convergent subsequence in E if |z,,| — co as m — oo.
Given € > 0, by (f1) and (f2), there is a Ce > 0 such that

0 < |f(z,u)| < eu+ Cclul? (0.5)
and
0 < F(z,u) < eu® + ClulPT. (0.6)
Hence 1
J(w) = 3 llull® +o(llul®) as full -0 (0.7)

and there are positive numbers p and o such that
J(u) > o for all u € E with |lu| = p. (0.8)

On the other hand, the hypothesis (f3) implies that F(z,y) grows more rapidly
than quadratically as |y| — co. Hence for any u € E\{0}, J(tu) — —oco as t —
00. In other words, u = 0 is a strict local minimum but not a global minimum
of J. Let I®' = {u € E|J(u) < b} and T = I'(Q) = {y € C([0,1], E)|7(0) =
0,7(1) € I°\{0}}. The Mountain Pass Theorem guarantees a critical value 3
defined by

p=pQ) = inf Jnax, J(v(1)), (0.9)
provided that the Palais-Smale condition is satisfied. Nevertheless, there are
some examples for which any sequence {v,, } C E with J(v,) — B and J'(vy,) —
0 as m — oo possesses no convergent subsequence; in this case there is no
solution u of (0.1) with J(u) = 8.
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Although the mini-max structure of (0.9) does not guarantee that there is
a critical point w € E with J(u) = 8, we can analyze Palais-Smale sequences
to justify if there exist positive solutions of (0.1). Our analysis is based on
some comparison arguments which will be described as follows. Let {Q} be
a sequence of subsets of Q such that (2N Sg+1) C U C (2N Sk) and Ey, =
W4-2(95) with the norm

i = ( / (a(e)u? + [Vul?)da)/?,

where €27 is the interior of ) and Sy = {z € R¥||z| > k}. For v € Ej41, it
can be identified with an element of Ej by extending v to be zero on QR\Q} ;.
The inclusions

Ek+1 cE.C...CFE (010)

will be used without mentioned explicitly and Jy will be the restriction of J to
Ey.

Since our interest in this paper is focused on the positive solutions of (0.1),
a well known device will be used by setting f(z,y) = 0 if y < 0. A sequence
{um} C E is called a (PS). sequence if J(up,) — ¢ and J'(up) — 0 as m —
co. If any (PS). sequence possesses a convergent subsequence, we say (PS)
condition is satisfied. Let A(2) be the set of positive number ¢ such that there
exists a (PS). sequence. The set A(Q2) in particular contains all the positive
critical values of J. Let 6 = 6(12) be the infimum of A(Q2). It will be shown that
A(f2) is a nonempty set and 4(2) is a positive number. On the restriction Jg,
we define the set A(Q) and its infimum &, = §(€) by the same manner.

Theorem 1 There exists a positive solution u of (0.1) with J(u) = §, provided
that § ¢ A(Q) for some k € N.

Remark 1 The choice of {Q} is not unique. For instance, we may take Qy D
Qiy1 and (Q\Sk) D Qi D (Q\Sk+1), where {Sky1} is a sequence of compact
sets such that Siy1 D Sk and U | Sk, = RV,

When 3 > §, it is possible to have multiple solutions for (0.1).

Theorem 2 There are at least two positive solutions of (0.1) if § < 8 < oy, for
some k € N.

A sufficient condition for 3(2) = 6(Q2) is the following

(f4) For fixed = € Q, @ is an increasing function of y for y € (0,00) and
limy 00 @ = oo uniformly in Q.
In this case, it can be shown that {Jx} is a nondecreasing sequence and d > 3
for all k. Therefore Theorem 1 can be recast as



4 Palais-Smale sequences EJDE-1999/17

Theorem 1’ Assume, in addition to (f1)-(f3), that (f4) is satisfied. Then there
exists a positive solution of (0.1) if

B < lim o (0.11)

Moreover, one can verify that the (PS)g condition is satisfied.

Theorem 3 Assume (f1)-(f4) are satisfied. Then the (PS)g condition is sat-
isfied if and only if (0.11) holds.

On the other hand, it is not totally clear yet whether there is a positive
solution of (0.1) if 8 = limg_,c dx. Some examples we know of in this direction
will be discussed. Also, a different minimax approach from (0.9) will be consid-
ered to obtain a positive solution u with J(u) > 3. The detailed description of
such a minimax approach will be given at the end of section 5. As a matter of
fact, the existence of a positive solution u of (0.1) with J(u) > 8 is an interest-
ing and challenging question. Although we don’t have a complete answer, our
investigation might serve as a starting point of understanding this question.

There is a seizable literature [ABC, DF, FW, O1, R3, W] on the study of
positive solutions of (0.1) for the case = RY. The interested readers may
consult [N] for more complete references.

In the proofs that follow, we will routinely take N > 3. The proofs for N =1
or 2 are not more complicated.

81 Preliminaries

As mentioned in the introduction, the Mountain Pass Theorem cannot be di-
rectly applied to obtain the existence of positive solutions of (0.1), since veri-
fication of (PS) may not be possible. An alternate approach is to analyze the
behavior of Palais-Smale sequences. In this section, several technical results will
be established. We begin with the Frechet differentiability of the functional J.
A detailed proof of Proposition 1 can be found in [CR].

Proposition 1 If f satisfies (f1)-(f3) then J € C1(E,R).
Next we prove the boundedness of Palais-Smale sequences.

Lemma 1 If {u,} is a (PS). sequence then there is a constant K (depending
on ¢) such that ||uy| < K for all n.

Proof. Since J'(u,) — 0 as n — oo, if n is large then

”Un”2 - /f(x,un)undx = J'(un)un = o(1)un]. (1.1)
Hence

c = J(un)+0(1):J(un)—%J'(un)un+0(1)(1+llun|\)

(% _ ALH) /Q F (@t )undz + 0o(1)(1 + [[un]), (1.2)

Y
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where the last inequality follows from (f3).Substituting (1.1) into (1.2) yields

¢2 (5 = gl + (1)1 + ), (13)

which completes the proof.

Corollary 1 If {u,} is a (PS). sequence then

Tim sup u, | < (%)/ (1.4)
Proof. It directly follows from (1.3) and Lemma 1.
Corollary 2 Ifu € E, and J'(u) =0 then
I) > gl (15)

2(\ +2)

Proof. Note that (1.5) is trivially satisfied when v = 0. If u # 0, (1.5) follows
from (1.3) by letting u, = u for all n.

Lemma 2 There ezists o (PS)g sequence, where 3 is the mountain pass mini-
maz value defined in (0.9).

Lemma 2 follows from deformation theory and its proof is omitted. Note
that 8 > 0 by (0.8) and (0.9). Thus A(Q?) is non-empty.

Proposition 2 If (f1)-(f3) are satisfied then §(2) > 0.

Proof. Let {u,} be a (PS). sequence, where ¢ > 0. Applying the Holder
inequality and the Sobolev inequality yields

1
p+1
</ lun|”“dw) < Chlunl|® - [Jun ]9 = Ch fJunll, (1.6)
Q

where g = (p—ﬂ\r’l — (N;2)) € (0,1). It follows from Corollary 1 that

)\ 22
ge||un||2+cecf+1<&;)> llun ). (1.7)

/ f(z,un)unde
Q

p—1
2

Choose € <  and ¢ > 0 such that c.crtt (w) <e. If ¢ < ¢then

Un

Jl(un)

1
2 -1
Tl = nl|l — s Un nd n > —|lun
= (unl = [ £t ) ual > G ]
which implies ||uy| — 0 and consequently J(u,) — 0 as n — oco. This violates
lim,, 0 J(un) = ¢ > 0.Therefore there is no (PS). sequence if ¢ € (0,¢). So
o) >e>0.



6 Palais-Smale sequences EJDE-1999/17

Proposition 3 If u € E which satisfies J'(u) = 0 and J(u) > 0, then u is a
positive solution of (0.1).

To prove Proposition 3, we will use the following proposition which is a direct
consequence of maximum principle.

Proposition 4 If u is a solution of (0.1), u >0 in Q and v = 0 at some z € Q
then u =0 in Q.

Proof of Proposition 3. By elliptic regularity theory, any critical point of J
is a classical solution of (0.1). Let v~ () = max(—u(x),0). Since

/(Vu -Vu~ + a(z)uu” )dr — / flz,w)u=dz = J' (u)u™ =0, (1.8)
Q Q

it follows that [|[u~|* = [, f(z,u)u™ = 0. Hence u > 0 in Q.

Suppose u(z) = 0 for some z € , then by Proposition 4 we get u = 0, which
contradicts J(u) > 0. Therefore v > 0 in .

The next lemma indicates the relationship between Palais-Smale sequences
and critical points of J. We refer to [CR] for a detailed proof.

Lemma 3 Let {u,} be a (PS). sequence. Then there exist a @ € E and a
subsequence {un, } such that

Un, — @ weakly in E and strongly in L'TH(Q),1<p<(N +2)/(N —2) (1.9)

loc

and up, — 4 a.e.. Moreover, J'(a) =0 and J(u) < c.
In the remaining of this section, we state some properties of Palais-Smale
sequences.

Lemma 4 Let {uy,} be a (PS). sequence and Q, = QNDB,, where B, = {z||z| <
r}. Suppose there is an increasing sequence {rp} such that lim, . r, = 00 and

lim |un[2dz = 0. (1.10)
n— 0o .
Then
lim |Vu,|?de =0, lim f(z, up)updz = 0, (1.11)
n—o0 an n—oo an
and
lim lu, PP de =0 if1<p< (N+2)/(N—2). (1.12)

n— oo Qarr,

Proof. Let ¢, € C§°(R™) which satisfies 0 < ¢, < 1, |V, | <1 and

|1 ifzeB,,
4’"(”3){ 0 ifz ¢ B, .
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By Lemma 1 there is a C7 > 0 such that

| prtn||® < / a(x) iuidm—i—?/ ui|V¢n|2da:—|—2/ 2| Vu,|2de < Cy.
Q Q Q
If n is large then
/ a(x)u? ppdx + / Vg - (¢n Vg + un Vo, )dx — / f(z, up)dnunde
Q Q Q
= J'(up)pnpun = o(1). (1.13)

Applying the Schwarz inequality yields

< (/ern uida:)é (/ern |Vun|2al:1:>é =o0(1). (1.14)

From (f1) and (f2), we have

/ U Vg - Vopdx
Q2ry,

/ (@, un)nundz| < C / (lunl® + |un[P*)dz (1.15)
Q2rn 27

n

Invoking the Holder inequality and the Sobolev inequality yields

q (A-q)(N—2)

ﬁ 2 2N
p
/ |t |PT d < / |y, |2 d / |un|%da:

Q2ry, Q2rp Qary,

q
2

<C||un||1q</ |un|2dx> — o(1), (1.16)
Q2rp,

where ¢ = (% - <N;2>> € (0,1). Putting (1.16),(1,10) and (1.15) together

gives

lim f(z,up)dnunde = 0. (1.17)

—y
" J Qe

Substituting (1.17), (1.14) into (1.13) yields lim,,_, szT én|Vu,|?dz = 0, and
consequently (1.11) follows.
Let £ : R™ — [0,1] be a C*°-function which satisfies

B 0 ifze Bk-‘,—l
§@) = { 1 ifz ¢ Byio (1.18)

Lemma 5 Let {u,} satisfy the hypothesis of Lemma 4 and w, be the restriction
of Eun, to Q. Then wy, € Ey, and Ji(w,) — ¢ and Ji(w,) — 0 as n — co.

We omit the proof, since it follows from straightforward calculation.



8 Palais-Smale sequences EJDE-1999/17

§2 Existence results

We now prove the existence of positive solutions of (0.1).

Theorem 4 Suppose there is a (PS). sequence such that ¢ > 0 and ¢ & A(Q)
for some k € N, then there is a positive solution u of (0.1) and ¢ > J(u) > 4.

Proof Let {u,} be a (PS). sequence. By Lemma 3, there exist a v € E and
a subsequence, still denoted by {u,}, such that v, — u weakly in E, u,, — u
a.e., J'(u) = 0 and J(u) < c. We claim u # 0. This is true if there exist 7,b > 0
and [ € N such that if n > [ then

/ udx > b, (2.1)

r

where @, was defined in Lemma 4. Suppose (2.1) is false. Then there exist a
sequence {r,} with lim,_, ., r, = 0o, and a subsequence, still denoted by {uy},
such that lim,,_ o szT u2dz = 0. Let & be defined as in (1.18) and w,, be the
restriction of &u,, to Q;: . Invoking Lemma 5 yields ¢ € A(). This is contrary
to the hypothesis, so (2.1) must hold and u # 0. Then J'(u) = 0 and Corollary
2 shows that J(u) > 0. By Proposition 3, u is a positive solution of (0.1). The
proof is complete.

Having proved Theorem 4, we next prove two theorems stated in the intro-
duction.
Proof of Theorem 1. By the definition of A(2), there is a (PS)s sequence,
where, by Proposition 2, § = §(?) > 0. Applying Theorem 4 gives a positive
solution u of (0.1) with J(u) = 4.

Before proving Theorem 2, we state a technical lemma. Its proof can be
found in [CR].

Lemma 6 Let {u,} be a (PS). sequence. Assume that u € E and {un}
converges to u weakly in E and strongly in Lj () for s € [2, ]3—]7\’2) If v, =
U, — U, then limy, o0 J (V) = 0 and limy, o0 J (V) = ¢ — J(u).

)
Remark 2 The arguments used to prove Lemma 3 show that J'(u) = 0.

Proof of Theorem 2. Since § ¢ A(Qy), by Theorem 1 there is a positive
solution w of (0.1) with J(u) = J. Invoking Lemma 2 and Lemma 3, we get a
(PS)p sequence {uy,} which converges to v weakly in F and strongly in L] ()
for s € [2, 22). Moreover J'(v) = 0 and J(v) < 3. Since 3 & A(€%), it follows
from the same reasoning as in the proof of Theorem 4 that v is a positive solution
of (0.1). Suppose v = u. Setting vy, = U, — v, we see from Lemma 6 that {v,}
is a (PS)g—s sequence. Since 0 < # —§ < Jy, repeating the above arguments
leads to {vy,} converges weakly to some o € E\{0}. This contradicts that u,
converges weakly to v. So v # u.

Remark 3 (a) The proof shows that Theorem 2 still holds if § < 3 and B &
A(Q), 6 € A(Q), B—6 & A(S) for some i, j, k€ N.
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(b) In fact, the proof also shows that J(v) = B, for otherwise, if J(v) = a < f
then {vn} would be a (PS)g—o sequence, which would lead to a contradiction
as above.

§3 A Sufficient Condition for §(2) = 5(Q)

Although it has been proved in Proposition 2 that §(Q2) > 0, it seems to be
difficult in general to obtain an optimal lower bound for §(£2). If (f4) is satisfied,
the structure of J is more clear (as will be indicated in Proposition 6) so that
we are able to find the exact value of 6(€2). Its applications will be illustrated
later.

Proposition 5 If (f1)-(f4) are satisfied then §(Q2) = B(Q).

To prove Proposition 5, we need the following proposition whose proof can
be found in [DN].

Proposition 6 If (f1)-(f4) are satisfied then

= inf J(tu). 3.1
B %ggtéfﬁ‘@ (tu) (3.1)

Proof of Proposition 5. It suffices to show 6(2) > £(f2) since the reversed
inequality is always true. Let {u,} be a (PS), sequence with ¢ > 0. Then there
is an €; > 0 such that for large n

lun|l = €1 (3.2)

For u,, # 0, we set gn(t) = J(t|un|). It is clear that g, (0) = 0. Since

gn(t) = tun|* — /Q (@, tlun)[un|dz, (3.3)
it follows from (f1) that g/, (¢) > 0 if ¢ is positive and sufficiently small. Moreover,
we know from (f3) that lim;_, o gn(t) = —oo. Hence there is a ¢,, € (0, 00) such
that

g;(tn) =0 and gn(tn) = max gn(t)' (34)

t€[0,00)

By Proposition 6

B < gn(tn)- (3.5)
Let R(2) = {z € RY|||z — z]o < 3}. We claim there exist a sequence {z,} C
ZN and an e, > 0 such that

/ [P 1dz > e, (3.6)
R(Zn)
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where u,, is identified with an element of W2(RY) by extending u,, to be zero
on RV\Q. Suppose (3.6) is false. Then

p—1

p+1
Sn = sup / |, [P da —0 asn— oo. (3.7
z€ZN R(2)

Invoking the Sobolev inequality yields

T
Z (/ |un|”+1dx> <C Z (/ a(z)u? + |Vun|2d:c> = C|lun|?
R(2) = \Ure

z€ZN

= Pt
|\un||ffgi1 Z / |t [P da / |up [P da
R(z) R(z)

z€ZN
< Csnllunl®. (3.8)

and

-
>

For any given € > 0,

/ F(@, [unDlunldz < / eluin? + Colun|PHda
Q Q

< (64 CCesy) (sup ||un||2> < 2¢ (sup |un||2> (3.9)

if n is large enough. Hence

lim f( s [un|)[un|dz = 0. (3.10)
n— oo

Assuming for now that
J' (|un|)|un] = 0 asn — oo, (3.11)

we have limp, o0 [|un[|? = limp oo (' (|un|)|un| + [o (2, [un|)|un|dz) = 0. This
contradicts (3.2). Consequently (3.6) must hold.

Let v,(x) = un(z — 2z,). Since ||v,|| is bounded, there is a subsequence,
still denoted by {v,}, such that v, — ¥ in LPT*(R(0)) and Jr() [o|PHdx > €.

Hence there are positive numbers €3 and €4 such that
[Dn| = {z € R(zn)l[un(z)| > €s}] > €4,

where |D,| is the Lebesgue measure of the set D,,. Then it follows from (3.3)
and (3.4) that

mt U
||un||2 = —/fm tn|un]) |un|>/ i talu ||n| lu n|2dac
’I’L

7]‘(33,%63) / |un|?dz > €3eq ( inf inﬂeg)) .
D,

tn€s z€D,  tp€s

Y
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Since limy_, o f(wTy) = oo uniformly in €, {¢,} must be bounded. Hence
1o 1,
gn(tn) = §th (Jun])un] + §tn f@, un|)|unlde — | F(z,tn|u,|)dz
Q
= h(tn) + o(1), (3.12)

where h(t) = 3t* [, f(®, |un|)|unldz — [, F(z,t|luy,|)dz. Since
h/(t) _ / <f(l‘, |un|) o f(x7t|un|)> t|un|2dx,
Q

|| tlun |

it follows from (f4) that h'(¢) > 0 if ¢ € (0,1) and h'(t) < 0if ¢ € (1, 00). Thus
h(1) = max¢[o,o0) h(t). This together with (3.5), (3.11) and (3.12) yields

6(Q) < lim infg,(t,) < lim inf/ [lf(x, |un ) |un] — F (2, |un|)]dz
n—00 n—00 Q 2
= li_>m inf J(|un|). (3.13)

Let u;) = max(uy,,0) and u,, = u;’ — u,. Then

1
Hal) = gl = [ Plouida = [ Plau)do
1
< Gl = [ P uds = (). (3.14)
Q

Combining (3.13) with (3.14) yields 8(Q) < lim,— o J(un) = ¢. Since c is
arbitrary, it follows that 8(Q2) < §().

It remains to show (3.11) to complete the proof. Note that J'(Juy|)|un| —
J' (un)un = — [o f(z,u; )u, dz. Clearly, |lu, [|* = —J'(ug)u, — 0 asn — oc.
This together with the proof of (3.10) shows that lim, e [, f(z,u;, Ju, dz = 0.

Corollary 3 If (f1)-(f3) are satisfied then B(Q2) < B(Q%) < B(Qet1)-
Proof. It easily follows from (0.10).
Corollary 4 If (f1)-(f4) are satisfied then § < 0 < Op41.

Proof. It follows from Corollary 3 and Proposition 5.

§4 The (PS)s Condition

One of the applications of Proposition 5 is to show that the (P.S)s condition is
equivalent to

B < lim B(Q) (4.1)
k— o0
if (f1)-(f4) are satisfied. Note that by Proposition 5
6() = B(%). (4.2)

So (0.14) is equivalent to (4.1) and Theorem 3 can be restated as follows.
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Theorem 3 Assume (f1)-(f4) are satisfied. Then the (PS)g condition is sat-
isfied if and only if (4.1) holds.

Proof. We first prove the sufficiency. Let {u,} be a (PS)g sequence. By
Lemma 3, there exist a & € E and a subsequence, still denoted by {u,}, such
that u, — @ weakly in E, u,, — u a.e.,

J'(w) =0 (4.3)

and
J(w) < B. (4.4)

By Proposition 5, § = §(Q2) = 8(Q2) = 8. Then it follows from (0.14) and the
same reasoning as in the proof of Theorem 4 that

J(@) > 6 =p. (4.5)
Combining (4.4) with (4.5) gives
J(@) = B. (4.6)

Hence

8 = lim J(u,)= lim inf Bf(x,un)un - F(m,un)] dx

n—oo n—0o0 Q

> /Q [%f(x,ﬂ)ﬂ — F(x,ﬂ)} dr = %||a||2 - /QF(x,a) =83 (47

Applying Fatou’s lemma yields

L 1
lim 1nf/Q {/\—Hf(x,un)un — F(ac,un)] dx

> /Q [%Hf(m,u)u—F(m,u)} dzx (4.8)
and
nh_}rréolnf/ﬂf(m,un)undacz /Qf(ac,ﬁ)adac. (4.9)

Suppose inequality (4.9) were strict, it would lead to

lim inf/Q [%f(m,un)un - F(m,un)} dx

n—0o0

1 1
S i r 1
> nlin;olnf/ﬂ <2 >\+2) [z, up)upde

- 1
+ lim 1nf/Q {)\—Hf(:c,un)un —F(x,un)} dz

n—oo

> /Q%f(m,ﬂ)ﬁdm—/QF(w,a)dx:ﬂy



EJDE-1999/17 Chao-Nien Chen & Shyuh-yaur Tzeng 13

which would contradict to (4.7). Thus there is a subsequence {uy, } of {u,} such
that limg oo [ f(2, Un, Jun, dx = [, f(x,a)udz. This together with J'(a) = 0
and limg_, o0 J' (U, ) = 0 yields limg o0 ||, ||? = ||i]|?. Therefore limy oo ||tn, —
al| = 0.

To prove the necessity, we argue indirectly. Suppose (4.1) is false, then
it follows from Corollary 3 that 8 = [(Q2) for all k. By Lemma 2 there is
a sequence {v,} C Ej such that lim, o J}(v,) = 0 and lim, o Ji(vn) =
B(Q) = B. We first claim that

there is no v € Ej, such that J;,(v) = 0 and Jx(v) = 3. (4.10)
For otherwise, ||v||? = ka f(z,v)vdx which implies that

max J(tv) = J(v) = Ji(v) = . (4.11)
t€[0,00)

Then (4.11) leads to a contradiction by the following reasoning: Suppose J'(v) =
0. It follow from (4.11) and Proposition 3 that v > 0 in 2, which contradicts
the fact that v = 0 in Q\Qy. Suppose J'(v) # 0. Let v(¢) = tv,t € [0,00).
Then with slight modifications, the deformation theory and the arguments used
in the proof of Theorem A.4 of [R1] would give a path 1 (t),¢ € [0, 1], such that
7(0) =0, J(71(1)) < 0 and tren[éa)ﬁ J(m(t)) < B. (4.12)

But (4.12) violates (0.9). Thus the proof of (4.10) is complete.

Next, we claim

lim vide =0 forall j > k. (4.13)

If not, there exist m € N, e > 0 and a subsequence, still denoted by {v,}, such
that

/ vidr > e for all n. (4.14)
Qe \2m

Applying Lemma 3 and passing to a subsequence if necessary, we obtaina v € Ej
such that

v, — ¥ weakly in Ej, and strongly in LV (Qy), (4.15)
J..(0) =0 and
Ji (D) < 6. (4.16)
It follows from (4.14),(4.15) and Corollary 2 that Ji(¢) > 0. Hence
Ji(0) > o = B() = B. (4.17)

Combining (4.16) with (4.17) yields Ji () = 8, which contradicts (4.10). Thus
(4.13) must hold. Then it follows from Lemma 4 that

lim (|IVvn? + [va|PT)dz =0 for all j > k. (4.18)
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We now prove that
J'(vp) >0 asn— oo. (4.19)

Let & be defined as (1.18). For any ¢ € E, it follows from £¢ € Ej that
Jp(vn)€¢ — 0 as n — oo. By direct calculation,

T (0n)$ = T (va)€6 + / (Von - V6 + al@)ind — f(z, vn)d)da

Q\Ski2

—/Q s [(Vun - VO)§ + (Vun - V)¢ + a(x)vnéd — f(x, vn)E)dx.

Using (4.13), (4.18) and arguments analogous to the proof of Lemma 5, we
obtain that sup| 1 [/'(vn)p| — 0 as n — oco. This completes the proof of
(4.19).

Having shown that J(v,) — 8 and J'(v,) — 0 as n — 0 ,we now prove that
there is no subsequence of {v,} which is convergent in E. Suppose there is a
subsequence {vy,} such that v,, — w in E. Then, by Proposition 1, J(w) = 3
and J'(w) = 0. It follows from Proposition 3 that w > 0 in . But this is
impossible since v,; = 0 in Q\€y, for all j.

Corollary 5 Assume (fl)—(f4)~a're satisﬁedN. Suppose there is a uw € E such that
J'(u) =0 and J(u) = B(Q). If @ D Q and Q # Q then
B() < B(O). (4.20)

Proof. Suppose (4.20) were false, it would follow from (0.9) and W12(Q) C
WL2(Q) that 3(2) = B(Q). Then by the same reasoning as the proof of (4.10),
there were no v € E such that J'(v) = 0 and J(v) = 3(Q).

85 Examples

We are now considering some examples of existence of positive solutions of (0.1).

Example 1 Let Q C RY and Q # RY. If (f4) is satisfied and
B(Q) = BRY), (5.1)
then by Corollary 5 there is no positive solution u of (0.1) with J(u) = 5(9).

Remark 4 (a) When a and f do not depend on z, (5.1) holds if for any k € N
there is a ball of radius k contained in . As a more concrete example, Q can
be a half space, a cone or the union of a cone with a bounded set.

(b) The question of whether there exists a positive solution u of (0.1) with J(u) >
B will be studied at the end of this section and the next section.

For z € RV, we define D, = {z + 2|z € D}. In the next three examples it is
assumed that 0 € D C RY and there is a subgroup G of R!, I < N, such that

Dy,=D forallgegG. (5.2)
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Example 2 We study (0.1) for the case 2 = D, where D satisfies (5.2). Since
the case of D, is not different from D but merely more complicated in notation,
in what follows 2 = D.

In addition to (f1)-(f3), it is assumed that

f@+g,9)=fz,y) (5.3)
a(zx + g) = a(z) (5.4)
for all g € G,z € Q.

Theorem 5 Let Q = D, where D satisfies (5.2). Suppose G is a countable set
and there is a bounded subset T of D such that 0 € T,

D =UgecTy, and TyNTy = ¢ if g, € G and g # g'. (5.5)
Then there exists a positive solution of (0.1).

Proof. By Lemma 2, there is a (PS)g sequence {uy}. We claim there exist
€1 > 0 and m € N such that

sup/ |u, [P de > ¢ if n > m. (5.6)
ieG J,

Suppose (5.6) is false. Then there is a subsequence, still denoted by {u,}, such
that

sup/ |un|PTdz — 0 asn — oco. (5.7)
1€G T;

Applying the Sobolev inequality, we have

p—1l

p+1
/ |un|p+1da:: E / |un|p+1d:1: < (sup/ |un|p+1da:) HunH2
Q T ieq JTy

i€G
This together with Lemma 1 and (5.7) yields

/ |un|PTdz — 0 asn — oco. (5.8)
Q
Taking e € (0, %), we get

lunl? = / (@t Ytind + (1)t + 0(1)

IN

eHunHQ—I—Ce/ P e + T (un)un +o(1).  (5.9)
Q
Combining (5.8) with (5.9) yields lim, 0 ||un|| = 0, which implies lim,, o

J(uy) = 0. This violates limy,_,o J(un) = B and therefore (5.6) must hold.
Pick g, € G such that

€
/T [t (2 4 gp) [P dx > 51 (5.10)
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Let wy,(x) = un(z + gn). It is easy to check that {w,} is a (PS)s sequence. By
Lemma 3, there exist a @ € E and a subsequence {wy,, } such that
Wy, — @ in LPTH(T) (5.11)
and
J' (@) = 0. (5.12)
By (5.10) and (5.11), we know @ # 0. This together with (5.12) and Proposition

3 shows that @ is a positive solution of (0.1).

Remark 5 (a) In the proof of Theorem 5, we may take {u,} to be a (PS)s
sequence so that @ is a positive solution of (0.1) with J(@) = §(Q2)

(b) If (f4) is satisfied then by Proposition 5 there is a positive solution @ of (0.1)
with J(u) = B(Q).

Lemma 7 If the hypotheses of Theorem 5 and (f}) are satisfied, then for all k,
B() = B(2). (5.13)

Proof. Consider G = Z and let T' be defined as in (5.5). Let Qx = U);>4T; and
£ € C>®(Q) such that {(x) =1ifz e | T;and {(x) =0ifxz € |J T;. Let

i>k+1 i<k
u(z) be a positive solution of (0.1) with J(u) = 8(£2). By direct computation
lim max J(tuy) = 6(Q), (5.14)

m—00 te[0,00)
where U, (z) = &(z)u(xz—m). Since tlim I (tum,) = —o0, (5.14) implies B(2) <
—00

B(€). This together with Corollary 3 yields (5.13).

The proof of the case G # Z is similar. We omit it.

As to use comparison arguments in what follows, we sometime replace 3(€)
by Bk (2) to distinguish £ (Q) from G, (Q2) when two sets Q and  are involved.
Also, 0 (€2) will be used in the same vein.

In the next two examples, it is assumed that a(x) and f(z,y) satisfy (5.3),
(5.4) and (f4).

Example 3. Consider Q = D | B, where DUB # D, D satisfies the hypothesis
of Theorem 5 and B is a bounded set. By Corollary 5 and Remark 5(b),

B(Q) < B(D) (5.15)
Moreover, it follows from Lemma 7 that
B(D) = Br(D). (5.16)
Since B is bounded, if k is large enough then
k() = Br(2) = Br(D). (5.17)

Putting (5.15)-(5.17) together yields 8(2) < d5(£2). Hence there is a positive
solution of (0.1).
As a matter of fact, Example 3 is a special case of the following result.
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Theorem 6 Let Q =Dy UDy, J1 and Jo be the restmctzons of J to VVO1 2gD1
and Wy(Dy) respectively. Suppose there exist uy € Wy'>(D1) and uy € W3(
such that J{(u1) = 0,J1(u1) = B(D1) and J3(u2) = 0, J2(u2) = B(D2). If (f4)
is satisfied and D1 N Dy NSy = ¢ for some k € N, then there is a positive
solution u of (0,1).

Ds)

Proof. By Corollary 5, we get 3(2) < min(3(D1),3(D2)). Since Dy N Dy N
Sk = ¢, it follows that B(Qx) = min(8(D1 N Q), B(D2 N Qy)), where we define
B(¢) = +oo. Thus 6() = B(Q) > min(8(D1), B(D2)) > B(Q), from which we
know there is a positive solution of (0.1).

Example 4. Let D satisfy the hypothesis of Theorem 5 and B be a bounded
set. If DNB # ¢ and Q = D\ B then there is no positive solution u of (0.1) such
that J(u) = B(2). To see this, we argue indirectly. Suppose there is a positive
solution of (0.1) with J(u) = 5(Q), it follows from Corollary 5 that

B(2) > () = B(D). (5.18)

Since, for large k, 0, (Q) = Br(D) = B(D), applying Corollary 3 yields 8(Q2) <
Br(Q2) = B(D), which contradicts (5.18).

As illustrated in the above examples, Proposition 5 had been applied as a
convenient way to obtain an optimal lower bound for dy, if (f4) is satisfied. We
next consider an example of (0.1) where (f4) will not be assumed. Let

ullo = </Q(|Vu|2—|—u2)dm> 1/2. (5.19)

By (0.3)
Julle < aqllul, (5.20)

where a4 = max(1, \/%—2) For fixed p € (1, §£2), define

o(Q) = mf lelle

UGWO 2(@) HUHLP+1(Q)
uZ0

(5.21)

It is known that if [|u||q = o(2) and ||@||fr+1(q) = 1 then u = (O’(Q))%hﬂ is a
positive solution of

Au—u+uPlu=0 =z€Q. (5.22)

Indeed, (5.22) is a special case of (0.1) and in this case it is not difficult to show
that

1 1

80) = (5 - 737 ) (o(@)re/eD, (5.23)
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Example 5. Let B, = {z||z| < k} and By be the mountain pass minimax
value of J on the subspace Wy?(By, N Q) of E. As in (0.5) there is a Co > 0
such that a

fa,y)y < ° + Colyl”™ (5.24)

Since 8 < (o, by corollary 1, we know (0, 5] N A(Q) = ¢ if
Jp(w)yw > Z||w||i for all w € Ey, with ||w|x < d, (5.25)

where d = [2(A + 2)(Bo + 1)A71]Y/2. Let a4 be as in (5.20) and o = o(RY). By
(5.23)

o(Q) > o. (5.26)
This together with (5.25), (5.21) and (5.20) implies that
1 1 [w]lo, "
J(w)w > —wQ—C/ wPTde > = |lw C< 2
g > gl Co [ Pt > St - c (i
1 aq p+1 =
= —Co | =~ Nlw)? % 5.27
> [2 (o) Il (5.27)
Thus (5.25) holds if
2(A+2 =]
o(Qk) > ay [4(}0 <—( i )A(/6°+ )> ] . (5.28)
Using the Holder inequality and the Sobolev inequality yields
llullg, IVull72q,) + ||U||2Lz(9k)
2 = 2
]2y el Z g sl o
Vu a
> o1+ 7H |20, (5.29)
Tl

if u € WOI’Q(Qk), where ¢ = (1% — (N2—_2)> € (0,1) and Cy is a constant

depending on N only. Define

Vu|?
A(Q) = inf w& (5.30)
wew 2 () ||u||L2(Qk)
e
Then (5.29) and (5.21) imply that
o(Q) > CED2[1 4 Ay ()72 (5.31)

If A1 () is large enough, then (5.28) holds and thus there is a positive solution
of (0.1).

In some situations, the following proposition can be used to estimate A; ().
We refer to [Es| for a proof of Proposition 7.



EJDE-1999/17 Chao-Nien Chen & Shyuh-yaur Tzeng 19

Proposition 7 Let w be a bounded open set in RV"1 and T = w x R. If
u e Wy2(T) then
IVullZary = M(@)llullzec).- (5.32)

If Q C T, it follows from (5.23) that o(Q) > o(7). This together with
(5.29) and (5.32) shows that

o() > CED2[1 4 Ay (w))9/2. (5.33)

Thus

Bl

o1y T
Mlw) > (400 (2(/\ + 2)}\([30 + 1)> ) a4C](\?_1)/2 1

is a sufficient condition which ensures the existence of positive solution of (0.1).

Remark 6 Inequality (5.83) still holds if Qo contains several connected com-
ponents and each component is contained in a cylinder like T .

We now back to Example 1 where @ # R™ and §(2) = S(R™). In this case
there is no positive solution w of (0.1) with J(u) = 8. An interesting question is
whether there exists a positive solution u of (0.1) with J(u) > (. This question
seems to be quite challenging and hard to give a complete answer. Our aim in
the next example is to use a different minimax approach from (0.9) to obtain a
positive solution w of (0.1) with J(u) > .

Example 6. For simplicity in presentation, we consider the case where a
and f do not depend on z. Also, slightly stronger conditions on f will be
imposed. In addition to (f4), f € C?! is replaced by yf'(y) € C! in (fl),
A+ 2)F(z,y) < f(z,y)y is replaced by (A + 1)f(y) < yf'(y) in (£3), and
[ f' ()] < as(1+ [ylP~1) is added in (£2).

Let @ = Q- UOUQT, where O C {z||z — zo|oc < 3r} for some r > 0 and
zo € RY. Without loss of generality, we may assume that o = 0. Suppose that
Ot C [3r,00) x R¥~! and Q= C (—o0,3r] x R¥~1. Moreover, it is assumed
that for any j € N, there exist {; € Q= and n; € QT such that B;(¢;) C Q
and B;(n;) C QF, where B;(z) = {z||z — 2| < j}. Thus 8(Q) = B(RY) and by
Corollary 5 there is no positive solution u of (0.1) with J(u) = 8.

For k > 3r, let Qf = ((k,00) x RN"1)NQ and Q, = ((—o0, —k) xRV -1)NQ.
Let B = Wy (Q)), By, = Wy*(Q) and

S = {ulu € E\{0} and J'(u)u = 0}.

For any m; > 0, there exist z; € E,j NS and z_ € E,° NS such that
max(J(z4),J(2-)) < B+ m. Set 'y = {y € C([0,1],5)|y(0) = z— and (1) =
z4+} and

= inf 0)). 34
o= inf max J(v(0)) (5.34)
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We are going to show that there exists a (PS), sequence with o > (3, pro-
vided that z; and z_ are suitably chosen. Furthermore, we have the following
existence result.

Theorem 7 Assume that (f1)-(f4) are satisfied. If o ¢ A(Q) for some k > 0
then there is a positive solution u of (0.1) and J(u) > 3.

Remark 7 (a) Suppose up to translation there is a unique positive solution of
Av — v+ f(v) = 0 in WH2(RY). Then there is a positive solution u of (0.1)
with J(u) = o if o < 2.

(b) We refer to [CL,K] for some uniqueness results of positive solutions of Av—
v+ f(v) =0 in WHE(RY).

86 Proof of Theorem 7

To prove Theorem 7, we obtain a Palais-Smale sequence by using (5.34).
Proposition 8 There exists a (PS). sequence, where a > 3.
We proceed to prove Proposition 8 step by step as in a series of technical
lemmas. Let
I* = {u e S|J(u) < a}. (6.1)

Lemma 8 For any a > 0, I is a bounded set in E.
The proof of Lemma 8 is simlar to that of Lemma 1. We omit it.

Lemma 9 If {uy,} C S and W}l_{noo J(um) = B then W}l_{noo J (um) = 0.
Proof. It follows from Ekeland’s variational principle [E,S].
Lemma 10 There is an A1 > 0 such that if u € S then
Jul| = As. (6.2)

Proof. By (f1) and (f2) there is a Cp > 0 such that

a
Fy < 5y* + Colyl™! (6.3)

for all y € R. If u € S then u # 0 and
1
0=J(wpuz [Vl + §u? = Colul* o > 3 [ul ~Ca [ul*,
by making use of the Sobolev inequality. Thus (6.2) follows by letting A; =

(205)771.
For p > 0, let O, = ([-p, p] x RN"1) N Q.
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Lemma 11 For any As > 0, there is a mo = ma(Aa) such that if u € S and
J(u) < B+ ma, then

/ (W2 + [ufP*)dz < As. (6.4)
O3,

Proof. Suppose the assertion of the lemma is false. Then there exist a by > 0
and a sequence {u,,} C S such that lim,, o J(um) = 8 and

/ (2, + [P+ )z > b. (6.5)
O3

By Lemma 9, {u,,} is a (PS)g sequence. Hence along a subsequence

Um — % weakly in E and strongly in Lfotl (6.6)

for some @ € E with J'(@) = 0. Since (6.5) shows @ # 0, it follows that
J(a) = p. (6.7)
This is absurd since there is no v € S with J(u) = 3.

Lemma 12 For any As > 0, there is a w3 = w3(As) such that if u € S and
J(u) < B+ w3, then

/ (|Vu|? + au?)dz < As. (6.8)
Oar

Proof. Let ¢; be a C*°-function which satisfies 0 < ¢ < 1, |V¢| < %, p1=1
on O, and ¢1 = 0 on Q\Os,.. Observe that

/ (|Vul? + au?)dx < #1(|Vul® + au?)dz
Oa Osr

< /O (V6| [Vl [u] + F () by + | (w)hy
2

2l </ Wdr)V? 4 Oy [ 4 uPY)de + T ()l
r O3, O3,

IA

By Lemma 8, IP+73 is bounded in E. If 3 < 7o (A2) and Aj is sufficiently small
then (6.8) follows from Lemma 9 and Lemma 11.

Let ¢ be a C*°-function which satisfies 0 < ¢ < 1, |[Vp| < %, ¢ =0on O,
and ¢ = 1 on Q\Og,. For u € S, if {z|p(x)u(x) > 0} has positive measure, then

there is a unique 7 = 7(pu) such that Tou € S. (6.9)

Lemma 13 For any A4 € (0, g), there is a mqy = m4(Aq) > 0 such that if u € S
and J(u) < B+ w4 then J(Tou) < B+ Ay.
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Proof. Given py > 0. It follows from Lemma 8 and Lemma 12 that
| [ (VG + atewids = [ (Val? + au)ia
< [a-@0Vul + ayis
+ /Q(|V<p|2u2 + 2¢u|Vp - Vul)dz < % (6.10)

if my < m3(As) and As is sufficiently small. Similarly, invoking Lemma 11 yields

Po
|/Qf(u)udx—/ﬂf(gou)<pudx| < 5 (6.11)

and

| /Q Flu)dz — /Q Flpu)da] < 2 (6.12)

if my < ma(A2) and A, is sufficiently small. Putting (6.10)-(6.12) together gives
[J(pu) — J(u)| < po and |J'(pu) - pu| < pg. By Lemma 10

A2 < /(|Vu|2 + au?)dz. (6.13)
Q

This together with (6.8) shows that {z|p(z)u(z) > 0} has positive measure if
Ajs is sufficiently small. Then 7¢u € S implies that

L9 Ge0P + aton? - L2200 - 2 rrowron—o,

which leads to

[ 1#turen - feweu,,
Q T

T

[ stewpu- freweu )

|7 (pu)oul < po .
Therefore by (£3)

me < po. (6.14)

1-7) [ feweuds < [ |f(pu)pu -
Q Q
Since (6.11) and (6.13) imply [, f(¢u)pudz > A3 — 1p, it follows from (6.14)
that [1 — 74| < po(A% — 1po)~*. Hence there is a Cy > 0 such that |J(T¢u) —
J(pu)| < C4|7 —1|. This completes the proof, since py can be chosen arbitrarily
small and C} is independent of pg.

Lemma 14 The function T, defined in (6.9), is continuous on E\{0}.
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Proof. Suppose u # 0 and lim ||uy, —ul =0. Let 7 = 7(u), vy = Ty, and
m—r oo

v = Tu. Set T, = 7(vy). It suffices to show that

W}l_r}loo Tm = 1. (6.15)
By (£3)
I1— Tr)\nH fQ f (@, vm)vmdz] < | fg[f(QC:Um)Um - %f(mﬁmvm)vmuﬂ
= [J (vm)Um — 2= I (TimVUm ) TimVm| = o(1). (6.16)

Moreover,

/Qf(a:,vm)vmda: = /Qf(a:,v)vdx—ko(l)

/[|Vv|2 + av?]dz + o(1). (6.17)
Q
Combining (6.16) with (6.17) yields (6.15).

Proposition 9. Let 74 = m(%) be the number defined in Lemma 13. Choose
zy € Bf NS and z_ € E; NS such that max(J(z4), J(2-)) < B+ Zt. If o is
the minimax value defined by (5.34), then a > 8 + m4.

Proof. Suppose a < 3+ m4. Then there is a v9 € I'; such that

pmax J (70(0)) < B+ T4 (6.18)

Let ¢ and 7 be defined as in (6.9) and v(0) = 7(¢70(8))¢y0(0) . It follows from
Lemma 13 and Lemma 14 that v € I'; and

3
erg[%,)i] J(v(0)) < B+ Ay < iﬂ' (6.19)
By the definition of ¢,
7(6) = 7+(6) +7-(0), (6.20)

where 74 (0) € E;f and v_(0) € E,”. We claim that
there is a 6y € (0,1) such that y_(6p) € S and v4+(0y) € S. (6.21)
Assuming (6.21) for now, we obtain
J(v(60)) = J(7+(60)) + J(v-(60)) > B+ B = 25,

which contradicts (6.19).

It remains to show (6.21) to complete the proof. Since v4(0) = 0 and
v+(1) = z4, there is a 0; € (0, 1) such that J'(v4(01))y+(01) > 0. This together
with v(61) € S implies that J'((y-(61))v-(61) < 0. Let

6 = sup{6]J'(v—(0))y—(0) < 0 or v_(#) € S}. (6.22)
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Since v—(0) = z_ and y_(1) = 0, it follows that 8, € (0, 1). Using the continuity
of J' and v_ gives J'(y-(02))y-(f2) = 0. Since v(f2) € S, it follows that
J'(74(62))74(02) = 0.

To complete the proof of (6.21), we need to show that y_(62) # 0 and
v+(02) # 0. We argue indirectly. If v_(f2) = 0, then either v_(8) = 0 for
all 8 € (62,1) or there is a 03 € (02,1) such that J'(y_(03))y—(f3) > 0. This
contradicts (6.22). Suppose v4(62) = 0. Then there is a 84 € (62, 1) such that
J' (74 (04))v+(04) > 0. This together with vy(6,) € S yields J'(v—(04))y-(64) <
0, which again violates (6.22). Thus the proof is complete.

To apply minimax methods like (5.34), we need to use deformation theory.
We start with the following proposition to establish a deformation theorem on

S.

Proposition 10 S is a CY! Banach manifold.

Proof. Let G(u) = J'(u)u. It is easy to check that G is a C*! mapping from
EtoR. If u e S then

G'(upu = /Q ) — f(wyu?)de

IN

—)\/Q fw)ude = —/\/Q(|Vu|2 + au?)dz < 0.

By the Riesz Representation Theorem, there is a unique g, € E\{0} such that
G (u)p = (gu, @) for all ¢ € E. Define I(u) = {¢p|¢ € E and (gy,¢) = 0}. Then
E =span{g,}®3(u). Let P(u) = ||gull"2(gu, u)gu and Py (u) = u— P;(u). Since
lim 0 571 [G(u) = G(Py(u) + s[| Py (w) |71 Pr(w), Pa(u))] = =G'(w)[lgul =" gu < 0,

by Implicit Function Theorem there is a neighborhood N,, of Py(u) and a C'1+!
mapping A, : N, N (u) —span{g,} such that G(h,(1),) = 0 for all ¢ €
Ny, N S(u). Let Ny = {(ha(¥),¥)[¢p € N, N S(u)}. Clearly N, is an open set
in S. Let ®, be the projection of N, to &(u). Then ®, is one to one and
®,(N,) = N, N S(u). Tt is easy to check that {(N,, ®,)|u € S} is a Cb! atlas
of S. So § is a C1'! Banach manifold.

Let T3,(S) be the tangent space of S at u. It is easy to check that T, (S) =

S(u). Define T'(S) = U T.(S). As a standard result in differential geometry,
u€sS
T(S) is a C%! Banach manifold.
For u € S, let 0J(u) denote the differential of J at u. Set

10 (u)]|s = sup{|0J (u)¢|¢ € Tu(S) and [lp]| <1} (6.23)

and S = S\K, where K = {u|u € S and [|0.J(u)||s = 0}. For u € S, an element
X, in T, (S) is called a pseudo-gradient vector of J at w on S if

[ Xull <28 (w)lls (6.24)

and
0J(u) Xy > [|0J (u)]|?. (6.25)
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Amap X : S — T'(S) is called a pseudo-gradient vector field on Sif X is locally
Lipschitz continuous and X (u) is a pseudo-gradient vector for J for all u € S.

Proposition 11 There exists a pseudo-gradient vector field X on S.

Proof. For each u € S, there is a w € T,(S) such that ||w| = 1 and 8J (u)w >
210J(u)]|s. Then v = 2|8 (u)||sw is a pseudo-gradient vector for J at u on S
with strict inequality in (6.24) and (6.25). The continuity of J’ then shows v is
a pseudo-gradient vector for all z € O, NS, where O, is an open neighborhood
of u. As a subset of E, S is a metric space. By a theorem of A. H. Stone [D],
S is paracompact. Thus {O,|u € S} is an open covering of S and it possesses
a locally finite refinement. Then the same lines of reasoning as the proof of
Lemma A.2 of [R1] completes the proof.

Lemma 15 For any As > 0, there is a w5 = m5(A4s) such that if u € S and
[ull < As then ||J'(u)|| < m5(|0J (u)]s.

Proof. For ¢ € E and ||¢|| < 1, invoking the Hélder inequality and the Sobolev
inequality yields

g d)| = | /Q 2Vu- Vo + 2aué — f'(uyud — f(u)d)de
< 2(1+ C5)lull ] + Cs / | dz

<21+ K)lullllg] <201+ K)4s,

where K = K (As). Since (gy,u) < —Alu||?> < —AA2, it follows that

@ = sup [ ()| = |7 @) — Ty
lgl<1 (Gu,u)
B (90 8) 21+ R)A
= 10aw6 ~ 20 < (ol + 22 o)

Corollary 6 If {u,} C S, J(um) — ¢ and ||0J(um)||s = 0 as m — oo, then
{um} is a (PS). sequence.

Proof. It follows directly from Lemma 8 and Lemma 15.
Now, we use deformation theory to complete the proof of Proposition 8.

Completion of proof of Proposition 8. Suppose there does not exist a
(PS)a sequence. Then by Lemma 15 there exist positive numbers b and € such
that [|0J(u)||s > b for all u € I**8\I* ¢, We may assume without loss of

generality that b < 1 and
.1 4
“(a—pB -1y 2
e<sla—p-"2) (6.26)

band J(u) < 32}, where m5 = 75(As5) was defined in Lemma 15 and A5 =

Let Y1 = {u € S|||0J(u)]|s < ﬁ and J(u) < 3¢} and Yz = {u € S|[|0J ()]s >



26 Palais-Smale sequences EJDE-1999/17

322N+ 2)A Y2 Set V3 = {u € S||J'(v)]| < % and J(u) < 32}, Vi ={u €
S| (w)|| > b and J(u) < 3¢} and A = inf{|ju — v||u € Y3 and v € Y;}. It is
clear that inf{||u — v|||u € Y1 and v € Y2} > A > 0. Choose € € (0,¢€1), where

. b
€1 = min(é, 5 Z) (6.27)

Define I, = {u € S|J(u) > a} and let Y5 = I*¢(JIp1c and Y5 = {u €
Slao—e < J(u) < a+e}. Forue S, set g1(u) = % and g2(u) =

%. Let X (u) be a pseudo-gradient vector field for J on S and

W (u) = —g1(w)g2(w)h([| X (w)[) X (u), (6.28)
where h(s) = 1if s € [0,1] and h(s) = L if s > 1.
Consider the Cauchy problem:

dn _

i W(n), n(0,u)=u. (6.29)

The basic existence-uniqueness theorem for ordinary differential equations im-
plies that, for each u € S, (6.29) has a unique solution n(¢,u) which is defined
for ¢ in a maximal interval [0,T(u)). Moreover, since |[W(u)|| < 1 and S is a
closed subset of E, an argument analogous to the proof of Theorem A.4 of [R1]
shows that T'(u) = 4+o00. Since

%J(n(t, ) = =8J (n(t, w))g1(n(t, w))ga(nt, w))h((| X (n(t, w))[) X (¢, u),

it follows from (6.25) that I(n(t,)) is a non-increasing function of t. Hence
n(1,1°7¢) c I*~. (6.30)

We claim
n(1,Ys) C I (6.31)

Indeed, if there is u € Yg such that n(1,u) ¢ To=¢ then, for all t € [0, 1],
n(t,u) € Ys. Consequently gi(n(t,u)) = 1 and go(n(t,u)) = 1. If for some
€ (0,1), | X(n(t, )| < 1, then h(|X (n(t, w))]) = 1 and

L 3n(t,0)) < 9 (n(t, )2 < b (632

On the other hand, if for some ¢t € (0, 1), || X (n(¢,u))|| > 1, then

—[107 (n(t, w) 121X (n(t, w)) |~

1 b
< —sloImewl, < -3, (6.33)

St w)

IA

N
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by making use of (6.24). Since 7(t,u) € Ys for all t € [0, 1], it follows from (6.32)
and (6.33) that
2 > yu)) = J(n(L, u))

J(n(0
1 d dt > . b b2 4
—/0 EJ(n(t,u)) t > mln(i, ). (6.34)

Since (6.34) is contrary to (6.27), we conclude that (6.31) must hold. Combining
(6.30) with (6.31), we have

n(1,I°F€) c Io7¢. (6.35)

By (5.34) there is a v € I'; such that maxge,1) J(7(0)) < a +e Let
71(0) = n(1,~(0)). It follows from (6.35) that

< a-—ce. .
Jnax, J(v(0)) <a—e (6.36)

Since g1(u) = 0 if u € I*~¢, it follows from (6.28) and (6.29) that n(1,u) =
w if u € I ¢. In particular, max(J(z.),J(z_)) < 8 + 7 implies v1(0) =
v(0),71(1) = (1) and consequently 1 € I'y1. But then (6.36) is contrary to
(5.34). The proof is complete.

We are now ready to prove Theorem 7.

Proof of Theorem 7. By Proposition 8 there is a (PS), sequence with o > 3.
Then we may proceed with the same lines of reasoning as in the proof of Theorem
2 to obtain a positive function v € E with J'(u) = 0 and a > J(u) > .
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