VARIATIONS ON THE FOUR-POST TOWER OF HANOI PUZZLE

THESIS

Presented to the Graduate Council of Southwest Texas State University
in Partial Fulfillment of the Requirements

For the Degree of

Master of SCIENCE

By

Steven Greenstein, B.S.

San Marcos, Texas

August 2003

COPYRIGHT

by

Steven Greenstein

2003

Dedicated to my father and the memory of my mother

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Jian Shen, for his confidence in my ability when he first awarded me the research assistantship from which this project evolved. It was because of his encouragement that I have had such an incredible and meaningful experience. I, too, wish to thank him for his generous help and valuable suggestions. I would also like each of the other members of my thesis committee for their valuable comments and suggestions, all of which have made this a better thesis: I wish to thank Dr. Eugene Curtin for his frequent assistance with programming in Mathematica. Without his assistance this project would not have been as fruitful nor would I have learned so much. And thank you, also, to Dr. Xingde Jia for similarly helpful assistance with $I_{A T E X}$. I am so grateful for every one of his comments, each of which has made this thesis clearer and stronger.

I wish to thank my partner, Shana, for encouragement and understanding as I relentlessly pursued the kind of educational experience I always wanted.

This manuscript was submitted on May 6, 2003.
Page
LIST OF FIGURES vii
Chapter
I. INTRODUCTION 1
II. THREE-IN-A-ROW PUZZLE 5
III. FOUR-IN-A-ROW PUZZLE 9
IV. FOUR-POST CYCLIC PUZZLE 15
APPENDIX A 31
APPENDIX B 34
BIBLIOGRAPHY 36

LIST OF FIGURES

Page

1. The 4 -post cyclic and 4 -in-a-row puzzles 2
2. Scorer, Grundy, and Smith's 'Two-step, 3-in-a-row algorithm' 6
3. One-step, 3-in-a-row algorithm 7
4. Stockmeyer's 'Four-in-a-row' algorithm 10
5. 4-in-a-row algorithm 12
6. Scorer, Grundy, and Smith's 'Four-post cyclic' algorithm 16
7. Phase 1: Splitting the tower 17
8. Phase 2: Simultaneous transport of towers one step 19
9. Phase 2: Simultaneous transport of towers two steps 20
10. Phase 2: Simultaneous transport of towers three steps 23

VARIATIONS OF THE FOUR-POST TOWER OF HANOI PUZZLE

by
STEVEN GREENSTEIN, B.S.
Southwest Texas State University

June 2003

SUPERVISING PROFESSOR: JIAN SHEN

The Tower of Hanoi puzzle consists of three posts and a set of n, typically eight, pierced disks of differing diameters that can be stacked on the posts. The tower is formed initially by stacking the disks onto one post in decreasing order of size from bottom to top. The challenge is to transport the tower to another post by moving the disks one at a time from one post to another, subject to the rule that no disk can ever be placed on top of a smaller disk. The disks may move from one post to any other without restriction. The objective of the puzzle is to complete the task of transporting the tower from one post to another in the minimum number of moves. This problem has been solved for a puzzle with three posts.

This thesis considers two variations of the classic Tower of Hanoi puzzle on four posts:

1. Four-in-a-row puzzle, in which the allowable moves are, in either direction, between posts A and B , posts B and C , posts C and D ; and
2. Four-post cyclic puzzle in which disks may only be moved clockwise along
a directed cycle, from post A to post B, from B to C, and from D to A.

We develop an algorithm for the four-in-a-row puzzle where the number of moves is of order $O\left(4.72881^{\sqrt{n}}\right)$ and an algorithm for the four-post cyclic puzzle where the number of moves is of order $O\left(2.34^{n}\right)$. Each of these results improves the best known results proposed by Stockmeyer in 1994 [8] and by Scorer, Grundy, and Smith in 1944 [7] where the minimum number of moves achieved by each of these algorithms is $O\left(3^{n}\right)$.

CHAPTER 1

INTRODUCTION

The Tower of Hanoi puzzle (sometimes referred to as the Tower of Brahma or the End of the World Puzzle) was invented in 1883 by Édouard Lucas. He was inspired by a legend that tells of a Hindu temple where the pyramid puzzle might have been used for the mental discipline of young priests. Legend says that at the beginning of time the priests in the temple were given a stack of 64 gold disks, each one a little smaller than the one beneath it. Their assignment was to transfer the 64 disks from one of the three posts to another, with one important proviso: a large disk could never be placed on top of a smaller one. The priests worked very efficiently, day and night. When they finished their work, the myth said, the temple would crumble into dust and the world would vanish [4]. Today the puzzle is best known in computer programming for demonstrating the power of recursion in problem solving [2].

The Tower consists of three posts and a set of n, typically eight, pierced disks of differing diameters that can be stacked on the posts. The tower is formed initially by stacking the disks onto one post in decreasing order of size from bottom to top. The challenge is to transport the tower to another post by moving the disks one at a time from one post to another, subject to the rule that no disk can ever be placed on top of a smaller disk.

Many variations of this puzzle have been proposed in which the set of allowable moves has been extended or restricted, the number of posts has changed, or some other aspect has been varied [8]. In this thesis, we study two versions of the puzzle that use four posts, rather than three: the cyclic puzzle and the four-in-a-row puzzle. [See Figure 1.]

We will begin by considering the classic 3-post puzzle mentioned and recall disks may move from any one post to any other on their way from post A to post C .

Figure 1: The 4-post cyclic and 4-in-a-row puzzles

With respect to this classic puzzle, it is well known that $2^{n}-1$ moves are necessary and sufficient to transport n disks two steps from post A , the starting point, to post C. In order to introduce the reader to the type of algorithms that appear in this thesis and to typical methods used to solve them, we demonstrate how this result was achieved.

The algorithm used to transport the tower of height n from post A to post C where disks may move one at a time and from any one post to any other on their way from post A to post C subject only to the typical constraint that no disk can ever be placed on top of a smaller disk is as follows:

Algorithm 1: Classic 3-post puzzle

1. Recursively transport the $n-1$ smallest disks from post A to post B (using
post C as an intermedzary post);
2. Move the largest dask from post A to post C in one move;
3. Recursively transport the $n-1$ smallest disks from post B to post C (using post A as an intermediary post).

In various algorithms throughout this thesis, we will use $f(n)$ to denote the number of moves required according to the current algorithm. The number of moves required by each step above is as follows:

- Step 1: $f(n-1)$,
- Step 2: 1,
- Step 3: $f(n-1)$.

So $f(n)=2 f(n-1)+1$ and $f(0)=0$.
With respect to this relation, we see by induction:

$$
\begin{aligned}
f(n) & =2 f(n-1)+1 \\
& =2^{2} f(n-2)+2+1 \\
& =2^{3} f(n-3)+2^{2}+2+1 \\
& =\cdots \\
& =2^{n} f(0)+2^{n-1}+2^{n-2}+\cdots+2^{0} \\
& =2^{n}-1
\end{aligned}
$$

Thus we have obtained the recurrence relation:

$$
f(n)=2 f(n-1)+1 \text { with } f(1)=1
$$

whose solution is

$$
f(n)=2^{n}-1
$$

Once we complete consideration of the three-post puzzle, we will move on to variations of the four-post puzzle, originally proposed by Henry Dudeney in his
book, The Canterbury Puzzles [1]. In order to entertain the pilgrims on their way to Canterbury, the Reve posed the problem of conveying a stack of cheeses of varying sizes from the first of four stools to the last, moving the cheeses one at a time from any stool to any other, without ever putting any cheese on top of a smaller one. Dudeney states without proof that the number of moves needed to convey a stack of size 8,10 , or 21 is 33,49 , or 321 , respectively [8]. We will consider such a four-post puzzle, one that we call the four-in-a-row puzzle, with the additional constraint that cheeses (or disks) may only move to the adjacent post(s).

We will complete our study of variations of the Hanoi puzzle by considering the variation of the four-post puzzle, one we call the four-post cyclic puzzle, where posts are arranged in a circle and disks may move counterclockwise, one post at a time.

In general, a puzzle with m posts and n disks is referred to as the multi-peg Tower of Hanoi puzzle. Most researchers believe that an algorithm proposed in 1941 by Frame and Stewart in American Mathematzcal Monthly [3] (generally referred to as Frame's Algorithm) is optimal [6]. Several references exist in which authors have tried to solve the multi-peg problem only to rediscover "Frame's Conjecture" and so today that conjecture is to be "presumed optimal" $[4,8]$. An outline of that algorithm is presented in Chapter 3 upon discussion of that puzzle.

CHAPTER 2

THREE-IN-A-ROW PUZZLE

A variation of the 3 -post puzzle proposed in 1944 by Scorer, Grundy, and Smith [7] restricts the movements of disks, in either direction, between posts A and B and post B and C. Moves are not allowed between posts A and C. We will refer to this algorithm as the "two-step 3 -in-a-row algorithm."

We illustrate Scorer, Grundy, and Smith's proposed algorithm and verify their result by generating a recurrence relation and solving it by induction. Again, this is the technique we will use throughout this thesis to develop closed formulas that describe the number of moves required by each algorithm.

Algorithm 2 : Scorer, Grundy, and Smith's Two-step, 3-in-a-row algorithm: (Also see Figure 2.)

First, we remark on the base case as follows: if $n=1$, this algorithm requires two steps. When describing subsequent algorithms, we will assume an analogous base case (for $n=1$ disk). Then we will assume, as we do here, that our algorithm describes the case for $n \geq 2$ disks.

1. Using the "two-step, three-ın-a-row algorithm", recursively transport the $n-1$ smallest disks from post A to post C, using all three posts;
2. Move the largest dask from post A to post B in one move;
3. Transport the $n-1$ smallest disks from post C to post A, using all three posts.
4. Move the largest dask from post B to post C in one move;
5. Transport the $n-1$ smallest disks from post A to post C, using all three posts.

Where $f(n)$ denotes the number of moves required according to the current algorithm, the number of moves required by each step above is as follows:

Figure 2: Scorer, Grundy, and Smith's 'Two-step, Three-in-a-row' algorithm.

- Step 1: $f(n-1)$,
- Step 2: 1,
- Step 3: $f(n-1)$,
- Step 4: 1,
- Step 5: $f(n-1)$.

$$
\left\{\begin{array}{l}
f(n)=3 f(n-1)+2 \\
f(1)=2
\end{array}\right.
$$

By induction, it is easily seen that $f(n)=3^{n}-1$.
Here we propose an algorithm for moving the tower of n disks one step from post A to post B:

Algorithm 3 : One-step, 3-in-a-row algorithm: (Also see Figure 3.)

1. Recursively transport the $n-1$ smallest dusks from post A to post C, using the two-step, 3-ın-a-row algorthm;
2. Move the largest disk from post A to post B in one move;
3. Transport the $n-1$ smallest disks from post C to post B, using all three posts.

Here is a diagram of our proposed algorithm for moving the tower one step from post A to post B. Indices indicate which disks are currently located on the indicated posts. Numbers embedded in arrows indicate which steps are being made. ' 1 ' is the smallest disk; n is the largest:

Figure 3: One-step, 3-in-a-row algorithm

The number of moves required by each step above is:

- Step 1: $3^{n-1}-1$,
- Step 2: 1,
- Step 3: $f(n-1)$.

Thus we have obtained the recurrence relation:

$$
\left\{\begin{array}{l}
f(n)=f(n-1)+3^{n-1} \\
f(1)=1
\end{array}\right.
$$

With respect to that relation, we see by induction:

$$
\begin{aligned}
f(n) & =f(n-1)+3^{n-1} \\
& =f(n-2)+3^{n-2}+3^{n-1} \\
& =f(n-3)+3^{n-3}+3^{n-2}+3^{n-1} \\
& =\cdots \\
& =f(1)+3^{1}+3^{2}+\cdots 3^{n-1} \\
& =1+3+3^{2}+\cdots+3^{n-1} \\
& =\frac{3^{n}-1}{2} .
\end{aligned}
$$

We will use this "one-step, three-in-a-row algorithm" later in a subsequent algorithm to move a tower of height n one step from post B to post C. Because this algorithm is designed to move the tower from post A to post B, we will justify here that moving the tower from post B to post C requires the same number of moves.

We move the tower from post B to post C as follows:

Algorithm 4 : One-step, 3-in-a-row algorithm (rev.)

1. Recursively transport the $n-1$ smallest disks from post B to post A, using the two-step, 3-ın-a-row algorithm;
2. Move the largest dusk from post B to post C in one move;
3. Transport the $n-1$ smallest dusks from post A to post C, using all three posts.

The number of moves required by each step above is:

- Step 1: $f(n-1)$,
- Step 2: 1,
- Step 3: $3^{n-1}-1$.

Thus we have obtained the recurrence relation

$$
\left\{\begin{array}{l}
f(n)=f(n-1)+3^{n-1} \\
f(1)=1
\end{array}\right.
$$

which matches the algorithm for moving the tower from post A to post B exactly.
Finally, we note that, on three posts, half the number of moves are required to transport n disks one step as it does to transport the same tower two steps.

CHAPTER 3

FOUR-IN-A-ROW PUZZLE

We will begin our study of the puzzle on four posts by first considering the history of that puzzle. We revisit "Frame's Conjecture" (1941) for solving the four-post puzzle in which disks may move from one post to any other as the tower is transported from their origin at post A to their destination at post D. Their algorithm is as follows:

Algorithm 5 : Frame's Conjecture

1. Recursively transport a stack consisting of $n-i$ smallest dusks from the first post to a temporary post, using all four posts in the process;
2. Transport the stack consisting of the i largest disks from the first post to the final post, using the standard three post algorithm and agnoring the post holding the smaller disks;
3. Recursvely transport the smallest $n-i$ dusks from the temporary post to the final post, again using all four posts in the process [3].
"In addition, [Frame and Stewart] proved that if n is equal to the k-th triangular number $t_{k}=\frac{k(k+1)}{2}$, then the optimizing choice for i is in fact $i=k$, while if $t_{k-1}<n<t_{k}$ then both $k-1$ and k are optimizing choices for i. Their proposed algorithm is in agreement with the partial solution of Dudeney" [8] given earlier and has been proven optimal [6]. Stockmeyer [8] has derived "a relatively simple exact closed form expression for the number ... of moves made by the Frame-Stewart algorithm." That expression is $O\left(\sqrt{n} 2^{\sqrt{2 n}}\right)$. Frame's conjecture remains open for a puzzle on $n \geq 5$ posts.

In an article published in 1944, Scorer, Grundy, and Smith [7] propose a four-post variation, called the "four-in-a-row puzzle," in which the allowable moves
are, in either direction, between posts A and B , posts B and C , posts C and D . This is the puzzle we consider in this chapter. Stockmeyer [8] proposes the following algorithm for moving the n disks from post A to post D , which he admits is "effective but not optimal":

Algorithm 6 : Stockmeyer's 'Four-in-a-row' Algorithm: (Also see Figure 4.)

1. Recursively transport the stack consisting of the $n-1$ smallest disks from posts A to post D, using all four posts on the process;
2. Move the largest disk from post A to post C, in two moves;
3. Transport the smallest $n-1$ dusks from D to post B using the 3-in-a-row algorithm, ignoring post A;
4. Move the largest disk from post C to post D;
5. Transport the smallest $n-1$ disks from post B to post D using the 3-ın-a-row algortthm, again zgnoring post A.

Figure 4: Stockmeyer's 'Four-in-a-row' algorithm.

The number of moves required by each step above is as follows:

- Step 1: $R(n-1)$,
- Step 2: 2,
- Step 3: $3^{n-1}-1$,
- Step 4: 1,
- Step 5: $3^{n-1}-1$.

Thus we obtain the recurrence relation:

$$
\left\{\begin{array}{l}
R(n)=R(n-1)+2 \cdot 3^{n-1}+1 \\
R(1)=3
\end{array}\right.
$$

whose solution, derived by induction, is

$$
R(n)=3^{n}+n-1
$$

We propose the following algorithm and show that the algorithm requires only $O\left(4.7288^{\sqrt{n}}\right)$ moves:

Algorithm 7 : 4-in-a-row algorithm: (Also see Figure 5.)

1. Recursively transport k disks from post A to post D using all four posts in the process;
2. Transport $n-k-1$ disks from post A to post C, using the two-step, 3-ın-a-row algorithm, zgnoring post D; [We will soon see why it is now important to be more specific about this 3-ın-a-row algorithm.]
3. Move the largest dusk from post A to post B in one move;
4. Transport ℓ disks from post C to post A, using the two-step, 3-ın-a-row algorathm, zgnoring post D;
5. Transport k disks from post D to post A, using all four posts in the process;
6. Transport $n-k-\ell-1$ disks "one step" from post C to post D using the one step, 3-ın-a-row algorıthm;
7. Move the largest dusk from post B to post C in one step;
8. Transport $n-k-\ell-1$ disks from post D to post B using the two-step, 3-ın-a-row algortthm;
9. Move the largest dusk from post C to post D in one step;
10. Transport $n-k-\ell-1$ disks from post B to post D using the two-step, 3-ın-a-row algorthm;
11. Transport $k+\ell$ dusks from post A to post D, using all four posts in the process.

Figure 5: 4-in-a-row algorithm

The number of moves required by each step above is as follows:

- Step 1: $f(k)$,
- Step 2: $3^{n-k-1}-1$,
- Step 3: 1,
- Step 4: $3^{\ell}-1$,
- Step 5: $f(k)$,
- Step 6: $\frac{1}{2}\left(3^{n-k-\ell-1}-1\right)$,
- Step 7: 1,
- Step 8: $3^{n-k-\ell-1}-1$,
- Step 9: 1,
- Step 10: $3^{n-k-\ell-1}-1$,
- Step 11: $f(k+\ell)$.

Thus we obtain the recurrence relation:

$$
\left\{\begin{array}{l}
f(n)=2 f(k)+f(k+\ell)+\frac{5}{2}\left(3^{n-k-\ell-1}-1\right)+3^{n-k-1}+3^{\ell}+1 \\
f(1)=3
\end{array}\right.
$$

For n from 1 to 6 , the number of moves required is $3,10,19,34,57$, and 88 , [2] and this algorithm matches those numbers of moves for best values of k and ℓ. However, because two variables k and ℓ are involved, this recurrence relation turns out to be very difficult to solve. So we reduce the algorithm to one that is more readily solved by setting $\ell=0$. This revised algorithm is still valid for all k with $1 \leq k \leq n-1$. So in order to minimize the number of moves for this revised algorithm, we choose k which minimizes the function $3 f(k)+\frac{7}{2} \cdot 3^{n-k-1}-\frac{1}{2}$. We obtain the recurrence relation:

$$
\begin{equation*}
f(n)=\min _{k}\left\{3 f(k)+\frac{7}{2} \cdot 3^{n-k-1}-\frac{1}{2}\right\} \tag{1}
\end{equation*}
$$

We use Mathematica ${ }^{1}$ to evaluate this relation for values of n, and k up to $n=5000$. We notice that $k=n-\lfloor\sqrt{2 n}+.5\rfloor$ can always minimize the above objective function.

[^0]Conjecture $1 f(n)=3 f(n-\lfloor\sqrt{2 n}+.5\rfloor)+\frac{7}{2}\left(3^{\lfloor\sqrt{2 n}+5\rfloor-1}-\frac{1}{2}\right.$ with $f(1)=3$

Although we cannot prove this conjecture, we can use induction to prove the following:

Theorem 1

For any sufficiently small $\varepsilon>0, f(n) \leq c \cdot(3+\varepsilon)^{\sqrt{2 n}}$, where $c=\frac{7(3+\varepsilon)}{6 \varepsilon}$.

Proof. Base Case: Since $f(1)=3$, Theorem 1 holds for $n=1$ and for all sufficiently small $\varepsilon>0$.

Now suppose $n \geq 2$. Set $k=n-\sqrt{2 n}$ and suppose $f(k) \leq c \cdot(3+\varepsilon)^{\sqrt{2 k}}$.
Note that $\sqrt{2(n-\sqrt{2 n})} \leq \sqrt{2\left(\sqrt{n}-\frac{\sqrt{2}}{2}\right)^{2}}=\sqrt{2}\left(\sqrt{n}-\frac{\sqrt{2}}{2}\right)=\sqrt{2 n}-1$.
By (1) above,

$$
\begin{aligned}
f(n) & \leq 3 f(k)+\frac{7}{2} \cdot 3^{n-k-1}-\frac{1}{2} \\
& \leq 3 c \cdot(3+\varepsilon)^{\sqrt{2(n-\sqrt{2 n})}}+\frac{7}{6} \cdot 3^{\sqrt{2 n}}-\frac{1}{2} \\
& \leq 3 c \cdot(3+\varepsilon)^{\sqrt{2 n}-1}+\frac{7}{6} \cdot 3^{\sqrt{2 n}}-\frac{1}{2} \\
& \leq c \cdot(3+\varepsilon)^{\sqrt{2 n}}+\frac{7}{6} \cdot 3^{\sqrt{2 n}}-\frac{\varepsilon}{3+\varepsilon} \cdot c \cdot(3+\varepsilon)^{\sqrt{2 n}} \\
& \leq c \cdot(3+\varepsilon)^{\sqrt{2 n}}+\frac{7}{6} \cdot 3^{\sqrt{2 n}}-\frac{\varepsilon}{3+\varepsilon} \cdot \frac{7(3+\varepsilon)}{6 \varepsilon} \cdot 3^{\sqrt{2 n}} \\
& =c \cdot(3+\varepsilon)^{\sqrt{2 n}}
\end{aligned}
$$

Since $3^{\sqrt{2}}<4.72881$, we have

$$
\begin{aligned}
f(n) & \leq \frac{7(3+\varepsilon)}{6 \epsilon} \cdot(3+\varepsilon)^{\sqrt{2 n}} \\
& =O\left((3+\varepsilon)^{\sqrt{2 n}}\right) \\
& =O\left(4.72881^{\sqrt{n}}\right)
\end{aligned}
$$

Finally, we note the order of this result, $4.72881^{\sqrt{n}}$, in comparison with the order of the proposed result, 3^{n}, proposed by Stockmeyer in 1994 [8].

CHAPTER 4

FOUR-POST CYCLIC PUZZLE

The 4-post cyclic puzzle, a variation of the four post puzzle, was proposed by Scorer, Grundy, and Smith [7]. The restrictions permit that disks may only be moved clockwise along a directed cycle, from post A to post B, from B to C, and from D to A . The authors propose the following algorithm to accomplish the task of transporting a tower of n disks (where 'disk 1 ' is the smallest and 'disk n ' is the largest) two steps along the cycle, say from post A to post C :

Algorithm 8 : Scorer, Grundy and Smith's 'Four-post cyclic' algorithm: (Also see Figure 6.)

1. Recursuvely transport the stack consisting of the $n-1$ smallest dusks from post A to post C;
2. Move the largest dask from post A to post B;
3. Transport the $n-1$ smallest disks from post C to post A;
4. Move the largest disk from post B to post C;
5. Transport the $n-1$ smallest disks from post A to post C.

Letting $N(n)$ denote the number of moves made by this algorithm for a stack of n disks, the number of moves required by each step above is as follows:

- Step 1: $N(n-1)$,
- Step 2: 1,
- Step 3: $N(n-1)$,
- Step 4: 1,

Figure 6: Scorer, Grundy and Smith's 'Four-post cyclic' algorithm

- Step 5: $N(n-1)$.

Thus we obtain the recurrence relation:

$$
\left\{\begin{array}{l}
N(n)=3 N(n-1)+2 \\
N(1)=2
\end{array}\right.
$$

which is equivalent to the "two-step, 3-in-a-row algorithm" whose solution was presented earlier [2] and is

$$
N(n)=3^{n}-1
$$

We propose a three-phase algorithm for moving the tower three steps from post A to post D. To transport the tower from post A to post C, as Scorer, Grundy, and Smith's algorithm does, simply apply this algorithm twice. Similarly, to transport the tower to post B, apply the algorithm three times. Our proposal is as follows:

- Phase 1: We split the tower of height $n=2 k$, for convenuence, ['dusk 1' is the smallest, 'disk $2 k$ ' is the largest] into two towers on two posts: odd-numbered dusks 1 through $2 k-1$, and even-numbered dusks 2 through $2 k$, to posts D and C, respectively. We wall call the tower of odd-numbered disks the "odd tower" and the tower of even-numbered dasks the "even tower."
- Phase 2: Sımultaneously, recursively transport the two towers.
- Phase 3: Reassemble the two towers onto post D.

We must note that this algorithm is designed to transport a tower consisting of an even number of disks. It is a small adjustment to alter the algorithm for an odd number of posts and for large values of n, this will not alter the O approximation for the minimum number of moves.

We accomplish Phase 1, the splitting of the towers, in the following way:

Algorithm 9 : Phase 1: Splitting the tower (Also see Figure 7.)

1. We leave disks n and $n-1$ on post A and spht the tower of height $n-2$ into two towers, one containing odd-numbered dasks and the other containing even-numbered dusks, each of height $\frac{n}{2}-1$ onto posts D and C, respectively;
2. Move the second largest dusk one step to post B;
3. Simultaneously, recursively transport the "even" and "odd" towers two steps, the "even" tower moving from post C to post A and the "odd" tower from post D to post B; [This algorithm is "Phase 2". It is described below.]
4. Simultaneously, recursively transport the "odd" and "even" towers, each of herght $\frac{n}{2}$, two steps, the "even" tower moving from post A to post C and the "odd" tower from post B to post D.

Figure 7: Phase 1: Splitting the tower

Where $g(n)$ indicates the number of moves required to split a tower of height n into two towers, each of height $\frac{n}{2}$, onto two posts, and where $f(n, i)$ indicates the
number of moves required to simultaneously transport two towers i steps, each of height $\frac{n}{2}$, the number of moves required by each step above is as follows:

- Step 1: $g(n-2)$,
- Step 2: 1,
- Step 3: $f\left(\frac{n}{2}-1,2\right)$,
- Step 4: 1,
- Step 5: $f\left(\frac{n}{2}, 2\right)$.

Thus we obtain the following recurrence relation:

$$
g(n) \leq g(n-2)+1+f\left(\frac{n}{2}-1,2\right)+f\left(\frac{n}{2}, 2\right)
$$

We will solve this relation following the summary of the three phases.
We accomplish Phase 3, the reassembling of the two towers, simply by reversing the algorithm in Phase 1. We accomplish Phase 2, the simultaneous transport of two towers, in the following way:

Algorithm 10 : Phase 2: Simultaneous transport of towers one step:

 (Also see Figure 8.)1. We leave disk $2 k$ on post C and dusk $2 k-1$ on post D and simultaneously, recursively transport the two towers three steps, odds to post C and evens to post B;
2. Move dusk $2 k-1$ one step from post D to the goal post at A;
3. Simultaneously transport the two towers three steps, odds to post B and evens to post A;
4. Move disk $2 k$ one step from post C to the goal post at D;

Figure 8: Phase 2: Simultaneous transport of towers one step
5. Simultaneously transport the two towers three steps, odds to their goal post at A and evens to thear goal post at D.

Where $f(k, i)$ indicates a simultaneous transport of two towers, each of height k, i steps, the number of moves required by each step above is as follows:

- Step 1: $f(k-1,3)$,
- Step 2: 1,
- Step 3: $f(k-1,3)$,
- Step 4: 1,
- Step 5: $f(k-1,3)$,

Thus we obtain the following recurrence relation:

$$
f(k, 1)=3 f(k-1,3)+2 .
$$

Algorithm 11 : Phase 2: Simultaneous transport of towers two steps: (Also see Figure 9.)

1. We leave dusk $2 k$ on post C and dusk $2 k-1$ on post D and simultaneously, recursively transport the two towers three steps, odds to post C and evens to post B;
2. Move dusk $2 k-1$ one step from post D to post A;
3. Simultaneously transport the two towers one step, odds to post D and evens to post C;
4. Move dısk $2 k-1$ one step from post A to the goal post at B;
5. Simultaneously transport the two towers two steps, odds to post B and evens to post A;
6. Move dusk $2 k$ one step from post C to post D;
7. Simultaneously transport the two towers one step, odds to post C and evens to post B;
8. Move dusk $2 k$ one step from post D to the goal post at A;
9. Simultaneously transport the two towers three steps, odds to their goal post at B and evens to their goal post at A.

Figure 9: Phase 2: Simultaneous transport of towers two steps

Where $f(k, i)$ indicates a simultaneous transport of two towers, each of height k, i steps, the number of moves required by each step above is as follows:

- Step 1: $f(k-1,3)$,
- Step 2: 1,
- Step 3: $f(k-1,1)$,
- Step 4: 1,
- Step 5: $f(k-1,2)$,
- Step 6: 1,
- Step 7: $f(k-1,1)$,
- Step 8: 1,
- Step 9: $f(k-1,3)$.

Thus we obtain the following recurrence relation:

$$
f(k, 2)=2 f(k-1,1)+f(k-1,2)+2 f(k-1,3)+4
$$

Algorithm 12 : Phase 2: Simultaneous transport of towers three steps:

 (Also see Figure 10.)1. We leave dusk $2 k$ on post C and dzsk $2 k-1$ on post D and sımultaneously, recursively transport the two towers three steps, odds to post C and evens to post B;
2. Move disk $2 k-1$ one step from post D to post A;
3. Simultaneously transport the two towers one step, odds to post D and evens to post C;
4. Move disk $2 k-1$ one step from post A to post B;
5. Simultaneously transport the two towers two steps, odds to post B and evens to post A;
6. Move dusk $2 k$ one step from post C to post D;
7. Simultaneously transport the two towers one step, odds to post C and evens to post B;
8. Move dusk $2 k$ one step from post D to post A;
9. Simultaneously transport the two towers two steps, odds to post A and evens to post D;
10. Move dısk $2 k-1$ one step from post B to ats goal post at C;
11. Simultaneously transport the two towers three steps, odds to post D and evens to post C;
12. Move disk $2 k$ one step from post A to its goal post at B;
13. Simultaneously transport the two towers three steps, odds to their goal post at C and evens to their goal post at B.

Where $f(k, i)$ indicates a simultaneous transport of two towers, each of height k, i steps, the number of moves required by each step above is as follows:

- Step 1: $f(k-1,3)$,
- Step 2: 1,
- Step 3: $f(k-1,1)$,
- Step 4: 1,
- Step 5: $f(k-1,2)$,
- Step 6: 1,
- Step 7: $f(k-1,1)$,

Figure 10: Phase 2: Simultaneous transport of towers three steps

- Step 8: 1,
- Step 9: $f(k-1,2)$,
- Stèp 10: 1 ,
- Step 11: $f(k-1,3)$,
- Step 12: 1,
- Step 13: $f(k-1,3)$.

Thus we obtain the following recurrence relation:

$$
f(k, 3)=2 f(k-1,1)+2 f(k-1,2)+3 f(k-1,3)+6
$$

In summary, where $f(k, i)$ indicates a simultaneous transport of two towers, each of height k, \imath steps, we obtain the recurrence relations:

$$
\begin{aligned}
& f(k, 1)=3 f(k-1,3)+2 \\
& f(k, 2)=2 f(k-1,1)+f(k-1,2)+2 f(k-1,3)+4 \\
& f(k, 3)=2 f(k-1,1)+2 f(k-1,2)+3 f(k-1,3)+6
\end{aligned}
$$

We endeavor to solve the system of recurrence relations with a matrix equation as follows:

$$
\left(\begin{array}{l}
f(k, 1) \\
f(k, 2) \\
f(k, 3)
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \cdot\left(\begin{array}{c}
f(k-1,1) \\
f(k-1,2) \\
f(k-1,3)
\end{array}\right)+\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)
$$

We simplify matters by finding a system that does not involve the constant matrix on the right as follows:

$$
\left(\begin{array}{c}
f(k, 1)+x \\
f(k, 2)+y \\
f(k, 3)+z
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \cdot\left(\begin{array}{c}
f(k-1,1)+x \\
f(k-1,2)+y \\
f(k-1,3)+z
\end{array}\right)
$$

We compute the values of x, y, and z. Computing x we get

$$
\begin{align*}
f(k, 1)+x & =3 f(k-1,1)+3 z \tag{2}\\
f(k, 1) & =3 f(k-1,1)+2 \tag{3}
\end{align*}
$$

We subtract (3) from (2) and hence

$$
x=3 z-2
$$

which implies

$$
x-3 z=-2
$$

Computing y we get

$$
\begin{align*}
f(k, 2) & =2 f(k-1,1)+f(k-1,2)+2 f(k-1,3)+4 \tag{4}\\
f(k, 2)+y & =2 f(k-1,1)+2 x+f(k-1,2)+y+2 f(k-1,3)+2 z \tag{5}
\end{align*}
$$

We subtract (4) from (5) and hence

$$
y=2 x+y+2 z-4
$$

which implies

$$
2 x+2 z=4
$$

Computing z we get

$$
\begin{align*}
f(k, 3) & =2 f(k-1,1)+2 f(k-1,2)+3 f(k-1,3)+6 \tag{6}\\
f(k, 3)+z & =2 f(k-1,1)+2 x+2 f(k-1,1)+2 y+3 f(k-1,3)+3 z \tag{7}
\end{align*}
$$

We subtract (6) from (7) and hence

$$
z=2 x+2 y+3 z-6
$$

which implies

$$
2 x+2 y+2 z=6
$$

We are left with the following system:

$$
\begin{cases}x-3 z & =-2 \\ 2 x+2 z & =4 \\ 2 x+2 y+2 z & =6\end{cases}
$$

whose solution is $(x, y, z)=(1,1,1)$.

We obtain the following modified system :

$$
\left(\begin{array}{c}
f(k, 1)+1 \\
f(k, 2)+1 \\
f(k, 3)+1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \cdot\left(\begin{array}{c}
f(k-1,1)+1 \\
f(k-1,2)+1 \\
f(k-1,3)+1
\end{array}\right)
$$

With respect to the 3×3 matrix above, call it A, we find a diagonal matrix D of eigenvalues λ_{1}, λ_{2}, and λ_{3} and a matrix X^{\prime} of corresponding eigenvectors Z , X , and Y that satisfies the equation $A X^{\prime}=\lambda X^{\prime}$. The eigenvalues λ_{1}, λ_{2}, and λ_{3} of A are given in the diagonal matrix

$$
\left(\begin{array}{ccc}
5.47783 & 0 & 0 \\
0 & -0.738917+0.741165 i & 0 \\
0 & 0 & -0.738917-0.741165 i
\end{array}\right)
$$

and the corresponding eigenvectors Z, X, and Y of A are given ${ }^{2}$ in the column matrix

$$
\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]=\left(\begin{array}{ccc}
0.547762 & -2.02383-2.02999 i & -2.02383+2.02999 i \\
0.691255 & 0.154373+2.40057 i & 0.154373-2.40057 i \\
1 & 1 & 1
\end{array}\right)
$$

We may express complex eigenvalues and eigenvectors in the following way: Write $X=x+\imath Y$ and $\lambda=a+b \imath$. Then

$$
\begin{aligned}
A x+A \imath Y & =A(x+\imath Y)=(a+b \imath)(x+\imath Y) \\
& =a x+a i Y+b \imath x-b Y \\
& =(a x-b Y)+\imath(a Y+b x)
\end{aligned}
$$

We identify the real parts as $A X=a x-b Y$ and the imaginary parts as $A Y=a Y+b x=a Y+b x$.

[^1]\[

$$
\begin{aligned}
A\left[\begin{array}{lll}
Z & X & Y
\end{array}\right] & =\left[\begin{array}{lll}
A Z & A X & A Y
\end{array}\right] \\
& =\left[\begin{array}{ccc}
A Z & (a x-b Y) & (a Y+b x)
\end{array}\right] \\
& =\left(\begin{array}{ccc}
3 & 3 & 0 \\
3.787 & -1.893 & -1.66 \\
5.478 & -0.739 & 0.741
\end{array}\right) \\
& =\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]\left(\begin{array}{ccc}
5.478 & 0 & 0 \\
0 & -0.739 & 0.741 \\
0 & -0.741 & 0.739
\end{array}\right)
\end{aligned}
$$
\]

Let D denote the matrix above on the right. Then

$$
A=\left[\begin{array}{lll}
Z & X & Y
\end{array}\right] \cdot D \cdot\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]^{-1}
$$

Thus

$$
A^{k-1}=\left[\begin{array}{lll}
Z & X & Y
\end{array}\right] \cdot D^{k-1} \cdot\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]^{-1}
$$

Now we factor out $\lambda_{1}=5.478$; then

$$
\begin{aligned}
D & =\lambda_{1} \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{-0739}{\lambda_{1}} & \frac{0741}{\lambda_{1}} \\
0 & \frac{-0741}{\lambda_{1}} & \frac{0739}{\lambda_{1}}
\end{array}\right) \\
D^{k-1} & =\lambda_{1}^{k-1} \cdot\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & N \\
0 & N
\end{array}\right)
\end{aligned}
$$

where

$$
N=\left(\begin{array}{cc}
\frac{-0739}{\lambda_{1}} & \frac{0741}{\lambda_{1}} \\
\frac{-0741}{\lambda_{1}} & \frac{0739}{\lambda_{1}}
\end{array}\right)^{k-1} \approx\left(\begin{array}{ll}
-.135 & -.135 \\
-.135 & -.135
\end{array}\right)^{k-1}
$$

So

$$
\left.D^{k-1} \approx \lambda_{1}^{k-1} \cdot\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & \left(\begin{array}{rr}
-.135 & -.135 \\
0 & -.135
\end{array}-.135\right.
\end{array}\right)^{k-1}\right)
$$

Then we have

$$
A^{k-1} \approx \lambda_{1}^{k-1} \cdot\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & \left(\begin{array}{cc}
-.135 & -.135 \\
-.135 & -.135
\end{array}\right)^{k-1}
\end{array}\right)\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]^{-1}
$$

As $k \rightarrow \infty$, the entries in the 3×3 matrix above become arbitrarily small. So we may represent that matrix as some constant matrix as follows:

$$
A^{k-1} \approx \lambda_{1}^{k-1} \cdot\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)\left[\begin{array}{lll}
Z & X & Y
\end{array}\right]^{-1}
$$

Since each of the matrices on the right is independent of k, we may represent their product as follows:

$$
A^{k-1} \approx \lambda_{1}^{k-1} \cdot\left(\begin{array}{ccc}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)
$$

Recall the system we endeavor to solve:

$$
\begin{aligned}
\left(\begin{array}{c}
f(k, 1)+1 \\
f(k, 2)+1 \\
f(k, 3)+1
\end{array}\right) & =A \cdot\left(\begin{array}{c}
f(k-1,1)+1 \\
f(k-1,2)+1 \\
f(k-1,3)+1
\end{array}\right) \\
& =A \cdot A \cdot\left(\begin{array}{c}
f(k-2,1)+1 \\
f(k-2,2)+1 \\
f(k-2,3)+1
\end{array}\right) \\
& \cdot \\
& \cdot \\
& =A^{k-1}\left(\begin{array}{l}
f(1,1)+1 \\
f(1,2)+1 \\
f(1,3)+1
\end{array}\right) \\
& =\lambda_{1}^{k-1} \cdot\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{13} \\
c_{21} & c_{22} \\
c_{23} \\
c_{31} & c_{32} \\
c_{33}
\end{array}\right)\left(\begin{array}{c}
f(1,1)+1 \\
f(1,2)+1 \\
f(1,3)+1
\end{array}\right) \\
& =\lambda_{1}^{k-1} \cdot\left[\begin{array}{ll}
c_{1^{\prime}} \\
c_{2^{\prime}} \\
c_{3^{\prime}}
\end{array}\right]
\end{aligned}
$$

Also recall that we chose $n=2 k$. Therefore

$$
\begin{aligned}
f(k, 1) & =\lambda_{1}^{k-1} \cdot c_{1^{\prime}} \\
& =\lambda_{1}^{\frac{n}{2}-1} \cdot c_{1^{\prime}} \\
& =\lambda_{1}^{\frac{n}{2}} \cdot c_{1^{\prime \prime}} \\
& =\left(\sqrt{\lambda_{1}}\right)^{n} \cdot c_{1}^{\prime \prime} \\
& =(\sqrt{5.478})^{n} \cdot c_{1}^{\prime \prime} \\
& \approx c_{1}^{\prime \prime} \cdot 2.34^{n}
\end{aligned}
$$

Finally, the number of moves required to complete Phase 2 is $O\left(2.34^{n}\right)$. And now we
will solve the system used in Phases 1 and 3. Recall the associated recurrence relation:

$$
\begin{array}{ll}
g(n) & \leq g(n-2)+1+f\left(\frac{n}{2}-1,2\right)+f\left(\frac{n}{2}, 2\right) \\
& \leq g(n-2)+1+c_{0} \cdot 2.34^{n}+c_{1} \cdot 2.34^{n} \\
& \leq g(n-2)+c_{2} \cdot 2.34^{n} \\
g(n-2) & \leq g(n-4)+c_{2} \cdot 2.34^{n-2} \\
g(n-4) & \leq g(n-6)+c_{2} \cdot 2.34^{n-4} \\
& \vdots \\
g(4) & \leq g(2)+c_{2} \cdot 2.34^{n-4}
\end{array}
$$

We sum these and get

$$
\begin{aligned}
g(n) & \leq g(2)+c_{2} \cdot\left[2.34^{n}+2.34^{n-2}+\cdots+2.34^{4}\right] \\
& \leq \frac{c 234^{n}}{1-\frac{1}{234}} \\
& \approx c^{\prime} \cdot 2.34^{n} .
\end{aligned}
$$

In summary, each of the three Phases of the algorithm requires on the order of $(2.34)^{n}$ moves. Thus, the number of moves required is of order 2.34^{n}. As we mentioned earlier, to transport the tower to post C instead of post D, apply the algorithm twice. To transport the tower to post B instead of post D, apply the algorithm three times. Thus, our estimate for the minimum number of moves is of the same order regardless of the tower's destination.

We compare the order of this result, 2.34^{n}, with that proposed in the article [7], 3^{n}.

Contained herem are the Mathematica calculations used in Chapter Four.

Matrix A is our coefficient matrix pertaining to the three recurrence relations we developed for use in each of the three Phases of our algorithm:

$$
\begin{aligned}
& \mathbf{A}=\text { MatrixForm }[\{\{0,0,3\},\{2,1,2\},\{2,2,3\}\}] \\
& \left(\begin{array}{lll}
0 & 0 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right), \\
& \mathbf{N}\left[\text { Eigensystem }\left[\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 3 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right)\right], 3\right] \\
& \{\{5.47783,-0.738917+0.741165 \text { i },-0.738917-0.741165 \text { i }\}, \\
& \quad\{\{0.547662,0.691255,1 .\},\{-2.02383-2.029991,0.154373+2.40057 \text { i }, 1 .\}, \\
& \quad\{-2.02383+2.02999 \mathrm{I}, 0.154373-2.400571,1 .\}\}\}
\end{aligned}
$$

Thrs 'Eigensystem' is a matrix consisting of A's etgenvalues and eigenvectors:

```
N[{evalues, evectors} = Eigensystem[A], 3]
{{5.47783,-0.738917+0.741165 \Perp, -0.738917-0.741165 1},
    {{0.547662, 0.691255,1.}, {-2.02383-2.02999 i, 0.154373 + 2.40057 i, 1.},
        {-2.02383+2.02999 i, 0.154373-2.40057 1, 1.}}}
```

Matrix \mathbf{d} is a diagonal matrix of eigenvalues:

```
d = N[DiagonalMatrix[evalues] // MatrixForm, 3]
( ccc
P= Transpose[evectors];
N[P, 3] // MatrixForm
```



```
N[Inverse[P], 3] // MatrixForm
```

$\left(\begin{array}{ccc}0.330524-1.01049 \times 10^{-17} \text { i } & 0.279501-8.54499 \times 10^{-18} \mathrm{I} & 0.625778-1.91315 \times 10^{-17} \mathrm{i} \\ -0.165262+0.0369605 \mathrm{i} & -0.13975-0.177029 \mathrm{i} & 0.187111+0.10213 \mathrm{I} \\ -0.165262-0.0369605 \mathrm{i} & -0.13975+0.177029 \mathrm{i} & 0.187111-0.10213 \mathrm{I}\end{array}\right)$

The following matrices are useful in solving the matrix equation we desired:

```
AZ = MatrixForm[{{0, 0, 3}, {2, 1, 2}, {2, 2, 3}}.{0.548, 0.691, 1}]
```

$$
\left(\begin{array}{c}
3 . \\
3.787 \\
5.478
\end{array}\right)
$$

ax = MatrixForm $[-0.739\{-2.024,0.154,1\}]$
$\left(\begin{array}{c}1.49574 \\ -0.113806 \\ -0.739\end{array}\right)$
aY = MatrixForm [-0.739\{-2.03, 2.401, 0\}]
$\left(\begin{array}{c}1.50017 \\ -1.77434 \\ 0\end{array}\right)$
bx = MatrixForm $[0.741\{-2.024,0.154,1\}]$
$\left(\begin{array}{c}-1.49978 \\ 0.114114 \\ 0.741\end{array}\right)$
$\mathrm{bY}=$ MatrixForm [0.741 \{-2.03, 2.401, 0\}]
$\left(\begin{array}{c}-1.50423 \\ 1.77914 \\ 0\end{array}\right)$
$a x-b Y:$

$$
\operatorname{MatrixForm}\left[\left(\begin{array}{c}
1.495736^{-} \\
-0.11380599999999999^{-} \\
-0.739^{\circ}
\end{array}\right)-\left(\begin{array}{c}
-1.5042299999999997^{\circ} \\
1.77914099999999999^{\circ} \\
0
\end{array}\right)\right]
$$

$$
\left(\begin{array}{c}
2.99997 \\
-1.89295 \\
-0.739
\end{array}\right)
$$

$a Y+b x:$
MatrixForm $\left[\left(\begin{array}{c}1.5001699999999998^{`} \\ -1.7743389999999999^{\wedge} \\ 0\end{array}\right)+\left(\begin{array}{c}-1.499784^{-} \\ 0.114114^{-} \\ 0.741^{`}\end{array}\right)\right]$
$\left(\begin{array}{c}0.000386 \\ -1.66022 \\ 0.741\end{array}\right)$

ZXY $=$ MatrixForm $\left[\operatorname{Transpose}\left[\left(\begin{array}{ccc}0.548^{`} & 0.691^{\wedge} & 1 \\ -2.024^{\wedge} & 0.154^{\wedge} & 1 \\ -2.03^{\wedge} & 2.401^{`} & 0\end{array}\right)\right]\right]$
$\left(\begin{array}{ccc}0.548 & -2.024 & -2.03 \\ 0.691 & 0.154 & 2.401 \\ 1 & 1 & 0\end{array}\right)$
$[Z X Y]^{-1}:$

```
\(N\left[\right.\) Inverse \(\left.\left[\left(\begin{array}{ccc}0.548^{\prime} & -2.024^{\prime} & -2.03^{\wedge} \\ 0.691^{\prime} & 0.154^{\wedge} & 2.401^{\prime} \\ 1 & 1 & 0\end{array}\right)\right], 3\right] / /\) MatrixForm
\(\left(\begin{array}{ccc}0.330467 & 0.279403 & 0.625837 \\ -0.330467 & -0.279403 & 0.374163 \\ -0.0739111 & 0.354003 & -0.204113\end{array}\right)\)
\(\mathrm{p}=\) MatrixForm[\{\{5.478, 0,0\(\},\{0,-.739, .741\},\{0,-.741,-.739\}\}]\)
\(\left(\begin{array}{ccc}5.478 & 0 & 0 \\ 0 & -0.739 & 0.741 \\ 0 & -0.741 & -0.739\end{array}\right)\)
```

Contained herein is a summary of output detailing the number of moves required by our proposed algorithm in Chapter Three.

| 2600 | 2528 | 1391128671899994019931129131267210582 | 72 | 72 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2700 | 2627 | 5671524585438437158180757227474012372 | 73 | 73 |
| 2800 | 2725 | 29281287308534691941789232200235740140 | 75 | 75 |
| 2900 | 2824 | 124035735794548859517988894161529468186 | 76 | 76 |
| 3000 | 2923 | 476424961476487425667992487218723118708 | 77 | 77 |
| 3100 | 3021 | 2218501041487543904586767442079141901956 | 79 | 79 |
| 3200 | 3120 | 9127195216335860764768138230244168626862 | 80 | 80 |
| 3300 | 3219 | 34451774655993795626257061578937840282500 | 81 | 81 |
| 3400 | 3318 | 123531229183039605411416542929984840970036 | 82 | 82 |
| 3500 | 3416 | 515815862448713685892301382817726112803090 | 84 | 84 |
| 3600 | 3515 | 2008389421874778819538109639481784651977988 | 85 | 85 |
| 3700 | 3614 | 7324186162932315605677726211344153566900352 | 86 | 86 |
| 3800 | 3713 | 25618189361887081842662712972167801544380920 | 87 | 87 |
| 3900 | 3812 | 87037192248430243358194769309226253196524450 | 88 | 88 |
| 4000 | 3911 | 289396643864093501825158281240797783376744712 | 89 | 89 |
| 4100 | 4009 | 1016080425384877854914190189902415674503158688 | 91 | 91 |
| 4200 | 4108 | 3628650853432466441064348502092449391622232422 | 92 | 92 |
| 4300 | 4207 | 12443894057201055991214659956363944005064095912 | 93 | 93 |
| 4400 | 4306 | 41455644957524612094877665178144585683361872388 | 94 | 94 |
| 4500 | 4405 | 135089238115969590999840577337970916587326537260 | 95 | 95 |
| 4600 | 4504 | 432485868734990304199664055053660923971898870486 | 96 | 96 |
| 4700 | 4603 | 1364265803336898307362977867167637381340043882828 | 97 | 97 |
| 4800 | 4702 | 4248683203318525509871566906185106232676941948348 | 98 | 98 |
| 4900 | 4801 | 13080090595615213503434629228588591745152562201896 | 99 | 99 |
| 5000 | 4900 | 39841545561032987063179759003825666720276812048022 | 100 | 100 |

BIBLIOGRAPHY

1. Dudeney, H. E., The Canterbury Puzzles. New York: Dover Publications, 2002.
2. Er, M. C., "The Cyclic Towers of Hanoi: A Representation Approach," The Computer Journal 27 (1984): 171-175.
3. Frame, J. S., Stewart, B. M., "3918," The American Mathematıcal Monthly 48, No. 3. (1941): 216-219.
4. Klavz̆ar, S., Milutinović, U., and Petr, C., On the Frame-Stewart algortthm for the multı-peg Tower of Hanor problem, Extended Abstract, Department of Mathematics, PEF, University of Maribor, 2000.
5. Lawrence Hall of Science: University of California, Berkeley, Tower of Hanoz. http://www.lhs.berkeley.edu/Java/Tower/towerhistory.html.
6. Majumdar, A. A. K. "Frame's Conjecture and the Tower of Hanoi problem with four pegs. (English. English summary)," Indıan Journal of Mathematıcs 36 (1994): 215-217.
7. Scorer, R. S., Grundy, P.M., and Smith, C. A. B., "Some Binary Games," The Mathematical Gazette 280 (1944): 96-103.
8. Stockmeyer, P. K., "Variations on the Four-Post Tower of Hanoi Puzzle," Congressus Numerantıum 102 (1994): 3-12.

VITA

Steven Greenstein was born in Silver Spring, Maryland, on September 3, 1969, to parents Leonard Greenstein and Linda Goldberg Greenstein. After completing his work at North Springs High School in Atlanta, Georgia, in 1988, he entered Georgia Institute of Technology. Upon deciding to include teaching in his coursework, he transferred to Georgia State University where he earned the degree of Bachelor of Science in Mathematics. During the years that followed he was employed as a high school teacher in schools in Atlanta, Georgia, and Austin, Texas, where he now resides. In Summer 2001 he entered the Graduate School of Southwest Texas State University, San Marcos, Texas.

Permanent Address: 5505 Cordell Lane

Austin, Texas 78723

This thesis was typed by Steven Greenstein.

[^0]: ${ }^{1}$ Complete output is available upon request. A summary of the output is displayed in Appendix B.

[^1]: ${ }^{2}$ All calculations herein are performed using Mathematica and may be found in Appendix A.

