
VARIATIONS ON THE FOUR-POST TOWER OF HANOI

PUZZLE

THESIS

Presented to the Graduate Council of

Southwest Texas State University

in Partial Fulfillment of

the Requirements

For the Degree of

Master of SCIENCE

By

Steven Greenstein, B.S.

San Marcos, Texas

August 2003

COPYRIGHT

by

Steven Greenstein

2003

Dedicated to my father and the memory of my mother

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Jian Shen, for his confidence in my

ability when he first awarded me the research assistantship from which this project

evolved. It was because of his encouragement that I have had such an incredible and

meaningful experience. I, too, wish to thank him for his-generous help and valuable

suggestions. I would also like each of the other members of my thesis committee for

their valuable comments and suggestions, all of which have made this a better

thesis: I wish to thank Dr. Eugene Curtin for his frequent assistance with

programming in Mathematica. Without his assistance this project would not have

been as fruitful nor would I have learned so much. And thank you, also, to Dr.

Xingde Jia for similarly helpful assistance with J5.TEX. I am so grateful for every one

of his comments, each of which has made this thesis clearer and stronger.

I wish to thank my partner, Shana, for encouragement and understanding as

I relentlessly pursued the kind of educational experience I always wanted.

This manuscript was submitted on May 6, 2003.

V

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

Chapter

I. INTRODUCTION . 1

II. THREE-IN-A-ROW PUZZLE . 5

III.

IV.

FOUR-IN-A-ROW PUZZLE

FOUR-POST CYCLIC PUZZLE

9

15

APPENDIX A . 31

APPENDIX B . 34

BIBLIOGRAPHY 35·

Vl

LIST OF FIGURES

Page

1. The 4-post cyclic and 4-in-a-row puzzles . 2

2. Scorer, Grundy, and Smith's 'Two-step, 3-in-a-row algorithm' 6

3. One-step, 3-in-a-row algorithm . 7

4. Stockmeyer's 'Four-in-a-row' algorithm 10

5. 4-in-a-row algorithm . 12

6. Scorer, Grundy, and Smith's 'Four-post cyclic' algorithm 16

7. Phase 1: Splitting the tower . 17

8. Phase 2: Simultaneous transport of towers one step . 19

9. Phase 2: Simultaneous transport of towers two steps 20

10. Phase 2: Simultaneous transport of tqwers three steps 23

vii

ABSTRACT

VARIATIONS OF THE FOUR-POST TOWER OF HANOI PUZZLE

by

STEVEN GREENSTEIN, B.S.

Southwest Texas State University

June 2003

SUPERVISING PROFESSOR: JIAN SHEN

The Tower of Hanoi puzzle consists of three posts and a set of n, typically

eight, pierced disks of differing diameters that can be stacked on the posts. The

tower is formed initially by stacking the disks onto one post in decreasing order of

size from bottom to top. The challenge is to transport the tower to another post by

moving the disks one at a time from one post to another, subject to the rule that no

disk can ever be placed on top of a smaller disk. The disks may move from one post

to any other without restriction. The objective of the puzzle is to complete the task

of transporting the tower from one post to another in the minimum number of

moves. This problem has been solved for a puzzle with t];µ'ee posts.

This thesis considers two variations of the classic Tower of Hanoi puzzle on

four posts:

1. Four-in-a-row puzzle, in which the allowable moves are, in either direction,

between posts A and B, posts Band C, posts C and D; and

2. Four-post cyclic puzzle in which disks may only be moved clockwise along

viii

a directed cycle, from post A to post B, from B to C, and from D to A.

We develop an algorithm for the four-in-a-row puzzle where the number of

moves is of order O (4. 72881 fo) and an algorithm for the four-post cyclic puzzle

where the number of moves is of order O (2.34n). Each of these results i:i;p.proves the

best known results proposed by Stockmeyer in 1994 [8] and by Scorer, Grundy, and

Smith ,in 1944 [7] where the minimum number of moves achieved by each of these

algorithms is 0(3n).

ix

CHAPTER 1

INTRODUCTION

The Tower of Hanoi puzzle (sometimes referred to as the Tower of Brahma

or the End of the World Puzzle) was invented in 1883 by Edouard Lucas. He was

inspired by a legend that tells of a Hindu temple where the pyramid puzzle might

have been used for the mental discipline of young priests. Legend says that at the

beginning of time the priests in the temple were given a stack of 64 gold disks, each

one a little smaller than the one beneath it. Their assignment was to transfer the 64

disks from one of the three posts to another, with one important proviso: a large

disk could never be placed on top of a smaller one. The priests worked very

efficiently, day and night. When they finished their work, the myth said, the temple

would crumble into dust and the world would vanish [4]. Today the puzzle is best

known in computer programming for demonstrating the power of recursion in

problem solving [2].

The Tower consists of three posts and a set of n, typically eight, pierced

disks of differing diameters that can be stacked on the posts. The tower is formed

initially by stacking the disks onto one post in decreasing order of size from bottom

to top. The challenge is to transport the tower to another post by moving the disks

one at a time from one post to another, subject to the rule that no disk can ever be

placed on top of a smaller disk.

Many variations of this puzzle have been proposed in which the set of

a;_llowable moves has been extended or restricted, the number of posts has changed,

or some other aspect has been varied [8]. In this thesis, we study two versions of the

puzzle that use four posts, rather than three: the cyclic puzzle and the four-in-a-row

puzzle. [See Figure 1.]

We will begin by considering the classic 3-post puzzle mentioned and recall

disks may move from any one post to any other on their way from post A to post C.

1

2

A B

A B C D

Figure 1: The 4-post cyclic and 4-in-a-row puzzles

With respect to this classic puzzle, it is well known that 2n - 1 moves are necessary

.and sufficient to transport n disks two steps from post A, the starting point, to post

C. In order to introduce the reader to the type of algorithms that appear in this

thesis and to typical methods used to solve them, we demonstrate how this result

was achieved.

The algorithm used to transport the tower of height n from post A to post

C where disks may move one at a time and from any one post to any other on their

way from post A to post C subject only to the typical constraint that no disk can

ever be placed on top of a smaller disk is as follows:

Algorithm 1 : Classic 3-post puzzle

1. Recursively transport the n - 1 smallest disks from post A to post B (using

post C as an intermediary post);

2. Move the largest disk from post A to post C in one move;

3. Recursively transport then - l smallest disks from post B to post C (using

post A as an intermediary post).

3

In various algorithms throughout this thesis, we will use f (n) to denote the

number of moves required according to the current algorithm. The number of moves

required by each step above is as follows:

• Step 1: f(n - 1),

• Step 2: 1,

• Step 3: f(n - 1).

So f(n) = 2f(n - 1) + 1 and f(O) = 0.

With respect to this relation, we see by induction:

J(n) = 2f(n - 1) + 1

= 22 f(n - 2) + 2 + 1

= 23 f (n - 3) + 22 + 2 + 1

=···

= 2nf(O) + 2n-l + 2n-2 + ... + 20

= 2n-1

Thus we have obtained the recurrence relation:

f(n) = 2f(n...:. 1) + 1 with f(l) = 1

whose solution is

f(n) = 2n - l.

Once we complete consideration of the three-post puzzle, we will move on to

variations of the four-post puzzle, originally proposed by Henry Dudeney in his

4

book, The Canterbury Puzzles [1]. In order to entertain the pilgrims on their way to

Canterbury, the Reve posed the problem of conveying a stack of cheeses of varying

sizes from the first of four stools to the last, moving the cheeses one at a time from

any stool to any other, without ever putting any cheese on top of a smaller one.

Dudeney states without proof that the number of moves needed to convey a stack of

size 8, 10, or 21 is 33, 49, or 321, respectively [8]. We will consider such a four-post

puzzle, one that we call the four-in-a-row puzzle, with the additional constraint that

cheeses (or disks) may only move to the adjacent post(s).

We will complete our study of variations of the Hanoi puzzle by considering

the variation of the four-post puzzle, one we call the four-post cyclic puzzle, where

posts are arranged in a circle and disks may move counterclockwise, one post at a

time.

In general, a puzzle with m posts and n disks is referred to as the multi-peg

Tower of Hanoi puzzle: Most researchers believe that an algorithm proposed in 1941

by Frame and Stewart in American Mathematical Monthly [3] (generally referred to

as Frame's Algorithm) is optimal [6]. Several references exist in which authors have

tried to solve the multi-peg problem only to rediscover "Frame's Conjecture" and so

today that conjecture is to be "presumed optimal" [4,8]. An outline of that

algorithm is presented in Chapter 3 upon discussion of that puzzle.

CHAPTER 2

THREE-IN-A-ROW PUZZLE

A variation of the 3-post puzzle proposed in 1944 by Scorer, Grundy, and

Smith [7] restricts the movements of disks, in either direction, between posts A and

Band post Band C. Moves are not allowed between posts A and C. We will refer to

this algorithm as the "two-step 3-in-a-row algorithm."

We illustrate Scorer, Grundy, and Smith's proposed algorithm and verify

their result by generating a recurrence relation and solving it by induction. Again,

this is the technique we will use throughout this thesis to develop closed formulas

that describe the number of moves required by each algorithm.

Algorithm 2 : Scorer, Grundy, and Smith's Two-step, 3-in-a-row

algm:_-ithm: (Also see Figure 2.)

First, we remark on the base case as follows: if n = 1, this algorithm

requires two steps. When describing subsequent algorithms; we will assume an

analogous base case (for n = l disk). Then we will assume, as we do here, that our

algorithm describes the case for n ~ 2 disks.

1. Using the "two-step, three-in-a-row algorithm", recursively transport the n-1

smallest disks from post A to post C, using all three posts;

2. Move the largest disk from post A to post B in one move;

3. Transport the n-1 smallest disks from post C to post A, using all three posts.

4- Move the largest disk from post B to post C in one move;

5. 'Iransport the n-1 smallest disks from post A to post C, using all. three posts.

Where f (n) denotes the number of moves required according to the current

algorithm, the number of moves required by each step above is as follows:

5

6

l
i

j

. . 1H
ii WJH ft-ii ft 'Ill

• • • -J.,-2'-> • •• -l4-;, • • • -5-;, •••

J\ '.B C .5\. '.H C .'A. ~ C 'A. 1? C

Figure 2: Scorer, Grundy, and Smith's 'Two-step, Three-in-a-row' algo­
rithm.

• Step 1: f(n - 1),

• Step 2: 1,

• Step 3: f(n - 1),

• Step 4: 1,

• Step 5: f(n - 1).

{
J(n) = 3f(n - 1) + 2

f(l) = 2

By induction, it is easily seen that f(n) = 3n - 1.

Here we propose an algorithm for moving the tower of n disks one step from

post A to,post B:

Algorithm 3 : One-step, 3-in-a-row algorithm: (Also see Figure 3.)

1. Recursively transport the n-1 smallest disks from post A to post C, using the

two-step, 3-in-a-row algorithm;

2. Move the largest disk from post A to post B zn one move;

3. Transport the n-1 smallest disks from post C to post B, using all three posts.

7

Here is a diagram of our proposed algorithm for moving the tower one step

from post A to post B. Indices indicate which disks are currently located on the

indicated posts. Numbers embedded in arrows indicate which steps are being made.

'1' is the smallest disk; n is the largest:

2

J J

.
1!-i .

:Ill ,t n-.t n

••• -J,.2-;, • •• --$-> •••

~:BC .J\ ~c .Jt ~c

Figure 3: One-step, 3-in-a-row algorithm

The number of moves required by each step above is:

• Step 1: 3n-l - 1,

• Step 2: 1,

• Step 3: f(n - l).

Thus we have obtained the recurrence relation:

{
f(n) = f(n -1) + 3n-l

f(l) =}

With respect to that relation, we see by induction:

f(n) = f(n - l) + 3n-l

= f(n - 2) + 3n-2 + 3n-l

= f(n - 3) + 3n-3 + 3n-2 + 3n-l

=···
= f(l) + 31 + 32 + ... 3n-l

= 1 + 3 + 32 + · · · + 3n-l

8

We will use this "one-step, three-in-a-row algorithm" later-in a subsequent

algorithm to move a tower of height none step from post B to post C. Because this

algorithm is designed to move the to"'-'.er from post A to post B, we will justify here

that moving the tower from post B to post C requires the same number of moves.

We move the tower from post B to post C as follows:

Algorithm 4 : One-step, 3-in-a-row algorithm (rev.)

1. Recursively transport the n-1 smallest disks from post B to post A, using the

two-step, 3-in-a-row algorithm;

2. Move the largest disk from post B to post C in one move;

3. Transport the n-1 smallest disks from post A to post C, using all three posts.

The number of moves required by each step above is:

• Step 1: f(n - 1),

• Step 2: 1,

• Step 3: 3n-l - 1.

Thus we have obtained the recurrence relation

{
f(n) = f(n - l) + 3n-l

f(l) = 1

which matches the algorithm for moving the tower from post A to post B exactly.

Finally, we note that, on three posts, half the number of moves are required

to transport n disks one step as it does to transport the same tower two steps.

CHAPTER3

FOUR-IN-A-ROW PUZZLE

We will begin our study of the puzzle on four posts by first considering the

history of that puzzle. We revisit "Frame's Conjecture" (1941) for solving the

four-post puzzle in which disks may move from one post to any other as the tower is

transported from their origin at post A to their destination at post D. Their

algorithm is as follows:

Algorithm 5 : Frame's Conjecture

1. Recursively transport a stack consisting of n - i smallest disks from the first

post to a temporary post, using all four posts in the process;

2. Transport the stack consisting of the i largest disks from the first post to the

final post, using the standard three post algorithm and ignoring the post

holding the smaller disks;

3. Recursively transport the smallest n - i disks from the temporary post to the

final post, again using all four posts in the process {3}.

"In addition, [Frame and Stewart] proved that if n is equal to the k-th

triangular number tk = k(k;I), then the optimizing choice for i is in fact i = k, while

if tk-I < n < tk then both k - l and k are optimizing choices for i. Their proposed

algorithm is in agreement with the partial solution of Dudeney" [8] given earlier and

has been proven optimal [6]. Stockmeyer [8] has derived "a relatively simple exact

closed form expression for the number .. . of moves made by the Frame-Stewart

algorithm." That expression is O(.Jn2v'2n). Frame's conjecture remains open for a

puzzle on n 2: 5 posts.

In an article published in 1944, Scorer, Grundy, and Smith [7] propose a

four-post variation, called the "four-in-a-row puzzle," in which the allowable moves

9

10

are, in either direction, between posts A and B, posts Band C, posts C and D. This

is the puzzle we consider in this chapter. Stockmeyer [8] proposes the following

algorithm for moving then disks from post A to post D, which he admits is

"effective but not optimal":

Algorithm 6 : Stockmeyer's 'Four-in-a-row' Algorithm: (Also see Figure

4.)

1. flecursively transport the stack consisting of the n-1 smallest disks from posts

A to post D, using all four posts in the process;

2. Move the largest disk from post A to post C, in two moves;

3. Transport the smallest n-1 disks from D to post B using the 3-in-a-row

algorithm, ignoring post A;

4. Move the largest disk from post C to post D;

5. Transport the smallest n-1 disks from post B to post D using the 3-in-a-row

algorithm, again ignoring post A.

J

••••
.J\.1JC1J

J I

'111 'R-1 ff-J ff

-i,2-> • • • • -3.~-> ••••

.J\.1JCV ..'A.1JCV

J

.
1il.

-~;,,
5\~CV

Figure 4: Stockmeyer's 'Four-in-a-row' algorithm.

The number of moves required by each step above is as follows:

• Step 1: R(n - 1),

• Step 2: 2,

• Step 3: 3n-l - 1,

• Step 4: 1,

• Step 5: 3n-l - 1.

Thus we obtain the recurrence relation:

{
R(n) = R(n - 1) + 2 · 3n-l + 1

R(l) = 3

whose solution, derived by induction, is

We propose the following algorithm and show that the algorithm requires

only 0(4. 7288v'n) moves:

Algorithm 7 : 4-in-a-row algorithm: (Also see. Figure 5.)

11

1. Recursively transport k disks from post A to post D using all four posts in the

processj

2. Transport n - k - 1 disks from post A to post C, using the two-step, 3-in-a-row

algorithm, ignoring post Di [We will soon see why it is now important to be

more specific about this 3-in-a-row algorithm.]

3. Move the largest disk from post A to post B in one movej

4- Transport R, disks from post C to post A, using the two-step, 3-in-a-row

algorithm, ignoring post Di

5. Transport k disks from post D to post A, using all four posts in the process;

6. Transport n - k - R, - 1 disks "one step" from post C to post D using the one

step, 3-in-a-row algorithm;

7. Move the largest disk from post B to post C in one step;

8. Transport n - k - f, - 1 disks from post D to post B using the two-step,

3-in-a-row algorithm;

9. Move the largest disk from post C to post Din one step;

10. Transport n - k - f, - 1 disks from post B to post D using the two-step,

3-in-a-row algorithm;

12

11. Transport k + f, disks from post A to post D, using all four posts in the process.

j

JI \ lit ff-'J i i:,.f ff 'R"l

• • • • --d,.2,3-> ••• •-4.,$.6,,'-->. • • • -8.9->

5\2?C1J J\~CV .Jt~CV
J

~(JH ff JI

•• ••-iO,i1-> ••••

.Jl'.BCV .J\~CV

Figure 5: 4-in-a-row algorithm

The number of moves required by each step above is as follows:

• Step 1: f(k),

• Step 2: 3n-k-l - 1,

• Step 3: 1,

• Step 4: 3e - 1,

• Step 5: f(k),

• Step 6: ½(3n-k-£-l - 1),

• Step 7: 1,

• Step 8: 3n-k-£-l - 1,

• Step 9: 1,

• Step 10: 3n-k-£-l - 1,

• Step 11: f(k + .e).

Thus we obtain the recurrence relation:

{
f(n) = 2f(k) + f(k + f) + ~(3n-k-£-l - 1) + 3n-k-l + 3£ + 1

f(l) = 3

13

For n from 1 to 6, the number of moves required is 3, 10, 19, 34, 57, and 88,

[2] and this algorithm matches those numbers of moves for best values of k and .e.

However, because two variables k and .e are involved, this recurrence relation turns

out to be very difficult to solve. So we reduce the algorithm to one that is more

readily solved by setting .e = 0. This revised algorithm is still valid for all

k with 1 :S k :::; n - l. So in order to minimize the number of moves for this revised

algorithm, we choose k which minimizes the function 3f(k) + ~ • 3n-k-l - ½- We

obtain the recurrence relation:

f(n) = mJn { 3f(k) + ~ · 3n-k-l - ½}

We use Mathematica 1 to evaluate this relation for values of n, and k up to

n = 5000. We notice that k = n - l ...fin + .5 J can always minimize the above

objective function.

(1)

1Complete output is a~ilable upon request. A summary of the output is displayed in Appendix
B.

14

Conjecture 1 f(n) = 3f (n - L ffn + .5J) + ~(3Lv'2n+.5J-1 - ½ with f(l) = 3

Although we cannot prove this conjecture, we can use induction to prove the

following:

Theorem 1

For any sufficiently small€> 0, f(n) ~ c • (3 + c)v'2n, where c = 7(!!e).

Proof. Base Case: Since f(l) = 3, Theorem 1 holds for n = 1 and for all

sufficiently small c > 0.

Now suppose n;?: 2. Set k = n - ffn and suppose f(k) ~ c · (3 + c)v'2k.

Note that J2(n- ffn) ~ J2(..jn- 1)2 = ../i(vn-1) = ffn-1.

By (1) above,

f(n) ~ 3f(k) + ~. 3n-k-l - ½

< 3c • (3 + c)J2(n-v'2n) + 1 . 3v'2n - l
- 6 2

< 3c • (3 + c)v'2n-1 + 1 . 3v'2n - l
- 6 2

< c • (3 + c)v'2n + 1 • 3v'2n - _e_ • c • (3 + c)v'2n
- 6 3+e:

< c · (3 + c)v'2n + 1 · 3v'2n -L • 7(3+e) . 3v'2n
- 6 3+e: 6e

= C • (3 + c)v'2n

Since 3-J2 < 4.72881, we have

f(n) < 7(3+e) • (3 + c)v'2n
- 6€

= 0 ((3 + c)v'2n)

= o (4. 72881 vn)

□

Finally, we note the order of this result, 4. 72881 vn, in comparison with the

order of the proposed result, 3n, proposed by Sto_ckmeyer in 1994 [8].

CHAPTER4

FOUR-POST CYCLIC PUZZLE

The 4-post cyclic puzzle, a variation of the four post puzzle, was proposed by

Scorer, Grundy, and Smith [7]. The restrictions permit that disks may only be

moved clockwise along a directed cycle, from post A to post B, from B to C, and

from D to A. The authors propose the following algorithm to accomplish the task of

transporting a tower of n disks (where 'disk 1' is the smallest and ' disk n' is the

largest) two steps along the cycle, say from post A to post C:

Algorithm 8 : Scorer, Grundy and Smith's 'Four-post cyclic' algorithm:

(Also see Figure 6.)

1. Recursively transport the stack consisting of the n-1 smallest disks from post

A to post C;

2. Move the largest disk from post A to post B;

3. Transport the n-1 smallest disks from post C to post A;

4. Move the largest disk from post B to post C;

5. Transport the n-1 smallest disks from post A to post C.

Letting N (n) denote the number of moves made by this algorithm for a stack of n

disks, the number of moves required by each step above is as follows:

• Step 1: N(n - 1),

• Step 2: 1,

• Step 3: N(n - l),

• Step 4: 1,

15

(:1, ,n)

• Jl
•n 1l•

C
•

--1,2-->

(2, ... ,n)

• • .JI. j\
•V 1J•(1) --3,4-->•V 11•

C C
• • (;z, .•• .,n) (!)

• j\

-s->•D ile
C
• (1"',..:.n}

Figure 6: Scorer, Grundy and Smith's 'Four-post cyclic' algorithm

• Step 5: N(n - 1).

Thus we obtain the recurrence relation:

{
N(n) = 3N(n - 1) + 2

N(l) = 2

which is equivalent to the "two-step, 3-in-a-row algorithm" whose solution was

presented earlier [2] and is
' N(n) = 3n -1

16

We propose a three-phase algorithm for moving the tower three steps from

post A to post D. To transport the tower from post A to post C, as Scorer, Grundy,

and Smith's algorithm does, simply apply this algorithm twice. Similarly, to

transport the tower to post B, apply the algorithm three times. Our proposal is as

follows:

• Phase 1: We split the tower of height n = 2k, for convenience, ['disk 1' zs the

smallest, 'disk 2k' zs the largest] znto two towers on two posts: odd-numbered

disks 1 through 2k - 1, and even-numbered disks 2 through 2k, to posts D and

C, respectively. We will call the tower of odd-numbered disks the "odd tower"

and the tower of even-numbered disks the "even tower."

• Phase 2: Simultaneously, recursively transport the two towers.

17

• Phase 3: Reassemble the two towers onto post D.

We must note that this algorithm is designed to transport a tower consisting

of an even number of disks. It is a small adjustment to alter the algorithm for an

odd number of posts and for large values of n, this will not alter the 0

approximation for the minimum number of moves.

We accomplish Phase 1, the splitting of the towers, in the following way:

Algorithm 9 : Phase 1: Splitting the tower (Also see Figure 7.)

1. We leave disks n and n - l on post A and split the tower of height n - 2 into

two towers, one containing odd-numbered disks and the other containing

even-numbered disks, each of height~ - l onto posts D and C, respectively;

2. Move the second largest disk one step to post B;

3. Simultaneously, recursively transport the "even" and "odd" towers two steps,

the "even" tower moving from post C to post A and the "odd" tower from post

D to post B; [This algorithm is "Phase 2". It is described below.]

4. Simultaneously, recursively transport the "odd" and "even" towers, each of

height ~' two steps, the "even" tower moving from post A to post C and the

"odd" tower from post B to post D.

(.1,-,tii

• .'A.
eV jl•

C
•

(tt}

•
fz,3,-• ..,,1'$') .Jl (tt·d

-d,.6--..- • V ~• -.e-->
C • (~4,.. ... :n-.:2J

(2,4,.,...,:n-.2,u} • • A fi,j,.. . .,n-g.-n-_., .Jl
•2' jl• -stf-... •V 21•

C f,,:t.--..n-s.-n-•J C

• • (~4,..-:ti-2,nJ

Figure 7: Phase 1: Splitting the tower

Where g(n) indicates the number of moves required to split a tower of height

n into two towers, each of height ~' onto two posts, and where f(n, i) indicates the

number of moves required to simultaneously transport two towers i steps, each of

height :g., the number of moves required by each step above is as follows:

• Step 1: g(n - 2),

• Step 2: 1,

• Step 3: Jrn - 1, 2),

• Step 4: 1,

• Step 5: f(~, 2).

Thus we obtain the following recurrence relation:

g(n) ~ g(n - 2) + 1 + f (%- 1, 2) + f (%, 2)

We will solve this relation following the summary of the three phases.

We accomplish Phase 3, the reassembling of the two towers, SifI1ply by

reversing the algorithm in Phase 1. We accomplish Phase 2, the simultaneous

transport of two towers, in the following way:

Algorithm 10 : Phase 2: Simultaneous transport of towers one step:

(Also see Figure 8.)

1. We leave disk 2k on post C and disk 2k - 1 on post D and simultaneously,

recursively transport the two towers three steps, odds to post C and evens to

post B;

2. Move disk 2k - 1 one step from post D to the goal post at A;

18

3. Simultaneously transport the two towers three steps, odds to post B and evens

to post A;

4- Move disk 2k one step from post C to the goal post at D;

(1..-,:ii-1> • ..'A.
•V jj•

f.z.-. ..2i> C
•

Figure 8:- Phase 2: Simultaneous transport of towers one step

19 ~

5. Simultaneously transport the two towers three steps, odds to their goal post at

A and evens to their goal post at D.

Wliere f(k, i) indicates a simultaneous transport of two towers, each of height k, i

steps, the number of moves required by each step above is as follows:

• Step 1: f(k - 1, 3),

• Step 2: 1,

• Step 3: f(k - 1, 3),

• Step 4: 1,

• Step 5: f(k - 1, 3),

Thus we obtain the following recurrence relation:

f(k, 1) = 3f(k - 1, 3) + 2.

Algorithm 11 : Phase 2: Simultaneous transport of towers two steps:

(Also see Figure 9.)

1. We leave disk 2k on post C and disk 2k - 1 on post D and simultaneously,

recursively transport the two towers three steps, odds to post C and evens to

post B;

20

2. Move disk 2k - 1 one step from post D to post A;

3. Simultaneously transport the two towers one step, odds to post D and evens to

post C;

4- Move disk 2k - 1 one step from post A to the goal post at B;

5. Simultaneously transport the two towers two steps, odds to post B and evens to

post A;

6. Move disk 2k one step from post C to post D;

7. Simultaneously transport the two towers one step, odds to post C and evens to

post B;

8. Move disk 2k one step from post D to the goal post at A;

9. Simultaneously transport the two towers three steps, odds to their goal post at

B and evens to their goal post at A .

• (1.,.-,:i'JH) ..'A.
•V 1J•, •. >

C •
t!t,--.m·:::J

f :;;-.,-tt1.-.2)

• Jl (.t,.-.~n-:;,.m,-.t)

• 1J 1J. -e,tt:-;;.
t:mJ C •

(,;m)

• .J\ f.2,-. .,.:m-2,:m-d

•'D 1l• -i->
C
• (:,-,~}

(2,_.,:mJ

• .JI.
•» ,,.

C f1.,...,.2n-JJ

•

Figure 9: Phase 2: Simultaneous transport of towers two steps

21

Where f(k, i) indicates a simultaneous transport of two towers, each of height k, i

steps, the number of moves required by each step above is as follows:

• Step 1: f(k - 1, 3),

• Step 2: 1,

• Step 3: f(k - 1, 1),

• Step 4: 1,

• Step 5: f(k - 1, 2),

• Step 6: 1,

• Step 7: f(k - 1, 1),

• Step 8: 1,

• Step 9: f(k - 1, 3).

Thus we obtain the following recurrence relation:

f(k, 2) = 2f(k - 1, 1) + f(k - 1, 2) + 2/(k - 1, 3) + 4

Algorithm 12 : Phase 2: Simultaneous transport of towers three steps:

(Also see Figure 10.)

1. We leave disk 2k on post C and disk 2k - 1 on post D and simultaneously,

recursively transport the two towers three steps, odds to post C and evens to

post B;

2. Move disk 2k - 1 one step from post D to post A;

3. Simultaneously transport the two towers one step, odds to post D and evens to

post C;

4. Move disk 2k - 1 one step from post A to post B;

22

5. Simultaneously transport the two towers two steps, odds to post B and evens to

post A;

6. Move disk 2k one step from post C to post D;

7. Simultaneously transport the two towers one step, odds to post C and evens to

post B;

8. Move disk 2k one step from post D to post A;

9. Simultaneously transport the two towers two steps, odds to post A and evens to

post D;

10. Move disk 2k - 1 one step from post B to its goal post at C;

11. Simultaneously transport the two towers three steps, odds to post D and evens

to post C;

12. Move disk 2k one step from post A to its goal post at B;

13. Simultaneously transport the two towers three steps, odds to their goal post at

C and evens to their goal post at B.

Where f(k, i) indicates a simultaneous transport of two towers, each of height k, i

steps, the number of moves required by each step above is as follows:

• Step 1: f(k - 1, 3),

• Step 2: 1,

• Step 3: f(k - 1, 1),

• Step 4: 1,

• Step 5: f(k - 1, 2),

• Step 6: 1,

• Step 7: f(k - l, 1),

(.211) (1,-,.2~,.:nt..l'

• • .Jl (2,-• .,:m-.2JJ'l
•v :Be -aJ-,,. •n :B•

O~-..:m--2,m-d C

• • (i,,-,1.!~) (.:m,I

• A (:mJ -'-.{-.;,, •n =a•
(1,-,.i~J C

• r~--.m-2,211:-d

Figure 10: Phase 2: Simultaneous transport of towers three steps

• Step 8: 1,

• Step 9: f(k - 1, 2),

• Step 10: 1,

• Step 11: f(k - 1, 3),

• Step 12: 1,

• Step 13: f(k - 1, 3).

Thus we obtain the following recurrence relation:

. f(k, 3) = 2f(k - 1, 1) + 2f(k - 1, 2) + 3f(k - 1, 3) + 6

23

In summary, where f(k, i) indicates a simultaneous transport of two towers,

each of height k, i steps, we obtain the recurrence relations:

f(k, 1) = 3f(k - 1, 3) + 2

f(k,2) = 2f(k-1, 1) + f(k-1,2) + 2f(k-1,3) +4

f (k, 3) = 2f(k - 1, 1) + 2f(k - 1, 2) + 3f(k - 1, 3) + 6

We endeavor to solve the system of recurrence relations with a matrix

equation as follows:

f(k, 1)

f(k,2)

f(k,3)

0 0 3

2 1 2

2 2 3

f(k - 1, 1)

f(k-1,2)

f(k - 1, 3)

2

+ 4

6

24

We simplify matters by finding a system that does not involve the constant

matrix on the right as follows:

f(k, 1) +x 0

f(k,2)+y 2

f(k,3)+z 2

0

1

2

3

2

3

f(k - 1, 1) + x

f(k-1,2)+y

f(k-1, 3) + z

We compute the values of x, y, and z. Computing x ":e get

f(k, 1) + x - 3f(k - 1, 1) + 3z

f(k, 1) - 3f(k - 1, 1) + 2

We subtract (3) from (2) and hence

X = 3z-2

which implies

x-3z = -2.

(2)

(3)

25

Computing y we get

f(k,2) - 2f(k-1,l)+f(k-1,2)+2f(k-1,3)+4 (4)

f(k, 2) + y - 2f(k - 1, 1) + 2x + f(k -1, 2) + y + 2f(k -1, 3) + 2z (5)

We subtract (4) from (5) and hence

y = 2x + y + 2z - 4

which implies

2x+2z = 4.

Computing z we get

f(k, 3) - 2f(k - 1, 1) + 2f(k - 1, 2) + 3f(k - 1, 3) + 6 (6)

f(k, 3) + z - 2f(k - 1, 1) + 2x + 2f(k - 1, 1) + 2y + 3f(k - 1, 3) + 3z (7)

We subtract (6) from (7) and hence

z = 2x + 2y + 3z - 6

which implies

2x + 2y + 2z = 6.

We are left with the following system:

x-3z = -2

2x+2z = 4

2x+2y+2z = 6

whose solution is (x, y, z) = (1, 1, 1).

We obtain the following modified system :

f(k, 1) + 1

f(k, 2) + 1

f(k,3) + 1

0 0 3

2 1 2

2 2 3

f(k-1, 1) + 1

f(k-1, 2) + 1

f(k-1, 3) + 1

26

With respect to the 3 x 3 matrix above, call it A, we find a diagonal matrix

D of eigenvalues >.1, >.2, and >.3 and a matrix X' of corresponding eigenvectors Z,

X, and Y that satisfies the equation AX'= >.X'. The eigenvalues >.1 , >.2 , and >.3 of

A are given in the diagonal matrix

5.47783 0 0

0 -0. 738917 + 0. 7 41165i 0

0 0 -0.738917 - 0.741165i

and the corresponding eigenvectors Z, X, and Y of A are given 2 in the column

matrix

0.547762 -2.02383 - 2.02999i -2.02383 + 2.02999i

[Z X Y] = 0.691255 0.154373 + 2.40057i 0.154373 - 2.40057i

1 1 1

We may express complex eigenvalues and eige!lvectors in the following way: Write

X = x + i Y and ,\ = a + bi. Then

r

Ax+ Ai Y = A(x + i Y) = (a+ bi)(x + i Y)

= ax + ai Y + bi x - bY

= (ax - bY) + i (aY + bx)

We identify the real parts as AX= ax - bY and the imaginary parts as

AY = aY + bx = aY + bx.

2 All calculations herein are performed using Mathematica and may be found in Appendix A.

27

A[z X Y] = [AZ AX AY]

= [AZ (ax - bY) (aY + bx)]

3 3 0

- 3.787 -1.893 -1.66

5.478 -0.739 0.741

5.478 0 0

=[zxy] 0 -0.739 0.741

0 -0.741 0.739

Let D denote the matrix above on the right. Then

Thus

Ak-l = [z x Y] • nk-l . [z x y]-1

Now we factor out >.1 = 5.478; then

1 0 0

D = >-1. 0 -0 739 0 741
---xi- -x;:-

0 -0 741 0 739
---xi- -x;:-
1 0 0

Dk-l _ Ak..'..1
- 1 . 0

N
0

where

, (-0739
N= ><t

-0741
~

)
k-l (0 741 -.135

.>.1 ~ ~
o {;9 -.135

)

k-1

-.135

-.135

So
1 0 0

nk-1 ~ Ak-1 -1 ~ 1 . 0 (-.135 -.135)

0 -.135 -.135

Then we have

1 0 0

Ak-1 ~ A~-1 . [z X y] 0 (-.135 -.135) - [Z X Y]-1

0 -.135 -.135

AB k -+- oo, the entries in the 3 x 3 matrix above become arbitrarily small. So we

may represent that matrix as some constant matrix as follows:

28

Since each of the matrices on the right is independent of k, we may represent their

product ~ follows:

Ak-1 ~ ,k-1 ~ Al . C21 C22 C23

Recall the system we endeavor to solve:

f(k, 1) + 1

f(k,2) + 1

f(k,3) + 1

f(k - l, 1) + 1

= A- f(k - l, 2) + 1

f(k - l, 3) + 1

f(k- 2, 1) + 1

= A· A · f (k - 2, 2) + 1

f(k - 2, 3) + 1

f(l, 1) + 1

= Ak-1 f(l, 2) + 1

f(l, 3) + 1

Cu C12 C13

_ >,.k-1
- 1 . C21 C22 C23

C31 C32 C33

C11

_ >,.k-1 - 1 . C21

C31

Also recall that we chose n = 2k. Therefore

=(Ar· d{

= (J5.47sr · c~

~ d{ · 2_34n

29

f(l, 1) + 1

f(l, 2) + 1

f(l,3) + 1

Finally, the number of moves required to complete Phase 2 is 0(2.34n). And now we

will solve the system used in Phases 1 and 3. Recall the associated recurrence

relation:

g(n) s; g(n- 2) + 1 + !Ct-1,2) + 1rn,2)

s; g(n - 2) + 1 +Co· 2.34n + C1 • 2.34n

< g(n - 2) + C2 • 2.34n

g(n - 2) s; g(n - 4) + c2 • 2_34n-2

g(n - 4) < g(n - 6) + C2 • 2_34n-4

g(4) < g(2) + C2 • 2.34n-4

We sum these and get

g(n) s; g(2) + C2 • [2.34n + 2_34n-2 + · · · + 2.344]

~ cf · 2.34n.

30

In summary, each of the three Phases of the algorithm requires on the order

of (2.34t moves. Thus, the number of moves required is of order 2.34n. As we

mentioned earlier, to transport the tower to post C instead of post D, apply the

algorithm twice. To transport the tower to post B instead of post D, apply the

algorithm three times. Thus, our estimate for the minimum number of moves is of

the same order regardless of the tower's destination.

We compare the order of this result, 2.34n, with that proposed in the article

Appendix A 31

Contained herem are the Mathematica calculations used m Chapter Four.

Matrix A is our coefficient matrix pertaining to the three recurrence relations we developed for use in each of the

three Phases of our algorithm:

A=MatrixForm[{{O, 0, 3}, {2, 1, 2}, {2, 2, 3}}]

[
0 0 3 l
2 1 2 '

2 2 3

{ {5.47783, -0. 738917 + o. 741165 i, -0. 738917 - o. 741165 i},
{{0.547662, 0.691255, 1.}, {-2.02383-2.029991., 0.154373+2.40057i, 1.},
{-2.02383+2.02999]., 0.154373-2.40057]., 1.}}}

Tlus 'Eigensystem' is a matrix consisting of A's eigenvalues and eigenvectors:

N [{ evalues, evectors} = Eigensystem [A] , 3]

{ {5.47783, -0. 738917 + o. 741165 1, -0. 738917 - o. 741165 1},
{{0.547662, 0.691255, 1.}, {-2.02383-2.02999i, 0.154373+2.40057i, 1.},
{-2.02383+2.02999i, 0.154373-2.40057.1., l.}}}

Matrix d is a diagonal matrix of eigenvalues:

d = N[DiagonalMatrix[evalues] // MatrixForm, 3]

[
5.47783 0.

o. -0. 738917 + 0. 741165 1

o. o.
o. l o.

-0.738917-0. 741165 ll.

P = Transpose[evectors];

N[P, 3] / / MatrixForm

[
0.547662 -2.02383 _ 2.02999 i -2.02383 + 2.02999 i l
0.691255 0.154373+2.40057 ll 0.154373-2.40057 i

1. 1. 1.

N [Inverse [P], 3] / / MatrixForm

I O. 330524 - 1. 01049 X 10-17 i O. 279501 - 8. 54499 X 10-18 ll

-0.165262 + 0.0369605 i -0.13975 - 0.177029 i
-0.165262 - 0.0369605 i -0.13975 + 0.177029 i

The followmg matrices are useful m solving the matrix equation we desired:

0.6257?8-1.91315x10-17 il
0.187111 + 0.10213 ll

0 .187111 - 0 .10213 1

AZ =MatrixForm[{{O, O, 3}, {2, 1, 2}, {2, 2, 3}}.{0.548, 0.691, l}]

Appendix A

ax- bY:

aY+bx:

ax =MatrixForm[-0.739 {-2.024, 0.154, 1}]

[
1.49574 l

-0.113806

-0.739

aY =MatrixForm[-0.739 {-2.03, 2.401, O}]

[
1.50017 l

-1. 707434

bx= MatrixForm[O. 741 {-2.024, 0.154, 1}]

[
-1.49978 l
0.114114

0.741

bY = MatrixForm[O. 741 {-2.03, 2.401, O}]

[
-1.50423 l
1. 77914

0

[
1.495736' l [-1.5042299999999997' l

MatrixForm [-0 .11380599999999999' - 1. 7791409999999999']
-0.739' 0

[
2.99997 l

-1.89295
-0.739

[
1.5001699999999998' l [-1.499784' l

MatrixForm[-l.7743389999999999' + 0.114114']
0 0.741'

[
0. 000386 l
-1.66022

0.741

[
0.548'

ZXY = MatrixForm [Transpose [- 2 . 024'
-2.or

[
0.548 -2.024 -2.03 l
o.!91 o.~54 2.~01

0.691'
0.154'
2.401'

[zxYr1 :

32

AppendixA

[
0.548' -2.024' -2.03' l

H[Inverse[0.691' 0.154' 2.401'] , 3] II MatrixForm
1 1 0

[
0.330467 0.279403

-0.330467 -0.279403

-0.0739111 0.354003

0.625837 l
0.374163

-0.204113

p:MatrixForm[{{5.478, 0, 0}, {0, -.739, .741}, {0, -.741, -.739}}]

[
5.478 o o l

0 -0. 739 o. 741

0 -0. 741 -0. 739

33

AppendixB

Contained herein is a summary of output detailing the number of moves required by our proposed algorithm in
Chapter Three.

f[n_, k_] : = 3 f [k] + 7 / 2 (3" (n - k - 1)) - 1 / 2;
f[O] = O;
f[l] = 3;
f[2] = 10;

f[n_] : = f [n] = Min [Flatten [Table [f [n, k], {k, O, n-2}]]]

T[n_] :=Take[Position[Table[f[n, k], {k, O, n-2}], f[n]], 1] - {{l}}

34

TableForm[Table[{n, T[n], f[n], n-T[n], Floor[~+ .5]}, {n, 3, 5000}]]

3 1 19 2 2

4 1 40 3 3
5 2 61 3 3
6 3 88 3 3

7 3 151 4 4
8 4 214 4 4
9 5 277 4 4
10 6 358 4 4
100 86 57262768 14 14
200 180 52592331382 20 20
300 276 7837419637348 24 24
400 372 629747258968510 28 28
500 468 27949721181848602 32 32
600 565 851926031824633900 35 35
700 663 18173958757211643568 37 37
800 760 372497361148327568542 40 40
900 858 5054549414602918149016 42 42
1000 955 73283367970830402580228 45 45
1100 1053 866352201196031982127060 47 47
1200 1151 8913900013840502977230592 49 49

1300 1249 83575290733793172209336488 51 51
1400 1347 722025901121080741155677932 53 53
1500 1445 5684136792047165834735639020 55 55

\

1600 1543 38945786357786079977638815688 57 57
1700 1642 276196713330189523514430705208 58 58
1800 1740 1958236005880126290118656733702 60 60
1900 1838 11689361894390868119066689955176 62 62

2000 1937 69341337148684904898507119108536 63 63

2100 2035 415761882573751720017321227227108 65 65

2200 2134 2100556077063944512489439180367652 66 66

2300 2232 11982698111865795443334728859318370 68 68

2400 2331 57039497201744144267015024608863652 69 69

2500 2429 291409020039629876419821172046827588 71 71

AppendixB 35

2600 2528 1391128671899994019931129131267210582 72 72

2700 2627 5671524585438437158180757227474012372 73 73
2800 2725 29281287308534691941789232200235740140 75 75
2900 2824 124035735794548859517988894161529468186 76 76

3000 2923 476424961476487425667992487218723118708 77 77
3100 3021 2218501041487543904586767442079141901956 79 79
3200 3120 9127195216335860764768138230244168626862 80 80
3300 3219 34451774655993795626257061578937840282500 81 81

3400 3318 123531229183039605411416542929984840970036 82 82

3500 3416 515815862448713685892301382817726112803090 84 84
3600 3515 2008389421874778819538109639481784651977988 85 85
3700 3614 7324186162932315605677726211344153566900352 86 86
3800 3713 25618189361887081842662712972167801544380920 87 87
3900 3812 87037192248430243358194769309226253196524450 88 88
4000 3911 289396643864093501825158281240797783376744712 89 89
4100 4009 1016080425384877854914190189902415674503158688 91 91
4200 4108 3628650853432466441064348502092449391622232422 92 92
4300 4207 12443894057201055991214659956363944005064095912 93 93
4400 4306 41455644957524612094877665178144585683361872388 94 94

4500 4405 135089238115969590999840577337970916587326537260 95 95
4600 4504 432485868734990304199664055053660923971898870486 96 96
4700 4603 1364265803336898307362977867167637381340043882828 97 97
4800 4702 4248683203318525509871566906185106232676941948348 98 98
4900 4801 13080090595615213503434629228588591745152562201896 99 99
5000 4900 39841545561032987063179759003825666720276812048022 100 100

BIBLIOGRAPHY

1. Dudeney, H. E., The Canterbury Puzzles. New York: Dover Publications, 2002.

2. Er, M. C., "The Cyclic Towers of Hanoi: A Representation Approach," The

Computer Journal 27 (1984): 171-175.

3. Frame, J. S., Stewart, B. M., "3918," The American Mathematical Monthly 48,

No. 3. (1941): 216-219.

4. Klav.zar, S., Milutinovic, U., and Petr, C., On the Frame-Stewart algorithm

for the multi-peg Tower of Hanoi problem, Extended Abstract, Department of

Mathematics, PEF, University of Maribor, 2000.

5. Lawrence Hall of Science: University of California, Berkeley, Tower of Hanoi.

http://www.lhs.berkeley.edu/Java/Tower/towerhistory.html. '

6. Majumdar, A. A. K. "Frame's Conjecture and the Tower of Hanoi problem

with four pegs. (English. English summary)," Indian Journal of Mathematics

36 (1994): 215-217.

7. Scorer, R. S., Grundy, P.M., and Smith, C. A. B., "Some Binary Games," The

Mathematical Gazette 280 (1944): 96-103.

8. Stockmeyer, P. K., "Variations on the Four-Post Tower of Hanoi Puzzle," Con­

gressus Numerantium 102 (1994): 3-12.

36

VITA

Steven Greenstein was born in Silver Spring, Maryland, on September 3, 1969,

to parents Leonard Greenstein and Linda Goldberg Greenstein. After completing his

work at North Springs High School in Atlanta, Georgia, in 1988, he entered Georgia

Institute of Technology. Upon deciding to include teaching in his coursework, he

transferred to Georgia State University where he earned the degree of Bachelor of

Science in Mathematics. During the years that followed he was employed as a high

school teacher in schools in Atlanta, Georgia, and Austin, Texas, where he now resides.

In Summer 2001 he entered the Graduate School of Southwest Texas State University,

San Marcos, Texas.

Perman~nt Address: 5505 Cordell Lane

Austin,_ Texas 78723

This thesis was typed by Steven Greenstein.

