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NONLINEAR DECAY AND SCATTERING OF SOLUTIONS TO A
BRETHERTON EQUATION IN SEVERAL SPACE DIMENSIONS

AKMEL DÉ GODEFROY

Abstract. We consider a Cauchy problem for the n-dimensional Bretherton
equation. We establish the existence of a global solution and study its long-

time behavior, with small data. This is done using the oscillatory integral

techniques considered in [5].

1. Introduction

For the Bretherton equation, we consider the initial-value problem (I.V.P)

utt + u +4u +42u = F (u), x ∈ Rn, n ≥ 1, t > 0,

u(x, 0) = f1(x),

ut(x, 0) = f2(x),

(1.1)

where F (u) = |u|αu and α ≥ 1. Problem (1.1) with n = 1 was introduced by
Kalantorov and Ladyzhenskaya in [4], where they proved the blow-up of it’s so-
lutions in finite time for large data. After an investigation on the local existence
of solutions to (1.1) with n = 1, Scialom [7] pointed out that the global existence
result for “small data” remains an open problem.

Furthermore, using a new computational method called “RATH” (Real Auto-
mated Tangent Hyperbolic function method), Zhi-bin Li et al. [10] showed the
existence of solitary-wave solutions of some partial differential equations. Yet, for
the Bretherton equation, the “RATH” method showed the non-existence of solitary-
wave solution. Our scattering result here seems to confirm the computation result
of Zhi-bin Li et al. for the non-existence of solitary-wave solution to the Bretherton
equation, at least for small data. Indeed it is well known that affirmative results on
scattering are interpreted as the nonexistence of solitary-wave solution of arbitrary
small amplitude, see [2, 6]. Our aim in this paper is to study the global existence,
the uniform in x decay to zero and the scattering as t → ∞, for solutions of (1.1)
with sufficiently small data. More precisely, we show the following two theorems:

Theorem 1.1. Let α > 5 and f1, f2 ∈ Hs(Rn) ∩ L1(Rn), n ≥ 1, with s ≥ 3
2n. If

|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2 < δ with δ sufficiently small, then the solution u

2000 Mathematics Subject Classification. 35B40, 35Q10, 35Q20.

Key words and phrases. Asymptotic behavior; scattering problem; Bretherton equation.
c©2005 Texas State University - San Marcos.
Submitted October 12, 2005. Published December 5, 2005.

1
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of (1.1) is unique in C(R, Hs(Rn)) and satisfies

|u(x, t)|∞ ≤ c(1 + t)−1/4, t ≥ 0, (1.2)

where c does not depend of x and t. Moreover, there is scattering for t → ±∞, that
is, there exist u+, u−, solutions of the linear problem (2.1), such that ‖u(t)−u±(t)‖2
tends to 0 as t → ±∞.

Theorem 1.2. Let α > 1+ 4
θ and f1, f2 ∈ Hr+ 5

2 n+1(Rn)∩Lq

r+ 5
2 n

(Rn), n ≥ 1, with
r > n

p . If ‖f1‖r+ 5
2 n,q + ‖f2‖r+ 5

2 n,q + ‖f1‖r+ 5
2 n+1 + ‖f2‖r+ 5

2 n+1 < δ with δ small,
then the solution u of the I.V.P (1.1) satisfies

‖u(x, t)‖r,p ≤ c(1 + t)−
θ
4 , t ≥ 0, (1.3)

where p = 2/(1− θ), q = 1/(1 + θ), and θ ∈]0, 1[.

Notation. The notation ‖ · ‖r,p is used to denote the norm in Lp
r such that for

u ∈ Lp
r(Rn), ‖u‖r,p = ‖u‖Lp

r
= ‖(1−∆)r/2u‖Lp < ∞. Also, | · |p instead of ‖ · ‖0,p

denotes the norm in Lp, and Hs with norm ‖ · ‖s is used instead of L2
s. Throughout

this paper, c represents a generic constant independent of t and x. The Fourier
transform of a function f is denoted by f̂(ξ) or F(f)(ξ) and F−1(f) ≡ f̆ denotes
the inverse Fourier transform of f .

For 1 ≤ p, q ≤ ∞ and f : Rn × R → R,

‖f‖Lq(R;Lp(Rn)) =
( ∫ +∞

−∞

( ∫
Rn

|f(x, t)|pdx
)q/p

dt
)1/q

.

2. Local existence result

In this section, we write the Cauchy problem associated with (1.1) in it’s integral
form and we prove the local existence and uniqueness of it’s solution. Our method of
proof is based on linear estimates and a contraction mapping argument. Thereupon,
we state a locally well-posed theorem for (1.1).

Theorem 2.1. Let s > n/2 be a real number, and f1, f2 ∈ Hs(Rn), n ≥ 1. Then
there exists T0 > 0 which depends on ‖f1‖s and ‖f2‖s, and a unique solution of
(1.1) in [0,T], such that u ∈ C(0, T0; Hs(Rn)).

Proof. Consider first the linear part of (1.1):

utt + u +4u +42u = 0, x ∈ Rn, n ≥ 1, t > 0,

u(x, 0) = f1(x),

ut(x, 0) = f2(x),

(2.1)

The formal solution of (2.1) is

u(x, t) = V1(t)f1(x) + V2(t)f2(x) (2.2)

where

V1(t)f1(x) = [
1
2
(eitφ(ξ) + e−itφ(ξ))f̂1(ξ)]∨(x),

V2(t)f2(x) = [
1

2iφ(ξ)
(eitφ(ξ) − e−itφ(ξ))f̂2(ξ)]∨(x)

with φ(ξ) = (1− |ξ|2 + |ξ|4)1/2.
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We define

S1(t)f1(x) =
1

2(2π)n

∫
Rn

eixξ+itφ(ξ)f̂1(ξ)dξ,

S2(t)f2(x) =
1

2i(2π)n

∫
Rn

eixξ+itφ(ξ) f̂2(ξ)
φ(ξ)

dξ.

Then

V1(t)f1(x) = S1(t)f1(x) + S1(−t)f1(x),

V2(t)f2(x) = S2(t)f2(x)− S2(−t)f2(x).

Note that
Φ(ξ) ≥ 1

2
√

3
(1 + |ξ|2). (2.3)

Indeed, φ(ξ)2 = 1− |ξ|2 + |ξ|4 = (1− 1
2 |ξ|

2)2 + 3
4 |ξ|

4 so that if |ξ| ≤ 1 then

φ(ξ)2 ≥ 1
4

+
3
4
|ξ|4 ≥ 1

4
(
1
3

+
2
3
|ξ|2 +

1
3
|ξ|4) =

1
12

(1 + |ξ|2)2

and if |ξ| ≥ 1 then

φ(ξ)2 ≥ 3
4
|ξ|4 ≥ 1

12
(1 + |ξ|2)2.

Remark 2.2. Since (1.1) will not change when t is switched to −t, the solution
u(t) in Theorem 2.1 can be extended to u ∈ C([−T0, T0]; Hs(Rn)).

Remark 2.3. Note that, since the negative sign of t in Sj(−t) acts only on the sign
of the phase function, the estimates of Sj(t)f(x) below hold also for Sj(−t)f(x).
Hence, to estimate Vj(t)f(x) one only has to estimate Sj(t)f(x), j = 1, 2.

To prove the existence theorem for (1.1), we need the following inequalities.

Lemma 2.4. Let f1, f2 ∈ Hs(Rn), s ≥ 0, and V1(t), V2(t) defined in (2.2). Then

‖V1(t)f1(x)‖s ≤ c‖f1‖s (2.4)

‖V2(t)f2‖s ≤ c‖f2‖s−2 ≤ c‖f2‖s. (2.5)

The proof of the above lemma follows directly from the definition of V1(t) and
V2(t) in (2.2) and the use of the inequality (2.3). �

Thereafter, with Lemma 2.4 in hand, one can use the contraction mapping prin-
ciple to prove the local well-posedness result in Theorem 2.1. Then, thanks to the
Duhamela principle, the solution of (1.1) verifies the integral equation

u(x, t) = V1(t)f1(x) + V2(t)f2(x) +
∫ t

0

V2(t− τ)(|u|αu)(τ)dτ. (2.6)

Let us define

ϕ(u)(t) = V1(t)f1(x) + V2(t)f2(x) +
∫ t

0

V2(t− τ)(|u|αu)(τ)dτ (2.7)

and the complete metric space

F = {v ∈ C(0, T ; Hs(Rn)), s > n/2, sup
[0,T ]

‖v(t)‖s ≤ a},

where a is a positive real constant.
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We begin by showing that ϕ : F → F is a contraction. The use of the definition
of ϕ in (2.7), Lemma 2.4 and the fact that Hs(Rn)), s > n/2 is an Algebra, lead
for all 0 ≤ t ≤ T , to

‖ϕ(u)(t)‖s ≤ c(‖f1‖s + ‖f2‖s) + c

∫ t

0

‖(|u|αu)(τ)‖sdτ

≤ c(‖f1‖s + ‖f2‖s) + c

∫ t

0

‖u(τ)‖α+1
s dτ

≤ c(‖f1‖s + ‖f2‖s) + cT (sup
[0,T ]

‖u‖s)α+1.

(2.8)

Thereby, taking µ as a positive constant such that ‖f1‖s + ‖f2‖s < µ, we get for
u ∈ F ,

sup
[0,T ]

‖ϕ(u)(t)‖s ≤ c{µ + aα+1T}

so that choosing a = 2cµ, we obtain

sup
[0,T ]

‖ϕ(u)(t)‖s ≤ c{µ + 2α+1cα+1µα+1T} = cµ{1 + 2α+1cα+1µαT}.

Then, fixing T such that
2α+1cα+1µαT < 1 (2.9)

we get
sup
[0,T ]

‖ϕ(u)(t)‖s ≤ 2cµ = a.

This shows that ϕ maps F into F . The next step is to prove that ϕ is in fact a
contraction. We consider u and v in F with the same initial values. Thus

(ϕ(u)− ϕ(v))(t) =
∫ t

0

V2(t− τ)(|u|αu− |v|αv)(τ)dτ.

To estimate sup[0,T ] ‖(ϕ(u)−ϕ(v))(t)‖s we use Lemma 2.4, Taylor formula and the
fact that Hs(Rn)), s > n

2 is an Algebra; it follows that for all 0 ≤ t ≤ T ,

‖(ϕ(u)− ϕ(v))(t)‖s ≤ c

∫ t

0

‖(|u|α + |v|α)(u− v)(τ)‖sdτ

≤ c

∫ t

0

‖(|u|α + |v|α)(τ)‖s‖(u− v)(τ)‖sdτ

≤ cT (sup
[0,T ]

‖u‖α
s + sup

[0,T ]

‖v‖α
s ) sup

[0,T ]

‖u− v‖s.

which leads, with a = 2cµ as above, to

‖(ϕ(u)− ϕ(v))(t)‖s ≤ 2α+1cα+1µαT sup
[0,T ]

‖u− v‖s. (2.10)

Hence, with the choice of T as above in (2.11), we get from (2.10) that ϕ is a
contraction map in F . Thus, the application of contraction mapping principle
gives the result of local existence and uniqueness in Theorem 2.1.

For the sequel, we need the following inequalities which are obtained by obvious
computations including the inequality (2.3): ∀ξ ∈ Rn,

|∇φ(ξ)| = |ξ||2|ξ|2 − 1|
(1− |ξ|2 + |ξ|4)1/2

(2.11)

|D2φ(ξ)| ≤ c. (2.12)
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3. Linear Estimates

The purpose of this section is to study the linear equation associated with (1.1)
and to establish linear estimates needed for the next section. The following result
is concerning the decay of solutions of the linear problem (2.1).

Lemma 3.1. Let V1(t) and V2(t) be defined as in (2.2). Let f1, f2 ∈ H 3
2 n(Rn) ∩

L1(Rn), n ≥ 1. Then there exists a constant c independent of f1, f2, t and x ∈ Rn

such that

|Vj(t)fj |∞ ≤ c(|fj |1 + ‖fj‖3n/2(1 + t)−1/4, j = 1, 2, (3.1)

for all t ≥ 0. Moreover, let f1, f2 ∈ H 3
2 n(Rn) ∩ L1

5
2 n+k

(Rn), n ≥ 1, k ∈ R+; then
we have

‖Vj(t)fj‖k,∞ ≤ c(‖fj‖ 5
2 n+k,1 + ‖fj‖ 3

2 n+k)(1 + t)−1/4, j = 1, 2. (3.2)

Before proving the above lemma, we prove the following lemma.

Lemma 3.2. Given x ∈ Rn and t ∈ R+, the phase function

Ψ(ξ) = φ(ξ) + t−1(x, ξ)

has a finite number of stationary points. Moreover, if ξs is a stationary point of Ψ,
then any point ηs verifying |ηs| = |ξs| is also a stationary point of Ψ.

Proof. Since

∇Ψ(ξ) = ∇φ(ξ) + xt−1 =
ξ(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+ xt−1,

we have

∇Ψ(ξ) = 0 ⇔ ξ(2|ξ|2 − 1) + xt−1(1− |ξ|2 + |ξ|4)1/2 = 0

and making the scalar product with

labele3.3ξ(2|ξ|2 − 1) + xt−1(1− |ξ|2 + |ξ|4)1/2 (3.3)

we get

∇Ψ(ξ) = 0 ⇔ |ξ|2(2|ξ|2 − 1)2 + |xt−1|2(1− |ξ|2 + |ξ|4) = 0 ⇔ P (|ξ|) = 0 (3.4)

where P (y) = 4y6− 4y4 + y2− |xt−1|2(1− y2 + y4), y ∈ R+. The stationary points
of Ψ are such that their norms are the roots of P (y). Then since P (y) is polynomial
of degree 6 so that it has at most 6 roots, we deduce that Ψ has a finite number of
stationary points in Rn. Furthermore, since P (0) = −|xt−1|2 ≤ 0 and P (y) → +∞
as y → +∞, and since P (y) is continuous, we deduce that there exists at least
one stationary point of Ψ. Therefore, Ψ has a finite number of stationary points.
Moreover, we note that if ξs is a stationary point of Ψ and if ηs is a point verifying
|ηs| = |ξs|, then we have P (|ηs|) = P (|ξs|) = 0 and consequently from (3.4) ηs is
also a stationary point of Ψ. This completes the proof of Lemma 3.2. �

Next, we use Lemma 3.2 to prove Lemma 3.1. Let us recall that, thanks to
Remark 2.2, the inequality (3.1) of proposition (3.1) holds for V1(t) and V2(t)
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whenever it holds for S1(t) and S2(t). If 0 ≤ t ≤ 1, we have, thanks to the
Schwartz inequality,

|S1(t)f1(x)| = 1
2(2π)n

|
∫

Rn

eitΨ(ξ)f̂1(ξ)dξ|

≤ c

∫
Rn

|f̂1(ξ)|dξ

≤ c(
∫

Rn

(1 + |ξ|2)−ndξ)1/2‖f1‖n ≤ c‖f1‖n

≤ c(1 + t)−1/4‖f1‖3n/2

(3.5)

If t ≥ 1, let Ω = {ξ ∈ Rn, |ξ| ≤ t
1
4n } and qt(ξ) = χΩ(ξ)eitφ(ξ); then thanks to the

Schwartz and the Young inequality,

|S1(t)f1(x)|

=
1

2(2π)n
|(

∫
Ω

+
∫

Ωc

)eitφ(ξ)+ix·ξ f̂1(ξ)dξ|

≤ c|q̌t(x) ∗ f1(x)|∞ + c(
∫

Ωc

(1 + |ξ|2)− 3
2 ndξ)1/2(

∫
Ωc

(1 + |ξ|2) 3
2 n|f̂1(ξ)|2dξ)1/2

≤ c|q̌t(x)|∞|f1(x)|1 + ct−1/4‖f1‖3n/2

(3.6)
where the first factor in the second term of the right hand side of (3.6) is a bound
given ∀t ≥ 1 by

( ∫
{|ξ|≥t

1
4n }

(1 + |ξ|2)− 3
2 ndξ

)1/2

≤
( ∫

{r≥t
1
4n }

r−3nrn−1dr
)1/2

= c(t−1/2)1/2 = ct−1/4.

It remains to estimate q̌t(x). We need for the sequel, the following notations: We
take Ω = {ξ ∈ Rn, |ξ| ≤ t

1
4n } and let Es = {ξ ∈ Rn,∇Ψ(ξ) = 0} be the set of

stationary points of Ψ. Hence from Lemma 3.2, Es has a finite number of elements.
Then set

s(t−1/4) =
⋃

ζ∈Es

B(ζ, t−1/4)
⋃
{ξ ∈ Rn, |ξ| ≤ t−1/4}

where for each ζ ∈ Es, B(ζ, t−1/4) = {ξ ∈ Rn, |ξ − ζ| ≤ t−1/4}. Let

A = s(t−1/4)
⋃
{ 1√

2
(1− t−1/4) ≤ |ξ| ≤ 1√

2
(1 + t−1/4)}.

Hence

q̌t(x) =
∫

Ω

eitφ(ξ)+ix·ξdξ =
( ∫

Ω∩A
+

∫
Ω∩Ac

)
eitφ(ξ)+ix·ξdξ = I1 + I2. (3.7)
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Since from Lemma 3.2, card(Es) < ∞, we get

|I1| ≤
∫

Ω∩A
dξ

≤
∑
ζ∈Es

∫
B(ζ,t−1/4)

dξ +
∫
{|ξ|≤t−1/4}

dξ +
∫
{ 1√

2
(1−t−1/4)≤|ξ|≤ 1√

2
(1+t−1/4)}

dξ

≤
∫
{0≤r≤t−1/4}

rn−1dr +
∫
{ 1√

2
(1−t−1/4)≤r≤ 1√

2
(1+t−1/4)}

rn−1dr

≤ ct−
n
4 +

∫
{ 1√

2
(1−t−1/4)≤r≤ 1√

2
(1+t−1/4)}

rn−1dr

≤ ct−
n
4 + ct−1/4 ≤ ct−1/4.

(3.8)
For I2, we point out that on

Ac = {s(t−1/4)}c
⋂
{{|ξ| ≤ 1√

2
(1− t−1/4)} ∪ {|ξ| ≥ 1√

2
(1 + t−1/4)}},

Ψ has no stationary point so that we can integrate I2 by parts as follows:

|I2| = |
∫

Ω∩Ac

eitΨ(ξ)dξ|

= t−1|
∫

Ω∩Ac

1
∇Ψ(ξ)

∇(eitΨ(ξ))dξ|

≤ t−1

∫
Ω∩Ac

|∇(
1

∇Ψ(ξ)
)|dξ + t−1

∫
∂{Ω∩Ac}

dξ

|∇Ψ(ξ)|

≤ ct−1

∫
Ω∩Ac

{|∇(
1

∇Ψ(ξ)
)|+ |∇(

1
|∇Ψ(ξ)|

)|}dξ

≤ ct−1

∫
Ω∩Ac

|D2Ψ(ξ)|
|∇Ψ(ξ)|2

dξ.

(3.9)

For the rest of this article, we consider a point ξs ∈ Es; then we have

Ac ⊂{ξ ∈ Rn, |ξ − ξs| > t−1/4} ∩ {|ξ| > t−1/4} ∩ {{|ξ| < 1√
2
(1− t−1/4)}

∪ {|ξ| > 1√
2
(1 + t−1/4)}}.

Hence from (3.9), we obtain

|I2| ≤ ct−1

∫
Ω∩{E1∪E2}∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|D2Ψ(ξ)|
|∇Ψ(ξ)|2

dξ (3.10)

where E1 = {ξ ∈ Rn, |ξ| < 1√
2
(1− t−1/4)} and E2 = {ξ ∈ Rn, |ξ| > 1√

2
(1 + t−1/4)}.

For the sequel, we need the following inequality: with E1 and E2 as defined in
(3.10), we claim that on {E1 ∪ E2} ∩ {|ξ − ξs| > t−1/4} ∩ {|ξ| > t−1/4},

|∇Ψ(ξ)| ≥ ct−1/4 |ξ|(1 + |ξ|)
(1− |ξ|2 + |ξ|4)1/2

. (3.11)

To prove this inequality, let us give the following remark.
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Remark 3.3. Let ξs ∈ Es. Then for any ξ ∈ Rn, there exists an index set J empty
or not, with J ∈ {1, . . . , n} such that

sgn(ξi) =

{
− sgn(ξsi) if i ∈ J

sgn(ξsi) if i ∈ Jc.

Let us prove now inequality (3.11). In view of Remark 3.3, let ξs ∈ Es and let J
be an index set such that

sgn(ξi) =

{
− sgn(ξsi) if i ∈ J

sgn(ξsi) if i ∈ Jc.

Moreover, define a point ηs by

ηsi =

{
ξsi if i ∈ J

−ξsi if i ∈ Jc

where J is the same index set as above. Hence from Lemma 3.2, ηs is also a
stationary point and then thanks to Remark 3.3 and the definition of ηs, we have
on E2 = {ξ ∈ Rn, |ξ| > 1√

2
(1 + t−1/4)} and for |ξs| ≥ 1√

2
,

|∇Ψ(ξ)| = |∇Ψ(ξ)−∇Ψ(ηs)| = |∇φ(ξ)−∇φ(ηs)|

= |ξ (2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

− ηs
(2|ηs|2 − 1)

(1− |ηs|2 + |ηs|4)1/2
|

= (
∑
i∈J

+
∑
i∈Jc

)|ξi
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
− ηsi

(2|ηs|2 − 1)
(1− |ηs|2 + |ηs|4)1/2

|

=
∑
i∈J

|ξi
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
− ξsi

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

+
∑
i∈Jc

|ξi
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+ ξsi

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

=
∑
i∈J

|sgn(ξi)|ξi|
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
− sgn(ξsi)|ξsi|

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

+
∑
i∈Jc

|sgn(ξi)|ξi|
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+ sgn(ξsi)|ξsi|

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

=
∑
i∈J

|sgn(ξi)|ξi|
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+ sgn(ξi)|ξsi|

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

+
∑
i∈Jc

|sgn(ξi)|ξi|
(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+ sgn(ξi)|ξsi|

(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

|

= (
∑
i∈J

+
∑
i∈Jc

)(
|ξi|(2|ξ|2 − 1)

(1− |ξ|2 + |ξ|4)1/2
+

|ξsi|(2|ξs|2 − 1)
(1− |ξs|2 + |ξs|4)1/2

)

≥ |ξ|(
√

2|ξ| − 1)(
√

2|ξ|+ 1)
(1− |ξ|2 + |ξ|4)1/2

≥ t−1/4 |ξ|(|ξ|+ 1)
(1− |ξ|2 + |ξ|4)1/2

.
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Again on E2 = {ξ ∈ Rn, |ξ| > 1√
2
(1 + t−1/4)} but now for |ξs| ≤ 1√

2
, we write

thanks to the definition of ηs,

|∇Ψ(ξ)| = |∇φ(ξ)−∇φ(−ηs)|

= |ξ (2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

+ ηs
(2|ηs|2 − 1)

(1− |ηs|2 + |ηs|4)1/2
|

= |ξ (2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

− ηs
(1− 2|ηs|2)

(1− |ηs|2 + |ηs|4)1/2
|

so that thanks to Remark 3.3 and the definition of ηs, we follow the same lines as
above to obtain

|∇Ψ(ξ)| = |ξ| (2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

+ |ξs|
(1− 2|ξs|2)

(1− |ξs|2 + |ξs|4)1/2

≥ ct−1/4 |ξ|(|ξ|+ 1)
(1− |ξ|2 + |ξ|4)1/2

.

For this time, on E1 = {ξ ∈ Rn, |ξ| < 1√
2
(1 − t−1/4)} and if |ξs| ≥ 1√

2
, we write

thanks to the definition of ηs above,

|∇Ψ(ξ)| = |∇φ(−ηs)−∇φ(ξ)|

= | − ηs
(2|ηs|2 − 1)

(1− |ηs|2 + |ηs|4)1/2
− ξ

(2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

|

= | − ηs
(2|ηs|2 − 1)

(1− |ηs|2 + |ηs|4)1/2
+ ξ

(1− 2|ξ|2)
(1− |ξ|2 + |ξ|4)1/2

|

so that thanks to Remark 3.3 and the definition of ηs, we follow the same lines as
above to get

|∇Ψ(ξ)| = |ξs|
(2|ξs|2 − 1)

(1− |ξs|2 + |ξs|4)1/2
+ |ξ| (1− 2|ξ|2)

(1− |ξ|2 + |ξ|4)1/2

≥ ct−1/4 |ξ|(|ξ|+ 1)
(1− |ξ|2 + |ξ|4)1/2

.

Finally, still on E1 = {ξ ∈ Rn, |ξ| < 1√
2
(1− t−1/4)} but now for |ξs| ≤ 1√

2
, we write

with the definition of ηs,

|∇Ψ(ξ)| = |∇φ(ηs)−∇φ(ξ)|

= |ηs
(2|ηs|2 − 1)

(1− |ηs|2 + |ηs|4)1/2
− ξ

(2|ξ|2 − 1)
(1− |ξ|2 + |ξ|4)1/2

|

= | − ηs
(1− 2|ηs|2)

(1− |ηs|2 + |ηs|4)1/2
+ ξ

(1− 2|ξ|2)
(1− |ξ|2 + |ξ|4)1/2

|

so that proceeding as above, we find thanks to Remark 3.3 and the definition of ηs,

|∇Ψ(ξ)| ≥ ct−1/4 |ξ|(|ξ|+ 1)
(1− |ξ|2 + |ξ|4)1/2

.

This completes the proof of (3.11).
For the sequel, we need the following inequality which, thanks to (2.12) and

(3.11), is obviously shown: That is: On

Ω ∩ {E1 ∪ E2} ∩ {|ξ − ξs| > t−1/4} ∩ {|ξ| > t−1/4}
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where Ω is defined in (3.5) and E1 and E2 are defined in (3.10), we have

|D2Ψ(ξ)|
|∇Ψ(ξ)|2

≤ ct1/2 (1− |ξ|2 + |ξ|4)
|ξ|2(|ξ|+ 1)2

≤ ct1/2 (1 + |ξ|)2

|ξ|2
. (3.12)

Therefore, from (3.10), (3.11), (3.12), we get

|I2| ≤ ct−1

∫
Ω∩{E1∪E2}∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|D2Ψ(ξ)|
|∇Ψ(ξ)|2

dξ

≤ ct−1t1/2

∫
Ω∩{E1∪E2}∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|)2dξ

≤ ct−1/2

∫
Ω∩E1∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|)2dξ

+ ct−1/2

∫
Ω∩E2∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|)2dξ

≤ ct−1/2{
∫
{t−1/4<|ξ|< 1√

2
(1−t−1/4)}

|ξ|−2dξ +
∫
{ 1√

2
(1+t−1/4)<|ξ|<t

1
4n }

dξ}

≤ ct−1/2{
∫
{t−1/4<r< 1√

2
(1−t−1/4)}

r−2rn−1dr

+
∫
{ 1√

2
(1+t−1/4)<r<t

1
4n }

rn−1dr}

≤ ct−1/2{
∫
{t−1/4<r<1}

r−2dr + t
n−1
4n

∫
{ 1√

2
(1+t−1/4)<r<t

1
4n }

dr} ≤ ct−1/4,

(3.13)
where E1 = {ξ ∈ Rn, |ξ| < 1√

2
(1− t−1/4)} and E2 = {ξ ∈ Rn, |ξ| > 1√

2
(1 + t−1/4)}.

Hence, with the estimates on I1 and I2 in (3.8) and (3.13) above, and thanks to
(3.7), we are led to

|q̌t(x)|∞ ≤ ct−1/4 ∀t ≥ 1.

Combining this inequality, (3.6) and (3.5), we find

|S1(t)f1(x)| ≤ c(1 + t)−1/4(|f1|1 + ‖f1‖3n/2 ∀t ≥ 0,

which with Remark 2.2 leads to (3.1) for the case j = 1. Let us prove now the
inequality (3.1) for the case j = 2 If 0 ≤ t ≤ 1, we have thanks to the Schwartz
inequality and the inequality (2.3) on φ(ξ),

|S2(t)f2(x)| = 1
2(2π)n

|
∫

Rn

eitΨ(ξ) f̂2(ξ)
φ(ξ)

dξ|

≤ c

∫
Rn

|f̂2(ξ)|
|φ(ξ)|

dξ

≤ c

∫
Rn

|f̂2(ξ)|
(1 + |ξ|2)

dξ

≤ c(
∫

Rn

(1 + |ξ|2)−ndξ)1/2‖f2‖n−2

≤ c‖f2‖n−2 ≤ c(1 + t)−1/4‖f2‖3n/2.

(3.14)
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If t ≥ 1, then we have with the notation Ω = {ξ ∈ Rn, |ξ| ≤ t
1
4n } given above and

thanks to (2.3), the Schwartz and the Young inequalities,

|S2(t)f2(x)| = 1
2(2π)n

∣∣∣( ∫
Ω

+
∫

Ωc

)
eitφ(ξ)+ix·ξ f̂2

φ(ξ)
(ξ)dξ

∣∣∣
≤ c|ǩt(x) ∗ f2(x)|∞ + c

( ∫
Ωc

(1 + |ξ|2)− 3
2 ndξ

)1/2

‖f2‖3n/2

≤ c|ǩt(x)|∞|f2(x)|1 + ct−1/4‖f2‖3n/2

(3.15)

where the function kt(ξ) = χΩ(ξ)eitφ(ξ)/φ(ξ). On the other hand, with the same
notations of Ω and A given in (3.5), (3.7), (3.9), we write

ǩt(x) =
1

(2π)n

( ∫
Ω∩A

+
∫

Ω∩Ac

)
eitφ(ξ)+ix·ξ 1

φ(ξ)
dξ = J1 + J2. (3.16)

Then, with the use of the inequality (2.3), we follow the same lines as the estimation
of I1 in (3.8) to get

|J1| ≤ ct−1/4. (3.17)
For the estimation of J2, we need the following inequality which with the use of
(2.3), (2.11), (2.12), (3.11), (3.12), is obviously proved. That is: On

Ω ∩ {E1 ∪ E2} ∩ {|ξ − ξs| > t−1/4} ∩ {|ξ| > t−1/4},
|D2Ψ(ξ)|

|∇Ψ(ξ)|2|φ(ξ)|
+

|∇φ(ξ)|
|∇Ψ(ξ)||φ(ξ)|2

≤ ct1/2|ξ|−2(1 + |ξ|2).
(3.18)

Therefore, following the same lines as in the proofs of (3.9) and (3.13), we find
thanks to (3.18) and integration by parts (as for I2),

|J2| = |
∫

Ω∩Ac

eitΨ(ξ) 1
φ(ξ)

dξ| = t−1|
∫

Ω∩Ac

1
∇Ψ(ξ)φ(ξ)

∇(eitΨ(ξ))dξ|

≤ t−1{
∫

Ω∩Ac

|∇(
1

∇Ψ(ξ)φ(ξ)
)|dξ +

∫
∂{Ω∩Ac}

dξ

|∇Ψ(ξ)||φ(ξ)|
}

≤ ct−1

∫
Ω∩Ac

|∇(
1

∇Ψ(ξ)φ(ξ)
)|dξ

≤ ct−1

∫
Ω∩Ac

{ |D2Ψ(ξ)|
|∇Ψ(ξ)|2|φ(ξ)|

+
|∇φ(ξ)|

|∇Ψ(ξ)||φ(ξ)|2
}dξ

≤ ct−1/2

∫
Ω∩E1∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|2)dξ

+ ct−1/2

∫
Ω∩E2∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|2)dξ

≤ ct−1/4.

(3.19)

Hence (3.16) and the estimates (3.17) and (3.19) on J1 and J2 above, give

|ǩt(x)| ≤ ct−1/4 ∀t ≥ 1.

Then, this with (3.15) give

|S2(t)f2(x)| ≤ c(1 + t)−1/4(|f2|1 + ‖f2‖3n/2 ∀t ≥ 1,

Combining this inequality and (3.14), we get with Remark 2.2 the desired inequality
(3.1) for the case j = 2. This finishes up the proof of inequality (3.4). In order to
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prove the inequality (3.2) of Lemma 3.1, we set Jk = (1 −4)k/2 with k ∈ R, and
we note that

JkS1(t)f1(x) = JkF−1(
1
2
eitφ(ξ)f̂1(ξ))(x)

= F−1(
1
2
(1 + |ξ|2)k/2eitφ(ξ)f̂1(ξ))(x)

=
1

2(2π)n

∫
Rn

(1 + |ξ|2)k/2eitφ(ξ)+ix·ξ f̂1(ξ)dξ

and

JkS2(t)f2(x) =
1

2(2π)n

∫
Rn

(1 + |ξ|2)k/2eitφ(ξ)+ix·ξ f̂2

φ(ξ)
(ξ)dξ.

Henceforth, we can prove the inequality (3.2) of Lemma 3.1. We begin with the
case j = 1: For 0 ≤ t ≤ 1, we follow the same lines as in (3.5) and we get

|JkS1(t)f1(x)| ≤ c(1 + t)−1/4‖f1‖ 3
2 n+k. (3.20)

If t ≥ 1, let pt(ξ) = (1 + |ξ|2)− 5
4 nχΩ(ξ)eitφ(ξ) where Ω = {ξ ∈ Rn, |ξ| ≤ t

1
4n } is

defined above in (3.6). Then thanks to the Schwartz and the Young inequalities,
we have as in (3.6),

|JkS1(t)f1(x)| = 1
2(2π)n

∣∣∣( ∫
Ω

+
∫

Ωc

)
eitφ(ξ)+ix·ξ(1 + |ξ|2

)− k
2
f̂1(ξ)dξ

∣∣∣
≤ c|p̌t(x) ∗ (1−4)

( 5
2 n+k)

2 f1(x)|∞

+ c
( ∫

Ωc

(1 + |ξ|2)− 3
2 ndξ

)1/2

(
∫

Ωc

(1 + |ξ|2) 3
2 n+k|f̂1(ξ)|2dξ)1/2

≤ c|p̌t(x)|∞‖f1(x)‖ 5
2 n+k,1 + ct−1/4‖f1‖ 3

2 n+k.

(3.21)
Then, with the same notation of A and Ω given in (3.7) above, we write:

p̌t(x) =
1

(2π)n

( ∫
Ω∩A

+
∫

Ω∩Ac

)
(1 + |ξ|2)− 5

4 neitφ(ξ)+ix·ξdξ = I ′1 + I ′2 (3.22)

and following the same lines as in (3.8) we get

|I ′1| ≤ c

∫
Ω∩A

(1 + |ξ|2)− 5
4 ndξ ≤ c

∫
Ω∩A

dξ ≤ ct−1/4. (3.23)

For the sequel, we need the following inequality which with the help of the inequal-
ities (2.3), (2.10), (2.11), (3.11), (3.12), is easily proved. That is, for all ξ ∈ Rn and
for any given γ ≥ 0,

|∇(
1

∇Ψ(ξ)(1 + |ξ|2) γ
2
)|+ |∇(

1
φ(ξ)∇Ψ(ξ)(1 + |ξ|2) γ

2
)| ≤ ct1/2|ξ|−2(1+ |ξ|2). (3.24)
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Henceforth, thanks to the above inequality, we follow the same lines as in the proof
of (3.19), and using integration by parts, we get

|I ′2| =
1

2(2π)n
|
∫

Ω∩Ac

eitΨ(ξ)

(1 + |ξ|2) γ
2
dξ|

=
1

2(2π)n
t−1|

∫
Ω∩Ac

∇(eitΨ(ξ))
∇Ψ(ξ)(1 + |ξ|2) γ

2
dξ|

≤ ct−1

∫
Ω∩Ac

|∇(
1

∇Ψ(ξ)(1 + |ξ|2) γ
2
)|dξ

≤ ct−1/2

∫
Ω∩E1∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|2)dξ

+ ct−1/2

∫
Ω∩E2∩{|ξ−ξs|>t−1/4}∩{|ξ|>t−1/4}

|ξ|−2(1 + |ξ|2)dξ

≤ ct−1/4.

(3.25)

Therefore, (3.22) and the estimates in (3.23) and (3.25) of I ′1 and I ′2 above, give

|p̌t(x)| ≤ ct−1/4 t ≥ 1.

so that thanks to (3.21) we get for all t ≥ 1,

|JkS1(t)f1(x)| ≤ c(1 + t)−1/4(‖f1‖ 5
2 n+k,1 + ‖f1‖ 3

2 n+k), k ≥ 0. (3.26)

Finally, combining (3.20) and (3.26), and thanks to Remark 2.2, we find the case
j = 1 of the inequality (3.2) of Lemma 3.1. Likewise, following the same lines as in
the proof of the case j = 1 of (3.2), and with the use of the inequalities (2.3) and
(3.24), we prove the case j = 2 of the inequality (3.2). This, with Remark 2.2 puts
an end of the proof of the inequality (3.2) and consequently of Lemma 3.1.

Let us give now the following lemma which will be useful for the Lp−Lq estimates.

Lemma 3.4. Let f1, f2 ∈ L1
5
2 n+k

(Rn), k ≥ 0, n ≥ 1. Then

‖Vj(t)fj(x)‖k,∞ ≤ c(1 + t)−1/4‖fj‖ 5
2 n+k,1, j = 1, 2. (3.27)

Proof. Thanks to inequality (3.2) of Lemma 3.1, it suffices to use the Sobolev
embedding Wn,1(Rn) ⊂ L2(Rn) and we get

‖Vj(t)fj(x)‖k,∞ ≤ c(1 + t)−1/4(‖fj‖ 5
2 n+k,1 + ‖fj‖ 3

2 n+k)

= c(1 + t)−1/4(‖fj‖ 5
2 n+k,1 + |J 3

2 n+kfj |2)

≤ c(1 + t)−1/4(‖fj‖ 5
2 n+k,1 + ‖J 3

2 n+kfj‖n,1)

= 2c(1 + t)−1/4‖fj‖ 5
2 n+k,1, j = 1, 2.

�

To end with this section, we give the following lemma.

Lemma 3.5. Let f1, f2 ∈ Hk+ 5
2 n+1(Rn) ∩ Lq

k+ 5
2 n

(Rn), k ≥ 0, n ≥ 1. Then

‖Vj(t)fj(x)‖k,p ≤ c(1 + t)−
θ
4 ‖fj‖ 5

2 n+k,q, j = 1, 2 (3.28)

where p = 2/(1− θ), q = 2/(1 + θ), θ ∈]0, 1[.
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Proof. Thanks to (2.4) and (2.5), we get for any k ∈ R+,

‖Vj(t)fj(x)‖k ≤ c‖fj(x)‖k ≤ c‖fj‖ 5
2 n+k, j = 1, 2; (3.29)

that is
|JkVj(t)fj(x)|2 ≤ c|J 5

2 n+kfj(x)|2, j = 1, 2. (3.30)
Moreover, from (3.27) in Lemma 3.4 we have

|JkVj(t)fj(x)|∞ ≤ c(1 + t)−1/4|J 5
2 n+kfj(x)|1, j = 1, 2. (3.31)

We know that (see above),

JkVj(t)(fj(x)) = Vj(t)(Jkfj(x)) = J−
5
2 nVj(t)(J

5
2 n+kfj(x)).

Therefore, thanks to (3.30) and (3.31), we apply the interpolation theorem (see [1])
for the evolution operator J−

5
2 nVj(t), j = 1, 2, and we find the inequality (3.28) of

Lemma 3.5. This finishes up the proof of Lemma 3.5. �

4. Decay and Scattering results of Solutions to the Nonlinear
Equation

Proof of Theorem Theorem 1.1. We write (1.1) in its integral form as given in (2.6):

u(x, t) = V1(t)f1(x) + V2(t)f2(x) +
∫ t

0

V2(t− τ)(|u|αu)(τ)dτ. (4.1)

where V1(t) and V2(t) are defined in (2.3), (2.4). Then, taking the L∞ norm of the
both sides of (4.1) we get thanks to Lemma 3.1,

|u(t)|∞ ≤ c(1 + t)−1/4(|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2

+ c

∫ t

0

(1 + (t− τ))−1/4(||u|αu|1 + ‖|u|αu‖3n/2(τ)dτ

≤ c(1 + t)−1/4(|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2

+ c

∫ t

0

(1 + (t− τ))−1/4(|u|α−1
∞ |u|22 + |u|α∞‖u‖3n/2(τ)dτ.

(4.2)

Then, we define the quantity

Q(t) = sup
0≤τ≤t

{(1 + τ)
1
4 |u(τ)|∞ + ‖u(τ)‖3n/2}.

From (4.2)

|u(t)|∞ ≤ c(1 + t)−1/4(|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2

+ cQ(t)α+1
∫ t

0

(1 + (t− τ))−1/4(1 + τ)−
1
4 (α−1)dτ.

(4.3)

But since for α > 5,∫ t

0

(1 + (t− τ))−1/4(1 + τ)−
1
4 (α−1)dτ

= (
∫ t

2

0

+
∫ t

t
2

)(1 + (t− τ))−1/4(1 + τ)−
1
4 (α−1)dτ ≤ c(1 + t)−1/4

we deduce from (4.3) that for α > 5,

(1 + t)
1
4 |u(t)|∞ ≤ c{|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2 + Q(t)α+1} (4.4)
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Furthermore, we get for α > 5, thanks to the inequalities (2.4) and (2.5) of Lemma
2.4 and with (4.1),

‖u(t)‖3n/2 ≤ c{‖f1‖3n/2 + ‖f2‖3n/2 +
∫ t

0

‖|u|αu‖3n/2(τ)dτ}

≤ c{‖f1‖3n/2 + ‖f2‖3n/2 +
∫ t

0

|u|α∞‖u‖3n/2(τ)dτ}

≤ c{‖f1‖3n/2 + ‖f2‖3n/2 + Q(t)α+1
∫ t

0

(1 + τ)−
α
4 dτ}

≤ c{‖f1‖3n/2 + ‖f2‖3n/2 + Q(t)α+1}.

(4.5)

Therefore, (4.4) and (4.5) give

Q(t) ≤ c{|f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2 + Q(t)α+1}. (4.6)

Henceforth, thanks to the inequality (4.6), if |f1|1 + ‖f1‖3n/2 + |f2|1 + ‖f2‖3n/2 < δ
with δ > 0 small enough, we find that Q(t) is bounded. Indeed, it is well known that
inequality (4.6) is satisfied if Q(t) ∈ [0, β1] ∪ [β2,∞[ with 0 < β1 < β2 < ∞ since δ

is small. Thereby, since Q(0) ≤ 2‖f1‖3n/2 < 2δ (because H 3
2 n(Rn) ⊂ L∞(Rn)), the

continuity of Q(t) and the inequality (4.6) allow us to conclude that Q(t) remains
bounded for all t ≥ 0. Thus, we have obtained a bound of Q(t) and consequently an
a-priori estimate of the local solution which permit us to extend globally the local
solution of Theorem 2.1. Moreover, this a-priori estimate provides the inequality
(1.2) of Theorem 1.1. For the proof of the scattering result in the Theorem 1.1, we
define

u+(x, t) = u(x, t) +
∫ +∞

t

V2(t− τ)(|u|αu)(τ)dτ (4.7)

where u(x, t) is the solution of (1.1) given by Theorem 1.1. We only consider the
case of u+ (t → +∞) since the proof for the case of u− (t → −∞) is similar. Then,
thanks to (4.7) and with the use of the inequalities (2.5) of Lemma 2.4 and (1.2) of
Theorem 1.1, we have,

‖u(t)− u+(t)‖2,2 ≤ c

∫ +∞

t

|(|u|αu)(τ)|2dτ

≤ c

∫ t

0

|u(τ)|α∞|u(τ)|2dτ

≤ c

∫ +∞

t

(1 + τ)−
α
4 dτ

and the integral on the right-hand side approaches to zero as t → +∞, since by
hypothesis of Theorem 1.1, α > 5.

Thereafter, set g+(x) = f2(x) +
∫ +∞
0

V2(−τ)(|u|αu)(τ)dτ. Then thanks to (4.7)
and (4.1), we may write u+ as

u+(x, t) = V1(t)f(x) + V2(t)g+(x). (4.8)

Therefore, we can see that u+(t) is a solution of the linearized equation (2.1). This
completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. To prove Theorem 1.2, we need the following inequality of
Gagliardo-Nirenberg type.
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Lemma 4.1. Let u belong to Lp2(Rn) and its derivatives of order m, Dmu belong
to Lr1(Rn), 1 ≤ p2, r1 ≤ ∞. For the derivatives Dju 0 ≤ j < m, the following
inequalities hold:

|Dju|p1 ≤ c|Dmu|ar1
|u|1−a

p2
,

where
1
p1

=
j

n
+ a(

1
r1
− m

n
) + (1− a)

1
p2

,

for all a in the interval j
m ≤ a ≤ 1.

The proof of the above lemma can be found in [7].
Now, we prove Theorem 1.2. We recall the notation p = 2/(1 − θ), q = 1/(1 +

θ), θ ∈]0, 1[. Let r > n
p and apply the norm Lp

r(Rn) to the two sides of (4.1).
Then, thanks to Lemma 3.5, the Gagliardo-Nirenberg inequality in Lemma 4.1 and
Sobolev imbeddings theorems,

‖u(x, t)‖r,p

≤ ‖V1(t)f(x)‖r,p + ‖V2(t)g(x)‖r,p +
∫ t

0

‖V2(t− τ)(|u|α−1u)(τ)‖r,pdτ

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q) + c

∫ t

0

(1 + (t− τ))−
θ
4 ‖|u|αu(τ)‖ 5

2 n+r,qdτ

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q)

+ c

∫ t

0

(1 + (t− τ))−
θ
4 ‖|u|αu(τ)‖a

5
2 n+r+1,2||u|

αu(τ)|1−a
1 dτ

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q)

+ c

∫ t

0

(1 + (t− τ))−
θ
4 (|u|α∞‖u‖ 5

2 n+r+1)
a(|u|α−1

∞ |u|22)1−adτ

(4.9)
where

a =
( 5
2n + r)/n + (1− θ)/2
( 5
2n + r + 1)/n + 1/2

= 1− 1/n + θ/2
( 5
2n + r + 1)/n + 1/2

.

Set
K(t) = sup

0≤τ≤t
{(1 + τ)

θ
4 ‖u(τ)‖r,p + ‖u(τ)‖ 5

2 n+r+1}.

Hence, since (by hypothesis above) r > n/p, then thanks to the Sobolev imbedding
theorem Lp

r(Rn) ⊂ L∞(Rn) and with (4.9), we get for α > 1 + 4/θ,

‖u(x, t)‖r,p

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q)

+ c

∫ t

0

(1 + (t− τ))−
θ
4 (‖u‖α

r,p‖u‖ 5
2 n+r+1)

a(‖u‖α−1
r,p ‖u‖25

2 n+r+1)
1−adτ.

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q)

+ c

∫ t

0

(1 + (t− τ))−
θ
4 (K(t)α+1(1 + τ)−α θ

4 )a(K(t)α+1(1 + τ)−(α−1) θ
4 )1−adτ.

≤ c(1 + t)−
θ
4 (‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q)
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+ K(t)α+1
∫ t

0

(1 + (t− τ))−
θ
4 (1 + τ)−(α−1) θ

4 dτ

≤ c(1 + t)−
θ
4 {‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q + K(t)α+1}.

We deduce from the above inequality that for α > 1 + 4/θ,

(1 + t)
θ
4 ‖u(x, t)‖r,p ≤ c{‖f1‖ 5

2 n+r,q + ‖f2‖ 5
2 n+r,q + K(t)α+1}. (4.10)

Furthermore, thanks to the inequalities (2.4), (2.5) of Lemma 2.4 and following
the same lines as in the proof of the inequality (4.5), we find with (4.1) and for
α > 1 + 4/θ

‖u(x, t)‖ 5
2 n+r+1 ≤ c{‖f1‖ 5

2 n+r+1 + ‖f2‖ 5
2 n+r+1 + K(t)α+1}. (4.11)

Then the combination of (4.10) and (4.11) leads to the inequality

K(t) ≤ c{‖f1‖ 5
2 n+r,q +‖f2‖ 5

2 n+r,q +‖f1‖ 5
2 n+r+1 +‖f2‖ 5

2 n+r+1 +K(t)α+1}. (4.12)

Therefore, as above, we find that if

‖f1‖ 5
2 n+r,q + ‖f2‖ 5

2 n+r,q + ‖f1‖ 5
2 n+r+1 + ‖f2‖ 5

2 n+r+1

is sufficiently small, then the inequality (4.12) gives K(t) ≤ c for all t ≥ 0. This
implies that ‖u(x, t)‖r,p ≤ c(1 + t)−

θ
4 for all t ≥ 0, and Theorem 1.2 is proven. �
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582 Abidjan 22, Cote d’Ivoire
E-mail address: akmelde@yahoo.fr


	1. Introduction
	Notation

	2. Local existence result
	3. Linear Estimates
	4. Decay and Scattering results of Solutions to the Nonlinear Equation
	References

