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EXISTENCE OF SOLUTIONS TO SUPERLINEAR P-LAPLACE
EQUATIONS WITHOUT AMBROSETTI-RABINOWIZT
CONDITION

DUONG MINH DUC

ABSTRACT. We study the existence of non-trivial weak solutions in Wol’p(Q)
of the super-linear Dirichlet problem

—div(|Vu|P~2Vu) = f(z,u) in Q
=0 on 99,
where f satisfies the condition

F(@, )] < (@)™ +b@) V(1) € Q xR,

where r € (p, Npr), be Lﬁ(Q) and |w|"~! may be non-integrable on .

)

1. INTRODUCTION

Let N be an integer > 3, Q be a bounded domain in RY with smooth boundary

0Q, p be in [1, N) and p* = NN—_p Let W, *(2) be the usual Sobolev space with
the following norm

1/p 1
llull1,p = {/ |Vu|pda:} Vu € Wyt ().
Q
We consider the Dirichlet problem
—div(|VulP2Vu) = f(z,u) in Q,
u=0 on 0,
where f is a real Carathéodory function on 2 X R and satisfies the following con-
ditions
(A1) there exist r € (p,p*), w € Kp,» (see Definition and b € L7 () such

that
0] < @ +b(@) V) e QxR
(A2) there exist C' € [0,00) and d € L*(2) such that |f(x,t)] < d(x) for every z
in  and |t| < C,
(A3) there is d; in L%(Q) such that d; (z) < ‘J:l(fj?t for every (z,t) € Q x R,
(A4) f(z,0) =0 for every z in © and lim;_,o ‘fl(f;tz)t =0a.e. in 2, and

(1.1)
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(A5) limp—oo ﬁc‘(ff% = o0 a.e. in Q.

The integrability of |w|" ! is essential in [1 [5, [7], [T}, 12} [13] 14} 16 [17], because
these papers have used the differentiability of Nemytskii from L9 (Q) into L92((2)
(see [5, M]) and the Sobolev embedding from WJ'(2) into L9 (). In the present
paper, using weighted Sobolev embeddings in [6, 10, [9] 15, 18] instead of classical
one in [3], we can study the problem with non-integrable functions |w|"~! in
(A1).

In many applications, L&)

G
controlled when [¢| is sufficiently small. This observation is the motivation of (A2)
f(z,t)
[e7P—21

is non-negative for ¢ # 0 and |f(x,t)| is well-

can be

and (A3). Here we consider the case, in which the positivity of

disturbed by a function d; € Lv Q).

In (A4) and (A5), we do not need the uniform convergence as in [Il, [5 [7, [11]
12], 13} 14l [16], [17]. We study the problem without Ambrosetti-Rabinowizt
condition. Our main result is the following theorems under the assumption

(A6) ﬁc‘(fi_% is increasing in ¢ > C' and decreasing in ¢t < —C for every z in Q.

Theorem 1.1. Assume f satisfies (A1)-(A6). Then there is a non-trivial weak
solution in Wy'*(Q) of the problem (L.1)).
Remark 1.2. If f is continuous on Q x R and satisfies the following conditions

(A1’) There exist r € (p,p* — 1) and a positive real number « such that
If(z, )] <a(l+ [t V(r,t) QxR

(A4’) f(x,0) =0 for every x in 2 and lim;_.¢ ‘{l(f;?t = 0 uniformly in Q.

(A5") limyy—oo é‘(ﬁcij?t = oo uniformly in €.
Then f satisfies (A1)—-(A5). Therefore our theorem improves the corresponding
results in [14] [16].

We study a method for constructing weight functions in weighted Sobolev em-
beddings and the Nemytskii operator from Sobolev spaces into Lebesgue spaces (see
Theorems and . We apply these results to prove the existence of non-trivial
solutions of a class of super-linear p-Laplacian problem in the last section.

2. NEMYTSKII OPERATORS
Definition 2.1. Let o be a measurable function on 2. We put
Tyu=ou hvu e W,"P(Q).
We say that

(i) o is of class Cp.s, if T, is a continuous mapping from W, *(£2) into L*(5),
(i) o is of class K, ., if T}, is a compact mapping from W, ?(Q) into L*(Q).

We have following results.

Theorem 2.2. Let aq and ag be in [1,00) such that a1 < . Let w1 € Cpqy,

wy € Cpa, such that wi and wo are non-negative. Let B € (aq,a2) and w =
aj(ag—pB) agz(B-ay)
wy 2T 27 Thep w € Cp .
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Proof. There is a positive real number C; such that

Q

Since 3 = 22=8 o, 4 L= o, by Hélder’s inequality and (2.1)), we get

Q22— Q22—

/B
{/wﬂuﬁdm}
Q
- { / T Ty e )
Q

—ay

@ @ :22:‘52 @ «@ (’52 -1 /6
< {{ witul 1dx} { we?|ul de} }
Q Q

1 ap=B 1 B 1/
oy ag—ag 1 g ag—ag X2 B
{{/wf‘1|u|“1dx} we? |u|*?dx !
Q Q

< Crllulli, Yue WP (Q).

1/e;
C”dx} < Cillull, AYuEWIP(Q), i=1,2. (2.1)

IN

O

Theorem 2.3. Let s be in [1, NN—_’;), a bein (0,1), w € Cp s and 6 be measurable
functions on Q such that w > 0 and |0 < w®. Then 6 is of class I 5.

Proof. Since T, is in Cp 4, 1., is continuous from WP () into L*(Q) and there is
a positive real number Cs such that

1/s
{/ ufwrde} < Oollull, Yo e WiP(©). (2.2)
Q

Since w*(z) < 1+w(z) for every z in Q and 1 and w are in C,, 5, w® belongs to Cp 5.
Thus Ty is in Cps. Let M be a positive real number and {u,} be a sequence in
WyP(€), such that ||u,||;, < M for any n. By Rellich-Kondrachov’s theorem [3,
Theorem 9.16], {u,} has a subsequence {uy, } converging to v in L*(Q) and {uy,, }
converging weakly to u in W, ?(Q), therefore [jull1, < liminfy o [|tn, |1, < M.
We shall prove {Tp(un, )} converges to Typ(u) in L*(Q).

Let ¢ be a positive real number. Choose a positive real number § such that

(205 M)*5(@=Ds < %

Put ' ={z € Q:w(z) > d}. By (2.2) and (2.3), we have
[ 1Btan, — o
Q
= [~ ul* oz
Q
< / [thn,, — u|swasdx—|—/ [tn, — ul*w*®dz
o o\

< 6(0‘_1)8/ [tt,, — ul’w’dz + 5”/ |thn,, — u|®dx
0% o\

(2.3)

< (5(0‘_1)5/ [t — u\swsdx—i—éas/ [tbn,, — u|®dx
Q Q
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< §la—bs (Callun, —ull1p)” + 5‘“/ |tun, —ul’dz
Q

< Vs (20, M)° + 50‘5/ [th,, — u|®dx
Q

<S4 5&5/ |, — ul*de. (2.4)
2 Q
Since {uy, } converges in L*(2), there is an integer ko such that
/ l, — ul*dz < 5*%% Wk > ko. (2.5)
Q
Combining (2.4]) and (2.5]), we complete the proof. O
Corollary 2.4. Letp € [1,N), s € (1, NN—_’;), n e (ﬁf\’,_p),oo) and 0 € L"(9).
Then 6 is in KCp 5.
Proof. Let 3 € (0,1) such that fn = +——22 - and w = |§|'/. Then w is in

. Np—s(N—p)
sNp
L¥v=s=% (). Since prjsv(;vfp) + S(ZJVV;p) = 1, by Hélder’s inequality, we have

. CaN_ s(NV
[ loutds < [ (i) 25 )
Q Q Q

which implies that T, is continuous at 0 in Wl’p (). Thus T, is a linear continuous

—p)
T Yue Wit(Q),

map from W, P () into L(2). By Theorem is of class ICp . O

Example 2.5. Let N =5, p=3,s =4and Q = {z € R : |2] < 1}. Then
E 5. a o

Np_sjsz,_p) = 5_31145(53_3) = % < 10. Put wy = || cos(16]x|), then wy is in

L°(Q). Thus by Corollary wy is of class KCpy 5.

Corollary 2.6. Letp € [1,N), s € (1, NN—_’;), a be in (0,1) and n € Cppp. Then
0 = na% is of class Ky s.

Proof. Put wy =n, ws =1, a3 = p, as = p*, B = s. By the Embedding theorem
of Sobolev, wy € C*p,p*. By Theorem we see that n% € Cps. Thus by

P =s)
Theorem n~ =" =r) is of class ICp 5. O
Example 2.7. Let Q ={z € R%: [lz| <1}, p=3, s =4, a = 2 and 7( (1-

x) =
|z|>)~! for every x in Q. By [9, Theorem 8.4], n € C,,. Note that p* = NN—Q) =1
and

s(pr —p) 449 16
Put 6(z) = (1 — ||z[|2)"16 for every  in . Then 6§ € Ks.4.

* 337 7
Oép(p s) _

Theorem 2.8. Let s be in (1,p*), w be in Kps, b be in Lsfl(Q) and g be a
Caratheodory function from Q X R into R. Assume

lg(z, 2)| < |w(z)]P7 2|57 + b(z) AV(z,2) € QxR (2.6)
Put N, (v)(z) = g(z,v(z)) forve Wy P(Q), z € Q. We have

(i) N, is a continuous mapping from W, *(Q) into L= ().
(ii) If A is a bounded subset in Wy P (Q), then N,(A) is compact in L= (Q).
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Proof. (i) Put u=s,q¢=1s/(s—1) and
g1(@,¢) = gz, w(x) ') V(z,() € A xR,
By , we have
lg1(z, O < [CI°7H +b(z) AY(2,¢) € QxR
On the other hand
Ny(v) = Ny, 0 Tj,((v) Yo € WyP(Q).
Since w € K, 5, applying [4, Theorem 2.3], we complete the proof. O

Theorem 2.9. Let s € (1,p*), w be in ICp 5, a function b € L1(Q) and g be a
Caratheodory function from 0 x R into R. Assume

gz, 2)] < [w(@)]* Mo +b(z) V(z,2) € QxR

Put
¢
Glat) = [ gla )i Vo),
0
U, (u) = / G(z,t)dr  hYu € WP (Q).
Q
We have
(i) {Ng(wn)} converges to Ng(w) in LY (Q) when {w,} weakly converges to w
. 1,p
in WyP(Q).

(ii) g4 is continuously Fréchet differentiable mapping from Wol’p(Q) into R and
DU, (u)(¢) = /Qg(x,f)gbdx h¥u, ¢ € Wy'P(Q).

(iii) If A is a bounded subset in Wg’p(Q), then there is a positive real number
M such that
W, (0)| + DWW <M hvv e A,

Proof. Let p=s,q= and g; be as in the proof of Theorem Put

sil
Gr(a 1) = / 9@ e V(w ) €O,
0

u(x)
Uy (u) = /Q/O g1(x,&)dédx VYu € LP(Q).

By [4, Theorem 2.8], Ng, is continuous from LT (2) to L(Q) and ¥, is continu-
ously Fréchet differentiable mapping from LT () toR. We see that Ng¢ = Ng, oT,,
and U, = ¥,, oT,. By Theorem we complete the proof. O

For w = 1, Theorems and have been proved in [2], 4 [&].
Example 2.10. Let @ = {x e R® : |[z|| < 1}, p=3,5 =4, a = 2 and p(z) =
(3 — llzl|*)2(1 - |z][2)~ 76 for every z in Q. By Example p € Ksa. Put

a(z) = p(z)*~' = (5 — [|=|)°1 - |2]|2)~ % for every « in Q. Thus a is not
integrable on €2 and Theorem improves corresponding results in [2] [4] [§].
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3. PROOF OF MAIN THEOREMS
Put
1
J(u) = ];Hunf;p — / F(z,u)de Yue WP (Q). (3.1)
Q

By [5, Theorem 9], Theorem and (A1), J is continuously Fréchet differentiable
on W, *(€2) and

DJ(u)(v) = /Q |Vul|P~?Vu.Vodr — /Q fla,u).vde Yu,v € Wy P(Q) (3.2)

To prove the theorems, we need following lemmas.

Lemma 3.1. Under conditions (A3) and (A4), there exists positive numbers p and
n such that J(u) > n for all u in Wy P(Q) with ||jul| = p.

Proof. Suppose by contradiction that

inf{J(u) : u € WyP(Q),||ul

1
LPZE}SO Vn € N.

Then there is a sequence {u, } in Wy (Q) such that ||u,]|1, = Land J(un) < .
By replacing {u,} by its subsequence, by [3, Theorem 4.9], we can suppose that
un

lim,, 00w (x) = 0 for every x in , { Tas } strongly (resp. pointwisely) converges
to w in LP(Q) (resp. on Q) and

1 J(Un

L )

n ||un||1 »

F(z,un(z

||un||1p

:“/ / f(@, sun()) ||u:(||) dodr

- / e ||unf)| s

Hence by the generalized Fatou Lemma, (A3) and (A4)

0 = lim inf 1
n—oo N
== —hmsup/ / 1@, sun(@)) sP~1 [ ()] dsdz
n—oo Sun(w p QSUH(m) || 7l||
> - _/ / thup f(fIf Su’ﬂ2( )) Sp— |Un( )‘ ]dsdx
n—oo  (Stn(z))P~?sun (2) lunllf
This contradiction completes the proof. (Il

Lemma 3.2. Let p be as in Lemma[3.1 Under conditions (A3) and (A5), there is
e in WyP(Q)\ B(0, p) such that J(e) < 0

Proof. Let u € W, ?(Q) such that |lull;, =1 and u > 0 on Q. By (8.1), we have

—/Q/OW(z) f(z,s)dsdx
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1
= n—p—// f(z, Enu(x))nu(x)déd
top [ [ R ey

By Sobolev’s embedding theorem, u belongs to LW(Q) By (A3), dJulP is in-
tegrable and %\u( )P > d(z)|u(z)[? for every integer n, € © and

€ € (0,1). Hence, by the generalized Fatou lemma, (A3) and (A5), we have

lim sup|1 // gnuxfnu z)) P~ Hu(x)|Pdéda)

n—oo )[P=2Enu(x)
o fgnu(@) 0
fl—lznllcgf // Enu(o) 2 €nu(z )5 Hu()[PdEdz]

<1- // tim inf[—LEEMUE) o1y = o

n—oo IfnU( )P=2Enu(x)

which implies lim,_,o J(nu) = —oo. O

Lemma 3.3. Under conditions (A2) and (A6), there is a positive real number Cy
such that

f(z,s)s — pF(z,s) < f(z, )t — pF(z,t) + Cid(x) Ve Q,|s| <|t.
Proof. By the proof of [14, Lemma 2.3], (A2) and (A6), we have
f(z,8)s — pF(z,8) < f(z,t)t — pF(x,t) Ve, C<s<t.
Let z € Q and £ € [-C, C]. By (A2), we have

13
(2. 9)€] < Cl(o). [F(2.8)| < [ dla)dy < Cilo)
0
Hence
f(x,8)s —pF(x,s) < f(z,t)t — pF(z,t) + 2(1 + p)Cd(x) Vre, 0<s<t<C,
flz,8)s — pF(x,s) < f(z,C)C — pF(z,C) + 2(1 + p)Cd(x)
< flz,t)t —pF(z,t) +2(1+p)Cd(x) VreQ, 0<s<(C<Ht.
Thus we get the lemma when 0 < s < ¢. Similarly we obtain it if ¢t < s < 0. [l
Lemma 3.4. Assume (A1)-(A3), (A5), (A6) hold. Let {u,} be a sequence in

WoP(Q) such that {J(uy)} is bounded and lim, (1 + |[un|1,)]|DJ (un)| = 0.
Then {u,} has a subsequence converging in Wy (Q).

Proof. We shall use the technique in [I4, 16]. If {u,} is unbounded, up to a
subsequence we may assume that for some ¢ in R such that lim, ||ul[1, = oo,

lim,, J(u) = ¢ and lim,, o ||un}1,p||DJ (un)|| = 0. Thus
lim (lf(:r7 Un ())un(z) — F(z,uy(x)))de

= lim (J(up) — %(J/(un),un» =c.

n—oo

(3.3)
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Put w, = Hun||1_zl)un for every n in N. Since {u,} is bounded in W, ?(Q), by
replacing {u,} by its subsequence, we can suppose {w,} converges weakly to w in
WyP(€) (resp. strongly in LP(2), pointwisely in Q).

Consider the case w = 0. By the continuity of J, there is ¢, in [0,1] such that
J(tnun) = max{J(su,) : s € [0,1]} for every positive integer n. Fix a positive
integer m and put v, = (2pm)/Pw, for every positive integer n. Then {v,}
converges weakly to 0 in WO1 P(Q) (resp. strongly in LP(f2), pointwisely in ).
Therefore, by Theorem {Np((vn)} converges to Np(0) =0 in L'(Q). Thus

lim [ F(x,v,(z))dx =0.
n—oo Q
Since limy, o0 (2pm) /P ||uy, |7, = 0, there is an integer Ny, such that t,, € [0, 1] and

J(tnun) > J(vm) = 2m — / F(z,vm) >m Vn > Ny,
Q

that is, lim,_—co J(tntn) = 00. Since J(0) = 0 and lim, o J(u,) = ¢, it implies
t, € (0,1) for any sufficiently large n and

/ |V (tnun)? —/ f(x, toun)toundz = (J' (tpun), thun)
Q Q
d
= tn%h:th(t,’U,n) = O

Therefore, by Lemma [3.3] we get

G Fun@)n(e) = Fa,un()))da

Qb

> / (lf(x, tntn (2))tnun(r) — F (2, tyu,(z)))dz — Chl|d|| 1 (o)

Qb

1
= /(;|thun(m)|p — F(z, tyun(z)))dz — Ci||d|| L1 (o)
Q
= J(tnun) — C1||d||L1(Q) — 00,

which contradicts ({3.3)).
If w # 0, the Lebesgue measure of the set © = {z € Q : w(x) # 0} is positive.

We have lim,_, |tu,(2)] = oo for every = in ©. Thus, By the generalized Fatou
lemma, (A3) and (A5), we have
1 J(u, . F(z,up
0 = liminf[- — (ttn) ] = liminf wdw
n—oo p |luy, |1,p n—o Jo |lunlly,

i [ [ s P deds

+/Q\®/ d1|§wn(x)|pd§dx]

imin (@, Eun (2)) w. ()P o
// ln—>oof \gun( )\p—zgun(xﬂf ()| déd

— il 3 g

= 00,

which is impossible. In any case, we obtain a contradiction. Therefore {u,} is
bounded. By Theorem there is a subsequence {u,, } of {uy} such that {uy,}
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weakly converges to u in Wy () and {Nj(u,,)} weakly converges to Nj(u) in
L71(). Arguing as in the proof of [, Lemma 6.2], we sce that {un, } converges
to u in WP (). O

Proof of theorem[I.1] Using the Mountain-pas theorem with the Cerami condition,
by Lemmas [3.1] 3:2 and [3:4] we obtain a non-trivial weak solution for the problem

(L.1). O
Example 3.5. Let N =5,p=3,r=4,a>0,Q={r e R5: ||z < 1},
wo(z) = |z| 7130 cos(16|z]) Vz € €,

1 _
wi(e) = (5 - )21 = [|2]|*)~7/ vz e,
o [ <,
7%= 0 if |t e R\ [1,1],

©1(t) = [t|P2tp1(t) log(1 + [t]) AVt ER,
flz,t) = wo(x) Lo (t) +wi(z) " toi(t) V(z,t) € A xR,

Let w = |wo| + wi, C = 1, d(z) = |z|" %, di(z) = —d(z) and dy(x) = |z~
for every z in . We see that d € LY(Q), d; € L%(Q) and do € L'(Q). By
Examples [2.5] and w is in K, ,. Thus f satisfies conditions (A1)-(A5). Since
lim;) o wo(z) = 00 and limy, 1 wi(x) = 0, the convergence in (A4) and (A5) are
not uniform on €.

We have (20 = wy(2)(|t] — 1)log(1 + |t]) for every ¢ € [~2,2] \ [~1,1] and

Ijtvl(:%t?)t = wi(x)log(1+]t|) for every t € R\ [—2,2]. Thus f satisfies (A6). Therefore
we can apply Theorem to f with C' = 1 respectively. Since w" !(z) > (1 —
|z]|2)~ %6 for every z in ©, w™~! is not integrable on Q. Therefore the results in
[T 5L [7, 111 [12] T3], 14 [16], 1T7] can not be applied to solve (1.1]) in these cases.

Acknowledgements. This work was supported by Vietnam National Founda-
tion for Science and Technology Development (NAFOSTED) under grant number
101.02-2014.04.

REFERENCES

[1] A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and
applications, J. Funct. Anal., 14 (1973), 349-381.

[2] J. Appell, P. Zabreiko; Nonlinear superposition operators. Cambridge University Press, 2008.

[3] H. Brezis; Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,
2011.

[4] D. G. De Figueiredo; Lectures on the Ekeland variational principle with applications and
detours, Tata Institute of Foundational research, Bombay, 1989.

[5] G. Dinca, P. Jebelean, J. Mawhin; Variational and topological methods for Dirichlet problems
with p-Laplacian, Portugaliae Mathematica, 58 (2001), 339 -378.

[6] D. M. Duc.; Nonlinear singular elliptic equations, J. London Math. Soc. (2) 40 (1989), 420-
440.

[7] D. M. Duc, N. T. Vu; Non-uniformly elliptic equations of p-Laplacian type. Nonlinear Anal-
ysis, 61 (2005), 1483-1495.

[8] M. A. Kranosel’skii; Topological methods in the theory of nonlinear integral equations,
Magcmillan, New York, 1964.

[9] A. Kufner; Weighted Sobolev spaces, Wiley, New York, 1985.

[10] A. Kufner, O. John, S. Fucik; Function spaces, Noordhoff, Leyden 1977.



10

D. M. DUC EJDE-2017/251

[11] G. Li, C. Wang; The existence of a mnon-trivial solution to a nonlinear elliptic problem of

linking type without the Ambrosetti-Rabinowitz condition, Annales Acad. Scientiarum Fenn.
Math., 36 (2011), 461-480.

[12] S. Li, S. P. Wu, H. S. Zhou; Solutions to semilinear elliptic problems with combined nonlin-

earities, Journal of Differential Equations, 185 (2002), 200-224.

[13] S. B. Liu; Ezistence of solutions to a superlinear p-Laplacian equation, Electron. J. Differen-

tial Equations, 66 (2001), 1-6.

[14] S. Liu; On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear

Anal., 73 (2010), 788-795.

. . Jay ces, ger, ) .
15] V. G. Mazja; Sobolev space SI)III] er, Berlin, 1985
. g ) ’
16] O Miya aki, M. Souto Supe7 -linear p?oblems without Ambrosetti and Rabinowitz g70wtn

condition, J. Differential Equations 245 (2008), 3628-3638.

[17] P. De Népoli, M. C. Mariani; Mountain pass solutions to equations of p-Laplacian type,

Nonlinear Anal., 54 (2003), 1205-1219.

(18] B. Opic, A. Kufner; Remark on compactness of imbeddings in weighted spaces, Math. Nachr.,

133 (1987), 63-70.

DuoNnG MINH Duc

UNIVERSITY OF SCIENCES, VIETNAM NATIONAL UNIVERSITY, 227 NGUYEN VAN CU Q5, HOCHIMINH
CiTy, VIETNAM

E-mail address: dmduc@hcmus.edu.vn



	1. Introduction
	2. Nemytskii operators
	3. Proof of main theorems
	Acknowledgements

	References

