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MAXIMUM PRINCIPLE AND EXISTENCE OF POSITIVE
SOLUTIONS FOR NONLINEAR SYSTEMS ON RN

HASSAN M. SERAG, EADA A. EL-ZAHRANI

Abstract. In this paper, we study the following non-linear system on RN

−∆pu = a(x)|u|p−2u + b(x)|u|α|v|βv + f x ∈ RN

−∆qv = c(x)|u|α|v|βu + d(x)|v|q−2v + g x ∈ RN

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0, u, v > 0 in RN

where ∆pu = div |∇u|p−2∇u) with p > 1 and p 6= 2 is the “p-Laplacian”,
α, β > 0, p, q > 1, and f, g are given functions. We obtain necessary and

sufficient conditions for having a maximum principle; then we use an approx-

imation method to prove the existence of positive solution for this system.

1. Introduction

The operator −∆p occurs in problems arising in pure mathematics, such as the
theory of quasiregular and quasiconformal mappings and in a variety of applications,
such as non-Newtonian fluids, reaction-diffusion problems, flow through porous
media, nonlinear elasticity, glaciology, petroleum extraction, astronomy, etc (see
[14, 16]).

We are concerned with existence of positive solutions and with the following
form of the maximum principle: If f, g ≥ 0 then u, v ≥ 0 for any solution (u, v) of
(1.3).

The maximum principle for linear elliptic systems with constant coefficients and
the same differential operator in all the equations, have been studied in [7, 9].
Systems defined on unbounded domains and involving Schrödinger operators have
been considered in [1, 2, 22]. In [18, 19], the authors presented necessary and
sufficient conditions for having the maximum principle and for existence of positive
solutions for linear systems involving Laplace operator with variable coefficients.
These results have been extended in [15], to the nonlinear system

−∆pui =
n∑

j=1

aij |uj |p−2uj + fi ui in Ω

ui = 0 on ∂Ω

(1.1)
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In [6], it has been proved the validity of the maximum principle and the existence
of positive solutions for the following system defined on bounded domain Ω of RN ,
and with cooperative constant coefficients a, b, c, d:

−∆pu = a|u|p−2u+ b|u|α|v|βv + f, in Ω

−∆qv = c|u|α|v|βu+ d|v|p−2v + g, in Ω
u = v = 0 on ∂Ω

(1.2)

Here, we study system

−∆pu = a(x)|u|p−2u+ b(x)|u|α|v|βv + f x ∈ RN

−∆qv = c(x)|u|α|v|βu+ d(x)|v|q−2v + g x ∈ RN

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0, u, v > 0 in RN

(1.3)

where ∆pu = div |∇u|p−2∇u) with p > 1 and p 6= 2 is the “p-Laplacian”, α, β > 0,
p, q > 1, and f, g are given functions.

System (1.3) is a generalization for (1.2) to the whole space RN and the coef-
ficients a(x), b(x), c(x), d(x) are variables. We obtain necessary and sufficient con-
ditions on the coefficients for having a maximum principle for system (1.3). Then
using the method of sup and super solutions, we prove the existence of positive
solutions under some conditions on the functions f and g.

This article is organized as follows: In section 2, we give some assumptions on
the coefficients a(x), b(x), c(x), d(x) and on the functions f, g to insure the existence
of a solution of (1.3) in a suitable Sobolev space. We also introduce some technical
results and some notation, which are established in [3, 4, 16]. Section 3 is devoted to
the maximum principle of system (1.3), while section 4 is devoted to the existence
of positive solutions.

2. Technical results

In this section, we introduce some technical results concerning the eigenvalue
problem (see [16])

−∆pu = λg(x)Ψp(u) in RN

u(x) → 0 as |x| → ∞, u > 0 in RN
(2.1)

where Ψp(u) = |u|p−2u and g(x) satisfies

g(x) ∈ LN/p(RN ) ∩ L∞(RN ), g(x) ≥ 0 almost everywhere in RN (2.2)

For 1 < p < N , let p∗ = pN
N−p be the critical Sobolev exponent of p. Let us introduce

the Sobolev space D1,p(RN ) defined as the completion of C∞0 (RN ) with respect to
the norm

‖u‖D1,p =
( ∫

RN

|∇u|p
)1/p

It can be shown that

D1,p =
{
u ∈ L

Np
N−p (RN ) : ∇u ∈

(
Lp(RN )

)N}
and that there exists k > 0 such that for all u ∈ D1,p,

‖u‖LNp/(N−p) ≤ k‖u‖D1,p (2.3)
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Clearly D1,p(RN ) is a reflexive Banach space, which is embedded continuously in
LNp/(N−p)(RN ) (see [11]).

Lemma 2.1. (i) If {un} is a sequence in D1,p, with un → u weakly, then there
is a subsequence, denoted again by {un}, such that B(un) → B(u)

(ii) If B′(u) = 0, then B(u) = 0, where B(u) =
∫

RN g(u)|u|pdx.

Theorem 2.2. Let g satisfy (2.2). Then (2.1) admits a positive first eigenvalue
λg(p). Moreover, it is characterized by

λg(p)
∫

RN

g(u)|u|p ≤ ‖u‖p
D1,p (2.4)

Theorem 2.3. Let g satisfy (2.2). Then

(i) the eigenfunction associated to λg(p) is of constant sign; i.e., λg(p) is a
principal eigenvalue.

(ii) λg(p) is the only eigenvalue of (2.1) which admits positive eigenfunction.

3. Maximum Principle

We assume that 1 < p, q < N and that the coefficients a(x), b(x), c(x), and d(x)
are smooth positive functions such that

a(x), d(x) ∈ Lp/N (RN ) ∩ L∞(RN ) (3.1)

and
b(x) < (a(x))α+1/p(d(x))β+1/q

c(x) < (a(x))α+1/p(d(x))β+1/q,
(3.2)

where
α+ 1
p

+
β + 1
q

= 1, α+ β + 2 < N,
1
p

+
1
p′

= 1,
1
q

+
1
q′

= 1 (3.3)

Theorem 3.1. Assume that (3.1) and (3.2) hold. For f ∈ L
Np

N(p−1)+p (RN ), g ∈
L

Nq
N(q−1)+q (RN ), system (1.3) satisfies the maximum principle if the following con-

ditions are satisfied:
λa(p) > 1, λd(q) > 1 (3.4)

(
λa(p)− 1

)(α+1)/p(
λd(q)− 1

)(β+1)/q − 1 > 0 (3.5)

Conversely, if the maximum principle holds, then (3.4) holds and

[(λa(p)− 1)](α+1)/p[λd(q)− 1](β+1)/q > Θ
( b(x)
a(x)

)(α+1)/p( c(x)
d(x)

)(β+1)/q

, (3.6)

where

Θ =
infx

(
φp/ψq

)α+1
p

β+1
q

supx

(
φp/ψq

)α+1
p

β+1
q

and φ (respectively ψ ) is the positive eigenfunction associated to λa(p) (respectively
λd(q) ).
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Proof. The necessary condition: Assume that λa(p) ≤ 1, then the function f :=
a(x)(1−λa(p))φp−1 and g := 0 are nonnegative; nevertheless (−φ, 0) satisfies (1.3),
which contradicts the maximum principle.

Similarly, if λd(q) ≤ 1, then the functions g := d(x)(1−λd(q))ψq−1 and f := 0 are
nonnegative; nevertheless (0,−ψ) satisfies (1.3), which contradicts the maximum
principle.

Now suppose that λa(p) > 1, λd(q) > 1 and (3.6) does not hold; i.e.,

[(λa(p)− 1)](α+1)/p[λd(q)− 1](β+1)/q ≤ Θ
( b(x)
a(x)

)(α+1)/p( c(x)
d(x)

)(β+1)/q

,

Then, there exists ξ > 0 such that(
a(x)

(λa(p)− 1)
b(x)

)(α+1)/p(φp

ψq

)α+1
p

β+1
q ≤ ξ ≤

( c(x)
d(x)

)(β+1)/q

(λd(q)− 1)(β+1)/q

(φp

ψq

)α+1
p

β+1
q

Let ξ =
(

Dq

Cp

)α+1
p

β+1
q with C,D > 0. Then(

a(x)
(λa(p)− 1)

b(x)

)(α+1)/p( (Cφ)p

(Dψ)q

)α+1
p

β+1
q

≤ 1 ≤

( c(x)
d(x)

)(β+1)/q

(λd(q)− 1)(β+1)/q

( (Cφ)p

(Dψ)q

)α+1
p

β+1
q

So

a(x)(λa(p)− 1)((Cφ)p)(β+1)/q ≤ b(x)(Dψ)β+1 (3.7)

d(x)(λd(q)− 1)((Dψ)q)(α+1)/p ≤ c(x)(Cφ)α+1 (3.8)

From the two expression above, we have

a(x)(λa(p)− 1)((Cφ))p−1 ≤ b(x)(Dψ)β+1(Cφ)α,

d(x)(λd(q)− 1)((Dψ)q−1) ≤ c(x)(Cφ)α+1(Dψ)β .

Hence

f = −a(x)(λa(p)− 1)((Cφ))p−1 + b(x)(Dψ)β+1 + (Cφ)α ≥ 0,

g = −d(x)(λd(q)− 1)((Dψ))q−1 + c(x)(Dψ)β + (Cφ)α+1 ≥ 0

Since f and g are nonnegative functions, and (−Cφ,−Dψ) is a solution of (1.3)
and the maximum principle does not hold. �

Now, we show that the condition is sufficient. Assume that (3.4) and (3.5) hold.
If (u, v) is a solution of (1.3), then for f, g ≥ 0, we obtain by multiplying the first
equation of (1.3) by u := max(0,−u) and integrating over RN :

−
∫

RN

|∇u|p = −
∫

RN

a(x)|u|p +
∫

RN

b(x)|u|α+1|v+|βv+

−
∫

RN

b(x)|u|α+1|v−|βv− +
∫

RN

fu− .

Then ∫
RN

|∇u|p ≤
∫

RN

a(x)|u|p +
∫

RN

b(x)|u|α+1|v−|β+1 .



EJDE-2005/85 MAXIMUM PRINCIPLE AND EXISTENCE OF POSITIVE SOLUTIONS 5

From (2.4), we get

(λa(p)− 1)
∫

RN

a(x)|u|p ≤
∫

RN

b(x)|u|α+1|v−|β+1

Applying Holder inequality and using (3.2), we find

(λa(p)− 1)
∫

RN

a(x)|u|p ≤
( ∫

RN

a(x)|u|p
)(α+1)/p( ∫

RN

d(x)|v−|q
)(β+1)/q

Hence [
(λa(p)− 1)

( ∫
RN

a(x)|u|p
)(β+1)/q

−
( ∫

RN

d(x)|v−|q
)(β+1)/q]( ∫

RN

a(x)|u|p
)(α+1)/p

≤ 0

If
( ∫

RN a(x)|u|p
)(α+1)/p = 0, then u = 0. If not, we have

(λa(p)− 1)(α+1)/p
( ∫

RN

a(x)|u|p
)α+1

p
β+1

q ≤
( ∫

RN

d(x)|v−|q
) β+1

q
α+1

p

(3.9)

Similarly

(λd(q)− 1)(β+1)/q
( ∫

RN

d(x)|v|q
)α+1

p
β+1

q ≤
( ∫

RN

a(x)|u−|p
) β+1

q
α+1

p

(3.10)

From (3.9) and (3.10), we obtain(
(λa(p)− 1)(α+1)/p(λd(q)− 1)(β+1)/q− 1

)( ∫
RN

d(x)|v|q
∫

RN

a(x)|u−|p
) β+1

q
α+1

p ≤ 0

From (3.5), we have u = v = 0 and hence u ≥ 0, v ≥ 0 i.e. the maximum principle
holds.

Corollary 3.2. If p = q, then the maximum principle holds for system (1.3) if and
only if conditions (3.4) and (3.5) are satisfied.

4. Existence of positive solutions

By an approximation method used in [5], we prove now that the system (1.3)
has a positive solution in the space D1,p × D1,q. For ε ∈ (0, 1), we introduce the
system

−∆puε = a(x)
(|uε|p−2uε)

(1 + |ε1/puε|p−1)
+ b(x)

|vε|βvε

(1 + |ε1/qvε|β+1)
|uε|α

(1 + |ε1/puε|α)
+ f in RN

−∆qvε = d(x)
(|vε|q−2vε)

(1 + |ε1/qvε|q−1)
+ c(x)

|vε|β

(1 + |ε1/qvε|β)
|uε|αuε

(1 + |ε1/puε|α+1)
+ g in RN

lim
|x|→∞

uε = lim
|x|→∞

vε = 0 , uε , vε > 0 in RN

(4.1)
Letting (ξ, η) = (uε, vε) then system above can be written as

−∆pξ = h(ξ, η) + f in RN

−∆qη = k(ξ, η) + g in RN

ξ, η → 0 as |x| → ∞ ξ, η > 0 in RN
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where

h(ξ, η) = a(x)
|ξ|p−2ξ

(1 + |ε1/pξ|p−1)
+ b(x)

|η|βη
(1 + |ε1/qη|β+1)

|ξ|α

(1 + |ε1/pξ|α)
,

k(ξ, η) = c(x)
|η|β

(1 + |ε1/qη|β)
|ξ|αξ

(1 + |ε1/pξ|α+1)
+ d(x)

|η|q−2η

(1 + |ε1/qη|q−1)
.

From (3.1) and (3.2) h(ξ, η), k(ξ, η) are bounded functions; i.e., there exists M > 0
such that |h(ξ, η)| ≤M , and |k(ξ, η)| ≤M for all ξ, η. Then, as in [6], we can prove
the following lemma.

Lemma 4.1. If (ξk, ηk) → (ξ, η), weakly in LNp/(N−p)(RN )×LNq/(N−q)(RN ), then

∥∥∥a(x)( |ξk(x)|p−2ξk(x)
(1 + |ε1/pξk(x)|p−1)

− |ξ(x)|p−2ξ(x)
(1 + |ε1/pξ(x)|p−1)

)∥∥∥
LNp/(N(p−1)+p)(RN )

→ 0 (4.2)

∥∥∥b(x)( |ηk|βηk

(1 + |ε1/qηk|β+1)
|ξk|α

(1 + |ε1/pξk|α)
− |η|βη

(1 + |ε1/pη|β+1)
|ξ|α

(1 + |ε1/pξ|α)

)∥∥∥ (4.3)

approaches 0 under the norm of LNp/(N(p−1)+p)(RN ), a.e. in RN as k approaches
infinity in LNq/(N(q−1)+q)(RN ).

∥∥∥d(x)( |ηk(x)|q−2ηk(x)
(1 + |ε1/qηk(x)|q−1)

− |η(x)|q−2η(x)
(1 + |ε1/qη(x)|q−1)

)∥∥∥ → 0 (4.4)

∥∥∥c(x)( |ξk|αξk
(1 + |ε1/pξk|α+1)

|ηk|β

(1 + |ε1/qηk|β)
− |ξ|αξ

(1 + |ε1/pξ|α+1)
|η|β

(1 + |ε1/qη|β)

)∥∥∥ → 0

(4.5)
a.e. in RN as k →∞ in LNq/(N(q−1)+q)(RN )

Lemma 4.2. System (4.1) has a solution Uε =: (uε, vε) in D1,p(RN )×D1,q(RN ).

Proof. We complete the proof in four steps:
Step 1. Construction of sub-super solutions of (4.1): Let ξ0 ∈ D1,p (respectively
η0 ∈ D1,q be a solution of

−∆pξ
0 = M + f (resp. −∆qη

0 = M + g) (4.6)

and let ξ0 ∈ D1,p (respectively η0 ∈ D1,q be a solution of

−∆pξ0 = −M + f (resp. −∆qη0 = −M + g) (4.7)

Then (η0, ξ0) is a super solution of (4.1) and η0, ξ0 is a sub solution since

−∆pξ
0 − h(ξ0, η)− f ≥ −∆pξ

0 −M − f = 0 ∀η ∈ [η0, η0]

−∆pξ0 − h(ξ0, η)− f ≤ −∆pξ0 −M − f = 0 ∀η ∈ [η0, η0]

−∆pη
0 − h(ξ, η0)− g ≥ −∆qη

0 − (M + g) = 0 ∀ξ ∈ [ξ0, ξ0]

−∆pη0 − h(ξ, η0)− g ≤ −∆qη0 − (M + g) = 0 ∀ξ ∈ [ξ0, ξ0]

Let us assume that K = [ξ0, ξ0]× [η0 × η0].
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Step 2. Definition of the operator T : We define the operator T : (ξ, η) → (w, z),
where (w, z) is the solution of the system

−∆pw = h(ξ, η) + f in RN

−∆qz = k(ξ, η) + g in RN

w = z → 0 as |x| → ∞
(4.8)

Sept 3. Construction of an invariant set under T . We have to prove that T (k) ⊂ K:
From (4.6) and (4.8), we get

−∆pw −∆pξ
0 ≤ h(ξ, η)−M (4.9)

Multiplying this equation by (w − ξ0)+ and integrating over RN , we obtain∫
RN

[Ψp(∇w)−Ψp(∇ξ0)][∇(w − ξ0)+] ≤
∫

RN

(h(ξ, η)−M)(w − ξ0)+ ≤ 0.

By monotonicity of p-Laplacian, we have (w−ξ0)+ = 0 and hence w ≤ ξ0. Similarly
w ≥ ξ0, so that step is complete.
Step 4. T is completely continuous: We prove that T maps weakly convergent
sequence to strongly convergence ones. From (4.8), we get

−∆pwk −∆pw

= a(x)
[ |ξp−2

k |ξk
(1 + |ε1/pξk|p−1)

− |ξ|p−2ξ

(1 + |ξ1/pξ|p−1)

]
+ b(x)

[ |ηk|βηk

(1 + |ε1/q|ηβ+1
k )

|ξk|α

(1 + |ε1/pξk|α)
− |η|βη

(1 + |ε1/qη|β+1)
|ξi|α

(1 + |ε1/pξi|α)

]
Multiplying by (wk − w) and integrating over RN , we obtain∫

[Ψp(∇wk)−Ψp(∇w)][∇(wk − w)]

=
∫
a(x)

[ |ξp−2
k |

(1 + |ε1/pξk|p−1)
− |ξ|p−2ξ

(1 + |ξ1/pξ|p−1)

]
(wk − w)

+
∫
b(x)

[ |ηk|βηk

(1 + |ε1/q|ηβ+1
k )

|ξk|α

(1 + |ε1/pξk|α)

− |η|βη
(1 + |ε1/qη|β+1)

|ξi|α

(1 + |ε1/pξi|α)

]
(wk − w)

(4.10)

Using Hölder’s inequality, we obtain∫
[Ψp(∇wk)−Ψp(∇w)][∇(wk − w)]

≤
∥∥∥a(x)[ |ξp−2

k |
(1 + |ε1/pξk|p−1)

− |ξ|p−2ξ

(1 + |ξ1/pξ|p−1)

]∥∥∥
LNp/(N(p−1)+p(RN )

× ‖(wk − w)‖LNp/(N−p)(RN )

+
∥∥∥b(x)[ |ηk|βηk

(1 + |ε1/q|ηβ+1
k )

|ξk|α

(1 + |ε1/pξk|α)

− |η|βη
(1 + |ε1/qη|β+1)

|ξi|α

(1 + |ε1/pξi|α)

]∥∥∥
LNp/(N(p−1)+p(RN )

‖(wk − w)‖LNp/(N−p)(RN )
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It is well known [23], that

|ξ−ξ′|p ≤ c{[|ξ|p−2ξ−|ξ′|p−2ξ′](ξ−ξ′)}α/2{|ξ|p+|ξ′|p}1−(α/2) ∀ξ, ξ′ ∈ RN (4.11)

where α = p if 1 ≤ p ≤ 2 and α = 2 if p > 2. From (4.11) and the continuous
imbedding of D1,p(RN ) in LNp/(N−p)(RN ), we get∫

RN

|∇(wk − w)|p

≤ k
(∥∥∥a(x)[ |ξp−2

k |
(1 + |ε1/pξk|p−1)

− |ξ|p−2ξ

(1 + |ξ1/pξ|p−1)

]∥∥∥
LNp/(N(p−1)+p(RN )

+
∥∥∥b(x)[ |ηk|βηk

(1 + |ε1/q|ηβ+1
k )

|ξk|α

(1 + |ε1/pξk|α)

− |η|βη
(1 + |ε1/qη|β+1)

|ξi|α

(1 + |ε1/pξi|α)

]∥∥∥
LNp/(N(p−1)+p(RN )

)
‖(wk − w)‖

Applying lemma 4.1, we obtain ‖wk − w‖p−1
D1,p → 0 as k → +∞ in D1,p(RN ) which

implies
(wk) → (w) strongly as k → +∞ in D1,p(RN ).

Similarly we can prove that

(zk) → (z) as k → +∞ in D1,p,

So T is completely continuous operator.
Since k is a convex, bounded, closed in: D1,p × D1,q, we can apply Schauder’s

Fixed Point Theorem and obtain the existence of a fixed point for T , which gives
the existence of solution Uε =: (uε, vε) of Sε . �

Now, we can prove the existence of solution for system (1.3).

Theorem 4.3. If (2.2)–(2.4) are satisfied, then for any f ∈ L
Np

N(p−1)+p (RN ), g ∈
L

Nq
N(q−1)+q (RN ), system (1.3) has a nonnegative solution U = (u, v) in the space:

D1,p ×D1,q.

Proof. This proof is done in three steps.
Step 1. First we prove that Uε =: (ε1/puε, ε

1/qvε) is bounded in D1,p × D1,q.
Multiplying the first equation of (4.1) by (εuε) and integrating over RN , we obtain∫

|∇ε1/puε|p

≤
∫
a(x)|ε1/puε|+

∫
b(x)|ε1/puε|+ ε1/p′

∫
|ε1/puε||f |

≤ ‖a(x)‖N/p‖ε1/puε‖Np/(N−p) + ‖b(x)‖Np/(N(p−1)+p)‖ε1/puε‖Np/(N−p)

+ ε1/p′‖ε1/puε‖Np/(N−p)‖f‖Np(N(p−1)+p)

≤M‖ε1/puε‖Np/(N−p)

≤ kM‖ε1/puε‖D1,p

so ‖ε1/puε‖p−1
D1,p ≤ kM which implies Uε =: (ε1/puε) is bounded in D1,p. Similarly

for (ε1/qvε).
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Step 2. Uε =: (ε1/puε, ε
1/qvε) converges to (0,0) strongly in D1/p×D1/q. From step

1, Uε =: (ε1/puε, ε
1/qvε) converges weakly to (u∗, v∗) in D1,p×D1,q and strongly in

L
Np

N−p (RN )×L
Nq

N−q (RN ). Multiplying the first equation of (4.1), by (ε1/p′), we get

−∆p(ε1/puε) = a(x)
|ε1/puε|p−2(ε1/puε)
(1 + |ε1/puε|p−1)

+b(x)
(ε1/qvε)βε1/qvε

1 + |ε1/qvε|β+1

|(ε1/puε)|α

1 + |(ε1/puε)|α
+fε1/p′

Again using Lemma 4.1, we have

a(x)
|ε1/puε|p−2(ε1/puε)
(1 + |ε1/puε|p−1)

→ a(x)
|u∗|p−2(u∗)

(1 + |u∗|p−1)
strongly in L

Np
N(p−1)+p (RN )

and similarly

b(x)
(ε1/qvε)βε1/qvε

1 + |ε1/qvε|β+1

|(ε1/puε)|α

1 + |(ε1/puε)|α
→ b(x)

|v∗|βv∗

(1 + |v∗|β+1)
|u∗|α

(1 + |u∗|α)

strongly in L
Np

N(p−1)+p (RN ). Using a classical result in [21], we have

−∆p(ε1/puε) → −∆p(u∗) strongly in L
Np

N(p−1)+p (RN ).

So

−∆p(u∗) = a(x)
|u∗|p−2(u∗)

(1 + |u∗|p−1)
+ b(x)

|v∗|βv∗

(1 + |v∗|β+1)
|u∗|α

(1 + |u∗|α)
(4.12)

Multiplying this equality by (u∗)− and integrating over RN , then applying (2.4) we
get

(λa(p)− 1)
∫
a(x)|u∗−|p ≤

∫
|∇u∗−|p ≤

∫
d(x)|v∗−|β+1|u∗−|α+1

Using Hölder inequality and (2.3), as in the proof of Theorem 3.1, we deduce

(λa(p)− 1)(α+1)/p
( ∫

a(x)|u∗−|p
) β+1

q
α+1

p ≤
( ∫

d(x)|v∗−|q
) β+1

q
α+1

p

(4.13)

Similarly, from the second equation of (4.1), we have

(λd(q)− 1)(β+1)/q
( ∫

d(x)|v∗−|q
) β+1

q
α+1

p ≤
( ∫

a(x)|u∗−|p
) β+1

q
α+1

p

(4.14)

Multiplying (4.13) by (4.14), we obtain(
(λd(q)− 1)(β+1)/q(λa(p)− 1)(α+1)/p− 1

)( ∫
d(x)|v∗−|q

∫
a(x)|u∗−|p

) β+1
q

α+1
p ≤ 0

From conditions (3.4) and (3.5), we have u∗− = v∗− = 0, which implies that u∗, v∗ ≥
0. We show that (u∗ = v∗ = 0). Multiplying (4.12) by u∗ , we get(

(λd(q)− 1)(β+1)/q(λa(p)− 1)(α+1)/p − 1
)( ∫

d(x)|v∗|q
∫
a(x)|u∗|p

) β+1
q

α+1
p ≤ 0

which implies that u∗ = v∗ = 0, and step 2 is complete.
Step 3. (uε, vε) is bounded in D1,p × D1,q: Assume that ‖uε‖D1,p → ∞ or
‖vε‖D1,q → ∞ Set tε = max(‖uε‖D1,p , ‖vε‖D1,q ) and zε = uεt

−1/p
ε , wε = vεt

−1/q
ε .
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Dividing the first equation of (4.1) by (t1/p′

ε ) and the second by (t1/q′

ε ), we have

−∆p(zε) = a(x)
|zε|p−2zε

(1 + |ε1/puε|p−1)
+ b(x)

|wε‖βwε

(1 + |ε1/qvε|)β+1

|zε|α

(1 + |ε1/puε|)α
+ ft−1/p′

ε

−∆q(wε) = d(x)
|wε|q−2wε

(1 + |ε1/qvε|q−1)
+ c(x)

|zε‖αzε

(1 + |ε1/puε|)β+1

|wε|β

(1 + |ε1/qvε|)α
+ gt−1/q′

ε

As above, we can prove that (zε, wε) → (z, w) strongly in D1,p ×D1,q; and taking
the limit, we obtain

−∆pz = a(x)Ψp(z) + b(x)|w|β |z|αw

−∆qw = d(x)Ψq(w) + c(x)|w|β |z|αz

and we deduce w = z = 0 . Since there exists a sequence (εn)n∈N such that either
‖zεn

‖ = 1 or ‖wεn
‖ = 1 we obtain a contradiction.

Hence (uε, vε) is bounded in D1,p ×D1,q, we can extract a subsequence denoted
(uε, vε) which converges to (u0, v0) weakly in D1,p×D1,q as ε→ 0. By using similar
procedure as above, we can prove that that (uε, vε) converges strongly to (u0, v0)
in D1,p ×D1,q.

Indeed, since (ε1/puε(x), ε1/qvε(x)) → (0, 0) a.e. on RN , then, as in [6], we have

a(x)
|uε(x)|p−2uε(x)

(1 + |ε1/puε(x)|p−1)
→ a(x)|u0(x)|p−2u0(x) a.e. in RN as ε→ 0,

a(x)
|uε|p−2uε

(1 + |ε1/puε|p−1)
≤M |uε|p−1 ≤Mhp−1 ∈ Lp∗(RN ),

b(x)
|vε|βvε

(1 + |ε1/qvε|)β+1

|uε|α

(1 + |ε1/puε|)αi
→ b(x)|v0|βv0|u0|α a.e. in RN as ε→ 0,

b(x)
|vε|βvε

(1 + |ε1/qvε|)β+1

|uε|α

(1 + |ε1/puε|)α
≤M2h

αlβ+1 ∈ Lp∗(RN )

Hence from the Dominated Convergence Theorem and Lemma 4.1, we obtain[ ∫
RN

a(x)
( |uε|p−2uε

(1 + |ε1/puε|p−1)

)
− (|u0|p−2u0)p∗

]1/p∗

→ 0,[ ∫
RN

d(x)
( |vε|q−2uε

(1 + |ε1/qvε|p−1)

)
− (|v0|p−2v0)q∗

]1/q∗

→ 0,( ∫
RN

(
b(x)

|vε|βvε

(1 + |ε1/qvε|)β+1

|uε|α

(1 + |ε1/puε|Big)α
− |v0|βv0|u0|α

)p∗)1/p∗

→ 0,( ∫
RN

(
c(x)

|uε|αuε

(1 + |ε1/puε|)α+1

|vε|β

(1 + |ε1/qvε|)β
− |u0|αu0|v0|β

)q∗)1/q∗

→ 0,

as ε→ 0. Therefore, passing to the limit, (uε, vε) → (u0, v0) we obtain from (4.1),

−∆pu0 = a(x)|u0|p−2u0 + b(x)|v0|β |u0|αv0 + f

−∆qv0 = d(x)|v0|q−2v0 + c(x)|u0|α|v0|βu0 + g

Hence (u0, v0) satisfies (1.3). �

We remark that if α = β = 0 and p = q = 2, we obtain the results presented in
[18, 19].
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