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CURVATURE BLOW-UP FOR THE PERIODIC
CH-MICH-NOVIKOV EQUATION

MIN ZHU, YING WANG, LEI CHEN

ABSTRACT. We study the CH-mCH-Novikov equation with cubic nonlinear-
ity, which is derived by an asymptotic method from the classical shallow water
theory. This model can be related to three different important shallow water
equations: CH equation, mCH equation and Novikov equation. We show the
curvature blow-up of the CH-mCH-Novikov equation by the method of char-
acteristics and conserved quantities to the Riccati-type differential inequality.

1. INTRODUCTION

We consider the periodic equation with cubic nonlinearity which is an asymp-
totic model from the classical shallow water theory, called the CH-mCH-Novikov
equation

me + k1 (2ugm 4+ umy) + ko ((u? — u2)m), + kz(u?my + 3uuy,m) = 0,
t>0,x €S, (1.1)
u(O,x) = UO(‘T)’ HS S?

where m = u — uy,, and k; (i = 1,2, 3) are constants.

We know that there are two important dimensionless parameters in water-wave
theory: amplitude parameter ¢ = a/hg and shallowness parameter p = h3/\%
where hg is the mean depth of water, a and A are the typical amplitude and wave-
length of the waves, respectively. When we say the shallow-water (or long-wave),
it means there is a presumption of small depth (compared with wavelength), i.e.
< 1. Whereas there are at least two cases for the amplitude parameter € = a/hg:
Boussinesq scaling (weakly nonlinear regime): p < 1, ¢ = O(u); and the Camassa-
Holm (CH) scaling (moderately nonlinear regime): u < 1, e = O(\/11).

The following equation is derived for the scaled surface elevation by using p < 1
and £ = O(u?/°) [3]:

H € cie? 2
my + Uy — Zuxxac + 5(2u9¢m + uma:) + 4 ((u - B,qu)m)x
coe® 5 2
- (u*mg + 3uu,m) = 0+ O(e°, u*),
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where m = u — Buug,. By scaling u(t,z) — %su(\/,ﬁut, VBuzx), we obtain

3
me + Uy — gumx + 2um + umy, + co((u? — u2)m), + cs(umy + 3uuym) = 0.
Equation (1.1)) is the general case of the above equation, related to the three
integrable systems: Camassa-Holm equation, modified Camassa-Holm equation and
Novikov equation.
When k1 =1, ko =0 and k3 = 0, (1.1) reduces to

my +umg +2mu, =0, M= U — Ugy. (1.2)

This model is derived by using the CH scaling u < 1, € = O(,/i), which is
proposed as a model to describe the uni-directional propagation of shallow water
waves over a flat bottom [2, [@]. It also models the propagation of axially symmetric
waves in hyperelastic rods [7, [I4]. The CH equation is completely integrable for
a large class of initial data, for which it can be solved by the inverse scattering
method [4]. In contrast to the KdV equation, the CH equation has three remarkable
distinctive properties [23] 24]. First, although CH is completely integrable, it can
describe wave breaking phenomena. The second is the existence of peakons. Indeed,
the CH equation has the single peakon [2] and the multi-peakon solutions [12]. It
is significant that the peakons are orbitally stable: the shape is stable under small
perturbations [6, [I5]. These peakons capture a feature of the waves of greatest
height for the free-boundary incompressible Euler equations [20]. The last one is
the variety of interesting geometric formulations of the CH equation [l [8 [14] [16].
When k1 =0, k; =1 and k3 =0, reduces to

ms + ((u? — u2)m), = 0. (1.3)

The mCH equation is derived by applying the method of tri-Hamiltonian dual-
ity to the bi-Hamiltonian representation of the modified Korteweg-deVries (mKdV)
equation [8 [T9]. The equation is formally integrable and can be rewritten as the
bi-Hamiltonian form and the Lax pair [I9]. Moreover, the mCH equation exhibits
new features, including wave breaking and blow up criteria that do not appear in
the original CH equation [I0]. On the other hand, since the mCH equation also
arises from an intrinsic (arc-length preserving) invariant planar curve flow in Eu-
clidean geometry [10], it can be regarded as a Euclidean-invariant counterpart to
the KdV equation from the viewpoint of curve flows in Klein geometries [5], [17].
When k1 =0, ks =0 and k3 =1, becomes to the Novikov equation [211 22]:

me + u2mw + 3uu,m = 0.

It is known that the Novikov equation is integrable with Lax pair [I8]. A matrix Lax
pair representation to the Novikov equation was provided by Hone and Wang [13].
With that representation it can be shown that the Novikov equation is related to a
negative flow in the Sawada-Kotera hierarchy. It is also noticed that the Novikov
equation admits a bi-Hamiltonian structure [I3]. Hone, Lundmark and Szmigielski
[I1] obtained multi-peakons of the Novikov equation explicitly by using the inverse
scattering approach.

The motivation of this study comes from the curvature blow-up for cubic non-
linear models. We know that the curvature blow-up phenomena is be found in the
mCH equation [I0] and the generalized modified Camassa-Holm(gmCH) equation
[1]. This leads to a natural question of understanding how the interaction between
these cubic nonlinearities would affect the singularity formation mechanism. In this
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paper, the key ingredients are that we will choose initial data such that mg does
not change sign. This eliminates fast local oscillation of solutions, i.e. v +u, > 0.

The remainder of the paper is organized as follows. In Section 2, we present some
preliminary results. In Section 3, we are devoted to the precise blow-up scenario
about the CH-mCH-Novikov equation. In Section 4, the curvature blow-up data
are illustrated.

2. PRELIMINARIES

To discuss the wave breaking phenomenon of the periodic CH-mCH-Novikov
equation (|1.1)), we rewrite it as

up = —k1G * (2uym 4+ umy) — koG * (u® — u2)m)y, — k3G * (u?my + 3uu,m),
t>0, x €S,
u(0,z) = up(z), z€S,
(2.1)
where G(z) = %@;ﬁ)’ [x] represents the largest integer part of z, and G(x)

is the fundamental solution of (1 — d?)~! on the unit circle S = R/Z, that is for
any x € S.
Let G(z) = Ar(x)+Az(x), where Ay (z) = % and Aqg(x) =
2
Gy () = Aa(z) — Aq(2).
Lemma 2.1. Assume that ug € H*(S) N L (S) with s > 5/2. Suppose that u is the
corresponding solution to (1.1) with the initial data ug. Then

Hylug] = /g(u2 +ul)de = /S(ug + ug,x) dz. (2.2)

e @t

m . Then

Proof. We write (|1.1)) as

Ut — Upgz + K1 (2ux(u - uxw) + u(ux - u;caca:)) + k2((u2 - ui)(u - uxm))x

) (2.3)
+ k3(u (ug — Ugzs) + 3utiz(u — tgy)) = 0.
Multiplying (2.3]) by v and integrating by parts, we have
1d
—— /(uQ(t, x) 4+ ul(t, x)) dx + ky /(ui —u)dx
— ko /(uguz — Uyt — uui + uiumz) dx (2.4)
s
+ k3 /(u?’uz — W ppr + 3ulu, — 3u2umum) dxr = 0.
s
Then
/(u2 +u2)de = /(ug +up ) da.
S S
Then the proof of the lemma is complete. (|

The following inequality is often used for the wave-breaking phenomena of the
periodic CH-mCH-Novikov equation.

Lemma 2.2. [24] For every f € HX(S), a € R we have

max f2(z) < p / (% + o f2) da,

z€[0,1]
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where

B cosh(5-)

2 sinh(%)'
Moreover, i is the minimum value. So in this sense u is the optimal constant which
is obtained by the associated Green function

cosh(Z — [‘2—] — i)

2asinh(5-)

G(x) =

When o = 1, the constant p = 2(%_11) is sharp.

Lemma 2.3. [25] Let -t} < v < €21 o € R. Then if u € H'(S) such that

u(t, 1) = u(t,0), we obtain

1
(G +£~7Gy) * (u* + 51@ — au)
a a? 2.5
_ ) au—5)? =1, . <1, (2:5)
et ) —hlle—D)u—-5)> -9, 1<h|< &,

and 1
Ay o % (2u? +u?) > iuz.

3. PRECISE BLOW-UP SCENARIO

The local well-posedness theorem about the periodic CH-mCH-Novikov equation
can be obtained from the standard argument of [3] with a slight modification.

Theorem 3.1. Let ug € H*(S),s > 5/2. Then there exists a time T > 0 such that
the periodic problem (L.1) has a unique strong solution

u e C([0,T); H¥(S)) N C*([0,T]; H*X(S)).
Now we define the following characteristics associated to as
qi(t, ) = [kyu + ko (u? — u?) + ksu?|(t, q(t, ), = €S,te0,TF), (3.1)
q0,z) =z, z€S.
Then we can easily satisfy the following proposition.

Proposition 3.2. Suppose that ug € H*(S) with s > 5/2 and T > 0 be the
mazimal existence time of the strong solution u to the initial value problem ,
Then has a unique solution ¢ € C*([0,T) xS) such that q(t,-) is an increasing
diffeomorphism of S with

t
Gz (t,x) = exp(/ (k1ug + 2komug + 2ksuug) (s, q(s, x))ds), (3.2)
0

for (t,x) € [0,T) x S. Moreover, for all (t,x) € [0,T) x S there holds
t
m(t,q(t,x)) = mo(x) exp(—/ (2k1uy + 2kamuy + 3ksuug)(s, q(s, x)) dx), (3.3)
0

where mo(x) = m(0, ).
Proof. From it suffices to derive

my + (kru 4 ko (u? — u2) 4 ksu®)my = —(2kiug + 2kouym + 3ksuug)m.
Then, using the characteristics , we obtain . [
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Remark 3.3. Suppose ug € H*(S) with s > 5/2. Let T > 0 be the mazimal
existence time of the strong solution u to the corresponding initial value problem
(1.1). If mo(z) > O for all x € S, then m(t,x) > 0 for all (t,z) € [0,T) x S.
Moreover, we have u &+ u, > 0.

Similar to the other CH-type equation, (1.1)) can be reformulated into a nonlocal
transport form (2.1). We can get the following criterion lemma The proof
follows a similar idea as in [3], and hence we omit it.

Lemma 3.4. Let ug € H°(S),s > 5/2 and u be the solution of (1.1)). Assume that
T* > 0 is the mazximum time of existence. Then

-
T < 0o = / k1ts (7) + kamug (7) + 2ksuuyg (7)]| Lo dT = 00. (3.4)
0
Remark 3.5. The blow-up criterion (3.4) implies that the lifespan T* does not
depend on the regularity index s of the initial data ug.
Moreover, we prove the following accurate wave-breaking criteria.

Lemma 3.6. Suppose that ug € H*(S),s > 5/2. The corresponding solution u to
the periodic problem (L.1)) blows up in finite time T* > 0 if and only if

lim inf{kju, (¢, ) + kam(t, x)u (¢, ) + 2ksu(t, x)u.(t, )} = —oc. (3.5)
t—T* z€S

Proof. In view of Remark it suffices to consider the case s = 3. Suppose
that if kyu,(t, ) + kam(t, 2)uy (¢, ) + 2ksu(t, x)u, (¢, ) is bounded from below on
[0,7%) x S, and there exists a constant M > 0 such that
krug (t, ) + kom(t, 2)uy (t, ) + 2ksu(t, x)ug (¢, ) > —M, [0,7%) xS.  (3.6)

Multiplying (|1.1)) by m and integrating over S, and then integration by parts, we
have

1d k

Z— [ m?dx+ 3k /mzum dx + /(kguzm + 2k3uum)m2 dx = 0. (3.7)

The initial condition implies that mo € H*=2 C L4 for any 2 < ¢ < oco. Similarly
we have

1d

—— /mi dx + k; /(2umm + umy) My dx + ko /((u2 — ui)m)mmm dx

+ k3 /(uQmm + 3uu,m),m, dx = 0.

S
Integrating by parts yields
5k
k1 /(qum + umyg)emy de = —k /ume dx + 71 /ugcm?E dx, (3.9)
S S S

2
ko /((u2 —u2)m) gy dx = /(5k2u£m)mi dx — /(gkgugc?n)n”z2 dr,  (3.10)
s s s
ks /(uzmx + 3uugm)m, dx
y (3.11)

= /(4k3uu$)mi dx — /(6k:3uugc)m2 dx + /Skgum:ch dx.
S S S
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Plugging (3.9)-(3.11)) into (3.8), we have

1
fi/midx—kl/uwmzdx—i—S—Iﬁ/uwmidx

2
+ /(5k2uxm + dkzuug )m?2 dx — /(gkguzm + 6kzuuy )m? d (3.12)
s S

+ /Skguma;m2 dx = 0.
S

So from this, (3.7)), and (3.12]), we have
1d

la 2 2
57 S(m +mZ)dx

S /(k;lu$ + kyugm + 2ksuug)m? dr — /(gklum + Bkougm + 4ksuug )m? dx
s S

2
— /(gkgumm + 6ksuu, )m? dx + /Skjgummm2 dx
s s

= — /(kjlux + kyugm + 2ksuug)m? dr — /(5k1ux + Bkougm + 10ksuu, )m? dx
s s

5 2
+ §l€1 /ummi dx + 6k3 / uuym2 dx — /(gk’gﬂxm + 6ksuu, )m? dx
s s s

+/8k3umwm2 dx.
S

Moreover,

1d
24t Js

< 5/M(m2+mi)dx+gk1/uxmidx—i-(ikg/uummidx
S S S

(m? +m2) dx

2

— —kouzm + 6ksuuy, m?dz + 8k3umxm2 dx

(3
S S

5
< 5/SM(m2 +mz) du + Sl Lo llmlF + 61ks|ull Lo llus o il

2|ka| + 8|ks]

T
Note that from Lemmas and we have

1d 5 2|ko| + 8|k

s L mlz < G0 + lial /iy + ksl + 2SS e
Solving the inequality, it follows that

5 Lo | +8]
||m(t)||%{1 < 62(5M+§|k1|\/;1,H0+6|k3\'uH0+2 ko Jgs k3|H0)t||m0||%{1,

for t € [0,7*). Then Theorem ensures that the solution does not blow-up in
finite time. On the other hand, if

lim {inf (k1w (t, ) + kam(t, z)u (¢, ) + 2ksu(t, z)u, (¢, z))} = —o0,
t—=T* "zeS

then either u, or m blows up in finite time. ([
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Now, we present the dynamics of a few important quantities along the charac-
teristics q(t, ). Where ’ denotes the derivative 9; + (kyu + ko (u? — u2) + k3u?)0,
along the characteristics.

Lemma 3.7. Let ug € H*(S) with s > 5/2 and @'(t) = u'(t,q(t,20)), Un (t) =
U;(t, Q(tv I’o)), T/T\L/(tl\: m/(ta Q(tv 1’0)), and M/(t) = (muﬂ?)(t7 Q(ta IO)) Then
a'(t), uy (t), M (t), M'(t) satisfy the following integro-differential equations

2 ky ks

fngqu?’ + (5 + ) (u— Uz)? — Ao * (U4 ug)®]
)l

1 1
—ky[Ag * (u® 4+ zu?) — Ay x (u? + —u?

W(t) =

_ N 1__ 1. P . _
Uy (t) = ky (0% — iugf) + k2(§u3 — ) + = (2 - wy0)
k k
- (32 + ?3)[/\1 (U —ug)® + Ao (u+ ug)?]
1
— ky[Aq (u2 + iui) + Ag % (u2 + fuz)],
' (t) = —(2k1Uy + 2kotz i + kstity ),

mu
+7

— —~ R 5 =
M'(t) = —2ko M? + k(% — 5ugf) o |2k + 3ks)u>

b by

3t )AL (=) o Mgk (u )]

— kym[Ag * (u? + %ui) + Ay x (u? 4+ Zu2)].

Proof. In view of , we can obtain

M+ (k18 + ko (W2 — Up2) + ks@?)imy = —(2k1ty + 2kauym + kst )m, (3.13)
which is the equation about 7/ (t). By (3.13), we obtain

Wy = —k1G * (2upgm +umy) — koG * [(u? — u2)m], — k3G * (u*m + 3uuym). (3.14)

By a direct calculation, we have

— (6ks + 21k3) T2 — (

1 1
G * (2upm + umy) = uuy + Ay * (u? + Eui) — Ay (u? + §ui),

2 1
G * [(u2 — ui)m]m = (u2 — ui)uw + gui — §[A1 (U — ug)® — Ag * (u+ u$)3],
2

1
G * (u*my + 3uuzm) = vlu, — §[A1 * (u—up)® — Ao * (u+uy)’).

Therefore, plugging the above three equations into (3.14]) leads to @'(t).
Differentiating (3.14) with respect to x, we obtain

Upr = —k1G* (2ugmAumy), —koG*[(u? —u2)m]pe — k3G (u*m~+3uuzm),. (3.15)

x
By the same method and calculating the following three items
1 3.16
= Uty + 0* = S+ [Arx (07 + Jup) + Mgk (u® + Sug)], (316)
G * [(UQ - ui)m}a:a:

3.17)
= (u® — ) Uy + (%u?’ —uu?) — é[Al (U —ug)® + Ao * (u + ug)?], (
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G * (u*my + 3uugm),

, (3.18)

= w2uy, + g(qu —uZ) [Ay * (u— ux)?’ + Ao * (u+ um)s],

_1
2
Note that %, (t) can be obtained from (3.15)-(3.18)). Moreover,
M'(t)
= (M) (t) = W/ (t)uz (t) + m(t)uy (t)
= Ok, M+ Ry (a? — 2@2) + T (ks + 3Ky )T — 6k + 21k )]
ke ks
(2 2l () + A ()]

1 1
— kym[Ay * (u? + §ui) + Ao * (u? + 5“3)]

Thus, the proof is complete. ([l

(3.19)

4. CURVATURE BLOW-UP

From the blow-up criterion Lemma we know that the conservation law Ho[ug]
indicates two possible scenarios for the formation of singularity, namely, the wave-
breaking (u, — o0) or curvature blow-up (uz, — 00). Now we prove that the
wave-breaking phenomena of the CH-mCH-Novikov equation is the curvature
blow-up (uge — 00).

Theorem 4.1. Suppose that k1 < 0, ky <0, and (1)

6

K< -——k
1> 1 2y

1
2
ki + gkz <ks< —%k%
or (2)
k3 > —;kg,
max{k? + gkz, %1@} <ks<ki- %1@,

where mg € H*(S) for s > 1/2 and mg > 0. Assume that there exists some point
xo € S such that mo(xz) > 0 and

2ko + 3kz — 3k?\1/2

B 30 = KN o) (4.1)

Then the solution u(t,z) blows up in finite time T* < —

uo,z(x0) > (

1
2k2m0 (Io)uoym(fo) °
Proof. From (3.19)), we have the equation

M'(t)

= 2k M2 + kyin(a® — 2@2) + %[(21@ 4 3k)02 — (6ks + 21k3)T02)
ko k3. 5 5 (4.2)
—(E—F?)m[Al*(u—ugg) + Ao x (u+ uy)’]

. 1 1
— kym[Ag * (u® + iui) + Ag * (u? + §u§)]
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According to (3.3)), we know that m, u > 0 when mg(z¢) > 0. To obtain a Riccati-
type inequality from (4.2)), we assume that

ky 2
k1<07k2<0,§2+§3<0@k3<—§k2. (4.3)

Therefore,
M'(1)

— - mu . - 1 PR
> 2%y M? + k(32 — gumz) + %[(2/4:2 o+ 3ky)T? — (Gka + 21ke)T2”] — Shaiiit”

o~ A~

— k P R _—
= —2k; M2 4 (@ — 5°) + %[(2/&2 + 3ks)a% — (6ks + 21ks)57).
(4.4)
Suppose that
u/\xQ @2 1
]. — 5 P § O = ~ Z =
u? u? 5 (4.5)
—~2 —2 :
Uy 2ko + 3k3

Uy
ko + 3ks) — (6kg + 21k3) 2 >0 = —& > 2T
(2ky + 3ks) — (65 + 21ks) =5 > 02 = 6ky + 21ks

where 6ks +21k3 <0 & k3 < *%kg. Comparing with the values of % and 62k’“22_:231k,§’3,
we discuss it in two cases.
(1) When

1 2ky+3ks 2 2
S ST M <y < — 2k 4.6
5= 6ky+21ky 3 2= (4.6)
we have

Wl 2ky + 3k3

- > . 4.
u? — 6k + 21ks ( 7)

In particular, a finite-time blow-up of M is realized if the ration |“= | stays reason-
able big along the characteristics. If k; < 0, using Lemma [2.3| and u, — +o0o we
have

Uy 1., 5 1 P 1
(%)’ — ﬁ[klu(zﬂ — §ur2) — ki (u+ ug)Aq * (u2 + §ui)

~ —~2
u2 — Ug ]€2 kg ~2 ng 2
— | = U — — Uy

1
~ 2 2
2ko + 3k, . - PO
- @ T (- 0+ (@ T e (a4 )’

1 PR 1__ N 1 - 1
= ﬁ[klu(lﬂ - §u12) — k1uG % (u2 + §u§) + kiug Gy * (u2 + iui)]
-y ks ks 2ky o
T (G
_ 2ko + 3k3

2 (U4 Up) Ay * (u— ug)® + (U — up) Ao * (u 4 ug)?).
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Moreover,
oy > Lpa@ - 152 - W@IE - G« (2 + 2ad)
> _a2[1uu—2uw —ki|uz|(G — Gy) * (u 2u$]
W -y ke ks o 2k s
T g )i e
W@y ke ks o 2k s
,T[lﬁu—f'(?ﬁ-?)u —71%]
2 1 k2 ky ks o 2ky o
B R R T T DL R
where
1 k2 ky ks, 2k s Uy® _ 2ko + 3ks — 3k}
[ — —— 4 =4 = N > > — =
g gt - 20e o 2 4k

We know that |u,| < u from Remark Then
_ 2o+ 3ks — 313
- 4ky

From (4.8) and (4.9), we have chosen the initial data so that

Uy [2ko + 3ks — 3]6%
—_— > _— =

Thus, %= increases initially. Moreover,

0 ™ 2k + ks — 3k2
2V > (= Py R N B
(52)0) = (5)0) = | 2

92

Ug > 2ko + 3k3 — 3]?% > 2ko + 3k3 2ko + 3k3
uz - 4ko - 4ko ~ 6k + 21ks’

2 2
0 §1@§k2+k3§kf§k3—§k2.

Then we have

where )
2ko +21k3 <0 & k3 < 751'{12.

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

From ([.3), [@.6), [.10), ([£.14), we have k? < —2%ko, ki + 2k < ky < —Zko.
Plugging this into (4.4)) it yields that ]\/Z’(t) > —2/{2]\//.72, and that ]\/Z(t) blows up

in finite time with an estimate of the blow-up time T™* as

oL _ 1

p———

2o d(0)  Zkamo(o)uo(wo)’

(2) When
1 S 2ko + 3ks
5 6ko + 21k;
Then from , we have

2 2
& kg > —?kg or ks < —gkg.

—~2
w1
w2 )

From (4.9), we have

U2 2ky+3ks —3k2 1 2 2
o> T2 T T O o e k2> kg —ko, kg > — = ko,
a2 = 4ky 5 1> F3+ phke, s 52

(4.15)

(4.16)

(4.17)
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where we know that |u,| < u from Remark SO

2k2+3k‘373k% 2 9 2
0< — =<1 & -k ks < ki < ks — =ks.
< ey < 3 2+ R3 SR S R3 32
So, we have
2 9 2 2
ks + gkz < ]{11 < ks-— gkg, ks > ng (418)

From (4.8)) and (4.9)), we have chosen the initial data so that

(=) =y 2k + 3% = 5k i:z 3K (4.19)

Thus, %= increases initially. Moreover,

(%)m > (%)(o) > | 2Rt 3k = 3 *iii — 3k (4.20)

From (£.3), {17), @18), we obtain/rilax{k% + %ka,\*%kg} < k3A< k2 — 2k,.
Plugging this into it yields that M'(t) > —2ksM?, and that M(t) blows up
in finite time with an estimate of the blow-up time T™* as
T < — L\ =— 1 . |
ngM(O) ngmo(l'o)'lto,x(xo)

Remark 4.2. (1) From Lemma we obtain that the true blow-up quantity is
komug. In Theorem when ks < 0, we seek data that lead to mu, — +o00. So
that we consider the case when kg > 0, it leads to mu, — —o0

(2) The blow-up time T is only related to the parameter ko. We know that the
mCH equation plays a dominant role in blow-up phenomena when the CH equation,
the mCH equation and the Novikov equation act simultaneously.

| &)

Using a similar argument as above, we prove the following corollary when ks > 0.

Corollary 4.3. Suppose that k1 > 0, ko > 0, —%kg — k3 <k} < %kg — ks and
—22—71412 < ks < %k’g. Let mg € H*(S) for s > 1/2 and mg > 0. Assume that there
exists some point xg € S such that mo(xg) > 0 and

[2ky + 3ks3 + 3k2
ug, (o) < — QT:)IUOCEO)- (4.21)

Then the solution u(t,z) blows up in finite time with an estimate of the blow-up
1

N * * S
time T* as T < Teamo(@o)uo (70) "

Proof. Now we look for M — —oo. We recall the equation

= = . Buy. | mud w2
M'(t) = —2ko M? + kymau? (1 — 373 )+ T[(% + 3k3) — (6ko + 21k3) = ]

ko k3
( 3 2
1u2

(A #0155 + A (14 5 2.

Ym[Ag * (u— ug)® + Ao * (u+ ug)?]

We assume that

ky Kk 2
k1 >0, ko >0, §2+§>0®k3>—§k2. (4.22)
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To obtain a Riccati-type inequality we have

ST U
<0 >

22
w2 =T @ T

1-—

(4.23)

—~2 —2

. Uy 2ko + 3k3
2k 3ks3) — (6k 21k3)— <0 = Z %7 [ o111
(2k2 + 3k3) — (6k2 + 3)a2 sVe = = 6ky + 21ks’

where 6ky + 21ks > 0 < k3 > 7%]’(}2. Now we discuss the following two cases:
2ko+3k 2 2k 2k 2ko 43k 2k
(1) When Ghatolhy = 5 & — 7 = ks < =52, and Bhotoily = 1 & =5 <
ks < —%. Then

2ko 2ko
— 2 <[y < ——=. 4.24
2k <2 (124
We have
Up? _ 2ko + 3k

- 4.25
u? — 6ko + 21k3 ( )

In particular, a finite-time blow-up of M can be realized if the ration |“=| stays
reasonable big along the characteristics. We have

Uy 1. . 1 o 1
(%)/ = ﬁ[kw(tﬁ — iuzz) — k(U + ) Ay * (U + 5ui)

W -y ks ks, 2k __s
e e Pl al
[T+ up)Aq * (uw— u$)3 + (U —ug) Ao * (u+ ux)?’]

- 1
— k(0 — up)Ag * (u® + iui)] +
_ 2ko + 3k3
612
1_o

1 1 _ 1, 5 . <
< ﬁ[klﬂ(ﬁ — 5l ) — 1k1ﬂ2(@+ Uy) — ZkluQ(u — Ug)]

So we have
uy 1 ki oy Q=T ke k3o 2k o
(5)/=§[§U(U — Uy )]+T[(§+§)U —7%]
W -yt 1 k2, ky ks o 2k o
< L SRS ¥y, M Ay L yom (4.26)
S Tt (T s 5w
W2 —uy0 1 k2 ke ks, 2ky
@ gt Tyt ol
where
1 k2 ky ks, 2ky o
sy Rt - <0
Qo unZ k2 ke K 1

3@ — 2 3 2 " 8uk,
—~2 2
’Lff- > 3 2ko + 3k3 i 3]4;1
’LL2 - 16/1,E0k2 4k2 4]€2

W o 2ka + 3ks + 3k2
uz - 4ko '
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We know that |u,| < u, so

ks + 3ks + 3k 2 2 2
%g@;ﬁgg/@_kg and - Shy — ks >0 ks < ko (4.27)
2

We have chosen the initial data so that

2ko + 3k3 + 3/6%

4.28
( - (4.28)
— 2
‘We need UTT; > 2k2+i’;2+3k1 > 2’“24;3’“3 > 62kk2f231kk33 > % Therefore,
2
2k +21k3 > 0= k3 > —ikg. (429)

Clearly, (4.29)) contradicts (4.24)), so Case 1 can not happen.

(2) When Zfad3a < 2 & k3 < —282 or kg > —22 and 6ky + 21ks > 0 & k3 >

*%kg, we have
—~2

Uy 2

7 25
With the same method, we have chosen the initial data so that

2ko + 3ks + 3k

4.30
( e (4.30)
‘We need ”;T; > W. Then % decreases initially. So, we have
) 2
Uy 2ko + 3ks + 3k 2 9 2
— - > S ki > ——ky — k3. 4.31
= > s > okl > —oh — ks (4.31)

From (£.22), ([d.26)), (4.30) and (4.31), we have — Zko—ks < ki < 2ko—ks, — 2 ko <
ks < %kg. Then we obtain the desired Riccati inequality for M

M (t) < 2k, M2,

which implies that ]\/4\(15) — —oo as t — T, where T* < — O

1
2kamo(zo0)uo,x(%0) *
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