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EXISTENCE OF POSITIVE SOLUTIONS FOR THE SYMMETRY
THREE-POINT BOUNDARY-VALUE PROBLEM

QIAOZHEN MA

ABSTRACT. In this paper, we show the existence of single and multiple positive
solutions for the symmetry three-point boundary value problem under suitable
conditions by using classical fixed point theorem in cones.

1. INTRODUCTION

Since Gupta [3] studied three-point boundary value problems for the nonlinear
ordinary differential equation, many classical results have been obtained by using
Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and
coincidence degree theory. For more information, we refer the reader to [T, [3] [6,
7] and reference therein. The study of multi-point boundary-value problems for
linear second-order differential equations was initiated by I'in and Moiseev [4].
While the multi-point boundary value problem arise in the different areas of applied
mathematics and physics. For instance, many problems in the theory of elastic
stability can be handled as a multi-point problem [8]. Therefore, it’s necessary to
continue to extend and investigate.

Ma [6], by using fixed-point index theorems and Leray-Schauder degree and
upper and lower solutions, considered the multiplicity of positive solutions of the
problem

u" + A(t)f(u) =0, te(0,1), (1.1)
u(0) =0, u(l)=au(n), (1.2)

where 0 < n < 1, 0 < o < 1/, assuming that f € C([0,00),[0,00)), h €
C(]0,1),[0,00)), and f is superlinear. In the present paper, we study the exis-
tence of single and multiple positive solutions to nonlinear symmetry three-point
boundary value problem

u’ 4+ Xa(t)f(u) =0, te(0,1), (1.3)
u(0) = Bu(n), u(l) = au(n). (1.4)
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Where A\ > 0 is a positive parameter, a >0, > 0,0 < n < 1.

Clearly, problem ([1.3])-(1.4) is more generic than (1.1J)-(1.2)), that is to say, our

problem is (L.1)-(1.2]) for 5 = 0. Moreover, (1.3])-(1.4) is transformed immediately
into the classical Dirichlet problem for « = 8 = 0. And when 8 = 0, a = 1,

1 — 1 problem - is changed into the mixed boundary value problem. In
addition, our results will be obtained under conditions that do not require f to
be either superlinear or sublinear. In short, our problem gives a frame to these
problems under more generic conditions. We make the following assumptions.

(i) a € C([0,1],[0,+c0)) and there exists o € [0,1] such that a(xg) > 0.
(ii) f € C([0,+00),]0,4+0c0)) and there exist nonnegative constants in the ex-
tended reals, fo, foo, such that

fo= u£%+ @’ foo = uh~>nolo %

(iii) £(0) >0, for ¢ € [0,1].

Remark 1.1. It is easy to see that if (iii) holds, then there exist two constants
a,b € (0,00), such that 0 < f(u) < b, for u € [0, al.

The key tool in our approach is the following Krasnoselskii’s fixed point theorem
in a cone.

Theorem 1.2 ([2]). Let E be a Banach space and K C E be a cone in E. Suppose
that Q, Qo are bounded open subset of K with 0 € Q1,921 C Qo, and A: K — K
is a completely continuous operator such that either

[Aw]| < Jjwll, wed, [Aw| = [lwl, wed, or
[Aw] = flw]l,  wedh, [[Aw| <[lw], w e .

Then A has a fived point in Qy \ Q1.

2. PRELIMINARY LEMMAS

Lemma 2.1 ([5]). Let 3 # £=21. Then, for y € C[0,1], boundary-value problem

1-n
u' + y(t) =0, te (Oa 1)7 (21)
u(0) = Bu(n), u(l) = au(n). (2.2)
has a unique solution
__ [ — $)y(s)ds B-a)t—p ! — s)y(s)ds
ut) == [ = owis)as+ g2l [ = syt

(1—B)t+ By !
a2y 0 s

Lemma 2.2 ([5]). Let 0 < a < 1/n, 0 < B < 1;—&7;7 Then, for y € C[0,1], and

y > 0, the unique solution of problem (2.1)-(2.2)) satisfies
u(t) >0, t €10,1].

Lemma 2.3 ([5]). Let 0 < a < %, 0<p< 11__0;77. Then, for y € C[0,1], and

y > 0, the unique solution of problem (2.1))-(2.2)) satisfy

(D) > ’
in, u(t) > ||ull
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where

e =n)

= - } ) 1-— .

7 = min{ el Bn, B(1 —n)}

Note that u = u(t) is a solution of (1.3))-(1.4), if and only if
(B—a)t—-p

(1—an) —p(1 -

WLA (1 —s)a(s)f(u(s))ds] := Axu(t).

u(t) :)\[7/0 (t —s)a(s)f(u(s))ds +

(1-8)t+Bn
(1—an) —p1 -

Define a cone K in the Banach space C[0, 1],

- / (n— s)a(s) f(u(s))ds

(2.3)

K={u:ueC[0,1], w>0, min u(t) > v|u|}.
t€[0,1]

By Lemmas [2.2) and we know that A\K C K and it is not hard to verify that
Ay : K — K is a completely continuous.

3. MAIN RESULTS

Throughout this paper, we shall use the following notation

1+ 6(1+n)
(1—an) -1 -

' — S)als)as = ﬁ(l—n) nSG/SS
5 ) 0= 9aos, B= s [ sategas

Here and below we assume that an < 1.

A:

Theorem 3.1. Suppose that (i)-(ii) hold. Then we have
(1) If Afo < YBfoo, then for each \ € (ﬁ, ﬁ), the problem (|1.3))-(1.4)

has at least one positive solution.

(2) If fo =0 and foo = 00, then for any X € (0,00), the problem (1.3])-(1.4]
has at least one positive solution.

(3) If foo = 00, 0 < fo < 00, then for each X € (0, ﬁ), the problem ((1.3))-(1.4))
has at least one positive solution.

(4) If fo =0, 0 < foo < 00, then for each \ € (ﬁ,oo), the problem (|1.3))-
(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1).

Let \ € (ﬁ, A%ﬁ)v and choose £ > 0 such that

1 <A< 1

VB =5 ) 3.1)
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By the definition of fy, there exists H; > 0 such that f(x) < (fo+¢)x for x € [0, Hy].
Let w € K with |lu|| = Hy, by (2.3) and (3.1]), we conclude that

MGt K
Ayt < e [ = s)a)ru(s)ds
Al + 5n) 1 —s)a(s)f(u(s))ds
Tt | = et ruts)d
A3 !
i CED OO
AL+ ) 1 —s)a(s)f(u(s))ds (3.2)
T [ (1= el
= AQL+ 5+ Bn) ' —s)a(s)f(u(s))ds
= o [ = el fus)d
)\(1+5+ﬁn) ' — S)als gluls)as
< o s [ =9l (o + uls)a
< MA(fo + )l < .
As a result, [[Ayull < [Jul|. Let @ = {u € K : ||u|]| < H1}, then
|[Axu|l <ull, forue KNoQ. (3.3)

Again thanks to the definition of f., there exists Hy > 0 such that f@) > (fo —
e)x, for every x € [Hy,00). Denote Hy = max{2H], %}, D ={ueK:|ul<
Hy}. )

If w € K with |lul| = Hz, then mingejo 1) u(t) > v||ul| > Ha. It leads to

Anul0) = == [ 9l ftuls)ds
t P [ o s
> e [ - s u(e)ds
s [ e s O
= o) At [, e
Sy A

> M B(foo = )|ull = [ull

Consequently, ||Axu| > [ju]| for u € K N 0Qs.
Thus, according to the first condition of Theorem Ay has a fixed point u(t)
with H; < ||’LL|| < H;in KN (QQ \ Ql) [l

Theorem 3.2. Suppose that (i)-(ii) hold. Then we have
(1) If Afse < vBfo, then for each \ € (ﬁ, i), the problem (|1.3))-(1.4)

has at least one positive solution.
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(2) If fo = 00 and foo = 0, then for any A € (0,00), the problem (1.3])-(1.4]
has at least one positive solution.

(3) If foo = 00, 0 < fo < o0, then for each A € (0, ﬁ), the problem ([1.3))-
(1.4) has at least one positive solution.

4) If fo =0, 0 < foo < 00, then for each \ € (ﬁ,oo), the problem (|1.3))-
(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1).
Let A € (=4 1), and choose & > 0 such that

YBo" Al
1 1
— <A<
1B(fo—¢) 7 T Alfo +¢)

By the definition of fy, there exists Hs > 0 such that f(z) > (fo—e)x for z € [0, H3].
Let u € K with [[u|| = Hz such that mingc[o 1) u(t) > 7[|u||. Similar to the estimates

of (3.4)), we obtain
AB(1L —n) !
Axu(0) > = ) /0 sa(s) f(u(s))ds

(3.5)

(I —an)—p(1-
ABQL =) ! sa(s —e)u(s)ds (3.6)
2 (1 _ O”]) _ ﬁ(l _ 77) A ( )(f() 5) ( )d

> My B(fo = e)lJull = [ull
Hence, it follows that ||Axul|| > |Ju||. Set Q@ = {u € K : ||u|| < Hs}, we claim
|Axul| > ||ul], for u e K NOQy.

Again in line with the definition of f.., there exists Hy such that f(z) < (fo +¢)z,
for « € [Hy, 00). We discuss two possible cases:.

Case 1. Suppose that f is bounded, that is, there exists a positive constant M;
such that f(x) < M for all x € [0,00). Set Hy = max{2H3, \M;A}. If u € K with
|lu|| = Hy, similar to (3.2)), we obtain

MLEBHBT)  [F e s )ds
Ayt < T2 LI [ 1= (o) f(u(e))a
< AM1A < Hy = ||ul.

(3.7)

Thus, by setting Q2 = {u € K : |lu|]| < Hy}, we get
lAxul] < ull, for ue KNIN.

Case 2. Suppose that f is unbounded, we choose Hy > max{2Hs,v 'H,} such
that f(z) < f(Hy), for x € [0, Hy]. Let u € K with ||u|| = Hy, we have

A(L+ 5+ ) 1 —s)a(s)f(u(s))ds
Avu(t) € L [0 gats)f(as)d
AL+B+B) [T ) (3.8)
ST e A, O e

< AA(foo + ) Hs < ],
Let Qs = {u € K : ||u|| < Hy}, this yields
|Axul] < |lull, foru e K NoQs.
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As a result, from the above estimates and by Theorem [[.2] it follows that Ay has
a fixed point u € K N (Q2\ Q1). O

Theorem 3.3. Suppose that (i)-(ii) are true. In addition, assume that there exist
two positive constants Hs, Hg with Hs < vHg and AHg < BHy such that
(1) f(l‘) < %; Vo € [07H5]7
(2) f(x) 2 %7 Vo € [’YHG,HG]-
Then problem (1.3)-(1.4) has at least one positive solution u* € K with Hs <
[[u*]| < He.
The proof is similar to the proofs of Theorems [3.1] and so we omit it.

Theorem 3.4. Suppose that (i)-(iii) hold, moreover, fo, = 00. Then there exists a
positive constant Ay such that problem (1.3)-(1.4) has at least two positive solutions
for X small enough.

Proof. From (3) of theorems and we can see that (1.3)-(1.4) has a positive

solution u; satisfying
il = H, (3.9)

where  is a suitable constant for A € (0, p*), and p* = min{ 5, 55—}
To find the second positive solution of (|1.3)-(1.4)), we set

v v ) flu), foruel0,a,
) = {f(a)7 for u € [a, 00), (3.10)

then 0 < f*(u) < b for u € [0,00), where a, b are given in remark [1.1]
Now we consider the auxiliary equation

w4+ Xa(t)f*(u) =0, te(0,1) (3.11)
with the boundary value conditions
u(0) = Bu(n), u(l) = ou(n). (3.12)
It is easy to check that (3.11))-(3.12)) is equivalent to the fixed point equation u =
Fyu, where
t
Fault) = Al / (t — s)a(s) f* (u(s))ds
0
(B-a)t-p
+
(1—an) —p(1 -

(1-p)t+Bn ! vl £ (e
+K1_am—5ﬂ—nké(l Ja(s) f* (u(s))ds].

Clearly, F) : K — K is completely continuous and F)\(K) C K. Set

7nAQn—$w@ﬁW@»@

H
H; = min{;,a}, (3.13)

A+5+omM [ .
o B J, (= 9ol

and fix A € (0,A), where M = max{f*(u): 0 <u < Hr}.

A = min{Hy|
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Choose Q3 = {u € C[0,1] : ||u|]| < H7}, then for u € K N 903, we have

AQ+ 5+ Bn) 1 —s)a(s)f*(u(s))ds
Fralt) € 2 S EEE [0 = syao) (u(e))d

AMQL+ B+ 8n) [
g(l—an)—ﬂ(l—n)/o(l Jals)d
< H;.

Therefore, ||Fhu| < |Jul|, for u € K N0Qs.

From (iii) we know that lim, g fT(u) = +oo. This means that there exists a
constant Hg (Hg < Hr) such that f*(u) > pu for u € [0, Hs], where

ApBy(1 —n) 1
P2 ez

AB(L —n)
O = o =50

)
- AB(1L —mn)
T (L—am) - B0 -
ApBy(1 —1n) /”
sa(s)ds||ul| > [|ull.
> ot [Csatsyaslul >
Thus, we may let Q4 = {u € C[0,1] : |ju| < Hs}, so that ||[Ful > |Ju||, for
u € K NoQy.

By the second part of Theorem [1.2] it follows that (3.11)-(3.12) has a positive
solution uo satisfying

(3.14)

Also

S " sa(s) f*(u(s))ds

m /0 sa(s)pu(s)ds (3.15)

Combining with (3.10)), (3.13]), we obtain that us is also a solution of ([1.3))-(1.4)).
In other words, from (3.9) and (3.16)) we show that (1.3)-(1.4) has two distinct
([

positive solutions u; and ug for A € (0, Aq).

Theorem 3.5. Suppose that (i)-(iii) hold, furthermore, fo = foo = 0. Then the
problem (1.3))-(1.4)) has at least two positive solutions for A large enough.

Proof is the same as that of Theorem we omit it.
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