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EXISTENCE OF POSITIVE SOLUTIONS FOR THE SYMMETRY
THREE-POINT BOUNDARY-VALUE PROBLEM

QIAOZHEN MA

Abstract. In this paper, we show the existence of single and multiple positive

solutions for the symmetry three-point boundary value problem under suitable
conditions by using classical fixed point theorem in cones.

1. Introduction

Since Gupta [3] studied three-point boundary value problems for the nonlinear
ordinary differential equation, many classical results have been obtained by using
Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and
coincidence degree theory. For more information, we refer the reader to [1, 3, 6,
7] and reference therein. The study of multi-point boundary-value problems for
linear second-order differential equations was initiated by II’in and Moiseev [4].
While the multi-point boundary value problem arise in the different areas of applied
mathematics and physics. For instance, many problems in the theory of elastic
stability can be handled as a multi-point problem [8]. Therefore, it’s necessary to
continue to extend and investigate.

Ma [6], by using fixed-point index theorems and Leray-Schauder degree and
upper and lower solutions, considered the multiplicity of positive solutions of the
problem

u′′ + λh(t)f(u) = 0, t ∈ (0, 1), (1.1)

u(0) = 0, u(1) = αu(η), (1.2)

where 0 < η < 1, 0 < α < 1/η, assuming that f ∈ C([0,∞), [0,∞)), h ∈
C([0, 1), [0,∞)), and f is superlinear. In the present paper, we study the exis-
tence of single and multiple positive solutions to nonlinear symmetry three-point
boundary value problem

u′′ + λa(t)f(u) = 0, t ∈ (0, 1), (1.3)

u(0) = βu(η), u(1) = αu(η). (1.4)
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Where λ > 0 is a positive parameter, α > 0, β > 0, 0 < η < 1.
Clearly, problem (1.3)-(1.4) is more generic than (1.1)-(1.2), that is to say, our

problem is (1.1)-(1.2) for β = 0. Moreover, (1.3)-(1.4) is transformed immediately
into the classical Dirichlet problem for α = β = 0. And when β = 0, α = 1,
η → 1 problem (1.3)-(1.4) is changed into the mixed boundary value problem. In
addition, our results will be obtained under conditions that do not require f to
be either superlinear or sublinear. In short, our problem gives a frame to these
problems under more generic conditions. We make the following assumptions.

(i) a ∈ C([0, 1], [0,+∞)) and there exists x0 ∈ [0, 1] such that a(x0) > 0.
(ii) f ∈ C([0,+∞), [0,+∞)) and there exist nonnegative constants in the ex-

tended reals, f0, f∞, such that

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→∞

f(u)
u

.

(iii) f(0) > 0, for t ∈ [0, 1].

Remark 1.1. It is easy to see that if (iii) holds, then there exist two constants
a, b ∈ (0,∞), such that 0 < f(u) ≤ b, for u ∈ [0, a].

The key tool in our approach is the following Krasnoselskii’s fixed point theorem
in a cone.

Theorem 1.2 ([2]). Let E be a Banach space and K ⊂ E be a cone in E. Suppose
that Ω1,Ω2 are bounded open subset of K with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and A : K → K
is a completely continuous operator such that either

‖Aw‖ ≤ ‖w‖, w ∈ ∂Ω1, ‖Aw‖ ≥ ‖w‖, w ∈ ∂Ω2, or

‖Aw‖ ≥ ‖w‖, w ∈ ∂Ω1, ‖Aw‖ ≤ ‖w‖, w ∈ ∂Ω2.

Then A has a fixed point in Ω̄2 \ Ω1.

2. Preliminary Lemmas

Lemma 2.1 ([5]). Let β 6= 1−αη
1−η . Then, for y ∈ C[0, 1], boundary-value problem

u′′ + y(t) = 0, t ∈ (0, 1), (2.1)

u(0) = βu(η), u(1) = αu(η). (2.2)

has a unique solution

u(t) =−
∫ t

0

(t− s)y(s)ds +
(β − α)t− β

(1− αη)− β(1− η)

∫ η

0

(η − s)y(s)ds

+
(1− β)t + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)y(s)ds.

Lemma 2.2 ([5]). Let 0 < α < 1/η, 0 < β < 1−αη
1−η . Then, for y ∈ C[0, 1], and

y ≥ 0, the unique solution of problem (2.1)-(2.2) satisfies

u(t) ≥ 0, t ∈ [0, 1].

Lemma 2.3 ([5]). Let 0 < α < 1
η , 0 < β < 1−αη

1−η . Then, for y ∈ C[0, 1], and
y ≥ 0, the unique solution of problem (2.1)-(2.2) satisfy

min
t∈[0,1]

u(t) ≥ γ‖u‖,
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where

γ = min{α(1− η)
1− αη

, αη, βη, β(1− η)}.

Note that u = u(t) is a solution of (1.3)-(1.4), if and only if

u(t) =λ[−
∫ t

0

(t− s)a(s)f(u(s))ds +
(β − α)t− β

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(u(s))ds

+
(1− β)t + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds] := Aλu(t).

(2.3)
Define a cone K in the Banach space C[0, 1],

K = {u : u ∈ C[0, 1], u ≥ 0, min
t∈[0,1]

u(t) ≥ γ‖u‖}.

By Lemmas 2.2 and 2.3, we know that AλK ⊂ K and it is not hard to verify that
Aλ : K → K is a completely continuous.

3. Main Results

Throughout this paper, we shall use the following notation

A =
1 + β(1 + η)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)ds, B =
β(1− η)

(1− αη)− β(1− η)

∫ η

0

sa(s)ds.

Here and below we assume that αη < 1.

Theorem 3.1. Suppose that (i)-(ii) hold. Then we have

(1) If Af0 < γBf∞, then for each λ ∈ ( 1
γBf∞

, 1
Af0

), the problem (1.3)-(1.4)
has at least one positive solution.

(2) If f0 = 0 and f∞ = ∞, then for any λ ∈ (0,∞), the problem (1.3)-(1.4)
has at least one positive solution.

(3) If f∞ = ∞, 0 < f0 < ∞, then for each λ ∈ (0, 1
Af0

), the problem (1.3)-(1.4)
has at least one positive solution.

(4) If f0 = 0, 0 < f∞ < ∞, then for each λ ∈ ( 1
γBf∞

,∞), the problem (1.3)-
(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1).
Let λ ∈ ( 1

γBf∞
, 1

Af0
), and choose ε > 0 such that

1
γB(f∞ − ε)

≤ λ ≤ 1
A(f0 + ε)

. (3.1)
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By the definition of f0, there exists H1 > 0 such that f(x) ≤ (f0+ε)x for x ∈ [0,H1].
Let u ∈ K with ‖u‖ = H1, by (2.3) and (3.1), we conclude that

Aλu(t) ≤ λβt

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(u(s))ds

+
λ(t + βη)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λβ

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

+
λ(1 + βη)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

=
λ(1 + β + βη)

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λ(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)(f0 + ε)u(s)ds

≤ λA(f0 + ε)‖u‖ ≤ ‖u‖.

(3.2)

As a result, ‖Aλu‖ ≤ ‖u‖. Let Ω1 = {u ∈ K : ‖u‖ < H1}, then

‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω1. (3.3)

Again thanks to the definition of f∞, there exists Ĥ2 > 0 such that f(x) ≥ (f∞ −
ε)x, for every x ∈ [Ĥ2,∞). Denote H2 = max{2H1,

Ĥ2
γ }, Ω2 = {u ∈ K : ‖u‖ <

H2}.
If u ∈ K with ‖u‖ = H2, then mint∈[0,1] u(t) ≥ γ‖u‖ ≥ Ĥ2. It leads to

Aλu(0) = − λβ

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(u(s))ds

+
λβη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

≥ − λβ

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f(u(s))ds

+
λβη

(1− αη)− β(1− η)

∫ η

0

(1− s)a(s)f(u(s))ds

=
λβ(1− η)

(1− αη)− β(1− η)

∫ η

0

sa(s)f(u(s))ds

≥ λβ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)(f∞ − ε)u(s)ds

≥ λγB(f∞ − ε)‖u‖ ≥ ‖u‖.

(3.4)

Consequently, ‖Aλu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2.
Thus, according to the first condition of Theorem 1.2, Aλ has a fixed point u(t)

with H1 ≤ ‖u‖ ≤ H2 in K ∩ (Ω̄2 \ Ω1). �

Theorem 3.2. Suppose that (i)-(ii) hold. Then we have
(1) If Af∞ < γBf0, then for each λ ∈ ( 1

γBf0
, 1

Af∞
), the problem (1.3)-(1.4)

has at least one positive solution.
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(2) If f0 = ∞ and f∞ = 0, then for any λ ∈ (0,∞), the problem (1.3)-(1.4)
has at least one positive solution.

(3) If f∞ = ∞, 0 < f0 < ∞, then for each λ ∈ (0, 1
Af∞

), the problem (1.3)-
(1.4) has at least one positive solution.

(4) If f0 = 0, 0 < f∞ < ∞, then for each λ ∈ ( 1
γBf0

,∞), the problem (1.3)-
(1.4) has at least one positive solution.

Proof. Since the proof of (2)-(4) is similar to the proof of (1), we only prove (1).
Let λ ∈ ( 1

γBf0
, 1

Af∞
), and choose ε > 0 such that

1
γB(f0 − ε)

≤ λ ≤ 1
A(f∞ + ε)

. (3.5)

By the definition of f0, there exists H3 > 0 such that f(x) ≥ (f0−ε)x for x ∈ [0,H3].
Let u ∈ K with ‖u‖ = H3 such that mint∈[0,1] u(t) ≥ γ‖u‖. Similar to the estimates
of (3.4), we obtain

Aλu(0) ≥ λβ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)f(u(s))ds

≥ λβ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)(f0 − ε)u(s)ds

≥ λγB(f0 − ε)‖u‖ ≥ ‖u‖.

(3.6)

Hence, it follows that ‖Aλu‖ ≥ ‖u‖. Set Ω1 = {u ∈ K : ‖u‖ < H3}, we claim

‖Aλu‖ ≥ ‖u‖, for u ∈ K ∩ ∂Ω1.

Again in line with the definition of f∞, there exists H̃4 such that f(x) ≤ (f0 + ε)x,
for x ∈ [H̃4,∞). We discuss two possible cases:.

Case 1. Suppose that f is bounded, that is, there exists a positive constant M1

such that f(x) ≤ M1 for all x ∈ [0,∞). Set H4 = max{2H3, λM1A}. If u ∈ K with
‖u‖ = H4, similar to (3.2), we obtain

Aλu(t) ≤ λ(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λM1A ≤ H4 = ‖u‖.
(3.7)

Thus, by setting Ω2 = {u ∈ K : ‖u‖ < H4}, we get

‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω2.

Case 2. Suppose that f is unbounded, we choose H4 > max{2H3, γ
−1H̃4} such

that f(x) ≤ f(H4), for x ∈ [0,H4]. Let u ∈ K with ‖u‖ = H4, we have

Aλu(t) ≤ λ(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(u(s))ds

≤ λ(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f(H4)ds

≤ λA(f∞ + ε)H4 ≤ ‖u‖.

(3.8)

Let Ω2 = {u ∈ K : ‖u‖ < H4}, this yields

‖Aλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω2.
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As a result, from the above estimates and by Theorem 1.2, it follows that Aλ has
a fixed point u ∈ K ∩ (Ω̄2 \ Ω1). �

Theorem 3.3. Suppose that (i)-(ii) are true. In addition, assume that there exist
two positive constants H5,H6 with H5 < γH6 and AH6 ≤ BH5 such that

(1) f(x) ≤ H5
λA , ∀x ∈ [0,H5],

(2) f(x) ≥ H6
λB , ∀x ∈ [γH6,H6].

Then problem (1.3)-(1.4) has at least one positive solution u∗ ∈ K with H5 ≤
‖u∗‖ ≤ H6.

The proof is similar to the proofs of Theorems 3.1 and 3.2, so we omit it.

Theorem 3.4. Suppose that (i)-(iii) hold, moreover, f∞ = ∞. Then there exists a
positive constant Λ1 such that problem (1.3)-(1.4) has at least two positive solutions
for λ small enough.

Proof. From (3) of theorems 3.1 and 3.2, we can see that (1.3)-(1.4) has a positive
solution u1 satisfying

‖u1‖ ≥ H, (3.9)

where H is a suitable constant for λ ∈ (0, µ∗), and µ∗ = min{ 1
Af0

, 1
Af∞

}.
To find the second positive solution of (1.3)-(1.4), we set

f∗(u) =

{
f(u), for u ∈ [0, a],
f(a), for u ∈ [a,∞),

(3.10)

then 0 < f∗(u) ≤ b for u ∈ [0,∞), where a, b are given in remark 1.1.
Now we consider the auxiliary equation

u′′ + λa(t)f∗(u) = 0, t ∈ (0, 1) (3.11)

with the boundary value conditions

u(0) = βu(η), u(1) = αu(η). (3.12)

It is easy to check that (3.11)-(3.12) is equivalent to the fixed point equation u =
Fλu, where

Fλu(t) := λ[−
∫ t

0

(t− s)a(s)f∗(u(s))ds

+
(β − α)t− β

(1− αη)− β(1− η)

∫ η

0

(η − s)a(s)f∗(u(s))ds

+
(1− β)t + βη

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f∗(u(s))ds].

Clearly, Fλ : K → K is completely continuous and Fλ(K) ⊂ K. Set

H7 = min{H

2
, a}, (3.13)

Λ = min{H7[
(1 + β + βη)M

(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)ds]−1, µ∗}

and fix λ ∈ (0,Λ), where M = max{f∗(u) : 0 ≤ u ≤ H7}.
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Choose Ω3 = {u ∈ C[0, 1] : ‖u‖ < H7}, then for u ∈ K ∩ ∂Ω3, we have

Fλu(t) ≤ λ(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)f∗(u(s))ds

≤ λM(1 + β + βη)
(1− αη)− β(1− η)

∫ 1

0

(1− s)a(s)ds

≤ H7.

(3.14)

Therefore, ‖Fλu‖ ≤ ‖u‖, for u ∈ K ∩ ∂Ω3.
From (iii) we know that limu→0+

f∗(u)
u = +∞. This means that there exists a

constant H8 (H8 < H7) such that f∗(u) ≥ ρu for u ∈ [0,H8], where

λρβγ(1− η)
(1− αη)− β(1− η)

∫ 1

0

sa(s)ds ≥ 1.

Also

Fλu(0) ≥ λβ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)f∗(u(s))ds

≥ λβ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)ρu(s)ds

≥ λρβγ(1− η)
(1− αη)− β(1− η)

∫ η

0

sa(s)ds‖u‖ ≥ ‖u‖.

(3.15)

Thus, we may let Ω4 = {u ∈ C[0, 1] : ‖u‖ < H8}, so that ‖Fλu‖ ≥ ‖u‖, for
u ∈ K ∩ ∂Ω4.

By the second part of Theorem 1.2, it follows that (3.11)-(3.12) has a positive
solution u2 satisfying

H8 ≤ ‖u2‖ ≤ H7. (3.16)
Combining with (3.10), (3.13), we obtain that u2 is also a solution of (1.3)-(1.4).

In other words, from (3.9) and (3.16) we show that (1.3)-(1.4) has two distinct
positive solutions u1 and u2 for λ ∈ (0,Λ1). �

Theorem 3.5. Suppose that (i)-(iii) hold, furthermore, f0 = f∞ = 0. Then the
problem (1.3)-(1.4) has at least two positive solutions for λ large enough.

Proof is the same as that of Theorem 3.4, we omit it.
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