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DYNAMICS OF 2D NAVIER-STOKES EQUATIONS WITH
RAYLEIGH’S FRICTION AND DISTRIBUTED DELAY

YADI WANG, XIN-GUANG YANG, XINGJIE YAN

ABSTRACT. This article concerns the long time dynamics of a 2D incompress-
ible Navier-Stokes equation with Rayleigh’s friction and distributed delay. Un-
der appropriate assumptions on the external force and delay term, we obtain
global well-posedness in new phase spaces with delay. Using uniform estimates
and compact embedding, we obtain a global attractor.

1. INTRODUCTION

The Navier-Stokes equation is a well-known model to describe the essential law
of fluid flow. Its asymptotic dynamics can be used to construct mathematical anal-
ysis of turbulence for fluid flow, see for example [6, [7, 16, 28, 29, B1, B2, B3] and
the references therein. The influence of the delay is originated from engineer and
can be expressed by ordinary differential equation with delay terms such as con-
trol feedback; see [I7] and Hale and Lunel [I3]. Time variable delay and memory
terms arise in many fields, such as physics, chemistry, biology, economic phenom-
ena, control theory and so on. Moreover, a delay term is a source of instability,
which means that the research on asymptotic dynamics for dissipative evolutionary
equations with delay is significant in engineer and mathematical analysis.

This article is concerned with asymptotic dynamics for the 2D Navier-Stokes
equation with Rayleigh’s friction and distributed delay,

0

ug — vAu+ (u-Viu+ou+ Vp = f(z) + / G(s,u(t + s))ds,
—h

(z,t) € Q x (1, +00),
divu =0, (z,t) € Qx (1,400), (1.1)
u(t,z)loa =, @ -n=0, (x,t)€ N x (7,400),
u(r,x) =up(z), =€q,
u(t,x) = ot — 1,x), (x,t) € QX (r—h,7), h>0,

where 2 C R? is a bounded domain with smooth boundary, » > 0 and « > 0 denote
the viscosity and Ekman dissipative parameter respectively. In addition, ug and
¢(-) denote the initial data in time 7 and interval [—h, 0] respectively. The terms
f(z) and ffh G(s,u(t + 8))ds be the autonomous and distributed delay external
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forces respectively. The Ekman damping au denotes Rayleigh’s friction which is
widely used in geophysical hydrodynamics such as oceanic models. Moreover, we
assume ¢ € L (0Q) for the analysis of unknown velocity u = (uy(t, x), u2(t, x))
and pressure p = p(t, x).

Let us recall some known results for the dynamics and stability of the Navier-
Stokes equation with delays.

(1) For Navier-Stokes models with finite continuous delays as constant or variable
functions, such as F (¢, z(t), z(t — p(t))) for p(-) € [—h, 0], the global well-posedness
and existence of pullback attractors have been studied in [8], 9} 111 12} T4}, I8, 2T, 22}
23], 27]. If the delay belongs to infinite interval, which is called infinite continuous
delay, such as F(t,z(t), z(t — p(t))) for p(-) € (—o0,0], the pullback dynamics for
Navier-Stokes equation has been investigated in [1I, [I0L 15} [19] 24].

(2) For Navier-Stokes system with finite distributed delay f?hw(s)b(t, s, 2(t +

s))ds or infinite one f_ooo w(s)b(t, s, z(t + s))ds, we can see the pullback dynamics
based on global existence of weak and strong solutions in [Il 2] B], 4 [20], here w(+)
can be a function or constant.

(3) A comprehensive survey for the fluid flow model with delays, can be found
in [5], which presentes also some open problems.

(4) The distributed delay has some similar form as memory, but the methods to
deal the dynamics are different, especially the hypotheses on them, see [5l [15] and
references therein.

Most of the above publications pay attentions to the pullback attractors for 2D
Navier-Stokes equations or 3D modified systems, however there are fewer results on
the forward dynamics, which is our objective here. The main results and features
of this paper can be stated as following.

(I) Using background function (see [25] 26]), the inhomogeneous boundary sys-
tem can be reduced to homogeneous problem, which is main feature for our problem.
Using Galerkin’s approximate procedure and compact argument, we can derive the
existence of global weak solution for 2D Navier-Stokes equation with distributed
delay in some new phase spaces.

(IT) Since the distributed delay in is defined in finite interval, for over-
coming the uniqueness of global weak solution, we should assume that the kernel
of distributed delay has Lipschitz continuous property, which guarantee that the
solution generates a semigroup {S(¢)} for 7 < t € R. By some estimates in the
delay phase space, the absorbing set can be obtained. Moreover, the existence of
global attractor also attained by using compact embedding.

(IIT) At last, we also want to see the effect of Rayleigh’s friction and distributed
delay on the dynamics for 2D Navier-Stokes equation. Comparing with the 2D
Navier-Stokes equation with general external force, we can see that the Rayleigh’s
friction effects the domain of absorbing set, hence the structure of attractors be-
tween the above two problems is greatly different.

The plan of this article is the following. In Section 2, we derive the existence of
continuous dependence global solution for our problem. The asymptotic compact-
ness of semigroup and the global attractors are concluded in Section 3.

2. GLOBAL WELL-POSEDNESS

2.1. Notation. We set F := {ulu € (C§°(Q2))?, divu = 0}, H is the closure of the
set B in (L%(2))? topology, |- |2 and (,-) denote the norm and inner product in H
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respectively, i.e.,
2
(u,v) = Z/ uj(x)v;(r)dzr, Vu,v € (L*(Q))>.
j=1"9

V is the closure of the set E in (H'(Q))? topology, and || - || and ((-,-)) denote the
norm and inner product in V respectively, i.e.,

2
_ du; dv, 1 2
((u,v)) = i§1 O (%idw, Vu,v € (Hy(Q))".

| - ||« is the norm in V') and () be the dual product between V and V' or H.
The bilinear and trilinear operators are defined respectively as

2
B(u,v) :=P((u-V)v), blu,v,w)=(B(u,v),w) = Z /Quzgzz -wjde

i,j=1
which satisfies
b(u,v,v) =0, blu,v,w) = —b(u,w,v), (2.1)
b, v, w0)]| < Clul2 [l V2ol fw 2] 2, Vu,oweV.  (22)
Moreover, we define the function with delay as
ug = u(t +s), s € (—h,0),

for any ¢t € (,T) and the Bochner space LY, = LP(—h,0; H) with 1 < p < +o0,
especially L% = L?(—h,0; H).
Also, we define two Banach spaces Cg = C([—h,0]; H) and Cy = C([—h,0]; V)

with norms

lulloy = sup fu(t+0)|, lulloy = sup Jlu(t+0)],
0e[—h,0] 0€[—h,0]

respectively, which is our phase spaces in the sequel.
2.2. Abstract equivalent equation. Let ¥ be the background function which

satisfies
divyy =0, =z €,

Y=, €0,
[l Lo < cllllLoe (a0

u(r,@) = up(a), = € 2, (23)
[l < ¢ llpll Lo (002),
191 < "llll o o0
Denoting v = u — 9, then is translated into the following problem
0 _
o VAU (U V)P (U V)ut av+ Vp = [+ gu(0n)
dive =0,
v=0, (2.4)

(T, x) = vo(x),

’U(Ll‘) = ¢<t - T"T) - ¢($) = 77(75 -7, .Z'),
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here f = f — anh + vAY — (¢ - V)b, gy(vr) f_ (s,v(t+ 8) + )ds.
Defining Ru = B(u, ) + B(1,u), which is also continuous from V x V to V',
hence the problem (2.4]) can be written as the abstract functional equivalent form

vt + VAV +av + B(v) + R(v) = Pf + gy (vr),
v(T) = vy, (2.5)
v(t) =n(t — 7).

Next, we shall study well-posedness and dynamics of problem ([2.5)).

2.3. Assumptions. For the well-posedness and forward dynamics, we use the fol-
lowing hypothesis.

(H1) G :[—h,0] x R? — R? is measurable;

(H2) G(s,0) =0,s € [-h,0];

(H3) there exists v € L?(—h,0) such that |G(s,u) — G(s,v)|rz < 7(s)|u — v|ge

which is also true for Q C R?;
(H4) vA1 > 2002y + 4C2 /e
From (H1) and (H3) we have

00© ~ 0B < [ ([ 166,86 - Gl n(o) @) e

—h

< [ (] A0 - ) @ads) e

< [ scnn( [ E0@ 6 @lseds) do

< Lylle = nlz.,

for any ¢,n € Cy, where L, = h||v|\%2(_h70).
For any u,v € C([-h,T]; H), t > 7, there exists mg > 0 , we also have for any
m € [O,Tno},
t

t
/ €™ gy (us) — g (v:)|3ds < C2 / e fu(s) = o),

T—

where C7 = ||’yHL2( ho)hemoh

2.4. Existence of a global weak solution.

Lemma 2.1 (Generalized Arzela-Ascoli Theorem [29]). Let {f,() : v € T} C
C([r — h,7]; X) is equicontinuous. Then for Y0 € [T — h, 7], the sequence {f,(0) :
v € T} is relatively compact in C([T — h,7]; X).

Lemma 2.2 (Aubin-Lions Lemma [29] [32]). Let X CC H C Y be Banach spaces,
and X is reflective. If u, is a uniformly bounded sequence in LP(1,T; X), and there
exists 1 < p < 400 such that d:;t" is uniformly bounded in LP(7,T;Y), then u, has
a strong convergence subsequence in C([r,T|; H).

Theorem 2.3. Assume that f € (L*(Q))?, vo € H,n € L%, and (H1)-(H4) hold.
Then (2.4) possesses a unique solution v(t) satisfying

d
o(t) € L®(r,T; H) N L2 (., T; V), d—: e L3(r, T;V").
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Proof. Step 1: Approzimate solution. Using Faedo-Galerkin method to find the
approximation solution vy, (t) = Z?:oanj (t)w; to (2.4)), where a,;(t) is to be deter-
mined, we deduce that v, () satisfies a ordinary differential equation
du, -
g T vAU v+ B(vn) + R(vn) = Puf + gy (Une), (2.6)
U (T) = Uno, (2.7)
vp(t) =nu(t —7),t € (T — h, 1),
By the local existence theory for the ordinary differential equations, we can derive
a local solution for problem (2.6)).

Step 2: The priori estimate and compact argument. Multiplying (2.6) by e™tv,,
we have

dvy,
(%, emtvn) + v(Avy,, emtvn) + (B(vp), emtvn) + R(vn, emtvn) + (v, emtvn)
- <Pnf_7 emtvn> + <gw (@nt)7emtvn>~
(2.9)
Noting that
(B(vn), e™vy,) = e™(B(vn), vn) = €™b(vn, U, vn) = 0, (2.10)
(B €™, = ™R )
= emt|b(vm1/1,vn)| + emt‘b('l/}avna vn)| (2 11)
= emt|b(vn7w7vn)| -
< cie™funlallon141,
(BuFoe™ )| = [, Pac™ 00)] = [T ™ vn)] < ™ FLlfonll. (212)
(91 (0ne): ™0} < €™l vmoalenla (213
we obtain
1d mt » 2
Y

< ™ flllvnll + €™ |gy (vne) 2lvnl2 + c1e™ [va 2 ]| vnll |

Vi|Un 2 f z Un 2
< emt( H 5 ” + Hgﬂ ) _i_emt(‘gd)(a t)‘2 +a|vn|§) +Clemt|vn|2||UnH||'(/)Ha
and
d emt U, 2 enLt B 2e7nt m 1/2
A0 < 1 4 2 gy w3 — e (v — 2000 el (210

Choosing an appropriate parameter « > 0 such that vA; > 2¢; )\}/2 9] +4C2 /
integrating (2.14]) over [r,t], we obtain

t 2 2 teme o 2 " 2e
e |un(t)]z — €™ |nol3 < / | fllxds +/
-

s vV o

ms

|9w (Vns) |§d5
(2.15)

t
= [ (van = 2\ o o) .
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Using the hypotheses (H3), we have

t
/ €| (vne) s
:

t
< [ emhuats) + vlids
T—h

t t T
SQC’?/ ems|vn(s)|§ds+203/ ems|w|§ds+C§/ "%\ pnl5ds

t T
<c? / ¢ (s) + 1b[3ds + C2 / () + 13 (2.16)
T T—h

2

t 20 0
<203 [ emfun(o)ids + =L = U + Ce [ [onfids,
T —h
Combining ([2.15)) and ( -, we have
emtlvn( )3~ 6"”|vno|z
2 Cq mt s
< 7”]"” w3 + 2% [vn(s)3ds

2C2em‘r 0 4C2em7' t
Tl / (6al3ds = =L = (s = 2e0 o) [ emlun(o)Bds

(12, A3 205em / 2
= e (G T )+ = | loulds

mv

02 mT

t
2 - (MM—2QAVN¢H—4c@u)/Twwwaggm,

which 1mphes

1712, 405
on (B3 < Z5% 4+ — L3
QCZem‘r 0 402€m'r
e (== / 03 — = 0f3 + ¢ [vnol3)
o mao

anz 3 20 (2.17)
< mv |T/’|2 |¢”|2d5+|U"0|2
< M=, i 2 ol o +f/ (003 + oo 3 = K.
- omv mo

It is sufficient to show v, (t) € L= (7, T; H)NL2(,T; V) in the following by some
estimates. Multiplying (2.6) by v,,, we obtain

1d|v,|? _
> |dt\2 + v(Avp, vy) 4 b(V, Un, Un) + R(Un, v0) = (P f, vn) + (Gy(Unt), Un),

which yields
1dJv, |3
2 dt
< 1 fllllonll + 1gg (vae) 2lval2 + erlonl2llvall ]

<V||vn||2 ||f||2 |9y (vne) |3
- 2 2v

+ Vllval® + afva 3

—-1/2
+ alval3 + e AT 2 oal 210,
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which implies

d|v, |2 fll. 2 _
s Wl 2 ) — = 20X P 2. (219

Integrating (2.18)) over [t,t + 1], we obtain

t+1
[on(t + D2 — [oa (O + (v — 2007 1] / a2ds
t

[Killk 2/t+1 2
< - ns d .
S e G

From the Holder inequality and hypotheses (H3), we derive that

t+1 t+1 0
| tatBis< [ [ (G040 + ) ards
t
41
/ / 8) [} |vn(r 4 8) + ) |3 dr ds

t+1
Slsnn [ [ o) vl aras

t+1 0 t+1 0
/ /|vn(r+s)+w|§drds:/ /|un(k)+¢|§drdk.

Noting that v(k) dependents only on k, it follows that

t+1 t+1
/ / | (7 + 8) +w|2drd5—/ / v, (k) + |3 dr dk

=/ o () + 3k
t—h

and

and

t+1 ) t+1 )
/ 190 (0ns) Bds < Bl 2o / fons + vlids
t t

t+1
— Cj/ |Uns + |2ds .
t—h
Then
t+1 t t+1
/ [Vns + ¢‘§d5 = / |Uns + 1/)|§d5 +/ |vns + i/f\gdé’
t—h t—h t
Since v(t,x) = ¢(t — 7,x) — (x) for arbitrary (¢,z) € (T — h,7) x £, it yields
t 0 0
| o vlias = [ joue) — v+ vlias = [ lo.Bas
t—h - -

hence, we have

t+1 t+1 t+1
/ s + [3ds < 2 / [ona2ds + 2 / p[2ds
t t t

t+1
:2/ |Uns‘§d5+2|w|§a
t
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and
t+1 t+1
/ |Uns + 1/J|§d8 < 2)‘;1 / HUnS”QdS + 26/2”@”%“(80)'
t t

Thus we conclude that

t+1
[ lootwnlas < cz(x |
t t

which implies

s t+1
=20 100) [ P
0

f 2 C t+1
|| || _|_ (2)\ ||UnH2d$—|—28/2||§0H%oc(89) + h|¢n|§d3>7
. _

t+1 0 )
2 2 2
Jonlds + 26l oy + [ 1643d5).

and
~ 402)\—1 t+1
(u e 1/2H¢|| _ 971) / ||an2ds
« t
W 105 2y [°
K+ —— ||<P||Loo(aﬂ) +—2 . |énl3ds,
i.e.,
t+1
/ lonll?ds < K, (2.19)
t
where
7112
K — I 4 K+ ||<P||2w (99) f— |¢"|2d5
40207t
v — 261\ 1/2||¢|\

By the above estimates, we conclude that v, (¢ ) € L*>(r,T;H) N L*(1,T; V).
From Lemma[2.1] there exists a subsequence (relabeled as v, (t) without confusion)
such that

vp =% vtextinL™® (1, T; H), v, — vtextinL?(r,T;V),
ie.,ve L>®(r,T; H)N L3(1,T; V). Since
dvy,
dt
and v, € L*(1,T; V), we have vAv,, avy, gy(vne) € L*(1,T; V') and

= —vAv, — B(Un) - R(Un) —avy + P7lf+ Gy ('Unt)y

T
1P B(vn), va)ll720,75) S/O 1(B(vn, va)|2ds

T
- / (0 - V)on2ds
0
T
<os / [0 2|0 | 2ds
0

< C5||Un||%°°(O,T;H)anHZL?(&T;H)'

ie., P,B(v,) € L3(1,T; V).
Passing to the limit as n — +o00, we conclude that

Uy, — U In LQ(T,T;H), Un(7) = Ppvpo — v(7) = vo,
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which implies % € L3(7,T;V'"). Using Lemma we can derive the existence of
a strong convergent subsequence which is the solution for our problem.

Step 3: The uniqueness and continuous dependence on initial data. Assume that

vy and vy are two solutions to the system (2.6))—(2.8]), and denote w = v1 —vq, then
w satisfies

dw
T vAw + B(v,v1) — B(va,v2) + R(w) + aw = gy (vie) — gy (vae)-

Noting that
B(Ul,’l}1> — B(’UQ,’UQ) = B(’Ul — ’UQ,’Ul) — B(’Ug,vl — ’Ug)
= B(U}, Ul) + B(”va)a

we have

dw
g vAw + B(w,v1) — B(ve,w) + R(w) + aw = gy (v1¢) — gy (var). (2.20)
Multiplying (2.20) by e™w, we have

1 d mt 2
EW + (vAw, e™w) + (B(w,v1), e™w) + (B(vz, w), e™w)

+ (Rw, e™w) + (aw, e™w)
= (gy(vie) = gy (var), ™ w)

Using (2.1)-(2.2) and the Holder inequality, we derive
1d(e™w|?)
2 dt
< le™b(w, vy, w)| + ™ (Rw, w)| + ™ (gy (v1) — gy (v2e), w)

< e™ (eawlal[wllfvr ]| + exfwlallwlll ]| + |gu (vie) = gu (vae)l2lwl2)

+ (vAw, ™ w)

mt (Vi 12 Gy ap 2 mt(Viol® + Sl 2l |2
< et (Zlwl? + S fwllon2) + e (Sl + 5L wilel?)

N emt(\gw(vlt) — gy (va)l3 \w@)

2 + 2

i.e.,

d emt w 2 02 C2
M) < omt[(D e + 2 on) + 1)l +lgolere) — gulea)lE]. (2:21)

Integrating (2.21) over [r,t], we obtain

e ([ — el (0) 3
! ms C% 2 C% 2 2 ¢ ms 2
< e (Sl + 2ol + 1) lwlds + [ e [gu(v1e) = gu(var)lds
tms ot 2, G 2 2 2 ! ms 2
< [ e (S + ol + 1) wlds + €2 [ e fua(s) = va(s)Bds
T T—h

tc% s, G 2 ms|, |2
< [ (S + 2o + 1) e wl3ds

v

T

+ c;(/ﬂemsm(s) . vg(s)|§d$—|—/

T

t

€ [v1(s) — va(s)/3ds)
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tt0%2032 2
<emt [ (Dl + Lol + 1) jwlds
i

14

T t
s (e [ o) — va)Bds +em [ Jun() — va(o) ).
T7—h T
and

t 2 2
C C
WP = OB < [ (ZI0I? + Zforl + 1) jwlbds

0 t
+ ([ 10i) = wldr + [ o) = o)),
—h T
It follows that
2 2 2 2 tra > 2 2 2
0l6) < o) +CFllm = ml, + [ (S0l + o+ €3+ 1) s,
by the Gronwall inequality, we conclude that
bt 2, <3 or 12402 w2ds
w(®) < (k) +CGllm = |3y, )i VI 2 CEpivtics
which leads to the uniqueness and continuous dependence on initial data for our
global weak solution. O

3. LONG-TIME ASYMPTOTIC DYNAMICS

3.1. Existence of absorbing set. In this subsection, from Theorem we
see that the global weak solution generates a continuous semigroup S(t)(vg,n) =
ve(+; (vo, m)) for any (vo,n) € H x L% which satisfies

0
o) sz, = ool + [ )l

Theorem 3.1. Assume that f € (L*(Q))?, (vo,n) € H x L%, and (H1)—(H4) hold.
Then the semigroup S(t) possesses an absorbing ball in Cy for the system (2.4)).

Proof. Let D C H x L3 be any bounded set with radius d for (vg,n) € D which
satisfies

[vol3 + lInll72, < d*. (3.1)
Multiplying (2.5 by e™tv, we obtain

(%7 e™v) + v(Av, ™) + (B(v), e™v) + R(v, ™) + a(v, e™)

= (Puf,e™v) + (gy (vr), €™ v).
Noting that
(B(v),e™v) = ™ (B(v),v) = e™b(v,v,v) = 0,
[R(v,e™v)| = e™|R(v,v)| = ™ [b(v, ¥, v)| + ™ [b(¢, v, )]
= e™|b(v, ¥, )]
< cre™ul2|v]l[[¥]),
[(Pof,e™ o) = [(f, Pue™v)| = [(F, ™ 0)| < ™| fll]lvll,

and
[(gy (ve), €™ 0)| = €™ | gy (vi) |2 |v]2, (3.2)
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we obtain
Ld(e™|v]3)
2 dt_
< ™| fllllvll + €™ gy (ve)]2]vl2 + cre™ [vla||vll[|4]

<o (M IR o000
- 2 2 «

+ve™||v]* + e alvl3

+alof}) + ere™ olallolll ],
and

d(emt|,u|2) emt _ 2emt . 179
S < T T g = e (v = 200 P ) o} (33)

from the Poincaré inequality, where o > 0 is an appropriate constant satisfying
vA1 > 200 2] + 4C2 /.
Integrating (3.3) over [r,t], we obtain
e™o(t)[3 — e |v(0)[3
t

tems _ tzems s
< [ IRds ¢ [ Elg(wa s = [ e (o~ e ol ofas

« T

)

m mT £ 2 ‘ ms
(e = e IFE + 2 [ emlgolon) s

T

‘ =

<

3

14

t
—/ ™2 (A1 — 26 A2 v[2ds.

(3.4)
Using hypothesis (H3), we have
' 2 2 [ 2 263 2
[ emslaw(walbas <202 [ emlu(o)ids + =L (e - ol
T T (3.5)

0
ez | )+ vl

From (3.4)—(3.5)), we conclude that

™ u(®)]3 — " Tv(0)]3

2 2 T
407 ZCgem
(0%

emt 402
< %”sz + a—ﬂjemtlwli +

t
/ e u(s) [3ds +
1/2 ¢ T
(A1 — 26 A2 ) / e u(s) [3ds

:emt<||f||3 4¢3 )+2C§6””
«

+ —219[3
mrvr mao

0
/_ In(s) + vlds

0
[ nts)+ wias
t
= (v = 20020l - 462 /a) [ emlogs) s

Choosing an appropriate constant such that vA; — 261)\1/2”’(/}“ — 4Cg2/a >0, we
obtain

2 4C? 202em7
|U(t)|§ S ||f||* T g |w|§ _’_efmt( g9 /
mao «Q

mv —h

0
n(s) + ¥ l3ds + ™ wol3),
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where
0 0 0
[ s+ uias <2 [ pn(s)as+2 [ s = 2hin(s) + 2nlu
From (3.1, we have
4C%he™™ 4C%hem™
ool + —L—Pn(s)} < (1+ ——— ),
ie.,
If]?  4C2c? _r4C?hemT 4C2%he™™
lo(t)[? < gl ﬁ”@“%w(aﬂ) +e ™ {QTWQ +(1+ QT)dZ]
Hence, for ¢ > h and 6 € [—h, 0], we have
2 4028/2
Py 2_(||f||* g 2 )
e+ - (U 29 e
4C2%he™™ 4C2he™
< e [0l 4 (14 —L )]
4022 he™™ 4C2he™
<e Mem! {anwuiw(m) + 1+ gi)dﬂ
and
2 IFlI2 | 4C5c”
loelz, = (P2 + —Z— el o0
3 4C2% 2 he™™ 4C%he™™
< et | ||} o + (1 + —L——)d?].
If we take
ot g all flIF + 4vCoc? el < a0y
= AmvhCycRem [l (o) + (e + 4hCGemT)d?’
ie.,

1 mv [4h0g2c'26m"||<p||%oo(am + (a+ 4h0§em")d2}
t>Ty =—1In 12 - 40020202
m ol f]12 + 4v g€ llell = (9Q)

and denoting
1 - 202
2 2 AMAE:
—9(— —k
Pa (mnyH* o [13),

then it is sufficient to show that

[vl1Z,, < Pk (3.6)
for any (vo,n) € D C H x L%, where By(0, py) denotes an absorbing ball with
center 0 and radius py in Cg, the proof is complete. O

Theorem 3.2. Assume f € (L*(Q))%, (vo,n) € H x L%, and (H1)-(H4) hold.
Then the semigroup S(t) possesses an absorbing ball in Cy to system (2.4]).

Proof. Multiplying (2.5)) by v, we obtain

1dvi3
2 dt

+ I/(A’U,U) + b(v,v,v) + R(U,U) = <Pn.f; U> + <g¢(vnt)7v>a
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13
hence,
1d|v|3
LA ol + ol
< [f e llvll =+ gy (vne) o]z + calvlz[lo][ [l ]
viol? | IFIE | 9w (vad)l3 ~1/2
STyttt ta Lol
which implies
dol3 _ |Ifll« | 2 ~1/2
22 <M 210 00 - - 2e03T 21D ol (3.7
Integrating over [¢,t + 1], we obtain
1/2 i
2 2 - 2
[t + 1)z = o)z + (v — 21 ||1/}||)/ [o]"ds
t
~ (3.8)
<B4 2 g e
v o Jy
Noting that
t+1
2
| lautwa) s
t
t+1
gcj/t . v+ l3ds (3.9)

t+1
< 203 + 2C2 ol oy + 203 el oy + 20T [ ol
we can derive
1/2 t+1
o+ DB = o + (v = 2007 0) [ ol
t

1fl- , 2

< 20 4 = (2020 + 20022 6} m oy + 2022 [l o)
t+1

+2092>\1_1/ Jo?ds)
t

from 77 ie.,
2y-1

4C2N 1
(v = 2o 200l = =) [ olfas
@ t
Ifll. = ACZd* 4CZc?
<t (4 W)Ielle o + K

where K is defined as in (2.17).
From the above estimates, we deduce that

t+1
/ Jv|* < I, (3.10)
t

402d2 4C2C/2
L =+ =1+ W)@l o0y + K
- :

_ 402 )71
v —2e1A7 Py -

[e3

where

(3.11)
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Multiplying (2.5 by Av, we have

2
LA | (v, Av) + B(w. Av) + B, Av) + (a0, Av) = (F. Av) + (gy(w1), Av),
ie.,

1d|jv|?
2 dt
< |(f, Av)] + [{gu (ve), Av)| + [b(v, v, Av)| + [ R(v, Av).

+v]Avf3 + o]

(3.12)

Noting that
[(f, Av)| + [{gy (vr), Av)| < |fl2]Av]2 + [gy (ve) |2 Av]2

v 2 3 sV 2 3 2
< 6|AU‘2+E|f‘2+g‘f4”|2+$|9w(”t)|2 (3.13)

AN

v 3 = 3
= §|A”U\§ + glf@ + 5|9w(%)|§,
b(v, v, Av)| < e1|v|Le||v]|[Av]2

1/2 1/2
< Cloly?|Avly?|lv]l| Av] (3.14)
v C
< gl4v+ —fo3lo]*,
|R(v,v, Av)|
< |b(v, 1, Av)| + [b(), v, Av)|
1/2 3/2 .
< ealvly A0S % || @]| Lo o) + callll L o0 V]| Av]2 (3.15)

v 6 3
< §|AU\§ + (;)SC§|U|%||<P||iw(aQ) + 5&”9"”%&(89)”””27

and using (3.13))-(3.15) in (3.12)), we obtain

1d|jv|?
LT A+ aol?
< \f|2|AU|2+ |9y (ve)|2| Av]2
3.3
§|Av|2 S 173 + 9w wlB) + Z1avf + yeetpelio

6.3 3
+3 \Avlz + (Y elvBlel o0 + 5l oo VI
3 = 3
= vlAvls + (15 + lgp(v)3) + () et o]*

6 3
+ (Yol @0) + 5 lleli o0 IV]*.

Hence, the above estimate yields

2
5+ ol < U7+ lau w0lB) + ) el an
+ O Bl + 5 3 2l < oy 101,
ie.,
dloll? _

6
o (\flz + gy (v)3) + 205 ) e VI3 llellze o0
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9 333 4 20 114 370421 2 2_o9 2
+200) ol + —F ez o) 017 = 2alv]%,
for t > Ty.

Denoting

3\3 4 2 3¢t 2 2
ay = 2(;) cipply + 7||§0||Loo(ag)||v|| .

3/ = 6.
az = = (13 +2C2(o% + L+ WllplF~om) + 8)) + 2V 30k [l o).
az = 2ald,,
where I, is defined as in (3.10). By Gronwall’s inequality, we conclude that for
t> TH +h= TV;
lv(®)I* < (a2 + az)e™,

ie.,
sup ot +0)|” < (a2 + az)e™ = pi,,
0€[—h,0]
and
lv(®IE, < o (3.16)
where By (0, py ) denotes an absorbing ball with center 0 and radius py in Cy, then
the proof has been completed. (I

3.2. Existence of global attractors.

Theorem 3.3. Assume f € (L%(Q))?, (vo,n) € H x L%, and (H1)-(H4) hold.
Then (2.4) possesses a global attractor A.

Proof. From Theorem [2.3] we know the semigroup is continuous, and the existence
of absorbing balls B(0, pr) and By (0, py) in Cy and Cy respectively, in Theorems
and is established. If we can show that B(0, py) is compact in Cg, then
we can declare S(t) possesses global attractors in C'y, which is deduced to prove
the next two conclusions by the generalized Arzela-Ascoli theorem:

(a) Ugen, S(t)(¢)(0) is relatively compact in H for all § € [—h,0]. This con-
clusion holds since V' CC H is compact.
(b) S(t)Bv (0, py) is equicontinuous.

Our next objective is to show that (b) holds. Since

1S(£)(0)(01) = S(£)(9)(02)|2 = [v(t + 015 6) — v(t + 025 D)2,

where t € R, 01,05 € [—h,0], s > Ty, ¢ € By (0, py).
Let 62 > 6, from Theorem and the Poincaré inequality, we derive

1d||v||2 -1 2 3 2 2 6.3 4 12 4
5 +a Avlz < = (If12 + 19w (v0)2) + (=) cslvla ]l L (0
2 dt 2u v 17)
3.3 41 12114 30421 2 2
+ PRIl + S0 3 oy 01

Integrating (3.17) over [¢ + 01, + 03], we have

0 2 1 0 3\ 712 2 6 3 4),.12 4
[ Av(r)fzdr < — {—2 (If12 + 19y (ve)[2) + (=) Arcslvlz [l e a0
t+6; & Jito, v v

3
+ (P o] +

3A16[21 2 2
I3 oy el 2dr |
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M /t% ol
t

7% +6, d’l"
< B1]61 — O2]2 + Ba,
where
Bil&|f_|2+2cz(2+/2l h 2 d2
L= [ (175 + 2020 + 21+ Dl oy + 02)
6 3 32
+ P MBI~ oa) + (Mt loBllel + 22l o 0]
Al g
= —]7.
ﬂ? 2 v
t+65

Noting that [v(t +61) — v(t +62)] = | [,y
|1}(t + 91) — ’U(t + 92)|2

t+6o
< / 0 (1) |adr
t

+01

v'(r)dr|, we obtain

t+62
< / (w|Av(r)z + alv(r)]2 + [Bo(r))l2 + [ fl2 + gy (vr)|2 + [R(v(r))]2)dr.
t+64

Since )
|Bula < erf Avlzlv]l, |Rola < er Avlg|v]|* =7 < [Avlz + i 7 [Jo],
holds for ¥ € [0, 1), we obtain
o(t+61) — o(t + 02)]5 < hl6y — 62]*/2,
where

h=(c{ "I, + Lgpu + | f]2)[61 — 0o|'/2 + (+crl, +1)(B1]61 — b2] + B2),

which means {S(t)} is equi-continuous, and it is also asymptotically compact in Cp.
From the theory of global attractor in [6], 16, B3], we conclude that the semigroup
{S(t)} possesses a global attractor A in Cp. O

Conclusion. From the result above which prove the existence of a global attractor
for problem , we can see the effect of distributed delays on forward dynamics.
A natural question is what about the robustness if the delay disappears? which is
similar to the subsonic limit in [30].
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