
AUTOMATED COMPILER DRIVEN SUPERPAGE ALLOCATION AND ITS

APPLICATIONS

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Joshua A. Magee, B.A.

San Marcos, Texas
May 2009

COPYRIGHT

by

Joshua A. Magee

2009

For my wife Nele, without whose support and patience this thesis would not be

possible.

ACKNOWLEDGMENTS

First and foremost I would like to thank Apan Qasem, my thesis advi

sor, whose advice and guidance made this research possible. Many thanks go

to my committee, Carol Hazlewood and Xiao Chen, whose patience and sup

port is greatly appreciated. I am especially indebted to Carol, who put me into

contact with Apan while I was floundering in an attempt to find the right faculty

member with whom to do research.

Without a doubt I owe a huge debt to my parents, whose support (in

more than one aspect) allowed me to pursue my graduate degree.

Last but not least, I would like to thank Jason Cade for many long dis

cussions during the off hours in the tutoring office.

This manuscript was submitted on December 11th, 2008.

v

TABLE OF CONTENTS
Page

ACKNOWLEDGMENTS...v

LIST OF TABLES .. ix

LIST OF FIGURES...x

LIST OF ALGORITHMS..xiii

ABSTRACT...xiv

CHAPTER

1 INTRODUCTION..1

1.1 Motivation..1
1.2 Vernacular.. 6

1.2.1 Superpage... 6
1.2.2 Base page ... 6
1.2.3 TLB R each.. 7
1.2.4 Acronyms and Abbreviations......................... 7

1.3 Organization.. 7

2 RELATED W O R K ...9

2.1 Superpages.. 9

2.2 Locality Optim izations..10

vi

3 IMPLEMENTATION 13

3.1 Introduction... 13
3.2 Hardware Support for Superpages............................13
3.3 Software Support for Superpages.............................15

3.3.1 L inux... 15
3.3.2 FreeBSD..22
3.3.3 Solaris.. 22
3.3.4 A IX ..23
3.3.5 Microsoft W indows......................................24
3.3.6 Overview.. 24

3.4 LLVM ...25
3.4.1 LLVM Compilation Strategy....................... 25
3.4.2 The Pass Framework.................................. 28

3.5 Compiler Driven Superpage A llocation....................31
3.5.1 Superpage Aware M alloc............................31
3.5.2 A Pass in LLVM ...45
3.5.3 Compilation F lags..47

3.6 Experimental Results... 48
3.6.1 Experimental Setup.................................... 48
3.6.2 TLB Performance..57

4 A HEURISTIC FOR LOCALITY-CONCIOUS SUPERPAGE
ALLOCATION..60

4.1 Overview... 60
4.2 Heuristic.. 61
4.3 Dynamic Extension..62
4.4 Analysis and Evaluation.. 66

4.4.1 The heuristic applied to a loop-nest that
exhibits high TLB pressure........................ 66

4.4.2 The heuristic applied to a loop-nest that
exhibits low TLB pressure..........................67

vii

4.4.3 The extended heuristic applied to a loop-
nest that exhibits high TLB pressure 68

4.4.4 The extended heuristic applied to a loop-
nest that exhibits low TLB pressure.........70

4.4.5 Evaluation.. 71

5 LEVERAGING SUPERPAGES FOR COMPILER
OPTIMIZATIONS.. 75

5.1 O ve rv iew ... 75
5.2 Array Padding... 76

5.2.1 Inter-array Padding......................................76
5.2.2 Intra-array Padding.................................... 77
5.2.3 Superpage-aware Array Padding...........78

5.3 Experimental Results.. 83

6 UTILIZING SUPERPAGES TO ESTIMATE HARDWARE
PARAMETERS... 86

6.1 A Tool for estimating L2 Cache Parameters........... 86

6.2 Experimental Results.. 88
6.2.1 In te l...88
6.2.2 A M D .. 91
6.2.3 Sum m ary...91

7 CONCLUSIONS... 93

7.1 Contributions...94
7.2 Future W ork ..95

viii

BIBLIOGRAPHY 98

11 Acronyms and Abbreviations.. 8

3.1 Page sizes in modern architectures..14

3.2 procfs superpage a ttribu tes ..18

3.3 Overview of software support for superpages.................................. 24

3.4 malloc implementations... 33

3.5 malloc and smalloc interfaces.. 33

3.6 smalloc configuration overview.. 45

3.7 Compiler F lags... 47

3.8 Platform Configurations.. 56

6.1 L2 Cache Paramater Derivations... 88

6.2 L2 Cache Paramaters..88

LIST OF TABLES
Table Page

IX

1.1 Virtual Memory Page Mappings...5

3.1 Allocating superpages with m m ap... 16

3.2 Allocating superpages with Sys V shared m em ory...........................17

3.3 Linux init script for allocating superpages..19

3.4 LLVM Compilation Strategy...27

3.5 LLVM pass that counts and prints functions.....................................30

3.6 Superpage and base page heaps.. 34

3.7 Dual page heap .. 35

3.8 A chunk of smalloc m em ory... 36

3.9 Bins of free m em ory...37

3.10 Using smalloc in a program .. 40

3.11 transpose TLB performance on In te l... 48

LIST OF FIGURES
Figure Page

x

3.12 transpose Wall Clock Time on In te l...49

3.13 164-gzip TLB Misses on In te l... 50

3.14 TLB Miss Reductions for all Benchmarks on In te l..........................50

3.15 Wall Clock Speedup for all Benchmarks on In te l.......................... 51

3.16 transpose TLB performance on A M D ..51

3.17 transpose Wall Clock Time on A M D ... 52

3.18 164-gzip TLB Misses on A M D .. 53

3.19 256-bzip2 TLB Misses on A M D ...54

3.20 TLB Miss Reductions for all Benchmarks on A M D 54

3.21 Wall Clock Speedup for all Benchmarks on A M D 55

4.1 Nest 1 TLB performance... 72

4.2 Nest 2 TLB performance... 73

5.1 Inter-array padding applied to combat cross interference................77

5.2 Intra-array padding applied to combat self interference..................77

5.3 Array padding with base pages resulting in conflic t.........................79

5.4 Padding without superpages performing worse than no padding . 83

XI

5.5 Array padding with and without superpages on In te l..................... 84

5.6 Array padding with and without superpages on A M D85

6.1 Estimating L2 Parameters on Intel Core 2 Duo Forkbomb using
Superpages... 89

6.2 Estimating L2 Parameters on Intel Core 2 Duo Turing Using
Superpages... 90

6.3 Estimating L2 Parameters on an AMD 64 using Superpages90

xii

1 smalloc(size_t s ize).. 38

2 sfree(void *p tr) ...39

3 Compiler heuristic for allocating superpages..63

4 Compiler heuristic for allocating superpages and estimating a
dynamic working set threshold..65

5 Superpage-aware Array Padding... 78

6 Measuring L2 Cache Parameters.. 86

LIST OF ALGORITHMS
Algorithm Page

xiii

ABSTRACT

AUTOMATED COMPILER DRIVEN SUPERPAGE ALLOCATION AND ITS

APPLICATIONS

by

Joshua A. Magee, M.S.

Texas State University-San Marcos

May 2009

SUPERVISING PROFESSOR: APAN QASEM

The translation look-aside buffer (TLB) can represent a significant per

formance bottleneck in modern microprocessor-based systems. The amount

of memory available to a system is continuously increasing due to the abun

XIV

dance and affordability of RAM, yet the size of the TLB has grown very little.

The increasing ratio of memory page entries to TLB entries has resulted in an

increase of TLB misses. Given that TLB misses present a substantial bottle

neck to system performance, the need to reduce the pressure placed upon

the TLB is well justified. Superpages are one method that aims to extend the

reach of the TLB and therefore reduce the number of misses.

Superpages are supported at both the hardware and software level on

most modern microprocessor-based systems. Previous research has studied

the usage, management, and implications of superpages from an architectural

and operating system perspective, but there has been no research of super

pages from the compiler perspective.

This thesis presents a strategy for compiler-driven superpage alloca

tion. Judicious usage of superpages can improve system performance by

reducing the number of TLB misses, but indiscriminate superpage allocation

can result in page fragmentation and increased application footprint. A sig

nificant advantage afforded by a compiler driven superpage allocation strat

egy is the availability of data-reuse information within an application, a luxury

that architectural and operating systems lack. The compiler strategy employs

data-locality analysis to estimate the TLB demands of a program and uses this

information to allocate superpages only when beneficial. If the compiler deter

mines that it is prudent to use superpages then an optimization is performed

that replaces all memory allocation with a custom malloc implementation. This

malloc implementation is superpage-aware and supports both statically and

dynamically determined superpage allocation.

In addition to the advantages afforded by the compiler when making

judicious use of superpages, superpages also present opportunities for opti

xv

mization to the compiler. Compiler optimizations attempting to reduce conflict

misses, such as array padding, can benefit when used in conjunction with su

perpages. The fact that superpages allow for a predictable and contiguous

allocation of memory allows for the profitability of data-locality optimizations to

be increased.

Not only are superpages beneficial to application performance and

compiler optimizations but they can also help in benchmarking and empirical

tuning. To this end, a method of utilizing superpages to measure certain hard

ware parameters, such as L2 cache associativity, is presented.

The effectiveness of the strategy is demonstrated on two different plat

forms with different TLB configurations.

XVI

CHAPTER 1

INTRODUCTION

1.1 Motivation

The translation look-aside buffer (TLB) plays a critical role in improv

ing application performance, particularly as application data footprints grow.

It has been shown that increased TLB misses can not only degrade perfor

mance but may become the principal bottleneck in many data intensive ap

plications [28, 35]. Given the importance of the TLB in performance critical

pathways, a significant amount of research has focused on improving TLB be

haviour. Superpages have been the most dominant strategy proposed.

Currently most micro-processor based systems support multiple page

sizes. For example, the Alpha micro-processor platform provides 8K, 64K,

512K, and 4M pages, the x86 platform supports 4K and 4M page sizes, and

the Itanium processor provides page sizes ranging from 4K to 256M [31].

The trade-offs between smaller and larger page sizes is a well known

issue covered in most operating system and architecture textbooks. Smaller

page sizes can lower internal and external fragmentation but at the cost of in

creased pressure on the TLB and a decrease in performance. Larger page

sizes improve performance but with an increased risk of fragmentation [38].

1

Superpages are pages larger than the base page size. Furthermore,

superpages must be contiguous in both physical and virtual address spaces.

The allocated memory must be a multiple of the superpage page size. For ex

ample, on the x86 platform each superpage must be aligned to a multiple of

4M. Since each superpage represents only one entry in the TLB, the reach of

the TLB is effectively extended [31].

While the judicious usage of superpages can improve application per

formance, indiscriminate usage can lead to an unwarranted increase in data

footprint and can lead to internal page fragmentation. Strategies have been

proposed to intelligently allocate superpages so as to obviate fragmentation

and increased memory footprints. These proposed strategies for smart alloca

tion and management of superpages have either been in the operating system

or the architectural domain [31,34, 15, 6, 3, 25]. Implementing informed su

perpage allocation strategies at the OS and architectural level is natural since

it is at these levels that superpage support is implemented. However, due to its

role in program analysis and in setting up the run-time environment, the com

piler can make significant contributions to a discerned usage of superpages.

The advantages of a compiler-based strategy for intelligent superpage alloca

tion are many:

(i) Developer productivity and code portability The usage of su

perpages requires that the programmer complete a variety of steps. These

steps vary between platforms, but in the worst case scenario require that the

superpages are requested from the operating system using low level system

calls. Generally the memory is returned as one large chunk, requiring com

pletely manual memory management. In the best case scenarios the program

mer must take special steps to statically or dynamically link against runtime

libraries. Regardless of the method used, it is the responsibility of the pro

grammer to perform these actions. Compiler support for automated alloca

tion of superpages relieves the programmer of this responsibility. Furthermore,

the interface and usage of superpage varies between platforms and architec

tures. Applications designed to leverage superpages therefore become less

portable and in order to increase said portability the programmer must have

knowledge of all the different superpage implementations employed by vari

ous systems. By delegating the responsibility of superpage allocation to the

compiler, the programmer does not require any knowledge of the underlying

platform’s mechanisms for superpage support; it is handled transparently by

the compiler. This improves the usability, portability, and maintainability of code

that employs superpages since the only consideration required by an applica

tion developer is whether the proposed compiler framework is available for the

platform.

(ii) Enhanced information for allocation decisions One key advan

tage the compiler possesses over the operating system is the knowledge of

the memory access patterns of an application. The operating system, when

allocating memory for a process, can only consider the data footprint, or total

required memory, of a program. The data footprint does not always correctly

indicate the pressure an application places upon the TLB. Certain applica

tions, such as gzip, can have a large footprint but nonetheless exhibit very

low pressure upon the TLB, as will be shown in chapter 3. The actual TLB

usage depends not solely on the data footprint, but on the data-reuse pat

terns of a program. In general, the number of distinct pages touched within

a working set determines the TLB traffic for an application. Allocation deci

sions made without knowledge of the data reuse patterns are likely to be less

effective. Since the working set information can only be derived through data-

dependence analysis, only the compiler can take advantage of the reuse pat

terns. A compiler-based heuristic allows for a better tuned allocation strategy.

(iii) Increased effectiveness of memory transformations Many mem

ory hierarchy transformations, such as ones aimed to reduce conflict misses,

are most effective when the compiler has knowledge of how the data will be

mapped to different cache lines. Since the majority of caches on modern ar

chitectures are physically-indexed, memory may not be contiguous and thus

the compiler must guess at the most likely mapping to cache lines. The us

age of superpages guarantees the contiguity of memory allocations and there

fore eliminates the guesswork traditionally performed by the compiler. Figures

1.1 (a) and 1.1 (b) illustrate how superpages provide a contiguous mapping of

memory blocks to cache blocks. This allows for the compiler to use a more ef

fective heuristic in memory hierarchy transformations.

Apart from memory hierarchy transformations, the contiguous mapping

of memory that superpages allow can be exploited for use in automatic tun

ing to identify certain hardware parameters. In particular, certain cache char-

5

Memory Cache

(a) Base pages mapped to (b) Superpages mapped to
non-contigious cache lines contigous cache lines

Figure 1.1: Virtual Memory Page Mappings

acteristics such as capacity and associativity can be determ ined. This infor

mation is critical to several different code optim izations but is nonetheless not

readily available to the compiler. Methods have been proposed that utilize syn

thetic benchm arks to identify these parameters, however these methods are

often limited by the inability to determ ine the parameters of physically-indexed

caches [43, 46]. The contiguous a llocation afforded by superpages can be ap

plied for constructing a benchm ark that estimates these hardware parameters

with increased accuracy.

6

1.2 Vernacular

1.2.1 Superpage

Computer science is notorious for the plethora of terms used to de

scribe a topic. Superpages are no exception to this peculiarity. In this thesis

the term superpages is used to describe contiguous pages of a large size.

Other terms that are often applied are large pages, huge pages, and huge

TLB. Other variations may appear in common usage, such as big pages.

The terms huge pages and huge TLB are used in Linux nomenclature

to refer to superpages. The term huge TLB may superficially appear to be mis

leading since the size of the pages is changed and not the size of the TLB,

however the effect of the increased page size is that the effective size of the

TLB is increased. In other words, larger page sizes mean that the reach of the

TLB is extended. As such the term huge TLB speaks more to the advantages

of superpage usage than the actual implementation. In this thesis the term

huge TLB is only used when referring specifically to issues regarding the Linux

implementation. Invariants superpage is used as the general term and any

other term is used to refer to an implementation specific detail.

1.2.2 Base page

The term base page is used to refer to the standard sized page sup

ported by the underlying architecture. On the x86 platform a base page is 4K.

Unless it is specified that superpages are in use, it is safe to assume that the

7

default page size is the base page size.

1.2.3 TLB Reach

The reach of the TLB refers to the amount of memory that is accessible

from the TLB. It is defined as the number of TLB entries times the page size. It

can also be said that the reach of the TLB is the number of pages that the TLB

can translate at one time. This is also frequently referred to as the range of the

TLB.

1.2.4 Acronyms and Abbreviations

Table 1.1 lists the definitions for frequently used acronyms and abbrevi

ations.

1.3 Organization

The organization of this document is as follows: Chapter 2 discusses

related work. Chapter 3 presents an overview of how superpages are imple

mented in hardware and software, discusses the compiler infrastructure used

in this research, and presents an implementation for compiler driven super

page allocation. Chapter 4 describes the strategy for smart superpage alloca

tion, presents a heuristic for estimating the TLB demands of an application,

and provides an analysis of this heuristic. Chapter 5 discusses leveraging

superpages in memory hierarchy optimizations, presents a strategy for array

8

Table 1.1: Acronyms and Abbreviations
Abbreviation Full Term Definition

AMD Advanced Micro Devices A manufacturer of microprocessors that are
instruction set compatable with Intel Used in
the thesis to refer to the architecture platform
and not the company

API Application programming interface An interface for application programs provided
by libraries

GCC GNU Compiler Collection A free and open source suite of compilers for
various languages

gcc GNU C Compiler Used to refer specifically to the C language
compiler found in GCC

IR Intermediate Representation In terms of compilers, intermediate represen
tation refers to a representation of code that is
at a lower level than the source language but
at a higher level then the destination format

ISM Intimate Shared Memory A Sun Solaris shared memory facility
L2 Level 2 L2 Cache refers to the level 2 cache, the

second level of cache on a microprocessor
LLVM Low Level Virtual Machine Refers to the Low Level Virtual Machine Com

piler Infrastructure, see chapter 3
NP-hard Nondetermimstic Polynomial-time hard Overly simphsticly can be viewed as very hard

problems See Garey and Johnson [12] for an
overview of computational complexity theory

OS Operating System See Tanenbaum et al [38] for an in-depth
overivew

SPEC Standard Performance Evaluation Corporation An organization that provides benchmarks
Considered the de facto standard for bench
marking

SSA Static Single Assignment A form of IR where a variable is assigned
exactly one time, A form condusive to opti
mization

TLB Translation Look-aside Buffer A processor cache used to improve the speed
of virtual address translation See Hennessy
and Patterson [18] for an overview

XCOFF Extended Common Object File Format An executable file format used primarily in the
AIX operating system

padding, and presents experimental results. Chapter 6 demonstrates the effec

tiveness of using superpages in estimating hardware parameters. A synthetic

benchmark for measuring L2 cache associativity is presented with experimen

tal results. Chapter 7 concludes by outlining the key contributions of this work

and discussing future work.

CHAPTER 2

RELATED WORK

2.1 Superpages

There has been significant work dedicated to improving TLB perfor

mance with both software and hardware strategies. Hardware approaches

have primarily focused on either modifying the TLB organization or extend

ing the existing TLB architecture. Talluri and Hill proposed a TLB organization

based upon partial sub-blocks that can extend TLB coverage with minimal op

erating system support [37]. Fang et al. have developed a two level address

translation mechanism that allows for multiple smaller pages to be placed into

a larger page [11].

A great deal of research has been performed regarding superpages

from an Operating Systems perspective. Tanenbaum discussed the trade-offs

of page size selection in his seminal textbooks [38]. Gopinath et al. discussed

policies for managing page sizes and evaluated algorithms for page size selec

tion. While Gopinath’s research focused a great deal on the NP-hard problem

of analysing memory reference patterns, it also provided a great deal of insight

into alleviating TLB miss penalties through optimal page sizes [14].

Navarro et al. provided an in depth look at superpages and proposed

9

10

an effective superpage management system [31]. Their work with superpages

laid the groundwork for all future research in the area. Shimizu et al. extended

the work of Navarro et al. by providing an implementation of superpages for

Linux and analysing its performance. They found their implementation to yield

improvements of performance with gains up to 6 times in some cases [34].

Kadayif et al. proposed strategies to reduce the amount of data TLB

lookups in code transformations so as to optimize data access. Their research

is unique in that it attempted to reduce the number of data TLB lookups via

compiler directed address generation [19]. This research provided a nice ex

ample of symbiosis between compiler and Operating System research.

Gorman and Healy proposed a policy for allocating superpages to re

duce external fragmentation [15, 6, 3]. Lu et al. proposed modifications to the

Linux kernel for mapping application text regions to superpages for enterprise

workloads [25].

All of the previous research for improving TLB performance with super

pages have been operating system centric. There has not been any attempt to

address the issue of superpage allocation and management from a compiler

perspective. Our work proposes a compiler driven strategy and is complemen

tary to any of the operating system based approaches.

2.2 Locality Optimizations

Research in locality optimization is as old as compilers themselves, thus

it would take volumes to cover the milestones and achievements of the field.

11

Presented here is only a small portion of recent and relevant research.

Locality optimizations attempt to reduce the amount and capacity of

conflict misses through compiler driven code transformations. Temam et al.

demonstrated how cache interference phenomena can degrade cache per

formance, thus establishing the need to reduce cache misses [39, 40]. Bacon

et al. proposed an algorithm for finding optimal padding amounts to eliminate

set conflicts and offset conflicts in order to provide a uniform spread of cache

misses [2]. Mitchell et al. have looked at Improving TLB performance through

hierarchical tiling [30]. Lynch et al. discussed cache miss rates with conven

tional page sizes and explored methods of improving these rates by using

page coloring algorithms [26]. Their research explored a complementary ap

proach to addressing many of the same issues addressed by superpages.

Rivera et al. examined the effectiveness of inter-variable and intra

variable padding for eliminating conflict cache misses. They presented sev

eral algorithms for data padding and analysed their effectiveness in minimizing

cache conflicts [33].

Chatterjee et al. explored non-linear array layouts as a means of im

proving locality of reference. Their research explored improving locality of ref

erence and performance by using transformations such as loop tiling to re

order computations [7].

Vera et al. discussed padding as a means to reduce conflict misses and

provided an effective genetic algorithm to compute the optimal parameters.

Their work built upon that of Rivera et al. and improved upon it through the use

12

of a genetic algorithm to find the optimal padding parameters [42].

None of the presented compiler based methods have attempted to

employ the usage of superpages to enhance the effectiveness of their opti

mizations. One key feature of our compiler based approach is that it allows

increased profitability of locality optimizations through superpage exploitation.

CHAPTER 3

IMPLEMENTATION

3.1 Introduction

This chapter opens by providing a brief overview of how superpages are

supported at the architectural level as well as the TLB configuration of various

micro-processor platforms. The hardware overview is followed by a survey of

operating system support for superpages. Since Linux is the target test plat

form for this research it is explained in greatest detail. Next is an introduction

to The Low Level Virtual Machine (LLVM) compiler infrastructure which is used

in our compiler-based strategy. The bulk of this chapter details the implemen

tation of our strategy. Finally experimental results are presented.

3.2 Hardware Support for Superpages

Modern micro-processors provide support for virtual memory via page

tables that translate between virtual and physical addresses. These mappings

are cached in a translation look-aside buffer, or TLB. Over the last decade

the size of the TLB has increased at a much slower rate than memory. This

is largely due to the fact that memory has drastically declined in price but TLB

13

hardware has remained comparatively expensive. On many processors the

TLB may not cover more than a megabyte of memory, whereas one gigabyte

of main memory and several gigabytes of virtual memory is common. Given

the discrepancy between the coverage of the TLB and the size of memory,

TLB misses are increasing in number and importance [21].

Superpages alleviate the demand on the TLB by increasing the TLB

coverage. Micro-processors support superpages by providing multiple page

sizes. Most modern architectures provide multiple page sizes, for example

¡386 supports 4K and 4M page sizes and ia64 supports a range of page sizes

from 4K to 256M [41]. Historically multiple page sizes are common to micro

processor based architectures [38,18], but it is a relatively recent discovery

that larger page sizes can significantly improve the throughput of memory ac

cesses by reducing the number of TLB misses [37,14, 31].

Table 3.1 provides a cross-section of supported page sizes in modern

micro-processors [31,27, 29, 41,37].

14

Table 3.1 : Page sizes in modern architectures

P la tfo rm 4K 8K 16K 64K 256K 51 2K 1M 2M 4M 16M 32M 64M 256M 1G 2G 4G 16G
x86 y / y /
am d64 y / y / y /
ia64 V V V V y / y / V y / V y / V
ppc32 V
ppc64 y / y /
sparc64 V y / V y / y / y / y /
mips V V y / y / y / y / y /
power4 V y /
alpha V V y / y /

15

3.3 Software Support for Superpages

3.3.1 Linux

Superpage support is provided by the Linux operating system in the

form of the HugeTLB kernel option. The support is built upon the multiple page

size support provided by the underlying architecture, thus the size of the su

perpages is determined by the architecture and not by the Linux kernel.

The kernel provides a virtual file system, hugetlbfs, that provides an

interface to access the superpages. All files created on this filesystem are

backed by superpages. The primary purpose of this filesystem is to allow

superpage-backed files to be mmapped into memory. The utility of using hugetlbfs

as a virtual ram disk, such as one would use tmpfs [36], is limited due to the

fact that only read, but not write, system calls are supported. Figure 3.1 demon

strates how mmap can be used to manually request superpages.

In addition to the mmap interface, the kernel also allows for superpages

to be used with shared memory. To request superpage-backed segments of

shared memory the function shmget is called with a special flag SHM_HUGETLB.

Using shared memory with superpages does not require that the hugetlb file

system is mounted, but the user of the application must be in a group that has

privileges to use superpages with shared memory. Figure 3.2 shows a simple

program that uses shared memory with superpages.

The parameters of the hugetlb module in the Linux kernel is configured

through proofs, proofs is a pseudo file system provided by Linux to access ker-

16

#include <stdio h>
#include < std11b h>
#include <unistd h>
#include <sys/mman h>
#include < fcn tl h>

#define HUGEJATH "/mnt/huge/mem"
#define PROTECTION (PROT_READ | PROT_WRITE)
#define PAGE_SIZE (4*1024*1024)
#define NOJAGES (5)
#define MEM_SIZE (size J) (PAGE_SIZE*NO_PAGES)

i f d e f __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define FLAGS (MAPJSHARED | MAP_FIXED)
#else
#define ADDR (void *)(0x0UL)
#define FLAGS (MAP_SHARED)
#endif

in t m ainfint argc, char **argv) {
void *mem,
in t i ,
in t super_fd ,
double *a ,

su p erjd = open (HUGEJATH, OjCREAT | 0_RDWR, 07555),
if (s u p e rjd < 0) {

f p r !n t f (Stderr , "Could not open HugeTLB\n"),
exit (1) ,

}
mem = mmap(ADDR, MEM_SIZE, PROTECTION, FLAGS, s u p e r jd , 0),
if (mem == MAP_FAILED) {

f p r in t f (s td e rr , "Mapping fa i le d \n "),
p erro r("mmap"),
close (su p erjd),
unlink (HUGE_PATH),
e x 11 (1),

}
a = (double*)mem,
for (i = 0, i < MEM_SIZE/sizeof (d ou b le), i ++)

a [i] = rand() * (1 0 /ra n d ()) ,

/ * th is w il l generate a _ lo t_ o f ou tpu t * /
for (i = 0, i < MEM_SIZE/sizeof (d ou b le), i ++)

p rin tf ("a[7,d] = %lf \ n " , i , a [i]) ,

munmap(mem, MEM_SIZE),
close (s u p e rjd),
unlink (HUGE_PATH),
return 0,

}

Figure 3.1: Allocating superpages with mmap

17

#include <stdio h>
#include <std lib h>
#include <sys/types h>
#include <sys/ipc h>
#include <sys/shm h>
#include <sys/mman h>

ifn d e f SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif

#define PAGE_SIZE (4*1024*1024)
#define NO_PAGES (5)
#deffne MEM_S!ZE (size__t) (PAGE__SiZE*NO_PAGES)

ifd e f __ia64__
#define ADDR (void *)(0x8000000000000000UL)
#define FLAGS (SHM_RND)
#else
#define ADDR (void *)(0x0UL)
#define FLAGS (0)
#endif

in t m ain(int argc, char **argv) {
void *mem,
in t i ,
double *a ,
in t shared__id ,

if ((shared_id = shmget(2, MEM_SIZE, SHMJHUGETLB | IPC_CREAT | SHM R | SHM_W)) < 0) {
fp r in tf (s td e rr , "Error g etting shared memory.\n"),
exit (1) ,

}
if ((mem = shmat(shared_jd , ADDR, FLAGS)) == (void*) — 1) {

f p r l n tf (Stderr , "Error attaching shared memoryAn"),
shmctl (shared_jd , IPCJWIID, NULL),
exit (1) ,

}

a = (double*)mem,
for (i = 0 , i < MEM_SIZE/sizeof (d ou b le), i ++)

a [i] = rand() * (1 0 / r an d()) ,

/ * th is w il l generate a _ lo t_ o f ou tpu t * /
for (i = 0, i < MEM_SIZE/sizeof (double) , i ++)

print f (" a [#/,d] = °/0l f \ n " , i , a [i]) ,

(void)shmdt (mem),
shmctl (shared„id , IPC_RMID, NULL),

return 0,
}

Figure 3.2: Allocating superpages with Sys V shared memory

nel information and control configurable kernel options at runtime. Table 3.2

shows the various “tunable” parameters available in proofs related to super

pages.

18

Table 3.2: proofs superpage attributes
emphprocfs entry Access Purpose
/proc/meminfo HugePages_Total RO Number of total superpages
/proc/meminfo HugePages_Free RO Number of free superpages
/proc/meminfo HugePage_Rsvd RO Number of superpages scheduled to allo

cate (reserved) but that have not yet been
allocated

/proc/meminfo HugePages_Surp RO The number of “extra” superpages allocated
(overcommited superpages)

/proc/meminfo Hugepagesize RO The size of a superpage
/proc/sys/vm/nr_hugepages RW The number of OS allocated superpages
/proc/sys/vm/nr__overcommit_hugepages RW The number of surplus superpages

that can be reserved once the value in
/proc/sys/vm/nr__hugepages is exceeded

/proc/sys/vm/hugetlb_shm_group RW The group ids (GID) of groups allowed to use
shared memory with superpages

/proc/sys/vm/hugepages_treat_as_movable RW Superpages are not moveable, but setting this
paramater will force superpages to be treated
as moveable This can be used to obtain
superpage from the ZONE_MOVEABLE pool

Linux must allocate superpages for the system before they can be re

quested by an application. The memory is preallocated and reserved for su

perpages, thus the memory reserved for superpages can only be used for su

perpages. Generally superpages should be preallocated during or shortly after

boot, since it may be difficult to obtain sufficiently large contiguous chunks of

memory on a long running system [41]. Figure 3.3 shows the init script used to

set-up the usage of superpages on our test system.

19

f / b in /s h
chkconfig 2345 30 80
d e s c r ip tio n S ta rt and Stop superpage (HugeTLB) a llo c a t io n
#
NUMBER_PAGES=64
MNT_POINT= " / mnt /huge "
MODE=1777
PIDFILE=/var/run/hugetlb run

/e tc /r c d / in i t d /functions
s ta r t () {

i f [- f $ { PIDFILE}], th en
echo "Allready running",

e ls e
echo — n "Loading HugeTLB"
[- z "${MNT_P0INT>"] && MNT_POINT= "/mnt/huge"
[—Z "${NUMBER_PAGES>"] && NUMBER_PAGES=0
[—z "${M0DE>"] && MODE=1755
mkdir —p ${MNT_POINT}
echo ${NUMBER_PAGES} > / p ro c /s y s /v m /n r_ h u g e p a g e s
mount —t h u g e tlb fs - o mode=${MODE} nodev ${MNT_POINT}
[- z $?] && echo " failed." || echo " ."
echo 1 > $ { P ID F IL E }

}
stop()

i f [- f $ { PIDFILE}], th e n
echo —n "Unloading HugeTLB"
[- z "${MNT_P0INT}"] && MNT_POINT= "/mnt/huge"
umount ${MNT_POINT}
echo 0 > /proc/sys/vm/nr_hugepages
[- z $?] && echo " failed." || echo " . "
rm $ {PIDFILE}

e ls e

f i
echo "Not Running"

}
case "$ l" in

s ta r t)
s ta rt

stop)
stop

res ta rt | reload)
stop
start

s ta tu s)
[- f ${ PIDFILE}] && echo "Loaded" || echo "Not Loaded"

*)
echo $"Usage: $0 {start I stop | status I restart I reload}"
e x i t 1

esac
e x i t 0

Figure 3.3: Linux ¡nit script for allocating superpages

20

libhugetlbfs

libhugetlbfs is a library, by David Gibson, Adam Litke, and others, to fa

cilitate easy access to superpages [13]. libhugetlbfs provides library utilities

and the ability to remap data segments to superpages, but the primary contri

bution of the library is a superpage-backed m orecore . Application developers

can utilize the library by either linking directly to it or by setting environmental

variables to enable superpage allocation at runtime. It achieves this by over

riding m allo c ’s standard m o reco re with one that provides chunks of memory

backed by superpages.

One advantage of using libhugetlbfs is that it allows superpages to be

used without any changes to the source code. While the library is definitely

easier to use than using m m ap or shared memory to access superpages, it

nonetheless involves a procedure that may be undesirable to many program

mers since it requires either custom linking or setting up a specialized runtime

environment (id e s t with environmental variables). Furthermore it makes it dif

ficult for developers to distribute binary executables with built-in superpage

support1.

Our strategy overlaps with some of the support provided by libhugetlbfs,

however there are key differences:

libhugetlbfs is a conven ience library. It does not provide any mechanism

to determine when it is profitable to use superpages. Our compiler-driven strat

egy provides easy access to superpages, compile time heuristic analysis, and

1 Note the converse is also true One nice feature of libhugetlbfs is that it can be used to
add superpage support to any program installed on the system with extreme ease

21

run-time heuristic analysis.

libhugetlbfs is independent of the compiler. Given the overlap it seems

logical to employ the functionality provided by libhugetlbfs to implement com

piler driven superpage allocation. Unfortunately one of the key features of

the library also made it ill-suited for this purpose: libhugetlbfs provides super

page support for malloc solely at runtime. Even when an application is linked

against the library, the decision to use the custom version of morecore is made

at runtime based upon the value of HUGETLB_MORECORE. It is possible for

the compiler, based upon its data-reuse analysis, to inform both the linker and

runtime environment to use HUGETLB_MORECORE, but there is no guaran

tee that superpages will actually be used. It is a one way street for the com

piler: it can still help to judiciously orchestrate superpage allocation, but it can

not safely exploit superpages in compiler optimization since the usage of su

perpages, and thus the contiguity of memory, is not guaranteed.

Ultimately libhugetlbfs is an excellent utility for utilizing superpages. It

was considered for use in our compiler-based strategy but ultimately did not

meet all of the requirements. Nonetheless it was beneficial source of refer

ence.

Linux implementation of Navarro [31]’s superpage prototype

A recent project opened on sourceforge.net in October of 2008 pro

poses an implementation of transparent superpage support for Linux. The

implementation would be a port of the prototype developed by Navarro et al.

22

for FreeBSD [31]. At the time of writing, however, this project has not released

any code or documentation apart from a statement of purpose [44].

3.3.2 FreeBSD

The FreeBSD Operating systems is scheduled to include transpar

ent superpage support in version 8, scheduled to be released in early 2009.

Navarro et al. [31] provided a prototype implementation of transparent super

page for FreeBSD running on alpha and ia64 architectures. This prototype is

being extended to include other architectures and will be integrated into the

FreeBSD kernel [9]. Transparent support for superpages is a pure operating

system centric approach. At the time of writing it is unknown whether explicit

support, such as one that could be leveraged in a compiler-based strategy, will

be provided, but it is expected that at some point explicit usage of superpage

will be supported in FreeBSD.

3.3.3 Solaris

The Solaris operating system supports superpages from version 9 and

up on both UltraSPARC and x86 platforms. Solaris support for superpages is

quite sophisticated and provides a great deal of flexibility to developers. Older

versions of Solaris (version 8 and earlier) allowed the usage of superpages

only through a shared memory system termed intimate shared memory (ISM).

Version 9 and onward retain the ability to request superpages with ISM, but in

troduces two new approaches. Solaris 9 allows for superpage-backed memory

to be used in mapping with /dev/zero/. This allows for superpages to be allo

cated using mmap. Solaris 9 also introduces the MPSS library which allows

for the usage of superpages to be specified through the command ppgsz. The

Sun Forte compiler provides the ability to request superpage allocation with

the usage of the compiler flag -xpagesize=n where n is the size of the page

to use. The compiler will attempt to allocate memory using the specified page

size but makes no guarantee that the request will be honoured [29]. The Forte

compiler provides a similar functionality to our compiler-based approach, but

unlike our approach it does not:

• Use a heuristic to intelligently allocate superpages. The page size must

be explicitly requested by the programmer at compile time.

• Exploit the usage of superpages for compiler optimizations.

• Run on operating systems besides Solaris. The design of our compiler-

based strategy can be ported to many operating systems and architec

tures, Sun Forte only runs with Solaris on UltraSPARC or x86 platforms.

3.3.4 AIX

The AIX operating system supports superpages for IBM’s power4 pro

cessor line. The power4 platform provides two page sizes: 4K base pages

and 16M superpages. Superpages can be requested in AIX by modifying

the XCOFF header in an executable to specify that heap and data segments

should be backed by superpages, by setting up specific environmental vari

24

ables that override the XCOFF header, or by using shared memory [27].

3.3.5 Microsoft Windows

Recent versions of Microsoft Windows, such as Windows Server 2003,

Windows Vista, and Windows Server 2008, support superpages. Superpages

are obtained using an approach similar to that of mmap. The function Create-

FileMapping is called with a flag of SEC_LARGE_PAGES to request a map

ping of superpage backed memory [8]. Given that the approach employed by

Windows is similar to that used on Linux, the proposed compiler-based strat

egy would be able to support recent versions of Microsoft Windows operating

systems.

3.3.6 Overview

Table 3.3 shows the current superpage support status of a variety of

operating systems. It also marks entries that currently implement and/or are

capable of supporting our compiler strategy.

Table 3.3: Overview of software support for superpages

OS Superpage support Currently Supported Can be supported
Linux Yes Yes N/A
FreeBSD Scheduled in next release No Unknown
Solaris Yes No Yes
AIX Yes No Yes
Microsoft Windows Yes No Yes
Darwin (Mac OS X) Unknown No Unknown

25

3.4 LLVM

The Low Level Virtual Machine Compiler Infrastructure is a system that

provides a framework for language independent analysis and optimization,

inter-procedural analysis, front-end development, and compile, run, and link

time optimizations. LLVM provides a low level virtual machine that supports a

virtual instruction set, a compilation strategy, and a compiler infrastructure [16,

23].

The C and C++ front-end is based upon that of the GNU Compiler Col

lection (GCC). LLVM can generate native code, portable C code, LLVM bit-

code, and Microsoft Intermediate Language (MSIL) code. A Just-In-Time com

piler is provided for the emitted LLVM bitcode, allowing for extensive run-time

analysis and optimization [23].

3.4.1 LLVM Compilation Strategy

LLVM uses gcc as the compiler frontend. For C based languages gcc

performs preprocessing, lexical analysis, parsing, semantic analysis, and all

optimization that does not occur at the machine level. Most gcc optimization

flags, including -0[123] are supported. The gcc version that LLVM provides is

patched to output LLVM IR (intermediate representation) bit-code or assembly

listings.

The intermediate representation is the heart of LLVM as it used in all

phases throughout the LLVM compilation strategy. The IR code is a static sin

gle assignment (SSA) representation with low level operations that also is ca

pable of representing high-level language constructs such as type safety, se

lection, iteration, and functions. The ability to retain high-level representations

is something most assembly languages lack and is the very feature that makes

LLVM IR suitable for intermediate level analysis. LLVM IR can be used in three

different forms: an in-memory compiler IR, on disk bit-code suitable for usage

in the LLVM just-in-time compiler, or a human parseable assembly listing.

The IR representation that is generated by the gcc frontend can be in

put for any subsystem of the LLVM compiler infrastructure such as optimization

passes, analysis passes, alias analysis, and code generation. Passes are run

using opt, the LLVM optimizer, which accepts as input the IR bit-code and a

list of requested optimizations and analyses, and outputs the (possibly) trans

formed IR code. After any and all passes the resulting IR code can be run via

two different mechanisms. The LLVM static compiler {lie) can be used to trans

late IR bit-code into native assembly for the specified architecture. The result

ing assembly language output can subsequently be run through the system

assembler and linker to provide a native executable. The IR bit-code can also

be executed using the LLVM just-in-time compiler {Hi). Figure 3.4 shows the

various stages of compilation.

To facilitate the use of LLVM, a compiler driver tool is provided. Ilvmc

and its successor Ilvmc2 provide a one-stop tool for running all the necessary

commands to transform high-level source code into a native executable or fully

optimized IR bit-code suitable for execution with Hi.

26

27

High Level Language
Source Code

^ LLVM IR
r BitCode

1

Native
Assembly

Native
Executable

Figure 3.4: LLVM Compilation Strategy

Our research focuses primarily on C language code, however LLVM

provides support for a variety of other languages including C++, Objective-C,

Ada, and Fortran.

3.4.2 The Pass Framework

There are two approaches to implementing a pass in LLVM. A pass

could be written for the gcc frontend. This approach does not necessitate the

usage of LLVM; one would simply implement a pass in mainline gcc. The sec

ond approach takes advantage of the convenience, flexibility, and vigor of the

LLVM compilation strategy by using the LLVM pass framework. Some of the

key advantages the LLVM pass optimizer has over implementing a gcc pass

are:

• The LLVM pass framework provides a high-level, well documented, and

reusable pass environment written in C++.

• The LLVM IR representation is well defined and capable of representing

high-level constructs.

• gcc provides an in-memory IR. LLVM’s external IR allows for the IR as

sembly listing to be viewed before and after an individual pass.

• The LLVM framework is focused on providing a clean environment for

compiler research and therefore expects that many of its users will be

writing passes, performing analysis, and developing backends, gcc, on

28

29

the other hand, is focused on providing a production grade compiler with

internals that the majority of the user base will never touch.

The LLVM pass framework is written in C++ and provides a number of

classes that can be employed when writing a pass. Presented are some of the

most frequently employed classes:

The ModulePass Class: This class is the most general of all Pass

classes. The ModulePass is run on an entire module (or compilation unit) at

once. Functions can be added and removed and their bodies can be modified,

however there is no set order to how the functions will be traversed. Generally

this pass is used when the entire program is considered during the pass but

individual functions are not.

The CallGraphSCCPass: This class allows for a program to be tra

versed from the bottom up on the call graph. This pass is provided for when

the optimization or analysis requires a bottom up traversal where callees are

encountered before callers.

The FunctionPass: The FunctionPass class executes on each function

in a program independently from the others. Function passes can only mod

ify the currently processed function and cannot add or remove functions and

globals in the module.

The LoopPass: This class runs on each loop independently. Loop

nests are processed from inside-out such that the inner-most loop is processed

first and the outer-most loop is processed last. Outer loops are permitted to

update inner loops in a loop nest.

30

The BasicBlockPass: This class is similar to the FunctionPass class

except that it executes on each basic block independently. Only the currently

processed block can be modified and In general this pass follows the same

semantics as the FunctionPass except that it is applied to a block instead of a

function.

Figure 3.5 shows a simple FunctionPass that prints the name of each

function that it encounters.

d e f in e DEBUGJTYPE "printfun"
in c lu d e d lvm /P ass h>
in c lu d e <Ilvm / Function h>
in c lu d e <llvm /A DT/StringExtras h>
in c lu d e <llvm /Support/Stream s h>
in c lu d e < llvm /A D T /S ta tis tic h>
u sin g nam espace llvm ,

STATISTIC(function_COunt , "Counts number of functions encountered"),

nam espace {
c la s s printfun p u b lic FunctionPass {

p u b lic
s t a t ic c h a r ID, / / Pass id e n t i f ic a t io n
printfun (v o id) FunctionPass((in tp tr_ t)& ID) {}
v i r t u a l b oo l runOnFunction (Function & f),

}.
/ * R e g is te r the pass * /
c h a r printfun ID = 0,
RegiSterPass<pri ntf U n > X("printfun" , "Print Function Pass"),

b oo l printfun runOnFunction (Function &f) {
std string fname = f getName(),
EscapeString (fname),
llvm cerr « "Function: " « fname « " encountered.\n" ,
function__count++,
re tu rn f a ls e , / / fu n c tio n not m od ified

J
}

Figure 3.5: LLVM pass that counts and prints functions

31

3.5 Compiler Driven Superpage Allocation

3.5.1 Superpage Aware Malloc

Background on Malloc

malloc is the C standard library interface for providing dynamic memory

to an application, malloc is responsible for obtaining memory from the underly

ing operating system and managing the allocated memory for the application.

In the glibc (GNU C Library) implementation of malloc memory is obtained with

two different techniques.

sbrk() The sbrk library function adjusts the size of a program’s data

segment. On GNU systems sbrk is a convenience wrapper around brk. Both

functions can be used to accomplish the same task, malloc uses sbrk to ad

just the size of the heap.

mmap() The mmap library function maps memory from a file or device

into memory. Instead of using the data segment of a program, traditionally

treated as the heap, memory is mapped using mmap to obtain heap memory.

The glibc implementation uses sbrk to allocate memory smaller than

a set threshold. This threshold, MMAP_THRESHOLD defaults to a value of

128K. Once the memory requirements exceed MMAPJTHRESHOLD then the

malloc implementation switches to obtaining further memory using mmap. The

threshold can be adjusted by using the lesser-known mallopt, which allows the

caller to adjust different parameters of the memory allocator. The parameters

that are supported by mallopt are implementation dependent, so should be

32

used with caution. Adjusting MMAP_THRESHOLD to zero effectively disables

memory allocations with sbrk and malloc will solely use mmap.

There are trade-offs between obtaining memory via sbrk and mmap.

The sbrk method allows for a fine granularity over the allocated memory; gen

erally the only limitation imposed upon the allocated units are that they are

aligned to an 8-byte boundary. While sbrk is well suited for small allocations,

large memory allocations can lead to excessive page fragmentation.

Heap allocation using mmap restricts chunk allocations to increments

of the page size. If only one byte is requested via malloc an entire page must

nevertheless be allocated. This method can result in wasted memory. On the

other hand, while the mmap approach can still suffer from page fragmenta

tion, it avoids the worst case behaviour of sbrk. One advantage of mmapped

memory, in addition to the reduced page fragmentation, is that it is immediately

returned to the operating system upon being freed [22].

While the GNU implementation uses both strategies (sbrk for small al

locations, mmap for large), other systems such as OpenBSD solely use the

mmap method. Table 3.4 outlines the different allocation methods used by var

ious implementations [4, 10, 20, 22].

The glibc implementation of malloc employs the function morecore to

obtain chunks of free memory. It is morecore's responsibility to obtain chunks

of free memory via sbrk, mmap, or a custom supplied mechanism and subse

quently extend or shrink the heap for malloc.

33

Table 3.4: m alloc implementations

Malloc Implementation sbrk m m ap

GNU/Linux V V
phkmalloc(FreeBSD, Mac OS X) V

jemalloc(FreeBSD) V V
OpenBSD V

Hoard V
smalloc V

smalloc

sm alloc (super malloc) is a superpage-aware implementation of malloc.

It is based upon the algorithms presented in Doug Lea’s m alloc implementa

tion which is the basis for the version found in glibc [24]. sm alloc supports the

core interface of the C standard, as detailed in table 3.5.

Table 3.5: m alloc and sm alloc interfaces

Standard malloc smalloc (Super malloc)
void * calloc (size_t nmemb, size_t size) void * scalloc (size_t nmemb, size_t size)

void * malloc (size_t size) void * smalloc (size_t size)

void free (void *ptr) void sfree (void *ptr)

void * realloc (void *ptr, size_t size) void * srealloc (void *ptr, size_t size)

Memory can be backed by either base pages, superpages, or to a lim

ited extent both, sm alloc requests memory by calling one of two versions of

m orecore . One version is for base pages and the other is for superpages.

Base pages are obtained by m m appm g /d e v /ze ro and superpages are ob

tained by mmapping a file backed by the hug eT L B fs provided by Linux. Each

34

Figure 3.6: Superpage and base page heaps

version will align the base of the heap at the end of the data segment, as shown

in figures 3.6(a) and 3.6(b). A problem arises, however, if two different page

sizes are used simultaneously. Since chunks of contiguous superpage mem

ory must be aligned upon the size of a superpage, mixing base pages and

superpages leads to a swiss cheese effect on the heap, since gaps are re

quired to ensure the correct alignment, which effectively disables the utility of

the heap. In an effort to maintain a consistent heap, several invariants are de

fined:

• If superpages are allocated initially then base pages cannot be used.

• If base pages are allocated initially then superpages can later be allo

cated, but it is required that:

35

- The superpage heap is placed at the next superpage alignment

after the top of the base page heap.

- The base page heap is prohibited from growing further.

• Both base pages and superpages can be used simultaneously, with

smaller allocations backed by base pages and larger allocations backed

by superpages if a fixed cap is applied to the base page heap during ini

tialization, as can be seen in figure 3.7 . This issue is discussed in more

detail later in this section.

4M

4K{

end of_^
data segment

■o
CD
V)

4— 'top of super heap

4— superpage heap base (aligned to 4M)
4— top of base heap

4— base heap page

Figure 3.7: Dual page heap

smalloc maintains the sanity of the heap through the use of bookkeep-

36

ing data and bins of free chunks. Each chunk of memory has 4 machine words

of bookkeeping overhead associated with it. A header field contains the sta

tus and size of the chunk, followed by pointers to the previous and next free

chunks. A footer field is provided for the status and size as well. Maintaining

the size of the chunk at both the head and tail allows for adjacent chunks to

be efficiently coalesced into one, albeit at an acceptable cost of wasted space.

Figure 3.8 illustrates the structure of a chunk.

a p p lic a t io n 's fo o te r
header bookkeeping view o f chunk bookkeeping

bits
(64 b it ->
word size)

bits

l 63 64 64 s ize - 256 1

(32 b it ->
word size)

l 31 32 32 s ize - 128 1

in

i
i
i

i
i

in 1ii = i-H
fD s ize ; prev

i
next user memory <o I s ize

+-» ■M .
in i

i
________i_________

(/> i
1

_____1_________

chunk

Figure 3.8: A chunk of smalloc memory

smalloc uses bins to maintain the list of free chunks. Bins are arranged

in increasing size, from small to large. Chunks under 512 bytes are placed into

bins spaced 8 bytes apart. Chunks larger than 512 bytes increase in logarith

mic intervals. 32-bit platforms have 96 bins while 64-bit platforms have 128

bins. Each bin contains a pointer to a doubly-linked list of free chunks.

Bins are searched in a smallest first, best-fit/first-fit order. The bin index

37

of a chunk is calculated and if a chunk cannot be found in the bin then the next

bin is searched, yielding a best-fit strategy. Best-fit, on the whole, produce less

fragmentation than other strategies [45]. Each list in a bin is searched using

a first-fit strategy. This binning approach is used to avoid fragmentation while

maintaining low time complexity. Figure 3.9 shows the structure of the bins.

63+ . 63+
bin index 0 l 2 3 63 100,2" 1 10^2"

bins <8 <16 <24 <32 <512
n - 1

2
n

2

free
chunk
l i s t

i i i i

i

i
f r e e

c h u n k □
/ 0

□
IT IT IT IT
□

I t
□

I

□
I t

□
I tIT

□
I

7 0 IT
□

I t

IT
□

I

7 0 IT
□

1
70

□

^70

70

Figure 3.9: Bins of free memory

smalloc operates by first searching for a free chunk large enough to ac

commodate the user’s request. If such a chunk cannot be found then smalloc

will request more memory using morecore. The approach employed by smal

loc can be seen in algorithm 1.

38

Algorithm 1 smalloc(size_t size)
Require: size > 0
Ensure: mem points to a valid block size bytes large
1 Pick morecore version
2 size <- size + BOOKKEEPING_SIZE
3 if The heap is empty then
4 Allocate memory with morecore
5 Partition heap:
6- mem (heap_base —>• heap_base + size)
7 free_chunk <— (heap_base + size —>■ heap_base + total_heap_size)
8. Update bookkeeping information for mem
9 Update bookkeeping information for free_chunk
1 o Register free_chunk in bin
11. else
12 Find free_chunk using best fit
13 if free_chunk is found then
14 Remove free_chunk from bin
15- if free_chunk > size + BOOKKEEPING_SIZE then
16- Partition Chunk:
17 mem (free_chunk —► free_chunk + size)
18 free_chunk 4- (free_chunk + size —> free_chunk +

total_chunk_size)
19 Update bookkeeping information for mem
20. Update bookkeeping information for free_chunk
21 ■ Register free_chunk in bin
22. else
23 mem <— free_chunk
24. end if
25. else
26 Extend heap with morecore
27 Partition Chunk:
28 mem <— (new_chunk —>• new_chunk + size)
29 free_chunk (new_chunk + size —> new_chunk + total_chunk_size)
30: Update bookkeeping information for mem
31 ■ Update bookkeeping information for free_chunk
32 Register free_chunk in bin
33. end if
34 end if
35
36 Adjust mem to after header bookkeeping data
37 return mem

39

s free releases memory obtained by sm alloc. If the victim chunk neigh-
i

bours any free chunks then they are joined into one. Finally the chunk is regis

tered in a bin and marked as free. Algorithm 2 outlines sfree.

Algorithm 2 sfree(void *ptr)
Require: ptr is not NULL
Ensure: the memory pointed to by ptr is released
1- ptr ptr - BOOKKEEPINGJDFFSET
2. if previous chunk = free then
3. Remove previous chunk from bin
4. Merge previous chunk and current chunk
5: Set up bookkeeping for new chunk
6: end if
7: if next chunk = free then
8- Remove next chunk from bin
9 Merge next chunk and current chunk

10: Set up bookkeeping for new chunk
11: end if
12. Register free chunk in bin

scalloc is a wrapper around sm alloc that allocates memory for an array.

If successful then the memory is zeroed out {id e s t each element is set to a

value of zero), srea lloc attempts to enlarge a block of memory. The contents of

the memory will remain unchanged but any new memory will be uninitialized. If

srea llo c is called with a size of 0, then it functions like sfree. Should the pointer

be null, then it is equivalent to sm alloc.

Each function in the sm alloc memory allocation toolkit is designed to

be a drop in replacement for the standard C version. This is achieved by main

taining the same syntax and semantics; only the underlying strategies are dif

ferent. sm allo c can be used as a stand-alone library, as can be seen in fig-

ure 3.10, but the primary goal is to allow for the transparent usage of super

page by having the compiler replace all calls to malloc functions with calls to

smalloc functions.

40

#include <std11b h>
#include <smalloc h>
#include <stdio h>

int main(int argc, char **argv) {
int size , i ,
double *a,

if (argc > 1)
size = atoi (argv [1]),

else
size = 100,

a= scalloc ((size__t)size , sizeof (double)),
if (i a) exit (1),
for (i =0, i < size , i ++)

a[i] = rand () * (1 0/rand ()),

for (i =0, i < size , i ++)
printf ("a[#/0d] = °/,lf \n", i, a[i]),

sfree (a),
return 0,

}

Figure 3.10: Using smalloc in a program

Dynamic Superpage Allocation with smalloc

One advantage of a custom memory allocator like smalloc is that it fa

cilities the ability to have dynamically determined superpage allocation. The

two key factors that inform judicious usage of superpages are the data-reuse

patterns and the size of the working set. As noted in chapter 2, previous ap

proaches to heuristically determined superpage allocation have solely con-

sidered the size of the working set and therefore fail to take advantage of the

data-reuse patterns. Since most of these methods are implemented at the op

erating system level the reuse patterns are not available. This information is

only available to the compiler.

One deficit to compiler-driven superpage allocation is that the size of

the working set is usually unknown. The compiler must make an educated

guess at the working set size. While this solution is adequate for most appli

cations, it can fail to properly estimate the TLB demands of programs that have

incongruous working sets. A custom memory allocator, such as smalloc, can

augment a compiler-based strategy by providing mechanisms to determine at

runtime the memory allocation strategy.

There are two distinct issues that must be considered when implement

ing dynamically determined superpage allocation, smalloc bases its decision

to allocate superpage upon a set threshold. If the amount of requested mem

ory exceeds this threshold then superpage allocation is enabled. This raises a

question: should a single allocation or the sum of allocations be considered?

Singleton determined allocation makes the decision to allocate mem

ory backed by superpages based on a single call to smalloc. Should the re

quested memory exceed the set threshold then superpages are enabled. The

disadvantage of this approach is that it fails to consider data structures that are

created across multiple allocations. Two and three dimensional arrays may be

allocated in chunks smaller than the threshold even though the total size of the

final array exceeds the threshold. Unlike multiple, small, unrelated allocations

41

42

that may exhibit no locality of reference, a multi-dimension array or other large

data structure is likely to exhibit strong locality of reference and would thus

benefit from superpage-backed memory.

Comprehensively determined allocation makes the decision to allo

cate superpage backed memory by comparing the total amount of allocated

memory to the threshold. Once the sum of all memory exceeds the threshold

then superpages are enabled. This approach addresses the concern of data

spanning multiple allocations, but it may result in unnecessary superpage allo

cation when an application consists solely of small and unrelated allocations.

The second issue requiring consideration is how the switch from base

pages to superpages should be performed, smalloc is flexibly designed to al

low four different approaches to the issue of heap switching.

(i) No heap switching Only one heap is allowed and the memory used to

back the heap is determined by the first call to smalloc. If the initial re

quested memory is above the threshold then superpages are used, oth

erwise base pages are used. The type of pages used does not change

for the lifetime of the program regardless of any future allocations. Note

this implies the usage of singleton determined allocation. This is a “bet

ter than nothing” approach with the primary advantage that it is easy to

implement. Nonetheless, in cases where the working set is allocated

with one initial allocation this solution is optimal.

(ii) Base heap freezing Once the threshold has been reached the size of

the base heap is frozen. The superpage heap is allocated at the next

43

aligned boundary after the base heap and all future allocations are per

formed with the super heap. The data in the base heap is preserved

and can continue to be used throughout the program. This approach

works best with co m p reh en s ive ly d e te rm in e d allocation, but can also

be used with singleton d e te rm in e d allocation. This approach allows for a

finer granularity in superpage allocation but has several disadvantages.

As memory is freed from the base heap after the threshold has been

reached is not considered for future allocations. This implies that free

memory in the base heap is wasted. Secondly, memory that has been

allocated on the base heap cannot take advantage of superpages.

(iii) Base heap migration Once the threshold is reached all memory is copied

from the base heap into the new super heap. The base heap is then

freed and all further memory allocations are performed with the super

heap. This approach has the advantage of avoiding the wasted space

associated with b a s e h e a p freez in g as well as allowing early allocations

to benefit from the usage of superpage. While any determination method

for the page size can be used, this approach lends itself to c o m p reh e n

s ive ly d e te rm in e d allocation. The critical disadvantage to this strategy

is that it incurs a one time penalty of copying the heap. The larger the

threshold the more severe the penalty, so a lower threshold should be

employed with this method. In many applications the cost of this ap

proach may be too severe, especially if the penalty is incurred during

critical sections of the code. In certain scenarios the benefits of using

superpages will offset the cost of migrating the heap, but there are an

equal number of scenarios where the cost outweighs any benefits.

(iv) Dual heaps The final approach involves maintaining two heaps: one backed

by superpages and the other backed by base pages. Both heaps must

be aligned within the same address space thereby requiring that the size

of one heap is capped. If both heaps were allowed to grow unbounded

then eventually the base heap would overrun the super heap. Since the

base heap will be used for small allocations it is given a reasonable up

per bound. The super heap, which will be used for larger allocations, will

be allowed to grow unbounded (at least to the extent supported by the

underlying operating system). Requests for memory below a threshold

will be allocated on the base heap and requests above the threshold go

on the super heap. This approach implies the usage of singleton deter

mined allocation and therefore suffers from the same deficits. Large data

structures that span multiple allocations will be mis-categorized. This

approach also introduces extra processing overhead since as the base

heap approaches its maximum size smaller requests may require a pass

through both heaps before finding a free chunk.

Each different strategy for dynamically determining superpage has

its own set of advantages and drawbacks. It is difficult for smalloc to predict

which strategy will be most profitable for an application without external “hints.”

These “hints” can be in the form of explicit requests from an application, via a

mechanism such as mallopt, or through recommendations made by the com-

44

45

piler during static analysis.

smalloc implements strategy (i), no heap switching with singleton de

termined allocation, as the default approach to dynamic superpage support.

While this approach offers the minimum advantages it also represents the min

imum drawbacks. Furthermore dynamic support in smalloc is an extension;

the primary focus is on compiler driven analysis, smalloc refers to dynamically

determined superpage allocation as smart pages, since the decision of which

page type to use is delayed until runtime when more information is available

and presumably a “smarter” decision can be made.

smalloc Configuration Overview

Table 3.6 shows the smalloc operational parameters and the default

settings for the two tested platforms.

Table 3.6: smalloc configuration overview

Paramaters smalloc Overview Intel AMD
Modes base page, superpage,

dynamic
base page, superpage,
dynamic

base page, superpage,
dynamic

Default Mode superpage superpage superpage
Base Page Size Determined by System 4K 4K

Super Page Size Determined by System 4M 2M
Bookkeeping overhead 4 x word size 16 bytes 24 bytes

Free Bins Determined by System 96 128
Dynamic Threshold 8 x base page size 32K 32K

3.5.2 A Pass in LLVM

One of the primary advantages of having a superpage aware version

of malloc that follows syntactical invariants is that it allows all dynamic mem

ory related functions to be replaced. LLVM provides a pass framework which

is used to implement a simple source-to-source transformation that converts

calls to m alloc family functions to sm alloc functions. Refer to table 3.4 for the

functions that are replaced. Our implemented pass is termed su p erp ass and is

a subclass of the FunctionPass.

Since m alloc, calloc, realloc, and free are all external functions to the

compilation unit, su p erp ass only needs to replace the references to these

functions. It accomplishes this by looking up each function name in the symbol

table. If it finds an entry then it changes the entry to refer to one of the func

tions in the superpage aware sm alloc library.

While sm alloc can function without any extra setup, in order for a com

piler heuristic to specify the operational parameters of the memory allocator

several external variables must be changed. Currently sm alloc provides two

such variables:

__malloc_mode determines which version of m o reco re will be employed:

0 Use base pages

1 Use superpages

2 Dynamically determine the type of page to use at runtime (smart pages)

__smartpage_threshold The size in bytes of the threshold used to determine

when superpages are allocated when smart pages are used.

If they are not defined by a program then__mallocjriode defaults to

1 (use superpages) and__smartpage_threshold defaults to 8 times the size

46

47

of a base page. The default smart page threshold is decidedly low to accom

modate the usage of singleton d e te rm in e d allocation (the default). While this

value is small with regards to the entire working set of an application, it is quite

large for a single allocation. For example, given a 32-bit machine with 4K base

pages the smart page threshold would be 32K, which would require an array of

8192 integers to meet the threshold.

The su p erp ass sets these variables at the beginning of the m ainQ func

tion. The pass registers each variable as an externally weak-linked global vari

able in the symbol table. Once m ainQ is found during a function pass, it inserts

two store instructions into the basic block structure of the function. The value

of these variables are obtained during the heuristic analysis presented in chap

ter 4.

3.5.3 Compilation Flags

Table 3.7 shows supported compiler options. The names of the flags

may change to better integrate to llvm or g cc naming conventions, but the

functionality will remain the same. Currently only -s u p e r and -n o s u p e r are of

ficially implemented. Chapter 4 presents a heuristic that is employed with the

remaining options.

Table 3.7: Compiler Flags
Flag Description
-nosuper Disable superpages
-super Enable and force superpage usage
-super-static Enable staticaly determined superpage usage
-super-dynamic Enable dynamically determined superpage usage
-super-full Enable both statically and dynamically determined superpage usage

!

48

3.6 Experimental Results

transpose TLB MISSES

Figure 3.11 : transpose TLB performance on Intel

3.6.1 Experimental Setup

Benchmarks

The benchm arks used in this research include SPEC benchm arks 164-

gzip and 188-ammp, in addition to transpose, a matrix transposition code. The

ammp and transpose benchm arks were selected as likely beneficiaries of su

perpages due to their exhibition of high TLB demand, gzip was selected as

a candidate not benefiting from superpages due to its linear data access pat-

49

transpose Wall Clock Time

terns.

164-gzip is a SPEC benchmark based on the popular compression pro

gram gzip. gzip uses a Lempel-Ziv (LZ77) compression algorithm and per

forms all compression and decompression entirely in memory so as to remove

any unnecessary I/O operations that could taint the benchmark. The bench

mark is run with data sets of increasing size, ranging from 1M to 64M.

TL
B

M
is

se
s

50

164-gzip TLB MISSES

Figure 3.13: 164-gzip TLB Misses on Intel

I

I
?
o

3 0 0 %

2 5 0 %

200%

1 5 0 %

100%

5 0 %

0%

T L B M is s R e d u c tio n s
1574% 117,276% 225,680%

16 4 -g z ip 1 7 6 -g c c 1 8 3 -e q u a k e 1 8 8 -a m m p 2 5 6 -b z ip 2 s trid e tra n s p o s e

B e n c h m a rk s

Figure 3.14: TLB Miss Reductions for all Benchmarks on Intel

S
p

ee
d

u
p

 w
ith

 S
u

p
er

p
ag

es
 o

ve
r

N
o

n
-s

u
p

er
p

ag
es

51

Wall Clock Tim e Speedup

Benchmarks

Figure 3.15: Wall Clock Speedup for all Benchmarks on Intel

t r a n s p o s e T L B M I S S E S

In p u t S iz e

Figure 3.16: transpose TLB performance on AMD

52

transpose Wall Clock Time

188-ammp is a SPEC floating point benchm ark that solves Newton’s

O rdinary Linear Equation for the movement of atoms in a system that is on a

protein-inhib itor complex and is em bedded in water [17]. This floating point

benchm ark was selected due to its large data set, consisting of 9582 input pa

rameters (atoms suspended in the water). The benchm ark is run with three

different data sets of varying size and complexity.

176-gcc is a SPEC integer benchm ark that is based on the GNU C

compiler. The benchm ark is a likely candidate for improving TLB performance

due the size and complexity of the data sets.

183-equake is a SPEC floating point benchm ark that simulates earth

quakes and other seism ic activity. Like 188-ammp and 176-gcc it is a desirable

53

164-gzip TLB MISSES

Figure 3.18: 164-gzipJLB Misses on AMD

benchm ark due to the size and complexity of the data.

stride is a synthetic kernel benchm ark that strides through a large ar

ray with increasing step sizes. The array is 8K large and the stride size in

creases from 1 to 8192 bytes. When the step size is 8192 then the benchm ark

will sweep through 64M of memory.

transpose is a kernel benchm ark that performs a large number of matrix

transpositions. The algorithm can be seen in example 1. The benchm ark is run

with increasing data sets ranging from matrix dimensions 30 • 30 to 3000 • 3000.

en
<I>
en en
~
[lJ
_J
f-

(/)

Ql
Ol

"' [l_

"' l(l
tO

~
0
(/)

"' g>
Q_

Q;
g-
en
£
-~

(/)

~
~
tO
_J

I-
0
c:
0 ·u
~ a:
Ql
Ol

"' Q;

~

4000

3000

2000

1000

300%

250%

200%

150%

100%

50%

256-bzip2 TLB MISSES

10 20 30 40
Memory (MB)

50

No-Super --- -----
Super

60

Figure 3.19: 256-bzip2 TLB Misses on AMO

164-gzip 183-equake

TLB Miss Reductions

188-ammp

Benchmarks

256-bzip2 transpose

Figure 3.20: TLB Miss Reductions for all Benchmarks on AMO

54

55

Wall Clock Tim e Speedup

164-gzip 183-equake 188-am m p 256-bzip2 transpose

Benchmarks

Figure 3.21: Wall Clock Speedup for all Benchmarks on AMD

Example 1 Transpose
Require: Matrix m with dimensions y,x
Ensure: Matrix raimp is the transposition of m
1 ■ for i from 0 to y do
2: for j from 0 to £ do
3' m t m p [j] [i] < - m [i] \ j]

4 end for
5: end for

Platforms

Table 3.8 outlines the configurations of the systems used for testing.

56

Table 3.8: Platform Configurations

Vendor Intel AMD
Arch x86 x86_64

Processor Core 2 Duo Athlon 64 X2 Dual Core 4400+
Base Page Size 4KB 4KB
Superpage Size 4096KB 2048 / 4096KB

TLB Associativity 4-way 4-way
TLB Entries 256 512

Tools

The Performance Application Programming Interface (PAPI) was used

to collect performance metrics of each benchmark. This API provides access

from application programs to the hardware performance counters in the ma

chine via the Linux kernel module perfctr [5].

Methodology

Each benchmark trial consisted of two executions of the application with

a given data set. One execution was configured to run with standard pages

and the other utilized superpages. The results of several metrics from each

test were sampled using PAPI. The metrics sampled included TLB misses, L2

cache misses, wall clock time, and total clock cycles, with the number of TLB

misses being of foremost importance.

The results of the execution are recorded and pushed to a database

and the same benchmark is profiled with the next data set. In such a man

ner a comprehensive view of the TLB performance of the benchmark can be

established over a range of inputs. This facilitates the ability to identify the

point at which the number of TLB misses diverge between superpage and

non-superpage data allocations. This data, obtained over a cross section of

different benchmarks, provides the basis for defining and refining SPREAD as

defined in chapter 4.

The input datasets for the SPEC benchmarks, 164-gzip, 177-gcc, 183-

equake, 256-bzip2, and 188-ammp, were obtained from the SPEC reference

data sets. The input dataset for transpose is randomly generated for increas

ing step sizes of 3600 bytes. The step size was chosen to allow a fine granular

ity of testing without too much redundancy.

3.6.2 TLB Performance

Intel

57

Figure 3.11 shows the number of TLB misses for the transpose bench

mark with and without superpages. The domain is the range of input matrix

sizes from 50 • 50 to 300 • 300. The variation of TLB misses between the two

page sizes is relatively small until input dimension 130 • 130 at which point the

standard sized page execution incurs a marked number of TLB misses. This

marked divergence occurs at an input size of approximately 66KB. Figure 3.12

shows the wall clock time for the transpose benchmark. Over the entire do

main of inputs there is an improvement to the execution time when using su

perpages.

Figure 3.13 shows the number of TLB misses for the 164-gzip bench

mark. This benchmark is an ideal example of an application that reaps little or

58

no benefit from the advent of superpages. 164-gzip is characterized by linear

data access patterns, using a floating window as it passes over the data. The

cost of fragmentation in this benchmark is not offset by any gains in perfor

mance, and therefore superpage allocation should not be recommended.

Figure 3.14 shows the average reduction of TLB misses for each bench

mark. For example, the usage of superpages reduced the TLB misses of 188-

ammp by approximately 296%. Figure 3.15 shows the respective speedup in

clock time. The number of TLB misses is only a minuscule component of wall

clock time, however each benchmark that incurred a substantially reduced

number of TLB misses, around 50% or more, also experienced a speedup in

time.

AMD

Figure 3.16 shows the number of TLB misses for the transpose bench

mark with and without superpages. The behaviour of the benchmark is similar

to that observed on the Intel platform. While the TLB performance of trans

pose improves at inputs less than 100 • 100, the wall clock time does not be

come profitable until an input size of approximately 200 • 200, as can be seen

in figure 3.17. This suggests that the overhead and possible fragmentation in

troduced by the usage of superpages is not offset until the input is sufficiently

large and thus the TLB miss reduction is sufficiently large.

Figure 3.18 presents the number of TLB misses for the 164-gzip bench

mark. Unlike results on the Intel platform, this benchmark shows a remarkable

59

reduction of TLB misses with the use of superpages. The primary cause of this

anomaly is likely the smaller superpage size (2MB compared to 4MB). Bench

marks that experienced a large improvement with 4MB superpages showed

slightly more modest improvements with 2MB superpages, thus it is reason

able that benchmarks that incurred a penalty with 4M superpages would ex

perience a less severe penalty with 2MB superpages. In this case 164-gzip

actually demonstrated an improvement with the smaller superpage size, on the

same level as the improvements seen with the 256-bzip2 benchmark as seen

in figure 3.19

Figure 3.20 shows the average reduction of TLB misses for each bench

mark on the AMD platform. It is interesting to note that 164-gzip showed the

best improvement. This is primarily a result of particularly poor TLB perfor

mance on inputs less than 50 and greater than 60 where the number of misses

jumps to 10 times that of the superpage version. Other benchmarks, such as

transpose and 188-ammp are more significant in terms of application perfor

mance as can be seen in figure 3.21, mostly due to fact the 164-gzip and 256-

bzip2 involve heavy memory I/O traffic and 183-equake involves a tremendous

amount of floating point computation.

CHAPTER 4

A HEURISTIC FOR LOCALITY-CONCIOUS SUPERPAGE ALLOCATION

4.1 Overview

Indiscriminate allocation of superpages can have adverse effects. While

superpages can extend the reach of the TLB and reduce TLB misses, they

also increase the likelihood of fragmentation and increase the application foot

print. In many applications, the benefits of superpages offset the issue of frag

mentation, but in some applications, such as those with linear access patterns

or small data sets, the benefits are lost and performance can either fail to im

prove or, in the case of heavy fragmentation, degrade.

To successfully exploit superpages the compiler must be able to esti

mate the TLB demands of an application and determine if these demands will

benefit from the advent of superpages. The primary factors that contribute to

the TLB demands are the size of the working set and the locality of reference

of the program. The size of the working set may not be known until runtime,

but the data-reuse patterns are readily available to the compiler. The compiler

can estimate the demands on the TLB and judiciously allocate superpages by

utilizing data-locality analysis.

Presented is a heuristic based on established methods for estimating

60

61

cache misses as presented by Allen and Kennedy [1]. The heuristic estimates

the demands of the TLB and compares this against a configurable threshold to

determine when superpage allocation will be most profitable.

An extension to the heuristic demonstrates how it can be used to in

form the dynamic usage of superpages in smalloc, described in chapter 3.

This extension allows for a more accurate determination of the runtime thresh

old (__smartpage_threshold) employed when using a dynamically determined

page size. The chapter concludes with an analysis and evaluation of the heuris

tic that demonstrates its effectiveness in estimating the TLB demands of an

application.

4.2 Heuristic

The heuristic bases the decision to allocate superpages upon the re

lationship between the spread of the memory references and the threshold of

non-local references. The threshold represents a conservative estimation of

the number of pages needed to incur TLB conflicts. The threshold is defined

as the number of TLB entries divided by the associativity of the TLB, plus one,

and multiplied by the base page size. Mathematically, the threshold is calcu

lated as:

THRESHOLD
NO_OF_ENTRIES
ASSOCIATIVITY +

• BASE_PAGE_SIZE

The spread of memory references is determined by the following rules:

62

1. A memory reference that does not depend on the loop induction variable is

assigned a spread of 1.

2. A memory reference that strides over non-contiguous dimensions is as

signed a spread of I , where I is the number of the current loop iteration.

3. A memory reference that strides over contiguous dimensions with a step

size of s is assigned a spread of BASE ¡>A(lE SIZE

4. The spread of a reference that varies with the loop index is multiplied by the

current iteration count.

5. The spread of a reference that does not vary with the loop index is multi

plied by 1.

6. The total SPREAD is calculated by summing the memory references in the

innermost loop.

If the spread meets or exceeds the threshold, then the compiler will

choose to allocate superpages. This heuristic algorithm is presented as pseudo

code in algorithm 3.

4.3 Dynamic Extension

smalloc, described in chapter 3, provides a smartpage mode where the

usage of superpages is determined by the size of the working set. By default

smalloc uses a general default smartpage threshold, id est the point at which

superpages are likely to be profitable. The compiler heuristic presented in the

Algorithm 3 Compiler heuristic for allocating superpages

1. THRESHOLD+- (~°ssg~/J..:;~~~~s + 1) · BASE_PAGE_SIZE
2· for all loop-nests s in procedure do
3. for all memory references r in s do
4: I +- number of current loop iteration
5 if r depends on loop induction variable then
6 spreadr +- 1
7: else if r strides over non-contiguous dimensions then
8: spreadr +- I
9 else if r strides over contiguous dimensions then

1 o. s +- step size
11 ·. spread +- (Is)

r BASE PAGE SIZE
12· end if - -
13

14: if r varies with the loop index then
15 spreadr +- spreadr · I
16. else
17: spreadr +- spreadr · 1
18. end if
19. end for
20· end for
21:

22. SPREAD+- 0
23 for all memory references r do
24· SPREAD+- SPREAD+ spreadr
25 end for
26•

27. if SPREAD~ THRESHOLD then
28 Use superpages
29 else
30 Use base pages
31 end if

63

previous section uses static analysis to determine if the data-reuse patterns

are likely to benefit from the usage of superpages, but it can also be improved

to estimate the smartpage threshold.

The heuristic estimates the smartpage threshold by running multiple

passes of static analysis, in monotonically increasing increments. This yields

the following approach:

1. A value n is chosen such that for any loop nest s, n is sufficiently small that

when used as the upper boundary of each array, static analysis will re

turn false (use base pages).

2. An increment is chosen, N, such that N is both positive and sufficiently

large. A finer value of N will yield a more accurate smartpage threshold

at the cost of increased number of passes through each loop nest. In

general a course value of N is sufficient.

3. Beginning with loop sizes of n, perform heuristic analysis in increments of

N until the heuristic returns true (use superpages). Calculate ns ■ w,

where S is the total number of loops in the nest and w is the width of

the underlying data type to be allocated, and assign it to the smartpage

threshold. If the heuristic never returns true then use base pages.

The heuristic algorithm with dynamic threshold analysis is presented in

algorithm 4.

64

Algorithm 4 Compiler heuristic for allocating superpages and estimating a
dynamic working set threshold

1 n +--- sufficently small value
2 N +--- sufficently large value
3. upper _bound +--- maximal possible upper boundary of a loop
4 for n---+ upper _bound do
5 THRESHOLD+--- (Nfss~~/J/Jlv~~~s + 1) · BASE_PAGE_SIZE
6. for all loop-nests s in procedure do
1· for all memory references r in s do
8 I +--- number of current loop iteration
9 if r depends on loop induction variable then

10. spreadr +--- 1
11 else if r strides over non-contiguous dimensions then
12 spreadr +---I
13 else if r strides over contiguous dimensions then
14. s +--- step size

d (Is)
15 sprea r +--- BASE PAGE SIZE
16 end if - -

17

18 if r varies with the loop index then
19 spreadr +--- spreadr · I
20· else
21 spreadr +--- spreadr · 1
22 end if
23. end for
24. end for
25

26 SPREAD+---0
27 for all memory references r do
28 SPREAD+--- SPREAD+ spreadr
29· end for
30

31 if SPREAD~ THRESHOLD then
32 smartpage_threshold +--- n
33: Use superpages
34 return
35 end if
36 n+---n+N
37. end for
38 Use base pages

65

66

4.4 Analysis and Evaluation

4.4.1 The heuristic applied to a loop-nest that exhibits high TLB pressure

Given a configuration featuring 4KB pages and a 4-way associative TLB

with 256 entries, the heuristic is applied to example 1.

Example 1 Loop Nest 1
Require: Matrix m with dimensions 150,150
1 for % from 0 to 150 do
2 for j from 0 to 150 do
3 rntmphM m[i][j]
4 end for
5: end for

Reference m[i\\j\ depends on the loop induction variable and strides

over contiguous dimensions with a step size of one, thus the spread can be

calculated as:

150 %
spread[mv\ = 1 5 0 ^ ^

= 414.73

Reference mtmPi0l depends on the loop induction variable and strides over

non-contiguous dimensions, thus the spread can be calculated as:

150

S'pV&Cld̂ TTltmpjjil 150 'y ̂%
1=0

1698750

67

The total spread can be calculated as:

SPREAD = spread[ml3\ + spread[mtm,p̂

414.73 + 1698750

1699164.73

The threshold is defined as:

THRESHOLD = (
/ NO_OF_ENTRIES
V ASSOCIATIVITY

266240

+ 1 • BASE_PAGE_SIZE

Since 1699164.73 > 266240, the heuristic condition SPREAD >

THRESHOLD holds true and therefore superpages are allocated.

4.4.2 The heuristic applied to a loop-nest that exhibits low TLB pressure

Given a configuration featuring 4KB pages and a 4-way associative TLB

with 256 entries, the heuristic is applied to example 2.

Example 2 Loop Nest 2
Require: Matrix m with dimensions 300,300
1 for % from 1 to 300 do
2: for j from 1 to 300 do
3 m[i - l][j - 1] «- m[i - l][j - 1] + m[i\[j\
4 end for
5 end for

Reference m [i][j] depends on the loop induction variable and strides

over contiguous dimensions with a step size of one, thus the spread can be

calculated as:

68

300 %
spread[ml0] = 350

= 3306.88

Reference m[t - 1}[j - 1] depends on the loop induction variable and strides

over contiguous dimensions, thus the spread is the same as that for reference

m[i][j\. While there are two references to m[i - 1][j - 1], they are counted

as 1 reference group, since they are accessing the same memory location and

should incur no additional penalty.

The heuristic condition is evaluated as false and therefore superpages

are not allocated.

SPREAD < THRESHOLD

3306.88 + 3306.88 <
/256 \
(— + l j • 4096

6613.76 < 266240

4.4.3 The extended heuristic applied to a loop-nest that exhibits high TLB

pressure

Given a configuration featuring 4KB pages and a 4-way associative TLB

with 256 entries, the extended heuristic is applied to example 3.

69

Example 3 Loop Nest 3_____________
Require: Matrix m with dimensions n,n
1 ■ for % from 0 to n do
2: for j from 0 to n do
3 ' rntmphM <-
4 end for
5- end for

The analysis of example 1 demonstrates that a n of 150 is large enough

to warrant the usage of superpages. Given this information, we can select our

parameters as n = 30 and N = 30. In general the heuristic will not have any

information to assist in the selection of n and N, but for analytical purposes

using artificially selected values reduces the number of iterations.

30
SPREAD[n = 30] = 3 0 ^

4096
+ i

i=0
13953.4058

< 266240

60

SPREAD[n = m] = 6 0 ^
4096 + ^

i= 0

109826.8066

< 266240
90

SPREAD[n = 90] = 9 0]T -— + *
*=o 4096

368639.9780

> 266240

Since the SPREAD is over the THRESHOLD then superpages can be allo

cated and the smartpage threshold is 902 • w or 32400 if the data type is a

32-bit integer.

70

4.4.4 The extended heuristic applied to a loop-nest that exhibits low TLB

pressure

Given a configuration featuring 4KB pages and a 4-way associative TLB

with 256 entries, the extended heuristic is applied to example 4.

Example 4 Loop Nest 4
Require: Matrix m with dimensions n,n
1: for i from 1 to n do
2: for j from 1 to n do
3 m[% - l][j - 1] <- m[i - l][j - 1] + m[i][j]
4 end for
5 end for

The values of n and N used in this analysis are both 60.

60

SPREAD[n = 60} = 120
1=0

= 53.6133
4096

< 266240

120
SPREAD[n= 120] = 2 4 0 ^

i=0
425.3906

4096

< 266240

71

1020

SPREAD[n = 1020] = 2 0 4 0 ^
4096i=0

259337.9883

< 266240

1080

SPREAD[n = 1080] = 2160 £
4096i=0

307831.6406

> 266240

Since the SPREAD is over the THRESHOLD then superpages can be

allocated and the smartpage threshold is 10802 • w or 4665600 if the data type

is a 32-bit integer.

4.4.5 Evaluation

Figure 4.1 shows the number of TLB misses, at a logarithmic interval,

in relation to the array dimensions of loop nest 1 and 3. The values used in

the static analysis of loop nest 1 and the smartpage threshold derived in the

analysis of loop nest 3 are marked respectively at x-intercepts 90 and 150. At

the static analysis threshold the number of TLB misses incurred with super

pages is relatively constant while the base page version increased linearly.

The heuristic decision to allocate is justified and verified by the graph: At an

array size of 150 by 150 there is already a noticeable divergence between

base and superpages, a trend which is consistent in the long term behaviour

TL
B

Mi
ss
es

Loop Nests 1 and 3

Figure 4.1 : Nest 1 TLB performance

73

Loop Nests 2 and 4

Figure 4.2: Nest 2 TLB performance

of the loop nest. Dynamic analysis selects a value of 90 for the smartpage

threshold which also is in congruence with the presented results. The thresh

old is chosen at a point where both superpages are profitable and the long

term divergence between base and superpage is reasonably established.

Figure 4.2 shows the results of executing loop nests 2 and 4. Note this

graph, unlike the previous, is not presented on a logarithmic scale. The long

term TLB complexity of both versions, base pages and superpages, is 6log(n)

The static analysis threshold is at a point where the number of TLB misses in

curred by both types of pages is the same, thus the decision not to allocate

superpages is well justified. The dynamic heuristic analysis chooses a value

of 1080 as the smartpage threshold. While this value could reasonably be ad

74

justed ±100, the chosen threshold is a reasonable point at which superpages

have become profitable, albeit only slightly.

Analysis of the heuristic shows that it effectively estimates the TLB de

mands of an application. The chosen threshold is conservative and could be

adjust to allow less enthusiastic allocation of superpages, however it is suc

cessful in avoiding the worse case of superpages degrading performance.

Since the threshold can easily be adjusted the heuristic can be fine tuned to

meet the demands of any application or system.

CHAPTER 5

LEVERAGING SUPERPAGES FOR COMPILER OPTIMIZATIONS

5.1 Overview

The primary candidates for compiler optimizations that may benefit from

the usage of superpages are memory hierarchy optimizations. As discussed

in chapters 1 and 3, one requirement imposed upon superpages are that they

are allocated contiguously in memory. Since the majority of caches on modern

architecture are physically indexed the memory is not guaranteed to be con

tiguous. This limits the effectiveness of many memory hierarchy optimizations

since the compiler must either guess at the most likely mapping to cache lines

or pretend that memory is allocated contiguously.

Most memory hierarchy optimizations fall into the category of locality

optimizations which attempt to improve a programs locality of reference. One

such optimization is array padding. Array padding is an ideal beneficiary of

superpage allocation and is the focus of this chapter. A description of array

padding, a padding strategy, and experimental results are presented in the

following sections.

75

76

5.2 Array Padding

Array padding is a data layout transformation that aims to reduce the

number of cache conflict misses. A conflict miss is a cache miss that results

from a request for a recently evicted entry. In the most pathological case, termed

thrashing, the same set of entries may be repeatedly cached and evicted.

There is a point at which conflict misses cannot be avoided, however in most

cases they can be reduced by ensuring that sequentially accessed memory

references with poor locality are mapped to different cache lines. If two arrays

are accessed sequentially in a loop, such as In figure 5.1 (a), and they are both

mapped to the same cache line then a substantial number of conflict misses

may be incurred. Furthermore there will be little or no data reuse since ele

ments of each array will have to be re-fetched after eviction.

Array padding aims to force different arrays to be mapped to different

cache lines so that they can reside contemporaneously in cache. Roughly

speaking array padding can be subdivided into two categories: inter-array

padding and intra-array padding [2, 33, 42].

5.2.1 Inter-array Padding

Inter-array padding addresses the problem of cross interference be

tween array references. This occurs when two or more arrays are mapped

to the same cache line. Each reference from an array forces the eviction of

an element from another array. This is the type of interference experienced

in 5.1 (a). Inter-array padding aims to ameliorate cross interference by forcing

77

in t a [1024] ,
int b [1 024],
int c [1 024],
int d[1 024],

for (i = 0, i < 1024, i++)
a[i] = a [i] + b [i] * c [i] - d [i],

int

''vFCMOCfl

in t pad[x],
int b [1 024],
int pad[x],
int c[1 024],
int pad[x],
int d [1 024],

for i(i = 0, i < 1024, i++)
a[i] = a [i] + b [l] * C[l] - d [l] ,

(a) Array Cross Interference (b) Inter-array Padding

Figure 5.1: Inter-array padding applied to combat cross interference

each array to a different cache line. This is accomplished through the use of

a pad, or dummy variables that deliberately spaces apart the arrays so that

they are mapped to different cache lines. The amount of padding introduced

can vary but generally depends on the size of the cache, the number of cache

lines, the set associativity of the cache, and the size and access patterns of

application memory.

5.2.2 Intra-array Padding

int a[1 024][1 024],

for (i = 0 , i < 1024, i ++)
f o r (j = 0, j < 1024, j++)

for (k = 0, k < 1024, k++)
a [i] [j] = a [i] [j] + a [j] [k] - a [k] [i] ,

(a) Array Self Interference
int a[1 024][1024+PADDING],

f o r (i = 0 , i < 1 0 2 4 , i ++)
f o r (j = 0, j < 1024, j++)

f o r (k = 0, k < 1024, k++)
a [i] [j] = a [i] [j] + a [j] [k] - a [k] [i] ,

(b) Intra-array Padding

Figure 5.2: Intra-array padding applied to combat self interference

78

Intra-array padding addresses the concern of self interference between

array references. Instead of multiple arrays mapping to the same cache line,

multiple dimensions of a multi-dimensional array map to the same line. From

the perspective of the hardware inter-array padding and intra-array padding

are identical, however from the perspective of a high level language they are

semantically different. Figures 5.2(a) and 5.2(b) show how intra-array padding

can be employed to combat self interference.

Avoiding self interference is accomplished by adding a pad, or in this

case dummy array variables, to the leading dimension of an array. In C and C-

like languages this is the right-most dimension but in Fortran it is the left-most.

Similarly to inter-array padding, the amount of padding depends on a variety of

factors.

5.2.3 Superpage-aware Array Padding

Algorithm 5 Superpage-aware Array Padding

1 ° f f Set (a s Z Z S l t y + * : » S + X = l m e StZe (m°d l i n e SiZe))
2- total_mem <— 0
3. for all arrays a in program do
4- Select padding value for each array:
5 paddinga <— offset — (len(a) mod (offset + 1))
6- totaljm em totaljm em + (len(a) ■ sizeof (elemento) + paddmga)
7. end for
8- Allocate totaljmem bytes with smalloc

In general array padding is effective at reducing cache conflicts, how

ever the effectiveness can be limited and in some cases array padding may

79

Memory

Chache Lines

Figure 5.3: Array padding with base pages resulting in conflict

even increase the amount of cache conflict. Undoubtedly using randomly se

lected amounts of padding will result in random and unpredictable results,

however on physically indexed cache architectures even intelligently selected

padding values can result in undesirable behaviour. Since the contiguity of

memory is not guaranteed with base pages, the compiler must either guess

at the most likely mapping or assume contiguity. In some cases the use of

padding may encourage conflict misses since the mapping of memory to cache

is unknown at compile time. Figure 5.3 demonstrates how the use of inter

array padding to force alignment on page boundaries can result in the memory

references being mapped to the same cache line.

Superpages can increase the effectiveness of array padding and ensure

the profitability of padding (id est to completely eschew the chance of padding

increasing conflict). Since superpages are contiguous in memory, the mapping

80

of pages to cache is guaranteed to be predictable and the guess-work that tra

ditionally must be employed by the compiler is eliminated. The compiler, with

knowledge of superpage allocation, can select the optimal amount of padding

such that it forces arrays to be mapped to different cache lines.

Algorithm 5 describes a superpage-aware approach to array padding.

The algorithm considers only inter-array padding since intra-array padding can

be viewed as a derivative case of the former. Furthermore, since dynamically

allocated multi-dimensional arrays are generally allocated in many small incre

ments array padding is unlikely to be effective due to the unlikelihood that the

dynamic memory allocator will place the increments of memory contiguously

in memory. In order for intra-array padding to be effectively applied to dynam

ically allocated memory the space for the data structure must be allocated as

one large chunk, an approach identical to the presented strategy of inter-array

padding.

The array padding algorithm estimates the ideal amount of padding

based upon the set associativity, capacity, and line size of the L2 cache.

„ (capacity capacity , , , , ,offset — --------------------H x : ------------------ \- x = line size (mod line size)
\associativity asociativity

padding = offset — (array size mod (offset + 1))

Intel Given an associativity of 8, a capacity of 2MB, a line size of 64

81

bytes, and 64K arrays, the offset is calculated as:

offset = f ca?aa ty
\associativity

+ x :
capacity

asociativity
+ x = line size (mod line size)

/2048 2048 nA , ̂ rA.
(-------- 1- x : ----- - + x = 64 (mod 64)
V 8 8

(256 + 0 : 256 + 0 = 64 (mod 64))

= 256

The padding value is:

padding = offset — (array size mod (offset + 1))

= 256 - (65536 mod 257))

= 2 5 6 - 1

= 255

AMD Given an associativity of 16, a capacity of 512KB, a line size of 64

bytes, and 64K arrays, the offset and padding is calculated as:

(capacity capacity , , , , .
offset = --------------------1- x : ------------------ 1- x = line size (mod line size)

\associatwity asociativity
/512 512 \

= (—— + x : —— + x = 64 (mod 64))

= (32 + 32 : 32 + 32 = 64 (mod 64))

= 64

padding offset — (array size mod (offset + 1))

= 64 - (65536 mod 65))

= 6 4 -1 6

= 48

Calculating the ideal padding is not a trivial task and there has been a

great deal of research in determining the ideal amount of padding needed to

reduce conflict misses [2]. Some research has even employed genetic or other

artificial intelligence based techniques methods in determining padding val

ues [42]. Qasem demonstrates the importance of global array padding over

local array padding in reducing cache conflict [32]. Superpage-aware array

padding is no exception to these concerns, and as such the proposed ap

proach to selecting a padding value is simplistic when compared to other ap

proaches. However, as can be seen in section 5.3, the proposed approach to

superpage-aware padding is consistent in reducing the amount of cache con

flict. Even if a sub-optimal padding value is selected superpage-aware array

padding is still effective. Ultimately the contiguity of superpage allocated mem

ory not only increases the effectiveness of array padding but also simplifies the

work of the compiler.

82

83

Array Padding (17 32768 byte arrays)

Figure 5.4: Padding without superpages performing worse than no padding

5.3 Experimental Results

Figure 5.4 shows the performance of array padding on 17 32K arrays

using variable amounts of padding with both superpages and base pages.

The superpage version exhibits moderate fluctuation with different padding

values, however the highest number of conflict misses are incurred without

padding. The base page version, on the other hand, experiences increased

conflict misses on padding values of 23 and 40.

Figure 5.5 shows the performance of array padding on 17 64K arrays

with both base and superpages on the Intel platform. The amount of padding

ranges from none to 512 bytes. On all amounts of padding the superpage ver-

84

Array Padding (17 65536 byte arrays)

Figure 5.5: Array padding with and without superpages on Intel

sion incurs an order of magnitude less conflict misses. The complete impli

cation of these results are difficult to quantify due to the presence of foreign

factors that can effect the number of conflict misses. Other optimizations, such

as prefetching, can contribute to the reduction of conflict misses and in gen

eral all of the incurred misses cannot be attributed to array reference conflicts.

Nonetheless it is safe to conclude that superpages substantially increase the

effectiveness of array padding.

Figure 5.6 shows padding results on the AMD platform. The improve

ment exhibited with the usage of superpages is still significant, but not as large

as the improvements observed on the Intel platform. Again, there are a variety

of factors that contribute to these results, however the difference between plat-

85

Array Padding (17 65536 byte arrays)

Figure 5.6: Array padding with and without superpages on AMD

forms can primarily be attributed to the varying cache configurations. Note that

the difference in superpage size is unlikely to play a significant role in these

results. While a larger superpage may contribute to a general improvement in

conflict reduction, the size of a superpage does not have an important impact

on the effectiveness of array padding. Array padding exploits the contiguous

allocation of superpages and not the size.

CHAPTER 6

UTILIZING SUPERPAGES TO ESTIMATE HARDWARE PARAMETERS

Apart from reducing TLB conflicts and improving optimizations, super

pages also present an important application in the field of aumatic tuning. This

chapter presents a tool for estimating cache paramters by exploiting the alloca

tion of contigious physical memory provided by superpages.

6.1 A Tool for estimating L2 Cache Parameters

Algorithm 6 Measuring L2 Cache Parameters
1. Pick initial offset s
2: Pick maximum offset e
3 for i from s —► e do
4 Pick initial number of sweep regions t

5. Pick maximum number of sweep regions /
6: for j from i —> / do
7. Sweep through j regions at an offset of i simulantiously
8 Record cache misses m[i\[j]
9 end for

10. end for
11 ■ Identify exceptional values in m[i\ [j]
12 Offset o <— % : (Vra : im — *)
13- Region n (j - 1) : (Vm : j m = j)
14 Cache Associativity <- n
15- Cache Capacity n • o

86

87

Measuring L2 cache parameters, in addition to other hardware param

eters, is particularly useful for self-optimizing tools used in automatic tuning.

These tools require detailed information about hardware parameters to adapt

themselves to different architectures. On many platforms this information may

not be readily available to the tool and therefore a heuristic for estimating the

parameters must be employed. However, most heuristics are generally not ef

fective in the presence of physically indexed caches because of the uncertainty

regarding contiguous allocation of memory [46]. The usage of superpages

addresses this problem and a tool for estimating L2 cache parameters is pro

vided as an example.

The tool operates by generating a series of micro-benchmarks that si

multaneously sweep through multiple contiguous regions in the virtual address

space. The sweep regions are selected so that they are non-overlapping. The

number of sweep regions for each micro-benchmark is varied with different

starting locations and access strides so as to regulate the memory access pat

terns. The micro-benchmarks are executed and searched for a set of sweeps

that all map to the same cache line. A set of sweep regions that map to the

same cache line can be identified by an excessive increase in the number

of conflict misses. The minimum set of sweep regions that map to the same

cache line and subsequently thrash the cache determine the associativity of

the cache. Furthermore, once the associativity is determined the size of the

cache can be determined by multiplying the associativity with the size of the

offset used to control the access stride. Algorithm 6 demonstrates how the tool

88

estimates the L2 cache parameters. Table 6.1 outlines how the size and asso

ciativity can be derived. In order for this strategy to correctly estimate the L2

parameters all physical memory for the program must be contiguous.

Table 6.1 : L2 Cache Paramater Derivations
L2 Cache Parameter Derivation

Associativity Minimum number of sweep regions
Size Associativity • Offset Size

6.2 Experimental Results

Table 6.2: L2 Cache Paramaters

System L2 Cache Associativity L2 Cache Capacity
Intel Core 2 Duo Turing 16 4MB

Intel Core 2 Duo Forkbomb 8 2MB
AMD 64 16 512KB

6.2.1 Intel

Figure 6.1 shows the L2 cache misses for a set of micro-benchmarks

generated by the tool. Benchmark base 8 shows no observable change in the

number of L2 misses for any offset. Similarly super 8 shows little change in

the number of L2 misses. At an offset of 256 super 8 increases slightly but is

too small of a change to justify any conclusions. However super 9 shows a

89

Estimating L2 Cache Associativity
■ i-----------------------1------------------

Base 8
Super 8
Super 92 0 + 0 7

le + 07 -

8 0 + 0 6 -

6e + 06 -

4e + 06 -

2 G + 0 6 j if
-

»/ 1______________t___ ___ U ___ ; v • •___ Ll V v ;___L.J. . 7_______ 1______Ì __/ .V.__

128 256 384
Offset (KB)

Figure 6.1: Estimating L2 Parameters on Intel Core 2 Duo Forkbomb using
Superpages

staggering increase in L2 misses at an offset of 256. This increase suggests

that memory locations that are 256KB apart will land upon the same L2 cache

line. Since the number of sweep regions is 9 it is safe to conclude that the set

associativity of the L2 cache is 8. In general the associativity of the cache will

be one less then the number of sweep regions required to elicit a cache thrash

since it follows from the pigeon hole principle that if x mappings are supported

then x + 1 mappings will result in conflict. Given the offset and the associativity

the capacity of the L2 cache can be derived to be 2MB.

Figure 6.2 shows the L2 cache misses for a second Intel 2 Core Duo

machine. The cache configuration is different: The offset at which cache misses

occur is at 256KB intervals like before, however the miss increase does not

90

Estimating L2 Cache Associativity

Offset (KB)

Figure 6.2: Estimating L2 Parameters on Intel Core 2 Duo Turing Using Super
pages

Estimating L2 Cache Associativity

Figure 6.3: Estimating L2 Parameters on an AMD 64 using Superpages

91

occur until 17 simultaneous sweeps are performed. This indicates that the L2

cache associativity is 16 and the capacity is 4MB. Note that the L2 misses for

a benchmark with 17 sweep regions that does not use superpages does not

exhibit the expected behaviour and thus does not provide any information rel

evant for estimating the cache parameters. Only memory allocated contigu

ously, such as with superpages, can be used for estimating cache parameters

on physically indexed caches.

6.2.2 AMD

Figure 6.3 shows the L2 cache misses for a set of micro-benchmarks on

the AMD 64 platform. The super 17 benchmarks shows a marked increased in

cache misses at offsets of 32KB, therefore the associativity of the L2 cache is

16. Given an associativity of 16 and an offset of 32KB, the size of the L2 cache

can be derived as 16 x 32K B = 512K B . Compared to the results from the

Intel platforms, the AMD graphs generated by the tool are not as acutely ap

parent. Since the size of the AMD’s L2 cache is relatively small compared to

that of the Intel platforms the micro-benchmarks exhibit more irregular cache

misses. Nonetheless, super 17 incurs the most extreme spike in terms of num

ber of misses.

6.2.3 Summary

The presented tool for estimating L2 cache parameters using a suite of

micro-benchmarks was tested and verified on three different machines with dif-

92

ferent L2 cache configurations. Table 6.2 provides an overview of these cache

parameters. As previously noted, the ability to accurately estimate hardware

parameters is essential for automatic tuning. The usage of superpages allows

for hardware parameters that cannot be measured without a contiguous alloca

tion of memory, such as L2 cache, to be measured. This proves to be a useful

extension to self optimizing tools such as X-Ray [47].

CHAPTER 7

CONCLUSIONS

This thesis presented an overview of superpages from the perspective

of the compiler. After a suvey of related work (chapter 2), an in-depth overview

of the implementation of superpages was presented along with our own superpage-

aware compilation strategy. The implementation details of the strategy, includ

ing smalloc and the LLVM optimization superpass were discussed in depth

and experimental results were provided to validate the positive impact of su

perpages upon application performance in chapter 3.

Chapter 4 presented a heuristic for smart superpage allocation. This

heuristic was analysed by hand and correlated with experimental results. It

was concluded that the heuristic effectively estimated the TLB demands exhib

ited by a program.

Chapter 5 discussed leveraging superpages in compiler allocations.

An overview of how memory hierarchy optimizations can benefit from super

page allocated memory was presented and array padding was selected as a

case study and explored in depth. Chapter 6 discussed how superpages can

be used to estimate hardware parameters and demonstrated how L2 cache

parameters can be obtained.

93

94

This chapter will outline the contributions of this thesis and discuss di

rections for future work.

7.1 Contributions

(i) Compiler Driven Superpage Allocation The primary contribution of

this research is the advent of compiler driven superpage allocation. Previously

there has been no attempt to direct the allocation of superpages with the com

piler. While hardware and operating systems approaches logically follow from

the fact that superpages are implemented at a hardware and operating system

level, the compiler has access to the data-reuse patterns of the working set

which allows for more judicious superpage allocation. The primary contribu

tions are:

• smalloc, a superpage-aware memory allocator.

• superpass, an LLVM optimization pass that transforms applications so as

to take advantage of superpages.

• A heuristic for superpage allocation.

• Dynamically and statically determined superpage allocation.

(ii) Improved Compiler Optimizations The compiler has a lot to of

fer to superpage allocation, but equally as important is that which superpages

offer to the compiler. The contiguity of superpage allocated memory allows

95

optimizations designed to reduce conflict misses to be more effective. A strat

egy allowing for array padding, a memory hierarchy optimization aiming to re

duce cache conflict, to exploit superpage is presented. The effectiveness of

this strategy is demonstrated and evaluated. While array padding is the only

presented optimization, this research establishes the importance and validity

of leveraging superpages in code optimization. This research lays the ground

work for studying the interactions between superpages and the compiler and

how the compiler can profitably utilize awareness of superpages.

(iii) Estimated Hardware Parameters The application of superpages to

estimate hardware parameters is of particular importance to the field of auto

matic tuning. New and innovative microprocessor-based architectures are con

stantly being developed and with each new platform the necessary knowledge

required by software developers to port and optimize their software increases.

Automatic tuning alleviates the pressure placed upon developers by automat

ing the process of determining the optimal parameters for a system. Some

hardware parameters, such as L2 cache parameters, are difficult to correctly

estimate on machines with physically-indexed caches. We have demonstrated

how a suite of micro-benchmarks utilizing superpages can correctly estimate

L2 cache parameters on three different platforms.

7.2 Future Work

(i) Improvement to the memory manager One advantage of provid

ing a custom memory manager for use with superpages is that the underly

96

ing algorithms can be fine-tuned to minimize internal page fragmentation, the

primary disadvantage to superpages. Currently smalloc employs algorithms

to reduce fragmentation, however more advanced approaches could be ap

plied. In general there is room for many improvements to the memory manager

which are necessary to classify it as a production grade allocator which are not

in the scope of this research and thus were not addressed.

(ii) Implementation of the proposed heuristic for compiler driven

superpage allocation The effectiveness of the proposed heuristic was demon

strated in theory, however a working implementation is highly desirable. Pro

viding a working implementation will likely be a component of the author’s fu

ture research.

(iii) Implementation of compiler-driven superpage-aware array

padding The effectiveness of array padding with superpages was demon

strated through a series of experiments using padding applied by hand. Given

that it was determined that superpage-aware array padding is more effective

than traditional padding it is recommended that the described approach be im

plemented as a compiler optimization.

(iv) Research in further code optimization that may benefit from

superpages Array padding is just one memory hierarchy optimization. Other

optimizations that aim to reduce cache conflicts, such as array merging, loop

fusion, or tiling, may benefit from the superpages. In general, any aspect of the

compiler may be a candidate for study with superpages.

(v) Research in estimating hardware parameters and utilizing these

methods in automatic tuning Estimating L2 cache parameters is just one

example of how superpages can be employed in measuring hardware param

eters. There are likely other architectural parameters that could be more ac

curately measured with superpages. Additionally, this research only demon

strates the effectiveness of superpages in this field; further research is needed

to determine how best to apply the usage of superpage to existing automatic

tuning strategies.

BIBLOGRAPHY

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modem Architectures.
Morgan Kaufmann, 2002.

[2] D. F. Bacon, J.-H. Chow, D. ching R. Jug, K. Muthukumar, and V. Sarkar.
A compiler framework for restructuring data declarations to enhance
cache and tlb effectiveness. Proceedings CASCON ’94 ,1994.

[3] S. Bahadur, V. Kalyanakrishnan, and J. Westall. An empirical study of the
effects of careful page placement in linux. In ACM-SE 36: Proceedings
of the 36th annual Southeast regional conference, pages 241-250, New
York, NY, USA, 1998. ACM.

[4] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: A scalable
memory allocator for multithreaded applications. In Proceedings of the
Tenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), 2000.

[5] S. Browne, J. Dongarra, N. Garner, G. HO, and P. Mucci. A portable pro
gramming interface for performance evaluation on modern processors.
International Journal of High Performance Computing Applications, 14(3),
2000.

[6] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and M. S. Lam.
Compiler-directed page coloring for multiprocessors. SIGOPS Oper. Syst.
Rev., 30(5):244-255, 1996.

[7] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi.
Nonlinear array layouts for hierarchical memory systems. ICS ’99 ,1999.

[8] M. Corporation. Creating a file mapping using large pages.
http://msdn.microsoft.com/en-us/library/aa366543(VS.85).aspx.

[9] A. Cox and O. Crameri. Transparent support for superpages in the
freebsd kernel. Quarterly Report 2, The FreeBSD Project, 2005.

98

http://msdn.microsoft.com/en-us/library/aa366543(VS.85).aspx

99

[10] J. Evans. A scalable concurrent malloc(3) implementation for freebsd,
2006.

[11] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. Mckee. Reevaluat
ing online superpage promotion with hardware support. In In Proceedings
of the Seventh International Symposium on High Performance Computer
Architecture, pages 63-72, 2001.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, 1979.

[13] D. Gibson, A. Litke, etal. libhugetlbfs. http://libhugetlbfs.ozlabs.org.

[14] K. Gopinath and A. R Bhutkar. Program analysis for page size selection.
IEEE, 1996.

[15] M. Gorman and P. Healy. Supporting superpage allocation without ad
ditional hardware support. In ISMM ’08: Proceedings of the 7th interna
tional symposium on Memory management, pages 41-50, New York, NY,
USA, 2008. ACM.

[16] L. R. Group. The llvm compiler infrastructure project, June 2009.

[17] R. Harrison and I. Weber. Molecular mechanics analysis of drug resistant
mutants of hiv protease. Protein Engineering, 12,1999.

[18] J. L. Hennessy and D. A. Patterson. Computer Architecture. Morgan
Kaufmann, 2003.

[19] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam. Compiler-
directed physical address generation for reducing dtlb power. IEEE, 2004.

[20] P.-H. Kamp. Malloc(3) revisited. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, New Orleans, Louisana, USA,
1998. USENIX Association.

[21] G. Kandiraju and A. Sivasubramaniam. Characterizing the d-tlb behavoir
of spec cpu2000 benchmarks. Proceedings of the ACM SGIMETRICS
Conference on Measurement and Modeling of Computer Systems, 2002.

[22] M. Kerrisk and Contributors. Linux programmer’s manual: malloc(3), Mar
2008.

http://libhugetlbfs.ozlabs.org

100

[23] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Pro
gram Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[24] D. Lea. A memory allocator, http://gee.cs.oswego.edu/dl/html/malloc.html,
2000.

[25] H. J. Lu, K. Doshi, R. Seth, and J. Tran. Using hugetlbfs for mapping ap
plication text regions. In Proceeding of the Ottawa Linux Symposium,
2006.

[26] W. L. Lynch, B. K. Bray, and M. J. Flynn. The effect of page allocation
on caches. Proceedings of the 25th Annual International Symposium on
Microarchitecture, 1992.

[27] M. Mall. Aix support for large pages. Technical report, Sun BluePrints
Online, April 2002.

[28] G. Marin and J. Mellor-Crummey. Pinpointing and exploiting opportuni
ties for enhancing data reuse. In In Proceedings of the 2008 IEEE Inter
national Symposium on Performance Analysis of Systems and Software
(ISPASS’08), 2008.

[29] R. McDougall. Supporting multiple page sizes in the Solaris operating
system. Technical report, Sun BluePrints Online, March 2004.

[30] N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante. Quantifying the multi
level nature of tiling interactions. International Journal of Parallel Pro
gramming, 26(5), 1998.

[31] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, transparent op
erating system support for superpages. Fifth Symposium on Operating
Systems Design and Implementation, 2002.

[32] A. Qasem. Automatic Tuning of Scientific Applications. PhD thesis, Dept,
of Computer Science, Rice University, July 2007.

[33] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict
misses. Proceedings of the 1998 ACM SIGPLAN Conference on Pro
gramming Language Design and Implementation, 1998.

http://gee.cs.oswego.edu/dl/html/malloc.html

[34] N. Shimizu and K. Takatori. A transparent linux super page kernel for
alpha, spare 64 and ia32 - reducing tlb misses of applications.

101

[35] A. J. Smith and R. H. Saavedra. Measuring cache and tlb perfor
mance and their effect on benchmark runtimes. IEEE Trans. Comput.,
44(10):1223-1235,1995.

[36] R Snyder, tmpfs: A virtual memory file system. In In Proceedings of the
Autumn 1990 European UNIX UsersE Group Conference, pages 241-
248, 1990.

[37] M. Talluri and M. D. Hill. Surpassing the tlb performance of superpages
with less operating system support. In ASPLOS-VI: Proceedings of the
sixth international conference on Architectural support for programming
languages and operating systems, pages 171-182, New York, NY, USA,
1994. ACM.

[38] A. S. Tanenbaum and A. S. Woodhull. Operating Systems Design and
Implementation. Pearson Prentice Hall, 2006.

[39] O. Temam, C. Fricker, and W. Jalby. Impact of cache interferences on
numerical dense loop nests. Proceedings of the IEEE, 81(8), 1993.

[40] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena.
1994.

[41] L. Torvalds, W. Irwin, et al. hugetlbpage.txt. Linux Kernel in-tree docu
mentation, version 2.6.25.

[42] X. Vera, J. Llosa, and A. González. Near-optimal padding for removing
conflict misses. 2002.

[43] C. Whaley and J. Dongarra. Automatically tuned linear algebra software.
In Proceedings of SC’98: High Performance Networking and Computing,
Orlando, FL, Nov. 1998.

[44] T. Wildman. Linux superpages.
http://sourceforge.net/projects/linuxsuperpages, October 2008.

[45] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. In International Workshop on
Memory Management, September 1995.

http://sourceforge.net/projects/linuxsuperpages

102

[46] K. Yotov, K. Fingali, and P. Stodghill. X-ray: A tool for automatic measure
ment of hardware parameters. In In Proceedings of the 2nd International
Conference on Quantitative Evaluation of Systems, 2005.

[47] K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic measure
ment of hardware parameters. 2005.

VITA

Josh Magee was born in Stavanger, Norway on 1980 August 18th. He

received his Bachelor of Arts from The University of Texas at Austin in May of

2003.

Permanent Address: 431 Britni Loop

Kyle, Texas 78640

This thesis was typeset with |aTeX 2£1 by the author.

1 I5TeX2£ is an extension of I5TeX. IfT^X is a collection of macros for T^X T^X is a trademark
of the American Mathematical Society The macros used in formatting this thesis were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and
extended by Bert Kay, James A. Bednar, and Ayman El-Khashab. The macros were adapted
for use at Texas State Umversity-San Marcos by Josh Magee

