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ABSTRACT 

A RECALIBRATED CHRONOLOGICAL FRAMEWORK FOR TEXAS  

ARCHAEOLOGY–GEOARCHAEOLOGY 

By 

Ken Lawrence, B. A. 

Texas State University-San Marcos 

December 2010 

SUPERVISING PROFESSOR: C. Britt Bousman 

 

Radiocarbon assays from select archaeological-geoarchaeological research 

projects within Texas river basins were compiled and recalibrated using the same 

calibration curve (i.e., INTCAL09).  Chronometric data from investigations within the 

Nueces, San Antonio, Colorado, Brazos, and Trinity River basins were uniformly 

calibrated to construct a consistent chronological framework. Once calibrated, the 

analogous chronometric data were then used to compare drainage basins, 

paleoenvironmental data, and cultural chronologies across Texas and the region.  These 

comparisons revealed four periods (Synchronous Events I–IV) in the Holocene that 

occurred simultaneously within all of the examined drainage basins.  Synchronous Event 

I dating to 8,750–8,250 cal yr BP (~6800–6300 BC), Synchronous Event II dating to 

7,000–6,250 cal yr BP (~5050–4300 BC), and Synchronous Event III 5,250–5,000 cal yr 

BP (~3300–3050 BC) are apparent periods of instability.  While Synchronous Event IV 

occurs at 1,000–750 cal yr BP (~AD 950–1200) represents a period of stability. These 

events may be attributed to previously identified widespread climatic changes and 

seemingly coincide with several transitions in the archaeological record.   
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CHAPTER 1 

Introduction-Setting 
 

This study regards the construction of a recalibrated radiocarbon baseline from 

select archaeological-geoarchaeological research projects in Texas.  The compilation of 

the chronometric data was the result of an extensive archival review that focused on 

previous research from sites containing deep, intact alluvial stratigraphy, which 

encompassed the Late Pleistocene–Holocene. Subsequently, select radiocarbon assays 

from previous investigations were compiled and recalibrated using the same calibration 

curve (i.e., INTCAL09).  The uniform calibration of the radiocarbon assays provided a 

consistent chronological framework that can be used to compare drainage basins, 

paleoenvironmental data, and cultural chronologies across Texas.   

           There are several interrelated research objectives for the current study.  The primary 
 
objective is to recalibrate radiocarbon data from previous archaeological-
 
geoarchaeological investigations within select Texas drainage basins (Figure 1.1).  The 
 
recalibration of these data will provide a chronological baseline for the comparison of 
 
Texas drainage basins and cultural components contained therein.  Further, this 
 
chronological baseline will enable the evaluation of the depositional histories of Texas 
 
drainage basins for characterizing the integrity of each basin at various times. This study
 
also compares the depositional histories of the selected drainages within a basin to each
 
other (i.e., intra-basinal) and with other drainages in Texas and the region (i.e., inter- 

1
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Figure 1.1 Overview of Texas River Basins with Examined Study Areas. 
 1) Woodrow Heard, 2) Choke Canyon Reservoir, 3) Jonas Terrace, 4) Richard Beene, 5) 
Copano Bay, 6) San Angelo, 7) Lower Extent Colorado River, 8) Lubbock Lake, 9) Fort 
Hood, 10) A&M-College Station, and 11) Upper Trinity River Basin. 
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basinal) in an effort to discern similarities.  Observed patterns within this study are then 

correlated with external mechanisms (e.g., climate and eustatic effects), which may have 

contributed to these occurrences.  Finally, the depositional patterns of the basins are 

compared with the archaeological record in Texas to demonstrate a correlation.  

This chapter includes a review of the geology of the selected Texas drainage 

basins.  Chapter 2 reviews of the Methods and Background for this study. Subsequent to 

this is a discussion of the selected drainage basins of this study, beginning with the 

Nueces River Basin (Chapter 3), the Guadalupe-San Antonio River basin (Chapter 4), the 

Colorado River basin (Chapter 5), the Brazos River basin (Chapter 6), and concludes 

with the Trinity River basin (Chapter 7).  Each drainage basin chapter briefly reviews 

previous investigations conducted within the basin. 

 The radiocarbon datasets selected for recalibration because they satisfied three 

primary criteria (assays of charcoal, assays ‘corrected’ for isotopic fractionation, and 

those assays in good stratigraphic context).  Additionally, selected datasets have been 

utilized by other researchers for characterizing the depositional and/or 

paleoenvironmental history of these study areas.  These data from widely accepted 

studies were recalibrated in part to demonstrate the implications for recalibrating 

chronometric data.  There are numerous previous investigations with chronometric data 

scattered within drainage basins that were not selected for recalibration.  Those datasets 

were omitted because either they 1) did not meet the predefined criteria, 2) had been 

recently calibrated, 3) had a sparse chronometric dataset, or 4) a combination of these 

factors.  Several of the recalibrated datasets within this study do suffer from some of 

these concerns, but were included out of necessity.      
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 Chapter 8 consolidates and reviews the results from all of the basins and 

discusses the identification of geomorphic patterns and possible correlations derived from 

the calibrated chronological baseline.  Chapter 9 summarizes the conclusions from the 

recalibrated basins and interpretations that developed during its course, as well as 

reviewing several study areas and topics for future research and investigation.   

Geology 

 With some exceptions, the surface geology of the selected drainage basins in 

Texas typically cross progressively younger geological deposits as they trend toward 

their terminus at the Gulf of Mexico.  The geology of the High Plains region, which 

contains the headwaters of the Colorado and Brazos River basins include erosionally 

softer sedimentary Tertiary and Quaternary deposits before descending into significantly 

older Lower Cretaceous (Colorado River basin) or Permian deposits (Brazos River basin) 

in North-central Texas (Spearing 1991).   The sedimentary Permian-aged deposits 

crossed by the Brazos River basin and portions of the Colorado River basin include soft 

beds of shale, sandstone, and gypsum.  The Trinity River basin joins these basins as they 

cross lower and upper Cretaceous-aged deposits of limestone, sandstone, marl, and shale 

(Ferring 2001; Spearing 1991; Williams 2004).  The Colorado and Brazos River basins 

enter into the Edwards Plateau region while the Trinity River basin exits the Cretaceous-

age surface geology and enters Paleocene deposits of fine grained mixed clastic including 

clay, silt, and sand (USGS 2010).  Within the Edwards Plateau, the Brazos and Colorado 

River basins are joined by the headwaters of the Guadalupe-San Antonio and Nueces 

River basins. The southern and eastern edges of the Edwards Plateau are indicated by the 

Balcones escarpment formed by a fault zone (Spearing 1991).  Uplift along the Balcones 
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Fault has subsequently caused the edges of the Edwards Plateau to erode away along 

waterways that form flat-topped hills with stair-stepped tiers clearly demarcating its 

separation from the Coastal Plains.   Below the Cretaceous age geology of the Plateau, 

the Colorado, Brazos, Guadalupe-San Antonio, and Nueces River basins enter the broad 

Tertiary and Quaternary age deposits of the Coastal Plains.  The nearly level Coastal 

Plains consist of progressively younger beds from the Tertiary and Quaternary composed 

of sandstone, siltstone, and mudstone, while the drainages throughout the basin largely 

contain Holocene age deposits of clay, silt, sand, and gravel.   

 The implications of the respective geology for each of the basins regard the 

development of their channels.  Notably, Ferring (1994:150, 2001) argues that the 

underlying bedrock lithology influences the Trinity River basin.  Specifically, the 

resilience of the surface geology to erosion affects the evolution of the upper basin 

landforms and consequently the vegetation.  The limestone bedrock in the western 

portion of the Trinity River basin erodes into calcareous soil supporting a prairie 

environment while bedrock composed of noncarbonate deposits (e.g., sandstone and 

shale) erode into non-calcareous soils that supports a mixed forest environment (Ferring 

1994:150).  A corollary of this is the vegetation of a region influences the rate of erosion 

and sediment budget for the drainage (Figure 1.2).  Ferring (1994:150) proposes that 

areas with non-calcareous soils are more susceptible to erosion with the implication being 

possibly poor conditions for the preservation of cultural deposits.  Similarly, the drainage 

basins that cross the Edwards Plateau, in particular the Colorado River basin, cross 

limestone of varying resistance, thin marls, shale, and chalk (Abbott 1994:359–360). 
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Figure 1.2 Overview of Natural Regions of Texas: 1) Piney Woods, 2) Oak Woods & 
Prairies, 3) Blackland Prairie, 4) Gulf Coast Prairies & Marshes, 5) Coastal Sand Plain, 6) 
South Texas Brush Country, 7) Edwards Plateau, 8) Llano Uplift, 9) Rolling Plains, 10) 
High Plains, 11) Trans Pecos, and 12) Marine Environment (adapted from TPWD 2009). 
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    Once the drainage basins enter the Coastal Plain, the deposits become 

progressively younger and composed of sandstone, siltstone, and mudstone while the 

drainages throughout the basins largely contains localized deposits of Holocene age clay, 

silt, sand, and gravel.  Simply put, as the drainage basins transition from the more 

resistant limestone to the less resilient bedrock lithology of the nearly level Coastal 

Plains, the drainages convert from smaller bedrock incised channels with low-moderate 

sinuousity to larger floodplain channels with high sinuosity (Thoms and Mandel 2007).  

Thus, the lower drainage basins have higher potential for well-preserved, stratigraphically 

isolated cultural deposits. Consequently, the quantity and integrity of alluvial deposits 

within a drainage largely depends upon the portion of a basin (e.g., upper, middle, or 

lower extent) within which it is located. 

 



  

 
 

 
CHAPTER 2 

Methods and Principles 
 

Radiocarbon Research 

Previous researchers have expertly and thoroughly addressed the history and 

application of radiocarbon analysis (e.g., Libby 1955; Lowe and Walker 1997; Taylor 

1987, 1997, 2009).  Briefly however, few discoveries have had such a profound impact 

on archaeology as that of the process of radiocarbon (14C) dating (Ramsey 2008:249).  

Since radiocarbon’s discovery by Willard Libby in the late 1940s, researchers could now 

scarcely imagine conducting archaeological research without it (Bowman 1990; Huntley 

1985; Libby 1955; Taylor 1987, 1997, 2009).  The introduction of radiocarbon analyses 

provided absolute dates for archaeological deposits in contrast to the gross approximation 

of relative dating from methods like stratigraphy.  A chronological framework could now 

be constructed with a foundation accepted by almost all researchers.  Further, the 

temporal information derived from radiocarbon analysis allowed comparisons to other 

sites, regions, or countries.  Whereas, the relative dating supplied by stratigraphic 

provenience was only applicable to an immediate area or region.  The ramifications of the 

process on the field of archaeology were substantial and widespread.     

There are two analysis methods for the measurement of 14C, the original 

conventional method and the more recent Accelerator Mass Spectrometry (AMS) 

(Bowman 1990:12; Lowe and Walker 1997:241).  At its simplest, the conventional 

method consists of counting the remaining electrons of a weighted sample to determine 

8
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the 14C rate of emission (Bowman 1990:12).  By contrast, the AMS method 

‘accelerates’ particles in a sample in order to compare the proportion of 14C atoms to the 

atoms identified in the 13C and 12C in the sample (Bowman 1990:12; Lowe and Walker 

1997:241).  Both methods effectively provide a similar output, which (most importantly) 

can be converted to a chronological measurement.  In this study, a predominance of the 

selected samples utilized conventional methods and a distinction is made when AMS 

methods were used. 

The principle behind radiocarbon dating is that one of the isotopes of carbon 

(14C), a naturally occurring element in all living organisms, has a prolonged rate of decay 

that can be measured (Banning 2000; Bowman 1990; Christen 1994; Hedman 2007; 

Libby 1955).   Libby determined that once an organism dies its remains stop 

accumulating 14C and the radioactive decay of 14C could be determined, which he 

calculated had a half-life of 5568 + 3 0 years (Banning 2000; Bowman 1990; Libby 

1955).  Although, subsequent research has refined the 14C half-life to be 5730 + 30 years, 

laboratories continue to use Libby’s calculation (e.g., 5568 + 30 years) to prevent 

confusion (Banning 2000; Bowman 1990; Christen 1994; Libby 1955; Lowe and Walker 

1997; Stuiver and Polach 1977).  One of Libby’s assumptions was that a constant amount 

of 14C has entered the atmosphere throughout time and that this exchange has been evenly 

distributed (Christen 1994; Taylor 1987, 1997, 2009).  However, researchers have since 

determined that the amount of 14C has extensively fluctuated globally and throughout 

time.  To account for these atmospheric 14C variations (sometimes called the de Vries 

effect) among other key assumptions of Libby’s determined to be incorrect, a suite of 

operating parameters were adopted (Stuiver and Polach 1977).  Some of the parameters 
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include researchers using the aforementioned 5568 + 30 year half-life, using A. D. 1950 

as the beginning point of before present (BP), and a recognition of isotopic fractionation 

effects whereby 14C samples must be ‘normalized’ to a baseline of δ 13C value of -25.00/00 

(Hua 2009; Mook and Waterbolk 1985; Stuiver and Polach 1977; Taylor 1997:67–68).  

In short, a system of calibration must be implemented to identify the 14C discrepancies in 

order to use them in a chronological application (Ramsey 2008:260).    

  Another common error with the 14C dating process is the misinterpretation of the 

results by researchers (Banning 2000).  One often-occurring mistake is equating of 14C 

result with a calendar age by archaeological researchers. The 14C result is not a calendar 

date, but rather, a ratio of isotopes (Bartlein et al. 1995; Blockley et al. 2007; McCormac 

and Baillie 1993; Lowe and Walker 1997:243; Mock and Bartlein 1995; Ramsey 2008, 

2009:337; Stuiver and Suess 1966). When this disparity occurs, the researcher often 

rejects, misuses, and/or incorrectly reports the results, which may lead to a 

misinterpretation that cascades throughout their research.  Considering that the use and 

reporting of 14C results (calibrated and conventional) differ throughout North American 

and European journals, it is small wonder that these errors and misconceptions occur 

(Taylor 1997:68–69).   

The incorporation of dendrochronology (tree-ring dating) with radiocarbon 

analysis has been the most effective calibration method, which has been an instrument of 

calibration has only occurred since the late 1950s (Taylor 1997).  One method of this 

process uses the known age provided by tree rings and then processes them through 

radiocarbon analysis typically dating the tree rings in decadal or bidecadel year 

increments (Lowe and Walker 1997; Nash 1999; Taylor 1997; Walker 2005).  The result 
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of such analyses from around the world has been the refinement and extension of the 

calibration curve (Klein et al. 1982). Although researchers have identified these 

atmospheric variations, they have also determined that the extent of the discrepancies is 

more widespread and occasionally more pronounced than previously recognized.   

This 14C calibration curve is continually being supplemented and refined from 

collected data and since 1981 published in various journals (e.g., Radiocarbon) and on 

the internet (Banning 2000:268). One particular group, the IntCal Working Group (IWG), 

comprised of international scientists from a variety of disciplines, is developing an 

internationally agreed-upon calibration curve (Blackwell and Buck 2008:227).  This 

international curve (IntCal) is frequently updated and presented for the use of researchers 

(e.g., Reimer et al. 2009). Recent calibration curves have been produced in 1998 

(IntCal98), 2004 (IntCal04), and most recently in 2009 (IntCal09).  Of primary relevance, 

with the introduction of each of these calibration curves, the radiocarbon datasets that had 

been previously calibrated using earlier calibration curves (e.g., IntCal98) are not fully 

comparable with the most recent calibration curve.  Consequently, the 14C data that had 

been previously calibrated needs ‘adjustment’, sometimes significantly to be correlated 

with more recent 14C data.  The most dramatic alterations to 14C data regard those assays 

that date to roughly 7,000 14C BP or older, where calibration data previously has been 

more sparse.    

Due to these abundant deviations of the 14C fluctuations, numerous techniques 

have been developed for the calibration, interpretation, and presentation of the results 

(e.g., Acabado 2009; Blackwell et al. 2006; McCormac et al. 1993; Michael and Klein 

1979; Ralph et al. 1973; Steier et al. 2001; Talma and Vogel 1993; Taylor et al. 1996; 
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Wohlfarth 1996).  One process includes calibration software (e.g., OxCal, Bcal, and 

Calib), which interprets the conventional 14C data with a probability distribution 

(Banning 2000; Ramsey 1995, 1998, 2001, 2008, 2009).  In essence, the calibration 

software plots the 14C dating results onto the calibration curve and then characterizes the 

probability of the interpreted outcome.  There are more than a half dozen software 

packages, but the one used for this study is OxCal Version 4.1.6, which can incorporate 

Bayesian statistics into the characterization of the dating results. 

Bayesian Statistics 

Broadly defined, Bayesian statistics enables a researcher to incorporate data from 

the calibration curve with new data (e.g., 14C results) as well as accounting for prior 

information (e.g., stratigraphy) to suggest the most probable outcome (Bayliss and 

Ramsey 2004; Blackwell and Buck 2008; Buck et al. 1991; Buck et al. 1992; Buck et al. 

1994; Buck et al. 1996, Buck et al. 2004; Buck 2004; Christen 1994; Heaton et al. 2009; 

Ramsey 2009; Sharon 2001).  The technique uses Baye’s theorem that expresses the 

uncertainty of an event or set of parameters occurring before and subsequent to the results 

of an analysis (Buck 2004; Buck et al. 1996; Christen 1994).  Put another way, the 

Bayesian analysis of 14C calibration data considers all possibilities of the outcome (prior) 

with the measured data (likelihood), and then determines the probability of those results 

occurring (Ramsey 2009).  A prior probability is inferred from relative dates (e.g., 

stratigraphy) and then compared with the likelihood probability that is interpreted from 

the absolute dates (e.g., 14C dates), which culminates in the determination of the posterior 

probability.   

When comparing multiple events simultaneously, the large number of individual 
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combinations that are considered for each outcome (iteration) can become infinite.   To 

aid in these analyses by calibration software, a sampling algorithm such as the 

Metropolis-Hastings or equivalent is typically used (Ramsey 2009).  Metropolis-Hastings 

is an algorithm of the Markov chain Monte Carlo (MCMC) method, which randomly 

examines each event across a defined distribution gradually increasing the confidence of 

the result (Breyer 2009; Heaton et al. 2009; Ramsey 2009).  Further, the implementation 

of MCMC allows for the inclusion of the uncertainty of multiple factors that can allow 

for the comparison of points as well as their deviations on the curve (Buck and Blackwell 

2004:1101; Everitt 2002; Upton and Cook 2006). 

In summary, the analysis and interpretation of 14C results requires calibration due 

to extensive atmospheric 14C variations that have been recognized.  The calibration of the 

14C dates, whether individually or in multiple sets, are plotted on an internationally 

agreed upon calibration curve (currently IntCal09), which is continually updated and 

periodically published.  Due to these refinements, the results of previous 14C analyses, 

even though calibrated, require adjustment.  In addition, numerous software packages are 

used for the calibration of the 14C results that use some form of Bayesian statistics to 

characterize the results most accurately.  For the calibration and comparison of multiple 

events, the Bayesian analysis commonly utilizes MCMC sampling algorithms (e.g., 

Gibbs Sampler and Metropolis-Hastings) for the most appropriate outcome (Ramsey 

2009).      

Methods 

Several additional concepts and definitions warrant discussion and clarification.  

A brief review of relevant components pertaining to this study follows and, when 
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appropriate, a more detailed discussion is provided in later chapters.  There were three 

main criteria used for selecting the radiocarbon assays for this recalibration study.  

Namely, 1) assays of charcoal were given priority over other dated materials; 2) samples 

that have been previously ‘corrected’ for isotopic fractionation, and finally; 3) datasets 

composed of samples in good stratigraphic context.  

Previous investigators have noted that bulk humate (both sediment and soil) tends 

to date inconsistently, sometimes drastically older (approximately 1,000–1,500 years) 

than comparable charcoal samples (Abbott 1994:375; Fowler et al. 1986; Grimm et al. 

2009; Mandel et al. 2007:50; Matthews 1985; Martin and Johnson 1994; Nordt 1992:9–

10; Wang et al. 1996).  One reason proposed for this phenomenon is attributed to mean 

residence time (MRT) of the soil sample.  Simply put, the MRT of the bulk humate is a 

weighted average of the organic components within the sample (Lowe and Walker 1997: 

247–248; Schaetzl and Anderson 2005).  Thus, any radiocarbon analyses of bulk humate 

samples may encompass a suite of organic matter that could provide an imprecise 

measurement beyond use.  For this study, bulk humate samples from previous 

investigations have been avoided as much as possible.  Only when charcoal samples were 

not available for an important allostratigraphic unit (e.g., Jackson alluvium in Fort Hood) 

were bulk humate samples used.  Although, these data from bulk humate samples are 

included in summary table they have not been included in recalibration exercise unless 

essential. 

Radiocarbon years (14C) are not calendar years, but rather a measurement of 

remaining 14C isotopes (McCormac and Baillie 1993; Lowe and Walker 1997:243; 

Ramsey 2009:337; Stuiver and Suess 1966; Taylor 1997:68).  Thus, the 14C years must be 
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converted to a calendrical format (i.e., calibrated) (Mook and Waterbolk 1985:20; Van 

der Plicht and Hogg 2006:238).  Regarding the issue of isotopic fractionation (i.e., δ 13C 

value of -25.00/00), all samples selected for this study have been adjusted for fractionation 

by the initial investigators and represent the ‘corrected’ value.  Similarly, several assays 

reviewed and calibrated within this study were derived from marine shell.  Researchers 

have long recognized a discrepancy between radiocarbon dates from terrestrial samples 

and shell from a marine environment. This difference (reservoir effect) differs by as 

much as 400 radiocarbon years from their terrestrial equivalent and must be corrected 

(Stuiver and Braziunas 1993).  Those shell assays reviewed from previous investigations 

for this study were not corrected or undetermined to have been corrected for this reservoir 

effect.  Likewise, the current study did not correct for the reservoir effect when 

calibrating shell assays.  This study has also adopted the nomenclature of Nordt (1992) 

and the journal American Antiquity for distinguishing between uncalibrated radiocarbon 

and calibrated radiocarbon results.   Specifically, in this study uncalibrated radiocarbon 

years are reported as ‘14C yr BP’ while calibrated radiocarbon samples are indicated as 

‘cal yr BP’.     

Regarding the third criteria of context, previous investigations that had conducted 

extensive radiocarbon analyses of depositional stratigraphy (e.g., allostratigraphic units) 

were almost exclusively selected.  The term allostratigraphic unit used herein follows the 

definition indicated by the North American Commission on Stratigraphic Nomenclature 

(NACSN).  Briefly, this refers to a mappable body of sedimentary rock bounded by a 

discontinuity (NACSN 2005:1578).  In this study the use of allostratigraphic unit is 

appropriate because it provides a recognizable system for characterizing fluvial deposits 
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of previous investigations reviewed here (Jacobson et al. 2003:36–37).  However, the 

nomenclature of the initial researchers has been adopted when available.  The purpose of 

selecting datasets in this context is to provide additional information (e.g., the prior) for 

Bayesian analyses and provide for the previously mentioned phase model and sequential 

setting to get the most probable statistical outcome.  Further, the recalibration and 

characterization of allostratigraphic units of one study area ideally can be contrasted with 

the results of other allostratigraphic units in other basins.  The objective of this 14C 

recalibration is to uniformly calibrate and present the results to produce a consistent 

chronological framework.  Once 14C results are on the same baseline, they can to be used 

by researchers for regional comparisons and refinement of cultural chronologies.  

Additionally, the depositional history of select Texas drainage basins as well as the 

chronology of cultural activities can be reevaluated. 

For the calibration and comparison of multiple events from previous 

investigations, the current study used the OxCal v4.1.6 program, which utilizes the 

MCMC Metropolis-Hastings sampling algorithm, a collaborative component of Bayesian 

analyses (Ramsey 2009).  For specific OxCal v4.1.6 operations, the calibration curve 

utilized IntCal09 and the analyses were primarily conducted using default settings.  

However, output was set at both 68.2% (1σ) and 95.4% (2 σ) and rounded to the nearest 

decade for a minimum of 30,000 iterations, but frequently went over 3 million iterations.  

Due to the nature of the samples selected for recalibration (i.e., multiple samples) a 

calibration model was utilized.  Specifically, these analyses focused on previous 

investigations with radiocarbon samples collected from recognized horizons in a 

stratigraphic setting.   Using these criteria, analyses were conducted under the assumption 
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that horizons at lower elevations will be older than shallower samples (i.e., Law of 

Superposition).   When recalibrating the suites of radiocarbon assays for this study they 

were grouped in the stratigraphic horizon identified (when available) by the previous 

investigator.   Consequently, the analyses were conducted in OxCal using the phase 

model under the Sequential setting.  This setting allows for sets of radiocarbon samples to 

be grouped in a particular sequence (i.e., stratigraphic) and contrasted both within the 

group and against other groups (Ramsey 2009).  Further, the Sequential setting operates 

under the assumption that another group (e.g., horizon) cannot be temporally contiguous 

or overlapping (Ramsey 2009). Ultimately, the intent of using this suite of techniques is 

to derive as much information as possible from previous research, compare the results 

with an equivalent metric, and, to substantiate or update previous interpretations when 

necessary. 

 



  

 
 

 
CHAPTER 3 

Synthesis of Geoarchaeological Investigations Nueces River Basin 
 

The Nueces River basin of Texas is relatively small basin (16,800 square miles), 

which composes a significant portion of South-Central Texas (Durbin 1999; Weddle 

2010).  With the exception of its headwaters, the Nueces River basin is south of the 

Edwards Plateau (Figure 3.1). It crosses the South Texas Plains then the Gulf Prairies and 

Marshes before entering Nueces Bay in San Patricio and Nueces Counties. Upon exiting 

the Plateau, waterways cross the coastward-sloping Coastal Plains and become gradually 

more sinuous. Some of the prominent tributary drainages contributing to the roughly 315-

mile-long (500 km) Nueces River include the West Nueces, Sabinal, Frio, Dry Frio, 

Atascosa, and Leona rivers as well as Indian, Seco, Hondo, Verde, San Miguel, and 

Hackberry creeks (NRA 2010; Weddle 2010).  

Three drainages form the main trunks of this basin with the other tributaries 

dendritically draining into these waterways (Figure 3.1).   The primary trunk, the Nueces 

River, drains the western portions of the basin beginning in Edwards County and crossing 

Uvalde, Zavala, Dimmit, La Salle, McMullen, Live Oak, Nueces, and San Patricio 

Counties.  Within Live Oak County, the Nueces River converges with the other two main 

basin trunks, the Frio and Atascosa rivers.  The Frio River, begins at a spring in Real 

County where it trends southward, is joined by the Sabinal River in Uvalde County, and 

meets its confluence with the Nueces River 250 miles (400 km) from its source   

18
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Figure 3.1 Nueces River Basin: 1) Woodrow Heard, 2) Choke Canyon Reservoir, and 
3) Paine 1991 study area. 

 

1 

3 
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(Texas Parks and Wildlife Department 2009). The third main waterway is Atascosa 

River, a seasonal drainage, which begins as two minor branches (North and West Prongs) 

in Bexar and Medina Counties, respectively.  The Atascosa River runs south-southeast 

along the eastern margins of the basin prior to converging with the Frio River in Live 

Oak County. 

Previous Investigations 

Archaeological investigations, particularly in the Edwards Plateau region, have 

been conducted within the Nueces River basin since the 1930s (Sayles 1935). However, 

only a select few have conducted a serious examination of the geomorphic history within 

the basin (Table 3.1). The investigations that incorporated geology and archaeology 

occurred relatively early with Mear’s (1953) master thesis work along the Sabinal River.   

Since that time, roughly a dozen geoarchaeological investigations have been carried out, 

but most of these were typically assessing site integrity or had a similarly narrow focus 

(e.g., Brown et al. 1982; Scott and Fox 1982; Taylor and Highley 1995).  

 One investigation of particular relevance occurred in the early 1980s at the 

northern extent of the Nueces River Basin occurred at the Woodrow Heard site (41UV88) 

on the Dry Frio River in northern Uvalde County (Figure 3.1).   Although not extensive, a 

component of this research involved a deliberate geoarchaeological investigation of the 

Dry Frio River valley around the site and included a geomorphic assessment with a series 

of radiocarbon analyses (Decker et al. 2000).  

One of the larger, more comprehensive archaeological investigations in South 

Texas was undertaken in the 1970s at Choke Canyon Reservoir situated on the lower 

reaches of the Frio River in Live Oak and McMullen Counties (Figure 3.1).  
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The investigations, utilizing a broad spectrum of multi-disciplinary approaches 

consisted of survey, testing, and data recovery of a number of archaeological sites (Hall 

2010). Despite significant research contributions, the chronometric data for these multi-

year investigations was severely limited.  

In the late 1980s, research was conducted regarding sedimentation of the Nueces 

River during the Late Quaternary (Figure 3.1).  These investigations, conducted on the 

lower extent of the Nueces River, identified four terraces (Angelita, Fort Lipantitla, 

Bluntzer, and Corpus Christi) in addition to the modern floodplain (Baskin and Cornish 

1989; Cornish and Baskin 1995:193).  These researchers identified several 

allostratigraphic units that they correlated to the Holocene.  These units include the 

Cayamon Creek Allomember 1 (CCA-1) associated with the Terminal Pleistocene/Early 

Holocene, Cayamon Creek Allomember 2 (CCA-2) Middle to Late Holocene, and the 

Cayamon Creek Allomember 3 (CCA-3) Recent (Cornish and Baskin 1995). 

 Beginning in the mid 1980s, investigations were conducted at the McKinzie Site 

(41NU221) along the Nueces River overlooking Nueces Bay (Figure 3.1).  This research 

was compared to results from 22 other archaeological sites in similar settings at Baffin 

Bay, Copano Bay, Guadalupe Bay, and Lavaca Bay (Ricklis 1988, 2004; Ricklis and 

Blum 1997; Ricklis and Cox 1998).  Situated in upland settings, the sites all had stratified 

shell middens that provided 80 radiocarbon assays (Ricklis and Blum 1997).  

Also in the lower extent of the basin, a more recent geomorphic investigation 

along the Nueces River at the Gulf of Mexico was the doctoral research by Durbin 

(1999).  The research examined the responses of the Nueces River to changes in the 

climate and fluctuations in sea level using new research and previous investigations 
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(Durbin 1999).  Encompassing the last 120,000 years, a component of this research 

investigated the proposal that rising sea levels instigated valley aggradation while 

conversely dropping sea levels caused valley incision (Durbin 1999).  

Geomorphic/Alluvial History 

 The result of these geoarchaeological investigations is a set of Late Quaternary 

stratigraphic records within the Nueces River basin (Figure 3.2).  These are discussed 

geographically, beginning at the upper (northern) extent of the basin and then 

downstream to the lower extent of the basin to the Nueces Bay.     

Upper- Dry Frio River (Woodrow Heard site) 

The investigations at the Woodrow Heard site (41UV88) provided chronometric 

data for the Dry Frio River and the basin (Figure 3.1).  This research provided thirty 

radiocarbon samples, predominantly composed of charcoal (n=23) and fourteen of these 

samples, including two derived from humate, were used to establish a geomorphic 

chronology of the valley (Gustavson 2000:114–123).  

 The geoarchaeological analysis at Woodrow Heard identified two stratigraphic 

units (Units I and II) composing the Dry Frio River terrace (Decker et al. 2000:114–117).  

The base of Unit I was not observed during investigations, but the observed stratigraphy 

consisted of a series of fining upward deposits beginning with gravels (Figure 3.3). The 

chronometric data from Unit I indicated deposition prior to 8,000 14C yr BP (Decker et al. 

2000:117).  Subsequent to this, but prior to roughly 6,400 14C yr BP, the drainage 

migrated laterally and began to deposit Unit II (Decker et al. 2000:117).  In addition, a 

disconformity separates the two stratigraphic units, suggesting a period of erosion. Unit II 

consists of four internal deposits (Units IIa–IId) from oldest to youngest, respectively     
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Figure 3.2 Initial Depositional History Nueces River Basin. 
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(Figure 3.2).  Each of these units was recognized by slight differences in parent 

material.  The radiocarbon data indicate that Unit IIa was deposited between 6,400–6,000 

14C yr BP, Unit IIb was deposited between 5,650–4,710 14C yr BP, and Unit IIc was 

deposited sometime after 3,270 14C yr BP (Decker et al. 2000:117–124).  No 

chronometric data was available for Unit IId.          

Lower- Choke Canyon 

The Choke Canyon project in Live Oak and McMullen Counties was one of the 

largest projects conducted within the basin.  Unfortunately, the chronometric data was 

severely limited.  During Phase I investigations at the Possum Hollow Site (41LK201), 

over 70 radiocarbon samples were collected, but only seven were processed (Highley 

1986).  Similarly, on the Gates-Rowell Site (41LK31/32), only three radiocarbon samples 

were measured (Scott and Fox 1982:34).  In contrast, the Phase II investigations of Choke 

Canyon Reservoir faired better chronometrically.  Forty-three (MASCA corrected) 

radiocarbon samples (wood charcoal) collected from seven prehistoric sites were  

submitted for analyses (Hall et al. 1986). 

Several notable results from the Choke Canyon project stand out.  The first is that 

there were several gaps in the radiocarbon dates.  The most prominent gaps occurred 

between 5,780–4,790 14C yr BP, 4,610–4,130 14C yr BP, 3,810–3,360 14C yr BP, and 

1,800–1,520 14C yr BP (Hall et al. 1986:585–588).  The researchers attributed the gaps to 

possible sampling bias, preservation, human settlement pattern discontinuities, or a 

combination of these factors (Hall et al. 1986:587).  Regarding the chronological 

assessment of the Frio River valley stratigraphy, the researchers identified that this was 

an area needing future research (Hall et al. 1986:590).  Even though the Choke Canyon 
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investigations comprised the largest group of radiocarbon assays in Southern Texas and 

a geomorphic study was undertaken (i.e., Bunker 1982), radiocarbon dating of the 

depositional history of the Dry Frio River was not a research focus. 

 Bunker (1982) did recognize four terraces (1–4) in the Frio River Valley 

encompassing modern to Pleistocene in age (Figure 3.2).  Other, older, terraces were 

observed in the valley, but these were characterized as discontinuous and isolated 

(Bunker 1982:499).  No chronometric data was indicated for Terrace 4, but Bunker 

(1982:501) infers that it is Pleistocene in age.  The third terrace (Terrace 3), containing 

most of the Choke Canyon Reservoir archaeological sites, began construction sometime 

before 5,330 14C yr BP and was characterized by extensive lateral migration eroding 

older deposits and bearing a coarse bedload until roughly 2,280 14C yr BP (Bunker 

1982:514–515).    Sometime after 2,280 14C yr BP, the Frio River straightened, incised 

and began construction of the second terrace. Terrace 2 was described as having a 

decrease in overbank flooding episodes with more stability (Bunker 1982:515).  No 

chronometric data were available for determining the end of Terrace 2 construction and 

beginning of Terrace 1.  However, Bunker (1982:511) suggests that sometime after 2,000 

14C yr BP, the Frio River incised isolating Terrace 2 and forming the modern floodplain 

(Terrace 1).   

 Near the coast, Durbin (1999) identified Pleistocene Deweyville allostratigraphic 

units and Holocene Post-Deweyville (PD) allostratigraphic units (Figure 3.2).  The 

Pleistocene Deweyville units consisted of High Deweyville (HD), Middle Deweyville 

(MD), and Low Deweyville (LD) and were dated using Thermoluminescence (TL) and 

Optically Stimulated Luminescence (OSL) methods.  The more recent Post-Deweyville 
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(PD) unit was recognized as Terminal Pleistocene/Early Holocene (PD1), Middle to 

Late Holocene (PD2), and Recent (PD3) (Durbin 1995:119– 131). Durbin (1999:124) did 

correlate PD1 to the Cayamon Creek Allomember 1 (CCA-1) identified by Cornish and 

Baskin (1995).  Similarly, units PD2 and PD3 correlate with CCA-2 and CCA-3, 

respectively.  Unfortunately, the chronometric data for the Holocene PD units was limited 

to two OSL dates from Durbin’s study (1999:118–124) and a single radiocarbon sample 

from another investigation by Cornish and Baskin (1995).        

Durbin (1999) concluded that climate and sea level (eustatic) fluctuations affect 

valley deposits.  However, sea level affects were not as pronounced, possibly to less than 

40–100 km from the coast, as previous researchers had proposed (Durbin 1999:149–150; 

Etheridge et al. 1998).  Further, the Pleistocene Deweyville units were deposited under 

cooler and moister conditions than the Holocene when sea levels were lower.  

Consequently, the Deweyville units had elevated flow regimes producing larger 

meanders and coarser bed loads with each unit incising into previous, units resulting in 

stair-stepped terraces (Durbin 1999:180–183).  In contrast, the Terminal Pleistocene to 

Holocene PD units were constructed under the transition to progressively more arid and 

warmer climates and rising sea levels.  These conditions decreased the flow regime and 

increased the amounts of sediment contribution through erosion causing gradual vertical 

aggradation with each unit covering the preceding one (Durbin 1999:180–183).  Thus, the 

stratigraphy of the PD units is well-defined allostratigraphic units (Durbin 1999:182–

183).  Unfortunately, due to the paucity of chronometric data for the PD units, the 

chronology of these units is poorly defined. 



 29 

 Near to Durbin’s research were the investigations conducted in Nueces Bay by 

Ricklis (2004) examining shell middens on upland sites overlooking coastal estuaries.  

Among several important observations, this work is helpful to correlate sea level rise with 

prehistoric occupation along the coast (Ricklis 2004; Ricklis and Blum 1997; Ricklis and 

Cox 1998).  Two occupation hiatuses were observed between 6,800–5,900 14C yr BP and 

4,200–3,000 14C yr BP and correspond to higher sea levels (Ricklis 2004:175–177; 

Ricklis and Blum 1997:299–300).  

Calibration Results 

For a variety of reasons, only the suite of assays from the Woodrow Heard site at 

the northern extent of the basin met this study’s calibration criteria (e.g., stratigraphic 

control and δ 13C corrected).  Although the chronometric data from Ricklis’ (2004) 

investigations do not meet the criteria for this study, his dates have been recalibrated due 

to its broad implications for the Nueces River basin and the coast in general.   Despite the 

limited dataset, the calibration of select radiocarbon samples from the Woodrow Heard 

site and Ricklis’ research proved beneficial and informative (Table 3.2).  This is 

particularly true of the Woodrow Heard assays.  Specifically, the stratigraphic history of 

the Dry Frio River may, in actuality, be more reflective of basin changes affected by 

climate. 

The calibration of Unit I at the Woodrow Heard site revealed that this horizon was 

constructed prior to 9,480 cal yr BP and ended after 8,810 cal yr BP.  Following the 

construction of Unit I an apparent period of lateral migration southward occurred 

between 8,810–7,420 cal yr BP when the oldest date of Unit IIa occurs.  Beginning prior 

to 7,420 cal yr BP, Unit IIa was deposited until after 6,880 cal yr BP.   
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 35 

 The Dry Frio River again migrated southward between 6,880–6,480 cal yr BP 

when the oldest Unit IIb sample is indicated.  Of note, this date is derived from a humate 

sample (Beta-112981) and may not accurately reflect the age of the genesis of Unit IIb 

(e.g., Grimm et al. 2009; Matthews 1985).  Another reason for doubting the accuracy is 

comparing this date to the other Unit IIb results where the humate sample is distinctly out 

of sync with the others (Figure 3.4).  Regardless, Unit IIb definitely was being deposited 

by 5,580 cal yr BP and continued until sometime after 5,080 cal yr BP when the drainage 

again migrated southward.  The lateral migration appears to have occurred between 

5,080–3,570 cal yr BP when the oldest date for Unit IIc is indicated.  Unfortunately, only 

one sample (Beta-112980) is available for Unit IIc, which is a humate sample and none 

for the overlying Unit IId.   

Comparing the initial Woodrow Heard radiocarbon calibration results to the 

recalibration of this study demonstrates some significant differences.  The most apparent 

changes are exhibited in the older assays of the site, particularly in Unit I (Figure 3.5).  

The recalibration results push the ages of Unit I and Unit IIa back about 1,000 years. 

To a lesser degree the age of Unit IIb has been pushed back about 750 years older 

than the initial calibration (Figure 3.5).   Although there was a shift in the recalibration of 

Unit IIc, the magnitude of this shift is marginal.     

The observed change from the initial Woodrow Heard calibrations to the current 

study is expected.  Simply put, the majority of recent improvements to the radiocarbon 

calibration curve are applied to the older end of the curve where calibration data (i.e., 

dendrochronology) are sparser.  Thus, most adjustments of a recalibration will typically  

 



 
Figure 3.4 Calibration Plot of Woodrow Heard radiocarbon assays; arrow indicates 
anomalous assay. 

Unit I 

Unit IIa 

Unit IIb 

Unit IIc 
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Figure 3.5 Calibrated Depositional History Nueces River Basin. 
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be exhibited in the older assays of a study.  Such was the case of the recalibration of the 

Woodrow Heard radiocarbon assays. 

A final observation regarding the recalibration of the Woodrow Heard assays is 

the use of the MCMC analysis. The implementation of MCMC is most useful when 

radiocarbon results in stratigraphic context overlap temporally.  Due to the sizable 

chronological gaps between each of the stratigraphically defined Woodrow Heard 

geological units, the application of MCMC did not measurably refine the recalibration 

results.  Therefore, the MCMC analysis of the Woodrow Heard assays was not 

informative.  

As previously mentioned, the recalibration of Ricklis’ dataset was also conducted 

for this study.   These assays were reexamined in order to determine if the two 

occupational hiatuses identified by Ricklis would be altered using the most recent 

calibration data.  The cultural hiatuses, identified by gaps in the radiocarbon results, were 

recognized to have occurred between 6,800–5,900 14C yr BP and 4,200–3,000 14C yr BP 

(Ricklis 2004; Ricklis and Blum 1997; Ricklis and Cox 1998).   These chronometric data 

were composed of a combination of oyster, scallop, Rangia flex., Quahog, and wood 

charcoal from 23 coastal archaeological sites (Ricklis and Blum 1997; Table I).  

Interestingly, the results of the recalibration of these data are very similar to the initial 

calibration (Table 3.2).  Although there are some slight variations between the two 

calibrations, there are no appreciable differences.  Therefore, the timing of the previously 

identified occupation hiatuses and corollary rapid sea level transgressions still appears to 

have occurred at 6,800–5,900 14C yr BP and 4,200–3,000 14C yr BP. 
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 The results of these recalibrated Nueces River basin study areas are examined 

further, contrasted with other recalibrated analyses, and correlated with extrinsic factors 

in Chapter 8. 

  

 

 



  

 
 

 
CHAPTER 4 

Recalibrated Geoarchaeological Framework within the Guadalupe-San Antonio 
River Basins 

 
The Guadalupe and San Antonio River basins encompass a significant portion of 

South-Central Texas (Figure 4.1).  Both basins begin in the Edwards Plateau and extend 

from the southern margins of the Plateau southeastward across the coastal plain before 

emptying into the Gulf of Mexico.   The roughly 252 mile (405 km) Guadalupe River and 

180 mile (290 km) San Antonio River drain a combined 10, 250 mile² (26,545 km²) basin 

area (Donecker 2010; Smyrl 2010).  The Edwards Plateau contains a complex system of 

interrelated aquifers, springs, and rivers. The most prominent of these is the Edwards 

Aquifer, a large subterranean reservoir underlying the Hill Country in which water filters 

through porous Lower Cretaceous limestone directly above resistant pre-Cretaceous 

formations (Edwards Aquifer 2009). As such, this groundwater discharge provides 

excellent water sources supplying springs, creeks, and rivers. In addition to the 

Guadalupe River, the most prominent contributors in the basin include the Comal and 

San Marcos rivers followed by the Blanco River, Coleto Creek, and Sandies Creek.  

About seven miles north of its terminus at the coastal San Antonio Bay near Tivoli, 

Texas, the San Antonio River empties into the Guadalupe River.      

  For the San Antonio River, some of the prominent drainages include the Medina 

River as well as Cibolo, Leon, Salado, San Pedro, Marcelinas, Culebra, Ecleto, and 

Medio creeks. Three drainages compose the main trunks of the San Antonio River basin  

40



 41 

  

 
Figure 4.1 Overview of Guadalupe-San Antonio River Basins: 1) Jonas Terrace site, 
2) Richard Beene site, 3) Copano Bay study area, 4) Gatlin site, 5) San Marcos study 
area, and 6) McNeill Ranch site. 

1 

3 

2 

4 
5 

6 
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 with the other tributaries dendritically spread around and draining into one of the three 

trunk waterways.  

The primary trunk is the San Antonio River that runs roughly down the middle of 

the basin through Bexar, Wilson, Karnes, Goliad, and Refugio Counties.  Within Refugio 

County the San Antonio River converges and drains into the Guadalupe River, which in 

turn empties into the San Antonio Bay and then the Gulf of Mexico.  The second trunk is 

the Medina River, a perennial waterway that begins at a spring in the Edwards Plateau 

county of Bandera where it trends southeastward for about 116 miles along the southern 

margins of the basin before draining into the San Antonio River.  The third main 

waterway is Cibolo Creek, a seasonal drainage, which begins at a spring in Kendall 

County and runs south-southeast roughly 96 miles along the northern margins of the 

basin prior to converging with the San Antonio River in Wilson County.   

Previous Investigations 

 Within the Guadalupe River Basin, the earliest notable investigations with a 

geoarchaeological component is at Berger Bluff (41GD30) occurring in the 1970s 

(Brown 2006).  Within the San Antonio River basin, the earliest noteworthy 

geoarchaeological investigation occurred in the 1980s (Table 4.1).  Since that time about 

a dozen significant geoarchaeological investigations have been carried out in the 

Guadalupe and San Antonio River Basins.  The following review of the Guadalupe and 

San Antonio River basins encompasses some of the more prominent investigations 

associated with geomorphic examinations, beginning in the upper reaches of each basin 

and continuing downstream to the gulf.        
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 Guadalupe River Basin 

In the 2000s, archaeological excavations were conducted by SWCA at the Gatlin 

site (41KR621) located in the upper extent of the Guadalupe River in eastern Kerr 

County (Houk et al. 2008).  This stratified archaeological site contained cultural activities 

from the Archaic to Late Prehistoric. One aspect of the site investigations of particular 

relevance was to characterize the Guadalupe River deposits at different locations (Abbott 

2008; Frederick 2008).  Specifically, the Gatlin site’s location in the Edwards Plateau 

was contrasted with the deposition of the river off the Edwards Plateau along the margins 

of the Balcones Escarpment (Abbott 2008).  

 Although not situated in a drainage setting, Hall’s Cave is significant to this study 

because of the extensive paleoenvironmental investigations and chronometric analyses.  

Hall’s Cave is located at the northern extent of the Guadalupe Basin and the deposits 

within the Central Texas cave have been a subject of several informative studies (Cooke 

et al. 2003; Cooke 2005; Cooke et al. 2007; Toomey 1993). 

In the late 1990s through the 2000s, a series of investigations were conducted at 

several archaeological sites (e.g., 41HY160, 41HY161 and 41HY165) along the San 

Marcos River in San Marcos, Texas.  These investigations were conducted by Texas 

State University Archaeological Field Schools and the Center for Archaeological Studies 

(CAS) associated with the Aquarena Center at the confluence of Sink Creek and the San 

Marcos River (Nickels and Bousman 2010; Oksanen 2008; Ringstaff 2000).  A 

component of these investigations included a geoarchaeological examination of the sites 

with some chronometric analyses.  The research identified stratified deposits extending 

back to the Late Pleistocene and over 11,000 years of cultural activity.     
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 Further downstream the San Marcos River near its confluence with the Blanco 

River investigations were conducted in the late 1990s at the Armstrong Site (41CW54).  

The Armstrong Site is situated on a relict channel of the San Marcos River and was 

investigated by Paul Price and Associates (Schroeder and Oksanen 2002).  Work at this 

stratified site included a geomorphic assessment of the site’s stratigraphy coupled with 

chronometric analyses.   

At the lower extent of the Guadalupe Basin in Victoria County, investigations 

were conducted at the McNeill-Gonzales site (41VT141) in the early 2000s.  This site is 

located in the Coastal Plains and situated on a terrace of the Guadalupe River with 

deposits extending into the Late Pleistocene (Aiuvalasit 2006, 2007).  A primary 

component of the research consisted of a geoarchaeological analysis of the site to 

characterize and date the site and drainage stratigraphy.  

In 1979, multi-year archaeological investigations began at the Berger Bluff site 

(41GD30) by the Center for Archaeological Research (CAR).   This work was associated 

with the construction of the Coleto Creek Reservoir.  This site is about 9.5 miles (15.3 

km) west of Victoria and situated on a high bluff overlooking Coleto Creek a tributary of 

the Guadalupe River (Figure 4.1).  These investigations focused on the geomorphology of 

the Coleto Creek valley, which included a robust chronometric sampling strategy in order 

to characterize the geochronology of the site and drainage (Brown 2006). 

San Antonio River Basin 

  In the mid 1980s and early 1990s, archaeological excavations were conducted at 

the Jonas Terrace site (41ME29) in northeastern Medina County (Johnson 1995; Johnson 

and Goode 1994).  The site is situated on the South Fork of the San Geronimo Creek, a 
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tributary of the Medina River and contains deposits dating back to the early Holocene.  

One of the many research avenues undertaken at the site was to date the stratigraphy of 

the terrace and site as well as reexamine the climates of the Holocene of the eastern 

Edwards Plateau.  Of particular relevance, the researchers compiled a dataset of 

chronometric data from previous Central Texas investigations and calibrated them to a 

comparable scale. 

 In 1991 and 1995, archaeological investigations were carried out for the 

Applewhite Reservoir project located on the Medina River, a tributary of the San Antonio 

River (Thoms and Mandel 2007).  This project included the excavation at the Richard 

Beene Site (41BX831), which is located southwest of San Antonio situated on an alluvial 

terrace (Applewhite Terrace) of the Medina River (Figure 4.1).  A significant component 

of these investigations focused on the geomorphology of the Medina River valley, 

including a robust chronometric sampling strategy to characterize the geochronology of 

the site and drainage (Mandel et al. 2007). As such, these investigations at this 

unprecedented site containing over 7 m of Pleistocene-Holocene alluvial deposits were 

the first serious and most extensive consideration of Late Quaternary depositional history 

in the San Antonio River basin.   

In the late 1980s, investigations were conducted along the coast at the Swan Site 

(41AS16) and the Copano Bay area (Paine 1991; Prewitt and Paine 1987).  The site is 

located on the adjacent Aransas River, technically outside of the San Antonio River 

basin, but the implications of the research are germane to this examination.  Of particular 

relevance, Paine (1991) examined the valley fill near the site to determine changes in sea 

level and climate over the last 100,000 years.  Although this research primarily used 
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offshore bore samples for radiocarbon analyses, several assays were conducted from 

the Swan Site coupled with temporally diagnostic artifacts.        

Geomorphic/Alluvial History 

 The depositional history of the San Antonio River basin is composed of a 

representative selection of several of the aforementioned investigations (Figure 4.2).  

These selections each have a reasonably extensive, stratified dataset that embodies the 

various extents (i.e., upper, middle, and lower) of the basins.  These interpreted 

stratigraphic records are arranged geographically beginning at the upper (northern) extent 

of the basin upstream of the Balcones Escarpment.  The middle extent includes the 

drainage sections from the Balcones Escarpment to the Gulf Prairies and Marshes region.  

The lower extent of the basin covers the Gulf Prairies and Marshes to the Gulf of Mexico 

(see Figure 1.2).  The selections include the Jonas Terrace site (41ME29) for the upper 

basin, Richard Beene site (41BX831) for the middle, and the Copano Bay area with the 

Swan Lake site (41AS16) for the lower extent (Figure 4.2).  

Upper Extent San Antonio River Basin 

The research at Jonas Terrace was not the most geomorphically focused, but did 

comprehensively evaluate the site’s stratigraphy, enabling a depositional comparison.   

One focus of research regarded levels of phosphate by horizon with the inference that low 

amounts of phosphate were implied with fast aggradation while high phosphate quantities 

inferred slow aggradation (Johnson 1995:29–30).  Similarly, the presence and quantities  
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Figure 4.2 Initial Depositional History San Antonio River Basin. 
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of various snail species (e.g., Rabdotus mooreanus and Oligyra orbiculata) were 

interpreted to correspond with various environments.  The researchers identified six strata 

(i.e., Strata 1–6) at the site all containing cultural materials (Johnson 1995:30–32). The 

following stratigraphic description was primarily derived from the researcher’s 

description of Unit 23 (Figure 4.3).   

The lowermost of the site deposits is Stratum 6, which rested unconformably on 

bedrock and characterized as alluvial sediments with fluctuating amounts of phosphate 

and a dominant presence of Oligyra orbiculata (Johnson 1995:30–32).  Based on these 

data, Johnson (1995:30–31) interpreted Stratum 6 as having slow aggradation with 

vegetation cover that was deposited prior to ~5,280 cal yr BP (3330 BC) and ending 

sometime after ~4,770 cal yr BP  (2820 BC) with an erosive event.  The overlying 

Stratum 5 is composed of a thin horizon of colluvial deposits exhibiting low phosphate 

amounts and an increase in Rabdotus mooreanus (i.e., Prairie Rabdotus) snail species.  

The researchers infer a relatively quick aggradation with a more open vegetation cover 

for Stratum 5.  This horizon has one radiocarbon date indicating an age of 4,400–4,230 

cal yr BP (2450–2280 BC).  The deposition of the overlying Stratum 4 occurred 

sometime prior to ~3,460–3,260 cal yr BP (1510–1310 BC) and continued at least until 

~2,350 cal yr BP (400 BC).  The terminus post quem for Stratum 4 is tentative in that the 

researchers recovered an assay (Beta-62339) from atop a burned rock midden upon the 

surface of Stratum 4, which dates to a more recent ~1,170 cal yr BP (AD 780).  In 

contrast, the previously mentioned date of ~2,350 yr BP (400 BC) is derived from within 

Stratum 4 and is seemingly more reflective of the horizon’s terminus post quem (Figure 

4.3). Regardless, Stratum 4 is characterized as containing high phosphate amounts with a 
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Figure 4.3  Idealized Profile of Jonas Terrace site (41ME29), strata are numbered 
along right side of profile while sample numbers (1–12) are within profile (adapted from 
Johnson and Goode 1994: Figure 3). 
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continued dominance of Rabdotus mooreanus and a notable abundance of cultural 

materials (Johnson 1995:31).  These data imply a slower aggradation for Stratum 4 with a 

continuation of more open vegetation cover. 

No chronometric data are available for Stratum 3; this horizon is described as 

exhibiting a decrease in phosphates, a replacement of Rabdotus mooreanus with Oligyra 

orbiculata snail species, and a noticeable decrease in cultural materials.  Johnson 

(1995:31) interprets these data as reflecting a return of tree cover and the fast aggradation 

of Stratum 3.   

The overlying alluvial horizon Stratum 2 began aggrading prior to 1,870 cal BP 

(AD 80), which notably precedes the aforementioned troublesome assay (Beta-62339) of 

Stratum 4.  Stratum 2 is described as similar to that of the underlying Stratum 3 with low 

amounts of phosphate and cultural materials, but with a general drop in snail quantities 

(Johnson 1995:31).  This horizon also may have had a relatively fast aggradation that 

appears to have ended sometime after 1,280 cal BP (AD 670).   

The surface layer Stratum 1 is characterized as a partially disturbed horizon of 

colluvial-alluvial deposits with a slight increase in Rabdotus mooreanus and cultural 

materials.  Stratum 1 has one radiocarbon date indicating an age of 1,060–920 cal yr BP 

(AD 890–1030).      

The researchers propose that the environment during the time of Stratum 6 was 

cooler and moister than present until the approximate terminus of the horizon.  The 

climate steadily became more arid and warmer (i.e., xeric) until peaking around 3,850 cal 

yr BP (1900 BC) sometime prior to the deposition of Stratum 4.   From this apex, the 

climate became cooler and moister reaching comparable levels of today around the 
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beginning of Stratum 3 (Johnson 1995).  It bears repeating that the Stratum 4 /Stratum 3 

boundary is tentative considering Stratum 3 has no chronometric data while the terminus 

post quem for Stratum 4 is the problematic assay (Beta-62339).  Nevertheless, the 

environment is interpreted to continue to cool reaching a relative nadir around 1,950 cal 

yr BP (AD 0) and returning to conditions similar to today near the terminus of Stratum 2.  

During the deposition of Stratum 1, the climate is interpreted to have become 

increasingly warmer and arid reaching a peak around 750 cal yr BP (AD 1200) before 

becoming cooler and more mesic. 

Middle Extent San Antonio River Basin 

One of the most intensive geoarchaeological investigations was that conducted at 

the Richard Beene site in southern Bexar County (Figure 4.1).  The site is situated on the 

right bank of the Medina River and is located about 1.2 miles (2 km) upstream from the 

drainage’s confluence with Leon Creek.  The researchers identified five terrace landforms 

within the Medina River valley at this location that from oldest to youngest consist of the 

Walsh Terrace (T4), the Leona Terrace (T3), the Applewhite Terrace (T2), the Miller 

Terrace (T1), and the modern floodplain (Mandel et al. 2007).  Similarly, seven 

depositional units (Units A1–A7) were recognized primarily related to the Applewhite 

Terrace (T2), which contains the Richard Beene site and was the focus of the 

investigations (Figure 4.4).    

Mandel and others (2007:35) interpreted Unit A1 as a coarse-grained depositional 

unit underlying the Applewhite Terrace, which has an unknown beginning but ceased 

aggrading before 33,000 14C yr BP, when Unit A2 is dated.  The age of Unit A2 is based 

upon chronometric data indicating a beginning around 33,000 14C yr BP and continuing 
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until 20,000 14C yr BP.  Next, Unit A3 extends from the Late Pleistocene into the early 

Holocene starting around 20,000 14C yr BP and terminated deposition about 8,600 14C yr 

BP.  Near the upper boundary of Unit A3, deposits are characterized as cumulic in which 

soil pedogenesis (Perez Paleosol) formed while alluvium was gradually added.  This 

paleosol in Unit A3 contains the first evidence of cultural activities at the site, which are 

interpreted to reflect Early Archaic (Angostura) occupations.  Also, the upper boundary 

of the Perez Paleosol exhibits truncation suggesting a discontinuous surface and erosion.   

Subsequent to this period of erosion, Unit A4 begins deposition containing another 

paleosol (Elm Creek paleosol).  Unit A4 and the Elm Creek Paleosol within contains a 

few artifacts and extends from 8,600–7,000 14C yr BP before terminating.  The Elm 

Creek Paleosol is capped with the depositional horizon Unit A5 (Medina Horizon).   

The researchers indicate that Unit A5 received the most intensive stratigraphic 

analyses at the site and contains cultural materials from the Early and Middle Archaic 

occupations (Mandel et al. 2007:50–52).  Among other observations, this unit is noted to 

have an increase in sand deposits that continued into the following Unit A6 (Leon Creek 

Horizon) and that may represent an increase in fluvial energy during this time.  Further, 

the upper boundary of Unit A5 contains at least two buried soils that have welded 

together and have been designated the Medina Pedocomplex.  The numerous 

chronometric assays within the Medina Pedocomplex date the span of Unit A5 to 7,000–

4,400 14C yr BP before being overlain by Unit A6.   

The following stratigraphic Unit A6 is noted to have a buried soil (Leon Creek 

Paleosol), which exhibits evidence of two types of development (Mandel et al. 2007:52–

53).  Specifically, pedogenesis seems to have started during an extended period of surface 
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Figure 4.4  Cross-section at Richard Beene site on Medina River (adapted from 
Thoms and Mandel 2007: Figure 3.3). 
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stability in Unit A6 and again when aggradation renewed and cumulic development 

occurred.  Although not overtly stated by the researchers, the period of stability may 

indicate a temporary change in environment during the interpreted span (i.e., 4,100–2,800 

14C yr BP) of Unit A6.  

The final stratigraphic unit studied on the Applewhite Terrace is Unit A7.  This 

depositional unit is characterized as encompassing 2,800 14C yr BP to the present and 

exhibits evidence of a decrease in fluvial deposits, particularly from 1,200–400 14C yr 

BP.  The researchers notably correlate the paucity of Late Prehistoric occupation features 

at the Richard Beene site to the slower deposition in Unit A7 whereby, they argue, 

created a palimpsest.  

Lower Extent San Antonio-Nueces Coastal Basin 

For the lower extent of the San Antonio Basin, research in the Copano Bay area 

was selected for review.  Of note, the Swan site (41AS16) is located on the Aransas 

River, which is situated outside of the San Antonio River basin bounded on the opposite 

side by the Nueces River Basin (Figure 4.1). Regardless, the site and most importantly 

the geomorphic investigations in the Copano Bay area are adjacent to the San Antonio 

Basin and relevant to this study (Figure 4.5).  Specifically, Paine (1991) used a variety of 

datasets (e.g., sea cores, trench profiles, archaeological investigations) to examine sea 

levels influenced by changes in the climate.  Extending back over the last 100,000 years, 

the research dated these changes using previous research, new radiocarbon data, and 

temporally diagnostic artifacts (Paine 1991; Prewitt and Paine 1987).     

Focusing on the Late Pleistocene-Holocene, Paine (1991) recognized two phases 

over the last 18,000 years.  Broadly defined, the period from 18,000 to 5,000 years ago 
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interpreted to be a transgressive phase of sea level rise followed by a relative sea level 

stillstand encompassing the last 5,000 years Paine (1991:57).   Within these phases there 

are ‘pulses’ that represent transgressive sequences that alter from a dominance of fluvial, 

deltaic, or estuarine deposits (Paine 1991:60–61).   During the Holocene, Paine 

(1991:61–64) recognizes three transgressive pulses of rising sea level occurring at 

10,000–9,000 years ago, 7,500–6,000 years ago, and 5,000–4,000 years ago.  Of note, 

mean sea levels (MSL) at these times were below modern levels as much as 27.5 m.  

The first transgressive pulse (10,000–9,000 years ago) is interpreted to be a 

transition from fluvial (i.e., stream) to marine (i.e., sea) influenced deposition signifying a 

rapid rise in sea level.  Paine (1991:61–64) indicates this pulse is followed by a transition 

from marine back to stream deposition at roughly 9,000–7,000 years ago suggesting a 

stillstand or possible drop in sea level.  Subsequently, the second transgressive pulse 

represented by a transition from stream to marine deposition occurred around 7,500–

6,000 years ago signifying another rise in sea level.  The second transgressive pulse is 

followed by a transition from marine to stream deposition at roughly 6,000–5,000 years 

ago suggesting another stillstand.  Around 5,000–4,000 years ago, the third transgressive 

pulse is suggested by a transition from stream to marine deposition interpreted to be a 

slow sea level rise.  Interestingly, Paine (1991:170–171) interprets that sea levels at this 

time rose above present day levels by as much as 0.9 m beginning as early as 5,300 years 

ago and lasting until roughly 2,600 years ago.  This third transgressive pulse ushers in a 

sea level stillstand, which covers the last 5,000 years. 
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Figure 4.5  Profile of Swan Lake deposits (adapted from Paine 1991: Figure 42). 
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 Calibration Results 

The radiocarbon datasets for the previously reviewed Jonas Terrace site 

(41ME29), Richard Beene site (41BX831), and the Copano Bay area (e.g., 41AS16) were 

recalibrated (Table 4.2 and Figure 4.6).  Beginning at the Jonas Terrace site on San 

Geronimo Creek of the San Antonio basin, the results are presented from this point in the 

upper limits of the basin followed by the Richard Beene results downstream and finally 

the chronometric data at Copano Bay area at the coast.      

Upper Extent   

Thirteen radiocarbon assays were selected from the Jonas Terrace assemblage, all 

derived from charcoal (Johnson 1995:Table 1).  Generally, the recalibration of the assays 

did not dramatically alter the initial results (Johnson 1995).  The most beneficial result of 

the current study was to increase the precision of the previous results.  Beginning with 

Stratum 6 the oldest identified horizon, the recalibration indicates that deposition began 

sometime prior to 5,140 cal yr BP and continued subsequent to 4,680 cal yr BP.  

Sometime prior to 4,380 cal yr BP, the deposition of Stratum 6 ended and the overlying 

Stratum 5 began.   

Stratum 5 is represented by one radiocarbon assay (i.e., Beta-62347) that suggests 

a terminated around 4,180 cal yr BP.  In contrast, the overlying Stratum 4 is dated by six 

radiocarbon assays indicating deposition began prior to 3,420 cal yr BP and termination 

after 2,380 cal yr BP.  As previously discussed, the terminus post quem for Stratum 4 is 

uncertain in that one of the six assays appears to be anomalous (Beta-62339), which is 

particularly apparent when examining the calibration plot for this dataset (Figure 4.7).  
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Figure 4.6 Calibrated Depositional History San Antonio River Basin. 
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Figure 4.7  Calibration Plot of Jonas Terrace site (41ME29) radiocarbon assays. 
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 Although the sample is derived from charcoal, its provenance is questionable (i.e., atop 

a burned rock midden upon the surface of Stratum 4).  Consequently, for the purposes of 

this study the sample Beta-62339 has been rejected.   

The next chronometric data is within Stratum 2 exhibits a beginning prior to 1,380 

cal yr BP and termination subsequent to 1,300 cal yr BP.  These data infer an 

approximate 1,000 year gap between Stratum 4 and Stratum 2, which includes the 

undated Stratum 3.  The final horizon Stratum 1 has one radiocarbon assay that indicates 

a beginning prior to 1,060 cal yr BP and continues to the present.       

A comparison of the initial and current calibrations does not exhibit any striking 

differences.  The most apparent distinction regards the terminus of Stratum 4, but this is a 

result of rejecting sample Beta-62339 rather than adjustments from a more recent 

calibration curve.  The omission of this sample effectively broadens the possible temporal 

range for Stratum 3 whereas the initial results implied a very brief Stratum 3.  Similarly, 

the use of the MCMC analyses on this dataset did not markedly refine the results.  

However, it was instrumental in pointing out the anomalous radiocarbon sample.   

Considering these recalibration results, Johnson’s (1995) interpretations stand 

without any notable adjustments, particularly the environmental reconstruction.    One 

exception may regard interpretations associated with Stratum 3.  Specifically, the horizon 

was interpreted to be concurrent with a return of arboreal cover and rapid alluvial 

deposition, presumably a short-lived depositional horizon.  If correct, the adjustment in 

timing to Stratum 3 in combination with a return in tree pollen correlates with a 

previously identified spike in arboreal pollen in Central Texas.  Bousman (1998:212) 

interpreted a jump in arboreal canopy to have occurred around 2,000 14C yr BP.  Similar 
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to the low arboreal canopy interpreted for Strata 4 and 2 at Jonas Terrace, Bousman 

(1998:Figure 7) identified that the spike in arboreal canopy was preceded and followed 

by low arboreal pollen counts.   Further, a comparison of the environment associated with 

each of the Jonas Terrace strata appear to correlate with that proposed by Bousman 

(1998:Figure 7).  The sole exception is the spike of arboreal pollen around 3,500 14C yr 

BP, which is not identified at Jonas Terrace.  However, this exception seemingly falls 

within the gap between Strata 5 and 4 (Figure 4.7).  Although not conclusive, the data 

seems to reflect that the proposed environments are comparable particularly when 

considering the recalibration data.      

Middle Extent   

Nineteen radiocarbon assays were selected from the Richard Beene assemblage 

all derived from charcoal (Mandel et al. 2007: Table 3.4).  The calibration of select 

radiocarbon samples from Richard Beene proved beneficial and, to varying degrees, the 

results generally pushed back the age of the previously reported assays.  

Beginning with Unit A3 (Perez Horizon) at the Richard Beene site, the calibration 

revealed that this horizon was constructed prior to 15,290 cal yr BP and ended 

subsequent to 9,550 cal yr BP.  Using other lines of evidence (e.g., soil carbon) in 

conjunction with charcoal, Mandel and others (2007:35–48) indicates that Unit A3 

possibly began forming around 20,000 14C yr BP and ceased aggrading about 8,600 14C 

yr BP (Mandel et al. 2007:39–46). Further, this depositional unit contained cultural 

materials interpreted to represent Early Archaic occupations. The presence of the Perez 

Paleosol, which caps this horizon suggests that this depositional unit ended with a period 

of stability and seemingly followed by a period of erosion as evidenced by the 
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disconformity separating it from the overlying Unit A4 (Mandel et al. 2007:Figure 

3.10).  This erosive event terminated prior to 8,920 cal yr BP as suggested by the oldest 

assay in Unit A4.    

Unit A4 (Elm Creek Horizon) appears to have been relatively brief ending 

construction sometime after 8,410 cal yr BP, but also has a paleosol (Elm Creek Paleosol) 

suggestive of a period of prolonged stability (Mandel et al. 2007:48–49).  Prior to 7,910 

cal yr BP, Unit A5 (Medina Horizon) began deposition capping the underlying Unit A3 

(Table 4.2).  As previously mentioned, Mandel and others (2007:51) noted several buried 

soils welded together within this depositional unit identified as the Medina Pedocomplex.   

Four radiocarbon assays date the Medina Pedocomplex (i.e., Upper Medina Horizon) 

collected from the top of the horizon while five assays date the lower portions of the 

horizon (i.e., Lower Medina).  The Medina Pedocomplex assays indicate that 

pedogenesis likely began around 5,400 cal yr BP continuing until sometime after 4,940 

cal yr BP as indicated by the latest Unit A5 assay.  Although the Medina Horizon extends 

from 7,910–4,940 cal yr BP, there is an apparent hiatus of about 2,000 years separating 

the Lower and Upper Medina portions (Figure 4.8).  However, this gap may be attributed 

to differing sample elevations; the assays were collected from about 4 m vertical 

difference between the upper and lower sample sets. 

 Subsequent to Unit A5, the overlying Unit A6 (Leon Creek) began aggrading 

prior to 4,720 cal yr BP (Table 4.2).  The Unit A6 Leon Creek Horizon extends from 

4,720–3,220 cal yr BP and is capped by the (Leon Creek Paleosol), which again suggests 

a period of stability prior to the deposition of the Unit A7 (Modern Horizon) mantle.  No 

chronometric assays are available for the final unit the Modern Horizon only Late  
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Figure 4.8  Select Calibration Plots of the Richard Beene site radiocarbon assays; 
arrow indicates hiatus period between Lower and Upper Medina Horizon. 
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Prehistoric artifacts.  Thus, the researchers interpreted Unit A7 to extend from the end 

of Unit A6 to the present (Mandel et al. 2007:53).     

Overall, several interesting findings were determined by contrasting the results of 

the initial calibration with those of the current recalibration study.  First, the differences 

between the results of the two calibrations were not as pronounced as is typical (Table 

4.5).  The recalibration of the Richard Beene radiocarbon data trended very close to the 

initial results and occasionally skewed younger.   The most evident adjustments involve 

the Unit A4 Elm Creek Horizon, which the calibration has shortened by roughly 700 

years.  To a lesser extent, the terminus post quem for both Unit A5 and Unit A6 horizons 

were identified to have occurred earlier than the initial calibration.  The majority of these 

refinements are attributed to the implementation of the MCMC analysis of the 

recalibration results. The performance of the MCMC application appears to have been 

beneficial in that the largest refinements to the Richard Beene results were due to this 

statistical analysis. 

Lower Extent 

There are several issues with the radiocarbon dataset for the Copano Bay area.  

One issue regards the provenience information for the samples, only four of the ten 

radiocarbon assays could be placed into a stratigraphic context (Figure 4.5).  Further, 

none of the assemblage is charcoal, but rather composed of soil humate and shell (Paine 

1991:Table 5).  With these limitations in mind, the samples were recalibrated due to the 

implications of their results.  Specifically, Paine (1991:170–171) had interpreted these 

samples to represent distinct depositional events particularly in relation to the previously 

mentioned third transgressive pulse when sea level rose above present day levels by as 
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much as 0.9 m.  Therefore, the radiocarbon assays from the Copano Bay area were 

selectively chosen to determine how the recalibration of the assays would alter the initial 

interpretation. 

Six radiocarbon assays were selected from the Copano Bay area assemblage all 

from Egery Island (Table 4.3).  Four of the samples were in a stratified context (MSA-1) 

while the remaining two are indicated by Paine (1991:134) to date the sea level 

highstand.  Of note, only the four stratified radiocarbon assays were subjected to the 

phase model and Bayesian analyses of OxCal (Figure 4.4).  The remaining two 

‘unstratified’ samples (i.e., TX-6102 and TX-6103) were each calibrated individually.   

The results of the two ‘unstratified’ samples exhibit some parity.  They both are 

from shell samples that indicate the third transgressive highstand began sometime prior to  

5,466 cal yr BP and continued beyond 5,050 cal yr BP (Table 4.2).  In contrast, the oldest 

stratified assay (TX-6061) is from a buried soil and is indicated to date to 4,500–4,180 

cal yr BP.    This horizon is associated with alluvial floodplain deposits, which Paine 

(1991:134) implies represents a drop in sea level (i.e., regression) had begun.  A 

disconformity separates this horizon with the overlying clay horizon.  This incision or 

erosional event occurred sometime between 4,180–3,230 cal yr BP indicated by sample 

(TX-6060) that dates a period of clay dune growth.  This horizon signifying clay dune 

growth is one of four strata observed by Paine (1991:Figure 42).  Each stratum of clay 

dune growth is separated by a disconformity with the fourth stratum composing the 

modern surface.  The three periods of clay dune growth are calibrated to be 3,230–3,020 

cal yr BP, 2,670–2,400 cal yr BP, and 2,320–2,150 cal yr BP. 



  

 
 

 
CHAPTER 5 

Recalibrated Geoarchaeological Framework within the Colorado River Basin of 
Texas 

 
The Colorado River is the largest drainage contained entirely within Texas, which 

extends about 600 miles (965 km) and throughout its course drops in elevation about 

3,400 feet from its headwaters in Dawson County to its terminus at the Gulf of Mexico at 

Matagorda, Texas south of Bay City (Comer and Kleiner 2010).  The drainage trends 

almost exclusively southeast as it winds through the Southern High Plains into the 

Edwards Plateau where it runs through a bedrock confined valley before exiting the 

Balcones escarpment onto the relatively level Coastal plain (Blum 1992; Blum and 

Valastro 1994; Comer and Kleiner 2010).  The Colorado River basin encompasses about 

110, 000 km2 (42,475 square miles) with approximately 92 percent of the drainage 

network portion situated north of the Balcones Escarpment. Using a drainage basin 

division recognized by Blum (1992:18), the Colorado River basin is divided into two 

parts consisting of an upper and lower extent demarcated at the Balcones Escarpment 

(Figure 5.1).  Along its course, the Colorado River crosses a diverse assemblage of 

physiographic settings beginning in the Southern High Plains and drops into rolling 

prairies of the North Central Plains where it trends east-south eastward before turning 

southward to wind through series of canyons between the Central Texas Uplift (i.e., 

Llano Uplift) and the Edwards Plateau.  The drainage abruptly emerges out of the 

Edwards Plateau at the Balcones Escarpment and crosses a narrow band of Blackland  

71



 72 

  

 
Figure 5.1  Overview of Colorado River Basin: 1) O. H. Ivie Reservoir, 2) San 
Angelo study area, and 3) Lower Colorado River study area. 
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Prairie before entering the interior Coastal Plain, and finally the Coastal Prairies and 

Marshes. 

In the Upper Extent, the basin begins in a series of intermittent ephemeral draws 

that gradually converge to form the Colorado River.  The principle tributaries in the 

Upper Extent include the Pedernales, Llano, San Saba, and Concho Rivers while the 

primary tributaries of the Lower Extent include Onion, Big Sandy, Sandy, Cedar, Alum, 

Pin Oak, and Caney Creeks. Similar to the adjacent Guadalupe River, the Colorado River 

as it exits the steeper Edwards Plateau and enters the relatively flat Coastal Plain, they 

convert from a smaller bedrock incised channel with low-moderate sinuousity to a larger 

floodplain with an increase in sinuosity. 

Blum (1992:57–59) recognizes three components (i.e., gathering, transport, and 

deposition) of the basin in order to characterize the hydrology of the Colorado River 

basin.  The gathering component encompasses the entire upper extent of the Colorado 

River basin and, as the name implies, collects the sediment from the network.  The 

transport component moves the sediment from the Plateau downstream and extends 

across the interior Coastal Plain from the Balcones Escarpment downstream to roughly 

Columbus, Texas.  Finally, the deposition component deposits the drainage’s materials 

and roughly extends from Columbus, Texas to the coast. 

Previous Investigations  

 The Colorado River basin is second only to the Brazos River basin for previous 

investigations (Table 5.1).  Investigations have been conducted along the Colorado River 

basin for a little over 100 years, but the predominance of this research has been in the 

Lower Extent of the basin (Blum 1992; Blum and Valastro 1994).  Since the  
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investigations prior to the 1950s lacked chronometric control, the characterization of 

the deposits used relative dating techniques.  Furthermore, only within the last 30 years 

have there been concerted geomorphological investigations considering the effects of the 

drainages on the archaeological sites.  Numerous investigations have been performed 

with some facet of geoarchaeology within the last few decades, but a majority of these 

was either too narrowly focused on site integrity or restricted to a specific time period 

(e.g., Brownlow 2004, Carpenter et al. 2006, Lintz et al. 1991, Ricklis and Collins 1994, 

Quigg and Peck 1995). Fortunately, several projects within the basin, associated with the 

construction of reservoirs, encompass deposits from the Late Pleistocene to the present 

and were extensively investigated regarding alluvial history of the basin.   Beginning in 

the upper extent, a review of select projects within the basin will be conducted that will 

proceed downstream to the gulf. 

 The most comprehensive investigations within the Colorado River basin were 

conducted for the O. H. Ivie Reservoir at the confluence of the Concho and Colorado 

Rivers through the 1980s to early 1990s (Lintz et al. 1993).  In part, these investigations 

extensively examined the alluvial deposits of the Colorado and Concho Rivers as well as 

several tributaries and generated a series of excellent research (e.g., Blum 1989, 1992; 

Blum et al. 1989, 1994; Blum and Valastro 1989, 1992).  Unfortunately, out of the 

numerous radiocarbon assays from the O. H. Ivie investigations, only a select few (Tx-

5770 and Tx-6293) were corrected for isotopic δ 13C fractionation (Blum and Valastro 

1992:428; Winans 2010). Therefore, a majority of the assays could not be included in the 

current recalibration study.  Despite this impediment, Blum and others (1994) consider 

these dates as a minimum for each of the characterized deposits.  Thus, the chronometric 
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data will not be calibrated, but the interpretations of these researchers will be reviewed 

in more detail in the subsequent section. 

 Situated slightly upstream from the O. H. Ivie Reservoir investigations along the 

Concho River, archaeological research was conducted near San Angelo at sites 41TG307 

and 41TG309 in the early 1990s for a wastewater alignment (Quigg et al. 1996).  A 

component of this research was to characterize the alluvial deposits of the drainage 

(Frederick 1996:85–110).  The deposits along the Concho River at these sites encompass 

the Holocene and were correlated to previous geoarchaeological work at the O. H. Ivie 

Reservoir.  These investigations utilized relative and absolute dating techniques derived 

from charcoal, humate, and shell.  Although sparse, a series of radiocarbon assays 

associated with the depositional history of the drainage were collected and corrected for 

isotopic δ 13C fractionation (Quigg et al. 1996: Table 12.2).  

  In the late 1980s, Blum (1987) conducted a series of investigations along the 

Pedernales River, a tributary of the Colorado River, in order to determine the alluvial 

history of the drainage.  These investigations utilized relative dating techniques with a 

small suite (n=12) of radiocarbon assays (Blum 1987:69).  However, no information was 

provided regarding if the assays were calibrated or corrected for isotopic δ 13C 

fractionation.  Therefore, as with the O. H. Ivie data, the chronometric data for these 

investigations were not calibrated for this study, but the interpretations of Blum’s 

research will be reviewed in more detail in the subsequent section.  

 In the lower extent of the Colorado Basin, downstream from the Balcones 

Escarpment more research relevant to the depositional history of the basin was 

conducted.  Several previous investigators, in particular Blum (1992:81–102) provide an 
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in depth review of this research.  Most significant to the current study was Blum’s 

(1992) research of the lower extent of the basin, which characterized the depositional 

history and environments of the Colorado River.  These investigations utilized relative 

and absolute dating techniques and, most importantly, were corrected for isotopic δ 13C 

fractionation.   

Geomorphic/Alluvial History 

 The following review of the interpreted geomorphic/alluvial history of the 

Colorado River basin is based upon select summaries of previous research (Figure 5.2).  

For the upper extent of the basin, the research conducted along the Colorado and Concho 

Rivers for several reservoir projects and the Pedernales River on the Edward Plateau.  

The lower extent of the Colorado River basin is a distillation of the abundant 

investigations of the region and, particularly, Blum’s (1992) Colorado River 

allostratigraphic research.  

Upper Extent 

 This review of the upper extent of the Colorado River Basin is composed of three 

closely related projects.  Two of these investigations were conducted along a portion of 

the Concho River and its confluence with the larger Colorado River, while the third is on 

the Pedernales River.  The Pedernales River investigations were conducted within the 

Edwards Plateau while the other investigations occurred at the margins of the Plateau and 

the Southern High Plains. 

Colorado and Concho Rivers 

The largest project within the basin was conducted for the O. H. Ivie Reservoir 

project in Concho, Coleman, and Runnels Counties. The researchers recognized six  
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Figure 5.2 Initial Depositional History Colorado River Basin. 
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allostratigraphic units that extend from the Early-Middle Pleistocene until modern 

deposits (Blum and Lintz 1993; Blum et al. 1994; Blum and Valastro 1992).     Regarding 

the Late Pleistocene to the Holocene, the Late Pleistocene has two terraces that were 

associated with this time described as roughly 12–14 and 16–18 m above the modern 

drainage channel (Blum and Valastro 1992:427).  The more recent Late Pleistocene 

terrace exhibits some truncation from erosion and partially capped by eolian deposits.  

The only two assays (i.e., Tx-5770 and Tx-6293) from the O. H. Ivie dataset to be 

corrected for isotopic fractionation were derived from this terrace.  These dates indicate 

the terrace was deposited prior to 11,430+ 540 14C yr BP.   

The next allostratigraphic unit is identified as the Early to Middle Holocene 

alluvium and described as situated roughly 6 m above the modern channel and ranges 

from 2–9 m thick (Blum and Valastro 1992:431).  This stratigraphic unit was 

chronometrically dated with 25 assays that suggest it was deposited prior to 9,93014C yr 

BP and continued until the drainage avulsed sometime after 5,000 14C yr BP (Blum and 

Valastro 1992:431).  The researchers note that the terrace was stable for an extended 

period (possibly 3,000 years) allowing for soil pedogenesis until it was capped by the 

overlying Late Holocene allostratigraphic unit (Blum and Valastro 1992:431).  The Late 

Holocene deposits are characterized as unconformably overlying the Early to Middle 

Holocene alluvium and are situated up to 5–6 m above the existing channel.  Twenty-two 

radiocarbon assays suggest that this allostratigraphic unit was deposited between 4,600–

1,000 14C yr BP (Blum and Valastro 1992:431–434).  The final allostratigraphic unit is 

identified by the researchers as modern aligns the channel and chronometrically suggests 

deposition sometime prior to 840+70 14C yr BP (Blum and Valastro 1992:436).  These 
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radiocarbon assays were not corrected for isotopic δ  13C fractionation and were not 

calibrated for this study.   

Concho River 

 In contrast, the investigations conducted upstream along the Concho River for the 

San Angelo wastewater alignment were not as extensive as that employed at the O. H. 

Ivie investigations.  However, this research at sites 41TG307 and 41TG309 succinctly 

characterized the Concho drainage alluvial history.  Frederick (1996) recognized through 

a series of backhoe trenches and cutbank exposures four alluvial deposits, which he 

interpreted to correlate with the O. H. Ivie data (Figures 5.3a and 5.3b).  The oldest 

deposits were the Late Pleistocene alluvium only observed in a few locations situated 

beneath eolian or alluvial deposits (Frederick 1996:91–94). The Late Pleistocene deposit 

is described as sloping with an undulatory tread implying an erosional event subsequent 

to deposition.  Next, the overlying alluvial deposits designated Early-Middle Holocene is 

characterized as unconformably situated on the Late Pleistocene deposits and having two 

distinct alluvial fills (Frederick 1996:91–94).  Specifically, the Early-Middle Holocene 

deposits are composed of fine-grained overbank facies and a more coarse-grained pink 

colored sandy channel facies.  The radiocarbon data for the overbank alluvium indicate 

deposition between 8,300–5,300 14C yr BP, which suggests the pink colored channel 

deposits accumulated between 10,000 and 8,300 14C yr BP (Frederick 1996; Frederick 

and Boutton 1996).   

Situated above the Early-Middle Holocene unit are the Middle-Late Holocene 

deposits described as a mix of coarse (e.g., gravel and loamy sands) channel facies and 

fine-grained overbank facies (Frederick 1996:95–97).  Based on three radiocarbon assays 

(i.e., Beta-69766, Beta-72273, and Beta-69770), the interpreted deposition of the Middle-  
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Figure 5.3a  Profile of 41TG307 on Concho River (adapted from Quigg et al. 1996; 
Figure 5.2). 
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Figure 5.3b  Profile of 41TG309 on Concho River (adapted from Quigg et al. 1996: 
Figure 5.3). 
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Late Holocene unit to roughly coincide with that proposed at the O. H. Ivie data.  

However, instead of terminating around 1,000 14C yr BP, the Middle-Late Holocene ends 

about 1,300 14C yr BP.   

The most recent unit, the Modern alluvium was characterized as overbank, 

channel, and bar facies that composes the entire T0 terrace as well as aprons the adjacent 

T1a tread (Frederick 1996:97–100).  Notably, Frederick (1996:99) indicates that the 

deposits of the modern alluvium situated over the Middle-Late Holocene unit are almost 

indistinguishable.  Yet, a radiocarbon assay (Beta-70134) indicating a terminus post 

quem of 960 14C yr BP for the Middle-Late Holocene unit was collected (Frederick 1996: 

Figure 5.2, Table 12.2).  This assay derived from humate was not reviewed in the 

Middle-Late Holocene unit discussion and was presumably rejected as being 

stratigraphically inconsistent.  However, it may be correct and the allostratigraphic unit 

may actually be the Modern alluvium instead of the Middle-Late Holocene unit due to the 

difficulty of discerning the two deposits.   Regardless, the Modern alluvium was 

interpreted to have been deposited between 1,200 14C yr BP to the present (Frederick 

1996: 97–100).     

Pedernales River 

 Located further downstream in the Colorado River basin along the Pedernales 

River, Blum (1987) investigated a series of drainage cutbanks centered around 

Fredericksburg, Texas (Figure 5.1). Of note, Blum (1987) did not calibrate the 

radiocarbon assay results processed at the Radiocarbon Laboratory at the University of 

Texas (Blum 1987:3).    Considering the researcher lists the results with the assay’s 

deviation, the assumption is made that results are uncorrected 14C years that are reported.  

This research observed seven allostratigraphic units (Units A–G), which encompasses 
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Early Pleistocene to Modern deposits.  Most relevant, Unit D is associated with the 

Late Pleistocene, Unit E with the Early Holocene, Unit F with the Late Holocene, and 

Unit G with Modern deposits.  Unit D is characterized as a distinct terrace positioned 12–

13 m above the modern channel composed of a fining upward of clast materials (gravels 

to clays).  The radiocarbon assays for this unit indicated 17,260+230 14C yr BP and a 

very dubious 5,200+340 14C yr BP.   

Next, the Early Holocene Unit E is described as variable with coarse, weakly 

cemented gravels-gravelly sands in some exposures and a predominance of finer-grained 

sediments capped with a weakly developed paleosol (Blum 1987: Figure 34).  Based 

upon select radiocarbon assays and Pleistocene faunal remains (Equus sp.), the Unit E 

alluvium is interpreted to have been deposited between 11,000–7,000 14C yr BP (Blum 

1987:88).  Deposited unconformably upon Unit E is the Late Holocene Unit F that is 

characterized as possibly composed of up to 10 m of gravels and sand capped by a 

weakly developed soil (Blum 1987:91–93).  The sparse chronometric data for this unit 

suggest deposition occurred at roughly 5,000–800 14C yr BP.  The modern deposits, Unit 

G, are described as laterally confined with roughly 5 m of sand and gravels.  Blum 

(1987:96) notes that a radiocarbon assay (Tx-5532) was collected from the base of Unit G 

indicating this allostratigraphic unit was deposited between 900 14C yr BP and the 

present.  Overall, the depositional history outlined for the Pedernales River correlates 

with that proposed for the Colorado and Concho Rivers (O. H. Ivie and San Angelo) in 

the Upper Extent of the basin.  

Summary Upper Extent 

The researchers interpret the alluvial history of this section of the Colorado River 

basin to begin with a period of channel aggradation during the Late Pleistocene roughly 
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coinciding with the Last Glacial Maximum.  This period of floodplain construction was 

followed by a drainage avulsion and an extended phase of erosion around 14,000 14C yr 

BP, which deeply incised into bedrock.  This erosion continued until the development of 

the Early-Middle Holocene floodplain between 11,000–5,000 14C yr BP followed by 

another erosive event concurrent with a period of stability that formed a soil capping the 

unit.  The Middle-Late Holocene allostratigraphic unit began forming around 4,600 14C 

yr BP and continued until approximately 1,000 14C yr BP.  This period ended with a 

drainage avulsion and an extended phase of erosion concurrent with a period of stability 

that formed a soil capping the unit.  The modern phase of floodplain construction began 

roughly 800 years ago and continues to the present. 

Lower Extent 

  As previously defined, the lower extent of the basin extends from the Balcones 

Escarpment downstream to the Gulf Coast.  Undoubtedly, the most comprehensive 

investigations within this region were by Blum (1992).  These investigations recognized 

four Members for the entire lower Colorado River basin, which encompassed the Late 

Pleistocene to modern times (Blum 1992; Blum and Törnqvist 2000; Blum and Valastro 

1994).  Blum (1992) examined a series of Colorado River profiles between Austin and 

Wharton, in part, to characterize the depositional history of the lower basin and correlate 

it with the upper, determine the chronology of these fluvial events, and examine the 

influence of climatic and eustatic effects on these fluvial events.   

Colorado River 

 The four identified allostratigraphic members include the Eagle Lake 

alloformation of the Late Pleistocene and the Columbus Bend alloformation members 1–
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3 encompassing the Late Pleistocene to Holocene (Figures 5.3a and 5.3b).  The Eagle 

Lake alloformation is characterized as exhibiting varied facies depending upon position 

along the drainage (Blum 1992:149–165).  In the section identified as transport within the 

basin (i.e., Interior Coastal Plain), the deposits are primarily gravelly clast materials while 

the section identified as the depositional (i.e., Coastal Prairies and Marshes) exhibits 

finer-grained clast materials.  The Eagle Lake alloformation varies in thickness about 8–

10 m with the base situated on bedrock about 6–8 m above the modern channel (Figures 

5.4a and 5.4b).  This alloformation was dated with a series of radiocarbon assays, which 

indicate that accumulation began prior to 20,000 14C yr BP and ended sometime after 

14,000 14C yr BP (Blum 1992: Table 6.1).   

The Columbus Bend allomembers 1–3 are three terrace landforms that compose 

the Columbus Bend alloformation (Blum 1992: Figure 6.15). The roughly 10–12 m thick 

Late Pleistocene-Early Holocene deposits of the Columbus Bend member 1 rests 

unconformably on bedrock and against the Eagle Lake alloformation.  The Columbus 

Bend allomember 1 is described as comprising a variety of channel related deposits 

ranging from gravels to fine sands.  Blum (1992:177–178) interprets the deposition of 

this allostratigraphic unit to have been predominantly attributed to lateral migration as 

overbank deposits suggested by thick deposits of finer clast materials were rare.  The 

radiocarbon assays for the Columbus Bend member 1 indicate deposition occurred 

between 13,000–5,000 14C yr BP (Blum 1992: Table 6.2). 

Inset against and overlapping the Columbus Bend member 1 is the Middle-Late 

Holocene Columbus Bend member 2.  These deposits are typically over 12 m thick 

extending below modern water levels and characterized as having varied channel facies  
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Figure 5.4a  Idealized Cross-section of Colorado River Basin at the Eagle Lake locality 
(adapted from Blum 1992: Figure 6.5).   
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Figure 5.4b  Idealized Cross-section of Columbus Bend Members 1–3 at the Austin, 
West Point, and Columbus locations (adapted from Blum 1992: Figure 6.15). 
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with a predominance of floodplain facies (Blum 1992:186).  The Columbus Bend 

allomember 2 radiocarbon data suggest deposition occurred prior to 5,000 14C yr BP and 

continued until sometime after 1,000 14C yr BP.   

Interestingly, Blum (1992:186–190) observes that the Columbus Bend member 2 

seemingly had frequent episodes of high magnitude overbank flooding and ended with a 

period of stability, which formed a soil that capped the unit.   Next, the Columbus Bend 

member 3 is unconformably inset against the Middle-Late Holocene Columbus Bend 

member 2 indicating some erosion of this older unit.  The dramatic avulsion of the 

Colorado River that began the modern Columbus Bend member 3 is interpreted to have 

abandoned its initial course, the existing Caney Creek, and moved eastward to its modern 

course (Blum 1992:190–193).  This avulsion occurred near Wharton, Texas with Caney 

Creek trending southeast containing the older allostratigraphic units and the Colorado 

River trending south-southwest containing the modern Columbus Bend member 3 both 

emptying into the gulf about 32 km (20 miles) apart.   

The Columbus Bend member 3 is described as ranging from 1–10 m in thickness 

and collected radiocarbon assays suggest deposition between 600–100 14C yr BP.  Of 

note, the assays for the Columbus Bend member 3 were the only samples derived from 

wood while the remaining assays were humate materials (Blum 1992: Tables 6.1–6.4).  

Finally, Blum (1992:193) only notes cultural deposits within the Columbus Bend member 

3 consist only of historic artifacts.  The other allostratigraphic units for the lower extent 

of the basin have no mention of cultural materials as being present. 

Summary Lower Extent 

The alluvial history proposed for the lower extent of the basin is similar to that 

indicated for the upper extent.  Beginning at the Last Glacial Maximum, the Colorado 
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River had a period of extensive deposition between 20,000–14,000 14C yr BP (Blum 

1992; Blum and Valastro 1994).  This period of deposition was followed by an extended 

period of incision eroding underlying bedrock throughout the lower basin to its current 

levels.  Beginning around 12,000 14C yr BP, the formation of the Columbus Bend 

alloformation units occurred.  Columbus Bend member 1 deposition extended from 

roughly 12,000–5,000 14C yr BP followed by a reduction in flood magnitude beginning 

the deposition of Columbus Bend member 2 (Blum 1992; Blum and Valastro 1994: 

Figure 10).  The reduction in flood magnitude allowed for pedogenesis to occur in the 

Columbus Bend member 1 unit, which continued until approximately 2,500 14C yr BP.   

The Columbus Bend member 2 floodplain accumulated between 5,000–1,000 14C 

yr BP with an increase in flow regime occurring after 2,500 14C yr BP resulting in the 

burial of Columbus Bend member 1 (Blum 1992; Blum and Valastro 1994).  Subsequent 

to 1,000 14C yr BP, the flood magnitude decreased abandoning the Columbus Bend 

member 2 and at the Caney Creek meanderbelt (Blum 1992; Blum and Valastro 1994).  

The modern Columbus Bend member 3 accumulated within the last 600 years.  

Based on the general thickness of the units and the floodplain facies, Blum (1992:193–

197) observes that the flow regime for the basin changed over time.  Specifically, from 

the Late Pleistocene up to the Middle Holocene floodplain construction was 

predominantly lateral migrations while the latter half of the Holocene had a noticeable 

increase in overbank flooding (i.e., vertical accretion).          

Calibration Results 

Select assays of radiocarbon datasets for the previously reviewed Upper and 

Lower Extents of the Colorado River Basin were recalibrated.  As previously mentioned, 
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only two of the radiocarbon assays (Tx-5770 and Tx-6293) from the O. H. Ivie 

investigations were corrected for isotopic δ 13C fractionation (Blum and Valastro 

1992:428; Winans 2010).  Similarly, the assays for Blum’s (1987) investigations along 

the Pedernales River were not calibrated or corrected for isotopic δ 13C fractionation.  

Consequently, neither the O. H. Ivie nor Pedernales River datasets were calibrated for 

this study.   Fortunately, a series of radiocarbon assays from the investigations along the 

Concho River near San Angelo were corrected for isotopic δ 13C fractionation (Quigg et 

al. 1996: Table 12.2).  Although sparse, these data are used as a proxy for the upper 

extent of the Colorado River basin.   In contrast, the dataset for the lower extent of the 

Colorado River basin is robust and adequately represents the depositional history of the 

basin.     

Upper Extent   

Five radiocarbon assays were selected from Quigg and others (1996: Table 12.2) 

chronometric assemblage derived from fluvial sediment (i.e., humate) and wood.  These 

assays from charcoal and humus were selected due to their known stratigraphic context 

and association with three of the identified stratigraphic units (Figures 5.3a and 5.3b).  

Other assays were available, but rejected as these samples were derived from mussel 

shell.  One assay represents the Early-Middle Holocene, three assays represent the 

Middle-Late Holocene, and one assay represents the Modern unit (Table 5.2).  Notably, 

one assay (Beta-70134) was not included due to several troubling factors including its 

stratigraphic inconsistency as initial radiocarbon analysis indicated (Frederick 1996:97–

100).  Therefore, due to the questionable validity of this sample it was not included in the 

recalibration.    
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 The results of this recalibration indicate the terminus ante quem for the Early-

Middle Holocene terrace is 8,270–8,010 cal yr BP (Table 5.2).  The overlying Middle-

Late Holocene unit suggests deposition began prior to 5,220 cal yr BP indicating the 

abandonment of the Early-Middle Holocene unit sometime in the intervening 2,790 

years.  The terminus post quem of the Middle-Late Holocene unit (i.e., assay Beta-72273) 

is 3,370 cal yr BP while the overlying modern unit began sometime prior to 1,230 cal yr 

BP. Therefore, the abandonment of the Middle-Late Holocene terrace and formation of 

the modern terrace occurred in the approximate 2,000-year interval.   

Despite the obvious limitations of the dataset, the recalibration of the Concho 

River chronometric data is informative.  Specifically, in regards to the Early-Middle 

Holocene deposits Frederick (1996:94) notes a horizon of pink colored channel deposits 

likely deposited between 10,000 and 8,300 yr BP.  The recalibration of the data conforms 

with Frederick’s (1996) initial interpretation, but may need to be pushed back in age 

considering the 8,270–8,010 cal yr BP result.  Further, the deposition of the Middle-Late 

Horizon between 5,220–3,370 cal yr BP conforms with the interval of deposition 

proposed at O. H. Ivie and the Pedernales River.  Similarly, the deposition of the modern 

deposits also concurs with that proposed by Frederick (1996:97–100). 

Lower Extent   

Nineteen radiocarbon assays were selected from the Blum’s (1992) assemblage 

derived from fluvial sediment (i.e., humate) and wood.  Admittedly, only three of the 

assays were from wood while the remaining 15 assays were from humate materials 

(Table 5.2).  These 19 assays were selected for calibration because their stratigraphic 

position at their collection location at the Eagle Lake, Columbus, and West Point 
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localities was identified (Blum 1992: Figures 6.6a, 6.15).  More significantly, all of 

these samples were corrected for isotopic fractionation (Blum 1992: Tables 6.1, 6.2, and 

6.3).  Four assays are from the Eagle Lake Member, five assays are from the Columbus 

Bend Member 1, seven are from the Columbus Bend Member 2, and three are from 

Columbus Bend Member 3.  

The results of the recalibration indicate that the Eagle Lake Member began 

deposition prior to 22,500 cal yr BP and terminated deposition sometime after 19,000 cal 

yr BP, which is immediately after the last glacial maximum at ~23,500 cal yr BP (Figure 

5.5).  The overlying Columbus Bend Member 1 has a terminus ante quem of 15,940 cal 

yr BP suggesting an approximate 3,000-year gap between the two members.  This gap 

(19,000–15,940 cal yr BP) is interpreted to be a dramatic period of deep bedrock erosion-

incision, which concurs with the disconformity separating the two units (Blum 1992, 

Blum and Valastro 1994).   

The Columbus Bend Member 1 continued deposition until a soil capping these 

deposits began to develop between 5,550–5,210 cal yr BP suggesting a period of stability.   

This period of pedogenesis may indicate when the Colorado River decreased flow and 

began the deposition of the Columbus Bend Member 2. The terminus ante quem of the 

Columbus Bend Member 2 is 4,570 cal yr BP suggesting the floodplain abandonment of 

Columbus Bend Member 1 and erosion minimally occurred during the 640-year gap 

between Columbus Bend Members 1 and 2.  During this time, the Colorado River is 

interpreted to have increased in flood magnitude and overtopped the Columbus Bend 

member 1 terrace and soil.  Initially, this was argued to have occurred around 2,500 14C 

yr BP.  Two radiocarbon assays (i.e., Tx-6533 and Tx-6534) indicating an age of  
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Figure 5.5  Calibrated Depositional History Colorado River Basin. 
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3340+90 and 3320+90 14C yr BP, respectively were collected from the Columbus Bend 

Member 2 veneer capping the soil (Figure 5.4b).  

  Unfortunately, these assays were not corrected for isotopic δ 13C fractionation.  

However, a radiocarbon assay (Tx-6810) of equivalent uncorrected radiocarbon age (i.e., 

3330+90 14C yr BP) was corrected for fractionation and calibrated.  This calibrated assay 

used as a proxy dated to 3830–3580 cal yr BP, which could be inferred to suggest that the 

increase in flood magnitude on the Colorado River occurred prior to this age (Table 5.2).   

The Columbus Bend Member 2 continued deposition until roughly 900 cal yr BP 

when soil pedogenesis occurred between 890–710 cal yr BP.  The overlying Columbus 

Bend Member 3 has a calibrated terminus ante quem of 540 cal yr BP suggesting an 

approximate 170-year gap between it and Columbus Bend Member 2.  Again, the 

avulsion of the Colorado River, which abandoned the present day Caney Creek meander 

belt, may have taken place prior to the pedogenesis of the Columbus Bend Member 2 and 

before the deposition of the Columbus Bend Member 3, which continues up to the 

present.  

The recalibration of the Lower Colorado River basin chronometric data when 

contrasting the initial investigation exhibits some notable trends.  Typically, adjustments 

are limited to the older assays, but the recalibration of Blum’s (1992) dataset exhibits 

shifts throughout all of the allostratigraphic members.  These prevalent adjustments 

between the initial and recalibrated datasets are in no small part attributed to the fact that 

the initial 14C assays were not calibrated. The most prominent adjustment occurs between 

the Eagle Lake and Columbus Bend 1 members (Figure 5.5).  The Late Pleistocene Eagle 

Lake Member terminates sometime after 19,000 cal yr BP much older than previous 
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interpreted.  Similarly, the Columbus Bend Member 1 begins prior to 15,940 cal yr BP 

much earlier than initially proposed (i.e., ~13,000 14C yr BP).  Also, the termination of 

Columbus Bend Member 1 occurred about 200–300 years earlier and followed by a gap 

of roughly 650 years before Columbus Bend Member 2 begins deposition.   

The abandonment of the Columbus Bend Member 1 floodplain is interpreted to 

have been followed by a period of erosion, which seemingly occurred between 5,210–

4,570 cal yr BP.  The termination of Columbus Bend Member 2 has been shifted to end 

about 300 years more recently around 710 cal yr BP compared to the initial ~1,000 14C yr 

BP (Blum 1992, Blum and Valastro 1994).  Finally, the beginning of Columbus Bend 

Member 3 occurred around 500 cal yr BP as opposed to ~1,000 14C yr BP separated by an 

approximate 200 year erosion after the abandonment of the Columbus Bend Member 2 

floodplain.        

Other observations during the recalibration of the lower extent of the Colorado 

River basin include several chronological gaps within the radiocarbon assays of 

Columbus Bend Members 1 and 2 (Figure 5.6).  Two chronological gaps were observed 

in the Columbus Bend Member 1 between 11,940–8,790 cal yr BP and 8,410–5,840 cal 

yr BP and one recognized hiatus in Columbus Bend Member 2 between 3,010–1,660 cal 

yr BP.  These lulls may be attributed to sampling rather than issues of geomorphic 

processes or preservation.  To investigate this possibility an additional suite of 

radiocarbon assays from Blum’s (1992) chronometric dataset were examined.  Additional 

assays were gathered from Columbus Bend Members 1 and 2 regardless of whether their 

stratigraphic context could be determined and incorporated into the recalibration study.  

These data suggest that the 11,940–8,790 cal yr BP is the result of sampling as it   
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Figure 5.6  Select Calibration Plot of Lower Extent of Colorado River Basin; arrows 
indicate hiatus periods. 

 

 

 

Columbus Bend Member 3 

Columbus Bend Member 2 

Columbus Bend Member 1 
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disappears with the introduction of the additional assays.  However, the new data 

demonstrate that gaps at 8,410–6,310 cal yr BP and 3,010–1,880 cal yr BP remain.  These 

chronologic lulls have narrowed down a little, but still suggest a hiatus in Columbus 

Bend Members 1 and 2.  Again, the reason for these phenomena is undetermined if they 

are attributed to depositional processes, sampling, or a combination of these factors.  

Interestingly, these chronological gaps do correlate with similar lulls in other drainage 

basins.  These temporal hiatuses, apparent correlations and possible causes are examined 

further and contrasted with other recalibrated analyses in Chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 CHAPTER 6 

Recalibrated Geoarchaeological Framework within the Brazos River Basin of Texas 
 

The Brazos River is the largest drainage within Texas extending about 1,200 

miles (2,000 km) from its headwaters at Blackwater Draw in New Mexico to its terminus 

at the Gulf of Mexico at Freeport, Texas near Galveston (Figure 6.1). The Brazos River 

basin encompasses about 44,000 square miles (114, 000 km2) and throughout its course 

drops in elevation about 4,600 feet (Epps 1973; Hendrickson 2010). The contributory 

network of drainages within the Brazos River is extensive.  From upstream to 

downstream, several of the most significant contributing drainages of this large basin 

include Yellowhouse Draw, Blackwater Draw, Running Water Draw, Double Mountain 

Fork, Salt Fork, Clear Fork, Palo Pinto Creek, Bosque River, Leon River (with Henson 

Creek, Cowhouse Creek—Table Rock Creek—House Creek), Lampasas River, Little 

River (San Gabriel River—Brushy Creek and Salado Creek—Buttermilk Creek), 

Navasota River, and Oyster Creek.  As a consequence of this vast network, the Brazos 

River and its tributaries crosses a diversity of physiographic settings between its genesis 

and conclusion.  Trending south and east from its beginning in the High Plains, the basin 

crosses the Rolling Plains, the Cross Timbers and Prairies, across the alternating 

Blackland Prairies and Post Oak Savannah regions, and finally the Gulf Prairies and 

Marshes.    

Previous Investigations 

 Possibly due to its size, the Brazos River basin is the most extensively 

investigated basin in Texas.  As early as 1901, researchers have been evaluating and 

102
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Figure 6.1  Overview of Brazos River Basin: 1) Lubbock Lake site, 2) Fort Hood, 3) 
and A&M study area. 

1 

2 

3 
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documenting the basin, but the investigations prior to the 1950s lacked chronometric 

control (Hill 1901: 345—359).  Subsequent to the introduction of 14C analyses, relative 

temporal characterizations of drainage terrace deposits were then supplemented with 

absolute dating (Table 6.1).   To be sure, there have been some substantial 

geomorphological investigations previously conducted, but a comparatively few of those 

truly considered the effects of the drainages on the archaeological sites.  Within the 

Brazos River basin, the incorporation of geomorphic examinations into archaeological 

investigations (i.e., geoarchaeology) began early.  These early concerted efforts 

employing archaeological geology occurred due to Early Man studies particularly at the 

Lubbock Lake site (41LU1) on a tributary of the Brazos River.  Since that time, 

numerous significant geoarchaeological investigations have been carried out along the 

Brazos River and its tributaries.  Although more investigations have been performed with 

some facet of geoarchaeology, but most of these were typically general reviews of the 

immediate site area focused primarily with site integrity or a similarly narrow focus (e.g., 

Alexander 2008; Gadus et al. 2006; Gibson 1997; Hilliard 1997; Pearl 1997).  

 The culmination of these previous geomorphic, geoarchaeological, and 

archaeological investigations are a collection of Late Quaternary stratigraphic history 

across the Brazos River basin.  Several researchers have compiled a comprehensive 

review of the previous investigations in the upper extent (Holliday 2009, 2000, 1997; 

Mandel 1992:53–57), the middle extent (Nordt 1993, 1992), and the lower extent (Abbott 

2000). Due to the broad geography of their coverage, the varied focus of those 

investigations and the span of time, only a select few of those research projects were 

selected for this study.   
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 Using a modified basin divisions recognized by Epps (1973) and Nordt (1983), 

the Brazos River Basin is broken into three parts.  Largely attributed to the underlying 

geology and physiography these sections consist of the Upper Extent, the Middle Extent, 

and the Lower Extent.  Roughly outlined, the Upper Extent begins at Yellowhouse Draw 

(Lubbock Lake) in the High Plains and trends eastward off of the Llano Estacado across 

the Osage Plains until about the Parker and Hood County line.  From this point, the 

Middle Extent trends south-southeast across the Cross Timbers and Blackland Prairie 

stopping just south of the margins of the Balcones Escarpment and the confluence of the 

Little and Brazos Rivers.  At this point, the Lower Extent begins to cross the Gulf Prairies 

and Marshes of the Coastal Plain and runs southeastward until the Brazos River finally 

empties into the Gulf of Mexico near Freeport, Texas.  

Upper Extent 

 One project conducted in the Upper Extent of the Brazos River Basin reexamined 

here is the Lubbock Lake investigations (Holliday 1997).  In addition to the 14C dating, 

this research of this project is relevant due to the extensive investigations of the Lubbock 

Lake site (41LU1) with the intent of characterizing the depositional history of the 

channels and surrounding landscape.  The extensiveness and implications of the previous 

research at the Lubbock Lake site (41LU1) is not to be understated.  The research at this 

locality is varied and prolific (e.g., Holliday 1985, 1988, 1995, 1997, 2000, 2009; 

Holliday and Johnson 1983, 1986, 1981; Holliday et al. 1983, 1985, 1999; Johnson and 

Holliday 1980; Stafford 1981,1983) and the following review does not intend to 

supersede previous research.  Rather, this review is a compilation of previously identified 

stratigraphy and an examination of the chronometric analyses (Figure 6.2).   
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Figure 6.2  Initial Depositional History Brazos River Basin. 
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   The Lubbock Lake site (41LU1) was first discovered in 1936 during 

excavations in the Yellowhouse Draw House for construction of a reservoir in Lubbock, 

Texas (Holliday 1997:76).  These construction activities encountered evidence of 

Paleoindian occupations, which instigated investigations over subsequent decades.  

Various prominent researchers have comprehensively investigated the deposits at 

Lubbock Lake and along the Yellowhouse Draw drainage with some minor variations in 

interpretation.  Generally, the stratigraphy at Lubbock Lake is characterized as having 

five primary strata (Strata 1–5) containing various internal horizons, and paleosols 

(Holliday 1997, 1985; Stafford 1981).   

The oldest deposit recognized at Lubbock Lake is Stratum 1, which is described 

as alluvial deposits and possibly localized lacustrine deposits that contain Pleistocene 

fauna and Clovis cultural materials (Holliday 1985:1484–1486, 1997:78–83; Stafford 

1981).  Radiometric data for this stratum suggests it terminated sometime prior to 11,000 

14C yr BP (Holliday 1985:1484).  Above the first horizon is the complex Stratum 2 

characterized as containing several internal horizons (Strata 2A, 2B, 2e, 2s, and 2F) 

composed of lacustrine, marsh, eolian, and possibly spring deposits and capped by the 

Firstview Soil, a paleosol (Figure 6.3).  The horizons of Stratum 2 are interpreted to have 

been deposited roughly between 11,000–6,300 14C yr BP (Holliday 1985:1486–1487; 

Stafford 1981:552).  The Firstview Soil is indicated to have developed approximately 

between 8,500–6,300 14C yr BP (Holliday 1985:1487).   Situated above Stratum 2, is 

Stratum 3 recognized as having two distinct internal horizons with one composed of 

eolian deposits (3e) and a lacustrine deposit (3l) and capped by a buried soil identified as 

the Yellowhouse Soil (Holliday  
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Figure 6.3  Idealized Profile of Lubbock Lake site (adapted from Haas et al. 1986: 
Figure 4). 
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1985:1487).  Stratum 3 contains cultural materials from the Archaic period and is 

interpreted to have been deposited about 6,300 14C yr BP and capped by the overlying 

horizon about 5,500 14C yr BP (Holliday 1985:1488).   

Unconformably overlying Stratum 3 is Stratum 4 composed of two internal 

horizons (i.e., Strata 4A and 4B) and capped by the Lubbock Lake Soil (Holliday 

1985:1488–1489).  The deposits of Strata 4A and 4B are described as spring and eolian 

deposits, respectively and contain cultural materials extending from the Middle Archaic 

to Late Prehistoric.  Stratum 4 is interpreted to have been deposited between 5,500–

4,50014C yr BP followed by an extended period of stability represented by the Lubbock 

Lake Soil.   

Subsequent to the extended period of stasis, the deposition of Stratum 5 began 

around 750 14C yr BP (Holliday 1985:1489).  Stratum 5 is characterized as containing 

two internal horizons (Strata 5A and 5B) of lacustrine deposition each capped with the 

Apache and Singer soils, respectively.  The Stratum 5 deposits contain Late Prehistoric to 

Historic cultural materials and continue up to modern times. 

The general depositional sequence interpreted from these deposits argues that a 

period of incision occurred during the Late Pleistocene followed by the deposition of 

Stratum 1when the climate was wetter and cooler (Holliday 1985:1489–1492).  A 

decrease in drainage discharge likely attributed to a reduction in moisture ushered in the 

lacustrine/marsh environment of Stratum 2.  Researchers have varied interpretations for 

the cause of the impoundment of the Yellowhouse Draw at this time.  Regardless of 

whether the static flow is from eolian deposits damming the channel (Holliday 1985, 

1997; Holliday and Johnson 1983) or part of a natural pool (Stafford 1981, 1983) the 
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Yellowhouse Draw at this time was not flowing.  The climate is interpreted to have 

become gradually warmer and drier in part attributed to eolian deposits at the end of 

Stratum 2 and throughout Strata 3 and 4 (Holliday 1985: Figure 7).  The increasing 

presence of eolian deposits was interpreted to represent a decrease in vegetative cover 

and stasis to allow the development of the Yellowhouse Soil.  A possible drought is 

interpreted to have occurred followed by a trend toward modern climatic conditions 

during Stratum 4.  Some localized erosion (i.e., unconformity) is noted at the Strata 3 and 

4 boundary that may reflect the return of some moisture and modern conditions.  The 

modern climatic conditions are interpreted to have continued throughout Stratum 4 

concurrent with the development of the Lubbock Lake Soil.  The presence of colluvial 

slope wash in Stratum 5 may represent swings toward arid environments beginning about 

1,00014C yr BP. 

Middle Extent 

 For a variety of reasons, the Middle Extent of the Brazos River Basin is the most 

extensively investigated region through geomorphological and geoarchaeological 

methods in Texas (Table 6.1).  One factor is the prevalence of development within this 

portion of the basin, but most influential is the presence of the Fort Hood military reserve 

in Hood County.  Archaeological and geoarchaeological research has been conducted for 

almost two decades within this military reserve.  Various research within Fort Hood, 

which encompasses several significant tributaries of the Brazos River, has spawned 

numerous reports, articles, masters’ theses, and doctoral dissertations (Campbell and 

Johnson 2004; Hilliard 2000; Mehalchick et al. 2000; Nordt 1992, 1993, 1995, 1996, 

2004; Nordt et al. 1994; Nordt et al. 1998).  This portion of the Brazos River Basin also 
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contains two of Texas’ more prominent prehistoric sites that have some exceptional 

stratigraphic records and have similarly influenced extensive research (Alexander 2008; 

Bousman 1998; Collins 1998; Gibson 1997; Goldberg and Holliday 1998).  Specifically, 

Wilson-Leonard (41WM235) on Brushy Creek in Williamson County and the Gault Site 

(41BL323) on Buttermilk Creek in Bell County.  The current research will consider select 

investigations conducted within Fort Hood on Cowhouse Creek.     

Cowhouse Creek (Fort Hood) 

 Within Fort Hood, the geoarchaeological investigations have focused upon the 

Henson Creek, North Nolan Creek, Reese Creek, Cowhouse Creek and its tributaries 

Table Rock, Owl, and House Creeks and the Leon River, which they all eventually 

intercept.  This research over the last two decades has gradually constructed a 

comprehensive depositional history for the region as well as systematically evaluated a 

diversity of settings and drainages ranging in size from upland tributaries to their 

associated lowland trunk channels.   

The culmination of these previous investigations of the Fort Hood drainages has 

identified four late quaternary landforms (designated T3 to T0) that contain six 

allostratigraphic units (Nordt 1992, 1993, 1995, 2004).  From oldest to most recent, Nordt 

(1992, 2004) recognizes the Pleistocene Reserve alluvium only observed on the Leon 

River, the middle-late Pleistocene Jackson alluvium, the early Holocene Georgetown 

alluvium, the middle Holocene Fort Hood alluvium, the late Holocene West Range  

alluvium, and the recent Ford alluvium (Figure 6.4).  Further, the West Range unit is 

occasionally divided into Upper and Lower West Range units interpreted to be separated 

by an erosional disconformity (Nordt 1992, 2004).  These investigations have also 

documented several buried soils (i.e., paleosols) within the drainages.  Within Cowhouse  
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Creek and its tributaries, the Royalty Paleosol is recorded at the top of the Georgetown 

unit (Nordt 2004).  Similarly, Henson Creek contains the Royalty Paleosol and the 

Tanktrail Paleosol at the top of the Upper West Range unit (Nordt 1995).    The 

chronology of these stratigraphic units is derived from a series of 14C analyses (Nordt 

1992: Appendix J). 

The oldest allostratigraphic unit identified in the Fort Hood study area is the 

Jackson alluvium identified resting on Glen Rose limestone and composes the T2 terrace 

along the investigated drainages (Nordt 1992, 1993, 1995, 2004).  The chronometric data 

for the Jackson alluvium is provided by a single bulk sediment humate sample roughly 

dating 15,000 14C yr BP indicating deposition occurred during the Late Pleistocene 

(Nordt 2004: Table 1).   Nordt (2004:296–297) indicates that a period of incision-erosion 

occurred before the construction of the second allostratigraphic unit (Georgetown 

alluvium).  

The Georgetown alluvium, which composes the T1 terrace in the study area, is 

identified as early Holocene.  Eight radiocarbon samples have been collected from this 

unit, but only two (Beta-63007 and GX-15762) are uncontaminated charcoal (Table 6.2).   

The remaining samples are from bulk soil humate and have not been used in this study.  

The two charcoal samples date to about 8,900 14C yr BP and 8,30014C yr BP, 

respectively.  Capping the Georgetown alluvium is the Royalty paleosol (Nordt 2004).  

Subsequent and possibly concurrent to the development of the Royalty paleosol, a 

dramatic decrease in hydrologic flow occurred particularly along Cowhouse Creek that 

partially eroded this paleosol (Nordt 2004:297). 
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 121 

 After the brief erosional event, the Fort Hood alluvium began to be deposited 

upon the Georgetown alluvium (Nordt 2004).  This alluvial unit composes the majority of 

the T1 terrace and had 12 radiocarbon samples to provide chronometric data.  Half of 

these samples were charcoal and primarily date to 6,900–4,700 14C yr BP.  One sample 

(GX-15760) collected from the Leon River investigations dates to 8,600 14C yr BP, which 

temporally overlaps with the older Georgetown alluvium.  The construction of the Fort 

Hood alluvium ended during another change in hydrologic flow coupled with an 

erosional event.  

Above the Fort Hood alluvium on the T1 terrace on Cowhouse Creek is the West 

Range alluvium unit.  Frequently recognized as two separate units (upper and lower), this 

allostratigraphic unit has had the most radiocarbon samples (n=29) collected from it 

within the Fort Hood study area.  Sixteen of these samples are derived from charcoal and 

primarily date from 4,200–600 14C yr BP.  The division between the upper and lower 

West Range alluvium is interpreted to be a very brief erosional event and an increase in 

hydrologic flow occurring around 2,400 14C yr BP (Nordt 2004:297).  Subsequent to that, 

the Upper West Range alluvium is indicated to have a coarser bed load from the 

increased flow.  Capping the Upper West Range in some locations (Henson Creek) is a 

buried soil identified as the Tanktrail paleosol (Nordt 1995).  Further, only the Upper 

West Range division was identified on Henson Creek, which occupied the T0 landform 

and not the T1 as identified on the larger Cowhouse Creek (Nordt 1995, 2004).  The 

absence of the Lower West Range on Henson Creek is likely attributed to a complete 

removal from the brief erosional event around 2,400 14C yr BP (Nordt 1995:214).  The 

West Range alluvium ended during another erosional event around 600 14C yr BP, which 



 122 

incised into underlying bedrock beginning the modern Cowhouse Creek floodplain 

(Nordt 2004:297).   

Finally, above the West Range alluvium forming the modern Cowhouse Creek 

floodplain and current allostratigraphic unit is the Ford alluvium.   This alluvial unit 

composes the T0 terrace and has 12 radiocarbon samples to provide chronometric data.  

These samples, all derived from charcoal or wood, date from 700–200 14C yr BP  

However, using only those samples from the Cowhouse Creek drainage Nordt (2004) 

correlates the Ford alluvium to encompass 400 14C yr BP to the present.         

Lower Extent 

 Numerous geomorphic examinations have been conducted along the Lower 

Extent of the Brazos River Basin.  One of the most significant is Abbott’s (2001) 

synthesis of regional geoarchaeology, which provides an exceptional review of previous 

research for the lower extent of the basin as well as the Gulf Coast. This research 

examined the Late Quaternary stratigraphy and various geomorphic processes of the 

Houston area.   Further, Abbott (2001) cogently characterized the affects of the processes 

upon the cultural resources within this area and developed a model for evaluating the 

likelihood for the presence and integrity of archaeological resources.  Although these 

investigations did have chronometric data, it was not a primary component of the 

research.   

Similarly, most of the other geomorphic investigations in the lower basin have not 

undertaken extensive chronometric analysis (e.g., Husain 1998; Nordt 1983, 1986).  One 

exception is a project conducted in the mid-1990s that did examine a suite of radiocarbon 

samples with the intent of characterizing the depositional history of the basin.  The 
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research conducted by Waters and Nordt (1995) compared allostratigraphic units they 

had identified in the Brazos River study area with other drainage basins in the region.  

The researchers investigated a 75 km segment of the Brazos River between the cities of 

Hammond and Navasota and west of College Station, Texas.   These investigations 

involved the examination of numerous drainage profiles as well as documentation of six 

cutbank exposures and the collection of charcoal and bulk sediment samples for 

chronometric analyses.      

Brazos River (A & M Study area) 

The culmination of these investigations was the identification of a complex 

depositional history of the Brazos River that extended into the Late Pleistocene, which 

exhibited multiple allostratigraphic units (Figure 6.5).  The researchers interpreted the 

stratigraphy in the examined floodplain to have five allostratigraphic units (i.e., Units I–

V) bounded by erosional disconformities and buried soils (Waters and Nordt 1995:311–

312).  The chronometric analyses for this study consisted of 15 radiocarbon samples 

composed of wood and charcoal and two sediment humate samples (Waters and Nordt 

1995:315).  Although the researchers calibrated these radiocarbon results to calendar 

years, they reported the results in radiocarbon years.    

The earliest allostratigraphic unit (Unit I) is situated upon Tertiary bedrock and 

had three radiocarbon samples (two wood and one bulk sediment humate) that ranged 

from approximately 18,000–8,400 14C yr BP (Waters and Nordt 1995:Table 1).  Two of 

the radiocarbon samples were collected from a buried soil (A&M soil), which capped 

Unit I interpreted to be the terminus post quem for this allostratigraphic unit at roughly  

 



 124 

 

 
Figure 6.5  Idealized Cross-section of Brazos River at A&M study area (adapted from 
Waters and Nordt 1995: Figure 3). 
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8,400 14C yr BP.  Notably, one of the samples (GX-15417) came from a cultural feature 

within the A&M paleosol, which caps Unit I (Waters and Nordt 1995:313).   

 The second allostratigraphic unit (Unit II) rests unconformably above Unit I 

suggesting a period of erosion between the end of Unit I and the beginning of Unit II 

(Waters and Nordt 1995:315–316).  The researchers interpreted this break as a decrease 

in hydrologic discharge along the Brazos River citing a smaller channel and decrease in 

lateral movement of the drainage.  Three radiocarbon samples were collected from Unit II 

ranging from 8,100–4,200 14C yr BP.   One of the radiocarbon samples (i.e., AA-12579) 

was collected from a cultural feature within a buried soil (Buffalo soil) that caps Unit II 

and marks the terminus post quem for this unit at about 4,200 14C yr BP.   

 The third allostratigraphic unit (Unit III) is unconformably situated above Unit II, 

which in places has eroded the Buffalo soil (Waters and Nordt 1995:314–315).  The 

researchers interpret this erosion as an avulsion event that terminated the stable period of 

the Buffalo soil and began Unit III.  The chronological data for the third allostratigraphic 

unit consists of four samples that range from 2,500–900 14C yr BP.  Unit III is capped by 

a buried soil (Asa soil) from which two radiocarbon samples were collected.  One sample 

at the base of the Asa soil was a bulk soil sample (i.e., GX-15418) dating to roughly 

1,300 14C yr BP while the second sample (i.e., A-6400) was collected from a cultural 

feature and marks the terminus post quem for Unit II at about 900 14C yr BP.  Notably, 

temporally diagnostic artifacts were recognized at both the top and bottom of the Asa 

paleosol.  Near the base, a Middle to Transitional Archaic Gary/Kent projectile point 

interpreted to range from 4,450–1,450 cal yr BP was observed while Late Prehistoric 

Scallorn and Perdiz artifacts interpreted to range from 1,250–450 cal yr BP were 
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observed at the top of the Asa paleosol (Turner and Hester 1999).  Simply put, the 

diagnostic artifacts provide a broad range of 4,450–450 cal yr BP for the Asa paleosol 

while the radiocarbon analyses indicate a much more refined range of 1,300–900 14C yr 

BP for the buried soil.  

 Overlying Unit III is the fourth allostratigraphic unit (Unit IV), which has five 

radiocarbon samples all from wood that roughly range from 530–300 14C yr BP (Waters 

and Nordt 1995: Table 1).  Unit IV is also capped by a buried soil (Katie soil), which the 

authors describe as ‘weakly developed’ (Waters and Nordt 1995:315).   

 The final allostratigraphic unit is Unit V and represents the modern floodplain 

surface (Waters and Nordt 1995:315).  This unit is characterized as a thin drape capping 

Unit IV and is interpreted to have began deposition approximately 300 years ago (Waters 

and Nordt 1995:315).   

 Overall, the authors briefly summarize the history of the Brazos River study area 

(Waters and Nordt 1995:316).  Sometime in the Late Pleistocene around 18,000 14C yr 

BP, a large and widely migrating Brazos River deposited Unit I.  By the beginning of the 

Holocene about 8,400 14C yr BP this unit had a period of stability, which developed the 

A&M soil.  Between 8,400–8,100 14C yr BP, the Brazos River avulsed and decreased in 

hydrologic flow and began depositing Unit II.  The deposition of this unit continued until 

roughly 4,200 14C yr BP when a period of stability occurred developing the Buffalo soil.  

Possibly lasting until 2,500 14C yr BP, the stability ended when the Brazos River avulsed 

again severely eroding the Buffalo soil and began depositing Unit III.  The construction 

of Unit III continued until roughly 1,250 14C yr BP when the Brazos River entered a 

period of stability, which developed the Asa paleosol.  At approximately 500 14C yr BP, 
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the river avulsed again forming Unit IV that lasted until about 300 14C yr BP when the 

Katie paleosol developed.  The modern unit (Unit V) began deposition at roughly 300 14C 

yr BP with the latest avulsion of the Brazos River forming the modern drainage channel.    

Calibration Results 

The radiocarbon datasets for the previously reviewed Upper, Middle, and Lower 

Extents of the Brazos River Basin were recalibrated.  Beginning at the Lubbock Lake site 

on Yellowhouse Draw, the results are presented from this point in the upper limits of the 

basin followed by the Fort Hood chronometric results downstream and finally the 

chronometric data at College Station area.  Undeniably, there are an abundance of 

previous investigations and radiocarbon datasets throughout the Brazos River Basin that 

could also have been recalibrated.  However, these three datasets have been extensively 

used by other researchers to characterize the depositional history of the Brazos River 

basin.  Further, each study has good stratigraphy that extends to the Late Pleistocene, has 

cultural deposits in almost all of the recognized stratigraphic units, and has a robust 

chronometric dataset. 

Upper Extent   

Forty-eight radiocarbon assays were selected from the Lubbock Lake (41LU1) 

assemblage derived from humic acid, humin, and charcoal (Haas et al. 1986:Table 1).  

The selected assays are part of a relatively straightforward profile, which exhibits the 

stratigraphic context of each of the samples in relation to each other.  Consequently, with 

the vertical relationship and strata information, the recalibration of the samples can be 

examined and interpreted (Haas et al. 1986: Figure 4).  Of note, the overwhelming 

majority of these radiocarbon assays are from humic acid or humin.  Unfortunately, 
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samples derived from charcoal were the minority in this assemblage.  Therefore, due to 

reasons previously elaborated (e.g., mean residence time), the calibrated results for these 

samples may trend older than their true temporal context.  However, these chronometric 

data do conform sequentially and associated temporally diagnostic artifacts do correlate 

with the respective strata.   

The five stratigraphic units (Strata 1–5) at the Lubbock Lake site were categorized 

into eight phases based upon internal horizons within the strata.  Specifically, the 

chronometric assays were grouped from oldest to youngest into Stratum 1, Stratum 2A, 

Stratum 2B, Stratum 3, Stratum 4A, Stratum 4B, Stratum 5A, and Stratum 5B.  The two 

samples collected from the top of Stratum 1 calibrated to 13,080–12,850 cal yr BP.   

The terminus ante quem for the overlying Stratum 2A calibrated to 12,460 cal yr 

BP suggesting a possible 390-year gap between the end of Stratum 1 and the beginning of 

Stratum 2.  Interestingly, Stratum 1 is recorded to contain Clovis cultural materials while 

Stratum 2A contains a Folsom occupation (Haas et al. 1986: Figure 3).  The terminus 

post quem of Stratum 2A is indicated to be about 11,600 cal yr BP while the base of 

Stratum 2B dates to roughly 11,490 cal yr BP suggesting a very brief gap (100 years) that 

falls within the margin of deviation.  The brief (about 860 years) Stratum 2A contains 

Folsom deposits while Stratum 2B is recorded to have Plainview cultural materials at the 

lower portions and Firstview occupations near the top (Haas et al. 1986: Figure 3).   

Stratum 2B is capped by a buried soil aptly titled the Firstview Soil (Haas et al. 

1986; Holliday 1985).  The assays from the Firstview Soil indicating the terminus post 

quem of Stratum 2B calibrate to 8,920–7,270 cal yr BP (Table 6.2).  The three assays 

from the overlying Stratum 3 calibrates to 6,630–5,830 cal yr BP suggesting an 
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approximate 670 year gap between Strata 2 and 3.  Stratum 3 is capped by the 

Yellowhouse Soil characterized as weakly developed (Holliday 1985:1487).  Two of the 

Stratum 3 assays (i.e., SMU-1093 and SMU-531) come from the Yellowhouse Soil 

calibrating to 6,100–5,830 cal yr BP almost encompassing the entire span of Stratum 3.  

Interestingly, the overlying Stratum 4A calibrates to 5,810–5,720 cal yr BP 

suggesting a very brief gap between Strats 3 and 4, which is at variance with the observed 

stratigraphy.  Specifically, Stratum 4A is recognized to unconformably rest upon Stratum 

3 suggesting an erosive event belying the negligible gap between these strata (Holliday 

1985:1488).  Consequently, the accuracy of the dates for the Strata 3 and 4 transition 

should be accepted with prudence.   

The calibrated terminus ante quem for Stratum 4B is 5,690–5,340 cal yr BP while 

the Lubbock Lake Soil assays capping Stratum 4B calibrate to 2,240–740 cal yr BP.  

These results suggest an approximate 3,100-year hiatus between the Lubbock Lake Soil 

and the base of Stratum 4B (Haas et al. 1986: Figure 4).  This hiatus likely attributed 

more to sampling rather than deposition, but it is interesting that this gap falls within the 

enigmatic Middle Archaic archaeological period.   

The overlying Stratum 5A has a calibrated terminus ante quem of 650–560 cal yr 

BP and is capped by the Apache Soil providing the terminus post quem, which dates to 

430–300 cal yr BP (Figure 6.4; Table 6.2).  Finally, the sole assay for Stratum 5B 

calibrates to 230–30 cal yr BP suggesting that it is decidedly modern.       

Comparing the initial Lubbock Lake radiocarbon calibration results to the 

recalibration of this study demonstrates some significant differences (Figure 6.6).  

Notably, these shifts were to be expected considering the initial radiocarbon assays were  
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only partially calibrated.  Specifically, assays older than 7,240 14C yr BP (i.e., 

preceding Stratum 3) were not initially calibrated (Holliday et al.  1983:170, 1985).  

Rather, the initial dates prior to Stratum 3 were to be considered ‘minimum ages’ for the 

respective assays (Holliday et al. 1983:171).  Therefore, the older assays of the site 

(particularly in Strata 1 and 2) having been adjusted by more recent calibration data, do 

exhibit significant adjustment (Figure 6.6).  The recalibration results push the ages of 

Stratum 1 back about 1,500 years and considerably shorten this unit.  Similarly, Stratum 

2 has also been pushed back to start approximately 12,500 cal yr BP.   Further, the 

beginning of Stratum 4 has been shifted about 500 years older to begin about 5,800 cal yr 

BP. However, the Strata 3 and 4 transition rests on a disconformity and, as previously 

mentioned, the accuracy of the dates for the Strata 3 and 4 transition warrants caution.   

The comparison of the chronometric data for the remaining Lubbock Lake strata aligns 

exceptionally well.  Although there are some refinements in the assays, these differences 

are negligible.  

Another observation from the recalibration of the Lubbock Lake data regards the 

‘hiatus’ in Stratum 4B.  Specifically, an apparent 3,100-year gap in radiocarbon age 

reveals itself between the Lubbock Lake Soil and the base of Stratum 4B.  None of the 

Stratum 4B chronometric data overlaps this time period.   This temporal gap is probably 

more a result of sampling rather than depositional or geomorphic processes.      

Middle Extent   

Twenty-one radiocarbon assays from Cowhouse Creek and one from Tablerock Creek 

were selected from the investigations in Fort Hood derived from humate and charcoal to 

be calibrated (Nordt 1992, 2004: Table 1). The selected assays are overwhelmingly 
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charcoal are from a good stratigraphic context, and compose an assemblage used to 

characterize the alluvial history of Cowhouse Creek and Fort Hood (Nordt 2004: Figures 

5 and 6). As previously indicated, six allostratigraphic units have been identified within 

the Fort Hood study area, which from oldest to youngest include Jackson alluvium, 

Georgetown alluvium, Fort Hood alluvium, Lower West Range alluvium, Upper West 

Range alluvium, and the Ford alluvium.  

The one sample collected from the Late Pleistocene Jackson alluvium calibrated 

to 18,680–18,080 cal yr BP (Table 6.2).  This assay (Beta-38694) is the sole humate 

sample in this assemblage.  Above the Jackson alluvium is the Georgetown 

allostratigraphic unit, which calibrated to 10,100–9,750 cal yr BP.   The significant 

7,980-year gap between the end of the Jackson alluvium and the beginning of the 

Georgetown alluvium correlates to a period of incision, which likely eroded significant 

deposits of the Jackson allostratigraphic unit (Nordt 2004).  The Georgetown alluvium is 

capped by the Royalty paleosol, but none of the selected assays from Cowhouse Creek 

was from this buried soil.  However, a charcoal assay (GX-15762) associated with the 

Royalty paleosol from Tablerock Creek was used as a proxy and calibrated indicating the 

buried soil dated to 9,410–9,120 cal yr BP (Nordt 1992).  The four assays for the 

overlying Fort Hood alluvium calibrates to 7,780–5,860 cal yr BP.  An approximate 

1,300-year gap separates the Georgetown and Fort Hood units, which correlates to a 

period of incision.  The terminus ante quem for the Lower West Range alluvium 

calibrates to 4,790 cal yr BP and terminates sometime after 2,790 cal yr BP.   

The overlying Upper West Range calibrates to 2,430–570 cal yr BP indicating an 

approximate 400-year gap between the Upper and Lower West Range units.  Of note, a 
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hiatus is present in both these West Range units (Figure 6.7).  In the Lower West 

Range, a 650-year hiatus occurs at one sigma deviation between 3,980–3,330 cal yr BP.  

Similarly, in the Upper West Range a 500-year hiatus occurs between 1,330–830 cal yr 

BP.  At present, it is undetermined if these gaps are reflective of depositional processes, 

sampling, or a combination of these factors.  However, the hiatus of the Lower West 

Range coincides with the aforementioned gap observed in Stratum 4B at Lubbock Lake 

(Haas et al. 1986; Holliday 1985).  Regardless, the period of incision identified between 

the Lower and Upper West Range units appears to have occurred between 2,790–2,430 

cal yr BP (Nordt 2004: Figure 6).  Finally, overlying the Upper West Range unit is the 

Ford alluvium that calibrates to 450–220 cal yr BP.  The identified period of incision 

between these units appears to have been brief (120 years) and occurred between 570–

470 cal yr BP.     

Some notable differences are apparent when contrasting the initial Cowhouse 

Creek at Fort Hood radiocarbon calibration results to the recalibration of this study.  

Typically, adjustments are limited to the older assays, but the recalibration of the 

Cowhouse Creek dataset exhibits shifts throughout all of the allostratigraphic units. The 

largest shift involved the Georgetown unit where the recalibration truncated the 

beginning and terminus of this unit (Table 6.2).  Admittedly, the recalibration did utilize 

a radiocarbon assay (i.e., GX-15762) from a drainage (i.e., Tablerock Creek) other than 

Cowhouse Creek as a proxy to date the Royalty paleosol.  However, the assay was 

derived from charcoal and conforms to the Cowhouse Creek chronology and is 

considered reliable.  Another significant shift occurs in the Fort Hood unit, which has 

been pushed back about 700 years.  The shift suggests that the Fort Hood unit is almost  



 134 

 

 
Figure 6.7 

 

Select Calibration Plot of Cowhouse Creek assays; arrows illustrate hiatus 
periods. 

Ford 

Upper West Range 

Lower West Range 



 135 

entirely within the Early Archaic instead of spanning the Early and Middle Archaic 

periods.  The beginning of the Lower West Range unit is shifted about 500 years to begin 

at roughly 4,800 cal yr BP.  Interestingly, a 650-year gap in the radiocarbon assays (i.e., 

3,980–3,330 cal yr BP) is revealed in the Lower West Range unit and a similar 500-year 

gap occurs in the Upper West Range.   

Lower Extent   

 Fourteen radiocarbon assays from the investigations along the Brazos River west 

of College Station was selected for calibration (Table 6.2).  Only two of the fourteen 

assays were derived from humate, the majority of the samples came from charcoal and 

wood.  Also of note, Waters and Nordt (1995) encountered cultural features or artifacts 

within each of the buried soils at the College Station study area.  Specifically, evidence 

was observed in the A&M soil of Unit I, the Unit II Buffalo soil, the Unit III Asa soil, 

and in the Katie soil of Unit IV.  The presence of these cultural deposits provided data 

(i.e., hearth charcoal) from which to securely date each of the paleosols and by extension, 

periods of environmental stability.   

 Unfortunately, one of the three radiocarbon assays available for Unit I is derived 

from humate.  However, the result of the calibration of the humate assay (i.e., A-7513) 

conforms with the charcoal radiocarbon result from Unit I and is considered reliable. 

Notably, Waters and Nordt (1995: Table I) provide an assay (SMU-1754) derived from 

wood reportedly in the Unit I channel facies, which is the terminus ante quem for this 

unit. The calibration of this assay dates to 21,450–20,970 cal yr BP with the next 

recalibration date is 9,570 cal yr BP.  Considering Waters and Nordt (1995) do not 

indicate a disconformity between these two assays, the implications are that the erosive 
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pre-Holocene event is not represented at this study area.  Further, if the erosive event is 

not present then the enigmatic Pre-Clovis timeframe should be intact.  However, there are 

multiple reasons that this assay (SMU-1754) should be regarded with caution.  The assay 

was collected from a gravel pit on the edge of the floodplain and its vertical position to 

the other Unit I samples is not indicated.  Therefore, this assay is interpreted with some 

prudence.  

   The calibration of the A&M soil that caps Unit I and provides the terminus post 

quem suggests that this unit ceased deposition sometime after 9,320 cal yr BP.   The 

overlying Unit II began deposition prior to 9,200 cal yr BP indicating an extremely short 

(80 year) transition between the two units.  The deposition of Unit II continued until the 

Middle Holocene ending sometime after 4,640 cal yr BP.  The calibration of the Buffalo 

Soil that caps Unit II suggests a period of stability occurred prior to 4,840 cal yr BP.  

Notably, two gaps in the chronometric data of Unit II are evident within this unit.  One 

gap exhibits a 1,300-year hiatus between 8,810–7,480 cal yr BP while the second 2,500-

year gap occurs between 7,290–4,840 cal yr BP (Table 6.2 and Figure 6.6).   These gaps 

are partially attributed to sampling since only three radiocarbon assays represent Unit II.  

Another possibility may be attributed to a base level rise in sea level (i.e., transgression).   

As previously mentioned in the Nueces River basin study, a rapid rise in sea level 

occurred along the Gulf at 6,800–5,900 cal yr BP and 4,200–3,000 cal yr BP (Ricklis and 

Blum 1997; Ricklis and Cox 1998).  

 Unconformably resting on Unit II is the third allostratigraphic unit (i.e., Unit III) 

(Figure 6.5).  The recalibrated terminus ante quem for Unit III suggests deposition began 

prior to 2,650 cal yr BP when the Brazos River is interpreted to have avulsed and 
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severely eroded the Buffalo soil of Unit II.  The erosive event occurred sometime 

between 4,640–2,650 cal yr BP, which not coincidently squarely falls within the second 

sea level transgression (4,200–3,000 cal yr BP) identified by Ricklis and others (1997, 

1998).  The Asa Soil that caps Unit III provides the terminus post quem that suggests the 

Brazos River entered a period of stability prior to 1,390 cal BP and ends sometime after 

740 cal yr BP.  Finally, sometime prior to 560 cal yr BP an avulsion occurred that began 

the construction of Unit IV.  The Brazos River entered a brief period of stability forming 

the Katie Soil around 300 cal yr BP followed by the most recent avulsion, which formed 

the modern channel (Unit V).    

In aggregate, this depositional history of the Brazos River basin identified from 

the recalibration of previous research will be compared with those in other drainage 

basins and correlated with extrinsic factors in Chapter 8. 

 

 

 



  

 
CHAPTER 7 

Recalibrated Geoarchaeological Framework with the Trinity River Basin 
 

The Trinity River is solely contained within Texas and is generally recognized to 

have an upper and lower extent (Gard 2010).  The Upper Trinity River basin is situated in 

the North Central Plains region and encompasses the headwaters region of the basin 

bounded by the Brazos River basin to the south and the Red River basin to the north.  The 

Trinity River basin is the only basin within this study that does not cross the Edwards 

Plateau.  Instead, the Upper Trinity River is recognized to cross forested rolling 

topography with narrow stream channels with three main headwater branches, the Elm 

Fork, the West Fork, and the Clear Fork Rivers (Ferring 1991; Gard 2010).    In contrast, 

the Lower Trinity River basin crosses the grass prairies of the Gulf Coastal Plain 

beginning just between Dallas, Texas and the Trinity’s confluence with the Elm Fork 

River and trends southeastward to terminate at Trinity Bay on the coast (Figure 7.1).  

Overall, the basin encompasses a total 17, 969 mile² (46,500 km²) area with the three 

Upper Trinity River branches averaging 114 miles (183 km) in length while the Lower 

Trinity River basin is about 260 miles (420 km) long (Ferring 1991; Gard 2010; Garvin 

2008; Prikryl 1990).   Some of the prominent contributory drainages in the Trinity River 

basin include Elm Fork, East Fork, West Fork, and Clear Fork Rivers.   Less prominent 

tributaries include Ten Mile, Five Mile, White Rock, Keechi, Clear, Hickory, and Cedar 

creeks as well as Cedar Bayou.  The easternmost tributary is the East Fork that is about 

78 miles (125 km) long and extends through Grayson, Dallas, and Kaufman Counties.  

The central tributary drainage is the roughly 85 mile (137 km) long Elm Fork River, 

138
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Figure 7.1  Overview of Trinity River Basin: 1) Ray Roberts-Upper Trinity River 
study area. 

 

1 
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 which runs through Montague, Cooke, and Denton Counties.  The westernmost 

tributary drainage is the 180 mile (290 km) long West Fork River that runs through 

Archer, Jack, Tarrant, and Dallas counties.  The Trinity River within the Lower extent of 

the basin runs generally southeast through Kaufman, Ellis, Henderson, Navarro, 

Freestone, Anderson, Leon, Houston, Madison, Walker, Trinity, San Jacinto, Polk, 

Liberty and Chambers Counties where it empties into Trinity Bay near Anahuac, Texas. 

Previous Investigations 

 The Trinity River and its deposits have been of interest to geologists and 

archaeologists for over a hundred years (Ferring 2000).  Arguably, the first 

geoarchaeological investigation to have been conducted in Texas occurred in 1920 in the 

Trinity River basin (Table 7.1).  Specifically, Robert Hill and Ellis Shuler examined a 

human skeleton discovered at the Lagow Sand Pit along the Trinity River in Dallas 

County to determine its association with Pleistocene fauna (e.g., mammoth, camel, and 

horse) also discovered there (Ferring 2000:47).  Hill and Shuler interpreted the human 

remains to be contemporaneous with the Pleistocene fauna, although subsequent analyses 

in the late 1960s determined that the remains were actually much younger.   

 Despite the fact that these early researchers (e.g., Robert Hill, Cyrus Ray, or Ellis 

Shuler) did not benefit from radiocarbon dating, their research attempted to determine the 

age of the Trinity River terraces and its deposits having some success.  The first 

researchers to characterize the terraces of the Trinity River in combination with 

reconstructing the paleoenvironment were Stovall and McAnulty (1950) in Henderson  
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County.  Similarly, the lower extent of the basin and gulf coast has been extensively 

considered by numerous researchers (e.g., Bernard et al. 1962, 1970).   Concerted 

geoarchaeological investigations appear to have begun in the late 1960s in the lower 

extent of the Trinity River basin and in the 1980s for the upper extent.  In the Lower 

Trinity River basin, Aten (1983) conducted a series of archaeological investigations along 

the coast with a research focus on geomorphic processes.  

For the Upper Trinity River basin, the research that occurred for Lake Ray 

Roberts involved an extensive geoarchaeological component (Prikryl and Yates 1987).  

Since then several significant geoarchaeological investigations have been carried out in 

the Trinity River Basin.  Interestingly, the research in the Trinity River basin has largely 

been conducted either in the upper extent or in the extreme lower extent along the Gulf 

Coast.  Unfortunately, geoarchaeological research along the middle region of the Trinity 

River has been sparse.  Despite the limited amount of geoarchaeological investigations 

within the basin, the research that has been conducted is thorough and far-reaching. 

Some of the first archaeological investigations within the Trinity River basin with 

a focus on geomorphic processes was conducted by Aten (1983).  The initial research 

was associated with the Wallisville Reservoir project in Chambers County, which later 

developed into a much larger synthesis.  Aten (1983:104–162) supplemented previous 

archaeological investigations with geologic investigations along the Trinity River and 

produced a synthesis of Late Quaternary stratigraphy for the drainage and the coast.  

Within the basin, Aten (1983:105) characterized the Trinity River as having a series of 

fluvial terraces encompassing the Pleistocene to modern times.  From oldest to youngest 
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these include terraces T4–T0 with terraces T4 and T3 associated with the Pleistocene 

while T2–T0 encompassing the Late Pleistocene to modern (Aten 1983:Table 8.3).   

 The most extensive geoarchaeological investigations within the Trinity River 

basin are associated with the Ray Roberts-Lewisville Reservoir project in Cooke, Denton, 

and Grayson Counties (Prikryl and Yates 1987; Ferring and Yates 1997).  The creation of 

these reservoirs from the impoundment of segments of the Elm Fork River generated 

archaeological investigations extending over two decades by a variety of interdisciplinary 

researchers (e.g., SMU, Environmental Consultants Inc., USACE-FW, and University of 

North Texas).  Among the many notable accomplishments from this research was the 

discovery and investigation of the Aubrey Clovis site (41DN479).  The Aubrey Clovis 

site situated on the Elm Fork River was identified to have an intact stratigraphy extending 

back into the Pleistocene (Ferring 1990a, 1990b, 1991, 1992, 1994, 1995a, 1995b, 2000, 

2001; Humphrey and Ferring 1994).  Most significant, the site has a Paleoindian 

occupation with a well-dated stratigraphy that suggests it is the oldest Clovis site 

currently known (Ferring 2001).  In addition, the extensive investigations at Aubrey 

Clovis have provided a robust radiocarbon dataset and information from past 

environments.  

Finally, a geoarchaeological examination was conducted at the Dickie Carr site 

(41PR26) also in the upper extent of the Trinity River basin (Byers 2007).  The Dickie 

Carr site is located in eastern Parker County situated on a terrace of Mill Creek, a 

tributary of West Fork River.   Byers (2007:57–72) identified three stratigraphic units 

(Units I–III) that contained a complex stratigraphy extending to the Late Pleistocene with 

the remains of a Mammuthus columbi (Unit Ib), a Late Paleoindian component (Unit IIa), 
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and a Late Archaic component (Unit IIb).   The researcher compared the site deposits 

and setting with other archaeological sites in the region.  Unfortunately, no chronometric 

analyses were conducted for this research. 

Geomorphic/Alluvial History 

 The following review of the depositional history of the Trinity River basin is 

composed of an intensive review of the interpretations associated with the Ray Roberts-

Lewisville Reservoir project and particularly the Aubrey Clovis site (41DN479).  As 

mentioned previously, there is a paucity of geoarchaeological research in the interior or 

middle portions of the Trinity River basin followed by the coastal region.  Although this 

depositional history is in the upper limits of the basin, the data is applicable to the rest of 

the basin.  

Upper Extent Trinity River Basin 

In summarizing the alluvial history of the Upper Extent of the Trinity River basin, 

Ferring (1994) recognizes four morphostratigraphic units (i.e., landforms) composed of 

deposits from six alloformations (Figure 7.2).  The morphostratigraphic units identified 

from oldest to youngest include the Stewart Creek Terrace, Hickory Street Terrace, 

Denton Creek Terrace, and the Floodplain that are interpreted to encompass the Middle 

Pleistocene up to the present. 

The Stewart Creek Terrace composed of Irving alloformation deposits and the 

Hickory Street Terrace, which is composed of the Coppell alloformation deposits are 

indicated to date to the Pleistocene sometime around 30,000 years ago (Ferring 1994; 

Ferring and Yates 1997).  The more recent Denton Creek Terrace is composed of 

deposits from the Carrollton alloformation that contain Pleistocene faunal remains (e.g., 
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Figure 7.2  Stratigraphic Columns from Aubrey Clovis site (adapted from Ferring 
1994: Figure 3.9). 
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Bison antiquus) and is interpreted to date to roughly 30,000–20,000 years ago (Ferring 

1994:47–48).  Most relevant to the archaeology of the region is the landform identified as 

the Floodplain.  The Floodplain contains deposits from three alloformations that from 

oldest to youngest include the Aubrey, Sanger, and Pilot Point alloformations.   

Ferring (1994) indicates that the Aubrey alloformation dates to the Late 

Pleistocene-Holocene transition.  The terminus ante quem for this alloformation is from 

the Aubrey Clovis site (41DN479), which initially calibrated to 17,030 cal yr BP (SMU-

2236) and terminates sometime after 14,410 cal yr BP (Ferring 1994; Ferring and Yates 

1997).  The initial calibration of the overlying Sanger alloformation begins in the Late 

Pleistocene sometime prior to 13,460 cal yr BP (AA-5274) and extends to sometime after 

7,550 cal yr BP (SMU-2339) (Ferring 2001: Table 3.2).  Ferring (1994:58–59) notes that 

the Sanger alloformation is capped by a moderately developed buried soil that in several 

locations has been eroded by the Pilot Point alloformation.  The Pilot Point deposits 

began prior to 4,470 cal yr BP (SMU-2401) and terminated sometime after 1,676 cal yr 

BP (Beta-14963).  A well-developed cumulic soil identified as the West Fork soil 

frequently caps the Pilot Point alloformation interpreted to encompass the last 4,000 

years.   

Beginning in the Late Pleistocene, the alluvial history of the Upper Trinity River 

basin as defined by Ferring (1994:147–149) has a period of stasis with no discernable 

geomorphic activity occurring between 14,000–11,000 years ago (17,000–13,000 

calibrated).  Specifically, Ferring (1994:147) notes that no alluvial or colluvial deposition 

or evidence of a disconformity is associated with this period.  Subsequent to 11,000 years 

(13,000 calibrated) ago, a period of rapid alluviation occurs in the basin initiating a phase 
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of valley filling (Figure 7.3).  Interestingly, this period of rapid alluviation occurred 

shortly after the Clovis occupation at the Aubrey Clovis site and continued until 7,500 

years ago (7,550 calibrated) (Ferring 1994:148).  This event is inferred to be associated 

with a shift to a moister (i.e., mesic) climate.  By the middle of the Holocene, a shift to a 

drier (xeric) climate occurred as evidenced by soil development in the Sanger 

alloformation and eolian deposits in some of the uplands of the upper basin of the Trinity 

River (Ferring 1994:148).  These xeric conditions seemingly continued until roughly 

4,500 years ago when a period of rapid alluviation occurred and the deposition of the 

Pilot Point alloformation began (Ferring 1994:148–149).  The rapid alluviation is 

particularly apparent between 3,000–2,000 years ago (Ferring 1994:149).  

In contrast to other researchers, Ferring (1994) notes that alluviation in the Upper 

Trinity River basin does not correlate with arid conditions.  Instead, Ferring (1994:150–

153) noted in this basin that the fluvial response to moist conditions was rapid alluviation 

and/or erosion while drier conditions led to stability and soil development and that the 

primary internal influence on a landscape’s evolution is the underlying bedrock, which 

affects the vegetation.  Specifically, the calcareous loams and clay loams derived from 

weathered limestone support a prairie environment that is more resistant to erosion.  

Conversely, the non-calcareous soils derived from sandstone and shale supports a mixed 

forest environment that has a lower threshold for erosion.  Two primary external 

influences identified are the climate and changes in sea level.  Although no examples are 

provided, eustatic influence is proposed as a possible influence to the upper extent of the 

basin.  

 



 148 

 

 

Figure 7.3  Initial Depositional History Trinity River Basin.
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   Regarding overall archaeological potential within the upper basin, Ferring and 

Yates (1997) indicate that archaeological sites occur in two principal contexts (i.e., 

terraces and upon or below floodplains).  For the terraces, Ferring and Yates (1997) 

propose that the Trinity River terraces between Dallas and Valley View are Late 

Pleistocene in age.  As such, any archaeological sites less than 11,000 years old (~13,000 

calibrated) could occur on the terrace surfaces, which are supported by numerous surveys 

in the area particularly in Denton, Dallas, and Tarrant Counties (Ferring and Yates 

1997:279).    

For the floodplains in the Upper Trinity River basin, the age of the sites on the 

floodplains can be predicted by their stratigraphic location (Ferring and Yates 1997: 

Table 18.2).  Unfortunately, Ferring and Yates (1997) note that cutbank exposures along 

Elm Fork River are “poor” and alluvial units thicken as they progress downstream.  

Consequently, older sites will become increasingly difficult to discern downstream.  This 

will be particularly evident for Paleoindian–Middle Archaic sites, which will likely 

require mechanical excavation for their discovery.  In contrast, the Pilot Point 

alloformation is exposed within the cutbanks of the entire upper extent of the basin and is 

characterized as thick, dark and clayey with a buried soil (West Fork soil) located 

beneath recently deposited sand (Ferring and Yates 1997:280). 

Calibration Results 

The radiocarbon datasets for the previously reviewed investigations associated 

with the Ray Roberts-Lewisville Reservoir project in the upper Trinity River basin were 

recalibrated (Table 7.2).  The chronometric data consists of 57 samples derived from a  
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dozen locations (Ferring 1994: Table 3.1; Ferring 2001: Table 3.2).  Of note, the 

radiocarbon assays associated with the Coppell and Carrollton alloformations were not 

recalibrated for this study due to their early temporal setting (i.e., Pleistocene).  Rather, 

only the assays associated with the Aubrey, Sanger, and Pilot Point alloformations were 

recalibrated (Table 7.2).  These alloformations were selected due to their associations 

with cultural materials and the implications regarding paleoenvironmental interpretation 

across the upper extent of the Trinity River basin.  The materials composing the 

radiocarbon assays include charcoal, soil humate, peat organic residue, and sediment 

humate (Ferring 1994: Table 3.1).   Unfortunately, none of the assays for the Aubrey 

alloformation were derived from charcoal, but the terminus ante quem of the overlying 

Sanger alloformation are from charcoal.  The Pilot Point alloformation contained the 

most radiocarbon assays (n=32) of the three and also had the most samples derived from 

charcoal (n=22).  Thus, the Pilot Point alloformation is the most securely dated of the 

three.     

The results of the recalibration of all the assays revealed an adjustment in the 

Aubrey alloformation, but admittedly not that dramatic considering the initial calibration 

(Ferring 2001: Table 3.2).  Specifically, the Aubrey alloformation is indicated to have 

begun sometime prior to 17,340 cal yr BP and terminated sometime after 14,490 cal yr 

BP (Figure 7.4).  The stratigraphic spread of the Aubrey alloformation assays suggests a 

good, continuous coverage (Figure 7.5).  The overlying Sanger alloformation seems to 

have begun deposition prior to 13,510 cal yr BP and terminated sometime after 6,400 cal 

yr BP.  The terminus ante quem for this alloformation are from the two charcoal samples 

(AA-5271 and AA-5274) recovered from the Aubrey Clovis site.   
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Figure 7.4  Calibrated Depositional History Trinity River Basin.
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Figure 7.5  Select Calibration Plot of Upper Trinity River Basin assays; arrow 
indicates hiatus period. 
 

Pilot Point alloformation 
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 These dates (13,550–13,280 cal yr BP) are significant in that they are at the 

boundary between the Aubrey and Sanger alloformations and date the Clovis occupation 

at the site (Ferring 2001:50).  Further, the assay (SMU-2194) that caps the Clovis 

occupation for the site recalibrated to an age of 12,940–12,710 cal yr BP (Table 7.2).  

The Clovis occupation at Aubrey Clovis seems to have securely occurred between 

13,280–12,940 cal yr BP, which makes them the oldest North American Clovis site 

(Ferring 2001:50–51).   Remarkably, these dates do not change from the initial 

calibration conducted by Ferring (2001: Table 3.2).  Consequently, Ferring’s (1994, 

2001) initial interpretation appears to be unchanged in light of the most recent calibration 

curve.  However, for the remainder of the Sanger alloformation, there appears to be two 

significant gaps that occurred between 9,360–8,350 cal yr BP and 7,230–6,610 cal yr BP.  

The overlying Pilot Point alloformation began sometime prior to 4,710 cal yr BP and 

continued until sometime after 500 cal yr BP.  In general, the Pilot Point alloformation 

has an excellent stratigraphic spread suggesting continuous accumulation, but there is one 

temporal gap between 4,400–3,580 cal yr BP (Figure 7.6). 

Comparing these recalibrated results to the initial investigations, the most 

prominent changes are in the older dates.  As mentioned previously, the adjustments from 

the current Incal09 curve is negligible.  The statistical analyses using MCMC did refine 

the temporal spread of some of the assays, particularly in the Aubrey alloformation.  

Possibly as an indicator of the good, continuous coverage of the assays, the adjustments 

from the MCMC iterations were not drastic.  Of note, another reason is likely to be that 

due to the incorporation of assays from a dozen locations, the stratigraphical arrangement 

of the assays within the alloformations was commonly unknown and sorted solely by age. 
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Regardless, the overall temporal extent encompassed within the alloformations is 

informative. 

The results of the recalibrated chronometric data within the Trinity River basin 

are examined further and compared with other recalibrated data in the following Chapter 

8. 
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 CHAPTER 8 

Patterns and Correlations across Texas River Basins and Region 
 

This chapter consolidates the results from the previous basin recalibration studies.  

One of the primary objectives is to determine any depositional patterns within and 

between drainage basins and, by extension, attempt to correlate them with extrinsic 

factors (e.g., climate and eustasy).  As with any search for patterns, the researcher will 

inevitably find them in abundance.  At issue is the relevance and validity of identified 

relationships.  Simply put, when is a pattern an a priori construct made in the 

researchers’ mind and when does it truly reflect the effect of an external agent?  This is a 

particularly apt question in regards to comparing multiple drainage basins over an 

expansive region using data from disparate researchers each with distinct research foci.  

The radiocarbon recalibrations for this study have provided a chronological baseline for 

all of the selected study areas.   This recalibrated chronological framework is a factor that 

previous investigations did not have. 

This chapter begins by reviewing intra-basinal relationships of each of the 

drainage basins followed by inter-basinal connections, and finally regional patterns.  The 

chapter ends with a review of extrinsic factors that may be attributed to these proposed 

patterns.  For the basin comparisons, there are three basic categories that are used indicate 

general activity within the drainages:  periods of aggradation, periods of stability, and 

periods of instability.  Aggradation is interpreted to be periods when deposition was 

occurring within the basin represented by recorded allostratigraphic units (e.g., Ford 

alluvium and Columbus Bend 2).  Stability is interpreted to be a period when neither 

significant erosion nor aggradation is recorded and is associated with pedogenesis (e.g., 
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Royalty and Asa paleosols) (Holliday 1990).  Most importantly, instability in a basin is 

interpreted to be when periods of erosion/incision, a hiatus, or data gap occurs.  Examples 

of erosion/incision are the erosional events noted by Blum (1987, 1992) on the 

Pedernales and Colorado Rivers.  The hiatus periods refers to chronological gaps 

observed in the recalibration of the radiocarbon assays in allostratigraphic units (Figure 

8.1).  Some examples of hiatus events are in the Columbus River allostratigraphic units 

Columbus Bend 1 and Columbus Bend 2 (Figures 5.5 and 5.6).  Finally, the data gaps 

refer to separations between allostratigraphic units where no erosion or aggradation is 

recorded.  An example of this is in the Brazos River between Units II and III (Figures 6.2 

and 6.6).  The data gaps are likely attributable to erosion. 

Intra-Basinal Patterns 

Some of the drainage basins in this study are more appropriate for internal 

comparisons than others.  The basins most useful for internal comparison are the Brazos 

River Basin and to some degree the Nueces and the Guadalupe River Basins.  Despite the 

extensive investigations along the Trinity and Colorado River Basins, only one dataset in 

each of the drainage basins could be recalibrated.   

Nueces River Basin 

 The alluvial history of the Upper Dry Frio River is seemingly more comparable 

to the Frio River valley downstream than to the adjacent Sabinal River valley (Figure 

8.2).   Two of the gaps (i.e., 6,450–5,750 yr BP and 4,050–3,650 yr BP) in the 

radiocarbon analysis during Phase II investigations at Choke Canyon Reservoir roughly  
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           Figure 8.1 Examples of a Hiatus and Chronometric Gap.
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           Figure 8.2      Patterns along Tributary Drainages in Study.



  

correlate with some of the gaps in the Units IIa–IIc (Hall et al. 1986:586–588).   While 

the Choke Canyon Reservoir chronology is crude the comparison may suggest 

synchronous mechanisms affecting the Dry Frio and Frio Rivers.  Unfortunately, the 

Choke Canyon Reservoir radiocarbon analyses were not corrected for isotopic 

fractionation and were not recalibrated here.   

Similarly, the occupation hiatuses (i.e., 6,800–5,900 and 4,200–3,000 yr BP) 

identified by Ricklis and Blum (1997) and recalibrated here also seem to correlate with 

the erosional disconformities-lateral migration of the Dry Frio River at Woodrow Heard 

(Figure 8.2).  If the previously mentioned humate sample (Beta-112981) is omitted from 

the Woodrow Heard assays, then the disconformity between Unit IIa and Unit IIb dates to 

6,880–5,580 cal yr BP (Figure 8.2).  This disconformity overlaps the first occupation 

hiatus identified as a period of rapid sea level rise by Ricklis and Blum (1997).  Similarly, 

the disconformity between Unit IIb and Unit IIc occurred between 5,080–3,570 cal yr BP, 

which roughly coincides with the second occupation hiatus.  Again, the only 

chronometric data available for Unit IIc is a humate sample (Beta-112980) and may 

likely date more recent than indicated.   

Guadalupe-San Antonio River Basin 

For the Guadalupe-San Antonio River Basin, the dissimilarities may be more 

informative than the similarities.  Although the internal comparisons suggest more 

similarities between the upper and lower extent, than the middle extent these are 

generally rare.  The Jonas Terrace site exhibited similar periods of erosion-incision as 

those reported at Copano Bay during 4,250–3,000 and 2,500–2,250 cal yr BP (Figure 

8.2).  Surprisingly, none of the periods of instability or stability seemingly overlap 
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between the Richard Beene site and either the Jonas Terrace site or the Copano Bay 

study area.  The depositional history at the Richard Beene site appears to be unique.   

Brazos River Basin 

The recalibration results in the Brazos River basin seemingly demonstrated the 

most intra-basinal patterns of this study.  This may be attributed to the abundance of data 

over a broad geographical range within the basin.  Regardless, several phenomena 

became apparent when the upper, middle, and lower extents were compared.   

Beginning with the Late Pleistocene, the proposed period of erosion-incision is 

present in two of the Brazos River basin study areas.  The exception is the A&M study 

area in the lower extent.  This dataset had a suspicious assay dating to roughly 21,000 cal 

yr BP with no observed disconformities until after 9,300 cal yr BP.  Regarding the upper 

and middle extents, the ending of this Early Holocene erosive event has a different time 

in each of the study areas, these differences may be due to sampling.  However, it is 

interesting to note that this erosive cycle ended at 13,080 cal yr BP at Lubbock Lake, 

while Fort Hood has a more recent terminus of 10,100 cal yr BP.   

Comparing the three study areas, the most prominent phenomena are periods of 

incision, hiatus, or data gaps in the radiocarbon record.  The middle and lower extents 

exhibit the most similarity with two periods of overlap at 8,750–7,750 cal yr BP and at 

5,750–5,250 cal yr BP.  Notable, are overlaps in all three basin areas at 5,250–5,000, 

4,000–3,250, and 2,750–2,500 cal yr BP.   While these phenomena may in part be 

attributable to sampling the pervasiveness of the similarities suggests there may be a 

common synchronous mechanism.  

Regarding periods of pedogenesis across the basin, the similarities are 

surprisingly few (Figure 8.2).   At Fort Hood, the Royalty Paleosol roughly correlates 
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with the A&M paleosol at the A&M study area.  At Lubbock Lake, the Lubbock Lake 

soil of Stratum 4B and the Apache soil of Stratum 5A roughly overlap with the Asa and 

Katie soils, respectively at the A&M study area.  However, these are the only similarities 

suggesting a regional period of stability.    

Inter-Basinal and Regional Patterns 

 Widening the examination, the comparison of the different drainage basins within 

Texas and region demonstrates some interesting patterns.  The inter-basinal comparisons 

were examined by three different categories (i.e., tributaries, trunk systems, and 

regional).  First, the tributary systems of each of the basins were contrasted for any 

apparent patterns (Figure 8.2).  All of these tributaries were on the Edwards Plateau, 

affording a comparison with the next comparison category, trunk systems.  Trunk 

systems are the main channels of each of the basins (Figure 8.3).   The study areas of 

each trunk system were on the Coastal plain and off the Edwards Plateau.  The third 

category is a cumulative overview of all the depositional histories of all the Texas 

drainage basins in this study. 

 An examination of the tributary drainages in this study suggests some patterns in 

depositional history in the Edwards Plateau (Figure 8.2).  Only three study areas were 

compared for this tributary comparison, the Cowhouse Creek (Brazos River basin), the 

Concho River (Colorado River basin), and the South Fork San Geronimo Creek 

(Guadalupe-San Antonio River basin).  Unfortunately, the chronology at the Jonas 

Terrace site on the South Fork San Geronimo Creek begins at 4,250 cal yr BP and does 

not extend as far back as the other tributary study areas.  Two earlier periods of instability 

are apparent at the other tributaries. At the Concho River and the Cowhouse Creek study  
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areas, periods of instability occurs at 8,000–7,750 and 5,750–5,250 cal yr BP (Figure 

8.2). At all three drainages two periods of instability are inferred at 3,750–3,250 and 

2,750–2,250 cal yr BP.   Notably, no periods of synchronous stability seem to have 

occurred at anytime among these tributaries on the Edwards Plateau.   

Four study areas were selected for the comparison of Texas drainage basin trunk 

systems, the Brazos River, Colorado River, Medina River (Guadalupe-San Antonio 

basin), and the Trinity River.  Beginning with the Late Pleistocene, the Colorado and 

Trinity Rivers exhibit a period of erosion-incision between 19,000–15,940 and 14,500–

13,500 cal yr BP, respectively.  Interestingly, neither the Brazos nor Medina Rivers 

exhibit this period of incision prior to the Holocene.  The Medina River system may have 

an incision event prior to 15,900 cal yr BP, which is the terminus ante quem for Unit A3 

(Perez Horizon).  However, no definitive indication is apparent.  The Brazos River 

exhibits continuous deposits up to 21,000 cal yr BP.  However, this is based on a single 

radiocarbon assay from the margins of the floodplain (Waters and Nordt 1995).  The 

applicability of the assay as representative of the Late Pleistocene is dubious.  

Regardless, deposition is occurring in all four basins by 13,500 cal yr BP and continues 

until 9,750 cal yr BP.  

 The first period of synchronous instability (Synchronous Event I) represented in 

all four basins occurred around 8,750–8,250 cal yr BP.  This instability likely 

encompassed a more extensive period, but the Medina and Trinity River basins suggest 

normal deposition after 8,250 cal yr BP.  The next period of synchronous instability 

(Synchronous Event II) in all four basins begins at roughly 7,000 cal yr BP and extends 

until 6,250 cal yr BP.  As previously mentioned, several periods of transgression are 
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noted to have occurred in the Early-Middle Holocene.  These occurred at roughly 

6,800–5,900 cal yr BP (Ricklis and Blum 1997; Paine 1991).  Although the period of 

instability overlaps the period of sea level rise, the concurrence of the two phenomena 

may imply a correlation.   

 The next period of synchronous instability (Synchronous Event III) is not as 

evenly distributed as the other trends and the timing of it is approximate.  Specifically, 

between roughly 5,250–5,000 cal yr BP, there is a period of instability occurring in these 

four basins.  The one tenuous exception may be the Medina River basin, which has a 

period of stability ending about that time followed by a period of instability.  While there 

does appear to be instability centered around 5,100 cal yr BP, but the duration of it in 

each basin varies considerably.  At this time, the Trinity and the Brazos River basins 

seem to exhibit the most instability with the Medina and Colorado River basins the least.  

Previous researchers have noted a paucity of alluvial deposits at roughly this time in 

Texas and the Southern Plains (Baker et al. 2000; Hall 1990a:343).  The scarcity of 

deposits dating to this time may imply a similar period of instability in those areas. Also, 

northward in the Great Plains, Schmieder (2008) examining lake sediments in the Sand 

Hills of Nebraska and observed an extensive period of drought beginning at this time.  

More locally, Nordt (2004) and other researchers in their examination of C3 and C4 

isotopes at the Richard Beene site interpreted a decrease in C4 and a brief cool period at 

this time.  While Cooke (2003) and other researchers propose that the mantle in the 

uplands of the Edwards Plateau had an intense period of erosion.  Not coincidently, this 

phenomenon also is squarely in the midst of the enigmatic Middle Archaic, which has 

long been recognized to have a comparatively lower frequency of sites than the other  
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cultural periods (Collins 2004).  Cumulatively, this all suggests a pervasive 

synchronous event of instability across the region. 

 The last synchronous event (Synchronous Event IV) exhibited in all four basins is 

a period of stability (i.e., pedogenesis).  Although periods of soil development are 

recognized to have occurred sporadically in all of the basins, none of these align except at 

1,000–750 cal yr BP (Figure 8.3).  Longer periods of stability seemingly occurred in the 

Brazos and Trinity River basins beginning as early as 1,500 cal yr BP while the Colorado 

River basin exhibits the weakest correlation.  A period of stability at roughly 1,000 cal yr 

BP is very widespread and has been noted by previous researchers in alluvial settings in 

Iowa and Missouri (Bettis 2003; Bettis and Mandel 2002:145), in the Kansas River 

system (Arbogast and Johnson 1994), and possibly in alluvial settings across Oklahoma 

and Texas (Hall 1990a).  Unfortunately, the dataset for Hall’s (1990a: Table A) 

investigations were not corrected for isotopic fractionation and was not calibrated for this 

study.  However, all other descriptions of these depositional histories are in accord with 

the period of stability observed in the four basins.  Furthermore, Collin’s compared 

archaeological sites with stratified cultural and geological horizons (i.e., gisements) 

compared in nine locations (Collins 1995:374, 2004:111).  This comparison revealed a 

pervasive episode of stability around this time (Collins 1995: Table 2, 2004: Figures 3.9a 

and 3.9b).  While Collin’s (1995, 2004) data are reported in radiocarbon years BP,   most 

of these nine study areas are part of the current recalibration study (e.g., Fort Hood and 

Richard Beene) suggesting an equivalency can be made for the areas not recalibrated 

(e.g.,  South Bend Reservoir on Clear Fork of the Brazos River).  Thus, there appears to 

be a widespread synchronous episode of stability at 1,000–750 cal yr BP across these 
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four basins and into alluvial settings on the Great Plains.     

Causal Factors 

For over a century researchers have examined the relationship between reactions 

in fluvial systems in response to external effects (e.g., Bull 1991, 2000; Knighton 1998; 

Knox 2000; Schumm 1993, 2003).  See Blum and Törnqvist (2000) for a detailed 

examination of climate and sea level effects on drainages.  However, a brief review 

follows to provide a general framework for the processes of these interrelated causal 

relationships. 

Four factors are generally recognized to be the primary external influences on 

fluvial systems: tectonic activity, glaciation, climate change, and eustasy (Blum 1993: 

Table 1; Blum and Straffin 2001:195; Bull 1991, 2000; Knighton 1998; Schumm 2003).  

These factors can operate individually or in convergence and the sensitivity of the basins 

to these factors are filtered through a variety of controls including localized geology.  At 

its simplest level, these factors influence the fluvial response stratigraphically (i.e., the 

storage or removal of sediment), morphologically (e.g., channel width, sinuousity), and 

deposition (i.e., bedload) (Blum 2007; Blum and Straffin 2001).  An often-overlooked 

factor influencing drainages is anthropic mechanisms such as cultivation or vegetation 

removal (Frederick 1995). However, in Texas only the historic era to the present would 

appear to be affected by this factor.  

Considering tectonic activity and glaciation have had little effect to the Texas 

drainage networks of the Late Quaternary, this leaves climate and eustatic influences as 

likely causes of the observed patterns.  To be sure, tectonism is a factor of influence in 

Texas basins, but it almost exclusively takes form as a slow subsidence (i.e., 0.05 mm a 
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year) of the continental margin (Paine 1993).  Similarly, glaciation has not been 

proposed to affect the Texas waterways other than as melt water pulses, which ultimately 

defaults to sea levels and/or the climate.  Consequently, researchers almost exclusively 

focus on climate and eustasy and the responses of drainages in Texas and the region.  The 

influence of these two factors will be considered by reviewing the interpreted 

paleoenvironmental record and sea levels proposed by previous researchers.   

Climate 

The review of the climate was accomplished by compiling proxy data (e.g., bog 

pollen, speleothems, and various isotopic analyses) from several regional and global 

studies used to reconstruct the paleoenvironment for the late Pleistocene and Holocene in 

Texas (Bousman 1992, 1994, 1998a; Cooke et al. 2003; Nordt et al. 2002; Toomey et al. 

1993).  Admittedly, not all data are unanimously accepted and there are gaps in the 

record, but a preponderance of researchers generally accept the review provided here.     

Subsequent to the last glacial maximum approximately 23,500 cal yr BP, the 

climate has been interpreted to have had cooler temperatures and more mesic conditions 

for the Central Texas region, South Texas Plains, and Texas coastal plain (Bousman 

1998; Bryant and Holloway 1985; Bryant and Shafer 1977; Hudler 2000; Musgrove et al. 

2001; Nordt et al. 2002, 2007; Sylvia and Galloway 2006; Toomey et al. 1993).   These 

cool and mesic conditions prevailed until 15,000 cal yr BP and again around 12,000 cal 

yr BP, when pollen and isotopic analyses data suggest that glacial melt waters entered the 

Gulf of Mexico and triggered arid and presumably cooler conditions in southern and 

Central Texas (Bousman 1998:214; Nordt et al. 2002:182).  This assessment is further 

supported by low growth rates on speleothems from dated stalagmites in several central 
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Texas caves, implying more xeric conditions (Musgrove 2000; Musgrove et al. 2001).   

This also correlates with investigations in the Southern Plains where Holliday (2000) 

argues that climatic oscillations occurred around the Late Pleistocene-Holocene transition 

with cooler and moister conditions for the Clovis period and particularly arid and warmer 

conditions during the Folsom period.  Based upon the recalibration of the Lubbock Lake 

data for this study (see Chapter 6), this suggests that the climate was cooler and mesic at 

roughly 13,250–12,750 cal yr BP and conditions were most arid between 12,500–11,500 

cal yr BP.  The more recent xeric period was followed by a shift back to cooler 

temperatures and moist conditions in central and southern Texas, which continued into 

the Early Holocene (Bousman 1998:214). 

From the Early to Middle Holocene (~ 11,500–5,000 cal yr BP), the proxy data 

suggest that the climate became gradually warmer and more xeric (Bryant and Shafer 

1977; Toomey et al. 1993). These data include pollen evidence suggesting a decrease in 

arboreal canopy and open grassland for central and south central Texas (Bousman 1998), 

various fauna indicator species from cave deposits (Hudler 2000; Toomey et al. 1993), 

the presence or extinction of various Molluscan fauna (Neck 1983, 1987), and shifts in 

C3–C4 plant production (Nordt et al. 1994, 2002).   At this time, Greenland ice core data 

suggests abrupt climatic changes in the climate at 8,900–8,300 and 8,200 cal yr BP (Hu et 

al. 1999; Yu and Wright 2001).  In conjunction, Barber and others (1999) argue that the 

Laurentide ice sheet had an abrupt reduction in size and flushed massive amounts of 

freshwater into the Labrador Sea around 8,400 cal yr BP, which they argue triggered the 

climatic changes between 8,400–8,000 cal yr BP.   

Further, Mayewski and others (2004) examined over 50 paleoclimate records in 
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the Northern and Southern hemispheres from around the world.  These researchers 

observe a period of rapid climate change between 9,000–8,000 cal yr BP, which in North 

American is exhibited by rapid glacial advances in the northwest and the previously 

mentioned surge of melt water (Mayewski et al. 2004:248–249).   In an alluvial setting 

(South Fork of the Big Nemaha River) in southeastern Nebraska on the Great Plains, 

Baker and others (2000) propose that a disappearance of upland forests and an extended 

period of dry conditions occurred between 9,200–6,500 cal yr BP. More locally, Dillehay 

(1974) in researching the presence or absence of bison in the Southern Plains inferred an 

extended period of absence beginning around ~7,900 yr BP (6000 BC) that coincides 

with this warming period. These warming and xeric conditions existed throughout this 

time with some minor deviations and probably localized variations (Hudler 2000:88–89).    

One anomaly of note is a very brief episode of moister conditions in southern and 

central Texas occurring ~6,000 yr BP as evidence d by an increase in arboreal pollen and 

data from isotopic composition of organic and inorganic carbon (Bousman 1998; Nordt et 

al. 2002:186).  This brief cool and moist episode was immediately followed by an 

extremely arid and warm climate (Bousman 1998; Nordt et al. 2002).  This xeric period 

lasting roughly 1,000 years, was exhibited by a drastic reduction in arboreal pollen and an 

increase in grassland pollen (Bousman 1998).   Further evidence of these xeric 

conditions, is the reappearance of bison on the Southern Plains beginning around ~4,500 

cal yr BP or 2500 BC (Dillehay 1974).  Also in the Great Plains, Baker and others (1998) 

in their examination of pollen and plant macrofossils in northeastern Iowa, note a rapid 

change in vegetation from a forest to prairie setting at 6,000 cal yr BP and they observed 

the percentage of C4 values reached a peak around 5,000 cal yr BP.  More broadly, 
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Mayewski and others (2004:250) observe rapid climate change globally between 

6,000–5,000 cal yr BP where central North America experiences a strengthening of 

westerly winds among other widespread climatic events.    

After this arid and warm period extreme, the Late Holocene climate is described 

as gradually increasing in moisture and cooling in temperature (Bousman 1998; Nordt et 

al. 2002, 2007: Butzer et al. 2008).  Johnson and Goode (1994) in their examination of 

the Jonas Terrace site also propose that conditions were becoming more mesic and 

cooler, but they have it occurring around 3,850 cal yr BP (1900 BC) and roughly 

extending until 1,950 cal yr BP (0 BC).  The mesic indicators of this time were exhibited 

through a gradual increase in woodland canopy and data from stable isotope analyses in 

buried soils (Bousman 1998; Nordt et al. 2002, 2007).  Nordt and others (2007:159) 

characterize this period as a ‘cool interlude’ before conditions again transition into a 

more xeric and warm climate.  This arid interval extends from roughly 2,600–1,000 cal yr 

BP before again becoming slightly more mesic and continuing as such up to the present 

(Nordt et al. 2007).  Coinciding with these swift transitions from mesic to xeric 

conditions includes the absence of bison in the Southern Plains between roughly 

(~1,500–950 cal yr BP (AD 500–1200) and subsequent reappearance between ~950–400 

cal yr BP or AD 1200–1550 (Dillehay 1974).   

More broadly, at 4,200–3,800 cal yr BP glaciers advanced in western North 

America and central North America had intense westerly winds, which weakened at 

3,500–2,500 cal yr BP (Mayewski et al. 2004:250).   Rapid climate changes are also 

indicated globally at 1,200–1,000 cal yr BP manifesting as cooler temperatures in the 

Sierra Nevada mountains based on tree ring data while between 600–150 cal yr BP a 
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period of polar cooling and increased moisture in the tropics occurred (Mayewski et al. 

2004).  In an alluvial setting in southeastern Nebraska, an abrupt, but brief disappearance 

of riparian trees indicates arid conditions at 3,360–2,910 cal yr BP (Baker et al. 2000).  

Further, Huckleberry and Duff (2008) note in western New Mexico that increased 

moisture caused widespread valley entrenchment around ~1050–900 yr BP (AD900–

1050) and 650–550 cal yr BP (AD 1300–1400) with the latter followed by an extended 

period of arid conditions. Locally, the last 1,000 years are indicated to have some brief 

fluctuations of arid conditions occurring around before trending toward modern climates 

of the present (Bousman 1998:216). 

Eustasy 

The effects of changes in worldwide sea levels (eustasy) are more limited on 

drainage systems than that of climatic changes.  Researchers have investigated various 

aspects of rising and falling sea levels at global and local levels and the distance upstream 

of those influences have on drainage basins.  There is considerable debate regarding the 

influence eustasy has on a drainage system and to what degree (Schumm 1993).  At its 

simplest form, the influence is generally interpreted to result in as drainage incision 

(down cutting) for lowering sea levels (regression) and avulsion and aggradation for a 

rise in sea levels (transgression) (Anderson et al. 2004; Banfield and Anderson 2004; 

Blum 1993; Blum and Aslan 2006; Blum et al. 2001; Blum and Price 1998; Blum and 

Törnqvist 2000; Durbin 1999; González 2008; González and Törnqvist 2009; Leeder and 

Stewart 1996; Schumm 2003; Thomas and Anderson 1994; Törnqvist et al. 2004; Van de 

Plassche et al. 1998; Zaitlin et al. 1994). Regarding the distance upstream the influence of 

sea level has on a drainage basin, one of the primary factors is the slope of the coastal 
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plain.  In periods of regression when the coastal plain is roughly equal to that of the 

coastal shelf, there should be a slight extension of the channel onto the coastal shelf. If 

the coastal plain is noticeably steeper than the coastal shelf the channel will extend and 

aggradation of deposits will occur, and if the coastal plain is shallower than the coastal 

shelf, then the channel will extend in conjunction with dramatic incision (Blum and 

Törnqvist 2000; Schumm 1993:281–282).  For Texas, the coastal plain is generally 

steeper than the coastal shelf.  

Furthermore, the effects of sea level changes may be severely limited in coverage 

to the drainage basins.  Specifically, previous researchers indicate that eustatic effects on 

drainages are generally limited to within 100 km (62 miles) of the coast, which falls 

within the lower extent of all the examined basins of this study (Blum 1993; Durbin 

1999; Etheridge et al. 1998).  Most confounding is discerning the difference between 

influences of eustatic effects versus climate within a basin, particularly within the lower 

extent.  Researchers Blum and Aslan (2006) have proposed criteria for determining the 

influences of climate versus sea level change on drainage valleys.  They indicate that 

climatic influences should be exhibited by stratigraphic units that extend from mixed-

bedrock valleys (upstream) across the coastal plain to the distal reaches (downstream) of 

a basin.  There is a recognized continuity of facies architecture throughout the drainage 

basin particularly if the climatic influence is major.    In contrast, the signature of sea 

level influences on a drainage basin is more complex.  During a drop in sea levels, there 

is incision within the drainage, which may result in a valley separation on the coastal 

plain concurrent with lateral migration and meander belt construction.  The mixed-

bedrock valleys will incise with periodic lateral migration and creation of terraces while a 

176



 

rise in sea levels trigger a shortening of the channel and expansion of the deltas.  

Notably, Blum and Aslan do not identify characteristics for the mixed-bedrock valleys 

upstream during the periods of sea level rise.    

Previous investigations within the Gulf of Mexico have characterized the Late 

Quaternary stratigraphy, but unfortunately, most of these focus on periods much older 

than the latest Pleistocene.  As with the paleoclimate interpretations, not all data for sea 

levels are widely accepted and are frequently contradictory.  The following review 

includes some of the more recent investigations in the region, which largely concur in 

their interpretations.   

Since the Last Glacial Maximum (~23,500 cal yr BP) in the Gulf of Mexico, 

researchers have identified at least two pulses of glacial melt water that entered the gulf 

prior to the Holocene (Figure 8.5).  Fairbanks and others (1989) examined coral reefs in 

the Caribbean and argue that these pulses occurred at 13,500–13,000 cal yr BP and 

11,000–10,500 cal yr BP.  Off the Texas coast, Snow (1998) examined near shore core 

samples of the Colorado River delta and radiocarbon data from previous investigations 

and observed the first melt water pulse (MWP 1A) occurred at roughly 14,500–13,750 yr 

BP.  This first pulse produced a rise in sea level of roughly 36 mm a year.  The second 

melt water pulse (MWP 1B) occurred at roughly 12,000–11,500 yr BP and produced a 

sea level rise of approximately 16 mm a year. Snow (1998:129–131) characterized these 

pulses as producing high sediment yields that were primarily controlled by climate. 

Following the second melt water pulse, the sea level continued to gradually rise at a 

roughly constant rate of 10 mm a year between 11,500–5,000 cal yr BP.   Snow (1998) 

observed a transition from fluvial dominated deposits of the Colorado River to wave   
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dominated deposits (i.e., eustatic) around 9,500 cal yr BP.  Considering the rates of sea 

level between 11,500–5,000 cal yr BP were rising at an equivalent level (i.e., 10mm/yr) 

this transition is interpreted as evidence of a shift from climate influence to eustatic 

influence.   

  More controversially, Blum and others (2001) in their examination of the 

Colorado River delta and nearby Copano Bay interpreted a dramatic rise in sea level 

exceeding modern mean sea levels (msl) by over 2 m. The researchers interpreted this 

transgression to have occurred between either 7,800–6,800 cal yr BP or 7,800–4,800 cal 

yr BP depending on the dataset used (Blum et al. 2001). Specifically, a few samples are 

indeterminate if they are affected by younger calcite thus providing two datasets (Blum et 

al. 2001:586). In contrast, Törnqvist and others (2004) analyzed deposits of basal peat in 

the Mississippi delta, which are typically deposited in coastal settings between the msl 

and high water mark.  These researchers encountered deposits between 8,000–3,000 cal 

yr BP that exhibited a gradual rise of sea level with no drastic jumps in sea level.   A 

slight bump in sea level rise (3.5 mm/yr) did occur between 8,000–7,000 cal yr BP 

followed by a decrease with a sea level rise of 1.5 mm a yr up to 3,000 cal yr BP.  

Further, no indications of sea levels exceeding modern msl were observed, but they did 

not exclude the possibility of it occurring between 3,000 cal yr BP and the present.  

In the Middle Holocene, the previously mentioned research by Ricklis and Blum 

(1997) interpret a rise in sea levels that coincides with a hiatus in coastal occupations by 

native groups.  The recalibration of these data (see Chapter 3) did not adjust the initial 

conclusions of sea level rise occurring at 6,800–5,900 and 4,200–3,000 cal yr BP (Ricklis 

and Blum 1997).  In the Copano Bay area of the Guadalupe-San Antonio River basin, the 
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previously mentioned research of Paine (1991) examined a variety of datasets (e.g., sea 

cores, trench profiles, archaeological investigations) to characterize the Late Quaternary 

deposits of the bay.  Unfortunately, only a portion of these data could be recalibrated for 

this study.   Therefore, Paine’s (1991) interpretations prior to 6000 cal yr BP are not 

calibrated.  Regardless, three transgressive pulses are recognized to have occurred during 

the Holocene.  With only the last transgressive pulse could be recalibrated (see Chapter 

4).  Briefly, the first pulse is described as a transition from fluvial (i.e., stream) to marine 

(i.e., sea) influenced deposition implying a rapid rise in sea level followed by a return to 

fluvial deposition interpreted to be a period of stillstand or possible drop in sea level 

(Paine 1991:61–64).  The second pulse is again suggested by a transition from stream 

deposition to marine deposition inferring another sea level rise shortly followed by a 

transition back to a dominant stream deposition suggesting another stillstand.   

The third pulse was recalibrated for this study and dates to 5,750–4,750 cal yr BP.  

Interestingly, this roughly correlates with the sea level rise interpreted by Ricklis and 

Blum (1997).   Paine (1991:64) characterized this last transgressive pulse as a transition 

from stream to marine deposition suggesting a slow sea level rise.  Of note, this rise in 

sea levels rose approximately 0.9 m above modern sea levels (Paine 1991:170–171).  

However, this interpretation is in the minority, as most researchers do not interpret a sea 

level rise of that magnitude at this time.   Subsequent to the last transgressive pulse a sea 

level stillstand begins that continues to the present (Paine 1991:57).  Simply put, these 

three pulses are argued to be evidence for eustatic effects.  If correct, only the lower 

portions of the basins would be affected.     
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 For the Late Holocene, extensive investigations have recently been conducted in 

the Mississippi River delta (e.g., González 2008; González and Törnqvist 2009).  These 

investigations analyzed basal deposits of peat, which, as previously mentioned, are 

interpreted to be deposited between the mean sea level and high water mark (González 

and Törnqvist 2009:1739).  Additionally, the peat provided the source for the radiocarbon 

assays that enabled high-resolution chronological control.  These researchers observed a 

gradual rise in sea levels beginning around 1,350 cal yr BP (AD 600) that peaked around 

850 yr BP (AD 1100) and declined until roughly 450 cal yr BP or AD 1500 (González 

2008; González and Törnqvist 2009: Figure 11).      

Correlations 

A comparison of the recalibrated data from this study will now be conducted with 

the available information of climate and eustatic factors.  Understandably, the recognition 

of contemporaneous events does not confirm a correlation.  However, the intent of this 

component of the study is to identify areas and temporal periods where more research 

may be warranted. 

The first correlation study is of the four synchronous events observed within the 

four basins identified during the Inter-basinal comparisons. These synchronous events 

consist of three apparent periods of instability at 8,750–8,250, 7,000–6,250, and 5,250–

5,000 cal yr BP and one period of stability between 1,000–750 cal yr BP.   

Synchronous Event I 

For the first period of instability (8,750–8,250 cal yr BP), several studies indicate 

pervasive events occurring immediately preceding or contemporaneous with this 

phenomenon.  In particular, an abrupt change in the global climate occurred between 
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9,000–8,000 cal yr BP likely triggered by a large pulse of glacial melt water (Alley et 

al. 1997; Barber et al. 1999; Hu et al. 1999; Mayewski et al. 2004).  In the 

paleoenvironmental research of the Oklahoma Panhandle along an alluvial setting (Bull 

Creek), Bement and others (2007) note a period of pedogenesis suggesting stability at 

roughly 8,460 cal yr BP.   Similarly, in an alluvial setting (South Fork of the Big Nemaha 

River) in southeastern Nebraska on the Great Plains, Baker and others (2000) propose 

that a disappearance of upland forests occurred between 9,200–6,500 cal yr BP. Also, 

bog pollen in Texas exhibits a transition from more diverse forests to open woodlands 

while C4 isotopic values at the Richard Beene site decreased, all inferring a cool, moist 

climate at this time (Bousman 1998; Bousman and Oksanen in press; Nordt et al. 2002).  

Interestingly, this is also roughly the end of Dillehay’s (1974) Presence Period I for bison 

in the Southern Plains.  Regarding eustatic effects, an abrupt increase of sea level occurs 

at roughly this time, but this interpretation is not widely accepted (Blum et al. 

2001;Törnqvist et al. 2004).    

Considering the archaeological record in Texas at this time, this synchronous 

event falls at the transition from Late Paleoindian to Early Archaic archaeological period 

or at the beginning of the Early Archaic archaeological period (Figure 8.6).  A pervasive 

geomorphic period of instability seemingly occurs roughly simultaneous to a period of 

transition within the archaeological record. McKinney (1981:114) does interpret changes 

in Central Texas Archaic lithic technology as adaptation to environmental changes.  

Contemporaneity of events does not indicate causality and reaction, but these concurrent 

phenomena do warrant some attention.  
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Figure 8.6 Calibrated cultural chronology contrasted with Synchronous Events I–IV 
(adapted from Mehalchick et al. 2000). 
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Synchronous Event II 

  The second period of synchronous instability (7,000–6,250 cal yr BP) is the 

longest of those identified.  This period immediately precedes an abrupt climate change 

in the global record (Mayewski et al. 2004).  In Nebraska of the Central Plains, an 

extended period of drought occurred at this time while in the Midwest, various data (e.g., 

speleothems and alluvium) suggest a major climatic transition near the end of this second 

period of instability (Baker et al. 1998; Baker et al. 2001).  Similarly, in alluvial settings  

in Iowa and Illinois an extended period of drainage aggradation is indicated for this time 

(Bettis 2003).  Within Texas, the bog pollen data suggests a transition to non-arboreal 

plants inferring grassland prairies and by extension xeric conditions (Bousman 1998). 

   Notably, the previously mentioned ‘cool interlude’ associated with a short-lived 

increase in arboreal pollen and data from isotopic composition of organic and inorganic 

carbon occurred at ~6,000 cal yr BP (Bousman 1998:210; Nordt et al. 2002:186).  

However, this interlude was preceded by a period increased of δ13C values denoting xeric 

conditions, which concurs with the second period of instability (Nordt et al. 2002). 

Interestingly, this period is noted as a time of alleged bison absence (Absence Period I) 

(Dillehay 1974).  However, occurrences of bison have been encountered on 

archaeological sites (41HY160 and 41HY165) in Central Texas clustering around 5,900–

5,700 cal yr BP (Lohse 2010). The presence of bison at that time implies xeric conditions, 

which concurs with the pollen and isotopic data.  Concerning eustatic effects, no 

prominent rise or drop in sea levels are recorded for this time.   

184



 

 Synchronous Event II occurs roughly in the middle of the Early Archaic (Figure 

8.6).  This period of instability does not appear to coincide with any obvious widespread 

cultural change.           

Synchronous Event III 

The third identified period of synchronous instability (5,250–5,000 cal yr BP) has 

long been recognized as a time of geomorphic change likely accounting for the paucity of 

Middle Archaic data (Collins 2004:115;McKinney 1981).  Mayewski and others (2004) 

have identified widespread evidence of abrupt climate change occurring at this time.  

Some indications of these include large-scale glacial advances in the northern and 

southern hemispheres and an increase in aridity in the Maya lowlands of Central America 

among others (Hodell et al. 2001; Mayewski et al. 2004).  Further, considering that no 

glacial melt water pulses are interpreted to occur at this time, researchers propose that 

these climatic fluctuations are possibly attributed to solar variability (Hodell et al. 2001; 

Mayewski et al. 2004:251).  In northeastern US, dramatic shifts in pollen are noted, 

which are attributed to repeated droughts (Shuman et al. 2009).  More locally in the Great 

Plains, lake sediments suggest a dramatic shift from a wet cycle to drought conditions 

while assessments of the stable isotopic compositions of buried soils indicate warmer 

temperatures at roughly this period (Nordt et al. 2007; Schmeider 2009).  

Within Texas, the bog pollen data indicates the lowest percentage of arboreal 

pollen occurred at roughly 5,500 yr BP suggesting grassland prairies and xeric conditions 

(Bousman 1998:210).  Further, the soil mantle in the uplands of the Edwards Plateau is 

recorded to be ending an extended period of erosion at roughly this time (Cooke 2006; 

Cooke et al. 2003).  Using data from Hall’s Cave in Kerr County, the researchers propose 
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that the Central Texas uplands were generally emptied of its soil mantle beginning in 

the Late Pleistocene and ending roughly concurrent with this third period of synchronous 

instability (Cooke 2006; Cooke et al. 2003).   One corroboration of this may be present as 

Nordt (1996:16–17) recorded a depositional history at Leon Creek (Guadalupe-San 

Antonio River basin) situated at the base of the Edwards Plateau, which prior to this time 

was composed of both alluvial and colluvial deposits and switched to become more 

gravelly with no evidence of colluvium afterwards.   

Large fluctuations in sea level are also interpreted to have occurred at this time.  

Ricklis and Blum (1997) recognize a short-lived rise in sea level that overlaps with the 

third period of synchronous instability (Figure 8.5).  Further, this sea level rise coincides 

with a hiatus in cultural occupations along the coast (Ricklis and Blum 1997).  Similarly, 

the recalibrated data of Paine’s (1991) Copano Bay research also indicates a period of sea 

level rise at this time.  As previously mentioned in the Nueces River basin (Chapter 3), 

similar gaps in chronometric data were recognized during the Choke Canyon Reservoir 

investigations.  These gaps are roughly contemporaneous with this period of sea level 

rise.  However, as previously indicated eustatic effects on drainages are generally limited 

to within 100 km (62 miles) of the coast, which puts the Choke Canyon Reservoir right at 

the limits of eustatic effects (Blum 1993; Durbin 1999; Etheridge et al. 1998).   

Concerning the Texas archaeological record, this synchronous event falls roughly 

at the beginning of the Middle Archaic (Figure 8.6).  Thus, another pervasive geomorphic 

period of instability coincides with a period of transition within the archaeological record.   

Further, examining Black and Creel’s (1997) radiocarbon chronology of burned rock 

middens, this event is situated near the beginning of an extended period of increased 
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burned rock midden use (Figure 8.7).  However, the assays of the burned rock midden 

study have not been calibrated for this study and this comparison is approximate.  It is 

probable, that Synchronous Event III will fall within the radiocarbon gap preceding the 

increase in burned rock midden exploitation after the assays have been calibrated with 

IntCal09. 

Synchronous Event IV 

The final period of synchronous geomorphic activity is a period of pervasive 

stability between 1,000–750 cal yr BP.  Oddly, this period has the most contradictory 

climatic data possibly because of the plethora of investigations (Figure 8.4).  In the 

western US, a period of cooler temperatures and drought are indicated by tree ring data in 

the Sierra Nevada Mountains occurring at AD 892–1112 (1,058–838 cal yr BP) and AD 

1209–1350 (741–600 cal yr BP), which are argued to coincide with the Mediaeval Warm 

Period (Mayewski et al. 2004; Stine 1994).  In western New Mexico widespread valley 

entrenchment from an increase in moisture is indicated between roughly 1,050–900 cal yr 

BP (Hall 1990b; Huckleberry and Duff 2008). Similarly, on the Republican River in 

Nebraska, after a period of pedogenesis ending at roughly 1,100 cal yr BP, a period of 

drainage incision occurred between 1,100–750 cal yr BP (Daniels and Knox 2005). 

However, a period of prolonged pedogenesis is recognized at this time in alluvial settings 

in the east-central Plains (Johnson and Martin 1987), in the Kansas River basin in the 

central Plains (Arbogast and Johnson 1994; Johnson and Logan 1990: Figure 9), and in 

the previously mentioned 15 alluvial settings studied by Hall (1990a).   

Locally in Texas, the bog pollen data suggests a period of open woodlands while 

bison are indicated to have been present during Presence Period III (Bousman 1998;  
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Figure 8.7  Radiocarbon dates from burned rock middens on Edwards Plateau suggesting 
frequency of use (adapted from Black and Creel 1997). 
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Dillehay 1974).  Regarding eustatic effects, only recent investigations in the Mississippi 

River delta provide any information from this time (González 2008; González and 

Törnqvist 2009).  These data from radiocarbon dating basal peat deposits enabling high-

resolution chronological control suggested a gradual sea level rise beginning around 

1,350 cal yr BP and peaked between 1,000–750 cal yr BP (González 2008; González and 

Törnqvist 2009).   

Similar to the diverse paleoenvironmental results, the archaeological record in 

Texas at this time is extremely varied (Pertulla 2004: Table 1.1). Regardless of 

archaeological region, the synchronous period of stability seemingly occurs at a time of 

transition across Texas.   Furthermore, comparing Synchronous Event IV again with 

Black and Creel’s (1997) burned rock midden frequency, the peak of midden use appears 

to coincide with this period of stability (Figure 8.7).  This high frequency of burned rock 

midden use may be reflective of improved integrity of this period of geomorphic stability.   

Again, these phenomena warrant further investigation.   

Summary 

The results of the recalibrated datasets from the drainage basins were consolidated 

and examined for patterns both within and between the Texas basins and, to a lesser 

degree, the region.  A review of extrinsic factors that possibly influenced the depositional 

history of these basins was conducted.  Finally, the recognized patterns (i.e., Synchronous 

Events I–IV) of the drainage basins were compared with the extrinsic factors (i.e., climate 

and eustatic effects) identified within Texas and the region.  The contemporaneous 

occurrence of events does not verify a correlation or causation between the incidents, but 

the synchronous occurrences may imply valid relationships or minimally a shared causal 
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mechanism.  Therefore, these interpretations are malleable and may be adjusted when 

new data is encountered. 

In sum, based on the recognized patterns within the drainage basins and the 

reviewed paleoenvironmental and sea levels through the Late Pleistocene-Holocene, it 

appears that climate was the primary forcing mechanism on the Texas drainage systems.  

This is particularly evident for Synchronous Events I–III that have the most robust 

evidence for climatic data within Texas and the region. However, all four of the 

recognized patterns appear to have been triggered by climatic influences.  The clearest 

evidence of this exists in the depositional histories of alluvial settings in the Great Plains 

and Midwest far removed from the influence of eustatic effects, but are similar to those 

exhibited in Texas during these periods. 
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 CHAPTER 9 

Conclusions and Future Research 
 

The primary goal of this study was to provide a chronological baseline for the 

comparison of archaeological sites in Texas drainage basins.  To accomplish this 

objective, an extensive archival review of predominantly geoarchaeological research was 

undertaken to gather as much data as possible that met several criteria.  There were three 

main criteria used for selecting the radiocarbon assays for this recalibration study. First, 

assays of charcoal were given priority over other dated materials; second, samples that 

have been previously ‘corrected’ for isotopic fractionation; and finally, datasets 

composed of samples in good stratigraphic context.  With these criteria, the archival 

research was scrutinized for investigations that had been conducted in alluvial settings 

and, most importantly, had at least minimally considered chronometrically dating 

depositional stratigraphy, which was actually more difficult than initially envisioned.   

Furthermore, samples from humate materials were used more than initially intended, but 

these were reluctantly accepted.  As discussed in Chapter 2, all calibrations of samples 

derived from humate materials tend to date inconsistently, sometimes drastically older 

(approximately 1,000–1,500 years) than comparable charcoal samples.  Thus, it was only 

out of necessity that these samples were utilized and the results of these data should be 

used with caution.   

Subsequent to the recalibration of the various datasets within the select Texas 

drainage basins, the data were consolidated and examined for any intra-basinal or inter-

basinal patterns in depositional history.  These comparisons recognized four 

contemporaneous events that occurred within most, if not all, of the Texas drainage 
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basins.  These events include three periods of apparent instability (i.e., Synchronous 

Events I–III) and one of stability (i.e., Synchronous Event IV).  These events were then 

compared to possible external mechanisms (e.g., climate and eustatic effects) that may 

have contributed to these occurrences.  Based on similar depositional histories in the 

Great Plains and Midwest, the most probable trigger for the four synchronous events is 

climate.  Furthermore, when the four events were compared to the archaeological record 

in Texas, three of them (i.e., Synchronous Events I, II, and IV) aligned during periods of 

cultural transition while the remaining one (i.e., Synchronous Event III) not surprisingly 

occurred during the enigmatic Middle Archaic, long recognized for poor integrity.  This 

begs the question, were these adjustments in cultural lifeways a result of the changing 

environment or something else (e.g., social)?  Although not definitive, these data do 

appear to corroborate the argument that the changing environment is the significant 

contributing factor to these transitions.       

Interpretations 

Several general interpretations developed from the review of the archival data and 

the results of the analyses.  One general interpretation is that depositional landforms will 

exhibit more integrity as the distance downstream from the Edwards Plateau increases.  

This is almost assuredly due to the more confining channels that have incised into 

limestone bedrock in the uplands.  The fluvial history of these areas demonstrates that 

they are periodically flushed out removing much of the deposition while in the prairies 

where the channels become more sinuous, the fluvial deposits are more complete and 

intact providing a better depositional history.  Some examples of this include the Jonas 

Terrace site (upper Guadalupe-San Antonio River Basin) and the Woodrow Heard site 
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(upper Nueces River Basin), which have truncated depositional histories.  

Comparatively, the Richard Beene site (Guadalupe-San Antonio River Basin) has 

exceptional stratigraphy and integrity.  To be sure, outside bends in higher sinuousity 

channels are eroded, but the interior bends preserve their deposits. Also, smaller tributary 

channels are more noticeably affected by changes in deposition than larger waterways.  

Thus, if the research focus is attempting to characterize changes in past climates then 

smaller channels should be analyzed (e.g., Dry Frio River, South Fork San Geronimo, 

Cowhouse, Salado, and Medio Creeks), but if the research is investigating continuous 

alluvial stratigraphy with possibly robust archaeological deposits then more substantial 

drainages should be explored (e.g., Brazos, Colorado, Medina and San Antonio Rivers). 

 Another interpretation from this study includes the issue of integrity of particular 

time periods and drainages.  First, the pervasive period of instability that occurred during 

the Middle Archaic in Central Texas (i.e., Synchronous Event III) where archaeological 

sites and cultural activities associated with this temporal setting are expected to be sparse.  

Thus, any modeling attempting to attribute the paucity of Middle Archaic groups to 

cultural influences (e.g., low population density or settlement) should first consider the 

site’s location and geomorphic causes.  Conversely, any Middle Archaic deposits 

encountered should be regarded as significant and warranting extensive investigation.  

Similarly, the low frequency or paucity of radiocarbon data should rarely be used to infer 

the absence or limited occurrence of cultural activities–to do so is almost assuredly an 

incorrect interpretation.  An example of this (and there are many) include research at Fort 

Hood where the low frequency of radiocarbon data had been used to imply limited 

cultural activities during the beginning and end of the Early Archaic, and the Middle 

193



 

Archaic, while the Late Prehistoric period is indicated to be an era of high cultural 

activity (Thoms and Olive 1993: Figure 12).  Not coincidentally, these periods all align 

with the four synchronous events identified in the study.  Specifically, three periods 

identified as having low cultural activity coincide with the three periods of instability 

(i.e., Synchronous Events I–III) identified in this study.  Conversely, the era identified as 

having high cultural activity occurred during the time of pervasive stability (i.e., 

Synchronous Event I) (Figure 9.1).  The initial interpretation of the researchers may be 

correct in attributing the low frequency of radiocarbon dates at Fort Hood to cultural 

reasons and not geomorphic integrity (i.e., instability or stability).  However, the 

geomorphic factor of integrity should be seriously considered first.   

 Another observation derived from the study regards the magnitude of adjustment 

of radiocarbon assays after calibration.  A predominance of recalibrated assays younger 

than 7,000 cal yr BP exhibited no significant adjustments from the initial calibration.  

Specifically, the changes usually fell within the standard deviation.  This was particularly 

evident the more recent the initial calibration occurred.  Those assays older than 7,000 cal 

yr BP always demonstrated some significant change, which was more pronounced the 

older the assay.  This phenomenon is attributed to the continued refinement of the 

calibration curve where more data are added.  Presently, Intcal09 has abundant data 

points that extend to 18,000 cal yr BP.  Thus, subsequent calibrations of radiocarbon 

assays calibrated with the Intcal09 curve should likely not demonstrate any significant 

adjustments in the future.  There will certainly be refinements, but just as the pre-7,000 

cal yr BP recalibrations do not noticeably adjust, the assays encompassing the last 12,000 

years should not alter significantly. 
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  Conversely, the use of the statistical calibration models within the OxCal 

programs (i.e., Bayesian statistics) proved very informative and useful.  As previously 

noted in Chapter 2, each set of assays would be analyzed by a minimum of 30,000 

iterations, but frequently went over 3 million iterations to get the most probable outcome 

with the available data (i.e., radiocarbon age and stratigraphic position).  The most 

informative implementation of these statistical procedures occurred when samples were 

within a well-defined stratigraphy and were temporally close.  The Fort Hood dataset are 

a good example of this situation.  In contrast, the statistical models typically did not assist 

assays collected from multiple profiles with a vague stratigraphy and/or broad temporal 

range.  Simply put, those investigations that had a research focus aimed at characterizing 

the chronology of geomorphic stratigraphy are perfectly suited for this application.  

Whereas, those investigations that have little or no focus on geomorphic stratigraphy are 

minimally enhanced if at all.    

One constructive aspect garnered from this study may be the use of a 

chronostratigraphic marker in future research.  At several locations in the review of the 

Guadalupe-San Antonio River basin (e.g., Unit II on Leon Creek and Unit 2 San Antonio 

River) periods of stability that preceded a dynamic erosion-incision event were identified 

(Nordt 2001a).  The combination of a marked phase of stability followed by a period of 

very dynamic flow may be indicative of the 5,000–4,000 cal yr BP (calibrated IntCal 09 

curve) time period.  Coupled with this, the paucity of colluvial deposits (e.g., Unit IV at 

Culebra Creek) previously attributed to an exhausted supply of upland plateau sediments 

(Nordt 2001a:42).  Therefore, geoarchaeological investigations could possibly use this 

suite of attributes for chronostratigraphic purposes while investigating the drainages (e.g., 
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Leon Creek, Salado Creek, Culebra Creek, Medina River, and San Antonio River) 

along the margins of the Edwards Plateau in the Guadalupe-San Antonio River basin.  

Numerous researchers have previously proposed using chronostratigraphic markers 

within and around Texas (e.g., Abbott 2001, Blum 1992, and Bousman and Skinner 

2007), but the implementations of these are used by a select few.  This is a resource that 

should be fostered and utilized more in the future by archaeologists aware of these 

possibilities.     

Future Research 

Similar to a variety of interpretations that developed over the course of these 

investigations are several avenues of future research that have also been identified.  The 

first and obvious area of future investigations is testing the validity of the four recognized 

synchronous events.  The most tenuous component of the previous interpretations 

concerns the data gaps and ‘hiatuses’ within each of the investigated basins.  Have these 

phenomena been affected or made more substantial through sampling or interpretive bias 

(e.g., poor chronological controls)?  This research avenue can be achieved by attempting 

a more robust chronometric study in each of these basins.  Also, the comparison of the 

drainage basin depositional histories was conducted at 250-year intervals.  Future 

research should focus on tightening the intervals to determine if the synchronous events 

become more pronounced or vanish. 

Furthermore, a portion of the assays from the current study were not corrected for 

isotopic fractionation.  As with this study’s use of select radiocarbon samples derived 

from humate, the assays that were not ‘normalized’ were used out of necessity.   

Consequently, future research should adjust for these discrepancies and combine all of 
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the radiocarbon samples thus providing for a more robust dataset.  The result of this 

effort can also be used for testing the interpretation of the four recognized synchronous 

events. 

A corollary of this concerns filling the gaps of investigation across Texas.  

Specifically, there are several large regions in Texas that have little or no geomorphically 

slanted investigations.  One of these regions is East Texas, where targeted research 

evaluating the drainages has not been done to any significant degree.  This includes the 

middle extent of the Trinity River, the Neches River, Angelina River, the Sabine River, 

and their tributaries.  Granted, geoarchaeological investigations have been conducted in 

this region (e.g., Phillips and Marion 2001), but these are in upland settings, are very 

focused, and/or do not truly regard depositional histories.  The limited geoarchaeological 

research that has been conducted in the region suggests some significant deposits.  

Specifically, at the northern end of this region in the Sulphur River basin several 

researchers have devoted considerable attention to the area (Bousman et al. 1988; 

Bousman and Skinner 2007; Darwin et al. 2007; Rainey 1974).  These researchers have 

encountered some promising evidence of Pre-Clovis deposits, which warrant further 

investigations (Bousman and Skinner 2007).   

Similarly, select sections of drainage basins included within this study should be 

investigated.  In particular, the upper extent of the Colorado River basin and the lower 

extents of the San Antonio, Guadalupe River, and Nueces River basins.  The closing of 

these gaps in select areas could add significant data and immeasurably refine the 

interpretations (e.g., geochronological) held today.  The enhancement of these drainage 

depositional histories could more effectively examine the response of a drainage to 
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external factors.  A limitation of this study was utilizing the stratigraphy of 

archaeological site investigations and equating that with drainage depositional history.  

Again, this was done largely out of necessity, but future research can fill the gaps in 

coverage and refine or replace the interpretations provided here.  

Additionally, some consideration should be put into the construction of a 

radiocarbon database for the use of Texas researchers.  A system such as this has been in 

operation for years in Europe with some very intriguing developments (e.g., Chiverrell et 

al. 2009;Howard et al. 2009; Johnstone et al. 2006; Lewin et al. 2005; Macklin et al. 

2002, 2005, 2006, 2010; Macklin and Lewin 2008).  Admittedly, there are some 

significant obstacles that would likely arise, but the compilation and ready access of 

chronometric data from archaeological sites and depositional settings for the use of 

archaeological research is an attainable goal.   

Finally, on a related note, some efforts should be put into developing an accepted 

form of reporting 14C results.  The archival research for this study has encountered a 

multitude of disparate ways of reporting what should be a straightforward dataset.  

Granted, there is prevalent confusion on the use and interpretation of chronometric data, 

but this would be made simpler if the presentation of data had some standardization. 
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 Glossary 
 
 
Aggradation: refers to the addition of sediment to drainage floodplain elevating the 
height of terraces. 
 
Allostratigraphic unit: a mappable body of sedimentary rock bounded by a discontinuity 
(NACSN 2005:1578).  The use of allostratigraphic unit in this study is considered a 
recognizable system for characterizing fluvial deposits of previous investigations. 
 
Avulsion: refers to the rapid abandonment of a river channel and the formation of a new 
river channel.  
 
Calibration: when a radiocarbon date is converted to a calendrical format (McCormac 
and Baillie 1993; Mook and Waterbolk 1985:20; Lowe and Walker 1997:243; Ramsey 
2009:337; Stuiver and Suess 1966; Taylor 1997:68).   
 
cal yr BP: in this study indicates the dates have been calibrated with IntCal 2009 
calibration curve using A. D. 1950 as date before present. 
 
Corrected: assays that have been adjusted for isotopic fractionation (i.e., δ 13C value of -
25.00/00) (Hua 2009).  Sometimes identified as conventional or normalized. 
 
Data Gap: in the depositional history tables, this refers to a separation between 
allostratigraphic units where no erosion or aggradation is recorded.  The data gaps are 
likely attributable to erosion, but more data is needed.  
 
Hiatus: in the depositional history tables, this refers to chronological gaps within 
allostratigraphic units between radiocarbon assays. 
 
Likelihood: in Bayesian analysis, the likelihood is the measured data (absolute dates) that 
is compared with the prior probability (Ramsey 2009). 
 
MCMC: Markov chain Monte Carlo method that randomly examines each event across a 
defined distribution gradually increasing the confidence of the result. Also, allows for the 
inclusion of the uncertainty of multiple factors that can allow for the comparison of 
points as well as their deviations on a curve (Breyer 2009; Buck and Blackwell 
2004:1101; Everitt 2002; Heaton et al. 2009; Ramsey 2009;Upton and Cook 2006). 
 
Prior: in Bayesian analysis, the prior probability is inferred from relative dates, which for 
this study is stratigraphy and compared with the likelihood probability culminating in the 
determination of the posterior probability (Ramsey 2009). 
 
14C yr BP: refers to the uncalibrated radiocarbon age and is in radiocarbon years. 
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 APPENDIX I-Nueces River Basin OxCal Results 
Woodrow Heard assays (Decker et al. 2000) 
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Choke Canyon assays 
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 Ricklis and Blum 1997 data 
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APPENDIX II-San Antonio River Basin OxCal Results 

Jonas Terrace assays (Johnson 1995: Table 1) 
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 Richard Beene assays (Mandel and Thoms 2007) 
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 Copano Bay-Egery Island assays (Paine 1991:Table 5) 
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APPENDIX III-Colorado River Basin OxCal Results 

Concho River Results (Quigg et al. 1996: Table 12.2) 
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 Lower Extent Colorado River (Blum 1992: Tables 6.1-6.4) 
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APPENDIX IV-Brazos River Basin OxCal Results 

Lubbock Lake site (Haas et al. 1986:Table 1;Holliday et al. 1983, 1985)   
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 Fort Hood- Cowhouse Creek (Nordt 2004: Table 1) 
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 A & M Study Area (Waters & Nordt 1995: Table 1) 
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APPENDIX V: Trinity River Basin OxCal Results 

Upper Extent Trinity River assays (Ferring 1995a) 
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