
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 68, pp. 1–25.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING
ARGUMENTS AND APPROXIMATIONS VIA A

PARKER-SOCHACKI APPROACH

VINCENZO M. ISAIA

Abstract. The Parker-Sochacki method has been successful in generating ap-

proximations for a wide variety of ODEs, and even PDEs of evolution type,

by achieving an autonomous polynomial vector field and implementing the
Picard iteration. The intent of this article is to extend PSM to a large fam-

ily of differential equations with deviating arguments. Results will be given

for problems with delays which are linear in time and state independent, and
also have constant initial data and nonlinear differential equations which are

retarded, neutral or advanced. The goal of the proofs is to motivate a numeri-
cally efficient DDE solver. In addition, an explicit a priori error estimate that

does not require derivatives of the vector field is presented. The non-constant

initial data cases and the state dependent delay cases are discussed formally.

1. Introduction

In 1964, Fehlberg [6] produced a technical report for NASA that touched upon
the benefits of auxiliary variables in solving ODEs. This idea appeared to go
unnoticed and in 1989 Parker and Sochacki noticed the benefit of a polynomial
environment for the Picard iteration, whose integral form both preserves the poly-
nomial environment as well as computes the appropriate Taylor polynomial for the
analytic solution on its domain.

The method of Parker and Sochacki was introduced in [9] and the structure of
the class of ODEs was studied in [3]. The method was extended to PDEs in [10]
and an explicit a priori error estimate, which do not rely on derivatives of the
vector field in the ODE case, was given in [13] , see also [11]. The method was
dubbed the PS method in [12], here the acronym PSM is used. This method as
applied to ODEs will be reviewed in Section 2, along with the presentation of an
array interpretation that will be applicable in the deviating argument case and an
example which converts a non-polynomial and non-autonomous vector field to an
autonomous, polynomial one.

After establishing an existence and uniqueness result via the method of successive
approximations in Section 3, the central intent of this article is to adapt PSM to
certain nonlinear differential equations with deviating arguments, referred to as
DDEs, whose initial data is polynomial. This approach, dubbed dPSM, is presented

2010 Mathematics Subject Classification. 34K07, 34K40, 65L03.
Key words and phrases. Delay differential equations; lag; PSM method; method of steps;

method of successive approximation; deviating argument.
c©2017 Texas State University.

Submitted April 1, 2016. Published March 8, 2017.

1

2 V. M. ISAIA EJDE-2017/68

in Section 4. In addition, two examples are presented, one that converts a DDE’s
vector field to an autonomous, polynomial one and another that highlights a special
case of how information can propagate.

In the case of linear in time and state independent delays, structures for the
approximation to the solution across time can be established, and this is done in
Section 5. The purpose of highlighting these structures is so they can be lever-
aged computationally. To understand the structure across iterations, which can
also provide computational benefit, the array approach from Section 2 for PSM is
developed in Section 6 for dPSM.

Two more examples are also given in Section 6, one that looks more carefully
at converting vector fields, since this process is not unique, along with an example
that shows how ‘’lag’ dependence appears and propagates in the coefficients of the
polynomial series approximation. The proof of the structure across iterations as
well as explicit a priori error bounds that do not rely on higher order derivatives
of the vector field. A formal discussion occurs in Section 8 concerning the use of
dPSM for state dependent delays.

2. PSM overview

Given an initial value problem or IVP, based on a scalar ODE, the introduction
of a polynomial vector field to the method of successive approximation allows the
Picard iteration to be viewed as more than just a theoretical tool. If the Picard
iteration can be shown to converge, establishing existence and uniqueness of a
solution to the IVP, then a polynomial vector field will preserve the polynomial
form of the initial data, which is constant, for all iterations, and a structure arises
that allows the coefficients of the polynomial to be computed efficiently. In addition
to requiring a polynomial form, the vector field also needs to be autonomous and the
problem begun at time t0 = 0, which can be achieved when t0 6= 0 via the change
t = t − t0 since d

dt = d
dt . Picard’s then generates a Maclaurin polynomial, and

shifting the time variable recovers the required Taylor polynomial of the solution.
An autonomous polynomial vector field requires the introduction of auxiliary

variables that replace non-polynomial terms with polynomial terms, where nonlin-
earity and non-autonomous terms are exchanged for a larger system size. It can be
shown that the analytic functions that arise as (a component of the) solutions to
an ODE with a polynomial vector field, occupies a large portion of the class of all
analytic functions, although they are not equal, see [3]. The solution of an ODE
whose vector field can be transformed into a polynomial one, is dubbed projectively
polynomial. The vector fields under consideration in this article are those which
have projectively polynomial components.

This example takes a non-polynomial vector field, which is non-autonomous,
begins at an arbitrary starting time t0 6= 0 and converts the vector field to one
suitable for PSM, which used auxiliary variables to achieve the proper form for
the vector field and initial time, and uses Picard’s and the inherent structure to
compute coefficients efficiently.

Example 2.1. Suppose u′ = cos(u) + cos(t) and u(t0) = u0 with t0 6= 0. Then
introduce V = cos(u) and T = cos(t) so that u′ = V + T and also W = sin(u), so
that V ′ = −Wu′ = −W (V + T) and W ′ = V u′ = V (V + T). To get T ′, introduce
S = sin t so that T ′ = −S and S′ = T .

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 3

For data given at t0 6= 0, Picard’s iteration produces polynomials in powers of t.
This does not align with the Taylor polynomial that would be in powers of t− t0.
To facilitate, introduce t = t− t0 and u(t) = U(t) implies the method of successive
approximations will now generate a Maclaurin polynomial for each component, and
the Taylor polynomial for the original problem’s solution is obtained by substituting
t − t0 for τ in the first component U . Then u′ = cosu + cos t, with u(t0) = u0 is
equivalent to the system

x4(t) =



U ′ = V + T, U(0) = u0

V ′ = −W (V + T), V (0) = cos(u0)
W ′ = V (V + T), W (0) = sin(u0)
T ′ = −S, T (0) = cos(t0)
S′ = T, S(0) = sin(t0)

which has an autonomous polynomial vector field, indeed in this case, quadratic.
It is possible to reduce any polynomial vector field of arbitrary degree to one that
is at most degree two [3]. In addition, this reference contains a construction of an
analytic function that is not projectively polynomial, i.e., its vector field cannot be
transformed as per this example.

Note that if the original ODE were higher order, then in addition, the standard
change of variable would have been applied to covert it to a first order system and
this change produces polynomial terms as well. In addition, there exists an explicit
a priori error estimate that does not involve any higher order derivatives of the
original vector field, see [13].

A subtle and relevant point is that the initial data poses no issue since u0 and
t0 are constants, which is always the case for ODEs. So, cos(u0), cos(t0) etc. are
polynomials, in fact constants. This would not be the case, for example, if u0 was
not constant, but rather a polynomial of degree greater than zero, as is the case
with some DDE problems. This will be addressed again in the example at the
beginning of Section 4.

Let uk(t) = Ψ+
∑dk

i=1 akiti be PSM’s approximation to an IVP with initial data
Ψ. It was shown in [9] that PSM leaves invariant, in all subsequent iterations, coef-
ficients for powers of the argument t smaller than the current number of iterations,
i.e. aki = ak+n,i for any n ≥ 0 if i ≤ k. Then only tk+1 needs to have its coefficient
computed; prior powers of t will have the same coefficient, while the coefficients on
larger powers of t change in later iterations. A consequence discussed below is that
these terms will not be computed until a later iteration. Note that only powers of
t less than or equal to k are capable of producing tk+1 after integration.

For example, the array in Figure 2 would represent the case of a vector field
consisting of a multiplication of two components. A general vector field would
be a linear combination of terms, each of which could be represented by such an
array. The linear combination will not disturb what is found in this particular
example. Assume the current approximations are the quadratics a1 + b1t + c1t

2

and a2 + b2t+ c2t
2. The empty row and column are included for visual purposes to

accommodate the next power. The underlined terms are not be computed by this
integration.

To see why powers are invariant with subsequent iteration, note that the constant
terms a1 and a2 are fixed by the initial data for all iterations, so all entries involving

4 V. M. ISAIA EJDE-2017/68

a1 b1t c1t
2

a2 a1a2t
b1a2

2 t2 c1a2
3 t3

b2t
a1b2

2 t2 b1b2
3 t3 t4

c2t
2 a1c2

3 t3 t4 t5

Figure 1. Integration of vector field array - ODE

only these two coefficients are fixed for all iterations. In addition, the ordering
implies each off diagonal corresponds to a unique power of t. Hence, these two
points imply that the t1 terms, namely b1 and b2, are fixed. This idea is extended
via induction to each component [9].

To see why the underlined terms aren’t computed, note that only the off diagonals
above and including the main off diagonal are complete: in the example above, the
t4 off diagonal still needs the t3 times the constant terms integrated before all the t4

terms have been produced in the array. So the underlined t4 terms are not be used
in the vector field during the next integration. But they are included in integrations
after that, when t4 becomes the main off diagonal for the array.

Computationally, one can specialize the integration to only compute terms with
powers one larger than the current degree. The approximation’s degree then only
increases by one per iteration. This power’s coefficient is written as a scalar multiple
of the convolution

∑
ajbd−j for an approximation of degree d. For convenience,

the discussion here assumes only the relevant powers are computed, and hence, the
presentation uses the language that powers greater than the current iteration will
not be computed.

3. DDEs and convergence of Picard iteration

The family of differential equations with deviating arguments that are considered
is

DL1u(t) = f
(
t,DL1u(t), DL2u(∆(t))

)
, t > t0

u(t) = Ψ(t), t ∈ [a, t0]
(3.1)

with L1, L2 ∈ N, t0 ∈ R and D being the differential operator with the subscripted
version indicating an ordered list of derivatives of u. The entries of the subscript
specify which derivatives, for example, D[0,2,4]u(t) would indicate f has a u(t), u′′(t)
and u′′′′(t) dependence. For convenience, take L1 = [0, . . . , L1] and let f absorb
unused derivatives. Similarly, take L2 = [0, . . . , L2], with L2 ∈ N independent of
L1.

Following [5] and [8], if L1 > L2 the equation is considered to be retarded, if
L1 = L2, then the equation is considered to be neutral, while if L1 < L2 the
equation is considered to be advanced. In practice, one would specify a particular
L1 ⊆ [0, . . . , L1] and L2 ⊆ [0, . . . , L2] to use. It is interesting to note that the
approach developed here does not need to be altered if the equation is retarded,
neutral or advanced.

The delay structure ∆(t) as a function of t is assumed to be continuous and
strictly increasing with ∆(t) < t. Otherwise, the delay structure is left as general
as possible until it becomes necessary to keep track of powers of the delay argument,

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 5

in which case only the linear structure ∆(t) = σt − τ with some 0 < σ ≤ 1 and
τ ∈ R+ are addressed.

A state dependent delay structure is also examined, once the role of the delay
structure in the solution is realized, but this will be formal. Only one delay structure
is addressed in this article, although an extension of this approach to a single
problem with several delay structures is possible. In general, the delay structure
∆(t) determines the value of a. The specifics of this will appear later in this section.

The initial data needs to be polynomial to adapt PSM to the DDE case. If a
problem has analytic initial data, for example see [2], one could consider approxi-
mating via a Taylor polynomial. However, two major proofs here will be relegated
to constant initial data. The difficulties encountered for polynomial initial data are
pointed out after the result for the constant case is established. The polynomial
initial data case will be addressed in [7].

The standard change of variables converts (3.1) to a first order system, so that
the Picard iteration is applied to

Du(t) = f
(
t,u(t),u(∆(t))

)
, t > t0

u(t) = Ψ(t), t ∈ [a, t0]
(3.2)

where 1 ≤ l ≤ maxL ≡ {L1, L2} and u = (ul)Ll=0 is such that ul = Dlu and
Ψ = (Ψl)Ll=0, hence, Ψl = DlΨ. For constant Ψ, note that DlΨ = 0 for l > 0.
Thus, the approximation method to come may also be applied to systems of higher
order DDEs of the form (3.1).

It can be shown that if the method of successive approximations is applied to
this first order system, then the sequence of approximations is uniformly convergent
and and its limit solves (3.2) uniquely even if the vector field is not polynomial or
autonomous. This proves the existence, uniqueness and continuity of a solution to
(3.1). The proof from [4] is now adapted to the deviating argument case, and a
general, but state independent, delay structure is assumed.

Let f in (3.2) be continuous with respect to t and Lipschitz continuous in the
remaining variables on [t0, T ∗]× [−U,U]2L, with U , T ∗ <∞. Such vector fields are
called admissible. Denote by Cl1 the Lipschitz constant of admissible f with respect
to component ul(t) of u(t) and denote by Cl2 the Lipschitz constant of admissible f
with respect to component ul(t) of u(∆(t)). Define Cf ≡

∑L
l=0 C

l
1 +Cl2 and Mf ≡

maxl max[t0,T∗] f . General initial data is assumed in the following proposition.

Proposition 3.1. For admissible vector fields f , let T ≡ min{T ∗, UM−1
f } and let

Ψ in (3.2) be analytic and such that maxl max[a,T∗] |Ψ(t) − Ψ(t0)| < ∞ and for
t > t0, let u0(t) = Ψ(t). For each k ≥ 0 define

uk+1(t) = uk(τ0) +
∫ t

t0

f
(
s,uk(s),uk(∆(s))

)
ds (3.3)

then uk(t) converges uniformly to some u∗(t), which solves (3.2) uniquely over
[t0, T].

Proof. Analyticity of Ψ implies u0 ∈ C1([t0, T]). Applying induction, let uk ∈
C1([t0, T]). Since each component of f is continuous, the Fundamental Theorem of
Calculus implies uk+1 ∈ C1([t0, T]), so uk ∈ C1([t0, T]) for k ∈ Z+.

Denote ulk as a component of uk(t) and denote Ψl and f l as components of Ψ and
f , respectively. Denote f lk(t) = f l(t,uk(t),uk(∆(t)). One has for every 1 ≤ l ≤ L

6 V. M. ISAIA EJDE-2017/68

that

|ul1 − ul0|(t) =
∣∣Ψl(t0) +

∫ t

t0

f l0(s) ds−Ψl(t)
∣∣ ≤MΨ +Mf (t− t0)

which follows since |Ψl(t) − Ψl(t0)| ≤ MΨ ≡ maxl max[a,T] |Ψ(t) −Ψ(t0)| < ∞ by
hypothesis.

Consider |ul1 − ul0|(∆(t)). If ∆(t) ≤ t0, then

|ul1 − ul0|(∆(t)) = |Ψl(∆(t))−Ψl(∆(t))| = 0

otherwise, if ∆(t) > t0, then

|ul1 − ul0|(∆(t)) ≤
∣∣Ψl(t0) +

∫ ∆(t)

t0

f l0(s) ds−Ψl(∆(t))
∣∣ ≤MΨ +Mf (t− t0)

since ∆(t) < t by hypothesis. So both |ul1 − ul0|(t) and |ul1 − ul0|(∆(t)) are bound
by MΨ +Mf (t− t0) for every 1 ≤ l ≤ L.

From the Lipschitz continuity of f and the previous bound, one has

|ul2 − ul1|(t) ≤
∫ t

t0

|f l1 − f l0|(s) ds ≤
∫ t

t0

Cf
(
MΨ +Mf (s− t0)

)
ds (3.4)

so |ul2 − ul1|(t) ≤ Cf
(

1
2Mf (t− t0)2 +MΨ(t− t0)

)
for every 1 ≤ l ≤ L. Moving to

the delayed terms, if ∆(t) < t0 then |ul2 − ul1|(∆(t)) = 0 as before, otherwise

|ul2 − ul1|(∆(t)) ≤
∫ ∆(t)

t0

|f l1 − f l0|(s) ds ≤
∫ t

t0

|f l1 − f l0|(s) ds

and so |ul2−ul1|(∆(t)) along with |ul2−ul1|(t) are both bound by Cf
(

1
2Mf (t− t0)2 +

MΨ(t− t0)
)
. Continuing in this fashion shows that

|ulk+1 − ulk|(t) ≤
∫ t

t0

|f lk − f lk−1|(s) ds

≤
∫ t

t0

Ckf

(
MΨ

(t− t0)k−1

k − 1!
+Mf

(t− t0)k

k!

)
ds

(3.5)

subsequently, one has

|ulk+1 − ulk|(t) ≤ Ckf
(
MΨ

(t− t0)k

k!
+Mf

(t− t0)k+1

k + 1!

)
which implies that for every component 1 ≤ l ≤ L,

∞∑
k=0

|ulk+1 − ulk|(t) ≤ (MΨ +Mf (t− t0))
∞∑
k=0

Ckf
(t− t0)k

k!

and one can conclude that for each component ulk,

ulk+1 =
∑
k

ulk+1 − ulk ≤ (MΨ +Mf (t− t0)) eCf (t−t0)

and so ulk → ul∗ uniformly by Weierstrass M-test with ul∗ continuous. Hence (3.3)
holds in the limit, which is equivalent to u∗ = (ul∗)

L
l=1 solving (3.2) since the uniform

convergence allows the limit to be exchanged with the integral. Using the bounds
developed above and adapting the argument from [8], it is straightforward to show
that u∗ is unique. �

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 7

The method of successive approximation is a global approximation, in that it
updates uk over [τ0, T]. However, such a global update is computationally difficult
with a DDE. On the other hand, the method of steps, see [1] for example, is
computationally friendly but at the expense of being a local approximation. For
the method of steps, the approach is to reduce (3.1) to a sequence of ODEs: given
t0, then prior to a certain point in time, to be determined, terms like u(∆(t)) are
found in terms of Ψ, which is known, so that (3.2) defaults to an ODE, although it
may have non-constant coefficients and/or non-homogeneous terms.

Define τ0 ≡ t0 and denote by τ1 the point in time prior to which u(∆(t)) can be
found in terms of Ψ. By standard theory, if the vector field is Lipschitz continuous,
then the unique solution that ensues would be valid over [τ0, τ1]. Denote this
solution by u1(t). In order for the delay term u(∆(t)) in the vector field to be
known, ∆(t) must be less than or equal to τ0 over [τ0, τ1]. Using the fact that ∆
is strictly increasing and solving ∆(t) = τ0 for t would determine τ1. In addition,
∆(τ0) represents the farthest back in time information is needed for the vector field,
and so ∆(τ0) = τ−1 = a.

With the problem solved over [τ0, τ1], consider τm defined as the solution to
∆(t) = τm−1. Define T ≡ {τm : ∆(τm) = τm−1,m ∈ Z+

0 } and let um(t) be the
unique solution to (3.2) over [τm, τm+1]. Consider solving (3.2) over [τm+1, τm+2]
to get um+1. Then the delay terms DL2um+1(∆(t)) for t > τm+1 would involve
um(t), which is known. Denote the unique solution by um+1(t). Hence

u(t) = {um(t) over [τm, τm+1] for m ∈ Z+} (3.6)

solves (3.2). The overlap in endpoints for the τ -steps is not an issue due to the
continuity of the solution to (3.2) as per Proposition 3.1.

The method of steps is represented by the intervals [τm, τm+1], or τ -steps, and
computationally this approach is restrictive in the sense that it updates the solution
one τ -step at a time: the solution needs to be known in [τm−1, τm] before it can be
determined in [τm, τm+1].

Anticipating the Picard iteration, which will cause the delay structure to be
composed with itself, notice that ∆ : [τm, τm+1]→ [τm−1, τm] satisfies

∆m(t) ≡ ∆ ◦ · · · ◦∆(t) (3.7)

with ∆1(t) = ∆(t) and m > 0. Define ∆0(t) ≡ t = t − τ0 and ∆−1(t) ≡ t − τ−1,
where this last definition is for notational convenience. Then ∆m(τm) = 0 for all
m ≥ −1. Note that the linear in time and state independent delay

∆(t) = σt+ τ−1 (3.8)

with 0 < σ ≤ 1 and lag τ−1 < 0, includes the constant lag case: ∆(t) = t − τ for
some fixed τ > 0. In this case, one has τm = mτ for all m ≥ 0, while ∆m(t) reduces
to t−mτ .

4. dPSM and examples

The PSM philosophy of creating a polynomial environment on which Picard it-
eration thrives is now adapted to (3.2). It is important to note that a change of
variable for the delay terms can come for free, because they may not require an
evolution line in the system. Once u(t) evolves, one additional functional evaluation
will give the evolution of u(∆(t)), and taking derivatives will also evolve u′(∆(t)),

8 V. M. ISAIA EJDE-2017/68

u′′(∆(t)) etc. as needed because the Picard iteration explicitly depends on previ-
ously computed information. This contributes to making the distinction between
retarded, neutral and advanced unnecessary as far as implementing this approach
is concerned.

Example 4.1. Ignoring the initial information, suppose u′(t) = cos(u(t)) + u(t −
τ) + u′(t − τ) with t ≥ t0 6= 0. Following the example in Section 2, introduce
V = cos(U) and W = sin(U) along with t = t − t0, u(t) = U(t), R = u(t − τ)
and S = u′(t − τ), so that U ′ = V + R + S, V ′ = −WU ′ = −W (V + R + S) and
W ′ = V U ′ = V (V +R+ S). Then u′ = cosu+ u(t− τ) + u′(t− τ) is equivalent to
the autonomous polynomial system

x4(t) =


U ′ = V +R+ S

V ′ = −W (V +R+ S)
W ′ = V (V +R+ S)

(4.1)

The explicit nature of successive approximations allows the update of R via
R′ = S to be replaced with a function evaluation from U ’s evolution, R(t) =
u(t − τ) = U(t − τ). The system may be handled in its current foem, since the
vector fields are evaluated at the previous approximation, so only R’s (and S’s)
initial information is needed.

There may be a price to pay for the V and W change of variable: if the initial
data is not constant then cos(U) and sin(U) will not be polynomials. This could be
handled by using an appropriate Maclaurin polynomial, where the error could pos-
sibly be controlled through the choice of the polynomial’s degree. Computationally,
there is also a price to pay for non-constant initial data in general.

Parallel to [9], the vector field needs to be autonomous, and evolution needs to
begin at t0 = 0. A change of variable as per the previous example will account for
this, and the explicit t dependence can be dropped from f ’s argument with no other
change in notation. The variable t, as per the last example, is relabeled as t and
the set T is then determined using this new time variable. Invoking the notation
for the method of steps, the IVP (3.2) becomes, with t0 = τ0 = 0,

u′(t) = f(u(t),u(∆(t))), t > τ0

u(t) = Ψ(t), t ∈ [τ−1, τ0]

where u now includes not only derivatives of u but the auxiliary variables necessary
to make the vector field be polynomial, autonomous and have t0 = 0. Although an
ordering for the vector is important in practice, there is no reliance on ordering in
the proofs, hence one is not specified.

To compute the Picard iteration over [τ0, T], the method of steps is used and a
very nice computational structure appears once the initial data Ψ is extended over
the entire interval [τ0, T]. One has

uk+1(t) = uk(τ0) +
∫ t

τ0

f(uk(s),uk(∆(s))) ds (4.2)

for t ∈ [τ0, T] and k ≥ 0. Combining with the method of steps notation, let
uk(t) = ukm(t) over [τm, τm+1] with m ∈ Z+

0 . Then (4.2) becomes dPSM, or the

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 9

delayed Parker-Sochacki method, as stated.

uk+1,m(t) = Ψ(τ0) +
m−1∑
m=0

∫ τm+1

τm

fkm(s) ds+
∫ t

τm

fk,m(s) ds (4.3)

The iterative step of (4.3) assumes fk,m(s) ≡ f(uk,m(s),uk,m−1(∆(s))). In the next
section, it is shown that this calculation can be modified and performed for only
m = k + 1, and it will ‘contain’ uk,m(t) for each 0 ≤ m < k + 1. A few comments
about notation: some indices are comma separated for clarity, and to streamline
notation in later sections, m is changed to m so that m can be used as a local index
for m.

If an admissible vector field has at least one delay term in each component, i.e.
for each component f l of f , the vector of partial derivatives with respect to to the
delay terms f lu(∆(t)) 6= 0, the vector field f is called fully delayed. For the case
of a fully delayed vector field and the linear delay in (3.8), it can be established
that the following piecewise structure represents how information propagates for
any component l of uk, which happens to be the fastest possible propagation,

ulk(t) =



Ψ(τ0) + pk0(∆0(t)) t ∈ [τ0, τ1]
Ψ(τ0) + pk0(∆0(t)) + pk1(∆(t)) t ∈ [τ1, τ2]
Ψ(τ0) + pk0(∆0(t)) + pk1(∆(t)) + pk2(∆2(t)) t ∈ [τ2, τ3]
. . .

Ψ(τ0) + pk0(∆0(t)) + · · ·+ pk,k−1(∆k−1(t)) t ∈ [τk−1, τk]
Ψ(τ0) + pk0(∆0(t)) + · · ·+ pk,k−1(∆k−1(t)) t ∈ [τk, T]

(4.4)

where pkm is a polynomial whose coefficients depend on the iteration k and which
delay structure ∆m(t) is in the argument, but not the τ -step that contains t. In
particular, in each τ -step, a new delay structure appears, and earlier delay struc-
tures have invariant coefficients, so that the polynomial pkm has coefficients that
depend on m in its argument ∆m but not on m where t ∈ [τm, τm+1]. However, the
τ -step does affect the appearance of the delay structure, in that ∆m first appears
when t ∈ [τm, τm+1]. In compact notation,

ulk,m(t) =
(mk∑
m=−1

plkm(∆m(t)), t ∈ [τm, τm+1] with plkm(z) =
d∑

i=m+1

aikmz
i
)

for mk ≡ min{m, k − 1} where the constant term Ψ(τ0) is hidden in the ∆−1(t)
terms, with d = 0 if m = −1. Theorem 5.3 in the next section will establish this
structure. In addition, the polynomials also exhibit an invariance across iterations,
but this is a little more complicated than the PSM version and will be handled in
Theorem 7.1.

In (4.4), note that the functional form in [τk, T] is the same as the functional form
in [τk−1, τk]. All the currently computed information has propagated to [τk−1, τk]
and its replication in [τk, T] is just a mimic of extending the initial data to [τ0, T].
This is helpful because of the invariance across τ -steps and iterations will show
these terms belong in the solution eventually and thus they provide a good forward
approximation in regions where information has yet to propagate, thereby extending
the ‘local’ method of steps.

For general delay structures, when (4.3) is enacted on a fully delayed vector
field, there is a nonzero finite speed of propagation of the initial information Ψ

10 V. M. ISAIA EJDE-2017/68

into [τ0, T] with each iteration, in particular, one τ -step per iteration. This will
manifest in an element τk∗ ∈ T with m∗ such that τk∗ = τm∗ , for which the solution
will have a different functional dependence in the τ -step [τm∗ , τm∗+1] than it did in
[τm∗−1, τm∗], and m∗ will be the largest such m for which this is true.

Call this largest element of T for which a change in functional form occurs across
that element the extension boundary. It will also imply that it is the smallest τm
for which ukm has the same functional dependence as uk,m+1. Here is an example
that shows a glimpse of extension boundary behavior when the vector field is not
fully delayed.

Example 4.2. Consider x′ = y, y′ = z and z′ = x(t−τ), each with constant initial
data of unity, and note that the right hand side of x and y lack delay terms, and
as such the vector field for this problem is not fully delayed. Using (4.3) one can
compute x5(t), y5(t), and z5(t).

x5(t) =


x50(t) = 1 + t+ t2

2! + t3

3! t ∈ [τ0, τ1]

x51(t) = 1 + t+ t2

2! + t3

3! + (t−τ)4

4! + (t−τ)5

5! t ∈ [τ1, τ2]

x52(t) = 1 + t+ t2

2! + t3

3! + (t−τ)4

4! + (t−τ)5

5! t ∈ [τ2, T]

y5(t) =


y50(t) = 1 + t+ t2

2! t ∈ [τ0, τ1]

y51(t) = 1 + t+ t2

2! + (t−τ)3

3! + (t−τ)4

4! + (t−τ)5

5! t ∈ [τ1, τ2]

y52(t) = 1 + t+ t2

2! + (t−τ)3

3! + (t−τ)4

4! + (t−τ)5

5! t ∈ [τ2, T]

z5(t) =


z50(t) = 1 + t t ∈ [τ0, τ1]

z51(t) = 1 + t+ (t−τ)2

2! + (t−τ)3

3! + (t−τ)4

4! t ∈ [τ1, τ2]

z52(t) = 1 + t+ (t−τ)2

2! + (t−τ)3

3! + (t−τ)4

4! + (t−2τ)5

5! t ∈ [τ2, T]

A partial calculation of z5(t) will be given, based on

x4(t) =

{
x40(t) = 1 + t+ t2

2! + t3

3! t ∈ [τ0, τ1]

x41(t) = 1 + t+ t2

2! + t3

3! + (t−τ)4

4! t ∈ [τ1, T]

which will be computed over [τ2, τ3] = [2τ, 3τ], i.e. z52(t),

z52(t) = 1 +
∫ t

0

x4(s− τ) ds

= 1 +
∫ τ

0

Ψ(s− τ) ds+
∫ 2τ

τ

x40(s− τ) ds+
∫ t

2τ

x41(s− τ) ds

= 1 +
∫ τ

0

1 ds+
∫ t

τ

1 + (s− τ) +
(s− τ)2

2!
+

(s− τ)3

3!
ds

+
∫ t

2τ

1 + (s− τ) +
(s− τ)2

2!
+

(s− τ)3

3!
+

(s− 2τ)4

4!
ds

∗= 1 +
∫ t

0

1 ds+
∫ t

τ

(s− τ) +
(s− τ)2

2!
+

(s− τ)3

3
ds+

∫ t

2τ

(s− 2τ)4

4!
ds

= 1 + t+
(t− τ)2

2!
+

(t− τ)3

3!
+

(t− τ)4

4!
+

(t− 2τ)5

5!
.

It will be shown in the next section that the regrouping of integrals that occurs
in the fourth equality above (∗=) will occur in general. After proving the speed of

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 11

the extension boundary with respect to k for a fully delayed vector field, a formal
discussion of this example’s extension boundary propagation will be given in the
next section.

5. dPSM Results - I

The speed with respect to iterations k will be proved for a general state inde-
pendent delay and for a fully delayed vector field. Note that the following result is
independent of the initial data, constant or non-constant.

Theorem 5.1. Assuming uk does not solve (3.2) and f is a fully delayed vector
field, then extension boundary for uk is τk∗ = τk−1, k ≥ 1, i.e. uk,k−1(t) has the
same functional form as ukm(t) for every m > k − 1, but not the same functional
form as uk,k−2(t).

Proof. Since the data begins at τ−1, there is a change in functional form from non-
existent to Ψ as time crosses over τ−1 for u0, and this is the largest element of T for
which this is true. If Ψ solves (3.2), then iterating further is not necessary, hence
the assumption that uk doesn’t solve (3.2). Otherwise, τ1

∗ = τ0 for u1 since

u10(t) = Ψ(τ0) +
∫ t

τ0

f(Ψ(s),Ψ(∆(s))) ds 6= Ψ(t)

and there is a change in functional form from Ψ to u10 across t = τ0.
By extending the given data in [τ−1, τ0] to each τ -step [τm, τm+1] with m ∈ Z+

0 ,
the integral in (4.2) for u1 can be determined in each subsequent [τm+1, τm+2] as
well via (4.3)

u1m(t) = u1,m−1(τm) +
∫ t

τm

f
(
u0,m(s),u0,m−1(∆(s))

)
ds (5.1)

Since u0,m = Ψ(t) for each m ≥ 0, then (5.1) has the same integrand for m ≥ 0,
hence u1,m has the same functional form as u10 for any m ≥ 0. Technically, u1,m

and u10 cannot be equated when m ≥ 1, even though they have the same functional
form, because of the differing domains: [τm, τm+1] versus [τ0, τ1].

By hypothesis, if τk∗ = τk−1 for uk then consider (4.3) with m = k − 1

uk+1,k−1(t) = uk+1,k−2(τk−1) +
∫ t

τk−1

f (uk,k−1(s),uk,k−2(∆(s))) ds . (5.2)

When considering uk+1,k, this does not have the same integrand as uk+1,k−1,

uk+1,k(t) = uk+1,k−1(τk) +
∫ t

τk

f (uk,k(s),uk,k−1(∆(s))) ds (5.3)

since the extension boundary is at τk−1 for uk implying that uk,k−1 and uk,k have
the same functional form, but that uk,k−1 and uk,k−2 will not. Since the partials
of f with respect to to the delay terms are not all zero by hypothesis, and uk does
not solve (3.2), then (5.2) has a different integrand, and hence functional form than
(5.3). The integral for uk+1,k+1 looks like

uk+1,k+1(t) = uk+1,k(τk+1) +
∫ t

τk+1

f (uk,k+1(s),uk,k(∆(s))) ds

12 V. M. ISAIA EJDE-2017/68

and since the extension boundary for uk is at τk−1 for uk, this is the same integrand
as in (5.3). Hence there is a change in functional form across t = τk but not across
t = τk+1 and so the extension boundary has moved to τk for uk+1. �

Example 4.2 (cont.) Because of the lack of a delay term in each component’s
right hand side, it can be seen easily that the information has not reached [4τ, 5τ]
as would have been predicted by Theorem 5.1. Suppress iteration dependence and
label the extension boundary for component xk by τx∗ and similarly for components
yk and zk. The movement of the extension boundary can be described heuristically
as follows: assuming Ψ does not solve the DDE, upon computing the first iteration,
τx∗ = τy∗ = τz∗ = τ0 and all three move as predicted by Theorem 5.1.

However, computing the second iteration, both x and y are governed by ODEs
rather than DDEs, and so the information in [0, τ] is updated, but lack of a delay
term in the vector field does not create new delay terms in [τ, 2τ], hence τx∗ = τy∗ =
τ0. In contrast, z does have a delay term in its vector field and so, the second
iteration does produce new delay terms in [τ, 2τ] and so τz∗ = τ1 as Theorem 5.1
would indicate for a fully delayed vector field.

Now, these new delay terms in z during the computation of the third iteration
produce new delay terms for y in [τ, 2τ] since the vector field for y is z dependent,
and so τy∗ = τ . However, x, whose vector field is y dependent, will have to wait
one more iteration to see a change due to the new delay terms created in z during
the second iteration, and only its info in [0, τ] updates. Because x has not changed,
one finds that z will not see new delay terms and τz∗ = τ .

During the fourth iteration, the new delay terms in z from the second iteration
finally reach x and τx∗ = τ , while both y and z only update their previous informa-
tion and τy∗ = τz∗ = τ . Hence, after the initial movement in the first iteration, it
requires three iterations to have all components’ extension boundaries move again.

�

The speed of the extension boundary with respect to k is independent of the
form of ∆(t). The choice of ∆(t) of the form given in (3.8) is only necessary to
make sorting terms arising from the integration manageable in a general setting.
Given a specific polynomial form for ∆(t), one may be able to extend the proofs
here to the specific case, upon knowing what terms to track. On the flip side, with
∆(t) given by (3.8), this will show that the only special treatment time dependent
delay structures require are how to sort their terms.

The following lemma’s result is not surprising, but it helps track arbitrary non-
linear interaction terms in the vector field. Beyond that, the ramifications of the
result are important from a computational aspect. Integration in the following
form, which occurs eventually in all nonlinear problems, implies a specific power
for a specific delay structure ∆m(t) contributes a range of powers in the result.

Lemma 5.2. Given α, β ∈ Z+ and ∆(t) as in (3.8) and ∆m(t) in (3.7), let

I(t) =
∫ t

τm

∆α
m(s)∆β

m(s) ds (5.4)

with m > m so that τm > τm. Then I(t) is a polynomial with argument ∆m(t)
which can be written in the form

α+β+1∑
i=α+1

ci∆i
m(t) (5.5)

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 13

with ci constant with respect to t.

Proof. Let τ ≡ −τ−1 and some straightforward computation shows that τm =
τ
∑m
q=1 σ

−q and ∆m(t) = σm(t − τm). Rather than Taylor expand the integrand,
consider the substitution given by S = ∆m(s), dS = σm ds in (5.4). Rewriting

τm − τm = τ

m∑
q=m+1

σ−q ≡ γm,mτ

and using the binomial expansion on (σm−mS + σmγm,mτ)β , we have

I(t) = (σβ(m−m)−m)
β∑
i=0

(
β

i

)
(γm,mτ)β−i

i+ α+ 1
(σm(t− τm))i+α+1

and note that the powers of τ are independent of α. Upon shifting the index, letting

ci = (σβ(m−m)−m)
α+β+1∑
i=α+1

(
β

i− α− 1

)
(γm,mτ)α+β+1−i

i

and exchanging σm(t− τm) with ∆m(t), one recovers (5.5). �

For the constant lag case, ∆m(t) = t − mτ and γm,m = m − m. Nonlinear
interaction in the vector field will cause (5.4) and so the coefficients in the power
series for the approximation will be lag dependent. These lag dependent coefficients
will also occur when the initial data in (3.2) is not constant.

The next theorem will show that there is a particular structure to the Picard
iterations with respect to the τ -steps during a fixed iteration. This is simpler to
demonstrate than the structure with respect to iterations k.

Theorem 5.3. If u0,m(t) = Ψ, i.e. constant initial data, for m ∈ Z with m ≥ −1,
then define uk,m(t) by (4.3) for k ≥ 1 with ∆(t) as in (3.8). If t ∈ [τm, τm+1] ⊂
[τ0, T], f is fully delayed and defining a0

k,−1 ≡ Ψ(τ0), then uk,m(t) has the form for
k ≥ 0

uk,m(t) =
mk∑

m=−1

pkm(t) (5.6)

where mk ≡ min{m, k − 1} and ∆0(t) = t− τ0 and ∆−1(t) = t− τ−1. In addition,
pkm is a polynomial of the form

pkm(t) =
d∑

i=m+1

aikm∆i
m(t) (5.7)

with d ∈ Z+, d ≥ k if m ≥ 0, d = 0 if m = −1, and the domain of pkm is [τm, T].

An important point is that the only m dependence in uk,m occurs from mk.

Proof of Theorem 5.3. Clearly, starting with polynomial (constant) initial data and
enacting (4.3) implies uk is polynomial for any polynomial vector field and any
k ≥ 0. Hence the focus is on the specific forms of the polynomials in (5.6) given by
(5.7).

If the the initial data Ψ is constant, then (5.1) yields for all m ≥ 0

u1m(t) = Ψ(τ0) + z(t− τ0) = Ψ(τ0) + p10(t)

14 V. M. ISAIA EJDE-2017/68

with a1
10 = z for every [τm, τm+1], where z = f(Ψ,Ψ) is constant since Ψ constant.

It follows that both (5.6) and (5.7) hold with d = 1 when m ≥ 0 and d = 0 when
m = −1 for each τ -step of u1(t).

Some convenient notation will now be introduced. Since f is polynomial, its full
Taylor series is a finite sum with respect to any center. Denote the Taylor series for
f(a+ c, b+ d) without its constant term by f∗(a, b; c, d), which represents a power
series of the form

f∗(a, b; c, d) ≡
n∑

(i,j) 6=

n∑
(0,0)

Cij(a, b)cidj

for some set of constants Cij which depend on a and b. In addition, we denote

fk,m(s) ≡ f
(
uk,m(s),uk,m−1(∆(s))

)
as well as

f∗k,m−1(s) ≡ f∗
(
u∗k,m−1(s),u∗k,m−2(∆(s)); pk,m(s),pk,m−1(∆(s))

)
Using (5.6) and (5.7) as hypothesis for uk, consider uk+1 during any τ -step [τm, τm+1]
with m ≤ k − 1, so that (4.3) implies

uk+1,m(t) = Ψ(τ0) +
m−1∑
m=0

∫ τm+1

τm

fkm(s) ds+
∫ t

τm

fk,m(s) ds

and after a Taylor expansion around the point
(
uk,m−1(s),uk,m−2(∆(s))

)
, we have

uk+1,m(t) = Ψ(τ0) +
m−1∑
m=0

∫ τm+1

τm

fkm(s) ds+
∫ t

τm

fk,m−1(s) + f∗k,m−1(s) ds

≡ Iσ(t) + Im(t)

Note that the first term in the integrand of Im(t) has precisely the same functional
form as the m = m − 1 term in the integrand of Iσ(t), so these integrals may be
combined to run over [τm−1, t] with t > τm. This demonstrates that the solution
inherits the previous τ -step’s functional form in the next τ -step, [τm, τm+1], which
includes delay structures from ∆0(t) up to ∆m−1(t).

Using Lemma 5.2 on the integration of f∗k,m−1, which has arguments of ∆m(t)
and ∆m−1(∆(t)) = ∆m(t) respectively, which implies (5.6) holds by induction.
When m = k, this also introduces a new delay structure given by ∆k(t). In partic-
ular, this new delay structure’s minimum power is the minimum power on ∆k−1(t)
in pk,k−1 plus one. Then (5.7) holds for the new delay terms m = k, so that (5.7)
holds for all k by induction. �

If the initial data is not constant, then it is possible that the constant term
associated with the vector field terms may change across τ -steps. Hence, because
there is no initial invariance across τ -steps in the constant term, there can be no
invariance with respect to τ in general for any coefficients. This does not preclude
using dPSM, it just makes it ‘trickier’.

6. Iteration structure - formal

6.1. Basic array setup. For DDEs, the PSM invariance result with respect to
iterations is true if the vector field is linear, however, it requires a modification for
the nonlinear case, because of the interaction between different delay structures.

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 15

In particular, lower order terms will have their coefficients changed during each
iteration. But upon considering these coefficients as functions of τ , it will be that
the coefficients on τs for fixed s ≤ k are invariant as k increases. In addition,
tracking powers of ∆m(t), one can ascertain whether all terms of a given power are
computed or not by the integration.

To aid in the proof for the deviating argument case, it is convenient to note that
a polynomial vector field associated with (3.2) can be reduced to a quadratic vector
field.

Lemma 6.1. If (3.1) is equivalent to (3.2) with f polynomial and solution u, then
there exists an f such that degree f is two and a component of which solves (3.1).

Proof. See [3], noting that deviating arguments may be relabeled in a similar fashion
as non-deviating arguments and a change of variable for the deviating arguments
may not contribute to the size of the vector field since an evolution line may not
be required. �

This result is not necessary but invoking its result streamlines the upcoming
proof of the structure between iterations by only having to consider sums of single
multiplications in the vector field. Each multiplication can be represented by an
array with monomials from the current approximations representing a row or col-
umn. The entries of the array would then represent the integration of the row and
column monomial multiplication.

Example 6.2. Let y′ = (y(t − τ))r for constant τ with t0 = 0. The vector field
is not polynomial unless r ∈ Z+, so assume otherwise. To recast the vector field
for dPSM, let u = (y(t − τ))r which implies that u′ = r(y(t − τ))r−1y′(t − τ) =
ru(y(t − τ))−1y′(t − τ). Note that the derivative term can be computed during
Picard’s iteration from the current approximation for y (after delaying it and taking
a derivative), hence it does not require its own evolution line. This can be rewritten
in terms of letters already in use by noting that (y(t−τ))′ = y′(t−τ) = (y(t−2τ))r =
u(t−τ) ≡ u∗ upon using the DDE. The u′ line can now be updated to u′ = ruu∗y

−1
∗ ,

where the asterisk will denote in general delaying the current argument by τ .
The y−1

∗ term needs to be in polynomial form still, so to this end, let v = y−1
∗ ,

so that v′ = −1y−2
∗ y′∗ = −v2y′∗ = −v2u∗ and the u′ line becomes polynomial as

well. With these change of variables in place, the original DDE can be written as
a two component system

u′ = ruvu∗

v′ = −v2u∗
(6.1)

and then integrating u will recover the original variable y. However, this system is
cubic. A quadratic one can be made to appear, at the price of moving to a three
component system, with the addition of w = vu∗ which implies w′ = −w2 + vu′∗.
this updates (6.1) to the following system

u′ = ruw

v′ = −vw
w′ = −w2 + vu′∗

(6.2)

which is quadratic. Note that if one were to compute by hand, (6.1) is preferable
to (6.2), but for the proofs, (6.2) is preferred.

16 V. M. ISAIA EJDE-2017/68

Using Theorem 5.3, let uk,m(t) =
∑m
m=0 pkm(t). It is convenient to arrange

each component of uk as an ordered list rather than an array across i and m.
To this end, given ulk, suppress the component dependence, and consider Ul

k =
[Pk0(t), . . . , Pk,k−1(t)] where Pk,m(t) = [∆m(t), . . . ,∆d

m(t)], where coefficient infor-
mation will be suppressed, to focus on tracking powers of ∆m(t).

Because there will be two components to track in the multiplications of a qua-
dratic vector field, the indices m and m will now be used as independent indices
tracking the delay structures. Let ul1k generate Ul1

k = (Pkm)i and ul2k generate
Ul2
k = (Qk,m)j , an array may be used to represent the quadratic terms, which can

be thought of in block form Ul1
k Ul2

k = (Pkm)i(Qk,m)j . In each entry of the array,
tabulate the integration of the corresponding terms (Pkm)i(Qk,m)j by listing the
result in the form ∆i

m(t). The entries of these arrays would then be scalar multi-
plied and summed over components to achieve the integration of the entire vector
field.

The result of Theorem 5.3 allows the block array when m = k to be used for
integration, and this result will contain the information for the cases when m < k
by simply ignoring the ∆m(t) terms for which m > m. Assume the constant lag
case for the delay, and as an example, let component ul1k = a1+b1t+c1t2+d1(t−τ)2

and ul2k = a2 + b2t + c2t
2 + d2(t − τ)2. The array for a nonlinear interaction term

in a vector field, upon suppressing coefficients, is given in Figure 2, which would
be used to compute the next approximation uk+1. Ordering by exponent in each
block shows that equal powers of t appear on the off diagonals in each of the main
diagonal PkmQk,m blocks.

1 t t2 (t− τ)2

1 t 1
2 t

2 1
3 t

3 1
3 (t− τ)3

t 1
2 t

2 1
3 t

3 t4 wing

t2 1
3 t

3 t4 t5 wing

(t− τ)2 1
3 (t− τ)3 wing wing (t− τ)5

Pk0Qk0 (3× 3) Pk0Qk1 (3× 1)

Pk1Qk0 (1× 3) Pk1Qk1 (1× 1)


Figure 2. Integration of vector field array - DDE

The underlined terms in the array are of higher power than the next power
of t, which happens to be t3 in the first main diagonal block, and will not be
computed. This is due to Ψ(t) being known so that the Pk0Qk0 block represents
a PSM problem, hence the PSM result applies, i.e. integration which produces tk

terms will be retained for uk’s integration to obtain uk+1.
These arrays expand in two ways each iteration. In PSM, the arrays expand by

adding a row and column, which represents the increase in degree of the approxi-
mation by one. In dPSM, each block in the array adds a row and column for the

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 17

same reason, while overall the array also adds a new block row and block column,
which corresponds to the newest delay term ∆k(t).

6.2. Wing terms. Associated with each main diagonal block PkmQkm with m 6= 0
fixed, are off diagonal blocks, PkmQk,m and Pk,mQ

km with 0 ≤ m < m. Ignoring
the constant term multiplications, the remaining terms, referred to as wing terms,
are a complication since Lemma 5.2 implies that an integration will produce terms
with the same delay as the main diagonal block m, hence their contribution has to
factor into when terms should be computed.

In particular, because of the range of powers produced by Lemma 5.2, wing terms
allow the coefficients on lower powers of ∆m(t) to change after each iteration, which
is contrary to the PSM result. However, this coefficient change is predictable and it
occurs through the development of a lag dependence in the coefficients, which will
be polynomial with argument γm,mτ = τ

∑m
r=m σ

−r, for the delay structure given
by (3.8) with τ−1 relabeled as τ . Looking at just the coefficients, then a version of
the PSM result holds, where the only change in coefficients in the next iteration is
the inclusion of the next power of τ .

To see this, suppose the coefficients are τ dependent. The result of Lemma 5.2
on the wing terms shows specifically that they are a linear combination of powers
of ∆m(t) with powers from β + 1 to α + β + 1 and coefficients with powers of τ
from τβ to τ0, respectively. As an example, consider an arbitrary Pk1Qk0 block,
and assume (a1(t−τ)+b1(t−τ)2 +c1(t−τ)3) times (a2t+b2t

2 +c2t
3). Suppressing

coefficients and noting γm,m = (m −m)τ for the constant lag case, the following
array is constructed in Figure 3, using the notation (α, β) ≡ τα(t − τ)β and the
underline for terms not to be computed in the next integration.

(t− τ) (t− τ)2 (t− τ)3

t0 (0, 2) (0, 3) (0, 4)

t (1, 2) + (0, 3) (1, 3) + (0, 4) (1, 4) + (0, 5)

t2 (2, 2) + (1, 3) + (0, 4) (2, 3) + (1, 4) + (0, 5) (2, 4) + (1, 5) + (0, 6)

t3
(3, 2) + (2, 3) (3, 3) + (2, 4) (3, 4) + (2, 5)

+(1, 4) + (0, 5) +(1, 5) + (0, 6) +(1, 6) + (0, 7)

Figure 3. Integration of vector field array - wing terms and τ dependence

In this array, note that terms with the same power on both t − τ as well as τ
run along the off diagonals, but not over the entire off diagonal. In addition, for a
fixed m and based on Lemma 5.2, array entries are m invariant, so the only change
in wing terms in different m blocks are the starting and ending indices for the
rows and columns and the actual value of the coefficient on the power of τ under
consideration. Neither of these changes across m will play a role in the invariance
theorem.

6.3. More Examples. Before the theorem for invariance with respect to iterations
is established, one more example is presented, which shows what can occur under
specific conditions on the vector field.

18 V. M. ISAIA EJDE-2017/68

Example 6.3. Consider the DDE y′(t) = y2(t) + (y(t − τ))2 with initial data 1
over [−τ, 0]. Using (4.3) as in Example 3 when z52(t) was computed, one can show
that

y2(t) =

{
y20(t) = 1 + 2t+ 2t2 t ∈ [0, τ]
y21(t) = 1 + 2t+ 2t2 + 2(t− τ)2 t ∈ [τ, T]

and using y21(t) and the results of all the theorems, one can quickly compute y3(t)
via substituting y21(t) into the DDE and integrating each term involving τm from
τm up to t. Using a double underline to indicate the newly computed terms, i.e.
the non-underlined terms are y2(t), we have

y32(t) = 1 + 2t+ 2t2 +
8
3
t3 + 2(t− τ)2 +

(
4 +

8
3
τ +

8
3
τ2
)
(t− τ)3

+
(4

3
+

8
3
τ +

8
3
τ2
)
(t− 2τ)3

(6.3)

where the coefficients that have developed a τ dependence have retained terms up
to τ2.

The theorem to follow uses the relation s∗k = k +m− i to determine the largest
power of τ to retain on the term of the form ∆i+1

m (t). Using k = 2, m = 2, which is
the minimum power of ∆m(t) that produces the wing term, which happens to be m
and considering the (t− τ)3 term, so that i+ 1 = 3, then s∗k = 2 + 2− 2 = 2, which
coincides with the τ2 that was retained. In this example, the highest power of τ
generated happened to be 2, so there weren’t higher powers to retain. However,
if there had been, this would imply more terms of that power still need to be
computed.

Further, if the coefficient on (t − τ)3 in y42(t), i.e. same τ -step, next iterate,
were computed it would be

(
4 + 8

3τ + 8
3τ

2 + τ3
)

because only powers up to and
including s∗k = k +m− i = 3 + 2− 2 = 3 should be computed, and the coefficients
on τ2 and τ are invariant.

This will now be contrasted against the following example. Let y′(t) = (y(t−τ))2

with the same initial data. Again using (4.3) as in Example 3, one can compute

y2(t) =

{
y20(t) = 1 + t t ∈ [0, τ]
y21(t) = 1 + t+ (t− τ)2 + 1

3 (t− τ)3
t ∈ [τ, T],

where the cubic term has been underlined because normally more cubic terms would
still need to be computed, so this term shouldn’t be computed in this iteration. But
for this vector field, those cubic terms will have zero coefficients, and so this un-
derlined term represents all cubic terms, and will be retained during this iteration.
In addition,

y32(t) = 1 + t+ (t− τ)2 +
1
3

(t− τ)3

+
(2

3
+

2
3
τ
)
(t− 2τ)3 +

(2
3

+
1
6
τ
)
(t− 2τ)4

+
1
3

(t− 2τ)
5

+
1
9

(t− 2τ)6 +
1
63

(t− 2τ)7

(6.4)

where the underlines are used for the same reason as before. Note that looking at
the (t−2τ)3 term, k = 2, m = 2 and i+1 = 3, so k+m−i = 2 which does not match

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 19

the term τ1. Here, constant initial data and the lack of t arguments in the vector
field produce only t − τ terms, and none of higher power. Hence the assumptions
that went into forming k+m− i above need to be revisited, in particular, k should
be replaced by k − 1 here.

7. dPSM results - II

The next theorem is essentially the invariance of coefficients idea from Theorem
4.1 but with respect to k rather than with respect to m with consideration of a τ
dependence. The theorem holds if Ψ is not constant, but in light of Theorem 5.3,
only in a fixed τ -step.

The fastest propagation occurs when the vector fields have an additional con-
dition placed on them. A mixing vector field is fully delayed and has in each
component, either a term of the form u(t)v(∆(t)), otherwise terms of the form
u(t)v(t) +w(∆(t))x(∆(t)), where u, v, w and x are any components, some or all of
which may be the same. Note that the first vector field in Example 5 falls into this
category, while the second one does not.

Theorem 7.1. Using ∆(t) as in (3.8) and mixing f , then the solution to (3.2) has
the form (5.6) and (5.7), where the coefficients satisfy

aikm =
sk∑
s=0

ai,skmτ
s

for some sk > 0. In addition, for fixed k and fixed i ≤ k and every −1 ≤ m ≤ mk,
defined in Theorem 5.3, we have

ai,sk+n,m = ai,skm (7.1)

for each s ≤ s∗ ≡ k +m− i and every n > 0.

Proof. Consider fusing the ordered lists [uk(t),uk(∆(t))] so that the delay terms in
the vector field can be distinguished via the component index: ulk(t) represents the
(l − L− 1)th derivative of uk evaluated at ∆(t) if L < l ≤ 2L. Given a solution to
(3.2), consider the quadratic vector field for the (k+ 1)th iteration and suppressing
time dependence, we have

Dulk+1 =
2L∑
l1=1

2L∑
l2=1

cll1l2u
l1
k u

l2
k

The indices m and m will now denote independent indices for the delay structure
in each component. There is then the need to relabel m, the index for the τ -step,
which is now denoted by n. For n < k, (4.3) produces {ulk,n}2Ll1=1, polynomials of
the form (5.6) and (5.7).

ulk+1,n = ulkn(τ0) +
n−1∑
m=0

∫ τm+1

τm

2L∑
l1=1

2L∑
l2=1

cll1l2u
l1
kmu

l2
km ds

+
∫ t

τn

cll1l2u
l1
knu

l2
kn ds

(7.2)

Decompose further with

ulkn =
nk∑

m=−1

plkm =
nk∑

m=−1

(k−1∑
i=i∗

ailkm∆i
m +

d∑
i=k

ailkm∆i
m

)
(7.3)

20 V. M. ISAIA EJDE-2017/68

where d is the largest power produced by integrating the vector field and i∗ = n+1
if l ≤ L and i∗ = n if l > L. In particular, if n = −1, then d = 0 and both sums
collapse to constant terms. Integrands in (7.2) are a linear combination of function
multiplications. Substituting (7.3) into (7.2) shows these multiplications each have
the following form:

nk∑
m=−1

nk∑
m=−1

(k−1∑
i=i∗

ail1km∆i
m

k−1∑
i=i∗

a
il2
k,m∆i

m

)

+
nk∑

m=−1

nk∑
m=−1

(d∑
i=k

ail1km∆i
m

d∑
i=k

a
il2
k,m∆i

m

)

+
nk∑

m=−1

nk∑
m=−1

(d∑
i=k

ail1km∆i
m

k−1∑
i=i∗

a
il2
k,m∆i

m

)

+
nk∑

m=−1

nk∑
m=−1

(k−1∑
i=i∗

ail1km∆i
m

d∑
i=k

a
il2
k,m∆i

m

)
≡
∑

1

+
∑

2

+
∑

3

+
∑

4

(7.4)

where for simplicity ailkm is taken to be zero if m = 0 and l > L.
Intuitively, each individual l1 and l2 will produce a block array of the form

(P l1km)i(P l2k,m)i. In this sense, m and m are indices for the block form of the array,
and i and i are local indices inside a particular block.

The multiplication of the sums in the terms of
∑

1 demonstrate that the previous
iteration’s powers of ∆m(t) contribute to the next iteration. The multiplication
in the terms of

∑
2 produces terms with powers of ∆m(t) at least 2k + 1 after

integrating and should not be computed in the next integration since terms of
power 2k, 2k− 1, . . . , k+ 1 are not yet present in the approximations to contribute.
This also applies to powers above k in

∑
1.

The multiplications from
∑

3 and
∑

4 are wing terms, and depending on whether
m > m or m < m, one set will contribute ∆i

m(t) with i ≥ k and will not be
computed, while the other set due to Lemma 5.2, will contribute ∆i

m(t) with i =
m + 1, . . . , k. This implies that coefficients for lower powers in general are not
invariant with respect to iterations, however, they can be shown invariant with
respect to iterations when considered as polynomials of τ .

To see this, denote the coefficient on ∆i+1
m , with i ≤ k, in the l component of

uk by ai+1,l
km . This coefficient may be a polynomial in τ , and is determined by

summing up the coefficients on all ∆i+1
m terms in the arrays for each (l1, l2). Since

i is considered fixed, introduce I, J as independent indices for powers of ∆m. In
each array, these sums have the form

ai+1,l
k+1,m

=
2L∑
l1=1

2L∑
l2=1

[
(i+ 1)−1

∑
I+J

∑
=i

aIl1kma
Jl2
km

+
m−1∑
m=−1

(i∑
J=m

k∑
I=i−J

aIl1k,ma
Jl2
kmγτ

IJ +
i∑

I=m

k∑
J=i−I

aIl1kma
Jl2
k,mγτ

IJ
)] (7.5)

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 21

where γτ IJ ≡ γmmτ
I+J−i. Note that γm,m is constant with respect to τ and

independent of k. The terms in the first line come out of the appropriate main
diagonal block and the second line has all the wing terms. Note also that the
indices have been relabeled so that m is the larger index, while m is the smaller
one

Consider now a future integration for the same term ∆i+1
m (t) using uk+n,

ai+1,l
k+n+1,m =

2L∑
l1=1

2L∑
l2=1

[
(i+ 1)−1

∑
I+J

∑
=i

aIl1k+n,ma
Jl2
k+n,m

+
m∑

m=−1

(i∑
J=m

k+n∑
I=i−J

aIl1k+n,ma
Jl2
k+n,mγτ

IJ

+
i∑

I=m

k+n∑
J=i−I

aIl1k+n,ma
Jl2
k+n,mγτ

IJ
)]

and upon breaking off the powers above k, we have

ai+1,l
k+n+1,m

=
2L∑
l1=1

2L∑
l2=1

[
(i+ 1)−1

∑
I+J

∑
=i

aIl1k+n,ma
Jl2
k+n,m

+
m∑

m=−1

(i∑
J=m

k∑
I=i−J

aIl2k+n,ma
Jl2
k+n,mγτ

IJ +
i∑

I=m

k∑
J=i−I

aIl1k+n,ma
Jl2
k+n,mγτ

IJ

+
i∑

J=m

k+n∑
I=k+1

aIl1k+n,ma
Jl2
k+n,mγτ

IJ +
i∑

I=m

k+n∑
J=k+1

aIl1k+n,ma
Jl2
k+n,mγτ

IJ
)]

(7.6)

For notational convenience, the double sum over l1 and l2 will be suppressed along
with l1 and l2 dependence, along with denoting aIkm ≡ aIl1km and bJkm ≡ aJl2km. Now
let k = 0, which implies that m, i and s = 0 in the theorem statement. Theorem
(5.3) shows that the theorem statement holds for k = 0.

If the theorem statement holds for arbitrary k, i.e. i ≤ k and s ≤ s∗, then

aIk+n,m = aIkm +
d∑

s=s∗+1

aIsk+n,mτ
s ≡ aIkm + pas∗+1 (7.7)

with a similar statement for bJk+n,m. Inserting (7.7) into (7.6) and expanding, we
have

(i+ 1)−1
∑
I+J

∑
=i

(
aIkmb

J
km + pas∗+1b

J
km + pbs∗+1a

I
km + pas∗+1p

b
s∗+1

+
m−1∑
m=−1

(i∑
J=m

k∑
I=i−J

(
aIk,mb

J
km + pas∗+1b

J
km + pbs∗+1a

I
k,m + pas∗+1p

b
s∗+1

)
γτ IJ

+
i∑

I=m

k∑
J=i−I

(
aIkmb

J
k,m + pas∗+1b

J
k,m + pbs∗+1a

I
km + pas∗+1p

b
s∗+1

)
γτ IJ

22 V. M. ISAIA EJDE-2017/68

+
i∑

J=m

k+n∑
I=k+1

(
aIk,mb

J
km + pas∗+1b

J
km + pbs∗+1a

I
k,m + pas∗+1p

b
s∗+1

)
γτ IJ

+
i∑

I=m

k+n∑
J=k+1

(
aIkmb

J
k,m + pas∗+1b

J
k,m + pbs∗+1a

I
km + pas∗+1p

b
s∗+1

)
γτ IJ

)
(7.8)

and note that the first multiplication in the first, second and third lines of (7.8) are
the same terms from (7.5). In the second and third terms in the first line of (7.7),
note that a and b may have constant terms. It follows that these terms will have
a minimum power of τ given by the minimum power in ps∗+1, which is s∗ + 1 and
hence, they may be written in the form P (τ)τs

∗+1 where P is a polynomial with
a constant term. All the second and third terms in lines two through five have a
larger power of τ than s∗ + 1 and are thus considered higher order. This is also
true for all the terms of the form pas∗+1p

b
s∗+1.

So, summing over l1 and l2 and explicitly denoting the lowest power of τ in the
first three lines of (7.8) along with the lowest power of τ in the last two lines, we
have

ai+1
k+n+1,m = ai+1

k+1,m + Pτk+m−i +G(τ)

+
2L∑
l1=1

2L∑
l2=1

cll1l2

m−1∑
m=m∗

(i∑
J=m

k+n∑
I=k+1

aIl1k,ma
Jl2
kmγτ

IJ

+
i∑

I=m

k+n∑
J=k+1

aIl1kma
Jl2
k,mγτ

IJ
) (7.9)

where P is a polynomial with respect to τ with a constant term and G(τ) contains
the higher order terms. In addition, both ail1km and ail2km may have constant terms,
so that the minimum power of τ in the second line of (7.9) is min I + J − i =
k+1+m−i = s∗+1 over both sums. Hence, ai+1,s

k+n+1,m = ai+1,s
k+1,m if s ≤ k+m−i−1

and so (5.6) and (5.7) both hold for k + 1, and thus all k. �

Note that both powers of ∆m(t) along with powers of τ from Lemma 5.2 are
constant along off diagonals in each block array. Hence the main diagonal blocks
dictate keeping powers of ∆m(t) up to i ≤ k + 1, and then keeping powers of τ up
to k +m− i.

PSM also provides an explicit a priori error bound which does not involve deriva-
tives of the vector field, [13]. Note that over [τm−1, τm], the structure in Theorem
5.3 can be expanded in a series around the single center τm−1. Using this repre-
sentation, the error estimate for PSM may be extended to the deviating argument
case.

Some notation will now be introduced and to facilitate, there is a strong overlap
with the notation in [13]. Denote by ‖v‖∞ = maxl vl, the maximum over the
components of v. The vector field will be polynomial and written compactly as

f(u,u∗) =
df∑
i=0

df∑
j=0

Bijuiuj
∗

where the sum over the ordered list of indices implies a sum over each index in the
list ranging from 0 to df , the exponentiation between ordered lists is componentwise

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 23

and the asterisk denotes the delay terms. Denote by ‖Bij‖ the maximum row sum
of coefficient magnitudes, the subordinate matrix norm to the vector norm ‖ · ‖∞.

If one considers (3.2) globally, then ‖Bij‖ would be the norm of the vector field.
There is also occasion to consider the local vector field for the ODE in [τm, τm+1]
with the delay info considered ‘known’ and hence, the norm of the vector field would
need to incorporate the delay information into the coefficient matrix. Dub the local
ODE as f∗(u).

Theorem 7.2. For finite m ≥ 0, the expansion ukm(t) =
∑m
m=−1 pk,m(t) gener-

ated by (4.3) is such that

‖u(t)− ukm(t)‖∞ ≤ Ckm
(
F (t− τm; ‖Bij‖∞, df)−

k∑
q=0

zq(t− τm)q
)

(7.10)

when t ∈ [τm, T] with df + 1 being the vector field’s degree in (3.2) and constant
Ckm dependent on ‖Ψ‖∞, the norm of the initial data along with

F (t; a, b) = exp(at), b = 0 and F (t; a, b) =
1

(1− abt)1/b
, b ≥ 1

The sequence elements zq are the expansion coefficients of F which solves z′(t) =
azb.

This result holds for non-constant initial data.

Proof. Approximating (3.2) via (4.3), note that in each τ -step, the DDE reduces to
an ODE with non-constant coefficients and/or non-homogeneous terms involving
the solution from the previous τ -step.

To recover an ODE, the vector field must be modified to include the delay in-
formation in its coefficients. Summing Biju

j
∗ over j would yield coefficients for the

ODE f∗(u) over the particular τ -step. Noting that (3.3) holds in the limit, we have

u∗(t) ≤ max
[0,t]

u∗ ≤ max
[0,t]

u ≤MΨ + tMf (7.11)

using the notation of Proposition 3.1, and the coefficient matrix satisfies the bound

‖f∗‖ ≤ ‖Bij‖
(
(‖MΨ + τmMf)∗

)df+1 ≡ ‖fm‖

where the asterisk indicates max{·, 1}. Hence, (3.2) becomes the ODE initial value
problem u′ = f∗(u) with initial data u(τm) = ukm(0), to which the result from [13]
can be applied. For convenience, ‖ · ‖∞ is shortened to ‖ · ‖, F (·; ‖fm‖, df + 1) is
shortened to Fm(·) and ‖ekm(t)‖ ≡ ‖u(t)− ukm(t)‖. This yields

‖ekm(t)‖ ≤ ‖u∗k,m−1(τm)‖
(
Fm(t− τm)−

k∑
q=0

zqm(t− τm)q
)

(7.12)

where the asterisk again indicates max{·, 1} and zqm are the expansion coefficients
of Fm which solves z′(t) = ‖fm‖zdf+1. Using the fact that ‖ekm(t)‖ ≥ 0 along with
the substitution ‖u∗k,m−1(τm)‖ = ‖u(τm)− ek,m−1(τm)‖, we have

‖u∗k,m−1(τm)‖ ≤ max{‖u(τm)‖+ ‖ek,m−1(τm)‖, 1 + ‖ek,m−1(τm)‖}
≤ max{‖u(τm)‖, 1}+ ‖ek,−1(τm)‖

24 V. M. ISAIA EJDE-2017/68

Using (3.3) in the limit as before to bound the solution, then (7.12) becomes

‖ekm(t)‖

≤
(
(MΨ + τmMf)∗ + ‖ek,m−1(τm)‖

)(
Fm(t− τm)−

k∑
q=0

zqm(t− τm)q
) (7.13)

and (7.13) may then be continued to

‖ekm(t)‖ ≤ Ckm
(
Fm(t− τm)−

k∑
q=0

zqm(t− τn)q
)

which is (7.10), where

Ckm ≡ (MΨ + τmMf)∗
m∑
m=0

m∏
n=m

(
Fn(τn+1 − τn)−

k∑
q=0

zqn(τn+1 − τn)q
)

Note that a slightly less tight, but computationally nicer bound exists for the basic
PSM result which could be adapted here, see [13]. �

8. General delay structure

There is a logical difficulty extending Proposition 3.1 to the state dependent
delay case due to the changing nature of ∆ with respect to iterations. Hence, the
discussion of the approximation of this case via dPSM is heuristic. With regards
to (5.6), note that ∆ can only known approximately since u would only be known
approximately. If one imagines a sequence of approximations ∆k to ∆, these could
differ in functional form each iteration, or possibly only in certain parameters, for
example σ and/or τ = τ−1 in the case of (3.8).

If a problem starts in the solution’s basin of attraction so that the basic iteration
would evolve to the correct fixed point, then ∆km(t) = ∆(t,ukm(t)) may be com-
puted based on the computation of ukm. At the very least, one needs to store the
polynomial for the τ coefficients so that upon updating the set of τm at each iter-
ation based on the currently computed ∆k(t) would allow updating the previously
computed coefficients so that they do not have to be recomputed each iteration.
In other words, there would be invariance in previously computed coefficients once
τk−1,m is updated to τkm based on ∆km(t).

Acknowledgments. The author would like to thank Drs. James Sochacki and
Allen Holder for useful discussions, constructive criticisms and their donations of
time and expertise during the writing of this article.

References

[1] C. T. H. Baker, C. A. H. Paul, D. R. Willé; Issues in the Numerical Solution of Evolutionary
Delay Differential Equations, Adv. Comp. Math, 3 (1995), pp. 171-196.

[2] A. Bellen, N. Guglielmi, A. E. Ruehli; Methods for Linear Systems of Circuit Delay Differen-

tial Equations of Neutral Type, IEEE Transactions on Circuits and Systems - I: Fundamental
Theory and Applications, 46 (1999) 1, pp. 212-215.

[3] D. C. Carothers, G. E. Parker, J. S. Sochacki, P. G. Warne; Some Properties of Solutions to
Polynomial Systems of Equations, Elec. Jour. of Diff. Eqn., 2005 (2005) 40, pp. 1-17.

[4] E. A. Coddington, N. Levinson; Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955

[5] L. E. El’sgol’ts; Introduction to the Theory of Differential Equations with Deviating Argu-
ments, (translated by R. J. McLaughlin), Holden-Day, San Francisco, 1966

EJDE-2017/68 NONLINEAR DIFFERENTIAL EQUATIONS 25

[6] E. Fehlberg; Numerical Integration of Differential Equations by Power Series Expansions,

Illustrated by Physical Examples, Technical Report NASA-TN-D-2356, NASA, (1964).

[7] V. M. Isaia; dPSM and Polynomial Initial Data, in preparation.
[8] S. B. Norkin; Differential Equations of the Second Order with Retarded Argument, Transla-

tions of Mathematical Monographs (L. J. Grimm) vol. 31, AMS, Providence, 1972

[9] G. E. Parker, J. S. Sochacki; Implementing the Picard Iteration, Neural, Parallel and Scientific
Computations, 4 (1996) 1, pp. 97-112.

[10] G. E. Parker, J. S. Sochacki; A Picard-Maclaurin Theorem for Initial Value PDEs, Abstr.

Appl. Anal., 5 (2000) 1, pp. 47-63.
[11] J. S. Sochacki, A. Tongen; Exploring Polynomial Dynamical Systems: An Interesting Appli-

cation of Power Series to Differential Equations, Springer-Verlag, 2016.

[12] R. D. Stewart, W. Bair; Spiking Neural Network Simulation: Numerical Integration with the
Parker-Sochacki Method, Journal Computational Neuroscience, 27 (2009), pp. 115-133.

[13] P. G. Warne, D. A. P. Warne, J. S. Sochacki, G. E. Parker, D. C. Carothers; Explicit A-
Priori Error Bounds and Adaptive Error Control for Approximation of Nonlinear Initial

Value Differential Systems, Comput. Math. Appl., 52 (2006), pp. 1695-1710.

Vincenzo Michael Isaia

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN
47803, USA

E-mail address: isaia@rose-hulman.edu

	1. Introduction
	2. PSM overview
	3. DDEs and convergence of Picard iteration
	4. dPSM and examples
	5. dPSM Results - I
	6. Iteration structure - formal
	6.1. Basic array setup
	6.2. Wing terms
	6.3. More Examples

	7. dPSM results - II
	8. General delay structure
	Acknowledgments

	References

