
Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2011-29

REQUIREMENTS MANAGEMENT IN AN AGILE-SCRUM

Elizabeth O. Oyeyipo
 Carl J. Mueller

2011-01-03

REQUIREMENTS MANAGEMENT IN AN AGILE-SCRUM

i

 Page

 ... i

 .. iii

 ... iv

1 IN T R O DU C T I O N .. 5

1.1 Background on the Problem .. 5

1.2 Motivation ... 8

1.3 Outline of Work ... 8

2 B A C K G R O UND ... 9

2.1 Introduction ... 9

2.2 Terminology .. 10

2.3 Software Development Processes .. 13

2.3.1 Traditional Waterfall Model .. 14

2.3.2 Incremental Development Process .. 16

2.3.3 Agile-Family of Development Methodologies 16

2.4 Summary .. 21

3 R ESE A R C H G O A LS ... 22

3.1 Agile Requirements Changes .. 23

3.2 E ffects of Requirements Changes on Productivity 27

REQUIREMENTS MANAGEMENT IN AN AGILE-SCRUM

ii

4 C ASE ST UD Y A ND R ESU L TS .. 30

4.1 Design.. 30

4.2 Case Study Execution .. 31

4.3 Results ... 34

4.4 Sources of Possible Error ... 38

5 C O N C L USI O NS A ND F U T UR E R ESE A R C H .. 40

5.1 Conclusions ... 40

5.2 Future Research .. 41

APPE NDI X A PR OJE C T D ESC RIPT I O N ... 43

APPE NDI X B M E T RI C D E RI V A T I O N .. 44

APPE NDI X C C O MPU T E R ASSIST E D SO F T W A R E E N G IN E E RIN G

T O O LS .. 46

APPE NDI X D C O MPU T E R ASSIST E D SO F T W A R E E N G IN E E RIN G

T O O LS .. 52

R E F E R E N C ES .. 55

REQUIREMENTS MANAGEMENT IN AN AGILE-SCRUM

iii

 Page

Table 1. Goals, Questions and Metrics set. .. 44

Table 2. Requirement Types and Attributes .. 47

REQUIREMENTS MANAGEMENT IN AN AGILE-SCRUM

iv

 Page

Figure 1. Waterfall Development Model (Royce, 1970). 15

Figure 2. Incremental Development Model ... 16

Figure 3. Agile-Scrum Development Model Mountain Goat Software (2005). .. 19

Figure 4. Agile Development vs. Waterfall ... 25

Figure 5. Customized requirements types (Mueller, 2010). 33

Figure 6. Product Functionality of both groups ... 35

Figure 7. Development Effort for both groups .. 36

Figure 8. Project Progress for both groups .. 36

Figure 9. Defects Report for both groups. ... 37

Figure 10. Requirements Change Impact. .. 38

Figure 11. Project Problem Description ... 43

http://file:///C:/Users/cm58/Documents/Teaching/Thesis%20Material/Students/Oyeyipio/Technical_Report_11_01_03.docx%23_Toc281827169

5

1 IN T R O DU C T I O N

1.1 Background on the Problem

Developing software is a difficult and extremely labor-intensive activity. As with

many labor-intensive activities, developing software is error prone. Every year there are

more software-based devices controlling functions that are critical to human survival.

The chances of disasters and failures of these software-based devices have greatly

increased. Over the past decades, several of these failures resulted in either loss of lives

or property (Charlette, 2005; Leveson, 1995; Lions, 1996). Many of these development

failures are attributed to software requirements engineering issues (Standish Group, 1994;

Kotonya & Sommerville, 1998).

In software engineering, producing high quality software delivered within budget

and schedule and satisfying needs is the primary objective of any software

development process/project. Software requirements describe the client needs and how

the software is to address them. Poor requirements and changes to requirements are one

of the causes for project overrun and quality issues in the delivered software.

Many studies show that poor requirements are one of the major reasons for failed

software systems and projects (Brooks, 1987; Standish Group, 1994). Worldwide, it is

hard to say how many software projects failed or how much money is wasted. Defining

failure as the total abandonment of a project before or shortly after it is delivered, and if

one accepts a conservative failure rate of five percent, then billions of dollars are wasted

each year on bad software (Charette, 2005). Some of the software failures stated below

have led to significant loss of properties and lives. It is common to hear that the cause of

an airliner crash or the recall of a medical device is because of undisclosed software

6

problems. A significant software failure is the maiden flight of the Ariane 5 rocket that

ended in a crash (Lions, 1996). Another incident, of software failure that occurred

between 1985 and 1987, is the Therac-25, a computer-driven medical device for

delivering measured bursts of radiation to cancer patients (Leveson, 1995).

One of the most challenging aspects of the software development process is

Requirements Engineering (RE). RE, the first phase of the software development

process, is a critical aspect because it lays the foundation for all the subsequent project

work; and it affects the success of the development project (Wiegers, 2005). The RE

process consists of five main activities: Elicitation, Analysis and (Negotiation)

Documentation, Validation and Management. In the software engineering field,

requirements engineering has many definitions. According to Sommerville

name given to a structured set of activities that help developers to understand and

document system specification for the stakeholders and engineers involved in the system

development (Sommerville, 2001). Zave defines RE as:

Requirements engineering is the branch of software engineering concerned with

the real-world goals for functions of, and constraints, on software systems. It is also

concerned with the relationship of these factors to precise specifications of software

behavior, and to their evolution over time a

In the traditional software development methodologies, the lack of user input,

incomplete requirements, and changing requirements are some of the major reasons why

software systems do not deliver all their planned functionality on schedule and within

budget (Weigers, 1999). In the field of software engineering, several problems became

apparent in the traditional software development methodologies; and this is due to the

7

inflexible division of a project into separate stages. Because software developers made

commitments early in the development process, it is difficult to react to changes in

requirements. Having fully detailed documented requirements that will not change is

unrealistic in the software development process because changes will always occur.

During the software development process, if errors occur in the requirements

engineering stage and the developers continue with the project, then the customer will not

be satisfied with the product. According to Boehm, it is more expensive to fix a

requirements error at the later stage of the development life cycle because the cost and

time required increases as the software development progress (Boehm, 1981).

Agile is a more recent software development methodology introduced to help address

some of these system development challenges.

Agile Scrum is an iterative development process becoming very popular in

industry. However, as in all Agile methodologies, there is a resistance to the

development of traditional documents. Instead of a requirements specification, Agile-

ests.

In the Agile-Scrum methodology, changing the product backlog is a normal part of the

development process (Agile Alliance, 2001; Schwaber, 2001). This notion conflicts with

much of the current literature on requirements engineering and management. Even in

traditional development processes, requirements frequently change; but there is usually a

decrease in quality and an increase in cost that is associated with the level of changes.

Based on Agile methodology, growing popularity and positive reviews by developers and

users, there must be some aspect of Agile-Scrum that mitigates the traditional problems

associated with high levels of requirements changes.

8

1.2 Motivation

Agile-Scrum is an iterative framework for managing complex work, such as new

product development commonly used with agile software methodologies. Change is an

inherent part of Agile-Scrum. One of the most important aspects of Agile methodology

is that change is a built-in aspect of the process. However, Agile-Scrum sees change in

requirements as a positive aspect to the success of the software project and quality of the

software product. Changes to requirements are inevitable in the software development

process. There is need to manage these frequent changes so the quality of the product

can be measured or to ascertain that the prioritized requirements have been implemented

and traced to the source. Requirements management and Agile developments are current

areas of study. Many authors have written on requirements changes; however, most

recent literature has not specifically studied an empirical approach to requirements

management in an Agile-Scrum development process. This research intends to

demonstrate how the application of the Agile-Scrum methodology produces software that

meets user needs. If the traditional notions of requirements change are correct, then using

the Agile-Scrum should deliver less functionality in a fixed-length development project.

1.3 Outline of Work

The structure of this thesis is as follows: Chapter 2 provides background

information on the related research. Chapter 3I contains the explanation of the research

hypotheses. The description of the case study details, findings, and results are in Chapter

4. Lastly, Chapter 5 gives the conclusion and direction for future research.

9

2 B A C K G R O UND

2.1 Introduction

Many studies in requirements engineering have major areas of concentration

ranging from requirements gathering to requirements specifications. Many researchers in

requirements engineering are interested in validation of requirements; others have fully

focused on the requirement elicitation. Study on measurement of requirements and

prediction of the quality of the software product is essential. Nuseibeh and Easterbrook

specified different areas of requirements engineering that had undergone research and

future research work that could be further explore. One of the research areas that is seen

- the ability, not only to write requirements but

also to do so in a form that would be readable and traceable by many, in order to manage

Loconsole implements an empirical study on requirements management measures

and demonstrates that a subset of a set of 38 requirements measures are a good predictor

of stability and volatility of requirements and change requests (Loconsole, 2004). In

order to measure the quality of requirements, we must get the requirements right in these

three critical areas: definition, verification, management and by applications of

appropriate tools and metrics analysis techniques (Hammer, Huffman & Rosenberg,

1998). Furthermore, improvements on the development process have greatly increased.

Software developers aim to produce quality software that is within budget and schedule

constraints, in order to satisfy the needs of the stakeholders and users. However, there

-offs (Brooks, 1987).

10

This chapter explores information on research conducted on requirements

changes, with definitions of terms used in this research. The definitions include

requirements changes, requirements managements, change impact analysis, and

requirements traceability. In addition, it explains the software development processes-

traditional and Agile methodologies.

2.2 Terminology

In this research, the following terms are used:

Requirements are defined as the specification of what the developer should

implement. Requirements may be a constraint on the development process of the system.

Requirements are the description of what the expectation of the delivered

software when the project is completed. Many authors have defined requirements in

different ways. According to Institute of Electrical and Electronics Engineers (IEEE),

recommendations for requirements specification are defined as:

1. A condition or capability needed by a user to solve a problem or achieve

an objective;

2. A condition or capability by a system or system component to satisfy a

contract, standard, specification, or other formally imposed documents;

3. A documented representation of a condition or capability as in one (1) or

two (2) (IEEE, 1998).

A requirements change is either a modification to an existing requirement or a

new requirement that may or may not affect existing requirements. Changes to

requirements often occur due to evolving needs of system stakeholders and modifications

in the business environment (Kotonya & Sommerville, 2002). Managing these

11

requirements changes is a fundamental activity in RE (Bohner & Arnold, 1996). It also,

has been a major issue in the software development process because changes are

inevitable (Sommerville & Sawyer, 2000). Changes to requirements can be in the form

of adding new requirements, deleting requirements and enhancing the requirements.

Requirements management is an important part of the Requirements

Engineering (RE) phase. It is a continuous process, performed with the other RE

activities in parallel that proceeds through all the phases of software development, and

after the product is delivered (Lauesen, 2002). According to Sommerville requirements,

managements can be defined

understanding and controlling changes to system requirements (Sommerville 2001).

Change management process is the set of activities that assess the impact and cost of

changes. When changes are proposed, the impact of the changes on other requirements

ves

tracking the status of individual requirements and tracking both backward to their origins

& forward into design elements, code modules, and tests (Weiger, 2005). Managing

changing requirements is a major area of focus in this research.

Goals of requirements management

The goals of requirements management are to manage changes to a set of agreed-

upon requirements that have been committed to a specific product release (CMU/SEI,

1995). Requirements management help cope with the impact of changing requirements,

e.g., test cases have to be adapted in order to test the implementation against the revised

requirements. Developers could use this to understand the impact of requirements

changes on the product quality (Heindi & Biffl, 2002).

12

Requirements Management A ctivities

Requirements Management Activities includes all activities concerned with

change and version control, requirements tracing, and requirements status tracking

(Paetsch, 2003). Requirement management activities entails that changes are managed

during software development. Four main activities are stated below:

 controlling changes to the requirements baseline,

 controlling versions of requirements and requirements documents,

 tracking the status of the requirements in the baseline,

 managing the logical links between the individual requirements and other work

products (Loconsole, 2001; Kotonya & Sommerville 2002; Lauesen, 2002).

Change impact analysis is the activity of estimating what must be modified to

accomplish a change and identifying the potential consequences of that change (Arnold &

Bohner, 1996

artifacts by tracing the requirements to define relationships between requirements source

and destination.

Requirements traceability is the ability to describe and follow the life of a

requirement, in both a forward and backward direction, from its origins, through its

development and specification, to subsequent deployment and use, and through all

periods of on-going refinement and iteration in any of these phases (Gotel & Finkelstein,

1994).

Much research in the literature on requirements changes focuses on predicting the

impact in terms of cost of the changing requirements. Measuring requirements volatility-

13

how much the requirements are likely to change over time in the software development

project is one of the good requirements management measures.

Loconsole and Börstler investigate measures of volatility in a waterfall medium-

size project. The findings from the research indicate that there is high correlation

between the size of requirements and total number of requirements changes (Loconsole &

Börstler, 2005).

Arnold and Bohner on analyzing the impact of requirements changes suggested

that early assessment is the key to addressing the impacts of changes in software projects,

by predicting the effects of changes before making the changes. In addition, he specified

that to measure the impact of these changes, that software stability, traceability,

complexity and size are all measures that influence the impact assessment (Arnold &

Bohner, 1996).

2.3 Software Development Processes

A software development methodology refers to the framework that is used to

structure, plan, and control the process of developing an information system (Pressman,

2005). Many frameworks have evolved over the years, ranging from the traditional

approaches to the most recent Agile methodologies. Some of the well-known and

common traditional methodologies used in the development of software projects include

the following approaches: waterfall, prototyping, incremental, spiral, and Rapid

Application Development. Some of the agile methodologies are SCRUM, eXtreme

Programming (XP), Feature Driven Development (FDD) and others. The most popular

and oldest traditional methodology used in both large and small projects is the waterfall

model (Huo, Verner, Zhu, & Babar, 2004; Royce, 1987).

14

2.3.1 T raditional Waterfall Model

When developing software during a software development project, the following

activities are performed in stepwise phases: requirements analysis, design,

implementation, testing (validation), integration, and maintenance. Waterfall software

development is a document-driven methodology that follows a sequential top-down

approach to development of any project. Waterfall is a rigid model where all

development activities are planned at the beginning of the project. This model

recommends that software be develop in successive phases. Each phase of the software

development process needs to be complete before the staring the next phase. At the end

of each phase, an artifact in documented form is produce. At the end of the development

cycle, the customer receives the entire product.

Requirements analysis phase of this approach involves initial discussions with the

customer and the development team to produce a requirements definition document. The

language. It serves as a written contract between the stakeholders/customers and the

development team. Software Requirement Specification (SRS) document is derived from

the requirements definition document. It is a complete description of the behavior of the

system to be developed. The SRSs are written in technical terms to be understood by the

designers. The design phase is next in the waterfall model, and its input is the artifacts

from the analysis phase. The architectural design of the system is structured into

modules implementing the requirements and specifying how to build the system. The

artifacts from the design stage are implements with appropriate programming language to

generate source code. The development team tests the source code to validate that the

15

requirements have been satisfied in the software product. Since this process follows a

sequential approach, changes made in any stage affect the other phases of the

development process. Figure 1 below shows the waterfall development model.

Requirements Analysis

Design

Implementation

Testing (validation)

Integration

Maintenance

F igure 1. Waterfall Development Model (Royce, 1970).

Numerous problems are encountered using the waterfall model. According to

Boehm,

programs and organizing software to accommodate changes. The model assumes a

relatively uniform progression of elaboration steps (Boehm, 1986).

16

F igure 2. Incremental Development Model

2.3.2 Incremental Development Process

Incremental development is a refinement of the Waterfall development model.

The model combines the waterfall life cycle with iterative enhancement. Incremental

development involves building and validating a subset of the requirements instead of the

complete requirements at once (Boehm, 1981). Figure 2 illustrates the incremental

software development model. After the completion of the requirements definition, and

architectural design, and

implementation, the program is

tested as a series of

incremental builds. In each of

the development increment,

the model provides the

customer with a subset of the

product before delivery of the

complete functionality. In

essence, the incremental model

is a scheduling technique since

it does not permit developers

to implement changes to the requirements.

2.3.3 Agile-Family of Development M ethodologies

Agile software development takes a different perspective when compared to the

waterfall. In February 2001, a group of consultants that developed similar methodologies

17

called Agile, formed the Agile Alliance and produced the Agile Manifesto (Agile

Alliance, 2001; Cockburn, 2002). The following are examples of the Agile

methodologies: Crystal, Dynamic System Development Method (DSDM), Extreme

Programming (XP), Adaptive Software Development (ASD) and SCRUM (Cockburn,

2002). In this thesis, we explain the two most popular Agile methodologies: eXtreme

Programming (XP) and SCRUM. In Agile, software development does not follow a

defined process, but uses very short iterations of (2-4weeks) which focus on producing

working software. Agile also allows requirements to emerge throughout the development

process. Agile Manifesto based its value on the following:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan.

Agile software development takes a different perspective when compared to the

waterfall. Agile implementation follows the key practices that support the following

mechanisms:

 Iterative development frequent iterations generate increments of work that

would be inspected to determine the state of the project and serve as a basis for

adaptation.

 Increment of work composed of working system functionality rather than

artifacts. These increments create a symbiotic relationship between progress and

product delivery and provide a mechanism for user feedback to real product rather

than arcane internal artifacts.

18

 Collaboration customers and developers form teams that work together.

 Meetings provide an internal status of the project.

 Adaptation the teams of developers are self-organized based on the daily

meetings. Developers and customers self-organize at the end of every increment

to guide the project and create the greatest value.

 Emergence the architecture, team structure, and requirements emerge during the

course of the project rather than being determined at its outset. The team

preliminary and sketchy vision of requirements and architecture guides the team.

The architecture is initially elaborate in detail for large complex systems

(Schwaber, 2002).

2.3.3.1 e Xtreme Programming

eXtreme Programming is a lightweight method designed for small-to-medium

sized team developing software with rapidly changing requirements (Beck, 2000). It

works by bringing together the whole team in the presence of twelve simple practices,

which are Planning Game, Short Releases/Frequent small releases, Metaphor, Simple

design, Testing first, Refactoring, Pair programming, Collective ownership, Continuous

Integration, Coding Standards, On-site Customer, and 40-hour week (Beck, 2000;

Cockburn, 2002).

2.3.3.2 Agile-Scrum

Agile-Scrum follows the principles of the Agile development process. It provides

the customer with the view of the product before and as each complete functionality is

delivered. Agile Scrum method's main objective is to aim at prevention of common short

falls in the typical traditional development process. The development teams frequently

19

iterate new increments of functionality. Stakeholders/product owners prioritize lists of

required systems functionality, cost, timetables, and quality based on emerging business

conditions. After the completed iteration, users and development teams collaborate on

what to develop next, based on what was just developed and the new business needs.

Agile-Scrum is a loose set of guidelines that govern the development process of a

product from its design phase to its completion. The Agile-Scrum development process

recommends short iterations called sprints in two - four weeks range during which the

development team makes constant trade-off decisions and adjusts to new information.

During each sprint, a working, deployable version of the software is produced. Agile-

Scrum recognizes that during a project the customers can change their minds about what

they want due to business environment and uncertainty of what they want, by following a

flexible approach to emerging requirements. In the project used for this case study, the

teams follow a 14-days sprint cycle (Mueller, 2010). Figure 3 below shows the Agile-

Scrum development model.

F igure 3. Agile-Scrum Development Model Mountain Goat Software (2005).

Terminologies in Agile Scrum Development:

20

 Product backlog- an evolving prioritized queue of business and technical

functionality that needs to be develops into a system (Schwaber & Beedle, 2002).

 Product owner- an important stakeholder-demanding role may represent a larger

group of products. Ensure business relevance and manages the product content.

 Scrum Master- the person responsible for the Scrum process, making sure the

Scrum process is used correctly and maximizing its benefits. The scrum master

acts as a coach.

 Scrum T eam- is a small cross-functional group of self-organized developers

responsible for actual analysis, design, implementation, and testing of the

software product. Scrum team is usually not more than ten people

 Sprint- is an iteration of work during which increments of product functionality

are implemented. It is normally a two to four weeks cycle.

 Sprint Backlog- contains features that the team would implement in the current

sprint. These features are from the prioritized list of requirements in the product

backlog. The sprint backlog holds tasks the scrum team is currently working on.

 Sprint Review- 4 hours limit period, discussing the product increment, reviewing

the work that was completed and not completed.

 Sprint Planning M eeting- occurs on the first day of the sprint; the sprint backlog

content is established.

 Daily Scrum M eeting- Before each sprint, the team plans a sprint. They also

decide and reprioritize goals for the next sprint; they select and move features

from the product backlog to the sprint backlog.

21

 Sprint Burn-down Chart- depicts the total task hours remaining per day. It is

easy to track the status of the project progress from the burn-down chart.

2.4 Summary

This chapter examines some of the research done in requirements engineering and

management, the software development methodologies, traditional, Agile methodologies,

Agile-Scrum principles and terminologies used in this thesis. Earlier research on

requirements changes in traditional waterfall development has found that changes affect

cost, delivery schedule, and quality of the software product. The community of software

engineers has both positive and negative view of evolutionary Agile-Scrum methodology

that embraces requirements changes. A description of the research hypothesis is in

Chapter 3.

22

3 R ESE A R C H G O A LS

The primary goal of this research is to analyze the effects of requirements changes

in the Agile-Scrum development process and explore the assertion that the Agile family

of methodologies embraces requirements changes in a positive way. Development

processes using the waterfall model as their basis recommend not implementing

requirements changes until the next development cycle because of the increased

development cost (Boehm, 1981). This difference leads to a number of interesting

questions:

1. What makes Agile methodologies more receptive to changes even in the later

phases of development?

2. Do the changes affect the development productivity?

With these questions in mind and after searching the literature on Agile

methodologies, it is apparent that there is a limited amount of empirical research on the

effects of requirements changes on Agile development processes.

To assist in stimulating the discussion of the effects of requirements changes in

Agile methodologies, we propose to investigate these hypotheses:

I. Agile methodology allows changes to requirements even late into the project

with minimal impact on software functionality and quality of the delivered

product.

II. In Agile-Scrum, requirements changes do not have a significant impact on

development productivity.

In the traditional waterfall development process, the cost of changes to

requirements comes from having to redo the entire development cycle. To make

23

changes to any requirements at the later phase of the development, the developers must

redo the specification and design, implement the change and test the application again.

With all these changes associated artifacts like the software requirements specification,

design documents are also changed.

Agile-Scrum responds to requirements changes by reducing document creation. It

breaks tasks into small increments with minimal planning at the onset of the software

project. Instead of planning to build the whole product from the beginning, the

development teams focus on functionality that the current iteration is going to implement.

For a particular sprint, iteration involves the development team working through a full

software development cycle, including requirements analysis, design, coding and testing,

when a working product is demonstrated to the product owner; this allows the project to

adapt to changes quickly.

3.1 Agile Requirements Changes

One of the characteristics of Agile-Scrum is that it allows changes late into the

project and delivers quality products on time (Agile Alliance 2001). Whereas with the

Waterfall model, changes to requirements are discouraged until the current phase of

development is complete (Boehm, 1981; Royce, 1970). Each of these development

processes has different goals and objectives that may account for their different abilities

to handle changes. Agile has its orientation in the lean manufacturing technologies

pioneered by the Toyota production system (Yasuhiro, 1998; Poppendieck &

Poppendieck, 2003). Its principle focus is to build only what is needed and to eliminate

waste. To accomplish this objective, the Agile development methodologies strive to

eliminate documentation which serves as a key factor in the waterfall process. Agile-

24

Scrum does create artifacts in the form of working software that serves as the criteria for

the completion of each sprint cycle. In Waterfall, creation of artifacts such as SRS and

design specification documents are compulsory. The SRS document serve as the criteria

for completion of the requirements phase, and the design specification document serves

as the completion criteria for the design phase. The software is produced at the

completion of the project.

Another visible difference between Agile-Scrum and Waterfall is the

development philosophy of the methodologies. A Waterfall based development

methodology implements the software in the form of

opment process (Requirements, Design,

Construction, and Validation). Agile-Scrum implements the software as a series of

es making it flexible enough to embrace requirements changes. The term

vertical slice means producing a working representation of a subset of requirements

during a fixed development cycle.

Figure 4 provides a contrast between how the Waterfall model and Agile-Scrum

model carry out software development. As seen in the illustration, both methodologies

begin by developing a set of requirements; but there the similarity ends.

In the Waterfall, the SRS document produced serves as input to the design phase.

The designer translates the requirements into an architectural structure, and specifies the

functionality of each architectural component. After completing the design phase, the

programmer writes the code implementing the design specification. After which, the

architectural components are integrated and then validated to assure that the delivered

software conforms to the stated requirements.

25

Alternatively, Agile-Scrum

combines all the development

phases during the iteration, or

sprint. This entails implementing

the set of prioritized list of

requirements or the sprint backlog.

During the construction iteration

or sprint, the development team

designs, implements, and validates

selected requirements. At the end

of each construction iteration or

sprint, the developers and stakeholders conduct a review to assure that the delivered

software meets the selected requirements.

To help provide evidence for or against our hypotheses in this thesis, we design

the case study using the Goal Question Metric (GQM) detailed in Appendix B to guide in

collecting data from the case study. Different variables used in the metrics help to

indicate the result of the stated goals. To determine if the product meets the stakeholders

request in terms of the functionality delivered, the variable use is the test cases. In this

research, the use of test cases is because of the relationship between the test cases and the

features/requirements delivered. Because of the incremental delivery of functionality in

the Agile-Scrum, requirements/features implementation may not be complete at the end

of each construction iteration or sprint cycle. Using passed test cases to measure

productivity provides a measure of productivity consistent with the goals and objectives

Requirements Analysis

Construction

Validation

Project

Design

Iteration_nIteration I Iteration II Iteration III

F igure 4. Agile Development vs. Waterfall

26

of the Agile Manifesto (Agile Alliance, 2001; Beck 2002; Harrison & Samaraweera,

1996).

Based on hypothesis I, if it is true that Agile methodology allows changes to

requirements even late into the project with minimal impact on software functionality and

quality of the delivered product. Then by analyzing the data collected, we expect that

there would be significant differences in the level of quality and functionality of the

product delivered. If the total number of test cases passed is high, then it provides

confidence that a high number of functionality delivered. However, if the total number of

test cases passed is low, then it is considered as a low number of functionality delivered.

One of the recommended techniques for Agile methodologies is to test before

design. As the name indicates, the test before design technique requires the creation of a

test case before the design process begins (Beck, 2002). Generally, when using this

technique, the software test engineers create test cases to assure the implementation of

each requirement during the requirements process. At the unit level of development,

software test engineers create test cases before developing a function or class. Using

passed test cases to monitor productivity provides an alternate to using the earned value

technique. Earned value is a technique that uses the original development estimates to

monitor the progress of the development. Initial program development estimates, even at

the requirements estimates, are frequently very inaccurate. This is because each specific

requirement in the product backlog may relate to one or more other requirements,

especially with the concept of derived requirements used in this research. In addition,

requirements in Agile-Scrum is not constant, developers may not implements the

requirements that they start within the product backlog. Using the test cases as an

27

absolute measure is because before the developer delivers working software, test cases

are generated for the implemented requirements.

3.2 Effects of Requirements Changes on Productivity

Another aspect of Agile-Scrum and the Waterfall approach to consider is how

they both implement the requirements and changes to requirements. Agile-Scrum uses a

requirement-centric

start with a prioritized list of requirements stored in the sprint backlog. As requirements

emerge and evolve due to a dynamic business environment or a stakeholder-changing

request, reprioritizing of requirements in the product backlog occurs based on the current

business value of the features/requirements.

Whereas, waterfall employs a document-centric approach, documentation is of

tremendous importance to the success of the process. The waterfall is set with the notion

that all the necessary requirements needed to complete a software product needs to be

known at the beginning of the project (Sommerville, 2001). The analyst spends a much

longer time in defining the customer requirements into the SRS. These requirements are

considered fixed: what the team starts with at the beginning of the project is what they

will implement. In Waterfall, changes to initial requirements are costly, if not impossible

during the development process. Any changes made have a negative impact on the

development productivity (Boehm, 1981). Changes to requirements in a Waterfall

process necessitate changing the design, code, and retesting. After the completion of the

project, whenever there is a need for changes, there must be a submission of a change

request form to initiate any changes.

28

As claimed by the Agile proponents, the cost of changes to requirements do not

increase the development cost. If the notion of requirements changes in traditional

approaches is correct according to Boehm and Standish Group, the cost of fixing changes

or errors increases exponentially as the development phases increases (Boehm, 1981;

Standish Group, 1994); then in Agile-Scrum the development effort and cost should

increase as the requirements changes. Based on our second hypothesis, in Agile-Scrum

requirements, changes do not have a significant impact on the development productivity.

The criterion used to analyze the hypothesis is, if the number of changes to requirements

increases, then hours expended should increase. If the stated hypothesis II is true, we

expect that the product delivered will have less functionality with high effort/cost in

carrying out the product/project.

Disciplined Agile Scrum: the development process used in the project for this thesis is

the disciplined Agile-Scrum. It employs the same principles of the Agile-Scrum

development process with the exception that in the design phase of the development

cycle, there is a detailed design history document created. Using an approach similar to

development project notebook by Robert Tausworthe, the use of Microsoft notebook in

(Tausworthe, 1979). These documents serve as a reference for both current and future

projects. The discipline Agile-Scrum provides the ability to track the history of code

changes. It also helps to represent the project in the form of a real world presentation

and helps to show the progression of the project growth.

Microsoft OneNote book: a Microsoft tool, similar to a tabbed binder, used for

keeping notes, which are shared by the development teams; information is organized

29

section by section. Each section of the sprint notebook contains the team burn down

status, backlogs, test execution, change activity and model. It also provides ease of

multiple collaborations for the development team. It was used in this project to collect,

organize and print reports of each section of the development process.

 Burn down Chart.

Estimating backlog effort is an iterative process that tells how long it will take

for the development of the product. This estimate includes the time it takes to perform all

of the requisite architecture, design construction and testing (Schwaber & Beedle, 2002).

The burn down chart is a graphical chart showing the team status, and hours spent in the

sprint and project. It shows the expected amount of time that the current implementation

needs, as well as the expected overall progress for the entire project. A preliminary graph

is created when the project is started and is updated at the end of each sprint or iteration.

Generally, the left vertical axis of the burn down chart consists of the effort remaining

and effort needed in terms of hours of work. The horizontal axis indicates the iteration or

sprint. After completion of iteration, the amount of hours spent on each completed task

for that iteration is displayed on the graph. Project managers and engineers can use this

chart to gauge how much progress is being made at each step and make good estimates

about how much time is needed for the completion of the project (Schwaber & Beedle,

2002 ; Cockburn, 2002; AgileAlliance).

30

4 C ASE ST UD Y A ND R ESU L TS

This section presents a detailed description of the case study used in this research.

It describes the case study design, execution and the result of the data collected. In

addition, outlines of the sources of possible error of the study are illustrated.

4.1 Design

A presentation of an empirical work in which the software engineering practicum

class of computer science of Texas State serves as the case study for this thesis research.

The study was conducted by collecting data from students developing a web-based

software application in this course. There were 33 students in the class; and they formed

eight teams of developers, with each team consisting of four to five members. Each team

received the same problem description from the product owner to build a Resource

Reservation System for scheduling resources. Disciplined Agile-Scrum is the

development process used to carry out the project. A disciplined Agile-Scrum is a

process that provides artifacts necessary for the development progress and regulation

purposes. Illustration of the problem description of the case study is in Appendix A. To

provide convincing evidence for the hypotheses stated in Chapter 3, we classify the teams

into two groups:

Group 1: consists of seven teams, six employ the disciplined Agile-Scrum

development process, with one team that did not make changes to the

requirements until late into the project.

 Group II: consists of a single control team, that employ an incremental

development process; they recorded changes and modifications to the

requirements but did not make changes to initial requirements.

31

In addition, to set a concrete measure for the data that would be collected from

each group we used a popular measurement and evaluation paradigm called Goal

Question Metric (GQM). A method that specifies that each organization should ensure

they have some set of goals to measure, and that each goal has questions that can be

quantified and answered serves as a set of metrics to ascertain if the goals are met (Basili

& Rombach, 1998). Using the GQM framework on some of the checklists from

Loconsole and Weiger, as well as our own list, we have a complete list of four (4) goals,

eight (8) questions, and 29 measures (Loconsole, 2001; Weiger, 1999). Our four goals

are as follows: to determine the total number of functionality delivered (if it meets the

stakehol

impact of requirements changes, and the quality of the delivered product. The complete

lists of the metrics are in Appendix B.

4.2 Case Study Execution

The following are details on the production environment used in the case study

project for this research:

 Disciplined Agile-Scrum

 14 days Sprints

 4 sprints to the semester

 Virtual scrum Master

 Virtual product owner

 4 - 5 person teams

 Application and Programming language used: MySQL and PHP 5.0.

32

The study took place during the Spring Semester, and it lasted for eight weeks,

producing a total number of 32 sprints in four iterations from the development teams.

The Agile Scrum principle as used in this study takes a sprint cycle of 14 days in

14-day sprint cycle, teams submitted project portfolios consisting of the following:

 Sprint Notebook: a report consisting of detailed printed information of each

model, change activity report, and test execution.

 All stored product backlog in RequisitePro for the specific iteration, consisting of

the proposed prioritized requirements/features request of the product

owner/customer.

 All stored sprint backlog in RequisitePro for the specific iteration, consisting of

the implemented prioritized requirements/features request.

 Burn Down chart: shows team status.

 Test Execution: lists the test planned, actual implemented, failed and passed, and

yet to be implemented.

 Design Model : detailing the design work products stored in Rational Rose

 Source Code modules

 Working Product- in terms of deliverables

For the requirements management process of the case study project, we

considered using a flexible requirements management tool that provides ease of

customization and integration. A detailed description of the requirements management

33

tools used in this case study are specified in Appendix C. We customized the Requisite

Pro with additional requirements types as specified in Figure 5 below.

FEAT

EXPECTATION

SCENARIO
(SCN)

COMPONENTS
(COMP)

DEFECTS

EXECUTION
TSTAT

USECASE

TEST

Project - ReqPro Requirement Type Template

F igure 5. Customized requirements types (Mueller , 2010).

The detailed information of the specific attributes added to each requirements

type are in Appendix C. These attributes and requirements types provide us with the

necessary variables used in classifying the data collected from each team. These variables

are requirements, defects, test cases, and effort in human hours.

We reviewed the submitted project portfolios during each sprint review. We

validated the working software products by comparing them to the planned sprint backlog

features in order to ascertain that the project teams are producing the right products. The

teams specified their requirements from the problem description given by the product

owner and stored in the RequisitePro. We asked the team to track the effort by recording

34

the human-effort hours expended in implementing the requirements, and when there are

changes made to the requirements, recording them in the change activities section of the

One Notebook. The team also reports the status and the amount of work progress in the

burn down chart in the team status section of the One Notebook.

Change Introduced:

Within the third sprint, the fifth week into the project, the product owner

introduced a change to the requirements. This change indicates a typical requirements

change that could occur in the development environment. Based upon the data collected

from the teams, we set to measure the impact of these requirements changes.

Change Request submitted by the product owner :

Expand the calendar to be able to schedule Events.

4.3 Results

We present the results of all the data collected based on the specified goals as

stated above. For all Group I data, we use the average result of all data collected from the

seven teams; six uses the Agile Scrum approach, while one team uses Agile with

variation, by making changes to the initial requirements late into the project. Group II,

consists of one team with no changes made to initial requirements. Appendix D provides

detailed information for the individual teams.

Goal I : Functionality

To determine the functionality produced, we use the following two variables- test

cases and sprint cycle. We counted the total number of test cases passed by finding the

differences between the total number of test cases and number of failed test cases to

ascertain that the functionality delivered by the teams sati

35

Figure 6 illustrates the functionality delivered by the two groups within the four different

iterations of the scrum project. The graph illustrates Group I has the higher test cases

passed; this indicates a higher functionality produced. Group II has the lower number of

test cases passed. The graph indicates a slight decrease in the last two iterations of the

project.

F igure 6. Product Functionality of both groups

Goal I I : Development E ffort

number of hours reported by

each team in implementing the requirements during each sprint cycle. Group I consists

of the average of the seven teams. Figure 7 illustrates the hours expended in each sprint

cycle. Effort expended towards the end of the project during the last sprint cycle

indicates a very low difference between the two groups.

0

5

10

15

20

25

1 2 3 4

Te
st

 C
as

es

Sprints

Product Functionality

Group I Test Cases Passed Group I I Test Cases Passed

36

F igure 7. Development E ffort for both groups

Project Progress Based on requirements

To track the project progress, we calculated the total number of requirements and

the actual total hours expended per requirements. Figure 8 illustrates the hours expended

by the two groups in each sprint cycle.

F igure 8. Project Progress for both groups

0

20

40

60

80

100

1 2 3 4

A
ct

ua
l H

ou
rs

Sprint

Teams E ffort

Group I Group II

0

2

4

6

8

10

12

14

16

18

1 2 3 4

H
ou

rs
 E

xp
en

de
d

Sprint

Hours per requirements

Group I Group II

37

Goal I I I : Quality

To determine the quality of the delivered product, because it would be difficult to

measure all attributes of non-functional requirements, we used defects as the variable for

quality measurement. We counted the total number of defects found and the percentage

of the unfixed defects in the overall project. We expected that the lower the percentage

of unfixed defects the higher the level of the quality of the delivered product. Figure 9

illustrates the defects report of the two groups.

F igure 9. Defects Report for both groups.

Goal I V : Change Impact

For the requirements changes we calculated the total number of requirements

changes made during the sprint cycles. All addition, deletion, and modifications to the

requirements are classified as requirements changes in this study. Figure 10 illustrates

the impact of requirements changes.

0

10

20

30

40

50

Group I Group II

26

14

23%

50% Defects Report

Number of Defects Percentage of Unfixed Defects

38

F igure 10. Requirements Change Impact.

4.4 Sources of Possible E r ror

Accuracy in effort reported: To get accurate reporting hours, we told the

subjects that the reported hours would not affect their grades. The hours reported by the

teams were used as reported, no verification of it, though we realized most of the teams

recorded high hours. In addition, not all the teams reported time expended when making

changes to the requirements.

Accuracy of collected data for changes: not all the teams documented the

changes to requirements.

Burn down chart data: Not all the data submitted by the teams were useful, and

some of the teams did not provide a breakdown of the data reported.

New Concept of Agile Development: Only a few of the students have actually

done any software development work in an Agile environment. Therefore, we assume

0

10

20

30

40

50

 I II

50 %

33 %

To
ta

l n
um

be
r

of
 r

eq
ui

re
m

en
ts

G roup

Requirement Changes/Impact of
Requirements Changes

Number of Requirements changes Percentage of Requirements Changes

39

there was a learning curve in terms of the productivity within the first sprint iteration data

reported. Moreover, this would be the first time in which the practicum class would

follow an Agile-Scrum software development approach for this case study.

40

5 C O N C L USI O NS A ND F U T UR E R ESE A R C H

5.1 Conclusions

From the results of this experiment, the functionality of Group I, using Agile-

Scrum, indicates more functionality delivered with higher quality, as illustrated in

Figures 6 through 9. Group II makes no changes, but records the changes necessary to

the initial requirements and produces less functionality. Based on these findings of this

research, it appears that Agile-Scrum is more receptive to changes even in the later

phases of development than an incremental process.

According to the result on the effort expended, as illustrated in Figure 7, Group II

expended more hours in the first three sprint cycles with minimal differences in the fourth

sprint compare to Group I. Overall Group II expended more hours on the development

project, with Group I showing a uniform expenditure of effort during the development

process throughout the sprint cycles.

As illustrate in Figure 8, the Agile-Scrum development groups (I) recorded more

defects than the group using the incremental methods (II), but also corrected more of

their defects. Suggesting that a development group using a disciplined Agile approach

may produce software of higher quality. It is also not surprising that the Agile groups (I)

had a higher defect count since that executed more tests that Group II.

Figure 10 illustrates that both groups develop approximately the same number of

requirements, but the Agile group (I) created and implemented more changes than the

Incremental group (II). Substantiating the premises that the Agile methods are more

suitable to handling requirements changes.

41

However, from our finding, it is not clear whether the total number of hours

expended has anything to do with the functionality or quality of the product delivered by

the the

highest number of hours expended, produced the product with the highest functionality

and quality based on the results of the sprint review conducted at the end of each sprint

cycle. Therefore, we conclude that the development team performance plays a

significant role in determining the functionality and quality of the delivered product.

In addition, from this experiment, using test cases to determine the functional

productivity the results from our findings indicates that a high number of passed test

cases correlate to high productivity and system performance as illustrated in Figure 5.

5.2 Future Research

Future research to explore would be to determine if the level/severity of changes

(major, medium, low) has significant effects on the productivity. It would also be

necessary to explore the effect of more requirements changes in the development process.

Increasing the number of new requirements from the product owner to five different

changes instead of just one used in this research.

The idea of using test cases is an appropriate measure used in literature for

different purposes (Harrison & Samaraweera, 1996). In this research, a further step

different from the approach used in the literature was used, by using test cases as an

absolute measurement for productivity. In future research, it would be valuable to

consider different measures, either by mapping the test cases to the requirements and to

on.

42

It would also be more efficient to observe if there would be differences in the data

collected from the groups, if the developers report data in a more controlled environment

and log in time for each feature implemented, and for changes made. In addition, more

teams would be required for comparison instead of using a single team as the controlled

group. To generalize our findings, more research is required to investigate how Agile-

Scrum works in other software applications.

43

APPE NDI X A PR OJE C T D ESC RIPT I O N

PR O B L E M D ESC RIPT I O N F O R R ESO UR C E R ESE R V A T I O N SYST E M

The format of the project with the given problem statement description is given
below
Situation
You have just formed a new company with three (3) associates. A marketing
consultant, employed by the group, has recommended that your new company
develop a Resource Reservation System (RRS).

Definition
A resource, for this project, is defined as a physical item that has an owner and
usable for only one person/group at a time. Some examples of resources are:
conference rooms, projectors, test equipment, laboratories, etc

Features
Some of the features for an RRS would include, but are not limited to:
1. A reservation calendar for each resource.
2. Reoccurring reservations.
3. An optional notification to a designated resource manager for each item.
4. Identification of the person requesting the resource.
5. Usage statistic by resource and person requesting the resource.
6. Option to restrict access an item.
7. Option to use an external security system.

The system must use a MySQL database and run under PHP. It will run from a
Unix server

F igure 11. Project Problem Description

44

APPE NDI X B M E T RI C D E RI V A T I O N

Software M etr ics and tools used.

This section contains the description of metrics and software requirements

management tools used in the case study and research. The paradigm called Goal

Question Metric (GQM) is use to obtain data from our study. Table 1 below illustrates

the complete four (4) goals, eight (8) questions, and 29 measures.

Table 1. Goals, Questions and M etr ics set.

Goals Questions M etrics

Developers
Team effort

What is the amount of
effort expended for the

project?

M1: total number of sprint week
calendar.
M2: total number of features/
requirements in the products backlog.
M3: developer ed during
the project.

What is the progress of
the overall project?

M1: estimated burn down hours
expended on the project.
M2: actual burn down hours expended
on the project.
M3: total number of the requirements
implemented in the sprint backlog.

What is the amount of
effort expended in terms

of human hours in
developing working

source code?

M1: estimated hours expended on the
current sprint cycle.
M2: actual hours expended on the
current sprint cycle.
M3: total number implemented
requirements in the sprint backlog.

Functionality
produced

Are the stakeholders
requirements
implemented?

M1: total number of test cases in
each/all sprints cycle.
M2: total number of failed test cases.
M3: total number of passed test cases.

What is the status of the
requirements?

M1: total number of features /
requirements in the product backlog.
M2: total number of the planned
features for each sprint in the product
backlog.
M3: total number of actual features
implemented in the sprint backlog.

45

Goals Questions M etrics
M4: total number of requirements
approved.

Impact of
Requirement

s changes

 M5: Number of requirements rejected.

What types of changes are
made to the requirements?

M1: total number of requirements
added.
M2: total number of modified
requirements in each sprint cycle.
M3: total number of deleted
requirements in each sprint cycle.
M4: total number of requirements
changes in the sprint/project (M1, M2
and M3).

What is the
amount of effort expended
in making changes to the

requirements?

M1: total number of estimated hours
expended to make changes to the
requirements.
M2: total number of actual hours
expended to make changes to the
requirements.

Quality of
the delivered

product

Is the product of high
quality?

M1: total number of defects submitted.
M2: total number of defects fixed.
M3: total number of unresolved defects.
M4: total number of test cases in
each/all sprints.
M5: total number of failed test.
M6: total number of passed test.

46

APPE NDI X C C O MPU T E R ASSIST E D

SO F T W A R E E N G IN E E RIN G T O O LS

In the case study for the implementation of the project, different features were

considered for the tools to use. A flexible requirements management tool that provides

facility for easy customization to accept Agile Scrum attributes of the requirements type

used. Secondly, it is necessary to have a tool in which the development team can work

remotely for easy collaboration since it will be difficult to gather the teams to work on the

project at the same time and in the same place. In addition, the tool must have the ability

to provide requirements traceability, and impact analysis on the stored attributes of the

requirement type. Another feature considered was a tool that enables easy integration

with other tools. In this research, IBM Rational RequisitePro was our choice of

requirements managements tool for the project, because it enables easy integration with

other IBM Rational Suites. The suites consisted of ClearQuest, ClearCase, and Rational

Rose.

IB M Rational RequisitePro is a requirements management tool that helps teams

to define and manage requirements. It provides and improves communication, enhances

collaboration, and is easy to customize. It is use to manage and trace a project's

requirements. It integrates a database and Microsoft Word for the requirements

development (IBM Rational). For this research, RequisitePro was customized to reflect

requirements types used in the Agile-Scrum environment so that information needed to

track requirements changes and traceability details is easy to record. The proposed

prioritized requirements/features are stored in the RequisitePro. Table 2. Illustrate the

requirements types added to the default templates. In addition, attributes added or

47

modified to each requirements type in the RequisitePro for the Agile-Scrum project are

specify in Table 2 in bold.

Table 2. Requirement Types and Attr ibutes

Default Use Case Project

Template

Agile Use Case Project Changes

F E A T F eatures
1. Priority: High, Medium, Low.
2. Type: Functional (non Use Case),

Usability, Reliability,
Performance, Supportability,
Design constraint, implementation
Re, Physical Re, Interface.

3. Status: Proposed, Approved,
Incorporated, Validated.

4. Difficulty: High, Medium, Low.
5. Stability: High, Medium, Low.
6. Risk: Schedule -High, Medium,

Low: Technology - High,
Medium, Low.

7. Planned Iteration: (Type: Integer)
- default value.

8. Actual Iteration: (Type: Integer) -
default value.

9. Origin: Helpdesk, partners,
competition, Large Customers
and End-users.

10. Contact Name: (Type: Text)
default value.

11. Enhancement Request: (Type:
Clear Quest) - default value.

12. Defect: (Type: Clear Quest) -
default value.

13. Obsolete: True, False (default).

F E A T

1. Priority: High, Medium, Low
2. Type: Functionality, Reliability,

Efficiency, Usability,
Maintainability, Portability

3. Status: Proposed, Approved,
Incorporated, Validated

4. Q F D: expected, normal, exciting
5. Risk: Schedule - (High, Medium,

Low), Technology (High,
Medium, Low)

6. Estimated T ime: (Type: integer)
7. A ctual T ime: (Type: integer)
8. Planned Sprint: (Type: Integer) -

default value
9. A ctual Sprint: (Type: Integer) -

default value
10. Enhancement Request: (Type: Clear

Quest) - default value
11. Defect: (Type: Clear Quest) -

default value
12. Obsolete: True, False (default)

STRQ: Stakeholders Request

1. Stakeholder Priority: High,
Medium, Low.

2. Origin: Helpdesk, partners,
competition, Large Customers
and End-users.

None

48

Default Use Case Project

Template

Agile Use Case Project Changes

SUPPL: Supplementary RQ

1. Priority: High, Medium, Low.
2. Status: Proposed, Approved,

Incorporated, Validated.
3. Difficulty: High, Medium, Low.
4. Stability: High, Medium, Low.
5. Risk: Schedule -High, Medium,

Low: Technology - High,
Medium, Low.

6. Contact Name: (Type: Text)
default value.

7. Enhancement Request: (Type:
Clear Quest) - default value.

8. Defect: (Type: Clear Quest) -
default value.

9. Obsolete : True, False (default).

None

UC: Use Case

1. Property: Name (default), Brief
Description, Basic Flow,
Alternate Flow, Special RE,
Precondition, Post condition,
Extension point.

2. Priority: High, Medium, Low.
3. Status: Proposed, Approved,

Incorporated, Validated.
4. Difficulty: High, Medium, Low.
5. Stability: High, Medium, Low.
6. Risk: Schedule -High, Medium,

Low: Technology - High,
Medium, Low.

7. Planned Iteration: (Type: Integer)
- default value.

UC: Use Case

1. Property: Name (default), Brief
Description, Basic Flow, Alternate
Flow, Special RE, Precondition,
Post condition, Extension point

2. Status: Proposed, Approved,
Incorporated, Validated

3. Priority: High, Medium, Low
4. Q F D: expected, normal, exciting
5. Risk: Schedule - (High, Medium,

Low), Technology (High,
Medium, Low)

6. Estimated T ime: (Type: integer)
7. A ctual T ime: (Type: integer)
8. Planned Sprint: (Type: Integer) -

default value

49

Default Use Case Project

Template

Agile Use Case Project Changes

8. Actual Iteration: (Type: Integer) -
default value.

1. Contact Name: (Type: Text)
default value.

2. Enhancement Request: (Type:
Clear Quest) - default value.

3. Defect: (Type: Clear Quest) -
default value.

4. Obsolete: True, False (default).
5. Affects Architecture (True,

False).

9. A ctual Sprint: (Type: Integer) -
default value

10. Affects Architecture (True, False)

 T EST : T est

1. T race from R E Type:
2. Type: Functionality, Reliability,

E fficiency, Usability,
Maintainability, Portability.

3. Status: Failed, Passed, Pending.
4. (Priority: H igh, Medium, Low)

 D E F : Defects

1. Priority: H igh, Medium, Low.
2. Status: found, pending , fixed.
3. Priority: H igh, Medium, Low.
4. Date:
5. Defects Id: (Type: integer)

default value.
6. Description: (Type: text).
7. Submitted by/Source:
8. Assigned to:

 E XP: Expectation

(Succeed/Failed)

 C O M: Components

1. E lements
2. Name/Type
3. Components Id:

 TST A T : Execution

1. Test ID

50

Default Use Case Project

Template

Agile Use Case Project Changes

2. Date Run
3. Tester
4. Status: Pass/Fail.

 SC N: Scenario

1. Property: Name (default), B rief
Description, Basic F low, A lternate
F low, Special R E , Precondition,
Post condition, Extension point.

2. Status: Proposed, Approved,
Incorporated, Validated.

3. Priority: H igh, Medium, Low.
4. Q F D: expected, normal, exciting.
5. Risk: Schedule - (H igh, M edium,

Low), T echnology (H igh,
M edium, Low).

6. Estimated T ime: (Type: integer).
7. A ctual T ime: (Type: integer).
8. Planned Sprint: (Type: Integer) -

default value.
9. A ctual Sprint: (Type: Integer) -

default value.
10. Affects A rchitecture (T rue, False).

TERM: Glossary Item TERM: Glossary Item

Rational Rose: is a customized design tool for modeling project design and code

generation. It uses the Unified Modeling Language (UML) to produce visual models of

the software architectural design, database application requirements. Rose provides easy

integration with other IBM Rational lifecycle development tools. It supports real-time

and embedded system development. In this research, it was use by the teams for the

design phase to produce the following UML based diagrams: activity diagrams, class,

51

component, deployment, sequence, state chart, use case, collaboration, physical storage

and deployment, and physical data and tables (IBM Rational).

Rational C lear Quest is an automated change management tool; a defects and

change tracking system designed for software development. It provides a better visibility

and control of the software development lifecycle by reporting the lifecycle traceability.

It provides easy integration with other IBM rational products for the requirements,

development, build, test, deployment and portfolio management tools; it facilitates rapid

response to changes (IBM Rational). It was use by the team for reporting the defect and

enhancement made throughout each sprint cycle of the development process.

Rational C lear Case: provides sophisticated version control, workspace

management, parallel development support and build auditing to improve productivity.

Lightweight feature-rich clients allow the team to work remotely. It provides easy

integration with other rational tools. It provides a transparent real-time access to files and

directories virtually anywhere in your organization. It enables any project team size from

small to large working in a distributed enterprise teams to support evolving

organizational needs (IBM Rational).

52

APPE NDI X D C O MPU T E R ASSIST E D

SO F T W A R E E N G IN E E RIN G T O O LS

Team 2: Did not make changes until late in the project.

Team 8: Uses the incremental Approach

Goal I : Functionality

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8

Te
st

 C
as

es

Product Functionality

Sprint I Test Cases Passed Sprint II Test Cases Passed
Sprint III Test Cases Passed Sprint IV Test Cases Passed

53

Goal I I : T eams E ffort

Goal I I I : Quality

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Ex
pe

nd
ed

 H
ou

rs

Sprint

Teams E ffort

I II III IV

1 2 3 4 5 6 7 8

30 27 25
19

24
17

26

14

20%

37%

12%

42%

12%

47%

11%

50%

T eams

Defects Report

Number of Defects Percentage of Unfixed Defects

54

Goal I V : Change Impact

0

20

40

60

80

1 2 3 4 5 6 7 8

23

10 12 14 13 10

24
12

59%

40%
50%

39%

52%
45%

63%

34%

Teams

Requirement Changes/Impact of Requirements
Changes

Number of Requirements Changes Percentage of Requirements Changes

55

R E F E R E N C ES

Agile Alliance. (2001) Agile Alliance URL. http://www.agilealliance.org/

Referenced July, 22nd 2010.

Arnold, R. S. & Bohner (1996). Software change impact analysis. Los Alamitos,

CA, USA: IEEE Computer Society Press.

Basili, V.R. & Rombach, H.D. (1998). The TAME project: Towards.

Improvement-oriented software environments in IEEE transaction on

Software Engineering 14(6), pp. 758-773.

Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley,

2000. ISBN 0201616416.

Beck, K. Test Driven Development: By Example. Addison-Wesley, 2002. ISBN

0321146530.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, N.J.:

Prentice-Hall.

Boehm, B. (1986). A spiral model of software development and enhancement.

SIGSO FT Softw.Eng.Notes, 11(4), 14-24.

doi:http://doi.acm.org/10.1145/12944.12948.

Bohner, S. A. (2002). Software change impacts---an evolving perspective. Paper

presented at the Software Maintenance, Proc. 263-272.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software

engineering. IEEE Computer, 20, 10-19.

56

CMU/SEI. (1995). Carnegie Mellon University/Software Engineering Institute.

The Capability Maturity Model: Guidelines for improving the Software

Process. Reading, MA: Addison-Wesley.

Cockburn, A.(2002). Agile Software Development. Pearson Education, Inc.

Gotel, O. C. Z., & Finkelstein, C. W. (Eds.). (1994). An analysis of the

requirements traceability problem ICRE.1994.

Hammer, P. T., Huffman, L., Linda, D., & Rosenberg, H(1998) Doing

requirements right the first time! Crosstalk.

Harrison, R. Samaraweera, L.G. (1996). Using Test Case Metrics to Predict Code

Quality and Effort. ACM Sigsoft pp. 78-81.

Heindl, M., (2008) Requirements tracing strategies for change impact analysis

and re-testing An initial tracing activity model and industry feasibility

study.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software quality and agile

methods. Paper presented at the COMPSAC '04: Proceedings of the 28th

Annual International Computer Software and Applications Conference,

520-525.

IBM Rational, IBM Rational Tools

http://www142.ibm.com/software/products/us/en/atoz?seltab=%23R-S,

Referenced August , 20th 2010.

IEEE (1998) Std 830-1998 Institute of Electrical and Electronics

Engineers,

57

Kotonya, G., & Sommerville, I. (1998). Requirements engineering: Processes and

techniques. New York: John Wiley.

Lauesen, S. (2001). Software requirements: Styles and techniques Pearson

Education.

Leveson, N. (1995). Medical devices: The therac-25.

Lions, P. J. L. (1996). ARIANE 5, flight 501 failure, report by the inquiry board.

European space agency.

Loconsole, A. (2001). Measuring the requirements management Key Process

Area.

Loconsole, A. (2004). Empirical studies on requirement management measures.

Software Engineering, International Conference on, , 42-44.

Loconsole, A. and Börstler J., (2005) An Industrial Case Study on Requirements

Volatility Measures, in Proceeding of APSEC 12th IEEE Asia Pacific

Software Engineering Conference, 15 17 December 2005, Taipei,

Taiwan, IEEE Computer Press, pp. 249 256.

Mountain Goat Software. (2005). http://www.mountian

goatsoftware.com/topics/scrum.

Mueller, C. J. (2010). Unpublished manuscript. Texas State University San

Marcos.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap.

Paper presented at the ICSE '00: Proceedings of the Conference on the

Future of Software Engineering, Limerick, Ireland. 35-46.

doi:http://doi.acm.org/10.1145/336512.336523.

58

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements engineering and

agile software development. Paper presented at the WETICE '03:

Proceedings of the Twelfth International Workshop on Enabling

Technologies.

Poppendieck M., & Poppendieck T (2003), "Lean Software Development: An

Agile Toolkit", Addison-Wesley Professional, ISBN 0321150783.

Pressman, R. S. (2005). Software engineering: A practitioner's approach. Boston:

McGraw-Hill.

Royce, W. W.(1970). Managing the Development of Large Software Systems,

Proc. 9th. Intern. Conference.Software Engineering, ,IEEE Computer

Society, 1987 ,328-338 Originally published in Proceedings. WESCON,

1970.

Schwaber, K. & Beedle, M. Agile Software Development with Scrum. Upper

Saddle River, N.J Prentice -Hall, 2002.

Sommerville, I. (2001). Software engineering (6th ed.). Harlow, England ; New

York: Addison-Wesley.

Standish Group (1994) "The Chaos Report", www.standishgroup.com Retrieved

July, 10 2010.

van Lamsweerde, A. (2000). Requirements engineering in the year 00: A research

perspective. Paper presented at the ICSE '00: Proceedings of the 22nd

International Conference on Software Engineering, Limerick, Ireland. 5-

19. doi:http://doi.acm.org/10.1145/337180.337184.

59

Wiegers, K. E. (1999). Software Requirements. Redmond, WA, USA: Microsoft

Press.

Wiegers, K. E. (2005). More About Software Requirements: Thorny Issues and

Practical Advice. Redmond, WA, USA: Microsoft Press.

Yasuhiro Monden (1998), Toyota Production System, An Integrated Approach to

Just-In-Time, Third edition, Norcross, GA: Engineering & Management

Press, ISBN 0-412-83930-X.

Zave, P. (1995). Classification of research efforts in requirements engineering.

Paper presented at the RE '95: Proceedings of the Second IEEE

International Symposium on Requirements Engineering.

