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CONSTRUCTION OF GREEN’S FUNCTIONS FOR THE
BLACK-SCHOLES EQUATION

MAX Y. MELNIKOV, YURI A. MELNIKOV

Abstract. A technique is proposed for the construction of Green’s functions

for terminal-boundary value problems of the Black-Scholes equation. The tech-
nique permits an application to a variety of problems that vary by boundary

conditions imposed. This is possible by extension of an approach that was

earlier developed for partial differential equations in applied mechanics. The
technique is based on the method of integral Laplace transform and the method

of variation of parameters. It provides closed form analytic representations for
the constructed Green’s functions.

1. Introduction

The well-known function, in financial mathematics [3, 4, 6],

G(S, t; S̃) =
exp(−r(T − t))

S̃[2πσ2(T − t)]1/2
exp

(
− [ln(S/S̃) + (r − σ2/2)(T − t)]2

2σ2(T − t)

)
(1.1)

is referred to as the Green’s function of the backward in time parabolic partial
differential equation

∂v(S, t)
∂t

+
σ2S2

2
∂2v(S, t)

∂S2
+ rS

∂v(S, t)
∂S

− rv(S, t) = 0 (1.2)

which is called the Black-Scholes equation [1]. To be more specific mathematically,
we note that (1.1) represents the Green’s function for the homogeneous terminal-
boundary value problem corresponding to

v(S, T ) = f(S) (1.3)

|v(0, t)| < ∞ and |v(∞, t)| < ∞. (1.4)

This problem was posed for the Black-Scholes equation in the quarter-plane Ω =
(0 < S < ∞)× (T > t > −∞) of the S, t-plane.

In the above setting, v = v(S, t) is the price of the derivative product, f(S) is
the pay-off function of a given derivative problem at the expiration time T , with
S and t being the share price of the underlying asset and time, respectively. The
parameters σ and r > 0 represent the volatility of the underlying asset and the
risk-free interest rate, respectively. The variable S̃ ∈ (0,∞) in (1.1) plays the role
of a source point.
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A special comment is required as to the symbolism used in specifying the bound-
ary conditions in (1.4). Both the end-points of the domain for the independent
variable S represent the so-called singular points [5] to the Black-Scholes equation,
in which case the corresponding boundary conditions cannot formally assign certain
values to the solution of the governing differential equation. Instead, the conditions
in (1.4) imply that the solution that we are looking for has to be bounded as the
variable S approaches both zero and infinity.

The function in (1.1) represents the only Green’s function for (1.2) that is avail-
able in financial mathematics for decades. This study proposes a new approach that
enables one to construct Green’s functions to the Black-Scholes equation not only
for the boundary conditions in (1.4) but also for a variety of others. The approach
flows out from a technique proposed earlier [2] for boundary value problems in ap-
plied mechanics. It is not based on the classical formalism for the diffusion equation
as in [3, 4]. Instead, the emphasis is made on the parabolic single-parameter partial
differential equation forward in time

∂u(x, τ)
∂τ

=
∂2u(x, τ)

∂x2
+ (c− 1)

∂u(x, τ)
∂x

− cu(x, τ) (1.5)

which is traditionally obtained [3, 6] from (1.2) by introducing new independent
variables

x = ln S and τ =
σ2

2
(T − t) (1.6)

and setting u(x, τ) = v(S, t).
The parameter c in (1.5) is defined in terms of r and σ2 of the Black-Scholes

equation as c = 2r/σ2.
To illustrate the effectiveness of our approach, a validation example is considered

in the next section where we derive the Green’s function of (1.1). After the approach
is validated, it is used, in the following sections, to tackle some other terminal-
boundary value problems for the Black-Scholes equation. New Green’s functions
are obtained none of which have earlier been presented in literature.

2. A validation example

By introducing new variables x and τ in compliance with the relations in (1.6),
the terminal-boundary value problem of (1.2)-(1.4) transforms to the following
initial-boundary value problem

u(x, 0) = f(expx) (2.1)

|u(−∞, τ)| < ∞, |u(∞, τ)| < ∞ (2.2)

for (1.5) on the half-plane (−∞ < x < ∞) × (0 < τ < ∞). Applying the Laplace
transform

U(x; s) = L{u(x, τ)} =
∫ ∞

0

exp(−sτ)u(x, τ)dτ

to the problem in (1.5), (2.1) and (2.2), one arrives at the boundary value problem

d2U(x; s)
dx2

+ (c− 1)
dU(x; s)

dx
− (s + c)U(x; s) = −f(expx), (2.3)

|U(−∞; s)| < ∞, |U(∞; s)| < ∞ (2.4)
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for the Laplace transform U(x; s) of u(x, τ). Note that (2.3) is a linear nonhomo-
geneous ordinary differential equation with constant coefficients since s is just a
parameter and U(x; s) is treated as a single-variable function of x.

To find a fundamental set of solutions to the homogeneous equation correspond-
ing to (2.3), consider its characteristic equation

k2 + (c− 1)k − (s + c) = 0

whose roots are
k1 = α + ω, k2 = α− ω

where ω = (s + β)1/2, while the parameters α and β are defined in terms of c as

α =
1− c

2
, β = (

1 + c

2
)2 (2.5)

This yields two linearly independent particular solutions to the homogeneous equa-
tion corresponding to (2.3) as

U1(x; s) = exp(α + ω)x, U2(x; s) = exp(α− ω)x

with their linear combination

U(x; s) = A(x; s) exp(α + ω)x + B(x; s) exp(α− ω)x (2.6)

representing, according to the method of variation of parameters, the general solu-
tion to (2.3). Following the procedure of this method, one arrives at the well-posed
system(

exp(α + ω)x exp(α− ω)x
(α + ω) exp(α + ω)x (α− ω) exp(α− ω)x

) (
A′(x; s)
B′(x; s)

)
=

(
0

−f(expx)

)
of linear algebraic equations in the derivatives with respect to x of the coefficients
A(x; s) and B(x; s) of the linear combination in (2.6). The solution of the above
system is obtained as

A′(x; s) = −exp(−(α + ω)x)
2ω

f(expx), B′(x; s) =
exp(−(α− ω)x)

2ω
f(expx)

Upon integration, the coefficients A(x; s) and B(x; s) are found in the form

A(x; s) = − 1
2ω

∫ x

−∞
exp(−(α + ω)ξ)f(exp ξ)dξ + M(s),

B(x; s) =
1
2ω

∫ x

−∞
exp(−(α− ω)ξ)f(exp ξ)dξ + N(s)

Substitution of these in (2.6) yields the general solution to (2.3) in the form

U(x; s) =
1
2ω

∫ x

−∞
expα(x− ξ)[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

+ M(s) exp(α + ω)x + N(s) exp(α− ω)x
(2.7)

The ‘constants of integration’ M(s) and N(s) can be obtained upon satisfying the
boundary conditions of (2.4). Omitting details, we have

N(s) = 0, M(s) =
1
2ω

∫ ∞

−∞
exp(−(α + ω)ξ)f(exp ξ)dξ
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Upon substituting these in (2.7), one obtains the solution to the boundary value
problem in (2.3) and (2.4) in the form

U(x; s) =
∫ x

−∞

expα(x− ξ)
2ω

[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

+
∫ ∞

−∞

expα(x− ξ)
2ω

expω(x− ξ)f(exp ξ)dξ

which can be rewritten in a compact single-integral form as

U(x; s) =
∫ ∞

−∞

expα(x− ξ)
2ω

exp(−ω|x− ξ|)f(exp ξ)dξ (2.8)

The solution u(x, τ) to the initial-boundary value problem stated by (1.5), (2.1) and
(2.2) can be obtained from U(x; s) with the aid of the inverse Laplace transform.
In doing so, we keep in mind that the parameter ω has earlier been introduced in
terms of the parameter s of the Laplace transform as ω = (s + β)1/2. This yields

u(x, τ) = L−1{U(x; s)}

=
∫ ∞

−∞
expα(x− ξ)L−1{exp(−(s + β)1/2|x− ξ|)

2(s + β)1/2
}f(exp ξ)dξ

=
∫ ∞

−∞

expα(x− ξ) exp(−βτ)
2(πτ)1/2

exp(− (x− ξ)2

4τ
)f(exp ξ)dξ

(2.9)

To obtain the solution v(S, t) to the setting in (1.2)-(1.4), we make the backward
substitutions in compliance with the relations of (1.6). This implies that the vari-
ables x, τ and ξ ought to be replaced with S, t and S̃ , respectively as

x = ln S, τ =
σ2

2
(T − t), ξ = ln S̃

The differential of the variable of integration ξ in (2.9) converts to the form

dξ =
1

S̃
dS̃

while the interval of integration (−∞,∞) in (2.9) transforms, according to the
relation ξ = ln S̃, to the interval [0,∞) with respect to S̃. With all this in mind,
one arrives at the solution to the terminal-boundary value problem in (1.2)-(1.4)
as

v(S, t) =
∫ ∞

0

1

σS̃[2π(T − t)]1/2
exp

(
α ln(S/S̃)−β

σ2

2
(T − t)− [ln(S/S̃)]2

2σ2(T − t)

)
f(S̃)dS̃

(2.10)
revealing the Green’s function to the problem in (1.2)-(1.4) in the form

G(S, t; S̃) =
1

S̃[2πσ2(T − t)]1/2
exp

(
α ln(S/S̃)−β

σ2

2
(T − t)− [ln(S/S̃)]2

2σ2(T − t)

)
(2.11)

It is not evident that the above representation for G(S, t; S̃) and the one in (1.1)
are identical. To verify their identity, we express α and β in (2.11) in terms of the
original parameters σ2 and r of the Black-Scholes equation as

α =
σ2/2− r

σ2
, β = (

r + σ2/2
σ2

)2
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and then rewrite (2.11) as

G(S, t; S̃) =
1

S̃[2πσ2(T − t)]1/2
exp

(σ2/2− r

σ2
ln(S/S̃)

− (r + σ2/2)2

2σ2
(T − t)− [ln(S/S̃)]2

2σ2(T − t)

) (2.12)

Multiplying the above expression by the product of the two factors

exp(−r(T − t)) exp r(T − t)

which is identically equal to one, we leave the first of these factors (the negative ex-
ponent) in its current form, combine the second factor with the existing exponential
term in (2.12) and rewrite subsequently the latter as

G(S, t; S̃) =
exp(−r(T − t))

S̃[2πσ2(T − t)]1/2
exp

(
− r − σ2/2

σ2
ln(S/S̃)

+ r(T − t)− (r + σ2/2)2

2σ2
(T − t)− [ln(S/S̃)]2

2σ2(T − t)

)
Combining the second and the third additive terms in the argument of the extended
exponential function, we reduce the latter to the form

exp
(
− r − σ2/2

σ2
ln(S/S̃)− (r − σ2/2)2

2σ2
(T − t)− [ln(S/S̃)]2

2σ2(T − t)

)
which can immediately be transformed into

exp
(
− [ln(S/S̃)]2 + 2(r − σ2/2)(T − t) ln(S/S̃) + (r − σ2/2)2(T − t)2

2σ2(T − t)

)
It is evident that the numerator in the argument of this exponential function rep-
resents a complete square, reducing the above to

exp
(
− [ln(S/S̃ ) + (r − σ2/2)(T − t)]2

2σ2(T − t)

)
Thus, the representation in (2.11) is, indeed, identical to that of (1.1). This implies
that the function that we came up with in (2.11) does really represent the Green’s
function to the terminal-boundary value problem in (1.2)-(1.4). In other words, our
approach is proven productive, and in the next section we bring a convincing jus-
tification of its successful applicability to other terminal-boundary value problems
for the Black-Scholes equation.

3. Other Green’s functions

Two particular terminal-boundary value problems with different boundary condi-
tions imposed are considered as an illustration to the assertion made in the previous
section.
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3.1. Dirichlet boundary conditions. As the first example, consider a terminal-
boundary value problem stated for (1.2) in the semi-infinite strip Ω = (S1 < S <
S2) × (T > t > −∞) of the S, t -plane. Let the terminal condition be given by
(1.3), while the Dirichlet boundary conditions

v(S1, t) = 0, v(S2, t) = 0 (3.1)

are imposed on the edges S = S1 and S = S2 of Ω.
Note that the above setting for the Black-Scholes equation sounds quite practical

for the financial engineering, whereas its Green’s function is not yet available in
literature.

By the transformations of (1.6), the setting in (1.2), (1.3) and (3.1) converts to
the following initial-boundary value problem

u(x, 0) = f(expx), (3.2)

u(a, τ) = 0, u(b, τ) = 0 (3.3)

for (1.5) on the semi-infinite strip (a < x < b) × (0 < τ < ∞) in the x, τ -plane,
on which the region Ω maps by the change of variables introduced in (1.6). The
parameters a and b are determined in terms of S1 and S2 as

a = ln S1, b = lnS2

The Laplace transform applied to the setting in (1.5), (3.2) and (3.3) converts the
latter into the boundary value problem

d2U(x; s)
dx2

+ (c− 1)
dU(x; s)

dx
− (s + c)U(x; s) = −f(expx), (3.4)

U(a; s) = 0, U(b; s) = 0 (3.5)

for the Laplace transform U(x; s) of u(x, τ).
In compliance with the method of variation of parameters, the general solution

to (3.4) is found, in this case, as

U(x, s) =
∫ x

a

expα(x− ξ)
2ω

[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

+ M(s) exp(α + ω)x + N(s) exp(α− ω)x
(3.6)

where the parameter ω is defined as ω = (s + β)1/2.
Satisfying the boundary conditions of (3.5) yields the system of linear algebraic

equations (
exp(α + ω)a exp(α− ω)a
exp(α + ω)b exp(α− ω)b

) (
M(s)
N(s)

)
=

(
0

Ψ(s)

)
in M(s) and N(s). Here

Ψ(s) = −
∫ b

a

1
2ω

[exp(α− ω)(b− ξ)− exp(α + ω)(b− ξ)]f(exp ξ)dξ

Solving the above system, we obtain

M(s) =
∫ b

a

exp(α− ω)a expα(b− ξ)
2ω[expω(a− b)− expω(b− a)]

× [expω(ξ − b)− expω(b− ξ)]f(exp ξ)dξ
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and

N(s) = −
∫ b

a

exp(α + ω)a expα(b− ξ)
2ω[expω(a− b)− expω(b− a)]

× [expω(ξ − b)− expω(b− ξ)]f(exp ξ)dξ

Upon substituting these in (3.6), the latter reads

U(x, s) =
∫ x

a

expα(x− ξ)
2ω

[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

+
∫ b

a

expα(x− ξ)[expω(x− a)− expω(a− x)]
2ω[expω(a− b)− expω(b− a)]

× [expω(ξ − b)− expω(b− ξ)]f(exp ξ)dξ

which can be expressed in a single-integral form as

U(x; s) =
∫ b

a

expα(x− ξ)
2ω[expω(a− b)− expω(b− a)]

×
{

expω[(x + ξ)− (a + b)] + expω[(a + b)− (x + ξ)]

− expω[|x− ξ|+ (a− b)]− expω[(b− a)− |x− ξ|]
}

f(exp ξ)dξ

Transforming the bracket factor in the denominator as

expω(a− b)− expω(b− a) = − expω(b− a)[1− exp 2ω(a− b)]

we rewrite the above representation for U(x; s) as

U(x; s) = −
∫ b

a

expα(x− ξ)
2ω expω(b− a)[1− exp 2ω(a− b)]

× {expω[(x + ξ)− (a + b)] + expω[(a + b)− (x + ξ)]

− expω[|x− ξ|+ (a− b)]− expω[(b− a)− |x− ξ|]}f(exp ξ)dξ

(3.7)

The inverse Laplace transform of U(x; s) is problematic if the latter is kept in its
current form. Therefore, we adjust it first by representing the factor

[1− exp 2ω(a− b)]−1

in the integrand of (3.7) as a geometric series,

1
1− exp 2ω(a− b)

=
∞∑

n=0

exp 2nω(a− b)

whose common ratio exp 2ω(a−b) represents a negative exponential function (a < b)
and is, therefore, less than one. This transforms (3.7) to

U(x; s) =
∫ b

a

expα(x− ξ)
2ω

∞∑
n=0

{expω[|x− ξ| − 2(n + 1)(b− a)]

+ expω[2(n + 1)(a− b)− |x− ξ|]− expω[2n(a− b)− 2b + (x + ξ)]

− expω[2n(a− b) + 2a− (x + ξ)]}f(exp ξ)dξ

and the inverse Laplace transform of the above can be accomplished in the term-by-
term manner. This yields the solution u(x, τ) to the initial-boundary value problem
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in (1.5), (3.2) and (3.3) in the form

u(x, τ) = L−1{U(x, s)}

=
∫ b

a

expα(x− ξ) exp(−βτ)
2(πτ)1/2

∞∑
n=0

{
exp

(
− [|x− ξ|+ 2(n + 1)(a− b)]2

4τ

)
+ exp

(
− [|x− ξ| − 2n(a− b)]2

4τ

)
− exp

(
− [2b− (x + ξ)− 2n(a− b)]2

4τ

)
− exp

(
− [(x + ξ)− 2a− 2n(a− b)]2

4τ

)}
f(exp ξ)dξ

which converts to a more compact form by rearranging the summation in the above
series. This yields

u(x, τ) =
∫ b

a

expα(x− ξ) exp(−βτ)
2(πτ)1/2

∞∑
m=−∞

{
exp

(
− [|x− ξ|+ 2m(a− b)]2

4τ

)
− exp

(
− [2b− (x + ξ)− 2m(a− b)]2

4τ

)}
f(exp ξ)dξ

In compliance with the relations in (1.6), the solution v(S, t) to the setting in
(1.2), (1.3) and (3.1) can be attained by the backward replacement of the variables
x, τ and ξ with S, t and S̃ , respectively. Similarly to the analogous replacement
that has been performed in Section 2 (with α and β replaced with the original
parameters r and σ2 of the Black-Scholes equation), we obtain v(S, t) in the form

v(S, t) =
∫ S2

S1

exp
(
− r−σ2/2

σ2 ln(S/S̃)− (r+σ2/2)2

2σ2 (T − t)
)

S̃[2πσ2(T − t)]1/2

×
∞∑

m=−∞

{
exp

(
− [ln(S/S̃) + 2m ln(S1/S2)]2

2σ2(T − t)

)
− exp

(
− [ln(S2

2/SS̃)− 2m ln(S1/S2)]2

2σ2(T − t)

)}
f(S̃)dS̃

which can be transformed, by combining the logarithmic components in the series
factor. This yields

v(S, t) =
∫ S2

S1

exp
(
− r−σ2/2

σ2 ln(S/S̃)− (r+σ2/2)2

2σ2 (T − t)
)

S̃[2πσ2(T − t)]1/2

×
∞∑

m=−∞

{
exp

(
− [ln(SS2m

1 /S̃S2m
2 )]2

2σ2(T − t)

)
− exp

(
− [ln(S2(m+1)

2 /SS̃S2m
1 )]2

2σ2(T − t)

)}
f(S̃)dS̃

(3.8)
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Thus, the kernel in the above integral,

G(S, t; S̃) =
exp

(
− r−σ2/2

σ2 ln(S/S̃)− (r+σ2/2)2

2σ2 (T − t)
)

S̃[2πσ2(T − t)]1/2

×
∞∑

m=−∞

{
exp

(
− [ln(SS2m

1 /S̃S2m
2 )]2

2σ2(T − t)

)
− exp

(
− [ln(S2(m+1)

2 /SS̃S2m
1 )]2

2σ2(T − t)

)}
,

(3.9)

represents the Green’s function to the setting in (1.2), (1.3) and (3.1). The series
in this representation converges at a high rate unless the term (T − t) is very small.
This implies that, in computing values of G(S, t; S̃), an accuracy level required for
applications can, in most cases, be attained by appropriately truncating the series
in (3.9) to a partial sum.

3.2. Mixed boundary conditions. Note that the qualitative theory of partial
differential equations [5] claims that if G(S, t; S̃) is the Green’s function to the
setting in, say, (1.2), (1.3) and (3.1), then the solution to this problem can be
written in the integral form

v(S, t) =
∫ S2

S1

G(S, t; S̃) f(S̃) dS̃ (3.10)

This observation determined our strategy in the development of Sections 2 and
3.1 The strategy can also be applied while obtaining a Green’s function to the
setting in (1.2) and (1.3), with the following boundary conditions

|v(0, t)| < ∞,
∂v(D, t)

∂S
+ %v(D, t) = 0, % ≥ 0 (3.11)

imposed on the boundary fragments S = 0 and S = D of the semi-infinite strip
Ω = (0 < S < D) × (T > t > −∞). Indeed, if we manage to find the solution to
the problem in (1.2), (1.3) and (3.11) in an integral form like that in (3.10), then
the kernel of the integral represents the Green’s function that we are looking for.

The second condition in (3.11) is referred to, in mathematical physics, as either
mixed or Robin type. To our best knowledge, mixed boundary conditions have
never been considered yet in association with the Black-Scholes equation. It is
even unclear if such problem settings are timely for financial engineering. But
from mathematics stand-point, they do not look unfeasible and could possibly find
realistic applications in the field of finance in years to come.

Upon introducing new variables x and τ as suggested in (1.6), one converts the
setting in (1.2), (1.3) and (3.11) to the initial-boundary value problem

u(x, 0) = f(expx) (3.12)

|u(−∞, τ)| < ∞,
∂u(b, τ)

∂x
+ %u(b, τ) = 0 (3.13)

for (1.5) on the quarter-plane (−∞ < x < b) × (0 < τ < ∞). The parameters b
and % in (3.12) are defined in terms of the initial data in the original problem as

b = ln D, % = D%
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Applying the Laplace transform to the problem in (1.5), (3.12) and (3.13), one
arrives at the boundary value problem

|U(−∞; s)| < ∞,
dU(b; s)

dx
+ %U(b; s) = 0 (3.14)

for the equation in (3.4).
Aiming at the solution to the problem in (1.2), (1.3) and (3.11) in an integral

form, we apply the method of variation of parameters to the problem in (3.4) and
(3.14). This gives the general solution of (3.4) in the form

U(x; s) =
1
2ω

∫ x

−∞
expα(x− ξ)[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

+ M(s) exp(α + ω)x + N(s) exp(α− ω)x
(3.15)

To determine the functions M(s) and N(s), we take advantage of the boundary
conditions of (3.14). When x approaches negative infinity, the integral component
in (3.15) vanishes, while the M(s)-containing component approaches zero. Hence,
for the first condition in (3.14) to hold, N(s) ought to be zero

N(s) = 0 (3.16)

because the exponential factor in the N(s)-containing component in (3.15) is un-
bounded as x approaches negative infinity.

In light of (3.16), the derivative of U(x; s) reads as

dU(x; s)
dx

=
1
2ω

∫ x

−∞
[(α− ω) expω(ξ − x)− (α + ω) expω(x− ξ)]

× expα(x− ξ)f(exp ξ)dξ + M(s)(α + ω) exp(α + ω)x

So, the second condition in (3.14) yields the following equation in M(s),

1
2ω

∫ b

−∞
[(α− ω) expω(ξ − b)− (α + ω) expω(b− ξ)]

× expα(b− ξ)f(exp ξ)dξ + M(s)(α + ω) exp(α + ω)b

+
%

2ω

∫ b

−∞
expα(b− ξ)[expω(ξ − b)− expω(b− ξ)]f(exp ξ)dξ

+ %M(s) exp(α + ω)b = 0

from which M(s) is found as

M(s) = − 1
2ω

∫ b

−∞
[
(% + α)− ω

(% + α) + ω
expω(ξ−b)−expω(b−ξ)] exp(−αξ−ωb)f(exp ξ)dξ

Substituting now the above expression for M(s) in (3.15) and taking into account
(3.16), one obtains the solution to the boundary value problem in (3.4) and (3.14)
as

U(x; s) =
1
2ω

∫ x

−∞
expα(x− ξ)[expω(ξ − x)− expω(x− ξ)]f(exp ξ)dξ

− 1
2ω

∫ b

−∞
[
(% + α)− ω

(% + α) + ω
expω(ξ − b)− expω(b− ξ)]

× expα(x− ξ) expω(x− b)f(exp ξ)dξ
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To obtain the inverse Laplace transform of U(x; s), u(x, τ) = L−1{U(x; s)} which
represents the solution to the initial-boundary value problem in (1.5), (3.12) and
(3.13), we simplify the above expression for U(x; s). Proceeding through a tedious
but quite straightforward algebra, one obtains a more compact form for U(x; s) as

U(x; s) =
∫ b

−∞
[exp(−ω|x− ξ|)− (% + α)− ω

(% + α) + ω
expω(x + ξ − 2b)]

× expα(x− ξ)
2ω

f(exp ξ)dξ

(3.17)

which is not, unfortunately, convenient yet for the immediate inverse Laplace trans-
form. To facilitate the latter, we rewrite U(x; s) in the equivalent form

U(x; s) =
∫ b

−∞

{
exp(−ω|x− ξ|)− [

2(% + α)
(% + α) + ω

− 1] expω(x + ξ − 2b)
}

× expα(x− ξ)
2ω

f(exp ξ)dξ

or, recalling the expression for ω in terms of the parameter s of the Laplace trans-
form, the above reads as

U(x; s) =
∫ b

−∞

expα(x− ξ)
2

{exp(−(s + β)1/2|x− ξ|)
(s + β)1/2

− [
2Φ

(Φ + (s + β)1/2)
− 1]

exp((s + β)1/2(x + ξ − 2b))
(s + β)1/2

}
f(exp ξ)dξ

(3.18)

where we introduced, for compactness, Φ = % + α.
The inverse Laplace transform of U(x; s) from (3.18) represents the solution

u(x, τ) to the initial-boundary value problem in (1.5), (3.12) and (3.13). It is found
in the form

u(x, τ) =
∫ b

−∞

{ 1
2(πτ)1/2

[
exp

(
− (x− ξ)2

4τ

)
+ exp

(
− (x + ξ − 2b)2

4τ

)]
− Φ exp(Φ2τ − Φ(x + ξ − 2b)) erfc

(
Φτ1/2 − x + ξ − 2b

2τ1/2

)}
× expα(x− ξ) exp(−βτ)f(exp ξ)dξ

(3.19)

where the erfc(·) represents the complementary error function

erfc(ϕ) =
2

π1/2

∫ ∞

ϕ

e−x2
dx .

The solution v(S, t) to the terminal-boundary value problem in (1.2), (1.3) and
(3.11) can be obtained from (3.19) by making the backward substitution of the
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variables in compliance with the relations of (1.6). This implies

v(S, t) =
∫ D

0

1

S̃
exp

(
α ln(

S

S̃
)− β

σ2

2
(T − t)

)
×

{ 1
[2πσ2(T − t)]1/2

[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
+ exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
− Φ exp(Φ2σ2(T − t)/2− Φ ln(SS̃/D2))

× erfc(
Φ
2

[2σ2(T − t)]1/2 − ln(SS̃/D2)
[2σ2(T − t)]1/2

)}f(S̃)dS̃

From this, one arrives at a conclusion that the kernel G(S, t; S̃) of the above integral
represents the Green’s function to the problem in (1.2), (1.3) and (3.11). After a
trivial algebra, G(S, t; S̃) can be presented in the form

G(S, t; S̃) =
1

S̃

(S

S̃

)α exp
(
− β

σ2

2
(T − t)

)
×

{ 1
[2πσ2(T − t)]1/2

[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
+ exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
− Φ

(SS̃

D2

)−Φ exp(Φ2σ2(T − t)/2)

× erfc
(Φ

2
[2σ2(T − t)]1/2 − ln(SS̃/D2)

[2σ2(T − t)]1/2

)}
(3.20)

Summarizing all the notations introduced at various stages of the present develop-
ment, we can express the parameters α, β and Φ in (3.20) in terms of the original
parameters σ2 and r of the Black-Scholes equation and the parameters D and % as

α =
σ2/2− r

σ2
, β =

(r + σ2/2
σ2

)2

, Φ = D% + α (3.21)

3.3. Particular cases. Note that the problem statement in (1.2), (1.3) and (3.11)
allows two particular cases that might be of interest in option pricing valuations.
One of such cases occurs when the parameter % is set to equal zero transforming
the boundary conditions in (3.11) into

|v(0, t)| < ∞,
∂v(D, t)

∂S
= 0 (3.22)

The Green’s function for the problem in (1.2), (1.3) and (3.22),

G(S, t; S̃) =
1

S̃

(S

S̃

)α exp
(
− β

σ2

2
(T − t)

)
×

{ 1
[2πσ2(T − t)]1/2

[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
+ exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
− α(

SS̃

D2
)−α exp(α2σ2(T − t)/2)

× erfc
(α

2
[2σ2(T − t)]1/2 − ln(SS̃/D2)

[2σ2(T − t)]1/2

)}
(3.23)
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immediately arises from that of (3.20) when the parameter Φ is replaced with α.
Indeed, as it follows from (3.21), if % = 0, then Φ = α.

The second particular case of the problem statement in (1.2), (1.3) and (3.11)
occurs when the parameter % approaches infinity, which transforms the boundary
conditions in (3.11) into

|v(0, t)| < ∞, v(D, t) = 0 . (3.24)

It is difficult to directly obtain Green’s function to the terminal-boundary value
problem in (1.2), (1.3) and (3.24) from that of (3.20). The point is that taking a
limit in the latter as % approaches infinity is not a trivial exercise. That is why an
alternative route is suggested. We revisit (3.17) for U(x; s) in the development of
the previous section and, observing that

lim
%→∞

(% + α)− ω

(% + α) + ω
= lim

%→∞

(D% + α)− ω

(D% + α) + ω
= 1

we rewrite (3.17) for the setting in (1.2), (1.3) and (3.24) as

U(x; s) =
∫ b

−∞

expα(x− ξ)
2ω

[exp(−ω|x− ξ| − expω(x + ξ − 2b)]f(exp ξ)dξ

=
∫ b

−∞

expα(x− ξ)
2

[
exp(−(s + β)1/2|x− ξ|)

(s + β)1/2

− exp((s + β)1/2(x + ξ − 2b))
(s + β)1/2

]f(exp ξ)dξ

Taking the inverse Laplace transform of the above expression, we obtain

u(x, τ) =
∫ b

−∞
[exp(− (x− ξ)2

4τ
)− exp(− (x + ξ − 2b)2

4τ
)]

× expα(x− ξ) exp(−βτ)
2(πτ)1/2

f(exp ξ)dξ

allowing the solution to the problem in (1.2), (1.3) and (3.24) as

v(S, t) =
∫ D

0

1

S̃
[
2πσ2(T − t)

]1/2
exp

(
α ln(

S

S̃
)− β

σ2

2
(T − t)

)
×

[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
− exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
f(S̃)dS̃

that can easily be simplified to

v(S, t) =
∫ D

0

1

S̃
(
S

S̃
)α exp(−βσ2(T − t)/2)

[2πσ2(T − t)]1/2

×
[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
− exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
f(S̃)dS̃

from which it follows that

G(S, t; S̃ ) =
1

S̃
(
S

S̃
)α exp

(
− βσ2(T − t)/2

)
[2πσ2(T − t)]1/2

×
[
exp

(
− [ln(S/S̃)]2

2σ2(T − t)

)
− exp

(
− [ln(SS̃/D2)]2

2σ2(T − t)

)]
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represents the closed form of the Green’s function to the Black-Scholes equation
satisfying the boundary conditions in (3.24). Note that the relations in (3.21) bring
the expressions of the parameters α and β in terms of σ2and r.

Conclusion. Compact analytic representations are derived for Green’s functions
for the Black-Scholes equation. These and other Green’s functions, whose compact
forms can be obtained by the approach suggested in the present study, are eas-
ily accessible for both theoretical analysis and numerical work in the field. They
can readily be used in solving a variety of practical problem settings in financial
engineering.
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