
Electronic Journal of Differential Equations, Vol. 2006(2006), No. 84, pp. 1–6.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND UNIQUENESS RESULTS OF POSITIVE
SOLUTIONS FOR NONVARIATIONAL QUASILINEAR ELLIPTIC

SYSTEMS

DIMITRIOS A. KANDILAKIS, NIKOLAOS E. SIDIROPOULOS

Abstract. We provide conditions for the existence and uniqueness of positive

solutions to the quasilinear elliptic system

−∆pu = f(x, u, v)

−∆qv = g(x, u, v)

with Dirichlet boundary conditions on a bounded domain Ω ⊆ RN .

1. Introduction

The aim of this paper is to provide existence and uniqueness results for positive
solutions of the following weakly coupled quasilinear eliptic system with homoge-
neous Dirichlet data

−∆pu = f(x, u, v) in Ω

−∆qv = g(x, u, v) in Ω
u = v = 0 on ∂Ω

(1.1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω and f, g : Ω ×
[0,∞)× [0,∞) → [0,∞) are continuous functions. As usual, for s > 1,

−∆su := div(|∇u|s−2∇u)
denotes the s-Laplace operator.

Elliptic equations involving the s-Laplace operator arise in some physical models
like the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to s ∈ (1, 2)
while dilatant fluids correspond to s > 2. The case s = 2 expresses Newtonian fluids
[3]. On the other hand, quasilinear systems like (1.1) describe various nonlinear
phenomena such as chemical reactions, pattern formation, population evolution
where, for example, u and v represent the concentrations of two species in the
process. As a consequence, positive solutions of (1.1) are of interest.

Several methods have been used to treat quasilinear equations and systems. In
the scalar case, weak solutions can be obtained through variational methods which
provide critical points of the corresponding energy functional, an approach which
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is also fruitful in the case of potential systems i.e, the nonlinearities on the right
hand side are the gradient of a C1−functional [2], [7], [10] . However, due to the
loss of the variational structure, the treatment of nonvariational systems like (1.1)
is more complicated and is based mostly on topological methods [1].

Recently, there have been significant studies of (1.1). Dalmasso [6] provided
existence and uniqueness results for positive solutions in the semilinear case p =
q = 2 with the assumption that f is a function of v and g is a function of u, that is,
(1.1) is the Lane-Emden system. Existence results in the case f and g are monomials
of u and v are also provided in [5], while the quasilinear Lane-Emden system was
studied by Hai [9]. In this paper we adopt the method in [9] to complement and
extend corresponding results in the aforementioned papers.

2. Main Results

We make the following assumptions:
(H1) f, g : Ω× [0,∞)× [0,∞) → [0,∞) are continuous functions such that

(i) u→ f(x, u, v) and u→ g(x, u, v) are nondecreasing for every x ∈ Ω and
v ≥ 0.
(ii) v → f(x, u, v) and v → g(x, u, v) are nondecreasing for every x ∈ Ω and
u ≥ 0.

(H2) For each a > 0,

lim sup
z→0+

h
1

p−1 (z, ak
1

q−1 (z, z))
z

= ∞,

where h(u, v) := minx∈Ω f(x, u, v) and k(u, v) := minx∈Ω g(x, u, v).
(H3) For each b > 0,

lim inf
z→+∞

F
1

p−1 (z, bG
1

q−1 (z, z))
z

= 0,

where F (u, v) := maxx∈Ω f(x, u, v) and G(u, v) := maxx∈Ω g(x, u, v).
(H4)

lim inf
z→+∞

G
1

q−1 (z, z)
z

= 0 and lim sup
z→0+

k
1

q−1 (z, z)
z

= ∞.

Suppose now that D is a sub-domain of Ω with D ⊂ Ω. Let δ(.) := χD(.), the
characteristic function of D. The solutions ϕ̃, ψ̃ of the problems

−∆pϕ̃ = δ in Ω

ϕ̃ = 0 on ∂Ω

and

−∆qψ̃ = δ in Ω

ψ̃ = 0 on ∂Ω

will be useful in what follows. Let ϕ (respectively ψ) denote the torsion functions
relative to Ω and to the operators −∆p (respectively −∆q), that is,

−∆pϕ = 1 in Ω
ϕ = 0 on ∂Ω

(2.1)
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and
−∆qψ = 1 in Ω
ψ = 0 on ∂Ω.

(2.2)

Note that, by the strong comparison principle [8], there exist positive numbers M
and m such that ϕ̃ ≥Mϕ, ψ̃ ≥Mψ in Ω and ϕ̃, ψ̃, ϕ, ψ ≥ m on D.

Our existence and uniqueness results are the following.

Theorem 2.1. Let f, g satisfy (H1)-(H4). Then (1.1) has a positive solution (u, v).

Theorem 2.2. Let f, g satisfy (H1) and assume that there exist positive constants
r1, r2, s1, s2 such that

f(x, s, t)
sr1

,
g(x, s, t)
ss1

are nonincreasing for x ∈ Ω and t ≥ 0, and

f(x, s, t)
tr2

,
g(x, s, t)
ts2

are nonincreasing for x ∈ Ω and s ≥ 0. If one of the following conditions is
satisfied:

(i) r1+r2
p−1 < 1 and (r1+r2)s1+s2(p−1)

(p−1)(q−1) < 1,

(ii) s1+s2
q−1 < 1 and (s1+s2)r2+r1(q−1)

(p−1)(q−1) < 1,
(iii) s1+s2

q−1 < 1 and r1+r2
p−1 < 1,

(iv) r1+r2
p−1 > 1 , s1+s2

q−1 < 1 and (r1+r2)(q−1)r1+(s1+s2)(p−1)r2
(p−1)(q−1)2 < 1,

(v) r1+r2
p−1 < 1 , s1+s2

q−1 > 1 and (r1+r2)(q−1)s1+(s1+s2)(p−1)s2
(p−1)2(q−1) < 1,

then (1.1) admits at most one positive solution.

Remark 2.3. (i) If f(u, v) = uα + vβ and g(u, v) = uγ + vδ, α, β, γ, δ ≥ 0, then
(H2)-H(4) require

α < p− 1, max{γ, δ} < q − 1, and max{γ, δ}β < (p− 1)(q − 1).

(ii) Let f(u, v) = uαvβ and g(u, v) = uγvδ. Then (H2)-H(4) are satisfied if

α+
γ + δ

q − 1
β < p− 1 and γ + δ < q − 1.

Proof of Theorem 2.1. In view of (H2) and (H4), there exists ε ∈ (0, 1) such that

Mh
1

p−1 (εm,mg
1

q−1 (εm, εm)) ≥ ε

and
Mk

1
q−1 (εm, εm) ≥ ε. (2.3)

For (w1, w2) ∈ C(Ω)× C(Ω), let T (w1, w2) := (u, v) be the solution of

−∆pu = f(x,max(w1,εϕ), v) in Ω

−∆qv = g(x,max(w1,εϕ),max(w2,εψ)) in Ω
u = v = 0 on Ω

(2.4)

By standard arguments we can show that T : C(Ω)×C(Ω) → C(Ω)×C(Ω) is com-
pletely continuous. By (H3) and (H4) there exists a number R > max{|ϕ|∞, |ψ|∞}
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such that

F
1

p−1 (R, |ψ|∞G
1

q−1 (R,R))|ϕ|∞ ≤ R,

G
1

q−1 (R,R)|ψ|∞ ≤ R.

We claim that T (B(0, R) × B(0, R)) ⊆ B(0, R) × B(0, R), where B(0, R) denotes
the closed ball centered at 0 with radius R in C(Ω). Indeed, let w1, w2 ∈ C(Ω),
with |w1|∞ ≤ R and |w2|∞ ≤ R. Then, in view of (2.2),

−∆qv = g(x,max(w1,εϕ),max(w2,εψ))

≤ G(R,R)(−∆qψ) = −∆q(G
1

q−1 (R,R)ψ) in Ω,

which implies by strong comparison principle [8] that

v ≤ G
1

q−1 (R,R)ψ.

Consequently, |v|∞ ≤ R. On the other hand,

−∆pu = f(x,max(w1,εϕ), v) ≤ F (R, v)

≤ F (R,G
1

q−1 (R,R)ψ) ≤ F (R,G
1

q−1 (R,R)|ψ|∞),

which, by the strong comparison principle, implies

u ≤ F
1

p−1 (R, g
1

q−1 (R,R)|ψ|∞)|ϕ|∞ ≤ R,

and so |u|∞ ≤ R, proving the claim.
By the Schauder fixed point theorem, T has a fixed point (u, v) with |u|∞ ≤ R

and |v|∞ ≤ R. We will show next that |u|∞ ≥ εϕ and |v|∞ ≥ εψ. Since

−∆qv = g(x,max(u, εϕ),max(v, εψ)) ≥ g(x, εϕ, εψ)

≥

{
g(x, εm, εm) in D
0 in Ω\D

≥

{
k(εm, εm) in D
0 in Ω\D,

it follows from the strong comparison principle and (2.3) that

v ≥ k
1

q−1 (εm, εm)ψ̃ ≥Mk
1

q−1 (εm, εm)ψ ≥ εψ.

Consequently,

−∆pu = f(x,max(u, εϕ), v)

≥ f(x,max(u, εϕ), k
1

q−1 (εm, εm)ψ̃)

≥

{
f(x,max(u, εϕ), k

1
q−1 (εm, εm)m) in D

0 in Ω\D

≥

{
h(εm,mk

1
q−1 (εm, εm)m) in D

0 in Ω\D,

and so

u ≥ h
1

p−1 (εm, k
1

q−1 (εm, εm)m)
˜
ϕ ≥Mh

1
p−1 (εm,mk

1
q−1 (εm, εm)) ≥ εϕ.

The proof is complete. �
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Proof of Theorem 2.2. We will provide the proof only for the cases (i), (iii) and
(iv). Let (u, v) and (u1, v1) be positive solutions of (1). As in [4], we define

∆ =
{
δ1 ∈ (0, 1] : u ≥ εu1 and v ≥ εv1 in Ω for ε ∈ [0, δ1]

}
.

Clearly ∆ 6= ∅. Let δ = sup ∆. We will show that δ = 1. So assume that δ < 1.
Let (i) hold. Then

−∆pu ≥ f(x, δu1, v) ≥ δr1f(x, u1, v) ≥ δr1δr2f(x, u1, v1) = δr1+r2f(x, u1, v1),

and since

−∆p(δ
r1+r2

p−1 u1) = δr1+r2f(x, u1, v1),

it follows that

u ≥ δ
r1+r2

p−1 u1. (2.5)

Using (2.5) in the equation for v in (1.1), we get

−∆qv ≥ g(x, δ
r1+r2

p−1 u1, v) ≥ g(x, δ
r1+r2

p−1 u1, δv1) ≥ δ
(r1+r2 )s1

p−1 g(x, u1, δv1).

Therefore,

−∆qv ≥ δ
(r1+r2)s1

p−1 δs2g(x, u1, v1) ≥ δ
(r1+r2)s1+s2(p−1)

(p−1) g(x, u1, v1),

and so

v ≥ δ
(r1+r2)s1+s2(p−1)

(p−1)(q−1) v1, (2.6)

contradicting the definition of δ.
In the case (iii) we have

−∆qv ≥ g(x, δu1, v) ≥ δs1g(x, u1, v) ≥ δs1δs2g(x, u1, v1) = δs1+s2g(x, u1, v1).

Since

−∆q(δ
s1+s2

q−1 v1) = δs1+s2g(x, u1, v1),

it follows that

v ≥ δ
s1+s2

q−1 v1. (2.7)

In view of inequalities (2.5) and (2.7) we have a contradiction with the definition
of δ.

Assume now that (iv) holds. Working as in (2.5) we get

v ≥ δ
s1+s2

q−1 v1. (2.8)

Using (2.5) and (2.8) in the equation for u yields

−∆pu ≥ f(x, δ
r1+r2

p−1 u1, δ
s1+s2

q−1 v1)

≥ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(q−1)(p−1) f(x, u1, v1)

= −δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(q−1)(p−1) ∆pu1.

Thus,

u ≥ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(p−1)2(q−1) u1.
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On the other hand,

−∆qv ≥ g(x, δ
r1+r2

p−1 u1, δ
s1+s2

q−1 v1)

≥ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(q−1)(p−1) g(x, u1, v1)

= −δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(q−1)(p−1) ∆qv1.

Consequently,

v ≥ δ
(r1+r2)(q−1)r1+(s1+s2)(p−1)r2

(p−1)(q−1)2 v1,

contradicting the definition of δ.
Thus δ = 1, i.e., v ≥ v1 and u ≥ u1. Similarly, v ≤ v1 and u ≤ u1. Consequently,

u = u1 and v = v1. �
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