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SOME REMARKS ON BIHARMONIC ELLIPTIC PROBLEMS
WITH POSITIVE, INCREASING AND CONVEX

NONLINEARITIES

ELVISE BERCHIO, FILIPPO GAZZOLA

Abstract. We study the existence of positive solutions for a fourth order
semilinear elliptic equation under Navier boundary conditions with positive,
increasing and convex source term. Both bounded and unbounded solutions
are considered. When compared with second order equations, several differ-
ences and difficulties arise. In order to overcome these difficulties new ideas
are needed. But still, in some cases we are able to extend only partially the
well-known results for second order equations. The theoretical and numeri-
cal study of radial solutions in the ball also reveal some new phenomena, not
available for second order equations. These phenomena suggest a number of
intriguing unsolved problems, which we quote in the final section.

1. Introduction

In the previous two decades, positive solutions to the second order semilinear
elliptic problem

−∆u = µg(u) in Ω
u = 0 on ∂Ω

(1.1)

have attracted a lot of interest, see e.g. [5, 6, 7, 9, 11, 13, 14, 16, 17, 18] and
references therein. Here, Ω is a smooth bounded domain of Rn (n ≥ 2), µ ≥ 0 and
g is a positive, increasing and convex smooth function. By now, (1.1) is quite well
understood. As a subsequent step, P.L. Lions [16, Section 4.2 (c)] suggests to study
positive solutions to systems of semilinear elliptic equations, namely

−∆ui = µgi(u1, . . . , um) in Ω
u1 = · · · = um = 0 on ∂Ω

(1.2)

(i = 1, . . . ,m), where m ≥ 2 and the functions gi are as just mentioned. In this
paper we consider the case of two equations (m = 2) with g1(u1, u2) = u2 and
g2(u1, u2) = g(u1). Then, taking λ = µ2, system (1.2) reduces to the following
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semilinear biharmonic elliptic problem under Navier boundary conditions:

∆2u = λg(u) in Ω
u = ∆u = 0 on ∂Ω .

(1.3)

We will focus essentially our attention on the cases where g is logarithmically con-
vex, namely

g ∈ C1(R+) , g(0) > 0 ,

s 7→ log g(s) is nonconstant increasing and convex,
(1.4)

or g has a power-type behavior such as

g(s) = (1 + s)p, p > 1 . (1.5)

Very little is known about (1.3) when g satisfies (1.4) or (1.5). As far as we are
aware, only a couple of papers [3, 23] considering Dirichlet boundary conditions
study this problem. But it is well-known that boundary conditions significantly
change the nature of the problem and of the tools available in the proofs. For in-
stance, under Navier boundary conditions one has maximum and comparison prin-
ciples in any domain Ω. On the other hand, when dealing with Dirichlet boundary
conditions one seeks solutions in H2

0 (Ω) and this allows one to extend solutions by
0 outside Ω; see, in particular, Problem 9.3 in Section 9.

The first purpose of the present paper is to extend to (1.3) some well-known
results relative to (1.1). In Theorem 2.1 we assume that the source g satisfies (1.4)
and we prove a full extension of the results available for (1.1). Although the results
remain similar, the proof is completely different due to some technical difficulties,
see Problem 9.1 in Section 9. We overcome this problem by generalizing a procedure
developed in [3]. Then, we turn to the power-like case (1.5). When p is subcritical,
namely p ≤ (n+4)/(n−4), by applying critical point techniques as in [2, 6, 9, 12] in
Theorem 2.2 we completely extend the results relative to (1.1). But for supercritical
p, namely p > (n + 4)/(n− 4), we only have partial results, see Theorem 2.3.

The second (and perhaps most important) purpose of the present paper is to
emphasize some striking differences between (1.1) and (1.3). These differences are
not just the already mentioned technical difficulties in the proofs but also some
unexpected and new behaviors of the solutions which are particularly evident in
the radial setting, i.e. the case where Ω = B, the unit ball. Let us mention a couple
of these differences.

When g(s) = es or g(s) = (1 + s)p one can easily find explicit singular radial
solutions of (1.1), see [7, 19]. For the same nonlinearities g, one can also find explicit
singular solutions of the equation in (1.3) which satisfy the first boundary condition
but not the second. Hence, apparently, these are “ghost” singular solutions which
have nothing to do with problem (1.3). But in [3] it was shown that the “true”
singular solutions have the same asymptotic blow up behavior as the ghost solutions.
We have no explanation of this fact.

If g is critical, namely g(s) = (1 + s)(n+2)/(n−2), problem (1.1) may be solved
explicitly when Ω = B, see [11, 14]. Up to rescaling and translations, the solutions
are the restrictions to B of the positive entire solutions of the equation −∆u =
u(n+2)/(n−2) over Rn. For critical growth problems of fourth order, namely g(s) =
(1+s)(n+4)/(n−4), the same result is not true. The reason is that Pohozaev identity
does not ensure nonexistence of radial sign changing solutions of ∆2u = |u|8/(n−4)u
over Rn, see Problem 9.4. With the aid of Mathematica we numerically show that
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the previous equation has both radial positive solutions which (for finite |x|) blow
up towards +∞ and solutions which change sign and (for finite |x|) blow up towards
−∞. Then, by a shooting method having the initial second derivative as parameter,
in Theorem 4.2 we partially prove these numerical evidences.

These are just some differences between (1.1) and (1.3), for further differences see
Section 4. These surprising results shed some light on semilinear fourth problems
but still much work has to be done to reach a complete understanding of (1.3) and
(1.2). This leads us to suggest some (difficult) unsolved problems in Section 9.

The paper is organized as follows. In next section we establish our main results
for general domains Ω. In Section 3 we prove some analogies between (1.1) and
(1.3) for a wide classs of nonlinearities g. In Section 4 we study the particular case
where Ω is the unit ball and we emphasize some differences between (1.1) and (1.3).
Sections 5-8 are devoted to the proofs of the results. Finally, in Section 9 we quote
some open problems.

2. Main results

Throughout the paper we assume that Ω is a bounded smooth domain of Rn

(n ≥ 5) and λ ≥ 0.
For 1 ≤ p ≤ ∞ we denote by | · |p the Lp(Ω) norm whereas, we denote by ‖ ·‖ the

H2 ∩ H1
0 (Ω) norm, that is ‖u‖2 =

∫
Ω
|∆u|2. We fix some exponent q with q > n

4
and q ≥ 2. The definitions and results below do not depend on the special choice
of q. Consider the functional space

X(Ω) = {u ∈ W 4,q(Ω) | u = ∆u = 0 on ∂Ω} .

Then, we say that a function u ∈ L2(Ω), u ≥ 0 is a solution of (1.3) if g(u) ∈ L1(Ω)
and ∫

Ω

u∆2v = λ

∫
Ω

g(u)v ∀v ∈ X(Ω).

A solution u of (1.3) is called regular (resp. singular) if u ∈ L∞(Ω) (resp. u /∈
L∞(Ω)). We also say that a solution uλ of (1.3) is minimal if uλ ≤ u a.e. in Ω for
any further solution u of (1.3). Next, we define

Λ(g(s)) := {λ ≥ 0 : (1.3) admits a solution} , λ∗(g(s)) := supΛ(g(s)) . (2.1)

When it is clear which g we are dealing with we will simply write Λ and λ∗. Clearly,
0 ∈ Λ so that Λ 6= ∅ and λ∗ is well-defined. Finally, we call extremal a solution
u∗ of (1.3) with λ = λ∗.

Our first statement concerns the log-convex case (1.4). We set f(s) := log g(s),
we assume that

f ∈ C1(R+) , s 7→ f(s) is nonconstant increasing and convex (2.2)

so that (1.3) reads
∆2u = λef(u) in Ω
u = ∆u = 0 on ∂Ω.

(2.3)

Theorem 2.1. Assume that f satisfies (2.2). Then there exists λ∗ > 0 such that:
(i) For 0 < λ < λ∗ problem (2.3) admits a minimal regular solution.
(ii) For λ = λ∗ problem (2.3) admits at least a solution, not necessarily regular.
(iii) For λ > λ∗ problem (2.3) admits no solution.



4 E. BERCHIO, F. GAZZOLA EJDE-2005/34

Next, we consider the power-type case:

∆2u = λ(1 + u)p in Ω
u > 0 in Ω

u = ∆u = 0on ∂Ω .

(2.4)

Our first result about (2.4) deals with the subcritical case. In such situation,
critical point theory applies. We assume that the minimax variational characteri-
zation of mountain pass solutions given by Ambrosetti-Rabinowitz [2] is known to
the reader.

Theorem 2.2. Assume that 1 < p ≤ (n+4)/(n−4). Then, any solution of problem
(2.4) is regular and there exists λ∗ > 0 such that:

(i) For 0 < λ < λ∗ problem (2.4) admits at least two solutions: the minimal
solution and a mountain pass solution.

(ii) For λ = λ∗ problem (2.4) admits a unique solution.
(iii) For λ > λ∗ problem (2.4) admits no solution.

The supercritical case p > (n + 4)/(n − 4) is more delicate and we only have
partial results. Note that Theorem 2.1 defines λ∗(es) > 0. This number is in some
sense “optimal” for the following statement:

Theorem 2.3. Assume that p > (n + 4)/(n− 4). Then there exists λ∗ ≥ 1
pλ∗(es)

such that:
(i) For 0 < λ < λ∗ problem (2.4) admits a minimal solution which is regular

whenever 0 < λ < 1
pλ∗(es);

(ii) For λ > λ∗ problem (2.4) admits no solutions.

The upper bound 1
pλ∗(es) for the regularity of minimal solutions is obtained by

comparison arguments. Indeed, after a simple transformation, 1
pλ∗(es) = λ∗(eps)

where the “optimal” choice of the function eps is a consequence of the fact that the
function s 7→ ps is the smallest function f satisfying (2.2) and ef(s) ≥ (1 + s)p.

3. Some analogies between (1.1) and (1.3)

Throughout this section we deal with general nonlinearities g satisfying

g ∈ C1(R+) is a nonconstant strictly positive, increasing and convex function.
(3.1)

We collect here some results which will be useful in the sequel. In some cases,
we just give some hints of the proofs since they are essentially similar to previous
works. In some other cases (especially in Proposition 3.5) we give more details. We
first establish some technical lemmas:

Lemma 3.1. For all w ∈ L1(Ω) such that w ≥ 0 a.e. in Ω there exists a unique
u ∈ L1(Ω) such that u ≥ 0 a.e. in Ω and which satisfies∫

Ω

u∆2v =
∫

Ω

wv

for all v ∈ C4(Ω) ∩X(Ω). Moreover, there exists C > 0 (independent of w) such
that |u|1 ≤ C |w|1.
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Proof. It is similar to that of [5, Lemma 1] which makes use of a weak form of
the maximum principle. This principle is proved in [3, Lemma 1] for polyharmonic
equations in the ball under Dirichlet boundary conditions for which one can use
Boggio’s principle. Under Navier boundary conditions, Boggio’s principle is re-
placed by the (strong) maximum principle for superharmonic functions and general
domains Ω may be chosen. �

A weak form of the maximum principle reads as follows:

Lemma 3.2. Assume that u ∈ L1(Ω) satisfies∫
Ω

u∆2v ≥ 0

for all v ∈ C4(Ω) ∩X(Ω) such that v ≥ 0 in Ω. Then, u ≥ 0 a.e. in Ω.

The proof of this lemma may be obtained using Lemma 3.1 and arguing as in
[3, 5].

From Lemma 3.2 and arguing as for [3, Lemma 4], we obtain a weak form of the
super-subsolution method:

Lemma 3.3. Assume (3.1). Let λ > 0, assume that there exists u ∈ L2(Ω), u ≥ 0
such that g(u) ∈ L1(Ω) and∫

Ω

u∆2v ≥ λ

∫
Ω

g(u)v ∀v ∈ X(Ω) : v ≥ 0 a.e. in Ω.

Then, there exists a solution u of (1.3) which satisfies 0 ≤ u ≤ u a.e. in Ω.

By Lemma 3.3 we infer at once that the set Λ defined in (2.1) is an interval. We
now show that it is bounded:

Lemma 3.4. Assume (3.1). Then, αg := max{α > 0 : g(s) ≥ αs ∀s ≥ 0} > 0 and

0 < λ∗(g(s)) <
λ1

αg
, (3.2)

where λ1 denotes the first eigenvalue of ∆2 in Ω under Navier boundary conditions.

Proof. A standard application of the Implicit Function Theorem implies λ∗ > 0.
Let Φ1 denote a positive eigenfunction corresponding to λ1. Assume that u ∈ L2(Ω)
solves (1.3), then we have

λ1

∫
Ω

uΦ1 =
∫

Ω

u∆2Φ1 = λ

∫
Ω

g(u)Φ1 > λαg

∫
Ω

uΦ1

where the last inequality is strict since g(u) > αgu for small u (recall that g(0) > 0).
The upper bound for λ∗ now follows at once. �

We now show that minimal regular solutions of (1.3) are stable.

Proposition 3.5. Assume (3.1). Let λ0 ∈ (0, λ∗) and suppose that the minimal
solution uλ0 of (1.3), with λ = λ0, is regular. Let µ1 denote the least eigenvalue of
the linearized operator ∆2−λg′(uλ0) in uλ0 ; then µ1 ≥ 0. Moreover, if there exists
λ ∈ (λ0, λ

∗) such that also the minimal solution uλ of (1.3), with λ = λ, is regular,
then µ1 > 0.
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Proof. Recall the variational characterization of µ1(λ) for all λ ∈ (0, λ∗):

µ1(λ) = inf
w∈H2∩H1

0 (Ω)

∫
Ω
|∆w|2 − λ

∫
Ω

g′(uλ)w2∫
Ω

w2
.

Clearly, the map λ 7→ µ1(λ) is non increasing and, by Proposition 2 in [3], it is
continuous from the left. For contradiction, assume that µ1(λ0) < 0 and define
λ̃ := sup{λ ≥ 0 : µ1(λ) > 0}. By the continuity from the left, we have µ1(λ̃) ≥ 0
so that λ̃ < λ0. If µ1(λ̃) > 0, by the second part of Proposition 2 in [3], we get
µ1(λ) > 0 for some λ > λ̃, which contradicts the definition of λ̃. So, it must be
µ1(λ̃) = 0. Fix some γ ∈ (λ̃, λ0); then, uγ is a strict supersolution of (1.3) when
λ = λ̃; but Proposition 3 in [3] yields uλ̃ = uγ giving again a contradiction.

To prove the second statement, assume for contradiction that µ1(λ0) = 0. Taking
into account that λ :7→ µ1(λ) is non increasing, the just proved first statement yields
µ1(λ) = 0 for all λ ∈ [λ0, λ]. But then the same argument as before (which uses
Proposition 3 in [3]) gives a contradiction. �

Next, we show that the interval Λ is closed, provided the minimal solution uλ is
regular for all λ and the nonlinearity g satisfies a growth condition which is verified
by (1.4) and (1.5). Since by Lemma 3.3 the map λ 7→ uλ(x) is strictly increasing
for all x ∈ Ω, it makes sense to define

u∗(x) := lim
λ→λ∗

uλ(x) (x ∈ Ω) . (3.3)

The following statement tells us that u∗ is the extremal solution.

Proposition 3.6. Assume (3.1) and

lim
s→+∞

g′(s)s
g(s)

> 1 . (3.4)

Assume that the minimal solution uλ of (1.3) is regular for all λ ∈ (0, λ∗) and let u∗

be as in (3.3). Then, u∗ ∈ H2 ∩H1
0 (Ω) and u∗ solves (1.3) for λ = λ∗. Moreover,

uλ → u∗ in H2 ∩H1
0 (Ω) as λ → λ∗.

Proof. Let uλ be the minimal solution of (1.3), then:∫
Ω

uλ∆2v = λ

∫
Ω

g(uλ)v ∀v ∈ X(Ω), (3.5)

and, by Proposition 3.5,

λ

∫
Ω

g′(uλ)u2
λ ≤

∫
Ω

(∆uλ)2 = λ

∫
Ω

g(uλ)uλ. (3.6)

From (3.4), it follows that for every ε > 0 there exists C > 0 such that (1+ε)g(s)s ≤
g′(s)s2 + C for all s ≥ 0. Arguing as in [7], and applying this last inequality and
(3.6), we get:∫

Ω

(g′(uλ)u2
λ + C) ≥ (1 + ε)

∫
Ω

g(uλ)uλ ≥ (1 + ε)
∫

Ω

g′(uλ)u2
λ,

which gives the existence of a constant C1 > 0 such that:∫
Ω

g(uλ)uλ < C1
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and therefore

‖uλ‖2 =
∫

Ω

(∆uλ)2 < λ∗C1. (3.7)

If we let λ → λ∗, by (3.7) and (3.3) we deduce that, up to a subsequence,

uλ ⇀ u∗ in H2 ∩H1
0 (Ω) as λ → λ∗. (3.8)

Furthermore, (3.8) allows us to pass to the limit in (3.5) and to get that u∗ solves
(1.3) for λ = λ∗. Finally, by Lebesgue’s Theorem, we have that:

‖uλ‖2 = λ

∫
Ω

g(uλ)uλ → λ∗
∫

Ω

g(u∗)u∗ = ‖u∗‖2 as λ → λ∗.

This, together with (3.8), shows that uλ → u∗ in H2 ∩H1
0 (Ω) as λ → λ∗. �

If in addition {uλ} is uniformly bounded then we can improve Proposition 3.6
with the following:

Proposition 3.7. Assume (3.1). Let uλ denote the minimal solution of (1.3)
and assume there exists M > 0 such that |uλ|∞ < M , for all λ ∈ (0, λ∗). Then
uλ → u∗ in C4,α(Ω) for all α ∈ (0, 1). Moreover, λ∗ is a turning point, that
is, there exists δ > 0 such that the solutions (λ, u) of (1.3), near (λ∗, u∗), form
a differentiable curve t ∈ (−δ,+δ) 7→ (λ(t), u(t)) ∈ R+ × C4,α(Ω) ∩ X(Ω), which
satisfies: u(0) = u∗, λ(0) = λ∗, λ′(0) = 0 and λ′′(0) < 0.

Proof. We argue as in [9]. Since {uλ} is bounded in L∞(Ω), by elliptic regularity, we
deduce the boundedness of {uλ} also in W 4,p(Ω), for every p > 1. Then, by Sobolev
embedding, we get that, for every 0 < α < 1, {uλ} is bounded in C3,α(Ω) and so,
again by elliptic regularity, {uλ} is also bounded in C4,α(Ω). Finally, from the
compact embedding C4,α1(Ω) ⊂ C4,α2(Ω) (for every α1 > α2) we get the claimed
convergence.

Let us now define the operator F : (0, λ∗]× C4,α(Ω) ∩X(Ω) → C0,α(Ω) by:

F (λ, u) := ∆2u− λg(u).

It is not difficult to verify that F (λ, u) satisfies the hypotheses in [8, Theorem
3.2], from which follows the existence of a curve of solutions, (λ(t), u(t)), such that
u(0) = u∗and λ(0) = λ∗.

To show that λ′(0) = 0 and λ′′(0) < 0, it is sufficient to differentiate t 7→
F (λ(t), u(t)) twice with respect to t and evaluate these derivatives at t = 0. �

A further step towards a better knowledge of the set of solutions of problem
(1.3) is made by showing that this set is unbounded in C4,α(Ω). Assume (3.1) and
for every u ∈ C0,α(Ω) let v := G(λ, u) ∈ C0,α(Ω) be the unique solution of the
problem:

∆2v = λg(u) in Ω
v = ∆v = 0 on ∂Ω .

The solutions of (1.3) are fixed points of G. Furthermore, by elliptic regularity,
we have that v ∈ C4,α(Ω) and hence, from the compactness of the embedding
C4,α(Ω) ⊂ C0,α(Ω), we get that G is a compact operator from C0,α(Ω) into C0,α(Ω).
So, if we call C0 the component of the set

S := {(λ̃, u) ∈ (0, λ∗]× C4,α(Ω) : u solves (1.3) with λ = λ̃}
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to which (0,0) belongs, we are in the framework of [22, Theorem 6.2], from which
it follows that:

Proposition 3.8. Assume (3.1). Then C0 is unbounded in (0, λ∗]× C4,α(Ω).

4. Some differences between (1.1) and (1.3): radial problems

In this section we assume that Ω = B (the unit ball). In this case, writing
(1.3) in its original form of system (1.2), by [25, Theorem 1] we know that any
regular solution of (1.3) is radially symmetric and radially decreasing. We discuss
separately the exponential case (2.3) (when f(s) ≡ s) and the power case (2.4).
For the latter, the critical case p = (n + 4)/(n − 4) deserves particular attention.
In radial coordinates r = |x|, (1.3) becomes

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r)

= λg(u(r)) r ∈ [0, 1)
(4.1)

supported with Navier boundary conditions

u(1) = u′′(1) + (n− 1)u′(1) = 0 . (4.2)

Moreover, regular solutions u are smooth and therefore r 7→ u(r) must be an even
function of r, namely

u′(0) = u′′′(0) = 0 . (4.3)
The main purpose of the present section is to highlight several striking differences

between (1.3) and the corresponding second order problem (1.1). Another purpose
of this section is to estimate λ∗. In order to give an upper bound for λ∗ we use
Lemma 3.4 The estimate (3.2) gives

λ∗(es) <
λ1

e
, λ∗((1 + s)p) <

(p− 1)p−1

pp
λ1 . (4.4)

It is well-known that λ1 = Z4, where Z is the first zero of the Bessel function Jn−2
2

.
According to [1] we have

n 5 6 7 8
λ1 407.6653 695.6191 1103.3996 1657.0143

To give a lower bound for λ∗, we seek a supersolution for (1.3). For any C > 0
the function

UC(r) = C(
2n

n + 3
r3 − 3

n + 1
n + 3

r2 + 1) (4.5)

belongs to H2 ∩H1
0 (Ω) and satisfies the boundary conditions (4.2). We investigate

for which C and λ we have ∆2UC ≥ λg(UC). The largest such λ gives a lower
bound for λ∗. The choice of UC in (4.5) as a supersolution is probably not opti-
mal. Nevertheless, with Mathematica we could at least optimize the choice of the
constant C and find the results listed in the tables in the following subsections.

The last purpose of this section is to determine the ghost solutions as mentioned
in the introduction. More precisely, we determine solutions of (4.1) satisfying the
first boundary condition in (4.2) but not the second. Of particular interest is
the value of λg corresponding to the ghost solution. We will see that λg may be
either larger or smaller than λ∗; apparently, the former case occurs for subcritical
nonlinearities whereas the latter occurs for supercritical nonlinearities. However,
this is not a rule, see the case of critical nonlinearities.
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4.1. Exponential nonlinearity. When f(s) = s, (2.3) written in radial coordi-
nates becomes

uiv(r)+
2(n− 1)

r
u′′′(r)+

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r) = λeu(r) (4.6)

r ∈ [0, 1) together with the boundary conditions (4.2). As may be checked by a
simple calculation, for λ = λe := 8(n − 2)(n − 4) the function U(r) := −4 log r is
a ghost solution, namely it solves (4.6) and the first boundary condition in (4.2)
but not the second boundary condition. Contrary to what happens for the second
order equation, the explicit form of a radial singular solution seems not simple to
be determined, see also [3].

In dimensions n = 5, 6, 7, 8, the table below shows first for which values of C
the function UC defined in (4.5) is a supersolution of (4.6) and the corresponding
lower bound for λ∗. We also give the upper bound obtained with (4.4). In the fifth
column, we quote from [3] a lower bound for the extremal value λ∗(D) of the cor-
responding Dirichlet problem; as for the eigenvalues, it is considerably larger than
λ∗. Finally, in the last column, we quote λe, namely the value of λ corresponding
to the ghost solution: it is considerably smaller than λ∗.

n C λ∗ ≥ λ∗ < λ∗(D) ≥ λe

5 1.093 98.37 149.9716 235.89 24
6 1.132 158.48 255.9039 361.34 64
7 1.162 234.26 405.9180 523.16 120
8 1.185 325.76 609.5814 724.50 192

4.2. Power-type nonlinearity. In radial coordinates (2.4) reads

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)− (n− 1)(n− 3)
r3

u′(r)

= λ(1 + u(r))p r ∈ [0, 1)
(4.7)

together with the boundary conditions (4.2).
Let us first recall some results for the second order problem corresponding to

(4.7), namely

−u′′(r)− n− 1
r

u′(r) = µ(1 + u(r))p , r ∈ [0, 1) . (4.8)

It is well-known [7] that the function vp(r) = r−2/(p−1)−1 solves (4.8) (and satisfies
the Dirichlet boundary condition u(1) = 0) if

µ = µp :=
2(np− n− 2p)

(p− 1)2
.

Note that µp > 0 if and only if p > n/(n − 2); note also that n/(n − 2) is the
critical (largest) trace exponent q for which one has H1(Ω) ⊂ Lq+1(∂Ω). Moreover,
up ∈ H1

0 (B) if and only if p > (n + 2)/(n− 2), the critical Sobolev exponent.
For the fourth order problem, we consider the function

up(r) = r−4/(p−1) − 1,

which solves (4.7) if

λ = λp :=
8(p + 1)(2 + 2p− np + n)(4p− np + n)

(p− 1)4
.
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Note that
λp > 0 ⇐⇒ p ∈ (1,

n + 2
n− 2

) ∪ (
n

n− 4
,∞)

and that up ∈ H2∩H1
0 (B) if and only if p > (n+4)/(n−4). The number (n+2)/(n−

2) is the critical exponent for the first order Sobolev inequality while n/(n − 4) is
again the critical trace exponent q for the embedding H2(Ω) ⊂ Lq+1(∂Ω). For
λ = λp, the function up is a singular solution of equation (4.7) but up does not
satisfy the second condition in (4.2); hence, it is not a solution of problem (1.3).
The functions up are the ghost solutions. These facts suggest several problems
which we quote in Section 9.

Also for (4.7) we used the function UC in (4.5). In dimensions n = 5, 6, 7, 8, the
tables below show both for which values of C the function UC is a supersolution
of (4.7) and the corresponding lower bound for λ∗. We also give the upper bound
obtained with (4.4). The tables correspond, respectively, to the cases p = 3/2
(subcritical) and p = 10 (supercritical); in the first case we have λ∗ < λp, whereas
in the second we have λ∗ > λp.

(p=3/2)
n C λ∗ ≥ λ∗ < λp

5 0.801 72.09 156.91 2800
6 0.844 118.16 267.74 1920
7 0.878 177 424.69 1200
8 0.905 248.79 637.78 640

(p=10)
n C λ∗ ≥ λ∗ < λp

5 0.111 9.99 15.79 1.542
6 0.115 16.1 26.94 6.001
7 0.118 23.79 42.74 12.648
8 1.121 33.26 64.19 21.46

4.3. The critical case. Of special interest is problem (2.4) in the critical case
p = (n + 4)/(n − 4). By Theorem 2.2 and [25, Theorem 1] we know that this
problem admits at least two regular and radially symmetric solutions. Take any
such solution u; then, for λ < λ∗, the function v = λ(n−4)/8(1 + u) solves the
problem

∆2v = v(n+4)/(n−4) in B

v > λ(n−4)/8 in B

v = λ(n−4)/8 on ∂B

∆v = 0 on ∂B .

(4.9)

Equivalently, v = v(r) satisfies

viv(r) +
2(n− 1)

r
v′′′(r) +

(n− 1)(n− 3)
r2

v′′(r)

− (n− 1)(n− 3)
r3

v′(r)− v(r)(n+4)/(n−4) = 0
(4.10)

with the boundary conditions

v(1) = λ(n−4)/8 , ∆v(1) = v′′(1) + (n− 1)v′(1) = 0 , (4.11)

and the regularity conditions v′(0) = v′′′(0) = 0.
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Consider now the critical problem over the whole space

∆2v = v(n+4)/(n−4) in Rn . (4.12)

By [15, Theorem 1.3], we know that (up to translations) any smooth positive solu-
tion of (4.12) has the form

vd(x) =
(n(n2 − 4)(n− 4)d2)(n−4)/8

(1 + d |x|2)(n−4)/2
(d > 0). (4.13)

The main goal of this section is to describe the (smooth) continuation of solutions of
(4.9) outside B. We obtain a new phenomenon, not available for the corresponding
second order problem.

Proposition 4.1. Let v be a (radial) solution of (4.9); then it does not admit a
positive radial extension to Rn.

Proof. By contradiction suppose there exists v, positive radial extension of v to Rn.
Then, by [24, Theorem 4] we have that v coincides with one of the functions vd in
(4.13), for some d > 0. But this is impossible since for all d, the function vd does
not satisfy the second condition in (4.11). �

For the critical growth second order problem it is known (see e.g. [11, Theorem 7])
that the solutions of the equation in fact coincide in B with some of the functions vd

of the corresponding family (4.13) and it is so clear in which way they are continued.
Proposition 4.1 tells us that fourth order problems behave differently: it is therefore
natural to inquire in which way the solutions of (4.9) may be continued for |x| > 1.

To this end, we performed several numerical experiments with Mathematica.
The next figures display the graphics of three solutions of

viv(r) +
14
r

v′′′(r) +
35
r2

v′′(r)− 35
r3

v′(r)− v(r)3 = 0 . (4.14)

All three solutions satisfy the initial conditions

v(0) = 4

√
6
5
≈ 4.38178 v′(0) = v′′′(0) = 0. (4.15)

The distinction between the three solutions is made by the choice of the second
derivative at r = 0: we take respectively

v′′(0) = −8
5

√
6
5
≈ −1.75271 , v′′(0) = −8

5

√
6
5
− 10−3 ,

v′′(0) = −8
5

√
6
5

+ 10−3 .

(4.16)

Therefore, the first figure represents the function (4.13) for n = 8 and d = 0.1.
We performed further numerical experiments for other choices of n and d but the

results were completely similar. Obviously, if one takes the “equilibrium” initial
second derivative (the one of (4.13)), then the solution is precisely vd. If one
slightly increases this value, the corresponding solution has first a global minimum
at positive level and then blows up towards +∞. If one slightly decreases the
equilibrium value, the corresponding solution vanishes, becomes negative and then
blows up towards−∞. These numerical results are partially confirmed by a rigorous
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Figure 1. The plot of the solution of (4.14)-(4.15)-(4.16)1
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Figure 2. The plots of the solutions of (4.14)-(4.15) with (4.16)2
and (4.16)3

proof. To be more precise, up to rescaling we may restrict our attention to the
following problem

uiv(r) +
2(n− 1)

r
u′′′(r) +

(n− 1)(n− 3)
r2

u′′(r)

− (n− 1)(n− 3)
r3

u′(r) = u(n+4)/(n−4)(r) r ∈ [0,∞)

u(0) = 1 , u′(0) = u′′′(0) = 0 , u′′(0) = γ < 0 .

(4.17)

Here γ is the only free parameter while u′(0) = u′′′(0) = 0 are the already mentioned
regularity conditions. Existence and uniqueness of a local solution uγ of (4.17) is
quite standard. For a suitable choice of γ < 0, say γ = γ, the unique solution
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u := uγ of (4.17) is in the family (4.13), namely

u(r) =
[n(n2 − 4)(n− 4)](n−4)/4

(
√

n(n2 − 4)(n− 4) + r2)(n−4)/2
.

Then we prove the following statement.

Theorem 4.2. For any γ < 0 let uγ be the unique (local) solution of (4.17). Then:
(i) If γ < γ there exists R > 0 such that uγ(R) = 0, uγ(r) < u(r) and

u′γ(r) < 0 for r ∈ (0, R].
(ii) If γ > γ there exist 0 < R1 < R2 < ∞ such that uγ(r) > u(r) for r ∈

(0, R2), u′γ(r) < 0 for r ∈ (0, R1), u′γ(R1) = 0, u′γ(r) > 0 for r ∈ (R1, R2)
and lim

r→R2
uγ(r) = +∞.

Remark 4.3. The functions u = u(r) displayed in the last plot of Figure 2 solve
the following Dirichlet problem

∆2u = u(n+4)/(n−4) in BR

u = γ on ∂BR

∂u

∂ν
= 0 on ∂BR

for some γ, R > 0. Then, the function w(x) = u(Rx)
γ − 1 satisfies

∆2w = λ(1 + w)(n+4)/(n−4) in B

w =
∂w

∂ν
= 0 on ∂B

for λ = R4γ8/(n−4), namely the Dirichlet problem for the equation in (2.4) in the
unit ball.

We conclude this section with the table containing the value of λ(n+4)/(n−4) and
the estimates of λ∗ obtained with UC in (4.5):

n (n + 4)/(n− 4) λ(n+4)/(n−4) C λ∗ ≥ λ∗ <
5 9 25/16 0.123 11.07 17.65
6 5 9 0.235 32.9 56.98
7 11/3 441/16 0.335 67.54 128.72
8 3 64 0.425 116.84 245.48

5. Proof of Theorem 2.1

Note first that, up to rescaling λ, we may assume that f(0) = 0. Then, we start
with a “calculus” statement.

Lemma 5.1. Assume that ϕ ∈ C1[0,+∞) is a nonnegative, non-decreasing and
convex function such that ϕ(0) = 0. Then for any x ≥ 0 and any β > 1 we have
ϕ(βx) ≥ βϕ(x).

Proof. It follows at once from the inequality d
dx (ϕ(βx)− βϕ(x)) ≥ 0. �

We now establish an improved version of [3, Lemma 5]:

Lemma 5.2. Assume that for some µ > 0 there exists a (possibly singular) solution
u0 of (2.3) with λ = µ. Then, for all 0 < λ < µ there exists a regular solution of
(2.3).
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Proof. Let 0 < λ < µ , and consider the (unique) functions u1, u2 ∈ L2(Ω) satisfying
respectively∫

Ω

u1∆2v = λ

∫
Ω

ef(u0)v and
∫

Ω

u2∆2v = λ

∫
Ω

ef(u1)v ∀v ∈ X(Ω) ;

such functions exist by Lemma 3.1 and belong to L2(Ω) since Lemma 3.2 entails

u0 ≥
λ

µ
u0 = u1 ≥ u2 a.e. in Ω .

We now need the following elementary statement: For all ϑ > 1 and all α > 1,
there exists γ > 0 such that

eϑf(s) + γ − αef(s) ≥ 0 ∀s ≥ 0. (5.1)

Fix ϑ := µ/λ > 1 and take α > max{n
4 , 2}; then, (5.1) ensures that there exists

k > 0 such that

e
µ
λ f(s) +

k

λ
≥ αef(s) ∀s ≥ 0. (5.2)

Let w ∈ X(Ω) be the unique solution of the equation ∆2w = k in Ω; then w ∈
L∞(Ω) and w > 0 in Ω. Moreover, using Lemma 5.1 and (5.2) we get∫

Ω

(u1 + w)∆2v = λ

∫
Ω

(
ef(u0) +

k

λ

)
v

= λ

∫
Ω

(
ef( µ

λ u1) +
k

λ

)
v

≥ λ

∫
Ω

(
e

µ
λ f(u1) +

k

λ

)
v

≥ λα

∫
Ω

ef(u1)v

= α

∫
Ω

u2∆2v

for all v ∈ X(Ω) such that v ≥ 0 in Ω. Hence, by Lemma 3.2, we infer that
u2 ≤ u1+w

α . Since α > 2 and w > 0, this inequality, together with the monotonicity
and convexity of f , implies that

f(u2) ≤ f(
u1

α
+

w

α
) ≤ f

( 1
α

u1 + (1− 1
α

)w
)
≤ 1

α
f(u1) + (1− 1

α
)f(w).

In particular,

ef(u2) ≤ e
1
α f(u1)e(1− 1

α )f(w) ;

since e
1
α f(u1) ∈ Lα(Ω) and e(1− 1

α )f(w) ∈ L∞(Ω) we get at once that ef(u2) ∈ Lα(Ω).
Finally, consider u3 ∈ L2(Ω) such that∫

Ω

u3∆2v = λ

∫
Ω

ef(u2)v ∀v ∈ X(Ω) .

By elliptic regularity and the fact that α > n
4 , we deduce u3 ∈ W 4,α(Ω) ⊂ L∞(Ω).

Moreover,∫
Ω

(u2 − u3)∆2v = λ

∫
Ω

(ef(u1) − ef(u2))v ≥ 0 ∀v ∈ X(Ω) : v ≥ 0 in Ω
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so that by Lemma 3.2 we infer that u3 ≤ u2. Hence,∫
Ω

u3∆2v ≥ λ

∫
Ω

ef(u3)v ∀v ∈ X(Ω) : v ≥ 0 in Ω.

Then u3 is a weak bounded supersolution of (2.3) and the statement follows by
Lemma 3.3. �

Theorem 2.1 is now a straightforward consequence of (3.2) and of Lemma 5.2
and Proposition 3.6.

6. Proof of Theorem 2.2

The proof is obtained by combining some well-known results in [2, 6, 9, 12, 27].
Firstly, by applying the regularity results in [27], we prove the following statement.

Proposition 6.1. Assume that 1 < p ≤ (n + 4)/(n − 4) and let u ∈ H2 ∩H1
0 (Ω)

be a solution of (2.4). Then u is regular.

Proof. If we show that u ∈ Lq(Ω) for every q < ∞, the statement will follow by
elliptic regularity. We first claim that for every ε > 0 there exist qε ∈ L

n
4 (Ω) and

Fε ∈ L∞(Ω) such that:

(1 + u(x))p = qε(x)u(x) + Fε(x) and ‖qε‖n
4

< ε . (6.1)

Fix M ≥ 1 and write

(1 + u)p = χ{u≤M}(1 + u)p + χ{u>M}(1 + u)p = ϕ(x) + χ{u>M}
(1 + u)p

u
u (6.2)

where χ{.} is the characteristic function and ϕ(x) = χ{u≤M}(1 + u)p ∈ L∞(Ω). It
is clear that (1 + u)p ≤ (2u)p whenever u > M . Moreover, using the embedding
H2(Ω) ⊂ L2n/(n−4)(Ω) and the fact that p ≤ (n + 4)/(n− 4), we have that up−1 ∈
L

n
4 (Ω), hence:

0 ≤ a(x) := χ{u>M}
(1 + u)p

u
≤ 2pup−1 ∈ L

n
4 (Ω).

Therefore, we may write (1 + u)p = ϕ(x) + a(x)u with ϕ ∈ L∞(Ω) and a ∈ L
n
4 (Ω).

Applying [27, Lemma B2], for every ε > 0 we obtain

a(x)u(x) = qε(x)u(x) + fε(x) (6.3)

where qε and fε satisfy ‖qε‖n
4

< ε and fε ∈ L∞(Ω). Defining Fε(x) = fε(x)+ϕ(x),
from (6.2) and (6.3) we obtain (6.1).

By (6.1), for every ε > 0, the equation in (2.4) can be rewritten as

∆2u = λ
(
qε(x)u(x) + Fε(x)

)
in Ω

so that the result follows by Steps 2 and 3 in [27]. �

Consider the functional

J(u) =
∫

Ω

|∆u|2 − λ

p + 1

∫
Ω

|1 + u|p+1.

When 1 < p < (n+4)/(n−4), Proposition 3.5 enables us to argue as in the proof [9,
Theorem 2.1] with minor changes; therefore, the existence of a (positive) mountain
pass critical point for J follows.

When p = (n+4)/(n−4), the embedding H2∩H1
0 (Ω) ⊂ Lp+1(Ω) is not compact

and the Palais-Smale condition for J does not hold at all levels. In order to find
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a mountain pass solution, we combine arguments from [6] and [12]. As in [6], we
seek a second solution u of the form u = uλ + v with v > 0 in Ω so that v solves
the problem

∆2v = λ(1 + uλ + v)(n+4)/(n−4) − λ(1 + uλ)(n+4)/(n−4) in Ω
v > 0 in Ω

v = ∆v = 0 on ∂Ω.

Setting h(x, v) = λ(1 + uλ + v)(n+4)/(n−4) − λ(1 + uλ)(n+4)/(n−4) − λv(n+4)/(n−4),
the previous problem reads

∆2v = λv(n+4)/(n−4) + h(x, v) in Ω
v > 0 in Ω

v = ∆v = 0 on ∂Ω

Finally, let w = λ(n−4)/8v and f(x, w) = λ(n−4)/8h(x, λ(4−n)/8w), then w satisfies

∆2w = w(n+4)/(n−4) + f(x, w) in Ω
w > 0 in Ω

w = ∆w = 0 on ∂Ω
(6.4)

The function f satisfies the hypotheses in [12, Corollary 1]; therefore, we infer the
existence of a positive solution of (6.4) or, equivalently, of a positive mountain pass
solution for (2.4).

To conclude the proof of Theorem 2.2, we need to show that the extremal solution
u∗, which exists by Proposition 3.6, is unique. To this end, recall that u∗ is a
classical solution in view of Proposition 6.1. Therefore, it suffices to argue as for
Lemma 2.6 in [7].

7. Proof of Theorem 2.3

As we have already observed, λ∗(eps) = 1
pλ∗(es) then, since eps ≥ (1 + s)p for

all s ≥ 0, arguing as in [11, Theorem 8], we obtain

0 <
1
p
λ∗(es) ≤ λ∗((1 + s)p). (7.1)

By Lemma 5.2, for every λ < 1
pλ∗(es) there exists a minimal regular solution uλ of

(2.3) with f(s) = ps. Such uλ is also a bounded supersolution of (2.4), indeed∫
Ω

uλ∆2v = λ

∫
Ω

epuλv ≥ λ

∫
Ω

(1 + uλ)pv ∀v ∈ X(Ω) : v ≥ 0 in Ω.

Then, by Lemma 3.3, for all λ < 1
pλ∗(es) there exists a solution up of (2.4) such

that up ≤ uλ.

8. Proof of Theorem 4.2

(i) Since uγ(0) = u(0), u′γ(0) = u′(0) and u′′γ(0) < u′′(0), we have uγ(r) < u(r) at
least in a sufficiently small right neighborhood of r = 0. For contradiction, assume
that there exists (a first) ρ > 0 such that

uγ(ρ) = u(ρ) , uγ(r) < u(r) < 1 ∀r ∈ (0, ρ) . (8.1)
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Note that (4.17) may be rewritten as{
rn−1 [∆uγ(r)]′

}′
= rn−1u(n+4)/(n−4)

γ (r) ,
{
rn−1 [∆u(r)]′

}′
= rn−1u

n+4
n−4 (r)

(8.2)
for all r ∈ [0, ρ]. By subtracting the two equations in (8.2) we readily obtain

{rn−1 [∆uγ(r)−∆u(r)]′}′ = rn−1[u(n+4)/(n−4)
γ (r)− u(n+4)/(n−4)(r)] ∀r ∈ [0, ρ] .

(8.3)
Since both solutions uγ and u are smooth, we have

lim
r→0

{
rn−1 [∆uγ(r)−∆u(r)]′

}
= 0 ;

therefore, for any r ∈ (0, ρ] we may integrate (8.3) over [0, r] and obtain

rn−1[∆uγ(r)−∆u(r)]′ =
∫ r

0

tn−1[u(n+4)/(n−4)
γ (t)− u(n+4)/(n−4)(t)] dt < 0 (8.4)

for all r ∈ (0, ρ], the last inequality being a consequence of (8.1). Note also that
∆uγ(0) = nγ < nγ = ∆u(0); this, combined with the strict decreasing of r 7→
∆[uγ(r)− u(r)] (see (8.4)) shows that

−∆(uγ − u) > 0 in Bρ . (8.5)

Moreover, (8.1) tells us that (uγ − u) = 0 on ∂Bρ. This, together with (8.5) and
the maximum principle shows that uγ > u in Bρ. This contradicts (8.1) and shows
that uγ(r) < u(r) as long as uγ(r) remains positive. The positivity interval for uγ

cannot be (0,∞), otherwise uγ would be a positive solution of (4.12) which is not
in the family (4.13), against [15, Theorem 1.3].

We have so far proved that there exists a finite R > 0 such that uγ(R) = 0 and
uγ(r) < u(r) whenever r ∈ (0, R]. We now show that u′γ(r) < 0 for all r ∈ (0, R].
If u′γ(Rγ) = 0 for some Rγ ≤ R, then ∆uγ(Rγ) ≥ 0; by integrating the first of
(8.2) over [0, r] for r > Rγ and arguing as above we deduce that ∆uγ(r) > 0 for all
r > Rγ and, in turn, that u′γ(r) > 0 for all r > Rγ . But then we would find ρ > Rγ

such that (8.1) holds, which we have just seen to be impossible. This contradiction
shows that u′γ(r) < 0 for all r ∈ (0, R] and completes the proof of (i).
(ii) As in the proof of (i), it cannot be uγ(ρ) = u(ρ) for some ρ > 0. Hence, for
r > 0, 0 < u(r) < uγ(r) as long as the latter exists; if there exists no R1 > 0 such
that u′γ(R1) = 0, then u′γ(r) < 0 for all r > 0 so that uγ would be a positive global
solution of (4.12) which is not in the family (4.13), against [15, Theorem 1.3]. So,
let R1 > 0 be the first solution of u′γ(R1) = 0; then, ∆uγ(R1) ≥ 0. By integrating
the first of (8.2) over [0, r] for r > R1 we deduce that ∆uγ(r) > 0 for all r > R1 and
that u′γ(r) > 0 for all r > R1. Invoking once more [15, Theorem 1.3], we deduce
that uγ cannot exist globally; this proves the existence of R2 and completes the
proof of (ii).

9. Some unsolved problems

Problem 9.1. Prove Lemma 5.2 for general nonlinearities g.

For any strictly positive, increasing and convex function g, it is shown in [5]
that (1.1) possesses a minimal regular solution for all µ < µ∗ (the extremal value).
The proof takes advantage of the inequality ∆Φ(u) ≤ Φ′(u)∆u which holds for any
smooth concave function Φ with bounded first derivative and such that Φ(0) = 0.
For the fourth order problem (1.3), this inequality seems out of reach and one
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should find other issues. On the other hand, the method used in Lemma 5.2 seems
to apply only to functions g satisfying (1.4).

Problem 9.2. Find the critical dimensions.

Consider again the second order equation (1.1). For g(s) = es, it is proved in
[18, Théorème 3] that if n ≤ 9 then u∗ is bounded, whereas from [7] we know that
if n ≥ 10 and Ω is a ball, then u∗ is unbounded. We call critical dimension N(g(s))
the largest dimension for which the semilinear equation with nonlinearity g admits
a regular extremal solution in any domain Ω. Then, we just saw that for second
order equations we have N(es) = 9. One is then interested in finding the critical
dimensions also for fourth order problems. Two main difficulties arise. First, the
counterpart of [7] fails due to the double boundary condition and no interpretation
in terms of remainder terms for Hardy inequality is available, see [10]. Second,
also the method in [18] fails since the very same arguments as in the proof of [18,
Théorème 3] yield

λa

4

∫
Ω

[e(a+1)uλ − euλ ] +
a4

16

∫
Ω

[eauλ |∇uλ|4] ≥ λ

∫
Ω

[e(a+1)uλ − 2e(a+2)uλ/2 + euλ ]

for all a > 0 which allows no conclusion. If one assumes (with no motivation!) that
the additional term

∫
eauλ |∇uλ|4 is a lower order term as λ → λ∗, then we would

have boundedness of the extremal solution for n < 20. Nevertheless, as in [3], we
believe that N(es) = 12 for fourth order problems and that the critical dimension
does not depend on the boundary condition (Navier or Dirichlet) considered. For
the critical dimensions when g(s) = (1 + s)p, we refer to [18, Théorème 4] and [7].

Problem 9.3. Prove uniqueness for small λ.

If Ω is conformally contractible, then Reichel [23] proves that the equation in
(1.3) under Dirichlet boundary conditions admits a unique smooth solution for
small λ and suitable nonlinearities g. Conformally contractible domains are slightly
more general than starshaped domains and allow to obtain uniqueness from a strict
variational principle by means of a Pohozaev-type identity. Among other tools,
the proof is based on a crucial extension argument (see Proposition 8 p.68 in [23])
which is not available under Navier boundary conditions. Is it possible to by-pass
this difficulty and to obtain uniqueness for small λ also under Navier boundary
conditions?

Problem 9.4. Nonexistence of entire nodal radial solutions of the critical growth
equation.

The numerical results of Section 4.3 and Theorem 4.2 suggest the following
conjecture: the equation

∆2u = |u|8/(n−4)u in Rn (9.1)

admits no radial sign changing solutions. Even if this result is well-known for the
second order equation −∆u = |u|4/(n−2)u, this conjecture appears hard to prove
due to a lack of Lyapunov functional for (4.10). Let us also mention that (9.1)
admits infinitely many (nonradial!) sign changing solutions, see [4].

Problem 9.5. Prove the missing part of Theorem 4.2.
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In Theorem 4.2 we prove that there exists R > 0 such that the problem

∆2u = |u|8/(n−4)u for |x| < R

u = 0 for |x| = R
(9.2)

admits a positive radial solution. This problem is underdetemined as it lacks one
boundary condition. It is well-known [20, 21, 26] that Pohozaev identity enables
to exclude the existence of positive solutions of (9.2) complemented with a further
boundary condition (either ∂u

∂ν = 0 or ∆u = 0 for |x| = R). In view of the numerical
results of Section 4.3, one should try to prove that the positive radial solution of
(9.2) changes sign at |x| = R and then blows up towards −∞ at some finite |x| > R.

Acknowledgement. The Authors are grateful to the referee for his remarks on
the preliminary version of Proposition 3.5.
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