
 
 

 

 

Abstract  This paper presents a statistical approach that 
 T-square test for the purpose of novel 

biometric identification based on unique static and dynamic 
properties of the oculomotor plant (OP) represented by 
mechanics of the eyeball, sur rounding tissues, ligaments, and 
extraocular muscles. Proposed statistical approach yielded False 
Acceptance Rate of 0% and False Re jection Rate of 9.1% , 
providing a significant improvement against previously 
published study where identification was performed with 
k-nearest neighbor classification (K NN) and decision tree (C4.5) 
approaches with dynamic and static properties of the OP 
extracted  via a horizontal linear homeomorphic mathematical 
model of OP from recorded eye the movement trace. In the 
cur rent research two dimensional linear homeomorphic 
mathematical model was employed, allowing to extract OP 
biometric information from two dimensional saccades therefore 
providing more accurate identification rates. Current study 
involved 46 subjects with eye movement recordings done at 
1000Hz. 

I. INTRODUCTION 
the he need for identification of people arose since the 
start of the criminology. The methods of biometric 
identification evolved throughout history from basic 

measurements of head dimensions [1] to more advanced 
techniques involving fingerprints [2], iris [3], and face 
recognition [4]. Above mentioned techniques are not 
completely fraud-proof since they are based on a human's 
body characteristics that can be replicated with modern 
technological advances [2-5].  In addition, during a finger or 
iris scan the user has to be actively engaged in the biometric 
procedure to achieve high accuracy identification results 
therefore making those methods intrusive. As a result there is 
a significant need in biometrics community to identify 
methods that are both highly counterfeit resistant and non 
intrusive.  

One of the approaches that has the potential to satisfy both 
needs is eye tracking (technology that allows to record spatial 
coordinates of the eye at a given time instance). Modern 
technological advancements provide the opportunity to 
perform the eye tracking at a comfortable distance with no 
hardware components attached to the human body [6].  
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Human eye already provides significant amount of 
information useful for biometrics. The physical and 
behavioral properties of the eye are employed in biometrics 
based on the iris [7], face recognition [4], retina [8], 
periocular information [9], recordings of the raw eye 
positional, velocity signal and pupil dilation [10-11].  

In terms of its anatomical structure, an eye provides a 
unique opportunity for the identification by containing a 
multitude of anatomical components that represent 
Oculomotor Plant (OP). These components are the eye globe 
and its surrounding tissues, ligaments, six extraocular 
muscles each containing thin and thick filaments, tendon-like 
components, various tissues and liquids [12]. As the results 
the dynamic and static properties of the OP are represented by 
the eye globe's inertia, dependency of an individual muscle's 
force on its length and velocity of  contraction, resistive 
properties of the eye globe, muscles and ligaments, frequency 
characteristics of the neuronal control signal sent by the brain 
to the extraocular muscle and the speed of propagation of this 
signal. Individual properties of the extraocular muscles vary 
depending on role each muscle performs. There are two roles: 
agonist - muscle contracts and pulls the eye globe in the 
required direction and the  antagonist - muscle expands and 
resists the pull [13]. Ability to numerically evaluate all OP 
properties would provide an opportunity to develop a highly 
counterfeit resistant biometric method due to the fact that 
these properties exist only in an alive individual. However, 
accurate estimation of the OP properties is challenging due to 
the secluded nature of corresponding anatomical components.  
  Komogortsev and colleagues [14] has proposed a 
biometric scheme that allows to estimate OP properties based 
on the eye movement recordings. Extraction of the OP 
properties was conducted via a horizontal linear 
homeomorphic mathematical model of the Oculomotor Plant 
[15]. Two popular classification methods were applied to the 
data in a form of k-nearest neighbor (KNN) [16] and decision 
tree (C4.5) [17]. The resulting system's accuracy was low 
with the best False Acceptance Rate (FAR) of 5.4% and False 
Rejection Rate (FRR) of 56.6% for KNN and FAR=80% and 
FRR=0% for C4.5. It was hypothesized that the KNN and 
C4.5 were not able to achieve accurate identification results 
due to the variability present in the estimated OP properties 
data and therefore a new method of person identification was 
required. Previous study was limited to the estimation of the 
OP properties that are responsible for the horizontal 
component of eye movement only, i.e., eye globe and just two 
extraocular muscles (superior and inferior recti). Hence, 
fewer OP properties were considered for the identification. 
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 Therefore, the first objective of this paper was to 
alleviate the challenges associated with the variability of the 
estimated OP properties by applying statistical approach in a 
form of the  T-square test. The second objective 
was to investigate the use of the two dimensional linear 
homeomorphic OP model providing the capability to employ 
all information from the 2D eye movement trace and increase 
the number of the estimated OP properties. 

 The paper is organized in the following way: section II 
presents brief overview of the biometric identification via a 
mathematical model of the oculomotor plant and provides the 
description of the  -square test, section III 
presents methodology of the experiment performed, section 
IV presents the conclusion and future work. 

II. BIOMETRIC IDENTIFICATION BY OCULOMOTOR PLANT 
MATHEMATICAL MODEL 

A. Overview 
This section provides a brief overview with the general 

scheme illustrated by Figure 1. The recorded eye movement 

osition 
signal into fixations (movements that keep an eye focused on 
the stationary object of interest) and saccades (extremely 
rapid eye rotations between the points of fixation). We focus 

diagram. The detected saccade properties such as the onset, 
the offset, and the amplitude, depicted by h(t), are sent to the 
Oculomotor Plant Mathematical Model (OPMM) module for 
the purpose of generating simulated saccade trajectories 
represented by the signal x(t), based on the default values for 
the OP properties. The difference between the detected 

the simulated saccade 

and the resulting error e(t) is produced. The magnitude of the 
e(t) signal serves as a command Minimization 

to optimize the OP properties and 
generate new saccade trajectories minimizing the error e(t). 
After several iterations, the values for the OP properties that 
produce minimum e(t) 

identification. Brief descriptions of each module is provided 
below with a detailed description provided of the "Person 
Identification Module" that contains KNN, C4.5 and 
Hotelling's T-square test identification algorithms. 

B.  Eye Movement Classification 
Velocity-Threshold (I-VT) algorithm [18] was employed 

to process eye movement trace into fixations and saccades. 

C .  Oculomotor Plant Mathematical Model  
Two types of the OPMM models were investigated in our 

research. First model was horizontal linear homeomorphic 
OP (1D-OP) [15] and the second model was two dimensional 
linear homeomorphic OP (2D-OP) [19].  

The 1D-OP is capable of simulating horizontal eye 
movements including saccades by considering physical 

properties of the eye globe and two extraocular muscles: 
medial and lateral recti. The 1D-OP mathematically 
represents dynamic properties of the OP via a set of linear 
mechanical components such as springs and damping 
elements. Specifically following properties are considered: 
active state tension  tension developed as a result of the 
innervations of a muscle by neuronal control signal, length 
tension relationship  the relationship between the length of a 
muscle and the force it is capable of exerting, force velocity 
relationship - the relationship between the velocity of a 
muscle extension/contraction and the force it is capable of 
exerting, passive elasticity  the resisting properties of a 
muscle not innervated by the neuronal control signal, series 
elasticity  resistive properties of a muscle while the muscle 
is innervated by the neuronal control signal, passive elastic 
and viscous properties of the eye globe due to the 
characteristics of the surrounding tissues.  Neuronal control 
signal command that is sent by the brain to the extraocular 
muscles in a form of the neuronal discharge is approximated 
as a pulse-step signal where step part of the signal determines 
the eye position prior and after the saccade and pulse part of 
the signal determines saccadic amplitude. More detailed 
description of these properties can be found in [15]. The 
1D-OP employs only OP properties that are contributing to 
the horizontal component of eye movement, describing 
dynamics of the eye globe's rotation via six differential 
equations [15, 20].  

 The 2D-OP additionally considers two extraocular 
muscles (superior and inferior recti) that are primarily 
responsible for the vertical component of the eye movements, 
their static and dynamic properties and the neuronal control 
commands sent to each muscle. Also, the model contains the 
eye globes properties contributing to the vertical dynamics of 
movement as well. Twelve differential equations describe the 
eye's rotation in 2D space [19]. As a result 2D-OP is capable 
of simulating accurate saccadic signal on the two dimensional 

F ig. 1. Biometric identification via an oculomotor plan mathematical 
model 



 
 

 

plane, therefore allowing to estimate all OP properties 
contributing to the eye rotation. Consequently, the 2D-OP has 
higher potential in producing more accurate identification 
results due to the more accurate representation of the OP with 
larger number of anatomical components included in the 
model. 

Two dimensional linear homeomorphic  representation of 
the OP is beneficial because a) it is able to produce 2D eye 
movement signal (projection of the line of sight on a 
computer screen) with characteristics of normal humans, 
therefore allowing for a close match between the simulated 
and the recorded signal, b) it contains the representation for 
the major anatomical components of the OP, allowing to 
estimate those components from the eye movement trace, c) it 
has linear design speeding up the estimation procedure for OP 
properties. 

D .  OP Properties 
The OP properties for the 1D-OP consist of the following 

values: the width of the pulse of the neuronal control signal 
for the agonist muscle (LRp), pulse height of the neuronal 
control signal for the agonist muscle (LRs),  length tension 
(KLT),  series elasticity (KSE),  passive viscosity of the eye 
globe (Bp), and force velocity relationship in the agonist 
muscle represented by the damping component (BAG), 
combined passive elasticity of the eye globe and all 
extraocular muscles (Kp), eye globe inertia (J).  These 
properties were selected as the most influential in terms of the 
resulting saccadic trajectory [21].  

The use of the 2D-OP doubles the number of the OP 
properties  due to the addition of properties responsible for 
the vertical component of the eye movement.  

E .  Error Function  
Error function was implemented as the Root Mean Square 

Error (RMSE) computed between the simulated by the 
OPMM and the recorded by the eye tracker saccadic 
trajectories. 

F . Minimization Algorithm  
The goal of the Minimization Algorithm module is to select 

the values for the OP properties that would produce a 
minimum error e(t) between the simulated and recorded 
saccadic trajectory. To achieve this goal minimax 
optimization approach involving sequential quadratic 
programming (SQP) [22] was employed to sequentially 
optimize the values in the OP properties to produce the 
minimum error e(t).  

G . Person identification 
The input to the Person Identification module consists of a 

set of optimal values for the OP properties estimated for each 
qualifying saccade. The output is an authorization score 
classifying each saccade as belonging to an authorized user or 
an imposter. Three methods were employed in our paper: 1) 
K-nearest neighbor (KNN), 2) decision tree (C4.5), and 3) 
Hotelling's T-square test. KNN and C4.5 were previously 
described elsewhere [14, 23], therefore we provide detailed 
description of the person identification based on the 

Hotelling's T-square test. It was important for us to consider 
the KNN and C.45 classification even in case of their poor 
performance of those methods in the previous study [14], due 
to the fact that the current study employed a more accurate 
eye tracker equipment with a higher sampling frequency, 
therefore allowing for a possibility of the better classification 
results. 

The oculomotor plant literature has extremely limited 
experimentation  that allows to infer the actual values for the 
OP properties. Majority of the "default" values for the 1D-OP 
and 2D-OP models were deduced with the help of the data 
from a strabismus surgery performed on several patients [24], 
and for the lack of data even cat studies [25]. As a result it is 
hard to estimate a priory the amount of the variability of the 
values for the OP properties in a large pool of normal humans. 
Nevertheless, we have assumed that there is enough 
variability between persons to provide reliable identification. 
Based on this assumption we required a statistical test that is 
able to consider all OP properties with all their recorded 
values at the same time. The Hotelling's T-square test [26] 
perfectly fitted that purpose, by assessing the variability in the 
data for a single individual as well as across a set of 
individuals. 

Specifically, 2 kinds of tests were performed to determine 
whether two given datasets belong to the same person or two 
different people. In the acceptance test, a dataset of a specific 
individual was split into 2 different sets on which the test was 
performed (Figure 2). The rejection test, however, involved 
datasets from 2 different people (Figure 3). Both the rejection 
and acceptance tests resulted in certain level of statistical 
significance, therefore determining the outcome of the test. 

A Null Hypothesis (H0) was formulated based on the fact 
that 2 datasets from subject i and j were being compared: 
H0:There is no difference between the set of vectors from 

difference between 2 subjects, the statistical significance 
(Plevel) resulting from the test was compared to the 
significance level. A significance level of 0.05 was chosen in 
this work. If the resulting  was smaller than the 
significance level, the H0 was rejected indicating that the 
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datasets compared belonged to different people. Otherwise, 
the H0 was accepted indicating that the datasets belonged to 
the same person. 

The acceptance test failed when the H0 was rejected when 
both datasets belonged to the same person. This test was run 
on the data extracted from every subject who conducted the 
experiment. The rejection test failed, however, when the H0 
was accepted while comparing datasets belonging to different 
people. It was run on every possible pair of different subjects. 
The failure rates resulting from the tests reflect the 
performance of the identification methodology presented in 
this work. 

III. METHODOLOGY 

A. Apparatus  
The data was recorded using the EyeLink 1000 eye tracker 

with a sampling frequency of 1000Hz [27]. EyeLink 1000 
provides drift free eye tracking with a spatial resolution of 
0.01º, and 0.25-0.5º of positional accuracy. EyeLink 1000 
enables an eye to camera distances between 60 and 150cm 
and horizontal and vertical operating range of 55° and 45° 
respectively. The eye tracker was connected to a 20' CRT 
monitor capable of presenting visual stimulus with the refresh 
rate of 160Hz. During the recording screen resolution was set 
to 1024x768pix. To ensure high accuracy of the eye 
movement recording a chin rest was employed. The chin rest 
was positioned to assure 70cm distance between the display 
surface and the eyes of the subject. 

B. Eye Movement Invocation Task 
The goal of the stimulus was to invoke a large number of 

vertical and horizontal saccades. During the experiment, each 
subject was presented with a step stimulus displayed as a  
jumping dot, consisting of a grey disc sized approximately 1º 
with a small black point in the center. The dot performed 100 
jumps horizontally and 100 jumps vertically, with a spatial 
amplitude of 20º in each direction. Before each sub-sequent 
jump the dot was displayed for the period of 1s.  

C . Participants:  
A total of 46 participants (24 males/ 22 females), ages 18  

25 years with an average age of 24.9 (SD=6.06), volunteered 
for the project from the Texas State University campus.  

Mean positional accuracy of the recordings was 0.76º 
(SD=0.61º) along the x-axis and 1.74º ((SD=2.73 º) and a 
mean invalid data percentage of 12.43% (SD=17.22%). Only 
saccades with amplitudes of 17-22º were employed for 
biometric identification. Classified saccade trajectories were 
downsampled to 120Hz for faster execution of the 
minimization algorithm. 

D . Performance evaluation metrics  
Two metrics were employed for the assessment of the 

accuracy of each biometrics scheme:  
False Acceptance Rate (FAR)  expresses, in general, the 

probability that a given individual is falsely accepted into the 

was computed as the number of rejection tests that failed 
while identifying 2 different subjects divided by the total 
number of rejection tests performed. A rejection test fails 
when it identifies 2 different subjects as being the same 
person. 

False Rejection Rate (FRR)  expresses, in general, the 
probability that a given individual is falsely rejected from the 
system while it should be accepted. In this work, the FRR was 
computed as the number of acceptance tests that failed while 
identifying the same person divided by the total number of 
acceptance tests performed. An acceptance test fails when it 
identifies 2 datasets from the same person as being from 
different people. 

 
 

IV. RESULTS 
The identification results were broken into the three 

categories: KNN -square test. Within 
each category the results are separated to the OP properties 
obtained by the 1D-OP and the 2D-OP models. 

A. KNN 
1) 1D-OP 

Table 1 presents the identification results. Prefix "h_" 
indicates that corresponding parameter is estimated from the 
horizontal component of movement. Parameter 1D indicates 
that the vector distance computed by the KNN method was 
obtained employing all horizontal OP properties. 
OP  param.   h_LRp            h_LRs        h_KLT           h_Kse           h_BP            h_BAG           h_Kp             h_J   1D

FAR         34% 38.5% 26.4% 29.7% 12.5% 24.5% 33% 36.3% 39.6%
FRR         84.2% 94.7% 65.8% 73.7% 61.5% 65.8% 81.6% 89.5.5% 97.4%

Table 1. Identification results for KNN with 1D-OP model 
 
The results confirm poor performance of the KNN 
classification method even in case of a more accurate eye 
tracking hardware which was employed for this study. Poor 
performance for the 1D metric can be explained due to 
contribution of the larger distances between samples 
introduced by some metrics, e.g, h_LRs, h_J, which inflate 
overall vector distance reducing identification performance. 
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2) 2D-OP 
Table 2 presents identification results. Prefix "v_" indicates 

that corresponding parameter is estimated from the vertical 
component of movement. Parameter 2D indicates that the 
vector distance computed by the KNN method was obtained 
employing all horizontal and vertical OP properties. 
OP  param.   v_LRp            v_LRs         v_KLT           v_Kse           v_BP             v_BAG           v_Kp             v_J   2D

FAR         0% 0% 29.2% 14.6% 37.5% 45.8% 22.9% 41.7% 35.4%
FRR         34.2% 34.2% 73.7% 52.6% 84.2% 94.7% 63.2% 86.8% 78.9%

Table 2. Identification results for KNN with 2D-OP model 
 
The results indicate that the vertical OP properties can 
provide higher accuracy of the identification than the vertical 
properties. The use of all OP properties yielded better 
identification results than the case when only horizontal 
properties were considered. However, individual OP 
properties provided better accuracy than the combined 
distance, i.e, 1D and 2D cases, due to the reasons explained in 
the previous subsection. 

B. C4.5 
 C4.5 classification algorithm did not provide acceptable 

identification results achieving the FAR of 79% and the FRR 
of 8% in the 1D-OP case. Similar to the KNN classification, 
better eye tracking equipment did not improve the 
identification results. The use of the 2D-OP model decreased 
the accuracy of the identification providing the FAR of 0% 
and the FRR of 100%. We hypothesize that this reduction in 
the accuracy was due to the multi level nature of the decision 
tree, where at each level of the tree the testing sample should 
meet the criteria (minimum distance to the computed 
average) to be considered in the next level or otherwise be 
rejected. High amount of variability present in the OP 
properties does not allow to meet the criteria therefore 
resulting in poor identification results. The difference 
between the 1D-OP and the 2D-OP results can be attributed to 
the shorter height of the decision tree in the 1D-OP case and 
the smaller number of the OP properties considered. Shorter 
height translates to the smaller number of tests during tree 
traversal. Therefore, an individual is less likely to be rejected. 
At the same time, the distinction between two individuals is 
weaker because less properties are taken into consideration. 
As a result, an non-rejected individual is more likely to be 
mistakenly identified as someone else, explaining higher 
FAR.  

C . -square test 
Figure 1 illustrates the ranges (vertical bars), standard 

deviations (rectangle dimensions) and the means (crosses) for 
the selected values of the OP properties within a single 
subject and between subjects. It is possible to see that the 
range and standard deviations are smaller within subjects and 
larger between subjects, therefore empirically confirming the 
applicability of the statistical approach to the person 
identification problem using the OP properties. Our analysis 
indicates that such properties as passive elasticity (Kp), series 
elasticity (Kse), length tension (Klt), and force velocity 
properties in the agonist muscle (BAG) have higher variability 
between individuals,  therefore providing higher potential for 

the identification.  
 In the following subsections results of the identification 

performed by the Hotelling's T-square test are presented for 
the combinations of the OP properties that provide five best 
performance for each type of the OPMM model employed. 

1) 1D-OP 
OP  param h_Kse,  h_Kp h_Klt,  h_Kse,  h_BAG h_Kse,  h_Bp
FAR         0.5% 0.8% 1.2%
FRR         13.6% 13.6 13.6%  

Table 3. Identification results for the Hotelling's T-square test with 
1D-OP model 

 
Hotelling's T-square test allowed to achieve an order of 

magnitude improvement in identification accuracy when 
compared to the KNN and the C4.5 classification methods.  

2) 2D-OP 
OP  param v_Klt,  v_Kse,  v_Kp h_BAG,  v_Klt,  v_BAG h_Kse,  h_Kp,  v_BAG,  v_Kp
FAR         3.2% 1.9% 0%
FRR         4.5% 6.8% 9.1%

Table 4. Identification results for Hotelling's T-square test with 
2D-OP model 
 

The use of the 2D-OP model allowed to improve the 
accuracy of the identification by considering the OP 
properties that are responsible for the vertical component of 
movement. In the best case, such approach reduced false 
acceptance rate to 0% and false rejection rate to 9.1%. These 
results support the original hypothesis that a multivariate 
statistical test is the right tool to address the variability issue 
and to provide better identification results. 

The results allow us to identify OP properties with the 
higher potential for biometrics. These properties are series 
elasticity (Kse), passive elasticity (Kp), length tension (Klt), 
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and force velocity properties in the agonist muscle (BAG). The 
results confirm original variability results illustrated by Fig. 
5. 

V. CONCLUSION AND FURTHER WORK 
We have introduced a statistical approach to the biometric 

identification via static and dynamic properties of the 
Oculomotor Plant (OP). Specifically such properties as the 
eye globe's inertia, dependency of an individual muscle's 
force on its length and velocity of  contraction, resistive 
properties of the eye globe, muscles and ligaments, frequency 
characteristics of the neuronal control signal sent by the brain 
to the extraocular muscles were employed for the biometric 
purposes. This novel method of biometric identification is 
highly counterfeit resistant due the fact that the OP properties 
only exist in an alive individual. 

As a result of our experiments we have confirmed that 
previously employed methods such as the k-nearest neighbor 
(KNN) and the decision tree (C4.5) do not show improvement 
in identification accuracy if a more precise eye tracking 
equipment is used. The final identification  results are not 
sufficient to rate the performance of these methods as 
acceptable. The use of the two dimensional model of the OP 
slightly improved the identification results compared to the 
one dimensional model for the KNN. However, in case of the 
decision tree (C4.5) approach identification resulted in a 
failure rejecting all authentic users and accepting all 
impostors.  

We have proposed and employed Hotelling's T-square test 
for the identification purposes addressing the variability of 
the estimated OP properties. As a result there was the order of 
magnitude improvement in the identification results, when 
compared to the best performing cases of KNN and C4.5. The 
use of the two dimensional OP model further increased the 
accuracy of the identification preventing all imposters from 
accessing the system and rejecting just 9.1% of the authentic 
users. These results indicate that novel biometrics method 
based on the dynamic and static properties of the OP is a 
promising direction of research, requiring larger user studies, 
different eye tracking setups, various types of stimulus 
presentation and the studies that would investigate the 
usability of the proposed method.  

As a closing note we would like to state that that in addition 
to the eye gaze position coordinates, the eye tracker provides 
the picture of the iris, therefore, allowing to combine 
biometric identification based on the iris and the OP 
properties together potentially improving the reliability and 
the security of the eye based biometrics.  
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