

A METHODOLOGY FOR MAPPING PROGRAMMING LANGUAGES TO
PROGRAMMING PROBLEMS

THESIS

Presented to the Graduate Council
of Texas State University–San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Jason Lawrence Michlowitz, B.S.

San Marcos, Texas
August 2006

A METHODOLOGY FOR MAPPING PROGRAMMING LANGUAGES TO
PROGRAMMING PROBLEMS

 Committee Members Approved:

 Dr. Carol Hazlewood, Chair

 Dr. Rodion Podorozhny

 Dr. Xiao Chen

Approved:

J. Michael Willoughby
Dean of the Graduate College

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my advisors, Dr. Hazlewood, Dr.

Podorozhny, and Dr. Chen of the Computer Science department of Texas State

University-San Marcos. Their patience, guidance, and teaching have been a tremendous

help throughout the course of this project.

Second, I would like to express my deepest gratitude to my wife, Michelle, who

has stayed up late nights helping me to proof read this document. Also, she has been

very understanding in the lack of time I have been able to spend with her so that I might

complete this project. Without her love and encouragement, this project would not have

been a success.

Finally, I want to thank my parents, Ralph and Barbara Michlowitz, who always

taught me that doing my best was the only way to be in life. Because of this, I was able

to complete a Bachelor’s degree, and now a Master’s in the field in which I have

accomplished many things. Their love, devotion, and dedication as parents will be

forever remembered in my professional career.

This manuscript was submitted on May 5, 2006.

iv

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS……………………………………………….............. iii

LIST OF FIGURES……………………………………………………………….. vii

LIST OF TABLES………………………………………………………………… x

ABSTRACT………………………………………………………………………. xi

CHAPTER

I. INTRODUCTION………………………………………………………. 1

II. RELATED WORK…………………...….……………………………... 4

2.1 Introduction
2.2 Studies in Software Engineering and Language Comparisons
2.3 Using Principal Components Analysis

 2.4 Conclusions on Related Work

III. EXPERIMENTAL DESIGN…………………………………………. 19

3.1 Overview
3.2 Independent Variables
3.3 Dependent Variables
3.4 Subjects
3.5 Operation of Experiment
3.6 Threats to Validity

 3.7 Project Scope
3.8 Understanding .NET Metadata

IV. THE PROGRAMMING LANGUAGES……………………………… 31

4.1 The Environment
4.2 The C Programming Language
4.3 The C++ Programming Language
4.4 The C# Programming Language
4.5 The Java Programming Language

v

4.6 The Visual BASIC Programming Language

V. THE ALGORITHMS………………………………………………….. 44

5.1 Definition of Selection Criteria
5.2 Definition of Implementation Criteria
5.3 Searching
5.4 Sorting
5.5 String Matching
5.6 Arithmetic Algorithms
5.7 Order Statistics

VI. METRICS AND THEIR DEFINITIONS……………………………... 62

6.1 Definition of Selection Criteria
6.2 Factors Present in the Measurement Environment
6.3 Static Metric Definitions

 6.4 Dynamic Metric Definitions
 6.5 Metadata Metric Definitions

VII. PRINCIPAL COMPONENTS ANALYSIS…………………………. 78

7.1 Understanding Metric Data
7.2 Understanding Sources of Variation
7.3 Metric Domains
7.4 The Relative Complexity Metric

VIII. STATIC MEASUREMENT ANALYSIS…………………………… 85

8.1 Introduction
8.2 Individual Algorithm Results

 8.3 Evaluation of Results
8.4 Conclusions

IX. DYNAMIC MEASUREMENT ANALYSIS………….……………… 99

9.1 Introduction
9.2 Individual Algorithm Results
9.3 Evaluation of Results
9.4 Conclusions

X. METADATA MEASUREMENT ANALYSIS………….…………….. 113

10.1 Introduction
10.2 Individual Algorithm Results

vi

 10.3 Evaluation of Results
10.4 Conclusions

XI. OVERALL MEASUREMENT ANALYSIS…………………………. 126

11.1 Introduction
11.2 Individual Algorithm Results

 11.3 Evaluation of Results
11.4 Conclusions

XII. RESEARCH PRODUCTS AND CONCLUSIONS..……….………... 140

12.1 Lessons Learned
12.2 Software Development Questions and Answer Guidelines
12.3 Further Research

 12.4 General Conclusions

APPENDIX A: SOURCE CODE…………………………………………………. 152

APPENDIX B: RAW MEASUREMENT DATA………………………………… 221

APPENDIX C: PCA-RCM TOOL OUTPUT……………………………………... 228

REFERENCES………..…………………………………………………………… 238

vii

LIST OF FIGURES

5.1 Linear Search Pseudocode……………………………………………………... 48

5.2 Bubblesort Pseudocode……………………….………………………………... 49

5.3 Quicksort Pseudocode……………………….…………………………………. 51

5.4 Naïve String Matching Pseudocode………………………………….………… 52

5.5 KMP String Matching Pseudocode………………………..…………………… 54

5.6 Polynomial Addition Pseudocode…………………………………….………... 57

5.7 Gaussian Elimination Pseudocode…………………………………………….. 58

5.8 Minimum Pseudocode………………………...……………………………….. 59

5.9 Random Selection Pseudocode………………………………………………… 60

6.1 Control Flow Diagram of a For Loop………………………………………….. 69

8.1 Linear Search Static Measurement RCM Results……………………………… 87

8.2 Bubblesort Static Measurement RCM Results………………………………… 88

8.3 Quicksort Static Measurement RCM Results………………………………….. 89

8.4 Naïve String Matching Static Measurement RCM Results……………………. 90

8.5 KMP String Matching Static Measurement RCM Results…………………….. 91

8.6 Polynomial Addition Static Measurement RCM Results……………………… 92

8.7 Gaussian Elimination Static Measurement RCM Results……………………... 93

8.8 Minimum and Maximum Static Measurement RCM Results…………………. 94

8.9 Random Selection Static Measurement RCM Results…………………............ 95

viii

9.1 Linear Search Dynamic Measurement RCM Results………………………….. 101

9.2 Bubblesort Dynamic Measurement RCM Results……………………………... 102

9.3 Quicksort Dynamic Measurement RCM Results………………………………. 103

9.4 Naïve String Matching Dynamic Measurement RCM Results………………… 104

9.5 KMP String Matching Dynamic Measurement RCM Results…………………. 105

9.6 Polynomial Addition Dynamic Measurement RCM Results…………………... 106

9.7 Gaussian Elimination Dynamic Measurement RCM Results………………….. 107

9.8 Minimum and Maximum Dynamic Measurement RCM Results……………… 109

9.9 Random Selection Dynamic Measurement RCM Results……………………... 110

10.1 Linear Search Metadata Measurement RCM Results………………………… 115

10.2 Bubblesort Metedata Measurement RCM Results……………………………. 116

10.3 Quicksort Metedata Measurement RCM Results…………………………….. 117

10.4 Naïve String Matching Metedata Measurement RCM Results……………….. 118

10.5 KMP String Matching Metadata Measurement RCM Results……………….. 119

10.6 Polynomial Addition Metadata Measurement RCM Results…………………. 120

10.7 Gaussian Elimination Metadata Measurement RCM Results………………… 121

10.8 Minimum and Maximum Metadata Measurement RCM Results…………….. 122

10.9 Random Selection Metadata Measurement RCM Results……………………. 123

11.1 Linear Search Overall Measurement RCM Results…………………………... 127

11.2 Bubblesort Overall Measurement RCM Results……………………………… 128

11.3 Quicksort Overall Measurement RCM Results………………………………. 129

11.4 Naïve String Matching Overall Measurement RCM Results………………… 130

11.5 KMP String Matching Overall Measurement RCM Results…………………. 131

ix

11.6 Polynomial Addition Overall Measurement RCM Results…………………... 133

11.7 Gaussian Elimination Overall Measurement RCM Results………………….. 134

11.8 Minimum and Maximum Overall Measurement RCM Results………………. 135

11.9 Random Selection Overall Measurement RCM Results……………………… 136

x

LIST OF TABLES

11.1 Summary of Overall RCM Values……………………………………. ……... 139

B.1 Static Raw Measurements……………………………………………………... 222

B.2 Dynamic Raw Measurements…………………………………………………..223

B.3 Matadata Raw Measurements…………………………………………………. 226

xi

ABSTRACT

A METHODOLOGY FOR MAPPING PROGRAMMING LANGUAGES TO

PROGRAMMING PROBLEMS

by

Jason Lawrence Michlowitz, B.S.

Texas State University–San Marcos

August 2006

SUPERVISING PROFESSOR: CAROL HAZLEWOOD

Several algorithms that solve different types of problems are implemented, tested,

and compared by applying a set of metrics. The results are analyzed using Principal

Components Analysis to calculate a Relative Complexity Metric. The results of the study

reveal that a programming language does have an effect on the simplicity, speed and

other attributes of an implementation. The results of the study also reveal which

languages are best suited for a particular type of programming technique, such as

recursion.

1

CHAPTER I

INTRODUCTION

Within the computer science and software engineering communities, there has

been much research on the subject of algorithms and the work that can be done through

their use. Numerous discussions can be found on the speed, complexity, and

effectiveness of different algorithms and how those that perform the same type of work

measure against each other. Lacking, however, is extensive research on how a given

algorithm’s performance can be affected through the choice of a programming language.

There are many different types of algorithms that perform many different tasks and it is

one of the goals of this research to ease the task of finding a programming language that

best suits the problem at hand. Finding the best language for that problem will ease the

implementation task, which will allow for the production of better quality software.

Aside from this goal, two important questions will need to be answered: Will algorithms

perform differently when written in different languages? Which language offers the least

complex algorithm implementation? Performance and suitability are defined in terms of

software metrics.

To answer the above questions, the following hypotheses must be tested:

H1: An algorithm, when implemented in a set of programming languages, will

perform differently in each language.

2

H2: Given a specific algorithm and a set of languages, it is possible to determine

which language is best suited for the given algorithm.

In order to illustrate the concept that a programming language can have an effect

on algorithm performance, several classical algorithms have been implemented in

multiple languages. The algorithms were chosen from a variety of problem domains and

the languages from a common platform. Each implementation has been tested and

measurements have been applied statically, dynamically, and with respect to .NET

metadata. The details of this experiment are described in Chapter 3. As a basis for

comparison, these measurement results have been put through a statistical process

described in Chapter 7 in which a greater understanding of language complexities

becomes visible. Looking at these statistical data, it can be determined which languages

are best suited for the given algorithms based on this data. The final goal of this research,

however, is not to decide for the programmer which language to use in a particular

situation. Due to the multitude of aspects inherent in a programming language, the

constraints of the software being developed must be the factor in choosing an

implementation language. There are three measurement categories, namely static

measurements, dynamic measurements, and measurements on .NET metadata. As

detailed in Chapters 8, 9, 10, and 11, it has been determined that languages that perform

better in one category might not perform well in another, so instead the goal of this

research is to provide the programmer with several questions that should be asked and

how these questions should be answered before choosing an implementation language.

This work expands on the ideas of Munson (2003) in that he uses a set of metrics

and statistical analysis in order to determine the most complex code modules in a large

3

software system. What is different in this work, however, is that this study does not

compare program modules, but rather programming languages. In other words, the same

program module is written several times, each in a different language, is measured and

compared, and results are given. In the Munson work (2003), this same process is used,

but he compares the individual modules, all written in one language. As a result of

Munson’s process, there is little to explain what complexity was introduced as a side

effect of the language used. This study adds this dimension to what has already been

done in Munson’s process. Munson and Khoshgaftaar (1990) have also done a fair

amount of work in the area of creating a one-valued representation for the complexity of

a program module, and this concept is used here to determine how a programming

language introduces additional, possibly unseen complexities. The methodology used in

this work has not previously been applied to language comparisons or .NET metadata.

Within the constraints of this study, the final results establish that programming

languages do in fact introduce possibly unseen complexites into program

implementations. It is also possible from the results of this study to determine which

language is best suited for a given problem. Again, suitability is defined in terms of

software metrics and their analysis.

4

CHAPTER II

RELATED WORK

2.1 Introduction

In this chapter, articles and other publications on measurement analysis and

language comparisons are reviewed and related to this work.

2.2 Studies in Software Engineering and Language Comparisons

The following works compare different aspects of software engineering using

empirical studies. Also, this section lists articles and other publications that compare

languages using various methods. The strengths and weakness of each are discussed as

well as what this research project contributes to the literature. Taking a look at these

articles can give validity to this project as other authors have done similar work.

2.2.1 An Empirical Comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a

Search/String-Processing Program

The study involved language comparisons as implemented by a number of

different programmers. The study compared for various properties, including run-time,

memory constraints, reliability, etc. They concluded that scripting languages are more

productive than compiled languages, given all such factors involved (Prechelt, 2005).

This is similar to this study because it compared languages for efficiency. The differences

5

lie in the fact that while this study compares across a common platform for efficiency in

language constructs, Prechelt's study focuses on human factors, such as various

programming styles, and does not compare across a consistent framework. Also, due to

the nature of the study, it does not (and can not) use a Relative Complexity Metric, a one

valued representation of a program’s metrics, to statistically compare the programming

languages, as there is additional unseen variation as a result of using different

programming styles and different frameworks. This study can use a Relative Complexity

Metric as it avoids this problem by using the .NET framework, and one machine as the

common approach for comparison.

2.2.2 Software Faults in Evolving a Large, Real-Time System: A Case Study

This study looks at the faults found in a large, real-time system and categorizes

them by when they were found, what testing procedure was used in finding the fault, how

difficult these were to fix, and perhaps what the underlying causes of these faults are. It

is the hope of this study that by finding these causes, future projects may benefit from the

knowledge gained about the faults in the system measured. All of the data in this study

were gathered using a standard questionnaire in which the requirements, design, and code

of the system are inspected. In a second questionnaire, the methods of testing and quality

assurance are examined, as it is important to find at what point in the testing process the

faults were found (Perry & Stieg, 1990).

This study does not use formal statistics, as it is more of an analysis of the

software process used by the organization rather then a comparison of code modules;

however it does contribute work in the areas of design and requirements, in which some

6

base faults may be found before coding begins. It is similar to this research project in

that the faults are categorized and analyzed, much like the measurement categories of

static, dynamic, and metadata metrics taken on each of the code modules written for this

project. It is a similar goal of this study that future knowledge of programming languages

might give insight into preventing faults, much like the fault prevention hope of the study

in this article. One benefit of this research project over the one found in the article is that

a major system did not need to be developed in which time and money were spent in

order to learn anything new, and thus the data gained may perhaps be useful before a real

system begins development.

2.2.3 A Comparison of the Programming Languages C and Pascal

In this article, the authors look at the language constructs and design patterns of C

and Pascal. The authors believe that Pascal programs tend to be more reliable then C

because of its richer set of data types, its strong typing, readability and portability. On

the other hand, the authors believe that C is much more flexible and can be used

effectively in more applications then Pascal as it gives the programmer more control.

The authors list all of the strengths and weakness of each language in much the same way

as this research project. They than go into all of the features and data types of each

language with an in-depth look at all of the language aspects of C and Pascal. Once the

languages are described in detail, the authors list which applications each language is best

suited for (Feuer & Gehani, 1982). The main problem with this study is that there is no

measurement data, or statistical analysis to give valid insight into the comparison of these

two languages. It seems as though this article is more a collection of programmer

7

opinions rather than fact. The research performed in the study performed here, however,

obtains data on running programs written in these languages, and gives insight into the

complexities of each language using researched metrics, and formal statistical analysis.

2.2.4 Java as a Better C++

The author of this article was at the time of the writing learning the Java

programming language. He believes that the use of Java as an alternative to C++ would

make a better teaching tool in the classroom. He presents pros and cons to each language

and how it would affect students in their learning process. There is a presentation of the

different data types offered by each language, and a synopsis of the constructs in each

language (Bergin, 1996). Sadly, however, this article is not backed with much scientific

data, and is simply an opinion of the author that Java would make a better teaching tool.

There are not code measurements and in turn, no statistical analysis. It is impossible

from this article to gain any knowledge as to why one language behaves “better” then the

other.

2.2.5 C# as a First Language: A Comparison with C++

The author of this article was at one time a student of computer science at a

university. He discusses the pros and cons to C# being a better teaching tool. He gives

some code examples and then asks thought-provoking questions, i.e. “What is a main()

function, and why do I need it?” These questions serve to give the reader a sense of the

author’s thought process and how it is he came to his conclusions (Bates, 2004). Again,

as with the previous articles, the author may have written well, but there is no science

8

here. There again is no measurement data, no statistical analysis, and no conclusions

drawn from these techniques. It again is not possible to come to a reasonable conclusion

simply because the author believes that he is right

2.2.6 A Comparison of Ada and Java as a Foundation Teaching Language

This article once again discusses the benefits and drawbacks of one language over

another as a teaching tool, in this case, Ada and Java. The author presents his case based

on code examples, thought-provoking questions, and his personal opinions about each

language. For each language, a list of the common data types, constructs, and modules in

each language are compared and contrasted, and the author gives his conclusions based

on these comparisons (Brosgol, 1998). Once again, as with the articles above, there is no

science here. Again there is a lack of code measurement data, statistical analysis, and the

like preventing the conclusions drawn from being of any use. Most of this article is

opinion rather than fact. Even if this author’s opinions are valid, there is no data to back

these opinions.

2.2.7 The Effects of Using a Nonprocedural Computer Language on Programmer

Productivity

This article looks at the differences of two languages, COBOL, a procedural

language, and Focus, a nonprocedural language. The differences studied include

programmer productivity and execution time by the CPU. Several programmers using

both languages developed six “mid-sized” applications. There are several independent

variables associated with the empirical study performed on these languages. These are

9

hardware, programming mode (all development online), organizational characteristics of

the program development, the source languages, the types of applications, and

programmer expertise. Associated with these independent variables, are several

dependent variables, namely time to understand the applications, program design time,

programming time, testing and debugging time, consulting time, and documentation time.

In addition, several run-time factors were studied. These include total CPU time for

complication, total CPU time for execution, total clock time for execution, total number

of I/O operations, the number and size of input and output files, and the total number of

source lines. Each of these variables is measured and studied. Each set of measurements

goes through several statistical processes. These include simple averages, standard

deviation, and many others. Once all of the data is processed, the authors give their

results, concluding that COBOL is faster and more efficient for the CPU, but that Focus

is a more productive language from the perspective of the programmer (Harel & McLean,

1985).

The study in this article follows much the same process as this research project;

however, there are some key factors to consider. Many of the variables in this study may

contain noise. There is no mention anywhere, for example, of how programming time is

handled with respect to coffee breaks, and other factors that might cause problems in the

data. Also, there is little mention of why the programs developed are classified, as they

are, i.e. complex, simple, etc. Also, another problem exists in that there is little mention

of the type of hardware used, even though it is considered an independent variable. This

research project hopes to look at these issues and remove the problems that might be

10

caused by them, i.e. noise in the measurements, providing a standard data set, and using a

standard platform for all programming.

2.2.8 Are Visual Programming Languages Better? The Role of Imagery in

Program Comprehension

This article looks at programming languages differently. The authors here wish to

look at programming from a human-factors prospective. The experiment conducted in

this article looks at program comprehension as seen by C programmers and spreadsheet

users. The spreadsheet users have formulas at their disposal for computation, while

programmers have many operations that may be used with inputs and outputs. The

spreadsheet users tended to look at programs from a data flow representation in all

situations. The C programmers, on the other hand, looked at control flow and logical

construction before data was applied. The experiment conducted involved groups of

users, divided by their preferred medium, looking at problems and solving them on paper.

From the results, it is believed that visual programmers can create semantic information

quicker then non-visual programmers based on the data flow approach. With this in

mind, it is believed that programs can be developed quicker using visual tools (Navarro-

Prieto & Canas, 2001).

The results of this study bring to the foreground interesting points regarding

problem comprehension as viewed by groups of programmers. These programmers use

different technologies and therefore see programs and their structure differently. The

problem, however, is that these concepts are purely subjective. The article makes general

assumptions with regard to programmers based on a small select group of individuals.

11

There really is no measurement data found in this article nor is there anything to base

statistics upon. While the points in the article might be useful, it is not possible to prove

anything true or false on how fast programs can be developed, or how correct and

productive programmers can be simply based on the tool they use without actually

developing applications. This study, while not focused on programmer development

time, does focus on the objective, rather than the subjective. This is why measurement

data and scientific analysis are performed in order to prove the hypothesis.

2.2.9 Towards More Natural Functional Programming Languages

The author of this article looks at programming languages from the human factors

perspective. It is believed that programmers might be more productive and would use

languages more effectively if more human factors concerns were taken into account

during the language design process. With human factors considerations, language

constructs would more closely match human thnking and capabilities. The data and

background research in this article are taken from known information from empirical

studies in software engineering and from programming psychology. Since much is

known about what people find difficult in programming, languages can be designed to

address issues with regard to syntax, and bug-prone constructs, making them easier for

human thinking to comprehend programming and algorithms (Myers, 2002).

In this article, the author addresses human factors related issues in programming

and algorithm understanding. The method used in this study involves review of code

from programmers who have written several programs in several languages.

Measurements are taken on each program’s code in order to see which languages yielded

12

the most bugs. From the results in this study, it was decided that visual languages, such

as Visual BASIC, gave programmers the chance to see their program visually allowing

them the chance to better understand the problem before code was finished. This project

uses a similar approach in that programs are written in several types of languages and an

empirical study is performed to analyize the results. This author believes that languages

that have syntax similar to Visual BASIC are superior to others when human factors

considerations are taken into account.

2.3 Using Principal Components Analysis

The following is a list of articles from various fields, journals, and sources that

use the technique of Principal Components Analysis (PCA) as the authors’ mode of

analysis of measurement results. Since a statistical tool is needed to process the raw

metrics into meaningful data, PCA was chosen. It is clear from the work in the following

publications that PCA is a valuable tool for many fields and using the tool for this study

is valid and reproducible. In the following works, the authors use several of the same

steps as they appear in this study. Measurements are taken, components are determined,

and valuable data is returned. In all cases, the sources of variation that might be found in

the works below are removed through the use of PCA for study. This variation is

important but it is also important to look at variation without noise being introduced.

PCA removes this noise and discards it, allowing for pure results, meaning that all

sources of variation not associated with the independent variables are removed. It is

these reasons that PCA was chosen as the analysis tool for this study. Use of these

13

articles in this study is only meant to illustrate the value PCA and most do not relate to

the topic of this study directly.

2.3.1 Young Adolescents’ Leisure Patterns

This article evaluates data collected on a study of pre-teen and adolescent leisure

activities. The children were broken up into two groups: 10-12 year-olds, and 14-15 year-

olds. The study involved variables such as class differentiation and sex, and involved

both organized and unorganized activities. To evaluate relationships between these

activities and the subgroups, the study used Principal Components Analysis for

categorical data to explore nominal, ordinal, and interval data collected by the study

(Zeijl, du Bois-Reymond, & Poel, 2001). The article relates to this study through its use

of multiple variables that are combined to form a basis of comparison. PCA is the tool

that is used and the authors are able to ascertain valuable and comparable results.

2.3.2 Water quantity and quality dynamics in high-elevation watersheds:

Developing a scientific approach to understanding ski area impacts

in Vermont

This study explores the impact of ski area development on high-elevation

watersheds in Vermont. The study evaluated several watersheds of Mt. Mansfield, similar

in such things as geology, soil, and vegetation. Water samples were collected and

evaluated to determine the solute concentrations in the water. Measurements were taken

on the amounts of differenent chemicals and than these are logged for analysis. Principal

Components Analysis was used to explore the variability of the chemicals in the solutes

14

as well as the seasonal chemical changes regarding runoff (Wemple, 2004). This is

similar to the use of PCA in this study because it analyzes the individual effects of these

chemicals in separate groups. This approach is almost exactly like this study, in that the

separate groups here are the static, dynamic, and metadata measurements. Each of these

groups is looked at separately. The article also points out that variation in the

measurement results can be impacted by sources of variation found in each of the

samples. PCA illustrates those sources of variation and highlights them for comparison.

2.3.3 Sex Differences in the Vocalizations and Syrinx of the Collared Dove

(Streptopelia Decaocto)

This study involves the pitch and frequency of the voices of collard doves. It

studies acoustic discrimination ratios as they relate to sex differentiation in the birds. The

study concludes that the vocal and anatomical data demonstrate that physical differences

contribute to sexual differentiation of their vocalizations. To gather these data, they

measured the syrinx of the individual test subjects, and these measurements were taken in

three groups: those taken after perfusion-fixation, those taken from cartilage-bone stained

syringes, and those taken from horizontal sections. The authors used Principal

Components Analysis to reduce the number of variables in these groups (Ballintjn & Ten

Cate, 1997). In this way, their work relates to this study because its principal components

are simplified using PCA. Again, it can be seen here in this article that PCA is used to

determine sources of variation when the different categories of measurements are applied.

These variations present themselves as the individual principal components and this new

data can be compared.

15

2.3.4 Multivariate analysis of Mammalian Communities: Membership and Species

Lineage ranges in the Tertiary of North America

This study discusses mammalian fossils in North America, using primarily

localities in Wyoming and Nebraska. The study concentrates on using statistical tools to

parse out differences among many localities simultaneously, rather than focusing on

individual communities. The study was limited to fossils from the Wasatchian through

the Arikareean periods. Principal Components Analysis was used to simplify the vast

amount of data that was collected on the fauna of this period. Each fauna was described

by a function of 600 variables indicating the presence or absence of each species (Dewar,

2003). This is similar to what this study focuses on, in that it simplifies the data

for analysis using PCA, but there is another similarity in that the fossil study also groups

the PCA results in order to measure degrees of similarity among various faunas.

2.3.5 Associations Between Perinatal Interventions and Hospital Stillbirth Rates

and Neonatal Mortality

This study investigated the effects of various factors on hospital stillbirth and

mortality rates. Data analyzed included staffing rates, facilities, and birth weight. The

study concluded that higher staffing helped to neutralize birth weight factors in

stillbirth rates. Principal Components Analysis was used in situations where the data was

significantly related to the outcome and was highly correlated. They combined variables

within the groups into more concise representations of their effects (Joyce, Webb &

Peacock, 2003). The relation of this article to the work in this study stems from finding

16

variables that are highly correlated, as many software measurements tend to be (Munson,

2003).

2.3.6 Software Engineering Measurement

This textbook by Munson, referenced throughout this study, is a great tool for

those learning the measurement and scientific processes in software engineering. His

approach is used as the basis for the comparison of languages in this study. Munson

(2003) looks at many of the measurements typically found in the software engineering

world, analyses their usefulness, and uses this as a basis for creating a standard set of

metrics. With a standard set of metrics, measurement becomes reproducible, and useful.

But that is not all of what he describes. In addition to looking at raw measurement

results, he goes on to say that measurements are nothing more than base data, and do not

mean much without statistics. The tool he uses to create the statistics is PCA, from which

a Relative Complexity Metric (RCM) can be found. This RCM value represents a one

metric representation of a programming module’s complexity (Munson, 2003). It is this

process that will give valid and useful results for this project.

2.3.7 Applications of a Relative Complexity Metric for Software Project

Management

As in the above work, this article presents the concept of a Relative Complexity

Metric in the use of software development. Munson (the author of the above work) and

Khoshgoftaar (1990) discuss how such a one number representation may be used in

software project management to the benefit of the team building the software. The

17

authors discuss that there is a problem with so many different metrics available that it is

difficult to make sense of the data, and present the use of the one-number representation

in the form of the Relative Complexity Metric on software projects. The calculation of

the Relative Complexity Metric is done through the use of Principal Components

Analysis and this process was completed on 27 pieces of software developed over several

years by several developers. The authors find that there is an important correlation

between writing-debugging time and the value of the Relative Complexity Metric, where

higher numbers indicate seemingly more complex software and longer writing-debugging

times (Munson & Khoshgoftaar, 1990). This research study uses the same approach as in

this article as measurements are taken, and a Relative Complexity Metric is calculated

giving meaning to the data collected. This article is an important piece of research that

illustrates the validity of the approach in this project.

2.4 Conclusions on Related Work

From the first section of articles, it is clear that there is a large number of opinions

and research in the study of languages. Many of the above articles lack scientific data

and analysis to prove what the authors believe. Others, however, do, but these take

different approaches that might introduce noise and other problems in the data that might

not be visible. The point of using PCA as an approach and using the RCM that can be

derived is to remove any possible noise or other useless variation that might be in the

data. This study employs measurement data, analysis, and conclusions based on that

analysis, and the work is objective and simply based on the scientific approach used.

This study also hopes to serve as a future lesson in language comparisons.

18

In the second section of articles, those that use PCA as a scientific statistical approach, it

is clear that it is a respected and useful tool. Many disciplines use this tool effectively

and through the use of this tool, researchers are able to produce excellent, and useful

results. In the software engineering world, it is possible the next phase in the evolution of

software engineering is the use of PCA and RCM, producing a one-value representation

of quality. Munson (2003) suggests this is possible, and has given plenty of evidence to

support his claim. Even if this process does not take hold in the software engineering

community, it still provides valid and reproducable statistical data from which future

lessons can be learned.

19

CHAPTER III

EXPERIMENTAL DESIGN

3.1 Overview

Following is a description of each of the elements of the experiement. These are

the independent variables, the dependent variables, the subjects, and the method of

operation, each of which is an important piece that needs to be defined. Since the

experiment described below requires funding, manpower, and resources beyond the scope

of this study, the experiment actually conducted is a subset.

3.2 Independent Variables

In first describing this experiment, it is important to understand the independent

variables in the study, those factors in which outside influence has no effect. These are

actually very simple. The first is the programming languages themselves. All languages

that are commonly used among students and industry professionals would be measured

and studied. The second variable is the algorithms. Nine different algorithms, each

performing different programming tasks, have been implemented in each language.

Several problem spaces have been chosen for simulation in this research. The selection

criteria for the languages and their compilers will come from market share reports from

industry sources and the market share percentage must add to 70% of the general code

20

writing population. The algorithms chosen are frequently used and represent a cross-

section of problem domains. Similarly, the languages and platforms are chosen for their

popularity

3.3 Dependent Variables

For the design of this experiment, it is important to discuss the dependent

variables that are associated with the above independent variables. Each language will

need to be measured and compared, and these measurements depend on both the

algorithm, and the programming language in which it was written. These measurements

can also be individually looked at as their own variables, but regardless, in order for

measurement to take place, it is necessary to have something to measure. Therefore, it is

only possible for the measurements to be the dependent variables in this experiment. The

most commonly used metrics among students and industry professionals will be used to

describe the performance of each program. It is important to find metrics that can be

reproducible, that are accepted by the general software engineering community, and that

are valid and have meaning (Munson, 2003). There is, however, a second dependent

variable: the statistical analysis that is performed on each set of measurements. In a way,

this analysis is dependent on the measurements themselves, but transitively is still

dependent on the programming languages, and the algorithms. Once again, only the most

common statistical tools would be used. These tools are chosen from those commonly

used in software projects as documented in the literature.

21

3.4 Subjects

As with almost all research studies, there must be a set of subjects that will be

involved in conducting the experiment. In the case of this study, we have two very

important subjects that must be discussed. The first is the programmers who write, test,

and execute the code to ensure valid program execution. These programmers may each

see a programming problem differently and therefore coding style might be a factor in

measurement results. In order to account for the different types of coding styles that can

appear a group of programmers is selected randomly at different levels. These levels

include experienced professionals, graduate students, and undergraduate students, each

with their own understanding of programming concepts. With this large range of skill

level, it is possible to see how many different ways an algorithm can be coded,

illustrating much of the way a particular programming language works.

The second subject is the set of compilers used. These are selected from the most

commonly used sources both by students and in industry. Also, the compiler set includes

work from both commercial development organizations as well as open source non-profit

resources. The reason for several compilers is to compare the optimization techniques

within each, as these may have an effect on dynamic measurement.

3.5 Operation of Experiment

3.5.1 Producing the Programs

Once compilers and developers have been chosen, programming can now begin.

Developers will write each algorithm in each language given. Throughout the writing

process, each program must be tested for correctness, ensuring that each program

22

produces the correct output. A program that is incorrect will introduce noise into the

measurement data so it is important that each produce the intended results. Once all of

the programs have been written, each is submitted to a set of measurement specialists that

will produce all of the measurement data necessary for analysis. Once measurement has

been completed, analysis can begin.

3.5.2 Performing Measurement

Each program is measured statically and dynamically, and with respect to the size

and complexity of the resulting executable program (.NET metadata). Once all of these

data has been gathered, it can be put through an intense statistical process. One thing

must be clear, however, before beginning this analysis. This is a comparison of

languages, not algorithms, and therefore, only programs written for one algorithm will be

compared, rather than against all of the programs as a whole. It does not make sense, for

example, to compare programs written to perform a string matching process and a sort.

These are different problems and can therefore not be directly comparable. The

measurements that are used must be chosen from research on the subject. So too must

the statistical processes follow these same concepts. Since measurements are simply only

raw data and have no meaning in and of themselves, statistics and analysis must be

applied. The analysis must also be taken from research sources and must be generally

accepted by the software engineering community. Chapter 6 defines one such practice as

used by Munson (2003). Among the many statistical tools available, only ones that are

relevant to the project are used.

23

3.5.3 Conducting Measurement Analysis

The first step in the analysis is to take all of the data on each program, and create

simple averages of like units. This means that, for example, all of the Lines of Code

measurements on each of the C language programs written to perform a string-matching

algorithm will be made into a simple average as all of the individual measurements are a

single value. This simple average will from this point forward represent the single

measurement of Lines of Code, on C implementations of a string-matching algorithm.

Now the statistical analysis can formally begin.

Several statistical tools will be used. These include finding the standard

deviation, z-scores, and many other calculations. Also, a useful tool is Principal

Components Analysis (PCA), in which a Relative Complexity Metric (RCM) can be

found, a one number representation of all of the measurements taken on each language as

applied to each algorithm (Munson, 2003). With all of this analysis data available, it is

possible to determine that languages have an effect on algorithm performance, and which

languages perform better given the problems presented to the developer writing the code.

The higher the RCM value, the more complex and difficult writing the program becomes

(Munson & Khoshgoftaar, 1990).

3.6 Threats to Validity

 As with any empirical study, it is important to discuss any possible threats to

validity. Following are definitions of the types of validity in question and a discussion of

the possible threats.

24

3.6.1 External Validity

 External validity refers to the degree to which the findings of the study can be

replicated outside the context of the experiment. A research study is said to have external

validity if the claims made from the results of the study can be generalized in other

situations. The first threat to external validity is with regard to the choice of programmer,

one of the subjects in this study. As discussed in the next section of this chapter, only

one programmer will be writing the programs, testing, and performing the analysis. It is

difficult to generalize any claims about programming languages from the abilities of one

programmer. With only one programmer available, the variables of coding style and

problem comprehension are over simplified. If several programmers completed the tasks

of the experiment, it is likely that the results of this study may change and therefore be

more general.

 Another threat to external validity is with the choice of operating system. All of

the programs of this study were run using Microsoft Windows XP. Each was executed

several times under as close to the same conditions as possible to reduce measurement

error. Since operating systems each have different specifications, requiring various

amounts of background processes and memory usage, this can affect the dynamic

attributes of the results. The choice of operating system also affects the method chosen to

measure the complexity of the actual executable program itself. The use of .NET

metadata, as one of the measurement categories, is only available from within the .NET

environment and this is only found on Microsoft platforms. By changing operating

system, .NET metadata is eliminated as a measurement category forcing the

implementation of some other method. Another measurement method for executable

25

program measurement may allow for better generalization of the study’s results. The

choice of operating system is seen as a threat to external validity since the operating

system is part of the environment in which the programs execute. To address this threat,

additional operating systems might be considered for a fuller test of each program.

 The choice of compiler also presents a threat to external validity. Compilers can

have possibly unseen influence on the dynamic run-time attributes of a program. This is

seen as a threat to external validity since the compiler is also seen as part of the

programs’ development environment. A different compiler might change the final results

of the experiment’s analysis. In order to better generalize the claims made from this

study, additional compilers might be needed in order to test the programs more

completely.

 One last threat to external validity is with the choice of computer. Only one

computer system was used to execute the programs. Computer systems each have

different hardware specifications with different processor speeds and memory

availability. Like the operating system, the actual hardware system is considered for this

study as part of the execution environment. It is difficult to generalize claims having

tested the programs on only one system. As with the operating system, to address this

threat, additional computer systems would need to be used in order to more fully test each

program.

3.6.2 Internal Validity

 Internal validity refers to the relationships between the independent and

dependent variables. A research study is said to have internal validity if there is evidence

26

to support that the independent variables cause the effects seen in the dependent

variables. One threat to internal validity is with regard to measurement collection and

analysis. It is possible that errors may have appeared in the general measurement

collection process. This is seen as a threat to internal validity since errors can have an

unwanted effect on the dependent variables, and should be as accurate as possible. To

ensure proper accurate measurement data, tools were used with clear definitions for each

metric. A tool was also used for the collection of analysis data. The measurement tools

are described in detail in Chapter 6, and the analysis tool is described in detailed in

Chapter 7.

A second threat to internal validity is concerned with dynamic measurement data.

It is possible that errors may appear on the dynamic, run-time attributes of a program if

something unexpected happens in the background processes of a given operating system.

It is possible that these background activities within the operating system can have an

effect on the final results. This is seen as a threat to internal validity since the

measurement data should depend on the choice of algorithm and language, not the

operations in the background of an operating system. To address this threat, each

program was run several times and the measurements were taken on each run and then

averaged together. This ensures that any values seen as outliers are removed before

analysis begins.

 Another threat to internal validity is with regard to algorithm implementation. It

is possible that faults may be present in the source code itself. This is seen as a threat to

internal validity given that unwanted noise can be introduced into the measurement data,

and subsequently the analysis if incorrect output is discovered. Again, only the language

27

and algorithm choices should have an effect on the measurements taken in this

experiment. To address this threat, randomized test cases were used and the output of

each program was validated for correctness. By ensuring that each program returns

correct output, errors in measurement data can be reduced.

3.6.3 Construct Validity

 A study is said to have construct validity if what is measured actually supports or

refutes the hypothesis. It is also concerned with ensuring what is measured is what

actually should be measured in order to conduct a successful experiment. In order to

remove threats to construct validity, measurements must be appropriate to the experiment

itself. Since this is a study on programming languages, it is necessary to ensure that what

is actually measured is the language and not its compiler. This is why static attributes on

the source code itself are taken into account as part of the analysis of this experiment.

Compilers do not affect the printed source code since a language has some form of

standard syntax. All of the metrics that are used in this study, and why they were chosen,

are explained in full detail in Chapter 6. Using the several measurement categories

described will ensure that the languages are what is actually compared, allowing the

experiment to support the hypotheses stated in Chapter 1.

3.7 Project Scope

The first of several major components for this research project is the

programming languages themselves. Each algorithm chosen has been implemented in C,

C++, C#, Java, and Visual BASIC. To ensure consistent results for later analysis, each

28

program is written using the Microsoft Visual Studio .NET Enterprise Edition

environment. This gives the project a single tool, providing a common environment.

Using compilers created in the open source software world might introduce variability

into the measurement results since each of these compilers are engineered using different

methods. The Microsoft tool offers one suite of compilers in which executable

assemblies are created in the same format, a feature boasted by .NET developers

(Petzold, 2001). In addition, accompanying this project is a discussion on each of the

languages and how they evolved into what they are designed for today (Sebesta, 1999).

Each programming language in this study has its own set of strengths and drawbacks

causing differences in software performance (Pratt & Zelkowitz, 2001).

The second component to this project is the algorithms. Algorithms have been

coded that do sorting, searching, mathematical calculation, string processing, and order

statistic evaluations. For every algorithm implemented there is a discussion on why the

algorithm was chosen, its important features, and a description of its time complexity.

The algorithm and language discussions together will give the full scope of this research,

providing the reasons why algorithms would perform differently from one language to

another.

The third component for this project is the set of metrics and statistical analysis.

Several metrics have been carefully chosen and defined using suggestions from Munson

(2003). On each of the implementations, measurements have been taken and formatted

so that the necessary statistical analysis can be performed. From this analysis, it can be

determined which implementations had the best success (least complex measurement

29

results) for each of the algorithms, giving programmers a useful tool for choosing the best

programming language for the implementations of various algorithms.

Each algorithm will be implemented by one developer using a specific coding

style (Sedgewick, 1983) in each of the five .NET languages, and only the programs for a

particular algorithm will be compared. There will not be a case where a program written

that solves one algorithm will be compared to a program written in the same language, or

any other language, that solves a second algorithm. This is not the purpose of this study.

The purpose instead is to see how a particular algorithm behaves when a specific

programming language is applied. The statistical tool used in this study to show the

differences in behavior is PCA, producing the RCM value described earlier. The RCM

values only relate to a single algorithm. Munson (2003) uses this approach in that he

compares program modules by taking the same set of metrics on several program

modules and compares them based on the RCM produced when PCA is used. The

difference in this study is that languages are compared, not modules, and therefore it does

not make sense to compare the programs written for different algorithms. The higher the

RCM value, the more complex the program has become, and therefore, each program

written to implement the same algorithm can be compared based on this value (Munson,

2003: Munson & Khoshgoftaar, 1990).

3.8 Understanding .NET Metadata

Microsoft has created an innovative approach to software development by

allowing programs compiled in different languages to understand each other. While

other areas of software development have utilitzed multiple languages in the same

30

project, the difference that Microsoft has introduced is that regardless of the language, the

.NET Framework is available and uses the same function calls and the same set of classes

creating a common inferface. This common interface is contained in a set of dynamically

linked libraries developed by Microsoft and these libraries are available for use on most

Microsoft platforms. This cross language integration is done through the use of metadata

(Petzold, 2001). The structure of .NET metadata is much like a database, containing

tables of data that programs can search through and obtain information from regarding

the way a program module functions. Each .NET assembly, be it an executable (EXE) or

dynamically linked library (DLL), is compiled in the metadata format, allowing a module

written in one language to be run from another language in the same suite. As an

example, a portion of code or a class implementation written in C# may be used by

Visual BASIC. This allows developers the choice of using a specific language better

suited to the given problem with the ease of integration into a larger software project

(Petzold, 2001). This project will serve to help developers take the best advantage of the

languages offered for Windows platforms.

With the understanding of metadata within the .NET environment, measurements

can be taken on the assemblies themselves. Assemblies in this context are defined as

either dynamically linked libraries (DLL) or executable (EXE) files. These

measurements will be independent of both the static and dynamic measurements that will

be discussed later in this project. Understanding the complexities of .NET metadata will

give a greater understanding of the performance of a specific algorithm when

implemented in a particular language, although this can only be achieved when using

.NET compilers found in the Microsoft tool set.

31

CHAPTER IV

THE PROGRAMMING LANGUAGES

4.1 The Environment

This project utilizes the Microsoft Visual Studio .NET Enterprise Edition

environment. The .NET system provides several interesting features. Programs written

in any of the .NET languages can take advantage of the Common Language Runtime

Library (CLR). The CLR allows programmers to use the same set of classes across all of

the languages that Visual Studio provides (Petzold, 2001). While each language is given

the same class library as a tool for cross-language development, each individual language

sill retains its traditional approach. The Microsoft implementation of Java, for example,

can use both the CLR and the standard Sun Microsystems set of functionality, and can

use them both simultaneously (Petzold, 2001). The .NET environment also utilizes what

is called Windows Forms, a method of generating source code through a design window

where an actual application can be built visually. Prior to this approach, The Microsoft

Foundation Class library (MFC) and Win32 API were used and were commonly coded

by hand (Petzold, 2001). The .NET environment removes the repetitive programming

tasks required of MFC and Win32 API. This project, however, does not take full

advantage of these features. All of the algorithms are implemented to function solely on

the command line. No graphical elements have been used to run the algorithms. It is

important to note, however, that the .NET editor and environment provides a common

32

and identically engineered environment from one language to another without the use of

multiple tools. Also, by using the Microsoft set of compilers, it is possible to take

advantage of one engineering model. Each compiler associated with the .NET

Framework is built to the same standard (Petzold, 2001), allowing the most common

environment possible with the purest possible data collection.

4.2 The C Programming Language

The C Programming Language was developed by Bell Laboratories in 1972 and

evolved from the ALGOL 68 project. It was originally developed for systems

programming and was made for low-level architectures (Sebesta, 1999). The language

was standardized for the first time in 1978 and has been used in a wide variety of areas.

The programmer has control over much of the memory management. Variables and

pointers are declared statically, forcing programmers to declare them before their use.

Pointers are exceptionally interesting as the programmer has direct access to what is

contained in the memory address, rather than through automatic dereferencing and can

add and subtract memory during run-time (Pratt & Zelkowitz, 2001). C has an entry

point in a “main” function in which the operating system passes control to the process

created by the program.

C has many useful control constructs common to many other languages. These

include features like loops, conditional jumping, and data control. In addition to these

built-in controls, the C language can also take advantage of recursion in which routines

may call themselves in order to decompose a larger problem into several pieces. Also, C

allows for casting, which can change a data type from within memory that has already

33

been set-aside at compile time. For example, an integer can be changed “on the fly” to a

floating-point representation. There are dangers with doing this, however, as precision

can be lost and cast values can have unexpected results (Pratt & Zelkowitz, 2001). While

C is not traditionally an object oriented language and provides a much more sequential

approach to programming, data can be structured into records by using the “struct”

keyword (Pratt & Zelkowitz, 2001). Using this keyword, a programmer has the option of

structuring sets of data into manageable, reusable pieces. Linked lists are often made

from pointers to “struct” type data sets.

The C Programming Language provides the programmer with several primitive

data types for use in many areas. Included in these data types are 32 bit integers, 64 bit

long integers, 32 bit floating-point real numbers, 64 bit double floating-point real

numbers, characters, and bool values (true or false). Each of these primitive types can be

structured into an array of one or more dimensions. This can create easy maneuvering

through sets of values of the same type for inserting and retrieving. The only strange

case among these is character strings. Character strings are actually represented in terms

of arrays of characters, or “char” values. The strings can be traversed in much the same

way as their numerical counterparts (Pratt & Zelkowitz, 2001). Programmers, in addition

to these primitive types, have the option of creating their own in using the “struct”

keyword, or using the “enum” keyword. The “enum” keyword allows a programmer to

assign a numerical value to a set of characters and these characters can be used in place

of the primitive types. Also, the “typedef” keyword gives the programmer the option of

creating original new data types that are software specific.

34

C, however, does have its drawbacks, as do all programming languages. The

language has no specific standard input or output built into the language. In order to take

advantage of input and output, the programmer must include libraries contained in header

files at the top of the source code (Pratt & Zelkowitz, 2001: Sebesta, 1999). It is here that

the developers of the language create the streams for displaying or collecting data to and

from standard sources respectively. Users of the language, however, can create their own

header files that contain function prototypes, declared data structures, and other

constructs that have been implemented in other source code files for use in programs

(Pratt & Zelkowitz, 2001).

4.3 The C++ Programming Language

C++ as a language is almost exactly like C in many ways, and evolved from C

directly (Sebesta, 1999). Its main feature and benefit is the introduction of Object

Oriented Programming (OOP) to a C-like environment (Pratt & Zelkowitz, 2001:

Sebesta, 1999). With OOP, concepts such as inheritance, polymorphism, and

encapsulation, which typically define what an object oriented programming language

offers, can now be used (Pratt & Zelkowitz, 2001). Given to the programmer is a new

keyword, “class.” A class is a definition of an object that both performs work and retains

data simultaneously. Instances of class objects can work independently of each other as

well as communicate through message passing. Most typically, programmers of C++

create a header file containing the class’s definition, and another source file in which the

methods in the class are implemented. The term “method” is used here to describe

functions within class definitions. C++ has an external entry point, which means that

35

class instances must then be declared within the program’s main function. The main

function is called by the operating system’s shell and is used to pass control from the

operating system to the program. Typically in C++ programs, the main function exists in

its own source code file (Pratt & Zelkowitz, 2001: Sebesta, 1999).

C++ has the same primitive data types as C, and data enumeration is also handled

the same way. C++ also has at its disposal the “struct” keyword and can structure data

into records much like C (Sebesta, 1999). Data structures can also be members of classes

and can be incorporated into objects in much the same way as integers or character

strings. Instances of class objects may also be members of other classes. Unlike C,

however, C++ gains the benefit of using the Standard Template Library (STL). Through

STL, constructs like maps (a type of array construct), iterators (a type of looping control),

and standard strings (an STL character string object) become available. While C++ can

still use an array of char type values to represent strings, the language also has the option

of the standard string, which not only contains the string’s value, but can operate on it as

well (Pratt & Zelkowitz, 2001). Although not part of the original language, STL has

become part of the ANSI standard for C++ implementations (Sebesta, 1999).

C++ can be used in a variety of situations. Although not designed for systems

programming, it is possible to do such tasks with C++ (Pratt & Zelkowitz, 2001: Sebesta,

1999). It is more designed for encapsulation of data and routines (methods) and can

easily create applications from within several environments (Pratt & Zelkowitz, 2001).

The language has been used on Windows, Unix/Linux, Macintosh, and the IBM OS

series (OS/2, OS/390, etc.). Implementations, however, differ from one platform to

another and there can be times when different code is needed for the same program to

36

compile when ported to another platform. If the programmer stays with the ANSI

standard it is possible to port programs to additional platforms with almost no changes in

the source code (Sebesta, 1999).

C++ has many of the same drawbacks as C. An additional step is needed to link

all of the source files together to create the executable program. After compiling the

program, the compiler creates object files containing hexadecimal instructions matching

that of the hardware architecture. In order for the executable to be created, these files

must be linked together in a separate step and all external, non-static entries must be

resolved. The potential for additional errors is possible and debugging can sometimes be

a tedious process (Pratt & Zelkowitz, 2001: Sebesta, 1999).

4.4 The C# Programming Language

Microsoft has created a new language that can function with the .NET

environment. This language, known as C#, is a hybrid of Java, C and C++ (Petzold,

2001). The entry point for a C# program is contained within a class definition and is

statically bound to be used by the operating system. Unlike C and C++, C# uses a virtual

machine architecture and has the potential to be completely platform independent

(Petzold, 2001). What this means is that if another company were to create a new

implementation of the C# virtual machine, programmers could write C# applications in

the same way that they previously were able in Microsoft Windows. Currently there are

several open source projects that focus on making C# available to Unix/Linux

programmers. Microsoft does not affiliate themselves with these developers since its

implementations are proprietary, and code is not shared with the general public. While

37

C# is primarily interpreted, it can be compiled to an executable program with the virtual

machine included. This can cause a large amount of memory to be used but allows

additional portability between machines (Petzold, 2001). The virtual machine is not

platform independent, but the C# code potentially can be, and recompiling on another

platform should warrant no change in the C# source.

C# is fully object oriented. It allows for all of the benefits of object orientation,

meaning objects can take advantage of inheritance, polymorphism, and encapsulation

(Petzold, 2001). C# has several primitive data types available for use. These include 32

bit signed integers, 32 bit unsigned integers, 64 bit long integers, 64 bit unsigned long

integers, 8 bit bytes, 16 bit short integers, 16 bit unsigned short integers, 32 bit floating-

point real numbers, 64 bit floating-point real numbers, characters, and bool (Petzold,

2001). Different from C and C++, coupled with the language are character string objects

that are part of the standard library of classes. While STL was an add-on to the original

ANSI Standard C++ language, the C# equivalents came as an original feature. These

string objects both contain and can operate on the string value. These strings are class

objects as any other in C#. Standard input and output stream classes are also available

and no additional libraries are necessary (Petzold, 2001). C# also has many of the same

program flow constructs that are a benefit in C and C++. Looping, conditional jumping,

and object communication are all available within C#. An important language feature to

note is that of C#’s memory management. Garbage collection and the handling of

pointers is taken care of automatically by the language, freeing a programmer from

having to do this manually as in C or C++ (Petzold, 2001).

38

C# source code has the interesting benefit of easy integration within web pages.

HTML browsers can load small programs into these pages and the programs can perform

a variety of tasks. These tasks range from user authentication, database look-up and

insertion, and online gaming (Petzold, 2001). HTML browsers, however, must be

equipped with a C# interpreter in order for this to be possible from within a web page.

This research project does not take advantage of this feature in any way, but it is

important to note as a feature of the language.

Although this research project does not take advantage of graphical user

interfaces, it is important to note that as part of the language’s environment, a window

design editor is included. Programmers can easily build window prototypes of the

application in order to see quickly what it will look like (Petzold, 2001). The code

generated is included in the main libraries of C# and additional libraries are not always

necessary. All of the standard Microsoft Windows controls are available to the

programmer and through this method application development becomes much faster and

less error prone (Petzold, 2001). Microsoft contends that C# is a perfect hybrid of Java,

C, and C++, which creates a better, more efficient language for all Windows developers

(Petzold, 2001).

C#, like any other language, also has its drawbacks. As a result of the virtual

machine architecture and full interpretation, programs written in C# potentially suffer in

performance. C# programs can be compiled directly to an executable, but the virtual

machine is coupled within the executable, as it is necessary for these programs to run

properly (Petzold, 2001). As will be seen from the measurement results, C# programs

use large amounts of available memory for even the simplest of programming tasks.

39

Another drawback of C# is that not all web browsers come with C# interpreters, unlike

Java, which tends to be more universal across almost every major computing platform

(Sebesta, 1999). In order for web page embedded code to function, an interpreter must be

present within the web browser. This can limit the programmer’s browser choices,

forcing the users of the application to be limited as well.

4.5 The Java Programming Language

Java was developed by Sun Microsystems in the mid 1990s and was used

originally as a C++-like language for web page embedded programming (Sebesta, 1999).

Much like C#, its entry point is coupled within a class object and is statically bound for

use by the operating system. Java, as with C#, is a fully object oriented programming

language and can also take advantage of inheritance, polymorphism, and encapsulation

(Pratt & Zelkowitz, 2001). Java code is also run through a virtual machine architecture,

and while the virtual machine’s own implementation may be platform specific, code

written in Java is not. In order to be certified by Sun as a standard Java implementation,

the virtual machine must comply with all of Sun Java’s features (Pratt & Zelkowitz,

2001).

Java has many of the same primitive data types as C#. These include 8, 16, 32,

and 64 bit signed and unsigned integers, 32 and 64 bit floating-point real numbers, 16 bit

Unicode characters, and bool. Java also has an object class available for character

strings. These objects both contain and operate on the string much as C# does (Pratt &

Zelkowitz, 2001: Sebesta, 1999). Standard input and output are handled through Java’s

extensive class library of objects and, in most cases, additional libraries are not necessary

40

for these tasks (Pratt & Zelkowitz, 2001). As with the other languages, the control

constructs include looping, conditional jumping, and object communication. Memory

management is also handled directly by the language structure, allowing programmers

less worry in regard to pointers and their values, which may not be directly accessed by

the programmer. Garbage collection is also handled automatically, leaving less room for

memory leaks to occur (Pratt & Zelkowitz, 2001).

Java, like C#, has the additional benefit of being integrated into web pages. These

programs, in the Java context, are known as applets (Pratt & Zelkowitz, 2001). Applets

can take the form of games, database look-up and entry forms, user authentication and

password protection, and many other types of applications (Pratt & Zelkowitz, 2001:

Sebesta, 1999). Java is more universal than C# as more browsers are available with a

Java interpreter. Java has been successfully implemented and certified by Sun on both

open source and proprietary platforms. Although not used in this project, its “Swing”

library can create standard graphical elements like check boxes, radio buttons, etc. that

can be used in Unix/Linux, Microsoft Windows, and Macintosh, and can take on the

motif of each (Pratt & Zelkowitz, 2001).

Java has several drawbacks. The language has very limited console application

and is better suited for graphical environments. This can cause performance problems

when Java programs are run over a command line interface (Pratt & Zelkowitz, 2001).

Java, like C#, uses a virtual machine, and while Java code can be compiled to an

executable, the virtual machine must be coupled within the code at the cost of extra

memory (Sebesta, 1999). Also, while most browsers come equipped with Java

41

interpreters, this does not mean that all browsers do, limiting the choices of both the

programmer and the user of the application (Pratt & Zelkowitz, 2001).

4.6 The Visual BASIC Programming Language

Visual BASIC (VB) started out as BASIC, the Beginners All Purpose Symbolic

Instruction Code. It was designed for the liberal arts students at Dartmouth University in

the 1960s (Sebesta, 1999). While science students had little trouble with ALGOL or

FORTRAN, there was a need among liberal arts and other non-science students for a

language that was easy to learn and friendly for a fast homework turnaround (Sebesta,

1999). In the beginning, BASIC had no way of accepting interactive input and, as a

result, programs were written to be run in a batch, much like FORTRAN. Although

Digital Equipment Corporation used BASIC to write one of its operating systems, the

language was never really meant for large-size applications of great significance, which

is why its greatest criticism is its poor program structure (Sebesta, 1999).

In the mid 1980s, development of Quick BASIC (QBASIC) by Microsoft

enhanced BASIC for a greater range of use (Sebesta, 1999). Standard input and output

became available and sub routines became easier to create. Unlike C or C++, the input

and output systems were an integral part of the language, requiring no additional

libraries. With the changes made to BASIC by Microsoft, users could still benefit from

its ease of use while creating significantly large sized applications (Petzold, 2001:

Sebesta, 1999). QBASIC does not, however, contain a library for use in creating

graphical user interfaces.

42

In the early 1990s, Microsoft created another version, now known to its users as

Visual BASIC. It was one of the first languages to incorporate a design window for

application prototyping (Sebesta, 1999). After a window is created, programmers can

then “attach” QBASIC code to the objects on screen, creating an event driven

environment. Through this unique development model, programmers are able to produce

full-size, quality applications in smaller amounts of time. With the innovations that

Microsoft has made to this language, VB has become a fully functional language in its

own right (Petzold, 2001).

VB, as with the other languages in this project, has a set of primitive data types.

These include characters, character strings, integers, floating-point real numbers, and

bool. The choices are much more limited in VB than in the other languages, as it was

believed that not many of its users would gain benefit from more than this (Sebesta,

1999). VB behaves much like an object oriented language utilizing encapsulation, but

lacks polymorphism and inheritance. Its entry point is a statically bound main routine

from within an object (Petzold, 2001). Visual BASIC tends to be easier to read than most

languages with its statements appearing in an almost English-like structure. The

language has an extensive library of objects that may be used in graphical Microsoft

Windows interfaces. It includes all of the components frequently found in Windows and

can be used to develop applications quickly and with little need for repetitive and tedious

programming tasks (Petzold, 2001).

The drawbacks of VB are numerous, as again it was never meant to be a language

for significant application development (Sebesta, 1999). VB is also a language run

through an interpreter. Although VB source code can be compiled to the form of an

43

executable, the interpreter must be coupled within causing large amounts of memory

usage and significant performance problems. In addition, while the English-like structure

allows for readability, it forces many more reserved words to be used, frequently making

programs less readable (Sebesta, 1999). Visual BASIC, in its current form, lacks

significant functionality for use within command line interfaces. It is much more suited

for graphical environments, specifically Microsoft Windows. Few other operating

systems can use the language making application portably extremely limited. The form

of BASIC used with other operating systems resembles more the original form of the

language with minimal input and output capability and is exclusively limited for

applications on the command line interface (Sebesta, 1999).

44

CHAPTER V

THE ALGORITHMS

5.1 Definition of Selection Criteria

Before choosing algorithms for this research study, it was important to understand

exactly what algorithms are. An algorithm can be simply defined as a computational

process, in which input is given, work is performed, and a useful set of output is found

(Cormen, Leiserson, Rivest, & Stein, 2001). Since algorithms are created to solve

problems, it was imperative to decide which programming problems were most important

before choosing the algorithms to solve those problems. Since it is impossible to

examine every imaginable programming situation, it became important to find problems

that would be useful for research purposes. The problems chosen in this study are used

often in industry and are applied to many applications (Cormen et al., 2001). The criteria

for choosing the problems in this study include how much research is available on each,

and how often the problem is used in industry, while at the same time keeping them small

enough so that they may fit into the time constraints involved in the course of this project.

It is next important to understand the differences between what simple and

complex algorithms are. Simple algorithms tend to use the “brute force” approach. The

simplest solution may be the easiest to implement but it may not be the best solution.

Simple algorithms tend also to be slower and take more computational instructions to

complete (Cormen et al., 2001). Complex algorithms, on the other hand, are usually

45

better solutions than the simple and tend to make better use of processor time and are

typically faster. These algorithms might be more difficult to implement. Programmers

must often decide between either creating software faster, or creating faster software

(Cormen et al., 2001).

Five programming problems were chosen that often occur in software

development and have been heavily researched. These problems are searching, sorting,

mathematical computation, string processing, and order statistics. Each of these

problems has several characteristics that are important. Searching and look-up is found

very often in database programming as well as simpler applications. Sorting is another

problem widely used in database applications as well as for the display of items on

screen. The need to solve systems of equations arises frequently in mathematical,

scientific, and engineering computational problems. String processing can be found in

compilers for syntax highlighting, spell checking, and other systems and application

programming (Cormen et al., 2001). The finding of order statistics was chosen so that

each language can be measured on how well it performs when there is perhaps a more

optimal algorithm available. This gives insight into how a language can perform when

presented with an unusually lengthy problem. With the exception of searching, a

complex and a simple algorithm was chosen to solve each of these problems.

5.2 Definition of Implementation Criteria

In writing the implementations for the algorithms presented in this chapter, an

example was taken from Sedgewick (1983) with regard to the use of the languages. He

states in his book that in order to best highlight the constructs of each language, only the

46

simplest of language constructs should be used, and also as few comments as possible (in

this study’s case, no comments). This study uses this approach so as to keep the code

easy to read and in a common format. The variable names are small and perhaps non-

descriptive but again this further highlights the control constructs contained in the

algorithms by keeping them more visible. In addition, the function names are the same as

in the pseudocode diagrams found below, simply describing what each function does.

With this common format, the implementations from language to language can be

compared on several different levels. Sedgewick (1983) explains that this method of

algorithm implementation is a positive approach when the project is under time and

resource constraints such as this project’s scope dictates.

One thing that must be defined clearly before moving on to the algorithm

descriptions is what is meant by simple vs. complex. For purposes of this study,

algorithms considered to be simple use the “brute force” approach. Simple algorithms

take a naïve look at problem solving. These algorithms are Linear Search, Bubble Sort,

Naïve String Matching, Polynomial Addition, and Minimum / Maximum. Simple

algorithms obtain a solution to a problem without regard to efficiency or elegance and are

often easier to understand from a programmer’s perspective. It is possible, however, for

a simple algorithm to be the most efficient.

Complex algorithms, on the other hand, use more elegant techniques, such as

recursion for example. These algorithms are not naïve, and can often be difficult to

understand from the perspective of a programmer. Complex algorithms work to find

problem solutions that are efficient, even though some simple algorithms perform faster

47

over smaller data sets. For purposes of this study, the complex algorithms implemented

are Quicksort, KMP String Matching, Gaussian Elimination, and Random Selection.

5.3 Searching

The searching problem may be described as follows: given an array L indexed

from 0 to n, and a key k, k is searched against in the array comparing each element of the

array to k. The first index in which k is found in L is returned, otherwise –1 is returned,

indicating that k is not an element of L.

5.3.1 Linear Search

Linear Search was chosen to solve the searching problem. It is one of the most

widely used searching algorithms in computer science and uses important features

common in most programs. This algorithm is often one of the first taught to computer

science and programming students in high schools and colleges (Cormen et al., 2001).

Linear Search, while not complex, is optimal. It has a worst case and average case time

performance of O(n), and it is one of the simplest algorithms to implement (Cormen et

al., 2001). It uses a single loop to walk through the elements included in the search,

looking for a key that perhaps does or does not exist. Each element of the searched area,

an array, a string, or a linked list, is compared with the key. The algorithm returns the

index in which the first instance of the key can be found. This is commonly known as the

“brute force” approach, as is described by Cormen et al. (2001).

48

LinearSearch (L, k)
{
 i = 0

 while (i <= n and L[i] <> k)
 i = i + 1

 if (i > sizeof(L))
 i = -1
}

Figure 5.1 Linear Search Pseudocode.

While this algorithm may not seem complex, as noted by the figure above

(Cormen et al., 2001), there are important things to note. The algorithm uses one of the

most common programming constructs, a “for” loop. In the implementations used for

this research, integers are used for the search criteria, so the best data structure for

containing all of the data is an array of integers. Since the algorithm is not complex, each

programming language used less memory than some of the algorithms’ more complex

counterparts. All data was generated randomly so that average case performance could

be measured over the course of running the program several times.

5.4 Sorting

The sorting problem can be described as follows: given a random sequence of n

numbers (a1, a2, …, an), find a permutation of the original sequence such that (a’1 <= a’2

<= … <= a’n) (Cormen et al., 2001).

49

5.4.1 Bubblesort

The Bubblesort is one of the most commonly used algorithms in computer science

and is another often taught first to computer science students (Cormen et al., 2001). It is

one of the simplest yet slowest algorithms that solve the sorting problem and uses sorts in

place (Martin, 1971). For small data sets this algorithm is sufficient as it is easy to

understand and implement. Larger sets of data require something more advanced if

performance is an issue (Cormen et al., 2001). Bubblesort runs in O(n2) time as every

element must be compared to every other element. After two adjacent elements are

compared, if one element is larger (or smaller depending on the sort), then the two

elements will switch places (Martin, 1971). Once no change occurs, the data is sorted,

and the algorithm terminates. The version used in this research study is that of Cormen et

al. (2001).

BubbleSort (A)
{
 for (n = 1 to sizeof(A))
 for (m = sizeof(A) to n + 1 step -1)
 if A[m] < A[m - 1]
 exchange(A[m], A[m - 1])
}

Figure 5.2 Bubblesort Pseudocode.

Appearing in this algorithm is a nested loop since each item must be compared to

every other item. This is why the time analysis for Bubblesort is O(n2) (Cormen et al.,

2001). Again integers were used for the data in the program and so the most appropriate

data structure was an array of integers. This algorithm, like Linear Search, is very simple

and should not require large amounts of memory to run or large numbers of lines of code

50

to write. The results for Bubblesort vary from Linear Search in terms of the

programming languages and their performance. Again, all data for this algorithm were

randomly generated so that the average case could be measured. The worst case is still

possible, however, and happens when the array is in the reverse order from that desired

(Cormen et al., 2001).

5.4.2 Quicksort

Quicksort is probably the most used algorithm that solves the sorting problem and is

considered to be one of the most complex. It has been used in many situations in both

systems programming and application programming (Cormen et al., 2001). The

algorithm was originally developed by C.A.R. Hoare in 1961 and was published in the

Computer Journal in 1962 (Hoare (Algorithm 64), 1961, 1962). The idea was that a new

algorithm could be created that solves the sorting problem by reducing large problems

into trivial simple ones, thereby solving the large problem as a whole using known

methods once the problem is reduced (Hoare, 1962). The version of the algorithm

presented in this study is that of Cormen et al. (2001). With a timing of O(n log n),

Quicksort is much faster than Bubblesort in the average case. Quicksort uses a divide

and conquer approach commonly implemented through recursion. It can be implemented

iteratively, but for this research, recursion was chosen to illustrate how programming

languages handle this common practice. First, a partition procedure is used to place an

element (the pivot) where it belongs in the final sorted set of elements (Hoare (Algorithm

64), 1961, 1962). All elements on the left are smaller than the pivot, and all elements on

the right are larger than the pivot (Hoare (Algorithm 63), 1961). At this point, the

51

Quicksort procedure is called again on each side of the partition and the process repeats

until there are no longer changes necessary and the elements are sorted. The algorithm

has an implied loop created from its recursive structure (Cormen et al., 2001). Quicksort

is ideal for large sets of data and can reduce processing time for its application when

compared to Bubblesort.

Partition (A, p, r) Quicksort(A, p, r)
{ {
 k = A[r] if (p < r)
 j = p - 1 q = Partition (A, p, r)
 Quicksort(A, p, q - 1)
 for (n - p to r - 1) Quicksort(A, q + 1, r)
 if (A[n] <= k) }
 j = j + 1
 exchange(A[j], A[n])

 exchange(A[j + 1], A[r])

 return j + 1
}

Figure 5.3 Quicksort Pseudocode.

The important aspect of Quicksort for this research is that the recursive

implementation is used so that languages can demonstrate how they behave when this

technique is applied. Quicksort’s main procedure calls itself until the sort is complete.

Only the pointers are passed and the sort is done in-place. The data structure once again

was the array of integers, and all values were generated randomly so that the average case

could be measured.

5.5 String Matching

The string matching problem can be described as follows: given a string of text

T[1…n] and a string pattern P[1…m] of length m <= n, we say that the pattern P occurs

52

within the text T at a valid shift. If there is no valid shift s, then the pattern P does not

exist in text T. Returned are all of the beginning indices of the pattern in the text

(Cormen et al., 2001).

5.5.1 Naïve String Matching

The Naïve String Matching algorithm is a simple algorithm that is used to match

patterns against larger sets of characters, also known as the string matching problem. It is

slow over large data sets when compared to other string matching algorithms as a result

of every element in the pattern having to be compared with every element in the main

text. Naïve String Matching is timed at Ө(n x m) where n is the size of the text and m is

the size of the pattern (Cormen et al., 2001). This algorithm has often been described in

terms of a slide rule, where the pattern is slid across the text and reports every time the

pattern is found. Naïve String Matching is ideal for small sets of data but does not

perform well over larger sets (Cormen et al., 2001). The algorithm terminates once the

number of characters in the text left to compare is less then the number of characters in

the pattern.

NaiveStringMatch (T, P)
{
 j = sizeof(T)
 k = sizeof(P)

 for (s = 0 to j - k)
 if (P[1...k] = T[s + 1...s + k])
 print ("Pattern occurs with shift %d", s)
}

Figure 5.4 Naïve String Matching Pseudocode.

53

Implementing Naïve String Matching presented several challenges. Results

varied greatly from language to language and in some cases passing pointers to arrays of

characters proved difficult. The algorithm uses a nested loop structure, however, the inner

loop and the outer loop do not have the same termination value which is why the timing

is not O(n2) (Cormen et al., 2001). Randomly generating the data for this algorithm did

not prove economical in that randomly creating a data set and pattern does not guarantee

that the pattern will be matched from within the text. Instead, the song “Take Me Out to

the Ball Game” was used and the pattern searched was the word “ball.” Also used was

the text of the United States Constitution, and the pattern “the.” In addition, another data

set in which the pattern was not found was also used. For every run on this algorithm,

each element in the text must be compared to every element in the pattern (Cormen et al.,

2001) and therefore randomly generating data would not have proven useful. The

profiler used to take dynamic run-time measurements was able to get accurate timings

based on these problems.

5.5.2 KMP String Matching

Developed by Knuth, Morris, and Pratt, the KMP String Matching algorithm is a

more efficient alternative over Naïve String Matching (Knuth, Morris & Pratt, 1977).

Through the algorithm’s routine to compute prefixes, information can be gathered on

both the text and the pattern so that unnecessary comparisons can be eliminated. With

this prefix information, a non-match can be assumed right away once the prefix of the

current position in the text does not match the prefix of the pattern (Knuth et al., 1977).

This information can be assumed without testing the entire pattern, which is what Naïve

54

String Matching does. At this point, the algorithm moves the pattern along the text in the

amount of the length of the pattern forward to try a new match in which the process

begins again. The algorithm terminates once the entire text has been searched and all

relevant matches have been found (Knuth et al., 1977). This makes KMP String

Matching a much better candidate for large data sets (Cormen et al., 2001: Knuth et al.,

1977).

With the elimination of the unnecessary comparisons of characters, the algorithm

can be timed at O(n log m) in the average case where n is the size of the text and m is the

size of the pattern (Knuth et al., 1977). This Algorithm is considered to be a complex

algorithm when compared to Naïve String Matching and is used widely in many

applications (Cormen et al., 2001). While this algorithm was created by Knuth, Morris,

and Pratt (1977), the implementation used here is that from Cormen et al. (2001).

KMPMatch (T, P)
{
 n = sizeof(T)
 m = sizeof(P)
 Pi = ComputePrefixFunction(P)
 q = 0

 for (i = 1 to n)
 {
 while (q > 0 && P[q + 1] <> T[i]
 {
 q = pi[q]

 if (P[q + 1] = T[i]
 q = q + 1

 if (q == m)
 print ("Pattern occurs with shift %d", i - m)
 q = pi[q]
 }
 }
}

Figure 5.5 KMP String Matching Pseudocode.

55

As with Naïve String Matching, KMP String Matching presented many

programming challenges. One of the larger challenges in implementing this algorithm

was the passing of character strings as arguments as each language has its own format for

doing such a thing (Pratt & Zelkowitz, 2001). The algorithm uses loops in order to

compute the prefix of both the pattern and the text. Each language performed very

differently with regard to this algorithm as will be seen from the data presented later.

Again, as with Naïve String Matching, it was not economical to create random data for

this algorithm. All of the same text and pattern combinations were used as was with

Naïve String Matching. Because the performance of the algorithm is not based on

random data, results were very consistent from one run of the program to the next.

5.6 Arithmetic Algorithms

Two mathematical problems are addressed in this section. The first is polynomial

addition. The problem is defined by saying that there is a set of coefficients C(x) such

that A(x) + B(x) = C(x) where A and B are arrays that represent coefficients in

polynomials. A polynomial can be described as an algebraic expression consisting of one

or more summed terms, each term consisting of a constant multiplier and one or more

variables raised to integral powers. For example, x2 − 5x + 6 is considered a polynomial.

The new polynomial with coefficients in C will be of the same degree as A and B.

Degree in this context is defined as the term raised to the highest power. It is possible to

add two polynomials of different degrees, but the sum is expressed in terms of the highest

degree (Cormen et al., 2001).

56

The second problem that is solved in this section is that of finding solutions to

systems of linear equations. Given the equation Ax = b where A is an n by n matrix

containing the coefficients of each linear equation, b is the set of constants, and x is the

set of n unknowns, we wish to find the set x so that Ax = b. If A is non-singular, there

will be a unique solution to the system (Cormen et al., 2001).

5.6.1 Polynomial Addition

The addition of polynomials, the adding together of expression coefficients, is a

simple illustration of arithmetic as done through computer programming (Cormen et al.,

2001). Polynomial Addition is often used in applications that involve algebra and other

uses in mathematics and science. It is not a very complex process and has a run-time of

O(n), where n is the number of coefficients in the polynomial, including zeros. This time

performance is for all cases. Polynomial Addition is the simple pairing of coefficients

and combining them into a new polynomial of the same power, such that A(x) + B(x) =

C(x) (Cormen et al., 2001). Written in the general form we can say that A = a0xn +

a1xn−1 + a2xn−2 +...+ an−1x +an and B = b0xn + b1xn−1 + b2xn−2 +...+ bn−1x + bn. Using this

general form we can say that C = (a+ b)0xn + (a+b)1xn−1 + (a+b)2xn−2 +...+ (a+b)n−1x +

(a+b)n. It is possible for a coefficient to be equal to zero, in which case a zero is placed

in the array. The study of this algorithm allows for greater understanding of how each of

the programming languages performs while completing simple mathematical

calculations.

57

PolyAdd (A, B, C)
{
 i = sizeof(A)

 for (n = 0 to i)
 C[n] = A[n] + B[n]

 return C
}

Figure 5.6 Polynomial Addition Pseudocode.

In the implementations of this algorithm, random data was created to fill two

arrays of integers. Each array element represents a coefficient of a polynomial. The ith

element in the first array is added to the ith element in the second array, producing the ith

coefficient of the sum (Cormen et al., 2001). This was done through a “for” loop and the

process terminates once all of the coefficients have been added together producing the

new array. An important point to note is that even though random data were used, all

cases perform the same, as each element in each array must be processed regardless of

value (Cormen et al., 2001). This is important because each programming language

yields easily comparable measurement results when the metrics are applied.

5.6.2 Gaussian Elimination

Gaussian Elimination is a mathematical algorithm that has been in use for more

than 150 years (Cormen et al., 2001). It is used to solve for the unknowns in a system of

linear equations. This algorithm is more complex than the addition of polynomials. As a

result of its 3-level nested loop structure, Gaussian Elimination has a timing analysis of

O(n3) (Cormen et al., 2001). The purpose of the algorithm is to solve for any number of

unknowns as long as the number of unknowns is equal to the number of equations. The

58

product of this algorithm is the unknowns themselves, resulting in the solution to the

system of equations (Cormen et al., 2001).

LUPDecomposition (A) LUPSolve (L, U, pi, b)
{ {
 k = Rows(A) n = Rows[L]
 Pi = 0
 p = 0 for (i = 1 to n)
 y[i] = b[pi[i]] - sumof(i - 1, j = 1, (L[i][j] * y[i]))
 for (x = 1 to k)
 Pi[x] = x for (i = n to 1 setp - 1)
 x[i] = (y - (sumof(j = i + 1, n, (U[i][j] * x[j])) / U[i][i])
 for (y = 1 to k)
 { return x
 p = 0 }

 for (x = y to k)
 {
 if (A[x][y] > p)
 p = A[x][y]
 k' = x
 }

 if (p == 0)
 print("Error, Singular Matrix")

 exchange(Pi[y], pi[y'])

 for (x = 1 to k)
 exchange(A[y][x], A[y'][x]

 for (x = y + 1 to k)
 {
 A[x][y] = A[x][y] / A[y][y]

 for (z = y + 1 to k)
 A[x][z] = A[x][z] - (A[x][y] * A[y][z])
 }
}

Figure 5.7 Gaussian Elimination Pseudocode.

Gaussian Elimination uses two routines each of which performs distinct tasks.

The first routine factors a permutation of the matrix of coefficients into an upper

triangular matrix and a lower triangular matrix. After this is complete, the second routine

can perform the back substitutions needed to solve for the unknowns themselves (Cormen

et al., 2001). Random integer data was used to generate the matrix coefficients. For the

first time in this research study, floating-point arithmetic is used (Cormen et al., 2001).

5.7 Order Statistics

The ith order statistic of a set of n elements is the ith smallest value in the set. The

minimum is the smallest element in an array. The maximum is the largest element in an

array. If the minimum is desired, i = 1 and if the maximum value is desired then i = n

(Cormen et al., 2001).

59

5.7.1 Minimum and Maximum

In order to find the minimum and maximum values in a given data set, every

value must be addressed. This produces results in the worst case and average case time of

O(n) and is optimal (Cormen et al., 2001). By using this algorithm, we can see how each

language performs under the worst case using only elementary operations (Cormen et al.,

2001). This is different from sorting in that we are not re-ordering the set of elements,

only returning a single element from the set.

Minimum (A)
{
 m = A[1]

 for (x = 2 to sizeof[A])
 if (m > A[x])
 m = A[x]

 return m
}

Figure 5.8 Minimum Pseudocode.

The process for determining the minimum and maximum values in a data set is

simple and both statistics use the same process with only a slight modification. In the

case of the minimum value, the first element in the data set placed is in the “leader”

variable, meaning that the first element in the array is the smallest (Cormen et al., 2001).

This value is then compared with the next element in the array and if this new element is

smaller then it is in turn placed in the “leader” variable. This process is repeated until the

entire data set has been compared (Cormen et al., 2001). Finding the maximum value is

similar. Random generation of integers is used to produce the data set.

60

5.7.2 Random Selection

The final algorithm chosen for this research study is Random Selection. This is

an algorithm that performs in O(n2) for worst case time and O(n) expected time (Cormen

et al., 2001). This algorithm produces the ith smallest number in the data set and returns

this value to the calling routine. The reason this algorithm performs in O(n2) worst-case

time is that it is compared to every element in the data set (Cormen et al., 2001). The

difference between this algorithm and the minimum and maximum selections is the

introduction of recursion. With both randomization and recursion, it is possible to see

how well each language performs with these two techniques (Cormen et al., 2001).

RandomPartition (A, p, r) RandomSelect (A, p, r, i)
{ {
 x = Random(p, r) if (p == r)
 return A[p]
 exchange(A[r], A[x])
 q = RandomPartition(A, p, r)
 return Partition(A, p, r) k = q - p + 1
}
 if (i = k)
 return A[q]
 elseif (i < k)
 return RandomSelect(A, p, q - 1, i)
 else
 return RandomSelect (A, q + 1, r, i - k)

 }

Figure 5.9 Random Selection Pseudocode.

Data for this algorithm were generated randomly and integers were placed into an

array. For research purposes, the smallest number in the array was selected, however any

ith smallest number can be selected, i.e. 2nd smallest or 3rd smallest (Cormen et al., 2001).

Random Selection uses the Randomized Partition procedure to return a pivot where all of

the elements are less than or equal to the pivot on one side of the array. Any element is

as equally likely to be returned (Cormen et al., 2001). As a result of the partitioning, it is

impossible to determine if the ith smallest number in the data set is above or below the

61

pivot before hand and so this must be calculated. This condition is the determining factor

on which side of the data set is to be compared (Cormen et al., 2001). The algorithm will

continue to recursively decompose the data set using further partitions until the ith

smallest number in the set has been found (Cormen et al., 2001).

62

CHAPTER VI

METRICS AND THEIR DEFINITIONS

6.1 Definition of Selection Criteria

In order to gain a full understanding on how each language will perform with

respect to each algorithm, measurements must be taken on each implementation. For this

research, a comprehensive metrics suite has been defined from static, dynamic, and .NET

metadata measurements. All of the metrics used for this research come from the work of

experts in the field of software development and have been widely applied. Each metric

chosen clearly defines what is being measured, is easy to reproduce, and represents

important and valid attributes of each program (Munson, 2003: Wohlin, 1996).

These attributes fall into two categories: quantitative and qualitative. Quantitative

metrics measure attributes related to the size of the program. Qualitative metrics measure

attributes related to program complexity, writing difficulty, and readability (Munson,

2003). For example, a high Lines of Code metric might indicate that the program is

large. This is a quantitative measurement. On the other hand, if the program’s

Cyclomatic Complexity is high, this indicates complex code. This is qualitative metric

(Munson, 2003: Wohlin, 1996). These metrics are defined in detailed in later sections.

All metrics, regardless of what they measure, can be classified as quantitative or

qualitative (Wohlin, 1996). Both of these categories together can give the programmer a

63

wide range of knowledge on how fault-prone the program may be (Munson, 2003).

Programs that tend to me more fault-prone usually have more bugs, design flaws, and

other problems associated with complex software (Munson, 2003).

Each program is measured both statically and dynamically, with qualitative and

quantitative metrics provided as part of each. Static measurements are taken on the

source code itself, while dynamic measurements are taken on the program at run-time

(Munson, 2003). Each of these has a very important purpose. Static measurements give

indications about how large the program is, how difficult it was to write, and how long it

may have taken to finish. Dynamic metrics give insight into how well programs perform,

how much memory is used during run-time, and how many routines are called (Wohlin,

1996). Quantity and quality can both be measured statically and dynamically, producing

a full data set for developers to analyze for decision-making purposes (Wohlin, 1996).

All of these factors must be considered in order for a set of metrics to have any meaning

(Munson, 2003). While programs implementing the same algorithm might have similar

values, the slight differences show variations in how each language performs with respect

to a given algorithm. This can be seen through the process of PCA, described in detail in

Chapter 7.

In addition to measuring each program both statically and dynamically, a look at

the .NET assembly for each program proves useful as well. .NET assemblies use the

Common Language Runtime library (CLR), which produces metadata that can be

imported into other programs, even if those programs are created in different languages

(Petzold, 2001). While both the metadata and static categories might seem similar in that

the program is not needed to run in order to obtain measurement, they are different with

64

respect to what is actually measured. Static measurements are taken directly on the

source code itself, rather than the executable program that it creates. The metatadata

looks at how the .NET environment puts together an executable program from the inside,

showing the viewer the many attributes available with the proper data reader. Since the

.NET tool is used to provide a common development tool, the metadata created for each

program can be measured providing another tool in the understanding of how well each

algorithm performs from language to language. Several metrics on this metadata are

defined in the following sections of this chapter.

Measurements were taken on each implementation in the same way and under the

same conditions to produce comparable results. Since any computer system can

introduce useless noise into a measurement, each metric was taken several times to

ensure that an accurate result was produced (Munson, 2003). All static measurements

were taken using Resource Standard Metrics (RSM), a tool created by M Squared

Technologies (M Squared Technologies, 2005). The tool enables the use of several static

metrics that are described in detail in the next few sections. Dynamic measurements were

taken using the tool “AQTime 4”, by AutomatedQA Corp (1996), a tool that measures

.NET run-time attributes. This tool profiles .NET programs in many ways and without

regard to programming language. A memory profile and an execution profile were used

to produce the measurements.

The last portion of the measurement process is on the .NET metadata from each

program’s assembly code. These measurements were taken using the “A .NET Assembly

Viewer” (The Code Project, 2002), a tool used to break down and categorize the

information contained within the .NET metadata. This format of the metadata will not

65

change from system to system and therefore any tool that can view this information can

be used on any computer carrying the .NET Framework, making these measurements

easier to reproduce. The data that is of interest comes from the tables contained within

the metadata. An important fact to note is that the metadata will contain information

outside the scope of the source file, meaning that all of the libraries imported into the

assembly will be measured.

6.2 Factors Present in the Measurement Environment

First and foremost, the data in this study was collected using the .NET set of

compilers. Each compiler has its own optimization methods and the .NET compiler suite

is no different in this regard (Petzold, 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).

The use of the .NET compiler suite ensures that each program is compiled to the same

format (Petzold, 2001). When looking at the metadata created by .NET compilers, it is

possible to see exactly how the .NET virtual machine creates the objects present in each

program, showing the differences between implementations from an internal point of

view. It is possible that conclusions drawn from the data collected here might not be

valid for other compiler suites, such as the GNU suite under Unix based environments.

The dynamic measurements are also bound by the optimizations created by the

.NET Framework as well as the specifics of the machine in which the runs are taken. It is

important to run these programs for dynamic measurements under as close to the same

conditions as possible. Several runs were done on each program and the data collected

are averages of all of these runs, ensuring that if anything happens in the background of

the operating system, it does not introduce unnecessary noise into the measurements

66

(Munson, 2003). Because of this unforeseen operating system noise (new processes,

memory management, etc.) the dynamic data, while in theory useful on any system, is

only tested and currently valid using Windows XP Professional, SP2. In addition to

operating system noise, the machine itself can also cause measurement noise causing

dynamic measurement variability. The machine noise can come in the form of processor

speed, memory availability, etc., and thus in order for the data to be preserved, the

measurements should be reproduced on the same type of machine as well.

Lastly, the static measurements are dependent on the particular implementation. It

is possible, as was mentioned earlier, that there is any number of implementations that

will satisfy an algorithm’s requirements. Because of the Sedgewick (1983) guidelines

used in writing the code for these programs, the static measurements can only be

reproduced with validity using his approach. Each algorithm was written using this strict

coding style, ensuring that only core language constructs were used (Sedgewick, 1983).

Very little .NET specific code was used to ensure that the base language was all that was

measured. It is of course possible to write certain lines in a combined fashion, but all

operations were broken up into individual and easily readable pieces. A look at the code

in Appendix A will give further insight into exactly how the coding was done for each

program written for the use of this project. It is with this code that the static

measurements have valid results as Munson suggests is necessary to conduct science

(Munson, 2003). Again, as described in Chapter 3, in order to truly gain a full

understanding of how the code may be influenced by other developers, many programs

need to be written and many measurements need to be taken and averaged before

statistical analysis may be done.

67

6.3 Static Metric Definitions

6.3.1 Physical Lines of Code

The first metric of importance is that of the infamous Lines of Code (LOC).

Being one of the oldest metrics, it is commonly used to determine program size, effort in

units of time, and other development related data (Fenton & Neil, 1999). This is a crude

metric, often used to determine more than intended (Munson, 2003), and is often misused

(Fenton & Neil, 1999). Physical Lines of Code, or pLOC, is the first of several LOC

metrics that will be included in this study. The “Resource Standard Metrics” (RSM) tool

defines this metric as the total number of lines contained within the file without regard to

blank spaces, comments, and the like. The pLOC metric will be used as a representation

of file size, a quantitative attribute. It is important to note that the pLOC metric does not

take into account executable statements versus non-executable statements. After pLOC is

taken, additional metrics, such as those described below, are needed to gain a fuller

understanding of the meaning behind the pLOC value.

6.3.2 Effective Lines of Code

The second LOC metric will be the Effective Lines of Code, or eLOC. This

metric determines the number of lines of code in which work is performed, including the

executable statements, and decision-making Boolean checks. The RSM tool takes this

metric by excluding comments, blank lines, lines with only braces used as scope

delimiters, and the like. The eLOC value will offer a better understanding of the total

lines of code contained within a file, defining which lines will actually perform useful

work. Again, this is a measure of functional size, rather than actual size (Fenton & Neil,

68

1999), making this another quantitative attribute. This measurement is important in

determining other metrics, such as McCabe’s Cyclomatic Complexity (McCabe, 1976),

which is discussed in section 6.3.4.

6.3.3 Code Statements

This is the last of the LOC metrics. The RSM tool defines code Statements, or

lLOC as those lines that contain a statement separator. It is important to determine what

a statement actually is in order to take this metric, meaning that a clear definition is

necessary so that this value remains unambiguous (Fenton, 1994). For the C-style syntax,

the semi-colon is used, and for VB, it is the carriage return, since there is no need for a

semi-colon in the latter (Petzold, 2001). All of the LOC metrics used in this study are

highly correlated (Weyuker, 1988). This means that with a high pLOC count, a high

eLOC and lLOC count will most likely be the result. As a result of the high correlation

between the LOC metrics, lLOC is classified as a quantitative size metric.

6.3.4 McCabe’s Cyclomatic Complexity

McCabe created one of the most commonly used qualitative complexity metrics

used in software engineering, the Cyclomatic Complexity Metric, commonly noted as

V(g) (McCabe, 1976). It is a measure of both size and program complexity, and generally

is a good indication of program fault content. A higher V(g) value results in a more

complex code module (McCabe, 1976). The RSM tool uses the classical definition

(there have been many enhancements to this metric (Zhao, Wohlin, Ohlsson & Xie,

1998), the total number of edges and nodes in a given program or program module

69

(McCabe, 1976: Munson, 2003). Edges are the conditional paths and nodes are the

processing that takes place at the end of those paths (McCabe, 1976). In an “if” block,

for example, a new path is created. If the block’s conditional holds true, then the code

takes a new path, otherwise, the code continues as normal without performing the

operations within the block. A conditional node is created determining the Boolean value

of the “if” statement and a connection node is created joining the two possible paths

together. Again, this can all be seen in a flow diagram much like the examples given by

Munson (2003). It is these edges and nodes that define the V(g) value.

 Figure 6.1 Control Flow Diagram of a For Loop.

This is much more of a qualitative metric than those that measure LOC. High

LOC counts are not necessarily correlated to the number of edges and nodes contained

within a program code module, however, in many cases high LOC counts indicate high

V(g) values. For example, a program can be written to perform one set of operations

where there are no decision structures. The operations may take 1000 lines of code but

the V(g) value is small. On the other hand, many decision structures add to the LOC

counts, giving both high LOC and V(g). This metric can generally be computed even

before coding begins if there is detailed design documentation. It is thus available to the

70

programmers at an early stage of development (Jung, Pikva & Kim, 2000: McCabe,

1976).

6.3.5 Compiler Directives

Each programming language has a standard set of libraries that must be included

when compiling and running programs (Pratt & Zelkowitz, 2001: Sebesta, 1999). Since

each language has different numbers of libraries that are needed in order for the program

to run properly, counting the number of compiler directives and files included is a good

measure of program complexity. With each header line, an additional library is loaded

into the program by the compiler, producing larger executable files and additional

chances for faults. Of course, these headers do not always have to be the standard ones

included in the language. Programmers can create their own, which is why this metric is

important for the discussion of how complex a program can become. Compiler

Directives tends to be more of a qualitative metric, meaning that this measurement may

not have a direct impact on program size but may impact its overall complexity. The

RSM tool defines this metric as all of the #include, import(s) and using statements, used

by C and C++, Java and Visual Basic, and C# respectively.

6.4 Dynamic Metric Definitions

6.4.1 Memory Usage

The amount of memory used by a program is one of the important factors in the

program’s performance (Ebert, 1995). Using the memory profiler of the AQTime tool, it

is possible to take a snapshot of the memory used at its maximum point. The results are

71

often significantly different, showing that the libraries included by each language have

complexities unseen by the programmer. This metric is both quantitative and qualitative.

Large numbers in this measurement can lead to memory management issues, with

memory leaks a possibility. One thing to note is that these programs are not interactive

and memory size can change with different size inputs.

6.4.2 Total Objects Created

The total number of objects created can often describe how complex language

libraries tend to be and how many are used (Ebert, 1995). Objects in this measurement

refer to the number of items placed in memory. These do not have to be objects in the

object oriented programming sense, but rather they can be things as simple is integers,

strings, constants, etc. Larger numbers of objects created can show another factor of

dynamic size and complexity. Memory usage is of course related to the numbers of

objects created, but it does not accurately describe the size of the objects in memory.

Memory usage values can be large for small numbers of objects, and it can be small for

large numbers of objects. Knowing how many objects have been created gives insight

into what memory usage actually means. The AQTime memory profiler can again take

snapshots of the value of objects created on a given execution. This is more of a

quantitative metric as it relates to program size.

6.4.3 Average Execution Time

Execution time is a direct measure of software performance (Munson, 2003).

Execution time is affected by factors other than the complexity of the program.

72

Operations from within the operating system can stall the measured process for seconds

at a time if another process takes priority. It is these extra factors that force the need for

an average over several runs. The AQTime execution profiler times the program from

start to finish. The programs written for this project are very simple and have no

interaction with the user, so no user interferences are possible in slowing down the run.

The average execution time is taken as the simple mean of ten consecutive timing

measurements. This metric is qualitative in that faster software is usually desired. The

programs were all run on a stand-alone machine and each run was performed under the

same conditions. This variation leads to asking for more information, which is why the

following two metrics were introduced.

6.4.4 Minimum Execution Time

Average run-time is not enough to describe exactly how long it takes each

algorithm to run. Large outliers below the mean value can skew an average, making the

average meaningless without additional information. Of the ten executions in which

timing measurements were taken, the lowest of these ten is recorded for this metric.

Again, since faster software is what is desired, this metric relates to software quality.

6.4.5 Maximum Execution Time

This metric is similar to the Minimum Execution Time. The difference here,

however, is that among the ten values used in the average, the largest is recorded. Once

again, quality is the attribute here since faster software usually is what’s desired.

73

6.4.6 Total Routine Calls

Another measure of program complexity is the total number of routine calls made

during execution. This can also be a factor in the execution time of the program

(Munson, 2003). Using the AQTime execution profiler, it is possible to see how often

routines are used to complete the programming objective. The profiler counts the number

of function calls throughout each execution and records the value. Complexities unseen

by the programmer can be brought to light as object definitions are often hidden.

6.4.7 Routines Executed

This complexity metric is a measure of all of the unique routine calls through a

given run. Unlike the total number of routines, this metric only counts a given routine

one time after it has been called and ignored if the routine is called subsequent times.

Without this metric the total number of routine calls when running a program loses some

of its meaning. Small numbers of unique routines can be called many times producing

large values for Total Routine Calls. Also, large numbers of unique routines can be

called only a few times, producing smaller numbers in Total Routine Calls. The AQTime

execution profiler records this data at the end of each execution. This metric is

qualitative.

6.4.8 Total Routines

This metric describes the total number of routines defined in the objects created.

This does not necessarily mean that every routine defined will be used in the program’s

execution. The Total Routines metric can be another measure of the complexity that can

74

explain the variation of memory usage from program to program. The routines

mentioned here are not only the ones defined in the source code, but those routines

defined in header files and object files that are available to the programmer. The

AQTime execution profiler records this data once a given run has completed.

6.5 Metadata Metric Definitions

6.5.1 Type References

This metric is used to describe the number of built-in data types referenced from

within a given assembly. These include types such as int, char, float, double, and

language specific types such as System or PrintStream (Petzold, 2001). This is useful in

understanding the many different data types used to implement an algorithm. Within the

metadata, there is a table known as TypeRef, which contains a listing of all of the types

used within the assembly. Also included in this table is the information used to find

where the data type is defined in the language libraries.

6.5.2 Type Definitions

This table lists all of the programmer defined data types. These include class

definitions, #define references, arrays, and other objects not already available in the

language libraries (Petzold, 2001). Languages suited for a given algorithm allow users to

use built-in objects rather than defining their own. When programmers define their own

objects, it becomes easier for faults to enter into code since the new types are not always

fully tested.

75

6.5.3 Fields

This table contains a listing of all of the variables used within the assembly.

These may be as simple as a single integer or as complex as an array of objects (Petzold,

2001). As more variables are declared, both the programmer and the operating system

must undertake more memory management. If an assembly contains many fields, it is

clear that the program is complex in terms of the number of objects that must be used in

order to complete the algorithm.

6.5.4 Methods

This table contains the number of methods called from within the source files.

This is different with respect to the number of methods called in the dynamic

measurements section. This table only includes the methods called at the highest scope.

This means that if a method calls another method, it is ignored, showing only the number

of root calls (Petzold, 2001). This is important in understanding how many methods,

both user defined and built-in, must be used in order to complete an algorithm. This is

taken from the perspective of the programmer with regard to information hiding,

commonly used in object oriented programming (Sebesta, 1999), not the system as a

whole as is seen by the AQTime tool used to take dynamic measurements.

6.5.5 Member References

This table contains all of the members referenced in all of the classes and data

structures used by a given assembly. These include items such as class member functions

and variables at the scope of the entire assembly (Petzold, 2001). References from deep

76

within a language’s structure may be found in this table. Also, user defined references

may be found in this table, including the entry point called by the operating system. A

large number of member references is a clear indication of memory management

complexities both on the part of the programmer and the operating system.

6.5.6 Assembly References

Described within this table are the external references needed by a program to

properly resolve all of the function calls. In some cases no assemblies are referenced, as

the base definition of the programming language may be suitable enough on its own

(Petzold, 2001). In other cases, however, pre-compiled objects must be imported into the

assembly so that the program may find all of the objects needed to complete an operation.

These operations include items such as I/O, arithmetic, and other operations that .NET

programs may perform (Petzold, 2001). With many additional assembly references, a

program’s executable may become large and difficult to manage from the perspective of

the operating system, causing slower performance and larger amounts of memory usage.

This can be a major factor in the speed of .NET programs (Petzold, 2001).

6.5.7 Stand Alone Signatures

In .NET programs, data is described by its signature. Signatures are used to

describe all of the references necessary for overloading data members externally by

outside assemblies (Petzold, 2001). This means that a routine (i.e. function within a

class) or operator (such as a ‘+’ or ‘-‘) used in a C# program might be overloaded by a

Visual BASIC program. The assembly that wishes to do the overloading must first read

77

the signature of the routine or operator to gain the location information of the given

routine or operator, at which time it may gain access to the fields containing the data that

is to be overloaded. The signature can be seen as a gateway to the fields section of the

metadata (Petzold, 2001). The number of signatures is directly correlated with both the

number of fields and the number of methods contained in other data, as these are the

objects that may be overloaded (Petzold, 2001). Obviously, with more data that must be

signed, there will be more items that must be managed in memory and more objects that

must be created by both the operating system and by the programmer.

78

CHAPTER VII

PRINCIPAL COMPONENTS ANALYSIS

7.1 Understanding Metric Data

Defining primitive metrics and taking measurements is only the first part in

understanding the size and complexity of each program written as part of this research

study. The metrics defined in Chapter 6 are only the primitive data elements that

describe certain aspects of each program but give little meaning without further analysis

(Munson, 2003). This analysis can be found in the form of derived metrics; linear and

non-linear composites of the primitive data sets created from taking measurements

(Munson, 2003). Maurice Halstead was one of the original derived metric pioneers using

what he called the Software Science Metrics to obtain additional information from his

primitives (Halstead, 1977).

The Software Science Metrics used addition, multiplication, and logarithmic

functions on the primitives to create new derived values without regard for measurement

unit. What Halstead failed to understand was that simple mathematical computations on

values do not give additional information from the primitive data, but in fact a loss of

information is possible instead (Halstead, 1977: Munson, 2003). Munson suggests an

example. If 5000 undergraduate students attend a university, and 1000 graduates attend

the same university, then it is simple to assert that there are 6000 students at the

university. The addition of these two groups does not lead to new information about the

79

relationships between graduates and undergraduates (Munson, 2003). Adding numbers

together gives no new information and does not explain the variation between

undergraduate students and graduate students. What is needed instead is a derived metric

that will combine the primitives in such a way that sources of variation can be accounted

for and understood. Software metrics tend to be highly correlated and so reasons for the

differences in measurements must be made visible (Munson, 2003). This is the purpose

of Principal Components Analysis.

7.2 Understanding Sources of Variation

Finding mean, median, and mode can certainly describe some of the central

tendencies found in primitive metric data (Halstead, 1977: Jackson, 1991). While these

statistics may be useful, it is important, however, to understand the relationships of what

is being measured. Information on the sources of variation among different measurement

values can be both intrinsic and systemic. Intrinsic variation can be as simple as saying

that some programs have more lines of code than others. Systemic variation, on the other

hand, is related to errors in measurement and can introduce noise into the analysis

(Munson, 2003). It is hoped that the systemic variation can be eliminated from the

measurement process.

If two related metrics share a common element of variation, they are said to have

covariance. If the two metrics vary about the mean in much the same way, the shared

variance is considered to be large. If, conversely, the two metrics do not vary about the

mean in a similar way, the covariance is considered to be small (Jackson, 1991). Since

80

most of the metrics used in this study will tend to be highly correlated, it is important to

understand that some may share common factors in variation (Munson, 2003).

Each metric for a given algorithm will have its own mean and variance and with

this in mind it can become difficult to impossible to learn anything about a program

(Munson, 2003). By adjusting each metric for the effect of its own mean and standard

deviation then it is possible to look at the adjusted values and understand something more

about the metric in question (Jackson, 1991). To do this, a value known as a z-score must

be calculated. The z-scores will now have a mean of 0 and a standard deviation of 1.

Positive z-scores indicate that the measurement was greater than the mean, while

negative z-scores indicate that a measurement was less than the mean (Munson, 2003).

By using z-scores, it is possible to determine which metrics share variation. Two metrics

with similar z-score values will be covariate, and metrics with dissimilar z-score values

will be non-covariate. Understanding covariance can lead to additional and useful

information that raw metric data cannot give on its own (Jackson, 1991: Munson, 2003).

Using the z-scores, it is now possible to begin the process of Principal Components

Analysis.

A z-score is calculated simply by the following formula:

Zi = (xi – x’i) / δ

where subscript i represents the current measurement, x is the measurement value, x’ is

the mean of the measurement values, and the δ is the Standard Deviation (Jackson, 1991).

Now, as was mentioned, the z-score values will have a mean of 0 and a Standard

Deviation of 1 (Jackson, 1991: Munson, 2003). If z-score values are greater than 1.0, this

81

means that the measurement is larger by at least one Standard Deviation from the mean.

If they are less then –1.0, this means that the measurement is smaller by at least one

Standard Deviation from the mean (Jacskon, 1991).

The next step is to find the relationship coefficient, which will be based on the z-

score values above (Jackson, 1991). Using the z-scores, it is possible to calculate the

Pearson product moment correlation statistic (Munson, 2003). The formula is as follows:

rxy = (1/n-1) * SUM[(from i = to n) ZxZy]

This yields a diagonal matrix of correlation coefficients showing how each value is

related to every other value in the data set for a given algorithm (Jackson, 1991: Munson,

2003). With both the z-scores and the Pearson technique, it is possible to see how each

variable (in this case measurements taken on a particular algorithm in a particular

language) is related to every other variable and how they share variance.

7.3 Metric Domains

Metric data, as was already stated, are simply data and nothing more. It is very

difficult to draw any useful conclusions from simply reading raw metric values (Munson,

2003). In Principal Components Analysis, it is necessary to transform the highly

correlated raw values into a set of unrelated domains; metrics on specific attributes of the

object measured, in this case, software (Munson, 2003). The main problem here is to

determine exactly how many usable sources of variation can be identified in the original

82

metric values. The domain metrics are seen as principal components, each illustrating an

underlying common attribute from among the raw values (Munson, 2003).

Principal Components Analysis is a straightforward process. We wish to

transform our set of correlated values into a set of non-correlated values. Given a set of n

metrics M indexed from 1 to n such that M = (m1,…,mn) we wish to transform them into

a set n domain metrics D such that D = (d1,…,dn). Each measurement value will be

mapped to the domain in which it is most correlated (Jackson, 1991: Munson, 2003).

This is done by extracting the eigenvalues and the corresponding eigenvectors from the

elements in the matrix created in the previous section. The complete mathematical basis

for extracting the eigenvalues and eigenvectors can be found in Appendix 1 of Munson’s

textbook (Munson, 2003). Once the eigenvalues and eigenvectors have been found,

calculating the product moment will yield all of the principal components. The principal

components represent the orthogonal measurements in which there is no correlation to

any other value. There is a point of diminishing returns, however, as the principal

components will not yield any information about variation if the eigenvalues are too

small. For this reason, the stopping point for eigenvalue extraction is an eigenvalue

minimum of 1.0. In this way, only the orthogonal domains that are most correlated with

the metric values will be visible (Jackson, 1991: Munson, 2003). A domain matrix

results from the operations performed on the covariance matrix from the previous section.

Once the new orthogonal metric domains have been found and have been placed

in their new matrix, new sources of variation will become apparent. This variation can be

seen in the fact that often metrics will be highly correlated to one domain but not to

another. Higher metric domain values indicate higher correlation to that domain and this

83

new source of variation is a direct artifact of the Principal Components Analysis process

(Jackson, 1991). To clarify this new variation, a varimax rotation will be performed on

the domain matrix (Jackson, 1991). The resulting rotated matrix will show factor

patterns for the metric domains that have been extracted (Munson, 2003). Now raw

metrics are shown to be highly related to certain domains without unclear sources of

variation. All unseen possible noise has been removed from the data. All of the

mathematical foundations of Principal Components Analysis can be found in Appendix 1

of Munson’s textbook (2003).

7.4 The Relative Complexity Metric

Once Principal Components Analysis has been completed, there can still be an

additional simplification of the metric data. Munson suggests that if it is possible to

describe a program or program module in terms of a single complexity value, this value

can be used in a linear function to describe how fault-prone a program or module might

be (Munson, 2003: Munson & Khoshgoftaar, 1990). This value is known as a Relative

Complexity Metric (RCM). This new metric is a weighted sum of a set of uncorrelated

attribute domain metrics, the orthogonal domains found earlier (Munson, 2003). The

sum is weighted against the eigenvalues that were also extracted earlier. In order to

calculate the RCM, the following formula is used:

RCM = SUM(ljdji)

84

where l is the eigenvalue extracted from jth measurement and d is the ijth domain metric

found in the last matrix created from the previous section after the varimax rotation is

performed. From this RCM value, one measurement can describe a single program

module.

Once the RCM has been found, it is much simpler to understand how complex a

given program or module is. The programs being measured for this research can now be

grouped and arranged by this single metric (Munson, 2003). The RCM provides a simple

mechanism of aggregating the many similar complexity metrics into one single metric

used to describe a set of programs (Munson, 2003). The RCM however is not a complete

measure but rather a stand-in for aspects of software quality that are not measurable and

it can be simply stated as a surrogate for software faults (Munson, 2003). The RCM

value will be used in the following discussions on how each programming language

performed with respect to a given algorithm. The higher the RCM value, the more

complex the program and the more likely faults may be contained within the source code.

An example of this entire process may be found in Munson’s textbook, Chapter 6 (2003).

Appendix C contains all of the process output, the domain metrics, and the RCM values

for each algorithm if reference is needed. It must be made clear, however, that even

though a program might have a higher RCM value, meaning that the program has a

greater fault-prone nature, this does not mean that the program actually contains faults. It

is a measure of how likely faults may appear when compared to other RCM values

(Munson, 2003).

85

CHAPTER VIII

STATIC MEASUREMENT ANALYSIS

8.1 Introduction

Before looking at the overall results of the measurement process, the process must

first be broken down into three parts: the static measurements, the dynamic

measurements, and the metadata measurements. After the process of Principal

Components Analysis, the static, dynamic, and metadata metrics will be broken into two

domains representing the quantitative and qualitative software attributes. Understanding

the three parts measured independently will allow for greater understanding of the entire

process. In this chapter, the first part of the measurement process, the static

measurements, will be analyzed and discussed in detail, revealing important trends that

have surfaced while writing the programs. Appendix B contains all of the raw

measurement values.

The static metrics used in this research are designed to show the difficulty of

actually writing the code. When remembering the language descriptions from Chapter 4,

some of the results may be surprising, while others may be what were expected. In either

case, the measurements taken here will be a good indication of the overall difficulty of

actually writing the programs. One thing that is important to remember when looking at

these results is that coding style was maintained in all five languages whenever possible

86

(Sedgewick, 1983), and all of the implementations were structured using traditional

approaches (Pratt & Zelkowitz, 2001: Sebesta, 1999).

8.2 Individual Algorithm Results

8.2.1 Linear Search

One of the simplest algorithms in this study is Linear Search. It produced

different results from language to language, but the simplest language for this algorithm

was Java. It produced the smallest LOC measurements and was small in the area of

Cyclomatic Complexity. Next was C#, which is not surprising simply because the code

syntax is similar. Third for this algorithm was Visual BASIC, which is a little

unexpected given that Visual BASIC is designed for readability rather than with construct

in mind. Even so, it still scored well (Pratt & Zelkowitz, 2001: Sebesta, 1999). The C

implementation was fourth. It had a larger amount of LOC but scored well on V(g).

Finally, at the end of the list, was C++, which is expected, as it is a super set of C rather

than its own language (Sebesta, 1999). It produced higher lines of code and higher V(g).

C++, with the way it structures class objects, adds what seems like a higher level of

complexity.

87

Linear Search Static

0

10

20

30

40

50

60

70

80

RCM 50.20592 67.85758 43.23943 39.83332 48.86375

LSearchInC LSearchInCPP LSearchInCS LSearchInJava LSearchInVB

Figure 8.1 Linear Search Static Measurement RCM Results.

8.2.2 Bubblesort

For the second time, Java was the leader and proved to be the least complex

solution. Again, its LOC measurements were the smallest. Second again was C#, but its

values were still close to Java since its syntax structure is similar. Third this time was the

C implementation; better than Visual BASIC, which is expected as Visual BASIC, with

its English like structure tends to be more complex (Pratt & Zelkowitz, 2001). Visual

BASIC was fourth, as it had higher LOC and V(g) measurements than all of the other

implementations except for C++. C++, as before, proved the most complex as it is a

super set of another language, rather than its own language. Again, the class

implementation portion of the C++ language proved to be the main complexity factor, as

it added counts to the LOC and V(g) values.

88

Bubble Sort Static

0

10

20

30

40

50

60

70

80

RCM 45.86751 68.82833 46.04476 41.97851 47.28089

BubbleSortInC BubbleSortInCPP BubbleSortInCS BubbleSortInJava BubbleSortInVB

Figure 8.2 Bubblesort Static Measurement RCM Results.

8.2.3 Quicksort

In this set of implementations, things changed from the previous. The leader with

the lowest RCM value this time was C#. It produced lower LOC and V(g) metrics than

its counterparts. Java, while not the leader this time, was still close to the C#

implementations with the same reasons as before, that its syntax and code structure are

very much like Java. Java was developed first, and, as stated in Chapter 4, C# was

developed to be based on Java and C++ together (Petzold, 2001: Pratt & Zelkowitz,

2001: Sebesta, 1999). Third again was the C program, which was a little higher for this

algorithm than for the others when related to its competition. It had a value of 47.3,

nearly six points higher than the leader. Visual BASIC was fourth once again as it

produced a larger amount of LOC. C++ once again falls fifth, with its syntax again the

89

culprit. C++, as was stated in Chapter 4, was meant for object organization and

readability, which is why these results are not surprising. With organizational features,

additional lines of code are required (Pratt & Zelkowitz, 2001: Sebesta, 1999).

Quick Sort Static

0

10

20

30

40

50

60

70

80

RCM 47.38275 68.25952 41.45637 43.27473 49.62663

QuickSortInC QuickSortInCPP QuickSortInCS QuickSortInJava QuickSortInVB

Figure 8.3 Quicksort Static Measurement RCM Results.

8.2.4 Naïve String Matching

In this algorithm, C was the clear leader with the lowest RCM value. As this is a

string-matching algorithm, and since the processing of strings is necessary, C came out

ahead with its use of arrays of characters to perform string operations. The other

languages fell slightly behind due to the use of additional constructs and language

features for the processing of strings. One surprising result is that Visual BASIC was

second, even though the language is not designed for this purpose (Pratt & Zelkowitz,

2001). One thing that can be reasoned about Visual BASIC’s results is that because

Visual BASIC is designed to be simple, and since this is a simple algorithm by

90

comparison to KMP String Matching, it produced lower static measurement values

(Cormen et al., 2001). Java and C# were third and fourth respectively, proving again that

they are close in value because of their syntax structure. C++, while using the same

convention as C for its string processing, still proved to be the most complex statically

with its class object organization and implementation.

Naïve Match Static

0

10

20

30

40

50

60

70

RCM 38.10136 65.04539 52.79666 52.75918 41.2974

NaiveMatchInC NaiveMatchInCPP NaiveMatchInCS NaiveMatchInJava NaiveMatchInVB

.

Figure 8.4 Naïve String Matching Static Measurement RCM Results.

8.2.5 KMP String Matching

For this algorithm, C was the leader producing the lowest RCM value. The C

implementation had the fewest LOC and V(g). C++, however, continues to be plagued

by problems in the very same areas mentioned above. Again, the C++ implementation

was the worst performer, posting an RCM value of nearly 68. Visual BASIC did not fare

as well with this algorithm as it posted high measurement results, the highest it has done

so far. This is a more complex algorithm and Visual BASIC was not designed for this

kind of processing (Cormen et al., 2001: Sebesta, 1999). Java and C# had the same

91

problems with this algorithm that it did with Naïve String Matching. The addition and

use of the String object proved difficult to parse and more lines of code were needed for

this process. They were again close to each other for the same reasons as before, that

their syntax is almost the same.

KMP Matching Static

0

10

20

30

40

50

60

70

80

RCM 40.9179 67.93742 45.56369 44.20303 51.37796

KMPMatchInC KMPMatchInCPP KMPMatchInCS KMPMatchInJava KMPMatchInVB

Figure 8.5 KMP String Matching Static Measurement RCM Results.

8.2.6 Polynomial Addition

The C programming language fared best with this algorithm posting the lowest

RCM value. The factor that gave C the edge was the need for fewer LOC to write the

program. C++ was once again the worst having the highest measurement data for all of

the static metrics. The language features of C++, C#, and Java proved too complex for

this simple algorithm (Cormen et al., 2001: Sebesta, 1999). These languages might have

92

been overkill for a program of this size and complexity. Java and C#, as all of the

algorithms before, had similar values when compared to the others for their syntax is

similar. C++, while closer to a competitor this time, Visual BASIC, still did not perform

like the others, posting higher measurements, making this algorithm more complex.

Again, a class implementation simply for this use of adding polynomials together, might

have been more than was needed. It is important to illustrate, however, since C++ is so

often used. Perhaps in a larger piece of software, a simple function for computing this

process might have been a benefit, but for such a small scope, it was not.

PolyAdd Static

0

10

20

30

40

50

60

70

RCM 33.52708 62.8941 50.28573 49.34546 53.94764

PolyAddInC PolyAddInCPP PolyAddInCS PolyAddInJava PolyAddInVB

Figure 8.6 Polynomial Addition Static Measurement RCM Results.

8.2.7 Gaussian Elimination

The results for this algorithm were as expected. For the first time, C++ was not

fifth in the list for an algorithm. Visual BASIC was the most complex with the highest

RCM value. This makes sense, as Visual BASIC was not designed for this kind of

processing. It had the highest LOC and V(g) measurements. The leader for this

93

algorithm was C with its simple structure, language constructs, and small values for the

LOC measurements. This makes sense since C was designed for scientific programming,

and while this is not scientific software, the calculations done in this algorithm might be

compared with software that uses large amounts of mathematics. Close again were C#

and Java, second and third respectively, and they were once again close for the reasons as

stated above for all of the algorithms thus far. C++ was fourth, not last this time, but

again, the way it handles its class of objects implementation proves to cause higher LOC

and V(g) measurements.

Gauss Elimination Static

0

10

20

30

40

50

60

70

RCM 40.90937 61.37518 43.67452 42.1985 61.84244

GaussElimInC GaussElimInCPP GaussElimInCS GaussElimInJava GaussElimInVB

Figure 8.7 Gaussian Elimination Static Measurement RCM Results.

8.2.8 Minimum and Maximum

For this algorithm, the C implementation produced the least complex source code,

followed very closely by C#. Since the algorithm used to find the minimum and

maximum values in a given array was simple (Cormen et al., 2001), the features of

94

object-oriented programming may not have been necessary (Cormen et al., 2001: Sebesta,

1999). C++ was the most complex and its biggest problem was in high measurement

values. For the first time, Visual BASIC has fallen further behind as it had high LOC

counts. The Visual BASIC implementation required higher LOC than all of the other

implementations (except C++). An odd result in this algorithm is that Java and C# are

not as close as in the algorithms prior. There is a difference of over two RCM points, as

C# was less complex than Java. This algorithm, while not complex and with simple array

processing, produced different results as compared with the other algorithms.

Min/Max Static

0

10

20

30

40

50

60

70

RCM 40.98228 61.63445 41.66244 43.99628 61.72455

MinMaxInC MinMaxInCPP MinMaxInCS MinMaxInJava MinMaxInVB

Figure 8.8 Minimum and Maximum Static Measurement RCM Results.

8.2.9 Random Selection

In this algorithm, Java was the language that produced the least complex solution.

The highest RCM value was posted by C++ with its object implementation structure

95

again the culprit for its high complexity. Second was C#, again with a value close to Java

for their syntax styles are similar. C was third, with its low LOC and V(g) counts when

compared to Visual BASIC and C++. Visual BASIC was fourth with an RCM value of

about 55. Visual BASIC had the expected results, as the use of recursion tends to be

more complex. Rather than an explicit loop, this technique provides an implicit loop that

can be hard to parse in a language with the design structure as Visual BASIC (Cormen et

al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).

Random Select Static

0

10

20

30

40

50

60

70

RCM 43.54998 66.32114 43.39678 41.52603 55.20607

RandSelectInC RandSelectInCPP RandSelectInCS RandSelectInJava RandSelectInVB

Figure 8.9 Random Selection Static Measurement RCM Results.

8.3 Evaluation of Results

Since the static measurements defined for this study are designed to measure the

complexity on the source code itself for each implementation, it is important to discuss a

96

few trends. Since C is not an object-oriented language, some of the complexities of class

definitions are removed, and as a result the C programs require fewer LOC to complete

an implementation of each of these algorithms. Visual BASIC, as has been discussed,

was designed to be a simple language and for the most part, it has achieved this goal as

often enough its V(g) was small and so were its LOC measurements (Sebesta, 1999).

One thing to note, however, is that Visual BASIC’s results were a bit of a surprise. For

some of the more complex algorithms, it did well as far as not being complex, going

against what is expected based on its design (Pratt & Zelkowitz, 2001: Sebesta, 1999).

C++ was the worst performing language for each algorithm. In every case the

C++ programs required more LOC and in most cases had a higher V(g). C++ class

definitions are typically written into a header file and these classes can be reused as

libraries in the future. The implementations of these class definitions are usually found in

corresponding source files. In class definitions, additional lines of code are needed as the

function prototypes are declared in the header, and then written again in the

implementation file. Source code then typically looks like the following in the

implementation file:

ReturnType ClassName :: MethodName () { … }

This line is repeated in the header file where it is declared. C++ is also different in that

class definitions are done externally from the main running program. C# and Java main

entry points are always as part of class definitions, so scope operators and additional

declarations are not always necessary (Pratt & Zelkowitz, 2001: Sebesta, 1999). Also,

97

with this basic feature of both Java and C#, fewer lines of code are required to declare

and implement a class and its members.

One interesting fact about the measurements is that the C and C++ Compiler

Directives metric was variable, while the other languages each had a standard value. C

and C++ require additional headers since the libraries that are coupled with the language

are separated into logical parts. For example, there are libraries that define input and

output, higher-level mathematical functions, and many others. For all of the other

languages, one or two imported libraries gave to the compiler everything it needed. As

will be seen in Chapter 9, where dynamic measurement results are discussed, this will

have interesting effects on memory management.

Another interesting trend that can be observed is that both the C# and Java RCM

values were often very close to one another. As has been stated by Microsoft, the design

of C# was intended to match the syntax of Java with the power of C++ (Petzold, 2001).

As a result, the programs look almost identical and tend to use the same control

constructs and data structures. In almost all cases, the Java and C# measurements vary

from each other only slightly which is the direct reason that the RCM values for each are,

in most cases, very close.

8.4 Conclusions

Static metrics give developers a more functional understanding of how difficult

programs are to implement. What is more important, however, is what can be learned

from the results (Munson, 2003). Some languages will be more complex than others,

forcing developers to make educated decisions about the tools that will be used in a

98

software life cycle. From the static measurement results and the trends presented here,

developers will be able to gain better understanding of programming language semantics

that can be applied to projects in the future. All static measurement results and analysis

documents may be found in the appendix.

99

CHAPTER IX

DYNAMIC MEASUREMENT ANALYSIS

9.1 Introduction

The second part of the measurement analysis is the study of the dynamic metrics

that have been obtained on all of the programs written for this study. As has been

discussed, the dynamic measurements refer to the actual performance of the programs

rather than the complexity of the source code (Munson, 2003). Here the speed,

efficiency, and memory management of each language can be seen through the

measurements of each algorithm program. With this information, developers will be able

to best understand how programs will behave under specific language environments. The

two principal components singled out are the qualitative and quantitative variations.

After Principal Components Analysis was performed on each algorithm’s

measurements, the results that were found tended to be consistent with the language

descriptions in Chapter 4. In most cases, each language performed as expected with the

exception of Visual BASIC, which had the most variable measurement data. This

affected the outcome of the Principal Components Analysis process to some degree as it

introduced some new sources of variation. Understanding this source of variation will be

the most important factor in making sense of the raw data. All raw measurement results

can be found in Appendix B.

100

9.2 Individual Algorithm Results

9.2.1 Linear Search

The C# implementation of Liner Search was the best performer over all. It was

strong in the areas of declared routines, routine calls, and routines executed. Also, the

run-times were better here than with the other programs. The C program had the second

highest RCM value. Its strengths lied in memory size, routines executed, and total

objects created. Visual BASIC was next and had some interesting results. While

performing better in some areas than the other languages, its memory size became a

weakness since this measurement value was the second highest. Also, execution times

for Visual BASIC were among the highest. C++ was fourth and had some weak areas.

The C++ implementation produced high measurements in the areas of total routines

defined, routines executed, and total routine calls. Finally, Java was the worst performer

producing the highest RCM value. The weakness in Java was found in its large size in

memory, its slow execution times, and its large number of objects created. Each of these

measurements was highest in the Java implementation.

101

Linear Search Dynamic

0

10

20

30

40

50

60

70

RCM 42.37891 57.94902 36.66545 63.33794 49.66868

LSearchInC LSearchInCPP LSearchInCS LSearchInJava LSearchInVB

Figure 9.1 Linear Search Dynamic Measurement RCM Results.

9.2.2 Bubblesort

For the second time the C# implementation was the best performer, posting an

RCM value of under 40. The implementation’s strongest areas were found in objects

created, executions times, and the metrics concerning routines. It was weak, however, in

memory size. The second best performer was the C implementation with strengths in

memory size, objects created, and execution times. C# and C were separated only by a

point in their RCM values. Third in this algorithm was C++, which had strengths in

objects created, execution times, and routines executed when compared to the other

languages. It was weak, however, in memory size. Java was next although it was weak

in many areas. The memory size was large, it had slow execution times, and the total

routine calls were the highest. Visual BASIC was this time the worst performer with

large size in memory, executions times and total routine calls. The main problem area for

Visual BASIC was its total objects created measurement which was significantly higher

when compared to the other implementations. The results for Visual BASIC make sense

102

since the algorithm was not designed for programs with the amount of operations that

Bubblesort has (Cormen et al., 2001: Sebesta, 1999).

Bubble Sort Dynamic

0

10

20

30

40

50

60

70

RCM 40.11982 51.97794 39.10102 53.33151 65.46972

BubbleSortInC BubbleSortInCPP BubbleSortInCS BubbleSortInJava BubbleSortInVB

Figure 9.2 Bubblesort Dynamic Measurement RCM Results.

9.2.3 Quicksort

C was, for the first time, the best performing algorithm. The C implementation

produced the smallest measurement values for routines executed, objects created, and

was strong in execution times. The introduction of recursion may have been the reason

since this application is often used in systems programming (Cormen et al., 2001: Pratt &

Zelkowitz, 2001: Sebesta, 1999). C# was a close second producing the best execution

time values and a small measurement for the number of routines executed. Also, the total

number of objects created was among the smallest. C++ was third again, producing

small values for the measurements of execution time and objects created. C++ was weak,

however, in the memory size metric. Visual BASIC was fourth with weaknesses in

memory size, objects created, and total routine calls. Quicksort is a complex algorithm

103

and Visual BASIC may not have been well suited for this implementation (Cormen et al.,

2001: Sebesta, 1999). Java was again last, posting an RCM of over 60. The main

weakness for Java once again was in its memory size, where it was the highest. Also, the

executions times once again hurt the Java performance. An interesting result is that the

Quicksort routine offered in the environment and used in each language did not change

the results.

Quick Sort Dynamic

0

10

20

30

40

50

60

70

RCM 38.28461 55.84521 38.31768 61.33506 56.21744

QuicksortInC QuicksortInCPP QuicksortInCS QuicksortInJava QuicksortInVB

Figure 9.3 Quicksort Dynamic Measurement RCM Results.

9.2.4 Naïve String Matching

For Naïve String Matching, C was the best performer. The C implementation had

the strongest values in memory size, objects created, and routines executed. The C#

implementation was second from C with less than one point difference in the RCM

values. C# showed strength in execution times, routines executed, and total routines. It

was weak, however, in the objects created measurement. C++ was third again with

strong measurements for execution times and objects created. It had weakness, however,

in the total number of routine calls. Java was fourth with a major weakness in its

104

memory size. Also, since Java needed an additional String object for the data processing,

higher numbers were found in the total objects created measurement (Sebesta, 1999).

Visual BASIC was again the worst performer. It was weak in memory size and was

worst in execution time. The algorithm was run a second time in the worst-case (no

pattern match) and the results did not change, an interesting fact to observe.

Naïve Match Dynamic

0

10

20

30

40

50

60

70

RCM 39.5206 49.49306 39.71005 57.39745 63.87885

NaiveMatchInC NaiveMatchInCPP NaiveMatchInCS NaiveMatchInJava NaiveMatchInVB

Figure 9.4 Naïve String Matching Dynamic Measurement RCM Results.

9.2.5 KMP String Matching

C# produced the best performing implementation for KMP String Matching. Its

areas of strength were found in execution times, size in memory, and the measurements

concerning the numbers of routines involved in the program. C was second with

strengths in memory size and objects created. C was a little weaker for this algorithm

with respect to execution times. This may have been caused by not having a specific

object related to strings, since C uses arrays of characters that must be parsed (Pratt &

105

Zelkowitz, 2001: Sebesta, 1999). Visual BASIC was third this time, performing well in

the areas of execution time and total routines. This was surprising since Visual BASIC

was not designed for an algorithm with this much complexity (Cormen et al., 2001:

Sebesta, 1999). C++ was fourth and tended to be weaker in memory size and execution

times. Java was the worst performer producing high measurements in memory size,

execution time, and total routine calls.

KMP Match Dynamic

0

10

20

30

40

50

60

70

80

RCM 42.66456 51.57864 41.14096 67.98971 46.62614

KMPMatchInC KMPMatchInCPP KMPMatchInCS KMPMatchInJava KMPMatchInVB

Figure 9.5 KMP String Matching Dynamic Measurement RCM Results.

9.2.6 Polynomial Addition

The C# implementation produced the only RCM value under 40. C# was once

again strong in execution time, routines executed, and objects created. C was second

with an RCM value only two points higher. C was strong in memory size, objects

created, execution times, and routines executed. Visual BASIC was third with an RCM

106

value over 45. Although strong in execution time, Visual BASIC was weak in memory

size and total routine calls. C++ was fourth with a clear weakness in the total routine

calls, memory size, and in execution times. Since Polynomial Addition is a simpler

mathematic algorithm, C++ may have been too complex (Cormen et al., 2001: Sebesta,

1999). Java was once again the worst performer and again the weakness lies in memory

size, execution times, and the total number of routine calls.

PolyAdd Dynamic

0

10

20

30

40

50

60

70

RCM 41.05787 57.94366 39.78714 64.79111 46.4202

PolyAddInC PolyAddInCPP PolyAddInCS PolyAddInJava PolyAddInVB

Figure 9.6 Polynomial Addition Dynamic Measurement RCM Results.

9.2.7 Gaussian Elimination

The results for this algorithm were surprising in that Gaussian Elimination is a

much more complex algorithm than the others in this study (Cormen et al., 2001). C#

proved the best performer with fast execution times and strong measurements in objects

107

created, total routines defined, and total routine calls. C was second, and this makes

sense since C was developed to be a language for complex use (Pratt & Zelkowitz, 2001:

Sebesta, 1999). C was strong in memory size, objects created, and execution times but

was one of the worst in total routine calls. The most surprising result for this algorithm is

that Visual BASIC was third. Visual BASIC was not designed for high-level operations

such as this and yet had strong values for execution time, memory size, and routines

executed (Pratt & Zelkowitz, 2001: Sebesta, 1999). C++ was fourth with respect to this

algorithm. This implementation was strong in memory size but weak in most other areas.

Java was once again the worst performer with extreme weakness in memory size and

total routines called.

Gauss Elimination Dynamic

0

10

20

30

40

50

60

70

RCM 41.52299 54.13345 39.32732 66.41823 48.59801

GaussElimInC GaussElimInCPP GaussElimInCS GaussElimInJava GaussElimInVB

Figure 9.7 Gaussian Elimination Dynamic Measurement RCM Results.

108

9.2.8 Minimum and Maximum

The results were also a little surprising for this algorithm as well. C# was once

again the best performer. While weak in memory size, the execution time was the best

among the others. C was again second with strong areas in memory size and total objects

created. C again was one of the best in execution times. Visual BASIC performed well

considering that this algorithm is intended to be in worst-case time (Cormen et al., 2001).

The strengths for Visual BASIC lie in execution time and in the number of routines

executed while running the program. Java was fourth for this algorithm with weakness

again in memory size, objects created, and execution times. The most surprising of all of

the results for this algorithm was that C++ was the worst performer. With its diverse

application, C++ was thought to have performed better given that this algorithm is

intended for worst-case time analysis (Cormen et al., 2001: Sebesta, 1999). The major

weakness in this implementation was in the area of total routine calls. C++ was the worst

in this area. Also, execution time was a factor.

109

Min/Max Dynamic

0

10

20

30

40

50

60

70

RCM 41.13435 63.15437 38.16387 58.99384 48.55355

MinMaxInC MinMaxInCPP MinMaxInCS MinMaxInJava MinMaxInVB

Figure 9.8 Minimum and Maximum Dynamic Measurement RCM Results.

9.2.9 Random Selection

The results for this algorithm were as expected. Random Selection is complex, in

worst-case time, and involves recursion (Cormen et al., 2001). As a result, C# was the

best performer overall but by just less than one point over C. C# once again excelled in

execution time, total routine calls, and memory size. C was second with memory size its

greatest strength. C was a little weaker in this algorithm for execution times, however.

C++ was third with strengths in memory size, and execution time, but weak in the areas

of total routine calls, routines executed, and total routines. Java was fourth with

weakness in memory size and objects created. Java performed better in this algorithm for

the routines executed metric. The worst performer was Visual BASIC. While Visual

BASIC produced the smallest memory size, it was the weakest in almost every area. Its

execution times were the worst of any language across all algorithms.

110

Random Select Dynamic

0

10

20

30

40

50

60

70

RCM 39.96725 49.85313 39.06773 57.2604 63.85149

RandSelectInC RandSelectInCPP RandSelectInCS RandSelectInJava RandSelectInVB

Figure 9.9 Random Selection Dynamic Measurement RCM Results.

9.3 Evaluation of Results

Since the dynamic metrics are a measure of the performance of each program, as

with the static metrics, it is important to discuss a few trends. The C and C#

implementations were always the best performers. This makes sense since C was

designed for systems programming, which tends to take many operations that must be

done in short amounts of time. In programming operating systems, resource management

and efficiency were key areas in the C language design (Pratt & Zelkowitz, 2001:

Sebesta, 1999). C consistently had the best results for memory size and was always

strong in execution times. It seems that C performs under its design considerations. C#

performed well since it is very closely tied with the Microsoft Windows operating system

111

(Petzold, 2001). C# might not perform as well when built to compile under other

environments.

The three remaining languages were somewhat more variable. C++, while

efficient and fast, seemed to always produce high values for the total number of routines

defined. This is not surprising since the code written for each algorithm was intended to

take advantage of the object-oriented features of C++. The libraries needed to run these

programs all included data and operations that were not always necessary for each

program but are available to the programmer. This is why smaller numbers were found

in the measurements for routines executed.

Java, whose developers normally boast of the language’s memory management

capability, always seemed to fall short in this area (Sebesta, 1999). The largest values for

memory size were found using Java. This may be because garbage collection is found to

occur after the program terminates and since the profiler takes its memory snapshot at

peak memory usage levels. If garbage collection were to be handled more frequently, the

language may have performed better in this area.

Visual BASIC had the most variable results for its memory usage. In many cases

it was the worst performer, but there were instances where memory usages were small.

Another highly variable area was in the number of objects created. The Random

Selection algorithm produced an odd result in that the total objects created was very large

while the memory usage was small. Each object created for this algorithm may not have

been very large but many still needed to be processed causing execution times to suffer as

a result. While Visual BASIC generally did well in the static measurement portion of this

analysis, clearly the variability found in this language’s implementations were as a result

112

of the poor structure mentioned in Chapter 4 (Sebesta, 1999). Visual BASIC is not

strongly typed and therefore memory is created dynamically. The programmer does not

have full control over this memory allocation and so unpredictable results tend to occur

(Sebesta, 1999).

9.4 Conclusions

Each language seemed to perform as the designers intended. C and C# were the

most efficient languages while C++, Java, and Visual BASIC were not. The designs of

the latter three development environments centered on code writing ease and data

structuring rather than on performance (Pratt & Zelkowitz, 2001: Sebesta, 1999). Again

the important thing about studying metrics is what can be learned (Munson, 2003). As

with the static metrics, with the trends presented here, developers will have a more

educated outlook on how well languages perform for given programming problems

allowing for better decisions throughout the software life cycle.

113

CHAPTER X

METADATA MEASUREMENT ANALYSIS

10.1 Introduction

The third and final part of the measurement analysis is on the .NET metadata. As

was talked about earlier, the metadata is the .NET Framework’s way of passing

information from one assembly (executable) to another, even of the different assemblies

are written in different languages (Petzold, 2001). The benefit of the .NET environment

is that pre-written modules may be used as long as they are compatible with other .NET

programs. Each program has a set of tables contained within the executable code that

work like a database. Each table describes some information that other programs can

read from and use by making calls to routines, reading and using publicly stored data, or

declaring instances of objects contained in each program (Petzold, 2001).

As will be seen in the following sections, each program produced different data

even though each program was written using the same format. This is a direct effect of

the different language constructs that are used (Petzold, 2001: Pratt & Zelkowitz, 2001:

Sebesta, 1999). This is very much like using the English language in human speech as a

communication system. If the .NET Framework is thought of as its own communication

system, then it is agreed that there are possibly many ways to say the same thing. So in a

way, the different languages that run on the .NET Framework are like the different

114

expressions that people can use in the English communication system. Therefore, all of

these different uses of the Framework must be converted to a common format that all

assemblies using the Framework are able to understand. It is because of this reason that

different data resulted for each program written for each algorithm.

10.2 Individual Algorithm Results

10.2.1 Linear Search

The leader in this algorithm was the implementation written in C#. This is not

surprising as the language was designed to work closely with the Windows operating

system through the use of the .NET Framework (Petzold, 2001). Second for this

algorithm was the C implementation. Despite the object oriented nature of C#, C

performed well since it is not object oriented. There is no reason then to provide data

contained in objects that are never used. The third performer was Visual BASIC. With

this language there are less constructs as, again, it was not designed for complex

processing (Sebesta, 1999). Fewer symbols are then needed for the language to do its

work, and for it to be understood by other languages. Next was C++, which was slightly

higher than the other implementations as a result of the way it performs object oriented

operations. With the #include notation to import libraries, there are many objects that are

compiled into the program that are not used. C does this as well, but looking back at the

static measurement results, there were always less imported libraries in the C programs

than used by C++. Finally, Java performed with the highest RCM value. This likely is

caused by the Java virtual machine being compiled into the program (Pratt & Zelkowitz,

115

2001). Not only is the source code for the program included in the program, but also so

is the Java virtual machine instruction set, and this must be passed to other programs.

Linear Search Dynamic

0

10

20

30

40

50

60

70

RCM 42.37891 57.94902 36.66545 63.33794 49.66868

LSearchInC LSearchInCPP LSearchInCS LSearchInJava LSearchInVB

Figure 10.1 Linear Search Metatadata Measurement RCM Results.

10.2.2 Bubblesort

For this algorithm, C# was once again the leader, as again this language is closely

related to the Windows operating system. Second again was the C program as it does not

use object-oriented features and therefore produces less metadata to be passed from one

program to another. Third and fourth respectively were C++ and Java. Higher RCM

values can be found here because again, C++ uses many more libraries than the other

languages and these data have to be made available. Also, more objects tend to be

created for C++ programs than the others, as can be seen in the dynamic measurement

data in Chapter 9. Java has its virtual machine compiled into the program. Again, this

causes a need for additional metadata to be created so that other programs can import

what it needs of the Java virtual machine to execute methods in Java objects. Finally,

116

Visual BASIC produced the highest RCM value. Again, Visual BASIC is not meant for

complex processing, and a Bubblesort has many instructions when compared to other

faster sorting algorithms (Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).

Bubble Sort Dynamic

0

10

20

30

40

50

60

70

RCM 40.11982 51.97794 39.10102 53.33151 65.46972

BubbleSortInC BubbleSortInCPP BubbleSortInCS BubbleSortInJava BubbleSortInVB

Figure 10.2 Bubblesort Metadata Measurement RCM Results.

10.2.3 Quicksort

For this algorithm, C was the least complex solution. With the efficient way in

which C programs are structured, C seems ideal for Quicksort as it handles recursion

well. Second, and for the same reasons as before, C# performed well. C and C# were

close in this algorithm separated by less than half an RCM point. Third for this algorithm

was C++, performing better as it gains some of the benefits of C, but at a disadvantage

with the way it handles its object oriented structure. Fourth for this algorithm was Visual

BASIC. This was slightly surprising based on Visual BASIC’s simple design (Pratt &

Zelkowitz, 2001: Sebesta, 1999). Recursion is considered a complex process with an

117

implied loop, yet it did better than Java, a language designed for higher-level applications

(Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999). And finally, Java is fifth

with the highest RCM value for this algorithm with a result of over sixty.

Quick Sort Dynamic

0

10

20

30

40

50

60

70

RCM 38.28461 55.84521 38.31768 61.33506 56.21744

QuicksortInC QuicksortInCPP QuicksortInCS QuicksortInJava QuicksortInVB

Figure 10.3 Quicksort Metadata Measurement RCM Results.

10.2.4 Naïve String Matching

A slightly surprising result in this algorithm is that C# was the leader. By looking

at the static measurements, it was one of the more complex algorithms with the way it

handles its string processing. Second on this list was C, and this does make sense as it

handles its strings as though they are arrays of characters, not with a separate object with

perhaps unused properties as in the many of the other languages (Pratt & Zelkowitz,

2001: Sebesta, 1999). Third for this algorithm was Visual BASIC, which is not

unexpected. Since the algorithm was probably the simplest in the study, producing some

of the lowest measurements in almost every category, it seems to follow along with the

118

design of Visual BASIC discussed in Chapter 4 (Pratt & Zelkowitz, 2001: Sebesta, 1999).

Fourth was Java, still hurt by the fact that the Java virtual machine instruction set must be

compiled into the assembly. Finally, last was C++. Even though its string processing is

like C with its array of character array notation, it produced high measurement as a result

of the way it handles its class implementation.

Naïve Match Metadata

0

10

20

30

40

50

60

70

RCM 43.95671 65.6147 38.71243 56.43357 45.28259

NaiveMatchInC NaiveMatchInCPP NaiveMatchInCS NaiveMatchInJava NaiveMatchInVB

Figure 10.4 Naïve String Matching Metadata Measurement RCM Results.

10.2.5 KMP String Matching

First for this algorithm, with the least complex metadata, was C#. Again, this is

slightly surprising since it had complex measurements in the other categories. Because

C# is so tightly bound to the Windows operating system, it produced less metadata

(Petzold, 2001). Second again was C, which again was the result of its simple notation

for handling strings (Pratt & Zelkowitz, 2001: Sebesta, 1999). Third again was Visual

BASIC. The RCM value for this algorithm was, however, higher than the Naïve String

Matching value since this is a more complex algorithm. Visual BASIC again does not

119

always do well when given a complex problem since it is not designed for this (Pratt &

Zelkowitz, 2001: Sebesta, 1999). Fourth on the list was again Java, with a much higher

RCM value, due once again to the virtual machine having to be added to the assembly.

Finally, C++ was found to be the most complex, as its class implementation continues to

add to the complexity of code written in that language.

KMP Matching Metadata

0

10

20

30

40

50

60

70

RCM 44.33732 65.41536 38.18419 56.50146 45.56167

KMPMatchInC KMPMatchInCPP KMPMatchInCS KMPMatchInJava KMPMatchInVB

Figure 10.5 KMP String Matching Metadata Measurement RCM Results.

10.2.6 Polynomial Addition

For this algorithm, the leader with the lowest RCM value was C#. The algorithm

is not complex, and C# gains much from being tightly bound to the Windows operating

system (Cormen et al., 2001: Petzold, 2001). It is this combination of factors that gave

C# the edge. Second was Visual BASIC, which makes sense since this algorithm is

simple, and since this was the intent of Visual BASIC as a language (Pratt & Zelkowitz,

2001: Sebesta, 1999). Third was the C language, although not that distant in results from

Visual BASIC. Fourth for Polynomial Addition was Java, which continues to show

120

complexity in the fact that it has to compile the virtual machine as part of its programs.

Last again was C++, which has struggled all throughout this category of measurements.

PolyAdd Metadata

0

10

20

30

40

50

60

70

RCM 45.54353 66.63264 38.70535 54.50248 44.616

PolyAddInC PolyAddInCPP PolyAddInCS PolyAddInJava PolyAddInVB

Figure 10.6 Polynomial Addition Metadata Measurement RCM Results.

10.2.7 Gaussian Elimination

The results for this algorithm were about as expected. The leader was once again

C#, gaining its strength from the fact that it is tightly bound to the Windows operating

system (Petzold, 2001). Second was the C implementation, which makes sense, as this

algorithm is the most complex in this study (Cormen et al., 2001). While not tested in

this study, it is clear that the systems programming design of C pays off well for a

complex program with many calculations. Visual BASIC was third, with its simple code

structure. Fourth was Java, and this makes sense since it is a complex algorithm with a

virtual machine compiled into the program. Last again was C++, which, as in many of

the algorithms before, continues to be hurt by the way its class definitions are designed.

121

Gauss Elimination Metadata

0

10

20

30

40

50

60

70

RCM 43.4166 64.27769 39.28147 58.66395 44.36028

GaussElimInC GaussElimInCPP GaussElimInCS GaussElimInJava GaussElimInVB

Figure 10.7 Gaussian Elimination Metadata Measurement RCM Results.

10.2.8 Minimum and Maximum

This algorithm produced some different results. First was C#, which again uses

the Windows operating system closely (Petzold, 2001). Second this time was Visual

BASIC. This is due to its simple structure on a simple algorithm (Cormen et al., 2001:

Pratt & Zelkowitz, 2001: Sebesta, 1999). Third this time was C, which is a little

surprising given that this algorithm is simple and requires nothing complex. The C

implementation did well statically and dynamically, however more transferable metadata

was created for this implementation. Fourth was Java, which again, as before, is

continuously hurt by its virtual machine implementation. Lastly again was C++, which

needs additional metadata to pass all of the libraries that can be used by programmers.

This has been a major problem for C++ over the course of this part of the study.

122

Min/Max Metadata

0

10

20

30

40

50

60

70

RCM 45.7571 66.21613 38.41569 55.16425 44.44683

MinMaxInC MinMaxInCPP MinMaxInCS MinMaxInJava MinMaxInVB

Figure 10.8 Minimum and Maximum Metadata Measurement RCM Results.

10.2.9 Random Selection

The lowest RCM value for this algorithm was posted once again by C#. Second

was the C implementation, which makes sense as it did well with the Quicksort

algorithm, and since both Quicksort and Random Selection are both recursive. Third was

Visual BASIC, posting a much higher RCM value for this algorithm than previously. It

also posted a slightly higher RCM value for Quicksort. Recursion can be complex when

it uses an implied loop rather than an actual loop and because of the way Visual BASIC

is structured, with its simple notation, recursion caused some complexities to appear in

the implementation (Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999). Java

was once again fourth, still plagued by its issues involving the virtual machine compiled

into the program. Last again was C++, which has been consistent for almost every

algorithm.

123

Random Select Metadata

0

10

20

30

40

50

60

70

RCM 44.21566 65.57495 37.09667 55.01995 48.09276

RandSelectInC RandSelectInCPP RandSelectInCS RandSelectInJava RandSelectInVB

Figure 10.9 Random Selection Metadata Measurement RCM Results.

10.3 Evaluation of Results

Again, as with the static and dynamic measurements, a few trends are important

to discuss. The first is that C++ continues to be hurt by all of the libraries it imports and

by the way it handles its class definitions. The other languages that use classes of objects

all use them as part of the main object, where C++ must define one externally. It is this

notation, and the fact that it imports libraries that are not always used by programmers,

which inflates its measurement numbers. The other language that did not perform well

was Java, which as was mentioned in the previous sections, gains complexity in the fact

that its virtual machine must be included into the programs. This complexity is seen

despite the fact that C# and Java have similar constructs.

124

The language that continued to show the least complexity was C#. This

completely makes sense since C# was designed to work closely with the Windows

operating system. Since the operating system does not need much information from this

language, the only metadata that is created is simply used for passing to other languages

(Petzold, 2001). The other languages in this study must create additional objects as a

result of the fact that they must lower their notations into the .NET Framework format.

C# does not have to do this as its design already includes .NET features (Petzold, 2001).

C also performed well as it was typically second or third in almost every algorithm. It

gains ground on its competitors because it is not object oriented and it does not import or

export many unused objects, like C++, a super set of C (Pratt & Zelkowitz, 2001:

Sebesta, 1999).

The language that was variable, once again, was Visual BASIC. In simpler

algorithms, Visual BASIC did well, keeping true to its designers’ intent (Sebesta, 1999).

It did not perform as well when compared to the other languages when presented with a

complex algorithm since Visual BASIC was not designed for serious programming (Pratt

& Zelkowitz, 2001). It uses simple structures, causing the need for less metadata to be

passed from one program to another, but uses large amounts of metadata in complex

algorithms since it must create many more of its simple structures to complete the same

tasks as the other languages.

10.4 Conclusions

After seeing the “inside” of a .NET assembly, one can now see exactly how the

executable programs themselves are created. Each program produced what it needed in

125

order for other programs written on top of the .NET Framework to understand and gain

access to its data structures and function prototypes. Some languages needed more of

this data, others needed less, but this information is valuable in understanding how .NET

programs function against different types of algorithms.

126

CHAPTER XI

OVERALL MEASUREMENT ANALYSIS

11.1 Introduction

In order for this study to be complete, a look at the overall analysis of each

algorithm must be present. Each language has its positives and negatives, and these were

seen in the previous three chapters. A language might perform better in one category of

measurement data than in another. When all of these positives and negatives are placed

into a single process, a clear picture of which languages perform better can be seen.

Using this overall view, a developer can see how well languages perform given a specific

programming problem.

All of the measurement data taken previously was used in this portion of the

study. The RCM values calculated take into account the static, dynamic, and metadata

measurement values. Each RCM value represents a whole view of each language’s

performance with respect to each algorithm. All of the differences, no matter how small,

that are found in the measurements will all be a factor in this part of the study. Now that

all of the individual pieces have been seen in detail, an overall look will prove useful in

the definition of how languages will perform given different problems and conditions.

127

11.2 Individual Algorithm Results

11.2.1 Linear Search

For this algorithm, C# was the leader with an RCM value of nearly 37. Second

for Linear Search is the C implementation. This is a simple algorithm and C did well

statically and dynamically. Visual BASIC came in third, which makes sense, since while

this algorithm may be simple, dynamically Visual BASIC did not perform as well as

some of the other languages (Pratt & Zelkowitz, 2001: Sebesta, 1999). Fourth was C++,

which has an interesting result because both the static and dynamic measurements were

much higher than the other algorithms, but it performed well enough dynamically that it

did not fall behind completely. Java was last for this algorithm, having the only RCM

value over 60. Java was also interesting in that it performed well in the static category,

but the dynamic and metadata measurements were not as good as the other languages,

causing Java to fall behind to fifth.

Linear Search Overall

0

10

20

30

40

50

60

70

RCM 42.00631 58.89297 36.67004 62.87749 49.5532

LSearchInC LSearchInCPP LSearchInCS LSearchInJava LSearchInVB

Figure 11.1 Linear Search Overall Measurement RCM Results.

128

11.2.2 Bubblesort

The implementation that performed with the lowest RCM value was C.

Bubblesort is considered a simple sorting algorithm and as a result, C had lower

measurement values for each of the three categories (Cormen et al., 2001). Second was

C#, showing once again that the language takes many benefits from being tightly bound

to the Windows operating system (Petzold, 2001). Third for this algorithm was the Java

implementation. Java performed well statically and dynamically but fell behind in the

metadata category, causing the language to fall slightly behind. Fourth was Visual

BASIC, which performed well in the static category but was hurt in the dynamic and

metadata measurements. Finally, C++ follows the end of this list giving in to its static

performance. While C++ performed well in the dynamic measurements, the metadata

and static measurements proved to be its main areas of complexity.

Bubble Sort Overall

0

10

20

30

40

50

60

70

RCM 38.3864 61.26959 39.1137 51.08201 60.1483

BubbleSortInC BubbleSortInCPP BubbleSortInCS BubbleSortInJava BubbleSortInVB

Figure 11.2 Bubblesort Overall Measurement RCM Results.

129

11.2.3 Quicksort

The least complex solution for this algorithm was written in C#. In this

algorithm, C# produced small numbers for all of the categories in this study. Second was

C, which did well in all of the categories for both recursive algorithms. The remaining

three languages all produced much higher numbers for Quicksort and were close to each

other by comparison to C and C#. Third was Java, which produced higher measurements

in the metadata and dynamic categories. Visual BASIC scored fourth, as Quicksort is a

more complex algorithm (Cormen et al., 2001). Visual BASIC was not designed for this

type of processing and, while it performed well in the static measurement category, it did

not, however, perform well in the others (Pratt & Zelkowitz, 2001: Sebesta, 1999). C++

was once again fifth, showing that there was great complexity in its static and metadata

measurements. It did perform well dynamically, but the other categories had

measurements too high for it to compete with the other languages.

Quick Sort Overall

0

10

20

30

40

50

60

70

RCM 38.23321 59.36904 37.73008 56.75872 57.90894

QuickSortInC QuickSortInCPP QuickSortInCS QuickSortInJava QuickSortInVB

Figure 11.3 Quicksort Overall Measurement RCM Results.

130

11.2.4 Naïve String Matching

This algorithm produced interesting results. C was the leader for this algorithm as

it gains benefit by the way it handles strings as an array of characters rather than as a

separate class of objects. It is quick to parse those arrays and it can handle string

processing quickly (Pratt & Zelkowitz, 2001: Sebesta, 1999). Second was C#, which is

interesting because it uses a separate string object with its own set of functions and data

members, but the language fared so well in the dynamic and metadata categories that it

came out ahead of the others. Third for this algorithm was Visual BASIC, which scored

much higher than the first two languages as a result of its high dynamic measurements.

The language produced sound static numbers, but did not fare well in the other

categories. Fourth was Java, also posting a high RCM number. This was due to a

combination of things. These include the virtual machine structure of Java, its higher

dynamic measurements, and its lack of performance statically. Last was C++, which,

while exactly like C in string processing, its static and metadata numbers brought it to

fifth for the Naïve String Matching algorithm.

Naïve Match Overall

0

10

20

30

40

50

60

70

RCM 38.28832 62.22638 38.8535 58.09994 52.53186

NaiveMatchInC NaiveMatchInCPP NaiveMatchInCS NaiveMatchInJava NaiveMatchInVB

Figure 11.4 Naïve String Matching Overall Measurement RCM Results.

131

11.2.5 KMP String Matching

The KMP String Matching algorithm had almost the same results as its less

complex counterpart. C# was the leader for this algorithm as it out performed C

dynamically due to its closeness with the Windows operating system. C was second on

the list again, taking strength from its array of characters notation for strings. Third was

Visual BASIC, actually performing better for this algorithm, which is a little strange

given Visual BASIC’s design for simple programming (Pratt & Zelkowitz, 2001:

Sebesta, 1999). Fourth again was Java, taking on the same disadvantages as it did

previously, creating complexities from its virtual machine implementation and its

metadata measurements being higher than most of the other languages. Dynamically

Java also did not perform well posting higher run-times than many of the other

languages. Finally C++ comes in fifth for this algorithm, taking again disadvantages in

the metadata and static measurements. The language performed well dynamically but not

enough to out weigh the other categories, forcing it to fifth for this algorithm.

KMP Match Overall

0

10

20

30

40

50

60

70

RCM 41.20859 62.06487 38.27136 60.85649 47.5987

KMPMatchInC KMPMatchInCPP KMPMatchInCS KMPMatchInJava KMPMatchInVB

Figure 11.5 KMP String Matching Overall Measurement RCM Results.

132

11.2.6 Polynomial Addition

This algorithm is one of the simplest in the study, and the languages seemed to

perform to their design considerations (Petzold, 2001: Pratt & Zelkowitz, 2001: Sebesta,

1999). The leader for this algorithm was once again C#, gaining its strengths once again

from its closeness with the Windows operating system. Also, it performed well in each

of the three categories and better than its competitors. C was second, using its design for

systems programming to perform the calculations quickly when run. Also, C performed

well in the metadata and static categories of measurement. Third, and not far off from the

first two, was Visual BASIC, using its simple design to perform well statically and

dynamically. It was hurt slightly in the metadata category forcing it behind the first two

languages. Fourth was C++, gaining some of its strength in its dynamic measurements,

but it found disadvantages in the metadata and static categories of measurement. Java

falls fifth for this algorithm, plagued by its lesser performance in the dynamic category.

The slow run-times and high amount of memory used caused Java to fall behind the

others.

133

PolyAdd Overall

0

10

20

30

40

50

60

70

RCM 40.6864 57.48677 39.8126 65.17641 46.83782

PolyAddInC PolyAddInCPP PolyAddInCS PolyAddInJava PolyAddInVB

Figure 11.6 Polynomial Addition Overall Measurement RCM Results.

11.2.7 Gaussian Elimination

This algorithm is probably the most complex in this study (Cormen et al., 2001).

As a result of this complexity, it seems that the languages performed as expected based

on the design considerations discussed in Chapter 4. C# was again the leader for this

algorithm, once again using its features that are tightly bound to the Windows operating

system. C proved that its system programming design could calculate numbers quickly

and with small memory usage, giving strength to its dynamic measurements. Third was

Visual BASIC, which falls behind the others due to its lack of design for such a highly

complex algorithm (Pratt & Zelkowitz, 2001: Sebesta, 1999). Fourth for this algorithm

was C++, which struggled mainly in the static and metadata areas. It did, however,

perform well dynamically but not enough to carry the rest of the weight. Last again was

Java, falling behind in all three categories, but mainly in the dynamic measurements. Its

run-times were slower than the rest and it used larger amounts of memory.

134

Gauss Elimination Overall

0

10

20

30

40

50

60

70

RCM 39.39356 57.23655 37.53157 62.27368 53.56464

GaussElimInC GaussElimInCPP GaussElimInCS GaussElimInJava GaussElimInVB

Figure 11.7 Gaussian Elimination Overall Measurement RCM Results.

11.2.8 Minimum and Maximum

This algorithm also produced the expected results. C# was once again first and

continues to draw strengths in the metadata and dynamic categories. C was second,

performing well dynamically and statically, but the metadata measurements proved

complex enough to bring it to a higher RCM value than C#. Third for this algorithm was

Visual BASIC. The algorithm is not all that complex but Visual BASIC fell behind in

the static and dynamic categories forcing it slightly back (Cormen et al., 2001). Fourth

was Java, which again struggles in the same areas: the metadata and the dynamic

measurements. Last for this algorithm was C++, which struggled in all three areas when

compared to the other languages. It had the highest LOC metrics, memory usage, and

metadata measurements.

135

Min/Max Overall

0

10

20

30

40

50

60

70

RCM 41.66479 61.85344 37.39361 60.74776 48.34039

MinMaxInC MinMaxInCPP MinMaxInCS MinMaxInJava MinMaxInVB

Figure 11.8 Minimum and Maximum Overall Measurement RCM Results.

11.2.9 Random Selection

For this algorithm, C# was the leader with the lowest RCM value. It once again

out performed the other languages in all three categories. C was second, as it also did

well with Quicksort. Both Random Selection and Quicksort are recursive and this can

tend to be a complex process, but C did better in almost all areas than most of the other

languages (Cormen et al., 2001). Third for this algorithm was actually Java, which is a

little surprising, given that for simpler algorithms it did not perform as well. Java still

struggled however in the dynamic and metadata categories. The language that came in

fourth for Random Selection was Visual BASIC, which struggled in all three areas. This

language also was behind some of the others in the Quicksort algorithm. Last again was

C++, which found its main complexity factor in the metadata measurement section of this

study.

136

Random Select Overall

0

10

20

30

40

50

60

70

RCM 39.78897 59.31335 36.52673 55.27323 59.09772

RandSelectInC RandSelectInCPP RandSelectInCS RandSelectInJava RandSelectInVB

Figure 11.9 Random Selection Overall Measurement RCM Results.

11.3 Evaluation of Results

As with the other measurement chapters, a few trends are important to highlight.

For every algorithm either C or C# were the least complex solutions. These languages

have drawn strength from very different language features. C was designed for systems

programming and for scientific applications (Pratt & Zelkowitz, 2001: Sebesta, 1999). It

is important to highlight because these two important programming areas use languages

that must perform quickly and with low memory usages (Pratt & Zelkowitz, 2001:

Sebesta, 1999). C# on the other hand was not designed for such purposes but instead

gains much strength from the Windows operating system (Petzold, 2001). It was

designed to be an integral part of the .NET Framework and many of the function calls are

native to the environment that is used in this study. As a result, the language uses less

memory and produces less metadata. The C# language did not perform as well statically

but it gained enough ground in the other categories that it produced lower RCM values.

137

The languages that were somewhat more variable and complex were Visual

BASIC, Java, and C++. Visual BASIC was probably the most variable of all of the

languages. There were cases where it had lower RCM values, and cases where it was

fifth for a given algorithm. The variability can be attributed to the fact that Visual

BASIC was intended to be a teaching language (Sebesta, 1999). It was not designed for

large data processing or fast run-times. In simpler algorithms, however, it works as a

better language because the simple structure of the language when combined with a

simple algorithm will produce smaller measurement values for all three categories. Thus

not much can be learned from the language, as it is does not have predictable behavior.

The two most complex languages in the study were C++ and Java. Java struggled

again and again due to its virtual machine structure. The language performed well

statically, but when the metadata and the dynamic factors are considered, the language

becomes more complex as a result of the virtual machine being compiled into each

program. Java programs produced higher memory values, metadata, and slower run-

times, causing a level of complexity that might be quickly seen by a developer writing

code under hardware constraints (Pratt & Zelkowitz, 2001: Sebesta, 1999). The C++

language, on the other hand, found problems and complexities in other areas. While Java

performed well when considered statically, C++ did not. In fact, C++ was most complex

using static measurements than all of the other languages for every algorithm. Also, C++

had much larger metadata measurements than the other languages. The strength of C++

was found in its dynamic measurements as it produced faster run-times and lower

memory amounts. Unfortunately for C++, however, the other two categories were so

complex that it forced C++ in the last position for most of the algorithms in the study.

138

11.4 Conclusions

In this part of the study, all of the results were based on all measurement values

taken from the other three categories. It is now possible to see how each language

compares when all data is taken into account. Some languages performed as expected

given the descriptions in Chapter 4, and others performed with some unexpected results.

Regardless of the results, a clear view of how each language performs can now be seen.

The RCM values can be used to describe the fault-prone nature of each program. This

does not mean, however, that the programs measured actually have faults. RCM values

instead measure the possibility that faults might exist. The higher the RCM value for a

given program as compared to the same program written in the other languages, the more

likely bugs might be found (Munson, 2003: Munson & Khoshgoftaar, 1990). While this

might not mean much for small programs such as the ones in this study, it can be a useful

tool when used on a piece of software with thousands of lines of code. The following

table shows a summary of the overall RCM results taken on each language during this

project.

139

 C C++ C# Java
Visual
BASIC

Linear Search 42.00631 58.89297 36.67004 62.87749 49.5532

Bubble Sort 38.3864 61.26959 39.1137 51.08201 60.1483

Quick Sort 38.23321 59.36904 37.73008 56.75872 57.90894

Naïve String Match 38.28832 62.22638 38.8535 58.09994 52.53186

KMP String Match 41.20859 62.06487 38.27136 60.85649 47.5987

Polynomial Addition 40.6864 57.48677 39.8126 65.17641 46.83782

Gaussian Elimination 39.39356 57.23655 37.53157 62.27368 53.56464

Minimum / Maximum 41.66479 61.85344 37.39361 60.74776 48.34039

Polynomial Addition 39.78897 59.31335 36.52673 55.27323 59.09772

Table 11.1 Summary of Overall RCM Values.

140

CHAPTER XII

RESEARCH PRODUCTS AND CONCLUSIONS

12.1 Lessons Learned

As was stated in Chapter 1, the motivation for this project was to provide a useful

tool that developers can use in choosing an implementation language. By coding several

different algorithms, it is possible to see how programs written in different languages

behave and compare to each other. Now that all of the data has been collected, analyzed,

and discussed, it is possible to understand the lessons learned from this project. All of the

lessons come from the experience of writing code in several different languages,

maintaining coding style, and taking applicable measurements on each program to see

exactly how the program behaves.

The first and most important lesson to be learned is a classical one. Simply put,

there is no perfect method for solving software engineering problems and there is no

perfect development tool for any situation (Munson, 2003). At the time this experiment

was designed, it was originally thought that given certain data constructs or processing

methods (i.e. recursion), certain languages would perform with better measurement data.

This hypothesis was not studied, however, because there is not a large enough scope for

such an undertaking. In order to gain a full understanding of each language and how it

performs, more than once compiler set must be used in order for this hypothesis to have

141

any validity. While this was not exactly the case, certain languages did have their

strengths and weaknesses in certain situations. For complex algorithms, defined for

purposes of this project as those more difficult to write, the C, Java, and Visual BASIC

languages performed well when static measurement was applied. This makes sense since

each language was designed to support the production of simple source code (Pratt &

Zelkowitz, 2001: Sebesta, 1999). Simple source code, as in Munson’s work and for the

purposes of this study, produces lower RCM values (Munson & Khoshgoftaar, 1990).

The C# and C++ implementations, on the other hand, were constructed of source code

that was more complex when static measurements were applied as in section 5.3 above.

Dynamically, C#, C, and C++ were the better performers as can be seen from their RCM

values. This is mainly because while C has a wide variety of applications, its main

design focus was for systems programming which requires efficiency of time and

memory (Pratt & Zelkowitz, 2001). C# is tightly coupled with the Microsoft Windows

XP operating system, as has been mentioned previously, and so code was also more

efficient in terms of run-times and memory (Petzold, 2001). While it may seem like C++

programs are highly complicated when compared to programs written in the other

languages, its design focused on information hiding and code structure (Sebesta, 1999).

C++ header files are available for programmers to “take for granted” the workings of

class objects. Another main benefit of using C++ is that the language is actually a

superset of C, and performs well when dynamic measurements are applied.

In metadata analysis, the clearly least complex implementations, those with the

smallest RCM values, were written in C# and again this is a result of its design. As was

mentioned earlier, C# was designed to work closely with the operating system and

142

therefore many of its basic function calls are native to Windows (Petzold, 2001). One

thing that is gained from less metadata is a smaller executable file, which in turn

produces smaller memory usage. Of course in today’s computers, memory and space are

much “cheaper” in both cost and size than in the earlier days of computing, but this is

significant in that the programs written in C# produce less complex code. The other

languages did not fare as well when metadata analysis was applied, C++ being the worst.

In each C++ program, metadata measurements were much higher when compared to the

other languages. C++ uses external libraries for its function calls and must communicate

with the operating system more indirectly than C#, and therefore, in order for other .NET

programs to understand its structure, more transferable data is required. C, Java, and

Visual BASIC all performed between these two extremes.

Another important lesson learned in conducting this research is that no one raw

measurement can fully describe how large or complex a program may be (Munson,

2003). Groups of metrics that measure different aspects of software must be combined in

order to gain a full understanding of how a program performs (Wohlin, 1996). After the

measurement data were collected, it was believed that certain programs would have

higher or lower RCM values than they actually did. This is why it is important to

produce as many valid and reproducible measurements as possible in which meaning and

understanding of the program can be gained.

143

12.2 Software Development Questions and Answer Guidelines

Listed here are common questions developers may ask when choosing a language

to use for a given programming problem. Answers to these questions may vary based on

the developer’s priorities and so certain programming languages may be more logical

choices than others. The question is listed first followed by suggested answers. Based on

these answers, specific programming languages are recommended for the specific

problem based on the measurement analysis conducted in this project.

12.2.1 Questions Regarding Static Software Attributes

In simple, slower algorithms, which factor is the most important?

If the answer to this question is readability, then there are two languages that

would best fit this requirement. The first was C with its low static RCM values, found in

Chapter 8. C had the lowest RCM value for almost every algorithm as applied to static

measurements. The second language, Visual BASIC, was designed to be easily used by

non-technical students and with its English-like structure it can be easily read and

understood (Petzold, 2001: Sebesta, 1999). Visual BASIC also did well in RCM values

and raw measurements, but this might not always be the deciding factor for a readability

requirement. From the static RCM values, it can be concluded that these programs had

fewer lines of code and cyclomatic complexity, therefore allowing for easier

understanding of the contents within each C and Visual BASIC program.

For simple algorithms, if the language that produces the simplest program is

desired, languages that are likely choices tend to be C, C#, and Java. C, meant for more

complex algorithms and systems programming, also does well in simple algorithms with

144

its linear structure (Pratt & Zelkowitz, 2001: Sebesta, 1999). In these simple algorithms,

C produced smaller lines of code, fewer compiler directives, and had smaller RCM

values. C# and Java, while not the simplest overall, use a code structure that includes

data, routines, and the entry point all coupled in the same object (Petzold, 2001: Pratt &

Zelkowitz, 2001: Sebesta, 1999). This allows for fewer lines of code and fewer compiler

directives. Visual BASIC can also be included in this list, as its RCM values were

typically very low for static attributes. Overall Visual BASIC performed well in all

areas. It is both useful for code readability and code simplicity given a simpler

programming task.

In more complex algorithms, which factor is the most important?

If readability is the answer to this question, C++, C#, and Java stand out as the

leading choices. C++ again uses information hiding and class definitions to reduce the

amount of code to be read and understood (Pratt & Zelkowitz, 2001: Sebesta, 1999). In

the case of both C# and Java, since routines, data, and program entry point can all be

contained within a single class, it brings down the complexity measurements of more

complex algorithms. Developers do not have to traverse large quantities of code to

understand code flow and organization (Petzold, 2001: Sebesta, 1999). With this type of

language structure, fewer lines of code and compiler directives are needed to conduct

complex programming tasks. Visual BASIC would most likely not be the best candidate

if code readability were the primary factor in choosing a language for a more complex

algorithm. While the language uses simple constructs, these constructs can tend to be

difficult to put together for larger programs. The Visual BASIC Gaussian Elimination

145

program is a good example. Since this was a more complex algorithm, Visual BASIC

struggled in compiler directives, lines of code, and the total RCM value gained from

Principal Components Analysis (Cormen et al., 2001: Sebesta, 1999).

If overall code simplicity is the factor desired by developers for more complex

algorithms, then C is the perfect choice. C was designed for algorithms such as these,

and with its linear structure, programs in this language tend to have fewer lines of code

and compiler directives, bringing down the RCM values (Pratt & Zelkowitz, 2001). C, in

almost every case for static software attributes, had the smallest RCM value for almost

every algorithm. Its versatile and adaptable design makes it very capable of being used

for the most complex of algorithms.

12.2.2 Questions Regarding Dynamic Software Attributes

In simple, slower algorithms, which factor is the most important?

If run-times efficiency is the main requirement for choosing a language, then the

clear leader is the C# programming language. Since C# was designed to be tightly

coupled with the Microsoft Windows operating system, its function calls interface with

the operating system itself producing much faster run-times (Petzold, 2001). In most

cases, the run-times for C# were faster than the other programs in each algorithm. A

close second would be C, whose very design was intended to produce programs with

faster run-times for use in systems programming (Pratt & Zelkowitz, 2001: Sebesta,

1999). For slower algorithms, a third choice would be Visual BASIC. Since this

language was designed to take on smaller projects, Visual BASIC does well in this

146

category. Its run-times were among the fastest. The language, however, did not perform

as well for more complex algorithms as this goes against its design (Sebesta, 1999).

If developers feel that memory management is a key requirement over run-times,

then C would be the best choice. C had for almost every algorithm the smallest memory

usage. Second on this list would again be C# which interfaces well with the Microsoft

Windows operating system (Petzold, 2001). Visual BASIC was the most variable in this

area. While sometimes the leader, most often Visual BASIC was last in memory usage

and tended to yield unreliable results. The most surprising of all was how Java

performed in this area. While Sun Microsystems, the creators of the Java platform,

boasts of how well programs in their language perform in terms of memory management,

Java did the worst in this category. While Java does handle all creation and deletion of

pointers for the programmer, the garbage collection happens at the end of the run, causing

the snapshot of memory to yield a high value (Pratt & Zelkowitz, 2001: Sebesta, 1999).

Finally, if the answer to this question is in regards to the number of routines that

the program must define and execute, the most consistent for simpler algorithms was the

C language. Its total routines, routines executed, and total routine calls were most often

among the smallest. C++ actually tends to do well in this category. While the total

routines defined are slightly high, its routines executed measurement was lower. C# also

does well in this category, producing strong measurements in all three routine counting

metrics. Visual BASIC, however, as with its memory management, was erratic and could

not yield reliable results. While the language sometimes produces smaller numbers for

the routine measurements, often times it was the other extreme, making Visual BASIC

difficult to predict.

147

In more complex algorithms, which factor is the most important?

If run-time efficiency is again the main requirement for choosing an

implementation language, then for complex algorithms the best choice is C#. C#, for

both the simple and the complex programming tasks, showed the strongest measurement

values for run-time speed in seconds. C was a close competitor in most cases and so this

language would also be a good candidate for an implementation language based on a run-

time efficiency requirement. Lastly, C++ has decent measurements in this area. Since

C++ is compiled in a similar manner to C (since C++ is a super set of C it tends to use the

same compiler), it is understandable why this is true (Pratt & Zelkowitz, 2001: Sebesta,

1999). If run-time efficiency is a major factor in choosing a language, the Java language

would most likely not be a candidate worth considering. This language for almost every

complex algorithm performed the worst in this area.

If memory management is the key factor for a complex algorithm, C and C#

would be the likely candidates. C had the most consistent use of memory in the complex

algorithms used in this study. Each program run in C produced memory snapshots less

then 10 Kilobytes. C#, while not nearly the performer C was in this regard, had the

second strongest measurements in this area. While Visual BASIC often performed well

in the memory management category, the results were unreliable. Visual BASIC would

be a better choice for simpler algorithms. Once again, the biggest surprise is how Java

performed. Java, boasting of clean memory usage and automatic garbage collection,

produced memory snapshots much larger than its competitors.

148

Lastly, if routine definition and execution were the major factor in choosing a

language, the clear choice for complex algorithms would be C#. While the total routine

calls was on occasion high, its coupling with the Windows operating system allowed for

fewer routines to be defined and used in the various runs of the C# programs (Petzold,

2001). C would be a good second choice. While its total routine calls is lower then C#,

more routines are defined than in the C# programs. This leads to declarations in memory

that are not always necessary. A surprising result in this category is how well Visual

BASIC performed. For simpler algorithms, Visual BASIC did not perform well, but for

the more complex, results were relatively consistent.

12.2.3 Questions Regarding Metadata Complexity

In simpler, slower algorithms, what is the most important factor?

If the program space is the most important of design factors, then C# is the clear

choice. The language had the smallest RCM value for every algorithm in the study. It is

clear that C#’s design improves the overall performance of the way .NET programs can

perform. A second choice would be C as it also had simple data that was needed in order

for another program to understand its structure.

If space is not the issue, and again factors like readability are the issue at hand,

then languages like C++, Java, and Visual BASIC are the answers to this question. These

three languages had issues in the metadata category but again, efficiency of time and

space were not the design considerations for these languages. Of course, this is a matter

of programmer taste and the development model.

149

If space and time were not the issues when developing software, what languages would

be the preferred choice?

As we have seen, it is clear that C and C# are the leaders in this study with respect

to the metadata measurements. But if space and time are not the issues, and factors like

reliability and readability are more important for the project at hand, then C++ is the key

answer. Again, it uses the concept of information hiding, allowing developers to let the

objects do the work for them. Visual BASIC would again be near the top of the list as it

has its simple, English-like structure that has given non-technical students the chance to

learn programming (Pratt & Zelkowitz, 2001: Sebesta, 1999). The language today is

fully functional, but it retains its traditional approach of being simple to read and write.

12.2.4 Language Recommendations Based On Overall Performance

Based on the static, dynamic, and .NET metadata measurements, and the PCA

that was performed, the overall best performers were C# and C. In almost every case,

either one or the other had the lowest RCM values for each algorithm in the study. In

many cases, the two languages performed almost equally. The third best performer

among the five languages was Java. While Java performed very well statically, it did not

perform as well dynamically or in the metadata measurements. Fourth was Visual

BASIC, which proved that simple language structure could improve complexity scores in

some areas. Finally C++ would be last for a language recommendation but it must be

pointed out that this is simply based on the measurements analyzed. C++ has language

features that allow developers to have easier organization of source code combined with

its object-oriented features. It has been made clear that language does have a factor in

150

algorithm performance, and that even with a common platform and coding style, these

difference make themselves visible when measurements are applied. Illustrating these

differences was the final goal of this research.

12.3 Further Research

Further writings on this study could include comparing languages across

platforms using this study’s same approach. Perhaps a developer could compare the

RCM scores obtained in a Unix environment to those obtained here in the Microsoft

environment and see how each language behaves differently. Another direction that this

study could take is to include scripting languages such as Perl, Tcl, etc. Since these

languages are interpreted and not compiled, it might introduce some interesting results

when measurements are applied dynamically. Some studies have already been done

comparing scripting languages, but as was mentioned earlier, this was not done on a

common platform (Prechelt, 2005).

12.4 General Conclusions

The goal of all the work performed in this study is to give software engineers an

understanding of how languages perform when applied to classical algorithms and

measurement techniques. The results in this study are based only on the measurements

defined in Chapter 6. Also, the results of this study are only valid when used in the

Microsoft .NET environment and might not have the same behaviors when used

elsewhere. If programmers feel that a language that is easier to read and write would be a

better fit for the problem at hand, then another approach to deciding the language would

151

be necessary. This research only looks at where complexities in programming languages

exist and what developers need to think about in that regard. Sadly, measurement on

source code tends to happen very late in the software life cycle (Munson, 2003). It is

hoped that from the results presented in this study, developers will have an understanding

of how C, C++, C#, Java, and Visual BASIC will perform before used.

152

APPENDIX A

SOURCE CODE

A.1 Linear Search

A.1.1 LinearSearchInC.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int LSearch (int L[], int n, int x, int index)
{
 int Index = index;

 while (Index <= n && L[Index] != x)
 Index = Index + 1;

 if (Index > n)
 Index = 0;

 return Index;
}

int main (void)
{
 int x = 0;
 int n = 100;
 int index = 0;
 int L[100];

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 L[i] = (rand() % 100);

 x = (rand() % 100);

153

 index = LSearch(L, n, x, index);

 if (index == 0)
 printf("%d was not found in L.", x);
 else
 printf("%d was found at index %d.", x, index);

 for (int i = 0; i < 100; i++)
 L[i] = 0;

 index = 0;
 x = 0;

 return 0;
}

A.1.2 LinearSearchInCPP.cpp

#include <iostream>
#include "LinearSearchClass.h"

using namespace std;

int main (void)
{
 LinearSearch *linearsearch = new LinearSearch;
 int index = 0;

 index = linearsearch -> DoLinearSearch();

 if (index == 0)
 cout << linearsearch -> GetX() << " not found in L." << endl;
 else
 cout << linearsearch -> GetX() << " found at index " << index << "." <<
endl;

 delete linearsearch;
 index = 0;

 return 0;
}

A.1.3 LinearSearchClass.h

class LinearSearch
{

154

 public:
 LinearSearch (void);
 ~LinearSearch (void);

 int DoLinearSearch (void);
 int GetX (void);

 private:
 int x;
 int n;
 int index;
 int L[100];
};

A.1.4 LinearSearchClass.cpp

#include <stdlib.h>
#include <time.h>

#include "LinearSearchClass.h"

LinearSearch :: LinearSearch (void)
{
 srand ((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 L[i] = (rand() % 100);

 x = (rand() % 100);

 index = 0;
 n = 100;
}

LinearSearch :: ~LinearSearch (void)
{
 for (int i = 0; i < 100; i++)
 L[i] = 0;

 index = 0;
 x = 0;
 n = 0;
}

int LinearSearch :: DoLinearSearch (void)
{

155

 while (index <= n && L[index] != x)
 index = index + 1;

 if (index > n)
 index = 0;

 return index;
}

int LinearSearch :: GetX (void)
{
 return x;
}

A.1.5 LinearSearchInCS.cs

using System;

namespace LinearSearchInCS
{
 public class LinearSearchInCS
 {
 private int x;
 private int n;
 private int index;
 private int[] L = new int [100];

 public LinearSearchInCS()
 {
 x = 0;
 n = 100;
 index = 0;

 Random r = new Random();

 for (int i = 0; i < 100; i++)
 L[i] = r.Next(0, 100);

 x = r.Next(0, 100);
 }

 private void DoLinearSearch ()
 {
 while (index < n && L[index] != x)
 index = index + 1;

156

 if (index > n)
 index = 0;
 }

 public static void Main ()
 {
 LinearSearchInCS lsearch = new LinearSearchInCS();

 lsearch.DoLinearSearch();

 if (lsearch.index == 0)
 Console.WriteLine(lsearch.x + " not found in L.");
 else
 Console.WriteLine(lsearch.x + " found at index " +
lsearch.index + ".");
 }
 }
}

A.1.6 LinearSearchInJava.jsl

import java.util.*;

public class LinearSearchInJava
{
 private int x;
 private int n;
 private int index;
 private int[] L = new int [100];

 public LinearSearchInJava()
 {
 x = 0;
 n = 100;
 index = 0;

 Random r = new Random();

 for (int i = 0; i < 100; i++)
 L[i] = r.nextInt() % n;

 x = r.nextInt() % n;
 }

 private void DoLinearSearch ()
 {

157

 while (index < n && L[index] != x)
 index = index + 1;

 if (index > n)
 index = 0;
 }

 public static void main (String args[])
 {
 LinearSearchInJava lsearch = new LinearSearchInJava();

 lsearch.DoLinearSearch();

 if (lsearch.index == 0)
 System.out.println(lsearch.x + " not found in L.");
 else
 System.out.println(lsearch.x + " found at index " + lsearch.index +
".");
 }
}

A.1.7 LinearSearchInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class LinearSearchInVB
 Shared Sub Main()
 Dim x = 0
 Dim n = 100
 Dim index = 0
 Dim i = 0
 Dim L(100) As Integer

 Randomize()

 For i = 0 To 99 Step 1
 L(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 x = Int((100 - 0 + 1) * Rnd()) + 0

 While index < n And L(index) <> x
 index = index + 1
 End While

158

 If index > n Then
 index = 0
 End If

 If index = 0 Then
 Console.WriteLine("{0} was not found in L.", x)
 Else
 Console.WriteLine("{0} was found at index {1}.", x, index)
 End If
 End Sub
End Class

A.2 Bubblesort

A.2.1 BubbleSortInC.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void BubbleSort (int *A, int n)
{
 int temp = 0;
 bool sorted = false;

 for (int i = 1; i < n; i++)
 {
 sorted = true;

 for (int j = 0; j <= n-1-i; j++)
 {
 if (A[j] > A[j+1])
 {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 sorted = false;
 }
 }

 if (sorted == true)
 break;
 }
}

159

int main (void)
{
 int A[100];
 int n = 100;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 A[i] = (rand() % 100);

 BubbleSort(A, n);

 printf("Sorted Array is as follows:\n");

 for (int i = 0; i < 100; i++)
 {
 printf("%d\n", A[i]);
 A[i] = 0;
 }

 printf("End of Array.\n");

 return 0;
}

A.2.2 BubbleSortInCPP.cpp

#include <iostream>
#include <stdlib.h>
#include <time.h>
#include "BubbleSortClass.h"

using namespace std;

int main (void)
{
 BubbleSort *bubblesort = new BubbleSort;
 int A[100];
 int n = 100;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 A[i] = (rand() % 100);

 bubblesort -> DoBubbleSort(A, n);

160

 cout << "Sorted Array:" << endl;

 for (int i = 0; i < 100; i++)
 {
 cout << A[i] << endl;
 A[i] = 0;
 }

 cout << "End of Array." << endl;

 delete bubblesort;

 return 0;
}

A.2.3 BubbleSortClass.h

class BubbleSort
{
 public:
 BubbleSort (void);
 ~BubbleSort (void);

 void DoBubbleSort (int *A, int n);

 private:
 bool sorted;
 int temp;
};

A.2.4 BubbleSortClass.cpp

#include "BubbleSortClass.h"

BubbleSort :: BubbleSort (void)
{
 sorted = false;
 temp = 0;
}

BubbleSort :: ~BubbleSort (void)
{
 sorted = false;
 temp = 0;
}

161

void BubbleSort :: DoBubbleSort (int *A, int n)
{
 for (int i = 1; i < n; i++)
 {
 sorted = true;

 for (int j = 0; j <= n-1-i; j++)
 {
 if (A[j] > A[j+1])
 {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 sorted = false;
 }
 }

 if (sorted == true)
 break;
 }
}

A.2.5 BubbleSortInCS.cs

using System;

namespace BubbleSortInCS
{
 public class BubbleSortInCS
 {
 private int n;
 private int temp;
 private int[] A = new int [100];
 private bool sorted;

 public BubbleSortInCS()
 {
 n = 100;
 temp = 0;
 sorted = false;

 Random r = new Random();

 for (int i = 0; i < 100; i++)
 A[i] = r.Next() % 100;

162

 }

 private void DoBubbeSort()
 {
 for (int i = 1; i < n; i++)
 {
 sorted = true;

 for (int j = 0; j <= n-1-i; j++)
 {
 if (A[j] > A[j+1])
 {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 sorted = false;
 }
 }

 if (sorted == true)
 break;
 }
 }

 public static void Main()
 {
 BubbleSortInCS bsort = new BubbleSortInCS();

 bsort.DoBubbeSort();

 Console.WriteLine("Sorted Array as follows:");

 for (int i = 0; i < 100; i++)
 Console.WriteLine(bsort.A[i]);

 Console.WriteLine("End of Array.");
 }
 }
}

A.2.6 BubbleSortInJava.jsl

import java.util.*;

public class BubbleSortInJava
{

163

 private int n;
 private int temp;
 private int[] A = new int [100];
 private boolean sorted;

 public BubbleSortInJava()
 {
 n = 100;
 temp = 0;
 sorted = false;

 Random r = new Random();

 for (int i = 0; i < 100; i++)
 A[i] = r.nextInt() % 100;
 }

 private void DoBubbleSort()
 {
 for (int i = 1; i < n; i++)
 {
 sorted = true;

 for (int j = 0; j <= n-1-i; j++)
 {
 if (A[j] > A[j+1])
 {
 temp = A[j];
 A[j] = A[j+1];
 A[j+1] = temp;
 sorted = false;
 }
 }

 if (sorted == true)
 break;
 }
 }

 public static void main (String args[])
 {
 BubbleSortInJava bsort = new BubbleSortInJava();

 bsort.DoBubbleSort();

 System.out.println("Sorted Array is as follows:");

164

 for (int i = 0; i < 100; i++)
 System.out.println(bsort.A[i]);

 System.out.println("End of Array");
 }
}

A.2.7 BubbleSortInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class BubbleSortInVB
 Shared Sub Main()
 Dim n = 100
 Dim temp = 0
 Dim i = 0
 Dim j = 0
 Dim A(100) As Integer
 Dim sorted = False

 Randomize()

 For i = 0 To 99 Step 1
 A(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 For i = 0 To n - 1 Step 1
 sorted = True

 For j = 0 To n - 1 - i Step 1
 If A(j) > A(j + 1) Then
 temp = A(j)
 A(j) = A(j + 1)
 A(j + 1) = temp
 sorted = False
 End If
 Next

 If sorted = True Then
 Exit For
 End If
 Next

 System.Console.WriteLine("Sorted Array as follows:")

165

 For i = 0 To 99 Step 1
 System.Console.WriteLine("{0}", A(i))
 Next

 System.Console.WriteLine("End of Array.")
 End Sub
End Class

A.3 Quicksort

A.3.1 QuicksortInC.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int Partition (int *A, int p, int r)
{
 int x = A[r];
 int i = p - 1;
 int temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
}

void Quicksort (int *A, int p, int r)
{
 int q = 0;

166

 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q - 1);
 Quicksort(A, q + 1, r);
 }
}

int main (void)
{
 int A[100];
 int n = 100;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < n; i++)
 A[i] = (rand() % 100);

 Quicksort(A, 1, n);

 printf("Sorted Array is as follows:\n");

 for (int i = 0; i < n; i++)
 {
 printf("%d\n", A[i]);
 A[i] = 0;
 }

 printf("End of Array.\n");

 return 0;
}

A.3.2 QuicksortInCPP.cpp

#include <iostream>
#include <time.h>
#include <stdlib.h>
#include "QuicksortClass.h"

using namespace std;

int main (void)
{

167

 int A[100];
 int n = 100;

 QuicksortClass *QuicksortClass = new QuicksortClass;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < n; i++)
 A[i] = (rand() % 100);

 QuicksortClass -> DoQuicksort(A, 1, n);

 cout << "Sorted Array is as follows: " << endl;

 for (int i = 0; i < n; i++)
 {
 cout << A[i] << endl;
 A[i] = 0;
 }

 cout << "End of Array." << endl;

 delete QuicksortClass;

 return 0;
}

A.3.3 QuicksortClass.h

class QuicksortClass
{
 public:
 QuicksortClass (void);
 ~QuicksortClass (void);

 void DoQuicksort (int *A, int p, int r);

 private:
 int Partition (int *A, int p, int r);

 int temp;
};

A.3.4 QuicksortClass.cpp

#include "QuicksortClass.h"

168

QuicksortClass :: QuicksortClass (void)
{
 temp = 0;
}

QuicksortClass :: ~QuicksortClass (void)
{
 temp = 0;
}

int QuicksortClass :: Partition (int *A, int p, int r)
{
 int x = A[r];
 int i = p - 1;

 temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
}

void QuicksortClass :: DoQuicksort (int *A, int p, int r)
{
 int q = 0;

 if (p < r)
 {
 q = Partition(A, p, r);
 DoQuicksort(A, p, q - 1);
 DoQuicksort(A, q + 1, r);

169

 }
}

A.3.5 QuicksortInCS.cs

using System;

namespace QuicksortInCS
{
 public class QuicksortInCS
 {
 private int n;
 private int temp;
 private int[] A = new int [100];

 public QuicksortInCS()
 {
 n = 100;
 temp = 0;

 Random r = new Random();

 for (int i = 0; i < n; i++)
 A[i] = r.Next(0, n);
 }

 private int Partition (int p, int r)
 {
 int x = A[r];
 int i = p -1;

 temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];

170

 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
 }

 public void DoQuicksort (int p, int r)
 {
 int q = 0;

 if (p < r)
 {
 q = Partition(p, r);
 DoQuicksort(p, q - 1);
 DoQuicksort(q + 1, r);
 }
 }

 public static void Main ()
 {
 QuicksortInCS qsort = new QuicksortInCS();

 qsort.DoQuicksort(0, qsort.n - 1);

 Console.WriteLine("The Array is as follows:");

 for (int i = 0; i < qsort.n; i++)
 {
 Console.WriteLine(qsort.A[i]);
 qsort.A[i] = 0;
 }
 }
 }
}

A.3.6 QuicksortInJava.jsl

import java.util.*;

public class QuicksortInJava
{
 private int temp;
 private int n;
 private int[] A = new int [100];

 public QuicksortInJava()

171

 {
 temp = 0;
 n = 100;

 Random r = new Random();

 for (int i = 0; i < n; i++)
 A[i] = r.nextInt() % n;
 }

 private int Partition (int p, int r)
 {
 int x = A[r];
 int i = p - 1;

 temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
 }

 public void DoQuicksort (int p, int r)
 {
 int q = 0;

 if (p < r)
 {
 q = Partition(p, r);
 DoQuicksort(p, q - 1);
 DoQuicksort(q + 1, r);
 }

172

 }

 public static void main (String args[])
 {
 QuicksortInJava qsort = new QuicksortInJava();

 qsort.DoQuicksort(0, qsort.n - 1);

 System.out.println("The Array is sorted as follows:");

 for (int i = 0; i < qsort.n; i++)
 System.out.println(qsort.A[i]);

 System.out.println("End of Array.");
 }
}

A.3.7 QuicksortInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class QuicksortInVB
 Function Partition(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer)
 Dim x = A(r)
 Dim i = p - 1
 Dim j As Integer
 Dim temp = 0

 For j = p To r - 1 Step 1
 If A(j) <= x Then
 i = i + 1

 temp = A(i)
 A(i) = A(j)
 A(j) = temp
 End If
 Next

 temp = A(i + 1)
 A(i + 1) = A(r)
 A(r) = temp

 Return (i + 1)
 End Function

173

 Sub DoQuicksort(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer)
 Dim q = 0

 If p < r Then
 q = Partition(A, p, r)
 DoQuicksort(A, p, q - 1)
 DoQuicksort(A, q + 1, r)
 End If
 End Sub

 Shared Sub Main()
 Dim i
 Dim n = 100
 Dim A(100) As Integer
 Dim qsort As New QuicksortInVB

 Randomize()

 For i = 0 To 99 Step 1
 A(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 qsort.DoQuicksort(A, 1, (n - 1))

 Console.WriteLine("Sorted Array is as follows:")

 For i = 0 To 99 Step 1
 Console.WriteLine("{0}", A(i))
 Next

 Console.WriteLine("End of Array.")
 End Sub
End Class

A.4 Naïve String Matching

A.4.1 NavieMatchInC.cpp

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void NaiveMatch(char T[], char P[])
{
 int n = strlen(T);

174

 int m = strlen(P);

 for (int s = 0; s <= (n - m); s++)
 {
 if (strncmp(P, &T[s], m) == 0)
 printf("Pattern found at shift %d\n", s);
 }
}

int main (void)
{
 char P[] = "ball";
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";

 NaiveMatch(T, P);

 return 0;
}

A.4.2 NaiveMatchInCPP.cpp

#include "NaiveMatchClass.h"

int main (void)
{
 char P[] = "ball";
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";

 NaiveMatch *N_Match = new NaiveMatch;

 N_Match -> DoNaiveMatch(T, P);

 delete N_Match;

 return 0;
}

A.4.3 NaiveMatchClass.h

class NaiveMatch

175

{
 public:
 NaiveMatch (void);
 ~NaiveMatch (void);

 void DoNaiveMatch (char T[], char P[]);

 private:
 int n;
 int m;
};

A.4.4 NaiveMatchClass.cpp

#include <iostream>
#include <string.h>
#include "NaiveMatchClass.h"

using namespace std;

NaiveMatch :: NaiveMatch (void)
{
 n = 0;
 m = 0;
}

NaiveMatch :: ~NaiveMatch (void)
{
 n = 0;
 m = 0;
}

void NaiveMatch :: DoNaiveMatch (char T[], char P[])
{
 n = strlen(T);
 m = strlen(P);

 for (int s = 0; s <= (n - m); s++)
 {
 if (strncmp(P, &T[s], m) == 0)
 cout << "Pattern found at shift " << s << endl;
 }
}

A.4.5 NaiveMatchInCS.cs

176

using System;

namespace NaiveMatchInCS
{
 public class NaiveMatchInCS
 {
 private int n;
 private int m;
 private String P;
 private String T;

 public NaiveMatchInCS()
 {
 n = 0;
 m = 0;

 P = "ball";
 T = "Take me out to the ball game, Take me out to the crowd, Buy
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes
your out, At the old ball game!";
 }

 public void DoNaiveMatch ()
 {
 char [] subText = new char[P.Length];

 n = T.Length;
 m = P.Length;

 for (int s = 0; s <= (n - m); s++)
 {
 String compareText = T.Substring(s, m);

 if (P.CompareTo(compareText) == 0)
 Console.Out.WriteLine("Pattern found at shift " +
s);
 }
 }

 public static void Main ()
 {
 NaiveMatchInCS N_Match = new NaiveMatchInCS();

 N_Match.DoNaiveMatch();
 }

177

 }
}

A.4.6 NaiveMatchInJava.jsl

import java.util.*;

public class NaiveMatchInJava
{
 private int n;
 private int m;
 private String P;
 private String T;

 public NaiveMatchInJava()
 {
 n = 0;
 m = 0;

 P = "ball";
 T = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";
 }

 public void DoNaiveMatch ()
 {
 char [] subText1 = new char[P.get_Length()];

 n = T.get_Length();
 m = P.get_Length();

 for (int s = 0; s <= (n - m); s++)
 {
 T.getChars(s, (s + m), subText1, 0);

 String subText2 = new String(subText1);

 if (P.compareTo(subText2) == 0)
 System.out.println("Pattern found at shift " + s);
 }
 }

 public static void main (String args[])
 {

178

 NaiveMatchInJava N_Match = new NaiveMatchInJava();

 N_Match.DoNaiveMatch();
 }
}

A.4.7 NaiveMatchInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class NaiveMatchInVB
 Shared Sub Main()
 Dim T As String = "Take me out to the ball game, Take me out to the crowd, Buy
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes
your out, At the old ball game!"
 Dim P As String = "ball"
 Dim n = T.Length
 Dim m = P.Length
 Dim s = 0

 For s = 0 To (n - m) Step 1
 Dim compareText As String = T.Substring(s, m)

 If (P.CompareTo(compareText) = 0) Then
 Console.WriteLine("Pattern was found at shift {0}", s)
 End If
 Next
 End Sub
End Class

A.5 KMP String Matching

A.5.1 KMPMatchInC.cpp

#include <stdio.h>
#include <string.h>

int * ComputePrefixFunction (char *P)
{
 int m = strlen(P);
 int *pi = new int[m];

179

 int k = 0;

 pi[0] = 0;

 for (int q = 2; q <= m; q++)
 {
 while ((k > 0) && (P[k] != P[q]))
 k = pi[k];

 if (P[k] == P[q])
 k = k + 1;

 pi[q] = k;
 }

 return pi;
}

void KMPMatch (char *T, char *P)
{
 int n = strlen(T);
 int m = strlen(P);
 int *pi = new int[n];

 int q = 0;

 pi = ComputePrefixFunction(P);

 for (int i = 1; i < n; i++)
 {
 while ((q > 0) && (P[q] != T[i]))
 q = pi[q];

 if (P[q] == T[i])
 q = q + 1;

 if (q == m)
 {
 printf("Pattern found at shift %d\n", ((i + 1) - m));
 q = pi[q];
 }
 }
}

int main (void)
{

180

 char P[] = "ball";
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";

 KMPMatch(T, P);

 return 0;
}

A.5.2 KMPMatchInCPP.cpp

#include "KMPMatchClass.h"

int main (void)
{
 char P[] = "ball";
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";

 KMPMatchClass *kmpMatchClass = new KMPMatchClass(T, P);

 kmpMatchClass -> DoKMPMatch(T, P);

 delete kmpMatchClass;

 return 0;
}

A.5.3 KMPMatchClass.h

class KMPMatchClass
{
 public:
 KMPMatchClass (char *T, char *P);
 ~KMPMatchClass (void);

 void DoKMPMatch (char *T, char *P);

 private:
 int * ComputePrefixFunction (char *P);

 int n;

181

 int m;
};

A.5.4 KMPMatchClass.cpp

#include "KMPMatchClass.h"
#include <string.h>
#include <iostream>

using namespace std;

KMPMatchClass :: KMPMatchClass (char *T, char *P)
{
 n = strlen(T);
 m = strlen(P);
}

KMPMatchClass :: ~KMPMatchClass (void)
{
 n = 0;
 m = 0;
}

int * KMPMatchClass :: ComputePrefixFunction (char *P)
{
 int *pi = new int[m];
 int k = 0;

 pi[0] = 0;

 for (int q = 2; q <= m; q++)
 {
 while ((k > 0) && (P[k] != P[q]))
 k = pi[k];

 if (P[k] == P[q])
 k = k + 1;

 pi[q] = k;
 }

 return pi;
}

void KMPMatchClass :: DoKMPMatch (char *T, char *P)
{

182

 int *pi = new int[n];

 int q = 0;

 pi = ComputePrefixFunction(P);

 for (int i = 1; i < n; i++)
 {
 while ((q > 0) && (P[q] != T[i]))
 q = pi[q];

 if (P[q] == T[i])
 q = q + 1;

 if (q == m)
 {
 cout << "Pattern found at shift " << ((i + 1) - m) << endl;;
 q = pi[q];
 }
 }
}

A.5.5 KMPMatchInCS.cs

using System;

namespace KMPMatchInCS
{
 public class KMPMatchInCS
 {
 private int n;
 private int m;
 private String P;
 private String T;

 public KMPMatchInCS()
 {
 P = "ball";
 T = "Take me out to the ball game, Take me out to the crowd, Buy
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes
your out, At the old ball game!";

 n = T.Length;
 m = P.Length;
 }

183

 private int [] ComputePrefixFunction ()
 {
 int[] pi = new int[n];
 int k = 0;

 pi[0] = 0;

 for (int q = 2; q <= m; q++)
 {
 while ((k > 0) && (P[k] != P[q]))
 k = pi[k];

 if (P[k] == P[q - 1])
 k = k + 1;

 pi[q] = k;
 }

 return pi;
 }

 public void DoKMPMatch ()
 {
 int[] pi = new int[n];
 int q = 0;

 pi = ComputePrefixFunction();

 for (int i = 1; i < n; i++)
 {
 while ((q > 0) && (P[q] != T[i]))
 q = pi[q];

 if (P[q] == T[i])
 q = q + 1;

 if (q == m)
 {
 Console.Out.WriteLine("Pattern found at shift " +
((i + 1) - m));
 q = pi[q];
 }
 }
 }

184

 public static void Main ()
 {
 KMPMatchInCS K_Match = new KMPMatchInCS();

 K_Match.DoKMPMatch();
 }
 }
}

A.5.6 KMPMatchInJava.jsl

import java.util.*;

public class KMPMatchInJava
{
 private int n;
 private int m;
 private String P;
 private String T;

 public KMPMatchInJava ()
 {
 P = "ball";
 T = "Take me out to the ball game, Take me out to the crowd, Buy me
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your
out, At the old ball game!";

 n = T.get_Length();
 m = P.get_Length();
 }

 private int[] ComputePrefixFunction ()
 {
 int pi[] = new int[m];
 int k = 0;

 pi[0] = 0;

 for (int q = 2; q < m; q++)
 {
 while ((k > 0) && (P.get_Chars(k) != P.get_Chars(q)))
 k = pi[k];

 if (P.get_Chars(k) == P.get_Chars(q))
 k = k + 1;

185

 pi[q] = k;
 }

 return pi;
 }

 public void DoKMPMatch ()
 {
 int pi[] = new int[n];
 int q = 0;

 pi = ComputePrefixFunction();

 for (int i = 1; i < n; i++)
 {
 while ((q > 0) && (P.get_Chars(q) != T.get_Chars(i)))
 q = pi[q];

 if (P.get_Chars(q) == T.get_Chars(i))
 q = q + 1;

 if (q == m)
 {
 System.out.println("Patter found at shift " + ((i + 1) - m));
 q = pi[q - 1];
 }
 }
 }

 public static void main (String args[])
 {
 KMPMatchInJava K_Match = new KMPMatchInJava();

 K_Match.DoKMPMatch();
 }
}

A.5.7 KMPMatchInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class KMPMatchInVB
 Function ComputePrefixFunction(ByVal P As String)
 Dim m = P.Length

186

 Dim pi(m) As Integer
 Dim k = 0
 Dim q As Integer

 pi(0) = 0

 For q = 2 To (m - 1) Step 1
 While ((k > 0) And (P.Chars(k) <> P.Chars(q)))
 k = pi(k)
 End While

 If P.Chars(k) = P.Chars(q) Then
 k = k + 1
 End If

 pi(q) = k
 Next

 Return pi
 End Function

 Sub DoKMPMatch(ByVal T As String, ByVal P As String)
 Dim n = T.Length
 Dim m = P.Length
 Dim pi(n) As Integer
 Dim q = 0
 Dim i As Integer

 pi = ComputePrefixFunction(P)

 For i = 0 To (n - 1) Step 1
 While (q > 0) And (P.Chars(q) <> T.Chars(i))
 q = pi(q)
 End While

 If P.Chars(q) = T.Chars(i) Then
 q = q + 1
 End If

 If q = m Then
 Console.WriteLine("Pattern found at shift {0})", ((i + 1) - m))
 q = pi(q)
 End If
 Next
 End Sub

187

 Shared Sub Main()
 Dim T As String = "Take me out to the ball game, Take me out to the crowd, Buy
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes
your out, At the old ball game!"
 Dim P As String = "ball"
 Dim K_Match As New KMPMatchInVB

 K_Match.DoKMPMatch(T, P)
 End Sub
End Class

A.6 Polynomial Addition

A.6.1 PolyAddInC.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main (void)
{
 int A[100];
 int B[100];
 int C[100];

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 {
 A[i] = (rand() % 100);
 B[i] = (rand() % 100);
 }

 for (int j = 0; j < 100; j++)
 C[j] = A[j] + B[j];

 printf("Polynomial coefficients as follows:");

 for (int k = 0; k < 100; k++)
 printf("%d\n", C[k]);

 return 0;
}

188

A.6.2 PolyAddInCPP.cpp

#include "PolyAddClass.h"

int main (void)
{
 PolyAddClass *polyAddClass = new PolyAddClass();

 polyAddClass -> DoPolyAdd();
 polyAddClass -> OutputCoEs();

 delete polyAddClass;

 return 0;
}

A.6.3 PolyAddClass.h

class PolyAddClass
{
 public:
 PolyAddClass (void);

 void DoPolyAdd (void);
 void OutputCoEs (void);

 private:
 int A[100];
 int B[100];
 int C[100];
};

A.6.4 PolyAddClass.cpp

#include <stdlib.h>
#include <time.h>
#include <iostream>
#include "PolyAddClass.h"

using namespace std;

PolyAddClass :: PolyAddClass (void)
{
 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)

189

 {
 A[i] = (rand() % 100);
 B[i] = (rand() % 100);
 }
}

void PolyAddClass :: DoPolyAdd (void)
{
 for (int j = 0; j < 100; j++)
 C[j] = A[j] + B[j];
}

void PolyAddClass:: OutputCoEs (void)
{
 cout << "Polynomial coefficients as follows:" << endl;

 for (int k = 0; k < 100; k++)
 cout << C[k] << endl;
}

A.6.5 PolyAddInCS.cs

using System;

namespace PolyAddInCS
{
 class PolyAddInCS
 {
 private int[] A = new int [100];
 private int[] B = new int [100];
 private int[] C = new int [100];

 public PolyAddInCS()
 {
 Random r = new Random();

 for (int i = 0; i < 100; i++)
 {
 A[i] = r.Next() % 100;
 B[i] = r.Next() % 100;
 }
 }

 private void DoPolyAdd()
 {
 for (int j = 0; j < 100; j++)

190

 C[j] = A[j] + B[j];
 }

 private void OutputCoEs()
 {
 Console.WriteLine("Polynomial coefficients as follows:");

 for (int k = 0; k < 100; k++)
 Console.WriteLine(C[k]);
 }

 public static void Main()
 {
 PolyAddInCS polyAddInCS = new PolyAddInCS();

 polyAddInCS.DoPolyAdd();
 polyAddInCS.OutputCoEs();
 }
 }
}

A.6.6 PolyAddInJava.jsl

import java.util.*;

public class PolyAddInJava
{
 private int[] A = new int[100];
 private int[] B = new int[100];
 private int[] C = new int[100];

 public PolyAddInJava()
 {
 Random r = new Random();

 for (int i = 0; i < 100; i++)
 {
 A[i] = r.nextInt() % 100;
 B[i] = r.nextInt() % 100;
 }
 }

 private void DoPolyAdd()
 {
 for (int j = 0; j < 100; j++)

191

 C[j] = A[j] + B[j];
 }

 private void OutputCoEs()
 {
 System.out.println("Polynomial coefficients as follows:");

 for (int k = 0; k < 100; k++)
 System.out.println(C[k]);
 }

 public static void main (String args[])
 {
 PolyAddInJava polyAddInJava = new PolyAddInJava();

 polyAddInJava.DoPolyAdd();
 polyAddInJava.OutputCoEs();
 }
}

A.6.7 PolyAddInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class PolyAddInVB
 Shared Sub Main()
 Dim A(100) As Integer
 Dim B(100) As Integer
 Dim C(100) As Integer
 Dim i As Integer

 Randomize()

 For i = 0 To 100 Step 1
 A(i) = Int((100 - 0 + 1) * Rnd()) + 0
 B(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 For i = 0 To 100 Step 1
 C(i) = A(i) + B(i)
 Next

 Console.WriteLine("Polynomial coefficients as follows:")

 For i = 0 To 100 Step 1

192

 Console.WriteLine("{0}", C(i))
 Next
 End Sub
End Class

A.7 Gaussian Elimination

A.7.1 GaussElimInC.cpp

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define n 100

float A[n][n];
float b[n];
float x[n];
int Pi[n];

void LUP_Decomposition (void)
{
 int k_prime = 0;
 int temp = 0;

 for (int i = 0; i < n; i++)
 Pi[i] = i;

 for (int k = 0; k < n; k++)
 {
 double p = 0;

 for (int i = k; i < n; i++)
 {
 if (abs(A[i][k]) > p)
 {
 p = abs(A[i][k]);
 k_prime = i;
 }
 }

 if (p == 0)

193

 {
 printf("Error, Singular Matrix");
 return;
 }

 temp = Pi[k];
 Pi[k] = Pi[k_prime];
 Pi[k_prime] = temp;

 for (int i = 0; i < n; i++)
 {
 temp = A[k][i];
 A[k][i] = A[k_prime][i];
 A[k_prime][i] = temp;
 }

 for (int i = (k + 1); i < n; i++)
 {
 A[i][k] = (A[i][k] / A[k][k]);

 for (int j = (k + 1); j < n; j++)
 A[i][j] = A[i][j] - (A[i][k] * A[k][j]);
 }
 }
}

void LUP_Solve (void)
{
 float y[n];
 float temp = 0;

 y[1] = b[Pi[1]];

 for (int i = 0; i < n; i++)
 {
 for (int j = 1; j < (i - 1); j++)
 temp = temp + (A[i][j] * y[j]);

 y[i] = (b[Pi[i]] - temp);
 temp = 0;
 }

 x[n] = (y[n] / A[n][n]);

 for (int i = (n - 1); i >= 0; i--)
 {

194

 for (int j = i + 1; j < n; j++)
 temp = temp + (A[i][j] * x[j]);

 x[i] = ((y[i] - temp) / A[i][i]);
 temp = 0;
 }
}

int main (void)
{
 int Uks = n;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i][j] = (rand() % 100);

 for (int i = 0; i < n; i++)
 b[i] = (rand() % 100);

 LUP_Decomposition();
 LUP_Solve();

 printf("Solutions for %d unknowns:\n", Uks);

 for (int i = 0; i < n; i++)
 printf("%f\n", x[i]);

 return 0;
}

A.7.2 GaussElimInCPP.cpp

#include "GaussClass.h"

int main (void)
{
 GaussElim *gaussElim = new GaussElim();

 gaussElim -> LUP_Decomposition();
 gaussElim -> LUP_Solve();
 gaussElim -> OutputUnknowns();

 delete gaussElim;

195

 return 0;
}

A.7.3 GaussClass.h

#define n 100

class GaussElim
{
 public:
 GaussElim (void);

 void LUP_Decomposition (void);
 void LUP_Solve (void);
 void OutputUnknowns (void);

 private:
 float A[n][n];
 float b[n];
 float x[n];
 int Pi[n];
};

A.7.4 GaussClass.cpp

#include <stdio.h>
#include <time.h>
#include <iostream>
#include "GaussClass.h"

using namespace std;

GaussElim :: GaussElim (void)
{
 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i][j] = (rand() % 100);

 for (int i = 0; i < n; i++)
 b[i] = (rand() % 100);
}

void GaussElim :: LUP_Decomposition (void)
{

196

 int k_prime = 0;
 int temp = 0;

 for (int i = 0; i < n; i++)
 Pi[i] = i;

 for (int k = 0; k < n; k++)
 {
 double p = 0;

 for (int i = k; i < n; i++)
 {
 if (abs(A[i][k]) > p)
 {
 p = abs(A[i][k]);
 k_prime = i;
 }
 }

 if (p == 0)
 {
 cout << "Error, Singular Matrix" << endl;
 return;
 }

 temp = Pi[k];
 Pi[k] = Pi[k_prime];
 Pi[k_prime] = temp;

 for (int i = 0; i < n; i++)
 {
 temp = A[k][i];
 A[k][i] = A[k_prime][i];
 A[k_prime][i] = temp;
 }

 for (int i = (k + 1); i < n; i++)
 {
 A[i][k] = (A[i][k] / A[k][k]);

 for (int j = (k + 1); j < n; j++)
 A[i][j] = A[i][j] - (A[i][k] * A[k][j]);
 }
 }
}

197

void GaussElim :: LUP_Solve (void)
{
 float y[n];
 float temp = 0;

 y[1] = b[Pi[1]];

 for (int i = 0; i < n; i++)
 {
 for (int j = 1; j < (i - 1); j++)
 temp = temp + (A[i][j] * y[j]);

 y[i] = (b[Pi[i]] - temp);
 temp = 0;
 }

 x[n] = (y[n] / A[n][n]);

 for (int i = (n - 1); i >= 0; i--)
 {
 for (int j = i + 1; j < n; j++)
 temp = temp + (A[i][j] * x[j]);

 x[i] = ((y[i] - temp) / A[i][i]);
 temp = 0;
 }
}

void GaussElim :: OutputUnknowns (void)
{
 cout << "Solutions for " << n << " unknowns:" << endl;

 for (int i = 0; i < n; i++)
 cout << x[i] << endl;
}

A.7.5 GaussElimInCS.cs

using System;

namespace GaussElimInCS
{
 public class GaussElimInCS
 {
 private const int n = 100;
 private float [,] A = new float[n, n];

198

 private float [] b = new float[n];
 private float [] x = new float [n];
 private int [] Pi = new int[n];

 public GaussElimInCS()
 {
 Random r = new Random();

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i, j] = r.Next() % n;

 for (int i = 0; i < n; i++)
 b[i] = r.Next() % n;
 }

 private void LUP_Decomposition()
 {
 int k_prime = 0;
 int temp1 = 0;

 for (int i = 0; i < n; i++)
 Pi[i] = i;

 for (int k = 0; k < n; k++)
 {
 double p = 0;

 for (int i = k; i < n; i++)
 {
 if (Math.Abs(A[i, k]) > p)
 {
 p = Math.Abs(A[i, k]);
 k_prime = i;
 }
 }

 if (p == 0)
 {
 Console.WriteLine("Error, Singular Matrix");
 return;
 }

 temp1 = Pi[k];
 Pi[k] = Pi[k_prime];
 Pi[k_prime] = temp1;

199

 for (int i = 0; i < n; i++)
 {
 float temp2 = A[k, i];
 A[k, i] = A[k_prime, i];
 A[k_prime, i] = temp2;
 }

 for (int i = (k + 1); i < n; i++)
 {
 A[i, k] = (A[i, k] / A[k, k]);

 for (int j = (k + 1); j < n; j++)
 A[i, j] = A[i, j] - (A[i, k] * A[k, j]);
 }
 }
 }

 private void LUP_Solve()
 {
 float []y = new float[n];
 float temp = 0;

 y[1] = b[Pi[1]];

 for (int i = 0; i < n; i++)
 {
 for (int j = 1; j < (i - 1); j++)
 temp = temp + (A[i, j] * y[j]);

 y[i] = (b[Pi[i]] - temp);
 temp = 0;
 }

 x[n - 1] = (y[n - 1] / A[n - 1, n - 1]);

 for (int i = (n - 1); i >= 0; i--)
 {
 for (int j = i + 1; j < n; j++)
 temp = temp + (A[i, j] * x[j]);

 x[i] = ((y[i] - temp) / A[i, i]);
 temp = 0;
 }
 }

200

 private void OutputUnknwons()
 {
 Console.WriteLine("Solutions for " + n + " unknowns:");

 for (int i = 0; i < n; i++)
 Console.WriteLine(x[i]);
 }

 public static void Main()
 {
 GaussElimInCS gaussElim = new GaussElimInCS();

 gaussElim.LUP_Decomposition();
 gaussElim.LUP_Solve();
 gaussElim.OutputUnknwons();
 }
 }
}

A.7.6 GaussElimInJava.jsl

import java.util.*;

public class GaussElimInJava
{
 private static int n = 100;
 private float [,] A = new float[n, n];
 private float [] b = new float[n];
 private float [] x = new float [n];
 private int [] Pi = new int[n];

 public GaussElimInJava()
 {
 Random r = new Random();

 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 A[i, j] = r.nextInt() % n;

 for (int i = 0; i < n; i++)
 b[i] = r.nextInt() % n;
 }

 private void LUP_Decomposition()
 {
 int k_prime = 0;

201

 int temp1 = 0;

 for (int i = 0; i < n; i++)
 Pi[i] = i;

 for (int k = 0; k < n; k++)
 {
 double p = 0;

 for (int i = k; i < n; i++)
 {
 if (Math.abs(A[i, k]) > p)
 {
 p = Math.abs(A[i, k]);
 k_prime = i;
 }
 }

 if (p == 0)
 {
 System.out.println("Error, Singular Matrix");
 return;
 }

 temp1 = Pi[k];
 Pi[k] = Pi[k_prime];
 Pi[k_prime] = temp1;

 for (int i = 0; i < n; i++)
 {
 float temp2 = A[k, i];
 A[k, i] = A[k_prime, i];
 A[k_prime, i] = temp2;
 }

 for (int i = (k + 1); i < n; i++)
 {
 A[i, k] = (A[i, k] / A[k, k]);

 for (int j = (k + 1); j < n; j++)
 A[i, j] = A[i, j] - (A[i, k] * A[k, j]);
 }
 }
 }

 private void LUP_Solve()

202

 {
 float []y = new float[n];
 float temp = 0;

 y[1] = b[Pi[1]];

 for (int i = 0; i < n; i++)
 {
 for (int j = 1; j < (i - 1); j++)
 temp = temp + (A[i, j] * y[j]);

 y[i] = (b[Pi[i]] - temp);
 temp = 0;
 }

 x[n - 1] = (y[n - 1] / A[n - 1, n - 1]);

 for (int i = (n - 1); i >= 0; i--)
 {
 for (int j = i + 1; j < n; j++)
 temp = temp + (A[i, j] * x[j]);

 x[i] = ((y[i] - temp) / A[i, i]);
 temp = 0;
 }
 }

 private void OutputUnknwons()
 {
 System.out.println("Solutions for " + n + " unknowns:");

 for (int i = 0; i < n; i++)
 System.out.println(x[i]);
 }

 public static void main (String args[])
 {
 GaussElimInJava gaussElim = new GaussElimInJava();

 gaussElim.LUP_Decomposition();
 gaussElim.LUP_Solve();
 gaussElim.OutputUnknwons();
 }
}

203

A.7.7 GaussElimInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class GaussElimInVB
 Const n = 100
 Dim A(n, n) As Single
 Dim b(n) As Single
 Dim x(n) As Single
 Dim Pi(n) As Integer

 Sub LUP_Decomposition()
 Dim k_prime = 0
 Dim temp = 0
 Dim i As Integer
 Dim k As Integer
 Dim j As Integer
 Dim temp1 As Integer
 Dim temp2 As Single

 For i = 0 To n Step 1
 Pi(i) = i
 Next

 For k = 0 To n Step 1
 Dim p As Single
 p = 0

 For i = k To n Step 1
 If Math.Abs(A(i, k)) > p Then
 p = Math.Abs(A(i, k))
 k_prime = i
 End If
 Next

 If p = 0 And i <> (n + 1) Then
 Console.WriteLine("Error, Singular Matrix")
 End
 End If

 temp1 = Pi(k)
 Pi(k) = Pi(k_prime)
 Pi(k_prime) = temp1

 For i = 0 To n Step 1

204

 temp2 = A(k, i)
 A(k, i) = A(k_prime, i)
 A(k_prime, i) = temp2
 Next

 For i = (k + 1) To n Step 1
 A(i, k) = (A(i, k) / A(k, k))

 For j = (k + 1) To n Step 1
 A(i, j) = A(i, j) - (A(i, k) * A(k, j))
 Next
 Next
 Next
 End Sub

 Sub LUP_Solve()
 Dim y(n) As Single
 Dim temp As Single
 Dim i As Integer
 Dim j As Integer

 y(0) = b(Pi(0))

 For i = 0 To n Step 1
 For j = 1 To (i - 1) Step 1
 temp = temp + (A(i, j) * y(j))
 Next

 y(i) = (b(Pi(i)) - temp)
 temp = 0
 Next

 x(n) = (y(n) / A(n, n))

 For i = n To 0 Step -1
 For j = i + 1 To n Step 1
 temp = temp + (A(i, j) * x(j))
 Next

 x(i) = ((y(i) - temp) / A(i, i))
 temp = 0
 Next
 End Sub

 Shared Sub Main()
 Dim gaussElim As New GaussElimInVB

205

 Dim i As Integer
 Dim j As Integer

 Randomize()

 For i = 0 To n Step 1
 For j = 0 To n Step 1
 gaussElim.A(i, j) = Int((n - 0 + 1) * Rnd()) + 0
 Next
 Next

 For i = 0 To n Step 1
 gaussElim.b(i) = Int((n - 0 + 1) * Rnd()) + 0
 Next

 gaussElim.LUP_Decomposition()
 gaussElim.LUP_Solve()

 Console.WriteLine("Solutions for {0} unkowns:", gaussElim.n)

 For i = 0 To n Step 1
 Console.WriteLine(gaussElim.x(i))
 Next
 End Sub
End Class

A.8 Minimum and Maximum

A.8.1 MinMaxInC.cpp

#include <stdio.h>
#include <time.h>

int Minimum (int *A)
{
 int min = A[0];

 for (int i = 1; i < 100; i++)
 if (min > A[i])
 min = A[i];

 return min;
}

int Maximum (int *A)

206

{
 int max = A[0];

 for (int i = 1; i < 100; i++)
 if (max < A[i])
 max = A[i];

 return max;
}

int main (void)
{
 int A[100];
 int min = 0;
 int max = 0;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 A[i] = (rand() % 100);

 min = Minimum(A);
 max = Maximum(A);

 printf("The minimum value in the array is %d\n", min);
 printf("The maximum value in the array is %d\n", max);

 return 0;
}

A.8.2 MinMaxInCPP.cpp

#include <iostream>
#include "MinMaxClass.h"

using namespace std;

int main (void)
{
 int min = 0;
 int max = 0;

 MinMaxClass *mmc = new MinMaxClass();

 min = mmc -> DoMinimum();
 max = mmc -> DoMaximum();

207

 cout << "The minimum value in the array is " << min << endl;
 cout << "The maximum value in the array is " << max << endl;

 delete mmc;

 return 0;
}

A.8.3 MinMaxClass.h

class MinMaxClass
{
 public:
 MinMaxClass (void);

 int DoMinimum (void);
 int DoMaximum (void);

 private:
 int A[100];
};

A.8.4 MinMaxClass.cpp

#include <stdlib.h>
#include <time.h>
#include "MinMaxClass.h"

MinMaxClass :: MinMaxClass (void)
{
 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 A[i] = (rand() % 100);
}

int MinMaxClass :: DoMinimum (void)
{
 int min = A[0];

 for (int i = 1; i < 100; i++)
 if (min > A[i])
 min = A[i];

 return min;

208

}

int MinMaxClass :: DoMaximum (void)
{
 int max = A[0];

 for (int i = 1; i < 100; i++)
 if (max < A[i])
 max = A[i];

 return max;
}

A.8.5 MinMaxInCS.cs

using System;

namespace MinMaxClass
{
 public class MinMaxClass
 {
 private int[] A = new int[100];
 private int min = 0;
 private int max = 0;

 public MinMaxClass()
 {
 Random r = new Random();

 for (int i = 0; i < 100; i++)
 A[i] = r.Next() % 100;
 }

 private void DoMinimum()
 {
 min = A[0];

 for (int i = 1; i < 100; i++)
 if (min > A[i])
 min = A[i];
 }

 private void DoMaximum()
 {
 max = A[0];

209

 for (int i = 1; i < 100; i++)
 if (max < A[i])
 max = A[i];
 }

 public static void Main()
 {
 MinMaxClass mmc = new MinMaxClass();

 mmc.DoMinimum();
 mmc.DoMaximum();

 Console.WriteLine("The minimum value in the array is {0}",
mmc.min);
 Console.WriteLine("The maximum value in the array is {0}",
mmc.max);
 }
 }
}

A.8.6 MinMaxInJAVA.jsl

import java.util.*;

public class MinMaxClass
{
 private int[] A = new int[100];
 private int min = 0;
 private int max = 0;

 public MinMaxClass()
 {
 Random r = new Random();

 for (int i = 0; i < 100; i++)
 A[i] = r.nextInt() % 100;
 }

 private void DoMinimum()
 {
 min = A[0];

 for (int i = 1; i < 100; i++)
 if (min > A[i])
 min = A[i];
 }

210

 private void DoMaximum()
 {
 max = A[0];

 for (int i = 1; i < 100; i++)
 if (max < A[i])
 max = A[i];
 }

 public static void main (String args[])
 {
 MinMaxClass mmc = new MinMaxClass();

 mmc.DoMinimum();
 mmc.DoMaximum();

 System.Console.WriteLine("The minimum value in the array is " +
mmc.min);
 System.Console.WriteLine("The maximum value in the array is " +
mmc.max);
 }
}

A.8.7 MinMaxInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class MinMaxInVB
 Dim A(100) As Integer
 Dim min As Integer
 Dim max As Integer

 Sub DoMinimum()
 Dim i As Integer

 min = A(0)

 For i = 1 To 100 Step 1
 If min > A(i) Then
 min = A(i)
 End If
 Next
 End Sub

211

 Sub DoMaximum()
 Dim i As Integer

 max = A(0)

 For i = 1 To 100 Step 1
 If max < A(i) Then
 max = A(i)
 End If
 Next
 End Sub

 Shared Sub Main()
 Dim mmc As New MinMaxInVB
 Dim i As Integer

 Randomize()

 For i = 0 To 100 Step 1
 mmc.A(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 mmc.DoMinimum()
 mmc.DoMaximum()

 Console.WriteLine("The minimum value in the array is {0}", mmc.min)
 Console.WriteLine("The maximum value in the array is {0}", mmc.max)
 End Sub
End Class

A.9 Random Selection

A.9.1 RandomSelectInC.cpp

#include <stdlib.h>
#include <stdio.h>
#include <time.h>

int Partition (int *A, int p, int r)
{
 int x = A[r];
 int i = p - 1;
 int temp = 0;

 for (int j = p; j <= r - 1; j++)

212

 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
}

int RandomizedPartition (int *A, int p, int r)
{
 int temp = 0;
 int i = (rand() % r) + p;

 temp = A[r];
 A[r] = A[i];
 A[i] = temp;

 return Partition(A, p, r);
}

int RandomizedSelect (int *A, int p, int r, int i)
{
 int q = 0;
 int k = 0;

 if (p == r)
 return A[p];

 q = RandomizedPartition(A, p, r);
 k = q - p + 1;

 if (i == k)
 return A[q];
 else if (i < k)
 return RandomizedSelect(A, p, q - 1, i);
 else

213

 return RandomizedSelect(A, q + 1, r, i - k);
}

int main (void)
{
 int A[100];
 int n = 100;
 int x = 0;

 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < n; i++)
 A[i] = (rand() % 100);

 x = RandomizedSelect(A, 0, 100, 1);

 printf("The ith smallest element in the array where i = 1 is %d", x);

 return 0;
}

A.9.2 RandomSelectInCPP.cpp

#include <iostream>
#include "RandomSelectClass.h"

using namespace std;

int main (void)
{
 int x = 0;

 RandomSelect *rc = new RandomSelect();

 x = rc -> RandomizedSelect(0, 99, 1);

 cout << "The ith smallest element in the array where i = 1 is " << x << endl;

 delete rc;

 return 0;
}

A.9.3 RandomSelectClass.h

class RandomSelect

214

{
 public:
 RandomSelect (void);

 int RandomizedSelect (int p, int r, int i);

 private:
 int RandomizedPartition (int p, int r);
 int Partition (int p, int r);

 int A[100];
};

A.9.4 RandomSelectClass.cpp

#include <stdlib.h>
#include <time.h>
#include "RandomSelectClass.h"

RandomSelect :: RandomSelect (void)
{
 srand((unsigned int) time((time_t *) NULL));

 for (int i = 0; i < 100; i++)
 A[i] = (rand() % 100);
}

int RandomSelect :: RandomizedSelect (int p, int r, int i)
{
 int q = 0;
 int k = 0;

 if (p == r)
 return A[p];

 q = RandomizedPartition(p, r);
 k = q - p + 1;

 if (i == k)
 return A[q];
 else if (i < k)
 return RandomizedSelect(p, q - 1, i);
 else
 return RandomizedSelect(q + 1, r, i - k);
}

215

int RandomSelect :: RandomizedPartition (int p, int r)
{
 int temp = 0;
 int i = (rand() % r) + p;

 temp = A[r];
 A[r] = A[i];
 A[i] = temp;

 return Partition(p, r);
}

int RandomSelect :: Partition (int p, int r)
{
 int x = A[r];
 int i = p - 1;
 int temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
}

A.9.5 RandomSelectInCS.cs

using System;

namespace RandomSelect
{
 public class RandomSelect
 {
 private int[] A = new int [100];

216

 public RandomSelect()
 {
 Random r = new Random();

 for (int i = 0; i < 100; i++)
 A[i] = r.Next(0, 100);
 }

 private int RandomizedSelect (int p, int r, int i)
 {
 int q = 0;
 int k = 0;

 if (p == r)
 return A[p];

 q = RandomizedPartition(p, r);
 k = q - p + 1;

 if (i == k)
 return A[q];
 else if (i < k)
 return RandomizedSelect(p, q - 1, i);
 else
 return RandomizedSelect(q + 1, r, i - k);
 }

 private int RandomizedPartition (int p, int r)
 {
 Random x = new Random();

 int temp = 0;
 int i = (x.Next(0, p)) + r;

 temp = A[r];
 A[r] = A[i];
 A[i] = temp;

 return Partition(p, r);
 }

 private int Partition (int p, int r)
 {
 int x = A[r];
 int i = p - 1;

217

 int temp = 0;

 for (int j = p; j <= r - 1; j++)
 {
 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
 }

 public static void Main ()
 {
 int x = 0;

 RandomSelect rm = new RandomSelect();

 x = rm.RandomizedSelect(0, 99, 1);

 Console.WriteLine("The ith smallest element in the array where i
= 1 is " + x);
 }
 }
}

A.9.6 RandomSelectInJava.jsl

import java.util.*;

public class RandomSelect
{
 private int[] A = new int [100];

 public RandomSelect()
 {
 Random r = new Random();

218

 for (int i = 0; i < 100; i++)
 A[i] = r.nextInt() % 100;
 }

 private int RandomizedSelect (int p, int r, int i)
 {
 int q = 0;
 int k = 0;

 if (p == r)
 return A[p];

 q = RandomizedPartition(p, r);
 k = q - p + 1;

 if (i == k)
 return A[q];
 else if (i < k)
 return RandomizedSelect(p, q - 1, i);
 else
 return RandomizedSelect(q + 1, r, i - k);
 }

 private int RandomizedPartition (int p, int r)
 {
 Random x = new Random();

 int temp = 0;
 int i = x.nextInt() % r;

 temp = A[r];
 A[r] = A[Math.abs(i)];
 A[Math.abs(i)] = temp;

 return Partition(p, r);
 }

 private int Partition (int p, int r)
 {
 int x = A[r];
 int i = p - 1;
 int temp = 0;

 for (int j = p; j <= r - 1; j++)
 {

219

 if (A[j] <= x)
 {
 i = i + 1;

 temp = A[i];
 A[i] = A[j];
 A[j] = temp;
 }
 }

 temp = A[i + 1];
 A[i + 1] = A[r];
 A[r] = temp;

 return (i + 1);
 }

 public static void main (String args[])
 {
 int x = 0;

 RandomSelect rm = new RandomSelect();

 x = rm.RandomizedSelect(0, 99, 1);

 System.Console.WriteLine("The ith smallest element in the array where i
= 1 is " + x);
 }
}

A.9.7 RandomSelectInVB.vb

Imports System
Imports Microsoft.VisualBasic

Public Class RandomSelectInVB
 Function Partition(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer)
 Dim x = A(r)
 Dim i = p - 1
 Dim j As Integer
 Dim temp = 0

 For j = p To r - 1 Step 1
 If A(j) <= x Then
 i = i + 1

220

 temp = A(i)
 A(i) = A(j)
 A(j) = temp
 End If
 Next

 temp = A(i + 1)
 A(i + 1) = A(r)
 A(r) = temp

 Return (i + 1)
 End Function

 Function RandomizedPartition(ByRef A() As Integer, ByRef p As Integer, ByRef r As
Integer)
 Dim i = 0
 Dim temp = 0

 Randomize()

 i = Int((r - p + 1) * Rnd()) + 0

 temp = A(r)
 A(r) = A(i)
 A(i) = temp

 Return Partition(A, p, r)
 End Function

 Function RandomizedSelect(ByRef A() As Integer, ByRef p As Integer, ByRef r As
Integer, ByRef i As Integer)
 Dim q = 0
 Dim k = 0

 If p = r Then
 Return A(p)
 End If

 q = RandomizedPartition(A, p, r)
 k = q - p + 1

 If i = k Then
 Return A(q)
 ElseIf i < k Then
 Return RandomizedSelect(A, p, q - 1, i)
 Else

221

 Return RandomizedSelect(A, q + 1, r, i - k)
 End If
 End Function

 Shared Sub Main()
 Dim i
 Dim x
 Dim n = 100
 Dim A(100) As Integer
 Dim rc As New RandomSelectInVB

 Randomize()

 For i = 0 To 99 Step 1
 A(i) = Int((100 - 0 + 1) * Rnd()) + 0
 Next

 x = rc.RandomizedSelect(A, 0, 100, 1)

 Console.WriteLine("The ith smallest element in the array where i = 1 is {0}", x)
 End Sub
End Class

222

APPENDIX B

RAW MEASUREMENT DATA

B.1 Static Measurements

Linear Search C C++ C# Java Visual BASIC

Physical Lines of Code 46 80 48 44 34
Effective Lines of Code 29 29 26 26 27
Code Statements 20 33 18 18 25
McCabe's V(g) 8 11 9 7 10
Compiler Directives 3 5 1 1 2

Bubblesort C C++ C# Java Visual BASIC

Physical Lines of Code 53 81 60 53 44
Effective Lines of Code 29 36 32 29 35
Code Statements 22 33 25 24 26
McCabe's V(g) 8 10 9 9 10
Compiler Directives 3 4 1 1 2

Quicksort C C++ C# Java Visual BASIC

Physical Lines of Code 66 97 60 67 60
Effective Lines of Code 36 53 36 36 46
Code Statements 28 39 30 30 44
McCabe's V(g) 8 10 9 9 11
Compiler Directives 3 5 1 1 2

Naïve String Matching C C++ C# Java Visual BASIC

Physical Lines of Code 25 56 44 43 20
Effective Lines of Code 14 32 23 23 17
Code Statements 8 21 17 18 15
McCabe's V(g) 4 5 4 5 7
Compiler Directives 3 4 1 1 2

KMP String Matching C C++ C# Java Visual BASIC

Physical Lines of Code 60 91 72 69 60
Effective Lines of Code 33 50 38 37 47

223

Code Statements 23 35 27 27 35
McCabe's V(g) 12 14 11 11 17
Compiler Directives 2 4 1 1 2

Polynomial Addition C C++ C# Java Visual BASIC

Physical Lines of Code 28 57 44 42 28
Effective Lines of Code 17 33 22 21 22
Code Statements 13 22 16 16 20
McCabe's V(g) 4 6 7 7 8
Compiler Directives 3 5 1 1 2

Gaussian Elimination C C++ C# Java Visual BASIC

Physical Lines of Code 110 133 118 115 115
Effective Lines of Code 62 76 64 63 91
Code Statements 53 61 55 55 80
McCabe's V(g) 19 21 21 21 24
Compiler Directives 4 6 1 1 2

Minimum and
Maximum C C++ C# Java Visual BASIC

Physical Lines of Code 44 66 48 45 49
Effective Lines of Code 26 39 26 25 37
Code Statements 19 26 18 18 26
McCabe's V(g) 8 9 9 11 13
Compiler Directives 2 5 1 1 2

Random Selection C C++ C# Java Visual BASIC

Physical Lines of Code 77 99 86 83 80
Effective Lines of Code 47 59 48 47 61
Code Statements 35 42 36 36 55
McCabe's V(g) 10 11 11 13 15
Compiler Directives 3 5 1 1 2

Table B.1 Static Raw Measurements.

B.2 Dynamic Measurements

Linear Search C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8638 24314 21022 181358 34513
Total Objects Created 40 274 185 3114 585
Execution Time Max (Seconds) 2.734 3.001 2.281 3.016 2.828
Execution Time Min (Seconds) 1.813 2.172 1.765 2.626 1.968
Execution Time Average (Seconds) 2.0563 2.4457 1.9376 2.825 2.5294

224

Total Routines 433 1110 198 633 430
Routines Executed 108 372 108 383 248
Total Routine Calls 1034 7674 394 21540 7855

Bubblesort C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8642 24298 22902 202586 33494
Total Objects Created 41 274 275 4176 438423
Execution Time Max (Seconds) 2.531 3.875 2.296 3.469 3.578
Execution Time Min (Seconds) 1.765 2.375 1.719 2.656 2.782
Execution Time Average (Seconds) 1.9703 2.8734 1.8858 3.0439 3.1626
Total Routines 368 1109 201 665 435
Routines Executed 96 370 111 405 250
Total Routine Calls 3208 23275 3495 28762 176229

Quicksort C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8684 24290 22908 202408 3821
Total Objects Created 42 274 276 4174 80725
Execution Time Max (Seconds) 2.406 3.172 2.484 3.453 3.297
Execution Time Min (Seconds) 1.844 2.421 1.782 2.625 1.937
Execution Time Average (Seconds) 1.9671 2.6125 1.9521 3.0018 2.672
Total Routines 369 1110 202 666 434
Routines Executed 96 370 111 407 249
Total Routine Calls 3294 23603 3547 28973 20710

Naïve String Matching C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8642 24298 28458 187752 31443
Total Objects Created 41 274 460 3370 735
Execution Time Max (Seconds) 1.11 1.344 1.078 1.703 3.095
Execution Time Min (Seconds) 0.813 1.031 0.844 1.344 1.781
Execution Time Average (Seconds) 0.986 1.2344 0.9703 1.3936 2.2292
Total Routines 362 1101 214 629 225
Routines Executed 91 365 123 380 125
Total Routine Calls 970 8496 1035 22199 5186

KMP String Matching C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8676 24295 22954 181934 34437
Total Objects Created 42 275 181 3111 1278
Execution Time Max (Seconds) 2.36 2.25 1.125 2.578 1.172
Execution Time Min (Seconds) 1.734 1.873 0.828 1.344 0.922
Execution Time Average (Seconds) 1.9156 2.052 0.9767 1.5685 1.0532

225

Total Routines 364 1110 191 624 205
Routines Executed 92 360 105 379 106
Total Routine Calls 468 8421 206 21180 7975

Polynomial Addition C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8668 24324 23818 203160 49330
Total Objects Created 42 275 276 4163 1207
Execution Time Max (Seconds) 1.125 1.391 1.125 1.719 1.25
Execution Time Min (Seconds) 0.859 1.078 0.844 1.437 0.984
Execution Time Average (Seconds) 1.039 1.2781 0.9564 1.5781 1.1185
Total Routines 367 1108 202 666 388
Routines Executed 95 372 112 408 226
Total Routine Calls 3622 24659 3686 29208 8027

Gaussian Elimination C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8768 24374 65582 331356 81930
Total Objects Created 44 276 282 5604 934
Execution Time Max (Seconds) 1.343 1.75 1.141 1.75 1.282
Execution Time Min (Seconds) 0.984 1.36 0.922 1.422 1.75
Execution Time Average (Seconds) 1.1639 1.6002 1.07167 1.6001 1.2297
Total Routines 433 1116 209 706 405
Routines Executed 122 397 117 435 239
Total Routine Calls 50808 81214 23287 75835 58690

Minimum and Maximum C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8660 24550 21636 152270 31282
Total Objects Created 42 276 193 2607 410
Execution Time Max (Seconds) 1.11 1.324 1 1.578 1.234
Execution Time Min (Seconds) 0.844 1.093 0.719 1.25 0.985
Execution Time Average (Seconds) 0.9422 1.1579 0.8999 1.3375 1.1358
Total Routines 369 1111 202 535 382
Routines Executed 95 390 111 328 223
Total Routine Calls 776 23289 429 7087 5936

Random Selection C C++ C# Java
Visual
BASIC

Size in Memory (Bytes) 8993 24706 22794 205664 3985
Total Objects Created 45 275 279 4283 81725
Execution Time Max (Seconds) 1.45 1.576 1.231 1.593 3.569
Execution Time Min (Seconds) 1.21 1.329 1.057 1.254 2.587
Execution Time Average (Seconds) 1.3078 1.4587 1.1125 1.3578 3.0489

226

Total Routines 380 1266 205 591 459
Routines Executed 100 522 119 370 291
Total Routine Calls 768 10139 487 23590 21815

Table B.2 Dynamic Raw Measurements.

B.3 Metadata Measurements

Linear Search C C++ C# Java Visual BASIC

Type References 10 20 5 15 14
Type Definitions 3 84 2 2 2
Fields 2 82 4 4 0
Methods 5 159 3 5 2
Member References 7 17 6 18 16
Assembly References 2 2 1 3 2
Stand Alone Signatures 4 129 2 2 1

Bubblesort C C++ C# Java Visual BASIC

Type References 11 20 4 14 11
Type Definitions 5 85 2 2 2
Fields 3 81 4 4 0
Methods 7 158 3 5 2
Member References 6 17 5 15 14
Assembly References 2 2 1 3 2
Stand Alone Signatures 6 131 3 3 1

Quicksort C C++ C# Java Visual BASIC

Type References 11 20 4 14 11
Type Definitions 5 86 2 2 2
Fields 3 81 3 3 0
Methods 8 159 4 6 4
Member References 6 17 5 15 15
Assembly References 2 2 1 3 2
Stand Alone Signatures 6 130 4 4 3

Naïve String Matching C C++ C# Java Visual BASIC

Type References 10 20 6 16 9
Type Definitions 6 87 2 2 2
Fields 3 82 4 4 0
Methods 6 156 3 5 2
Member References 6 17 7 20 11
Assembly References 2 2 1 3 2
Stand Alone Signatures 6 131 2 2 1

227

KMP String Matching C C++ C# Java Visual BASIC

Type References 10 20 5 16 9
Type Definitions 6 87 2 2 2
Fields 3 82 4 4 0
Methods 7 156 4 5 2
Member References 6 17 6 20 11
Assembly References 2 2 1 3 2
Stand Alone Signatures 8 134 2 2 1

Polynomial Addition C C++ C# Java Visual BASIC

Type References 11 20 4 14 7
Type Definitions 4 84 2 2 2
Fields 2 80 3 3 0
Methods 6 157 4 6 2
Member References 6 17 5 15 8
Assembly References 2 2 1 3 2
Stand Alone Signatures 3 130 3 3 1

Gaussian Elimination C C++ C# Java Visual BASIC

Type References 12 21 7 21 10
Type Definitions 7 87 2 2 2
Fields 7 82 5 5 5
Methods 8 160 5 8 4
Member References 8 18 10 26 14
Assembly References 2 2 1 4 2
Stand Alone Signatures 7 135 5 6 3

Minimum and
Maximum C C++ C# Java Visual BASIC

Type References 11 20 4 14 7
Type Definitions 3 84 2 2 2
Fields 2 81 3 3 3
Methods 8 157 4 6 4
Member References 6 17 4 17 7
Assembly References 2 2 1 3 2
Stand Alone Signatures 5 128 3 3 3

Random Selection C C++ C# Java Visual BASIC

Type References 11 20 5 15 12
Type Definitions 3 84 2 2 2
Fields 1 80 1 1 0
Methods 9 158 5 7 5
Member References 6 17 5 18 14
Assembly References 2 2 1 3 2
Stand Alone Signatures 7 130 5 4 4

228

B.3 Metadata Raw Measurements.

229

APPENDIX C

PCA-RCM TOOL OUTPUT

C.1 Static RCM Results

C.1.1 Linear Search

Module DOMAIN1 RCM

LSearchInC 0.02059 50.20592
LSearchInCPP 1.78576 67.85758
LSearchInCS -0.67606 43.23943
LSearchInJava -1.01667 39.83332
LSearchInVB -0.11363 48.86375

C.1.2 Bubblesort

Module DOMAIN1 DOMAIN2 RCM

BubbleSortInC -0.89617 1.26372 45.86751
BubbleSortInCPP 1.76799 0.64755 68.82833
BubbleSortInCS -0.31316 -0.29715 46.04476
BubbleSortInJava -0.76727 -0.23703 41.97851
BubbleSortInVB 0.20861 -1.37709 47.28089

C.1.3 Quicksort

Module DOMAIN1 DOMAIN2 RCM

QuickSortInC -0.72580 0.92770 47.38275
QuickSortInCPP 1.56988 0.95232 68.25952
QuickSortInCS -0.82095 -0.26198 41.45637
QuickSortInJava -0.71540 -0.05921 43.27473
QuickSortInVB 0.69227 -1.55884 49.62663

230

C.1.4 Naïve String Matching

Module DOMAIN1 RCM

NaiveMatchInC -1.18986 38.10136
NaiveMatchInCPP 1.50454 65.04539
NaiveMatchInCS 0.27967 52.79666
NaiveMatchInJava 0.27592 52.75918
NaiveMatchInVB -0.87026 41.29740

C.1.5 KMP String Matching

Module DOMAIN1 DOMAIN2 RCM

KMPMatchInC -0.93832 -0.08991 40.91790
KMPMatchInCPP 1.50481 1.08511 67.93742
KMPMatchInCS -0.62999 0.40321 45.56369
KMPMatchInJava -0.71650 0.24888 44.20303
KMPMatchInVB 0.78001 -1.64729 51.37796

C.1.6 Polynomial Addition

Module DOMAIN1 DOMAIN2 RCM

PolyAddInC -1.06713 -1.49415 33.52708
PolyAddInCPP 1.80359 -0.63226 62.89410
PolyAddInCS -0.26580 0.55495 50.28573
PolyAddInJava -0.37464 0.55885 49.34546
PolyAddInVB -0.09603 1.01261 53.94764

C.1.7 Gaussian Elimination

Module DOMAIN1 DOMAIN2 RCM

GaussElimInC -1.04198 -0.03810 40.90937
GaussElimInCPP 0.22681 1.81079 61.37518
GaussElimInCS -0.43493 -0.50142 43.67452
GaussElimInJava -0.49140 -0.69212 42.19850
GaussElimInVB 1.74151 -0.57915 61.84244

231

C.1.8 Minimum and Maximum

Module DOMAIN1 DOMAIN2 RCM

PolyAddInC -1.06713 -1.49415 33.52708
PolyAddInCPP 1.80359 -0.63226 62.89410
PolyAddInCS -0.26580 0.55495 50.28573
PolyAddInJava -0.37464 0.55885 49.34546
PolyAddInVB -0.09603 1.01261 53.94764

C.1.9 Random Selection

Module DOMAIN1 DOMAIN2 RCM

RandomSelectInC -0.94195 0.15369 43.54998
RandomSelectInCPP 0.75028 1.68540 66.32114
RandomSelectInCS -0.74285 -0.12394 43.39678
RandomSelectInJava -0.56052 -0.65792 41.52603
RandomSelectInVB 1.49504 -1.05723 55.20607

C.2 Dyanmic PCA Results

C.2.1 Linear Search

Module DOMAIN1 DOMAIN2 RCM

LSearchInC -0.81650 0.10585 42.37891
LSearchInCPP 0.38930 1.63342 57.94902
LSearchInCS -1.15573 -0.84411 36.66545
LSearchInJava 1.62794 -0.93566 63.33794
LSearchInVB -0.04501 0.04049 49.66868

C.2.2 Bubblesort

Module DOMAIN1 DOMAIN2 RCM

BubbleSortInC -1.11255 0.04126 40.11982
BubbleSortInCPP 0.63694 -0.88373 51.97794
BubbleSortInCS -1.26334 0.12175 39.10102
BubbleSortInJava 0.81756 -0.94899 53.33151
BubbleSortInVB 0.92139 1.66971 65.46972

232

C.2.3 Quicksort

Module DOMAIN1 DOMAIN2 RCM

QuicksortInC -1.08609 -0.46104 38.28461
QuicksortInCPP 0.74679 -0.47627 55.84521
QuicksortInCS -1.11409 -0.35265 38.31768
QuicksortInJava 1.34132 -0.55524 61.33506
QuicksortInVB 0.11208 1.84519 56.21744

C.2.4 Naïve String Matching

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

NaiveMatchInC -1.05511 -0.23480 -0.38044 39.52060
NaiveMatchInCPP 0.02189 -0.79517 1.62310 49.49306
NaiveMatchInCS -0.90031 -0.23748 -0.78964 39.71005
NaiveMatchInJava 1.64170 -0.60304 -0.75242 57.39745
NaiveMatchInVB 0.29183 1.87049 0.29941 63.87885

C.2.5 KMP String Matching

Module DOMAIN1 DOMAIN2 RCM

KMPMatchInC -0.17511 -1.09910 42.66456
KMPMatchInCPP 0.88759 -1.11421 51.57864
KMPMatchInCS -1.21317 0.26460 41.14096
KMPMatchInJava 1.32868 1.26631 67.98971
KMPMatchInVB -0.82799 0.68239 46.62614

C.2.6 Polynomial Addition

Module DOMAIN1 DOMAIN2 RCM

PolyAddInC -0.88937 -0.11951 41.05787
PolyAddInCPP 0.42288 1.76815 57.94366
PolyAddInCS -0.93629 -0.49619 39.78714
PolyAddInJava 1.69861 -0.83207 64.79111
PolyAddInVB -0.29583 -0.32037 46.42020

233

C.2.7 Gaussian Elimination

Module DOMAIN1 DOMAIN2 RCM

GaussElimInC -0.77269 -0.37148 41.52299
GaussElimInCPP 0.89778 -1.51512 54.13345
GaussElimInCS -1.26054 0.46903 39.32732
GaussElimInJava 1.32563 1.27590 66.41823
GaussElimInVB -0.19018 0.14167 48.59801

C.2.8 Minimum and Maximum

Module DOMAIN1 DOMAIN2 RCM

MinMaxInC -0.90963 -0.11025 41.13435
MinMaxInCPP 0.74145 1.70408 63.15437
MinMaxInCS -1.14799 -0.31541 38.16387
MinMaxInJava 1.44206 -1.20336 58.99384
MinMaxInVB -0.12588 -0.07505 48.55355

C.2.9 Random Selection

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

RandomSelectInC -0.64571 -0.89580 -0.16622 39.96725
RandomSelectInCPP -0.21674 1.16667 -1.41276 49.85313
RandomSelectInCS -0.82612 -0.93131 0.14039 39.06773
RandomSelectInJava -0.19579 1.12466 1.44623 57.26040
RandomSelectInVB 1.88436 -0.46421 -0.00764 63.85149

C.3 Metadata PCA Results

C.3.1 Linear Search

Module DOMAIN1 DOMAIN2 RCM

LSearchInC -0.60613 -0.24699 43.45476
LSearchInCPP 1.87152 -0.52873 65.30878
LSearchInCS -0.89357 -1.26426 36.93502
LSearchInJava -0.08477 1.46179 54.76302
LSearchInVB -0.28705 0.57819 49.53842

234

C.3.2 Bubblesort

Module DOMAIN1 DOMAIN2 RCM

BubbleSortInC -0.52032 -0.12501 44.67509
BubbleSortInCPP 1.88772 -0.47684 66.25950
BubbleSortInCS -0.88911 -1.31706 37.27259
BubbleSortInJava -0.11808 1.46743 53.71004
BubbleSortInVB -0.36021 0.45149 48.08278

C.3.3 Quicksort

Module DOMAIN1 DOMAIN2 RCM

QuickSortInC -0.52171 -0.14108 44.61035
QuickSortInCPP 1.88834 -0.47243 66.24503
QuickSortInCS -0.89203 -1.32571 37.18531
QuickSortInJava -0.13665 1.44702 53.51360
QuickSortInVB -0.33795 0.49220 48.44570

C.3.4 Naïve String Matching

Module DOMAIN1 DOMAIN2 RCM

NaiveMatchInC -0.55684 -0.23541 43.95671
NaiveMatchInCPP 1.87634 -0.51242 65.61470
NaiveMatchInCS -0.79522 -1.06681 38.71243
NaiveMatchInJava 0.02280 1.71051 56.43357
NaiveMatchInVB -0.54708 0.10413 45.28259

C.3.5 KMP String Matching

Module DOMAIN1 DOMAIN2 RCM

KMPMatchInC -0.53224 -0.19415 44.33732
KMPMatchInCPP 1.87211 -0.52712 65.41536
KMPMatchInCS -0.83021 -1.10450 38.18419
KMPMatchInJava 0.02340 1.68885 56.50146
KMPMatchInVB -0.53306 0.13693 45.56167

235

C.3.6 Polynomial Addition

Module DOMAIN1 DOMAIN2 RCM

PolyAddInC -0.47771 0.03275 45.54353
PolyAddInCPP 1.89096 -0.46411 66.63264
PolyAddInCS -0.80086 -1.21421 38.70535
PolyAddInJava -0.03756 1.61332 54.50248
PolyAddInVB -0.57483 0.03225 44.61600

C.3.7 Gaussian Elimination

Module DOMAIN1 DOMAIN2 RCM

GaussElimInC -0.54357 -0.37995 43.41660
GaussElimInCPP 1.87924 -0.49260 64.27769
GaussElimInCS -0.75503 -0.86295 39.28147
GaussElimInJava 0.00492 1.83561 58.66395
GaussElimInVB -0.58555 -0.10010 44.36028

C.3.8 Minimum and Maximum

Module DOMAIN1 DOMAIN2 RCM

MinMaxInC -0.46142 0.03739 45.75710
MinMaxInCPP 1.88344 -0.49220 66.21613
MinMaxInCS -0.82373 -1.16836 38.41569
MinMaxInJava -0.02092 1.65162 55.16425
MinMaxInVB -0.57736 -0.02845 44.44683

C.3.9 Random Selection

Module DOMAIN1 DOMAIN2 RCM

RandomSelectInC -0.55178 -0.17728 44.21566
RandomSelectInCPP 1.87559 -0.51840 65.57495
RandomSelectInCS -0.89751 -1.24688 37.09667
RandomSelectInJava -0.06480 1.54239 55.01995
RandomSelectInVB -0.36150 0.40017 48.09276

236

C.4 Overall PCA Results

C.4.1 Linear Search

Module DOMAIN1 DOMAIN2 RCM

LSearchInC -0.59458 -0.53907 42.00631
LSearchInCPP 1.74330 -0.83196 58.89297
LSearchInCS -1.18779 -0.63916 36.67004
LSearchInJava 0.21542 1.85091 62.87749
LSearchInVB -0.17636 0.15927 49.55320

C.4.2 Bubblesort

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

BubbleSortInC -0.87967 -0.69416 -0.37961 38.38640
BubbleSortInCPP 1.76322 -0.88300 0.02818 61.26959
BubbleSortInCS -0.99675 -0.80783 0.47012 39.11370
BubbleSortInJava 0.02515 1.09555 -1.51729 51.08201
BubbleSortInVB 0.08805 1.28944 1.39859 60.14830

C.4.3 Quicksort

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

QuickSortInC -0.86671 -0.62944 -0.59915 38.23321
QuickSortInCPP 1.63222 -1.06518 -0.16741 59.36904
QuickSortInCS -1.16335 -0.52243 -0.00474 37.73008
QuickSortInJava 0.34271 1.61022 -1.02251 56.75872
QuickSortInVB 0.05512 0.60683 1.79383 57.90894

C.4.4 Naïve String Matching

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

NaiveMatchInC -0.78996 -0.86739 -0.29299 38.28832
NaiveMatchInCPP 1.74898 -0.67623 0.59625 62.22638
NaiveMatchInCS -0.59153 -0.78039 -0.76851 38.85350
NaiveMatchInJava 0.43571 1.53566 -1.09385 58.09994
NaiveMatchInVB -0.80320 0.78835 1.55910 52.53186

237

C.4.5 KMP String Matching

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

KMPMatchInC -0.46101 -0.17270 -1.54207 41.20859
KMPMatchInCPP 1.82679 -0.70989 0.00793 62.06487
KMPMatchInCS -0.99566 -0.66914 -0.07659 38.27136
KMPMatchInJava 0.18254 1.91586 0.12043 60.85649
KMPMatchInVB -0.55266 -0.36413 1.49030 47.59870

C.4.6 Polynomial Addition

Module DOMAIN1 DOMAIN2 RCM

PolyAddInC -0.86889 -0.36440 40.68640
PolyAddInCPP 1.59069 -1.16564 57.48677
PolyAddInCS -0.95083 -0.39790 39.81260
PolyAddInJava 0.69448 1.77302 65.17641
PolyAddInVB -0.46546 0.15492 46.83782

C.4.7 Gaussian Elimination

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

GaussElimInC -0.70067 -0.40206 -0.92442 39.39356
GaussElimInCPP 1.56922 -1.16484 -0.01351 57.23655
GaussElimInCS -1.14455 -0.38403 -0.39659 37.53157
GaussElimInJava 0.67423 1.75630 -0.51192 62.27368
GaussElimInVB -0.39822 0.19463 1.84644 53.56464

C.4.8 Minimum and Maximum

Module DOMAIN1 DOMAIN2 RCM

MinMaxInC -0.71299 -0.43225 41.66479
MinMaxInCPP 1.79735 -0.75397 61.85344
MinMaxInCS -1.04166 -0.71784 37.39361
MinMaxInJava 0.16150 1.88139 60.74776
MinMaxInVB -0.20420 0.02267 48.34039

238

C.4.9 Random Selection

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

RandomSelectInC -0.69703 -0.66557 -0.34606 39.78897
RandomSelectInCPP 1.86088 -0.54339 -0.33777 59.31335
RandomSelectInCS -0.94027 -0.75333 -0.65767 36.52673
RandomSelectInJava -0.14438 0.08665 1.91475 55.27323
RandomSelectInVB -0.07921 1.87564 -0.57326 59.09772

239

REFERENCES

AutomatedQA, Corp. (1996). AQtime 4 – Automated Profiling and Debugging.
 http://www.automatedqa.com/products/aqtime/index.asp (2004, November 18).

Ballintjn, M. R. & Ten Cate, C. (1997). Sex Differences in the Vocalizations and Syrinx
 of the Collared Dove (Streptopelia Decaocto). The Auk 114 (1), 22-39.

Bates, B. (2004). C# as a First Language: A Comparison with C++. Journal of
 Computing Sciences in Colleges, 19 (3).

Bergin, J. (1996). Java as a Better C++. ACM SIGPLAN Notices, 31 (11).

Brosgol, B. M. (1998). A Comparison of Ada and Java as a Foundation Teaching
 Language. ACM SIGAda Ada Letters, 18 (5), 12-38.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to
 Algorithms (2nd ed.). Massachusetss: MIT Press.

Dewar, E. W. (2003). Multivariate Analysis of Mammalian Communities: Membership
 and Species Lineage Ranges in the Tertiary of North America. Journal of
 Vertebrate Paleontology, 23 (3), 45A-46A.

Ebert, C. (1995). Tracing Complexity through the Software Process. Proceedings of the
 1st International Conference on Engineering of Complex Computer Systems.

23-30.

Fenton, N. (1994). Software Measurement: A Necessary Scientific Basis. IEEE
 Transactions on Software Engineering, 20 (3), 199-206.

Fenton, N. E. & Neil, M. (1999). Software Metrics: Successes, Failures and New
 Directions. The Journal of Systems and Software, 47, 149-157.

Feuer, A. R. & Gehani, N. H. (1982). A Comparison of the Programming Language C
 and Pascal. ACM Computing Surveys, 14 (1).

Halstead, M. H. (1977). Elements of Software Science. New York: Elsevier.

Harel, E. C. & McLean, E. R. (1985). The Effects of Using a Nonprocedural Computer
 Language on Programmer Productivity. MIS Quarterly, June, 109-120.

240

Hoare, C. A. R. (1961). Algorithm 63 Partition. Communications of the ACM, 4 (7),
 321.

Hoare, C. A. R. (1961). Algorithm 64 Quicksort. Communications of the ACM, 4 (7),
 321.

Hoare, C. A. R. (1962). Quicksort. Computer Journal, 5 (1), 10-15.

Jackson, J. E. (1991). A User’s Guide to Principal Components. New Jersey: John
 Wiley & Sons, Inc.

Joyce, R., Webb, R., & Peacock, J. L. (2003). Associations Between Perinatal
 Interventions and Hospital Stillbirth Rates and Neonatal Mortality. Archives of
 Disease in Childhood Fetal and Neonatal Edition. 89: F51-F56.

Jung, H., Pivka, M., & Kim, J. (2000). An Empirical Study of Complexity Metrics in
 Cobol Programs. The Journal of Systems and Software, 51, 111-118.

Knuth, D. E., Morris, J. H., & Pratt, V. R. (1977). Fast Pattern Matching in Strings.
 SIAM Journal of Computing, 6 (2), 323-350.

M Squared Technologies (2005). RSM Downloads. Resource Standard Software Source
 Code Metrics For C, C++, C#, Java and Visual BASIC.
 http://www.msquaredtechnologies.com/m2rsm_demo.php (2005, July 2).

Martin, W. A. (1971). Sorting. ACM Computing Surveys, 3 (4), 147-174.

McCabe, T. (1976). A Complexity Measure. IEEE Transactions on Software
 Realiability SE-2, 5: 308-320.

Munson, J. C. (2003). Software Engineering Measurement. Florida: CRC Press LLC.

Munson, J. C. & Khoshgoftaar, T. M. (1990). Applications of a Relative Complexity
 Metric for Software Project Management. Journal of Systems and Software, 12
 (3), 283-291.

Myers, B. A. (2002). Towards More Natural Functional Programming Languages.
 Proceedings of the Seventh ACM SIGPLAN International Conference on
 Functional Programming, October: 1.

Navarro-Prieto, R. & Canas, J. J. (2001). Are Visual Programming Languages Better?
 The Role of Imagery in Progam Comprehension. International Journal of
 Human-Computer Studies, 54 (6), 799-829.

Perry, D. E. & Stieg, C. S. (1990). Software Faults in Evolving a Large, Real-Time
 System: a Case Study. New Jersey: AT&T Bell Laboratories.

241

Petzold, C. (2002). Programming Windows with C#. Washington: Microsoft Press.

Pratt, T. W. & Zelkowitz, M. V. (2001). Programming Languages: Design and
 Implementation (4th ed.). New Jersey: Prentice Hall.

Prechelt, L. (2005). An Empirical Comparison of C, C++, Java, Perl, Python, Rexx, and
 Tcl for a Search/String-Processing Program. Technical Report 2000-5.

Sebesta, R. W. (1999). Concepts of Programming Languages (2nd ed.). Massachusetts:
 Addison Wesley Longman, Inc.

Sedgewick, R. (1983). Algorithms. Massachusetts: Addison-Wesley Publishing
 Company, Inc.

The Code Project (2002). A.NET Assembly Viewer.
 http://www.codeproject.com/dotnet/asmex.asp (2005, July 2).

Wemple, B. C. (2004). Water Quantity and Quality Dynamics in High-Elevation
 Watersheds: Developing a Scientific Approach to Understanding Ski Area
 Impacts in Vermont.
 http://www.uvm.edu/envnr/vtwater/?Page=progress_reports/wemple_2004.html
 (2005, July 9).

Weyuker, E. J. (1988). Evaluating Software Complexity Measures. IEEE Transactions
 on Software Engineering, 14 (9), 1357-1365.

Wohlin, C. (1996). Revisiting Measurement of Software Complexity. Proceeding of the
 3rd Asia-Pacific Software Engineering Conference. 35-43.

Zeijl E., du Bois-Reymond, M., & te Poel, Y. (2001). Young Adolescents’ Leisure
 Patterns. Society and Leisure, 24 (2, Fall 2001), 379-402.

Zhao, M., Wohlin, C., Ohlsson, N., & Xie, M. (1998). A Comparison Between Software
 Design and Code Metrics for the Prediction of Software Fault Content.
 Information and Software Technology, 40. 801-809.

VITA

Jason Lawrence Michlowitz was born in Smithtown, New York, on December 8,

1979, the son of Ralph and Barbara Michlowitz. He completed his work as an

undergraduate student at Texas State University–San Marcos in May of 2002 with a

Bachelor’s Degree in Computer Science. From June 2002 until February 2004, work was

hard to find in the field of computer science, so Jason entered into Texas State

University–San Marcos once again in the fall of 2002 to attend graduate school seeking a

Master of Science in Software Engineering. Jason is currently living in Scottsdale,

Arizona and is currently employed at Atronic Americas, LLC working as a game

software engineer in the casino gaming industry.

Permanent Address: 16831 North 58th Street #217

 Scottsdale, Arizona 85254

This thesis was typed by Jason Lawrence Michlowitz.

