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ABSTRACT 
 
 

A METHODOLOGY FOR MAPPING PROGRAMMING LANGUAGES TO 

PROGRAMMING PROBLEMS 

 

 

by 

 

Jason Lawrence Michlowitz, B.S. 

 

Texas State University–San Marcos 

August 2006 

 

SUPERVISING PROFESSOR:  CAROL HAZLEWOOD 

 
Several algorithms that solve different types of problems are implemented, tested, 

and compared by applying a set of metrics. The results are analyzed using Principal 

Components Analysis to calculate a Relative Complexity Metric. The results of the study 

reveal that a programming language does have an effect on the simplicity, speed and 

other attributes of an implementation.  The results of the study also reveal which

languages are best suited for a particular type of programming technique, such as 

recursion.
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CHAPTER I 

INTRODUCTION 

Within the computer science and software engineering communities, there has 

been much research on the subject of algorithms and the work that can be done through 

their use.  Numerous discussions can be found on the speed, complexity, and 

effectiveness of different algorithms and how those that perform the same type of work 

measure against each other.  Lacking, however, is extensive research on how a given 

algorithm’s performance can be affected through the choice of a programming language.  

There are many different types of algorithms that perform many different tasks and it is 

one of the goals of this research to ease the task of finding a programming language that 

best suits the problem at hand. Finding the best language for that problem will ease the 

implementation task, which will allow for the production of better quality software.  

Aside from this goal, two important questions will need to be answered:  Will algorithms 

perform differently when written in different languages?  Which language offers the least 

complex algorithm implementation?  Performance and suitability are defined in terms of 

software metrics. 

To answer the above questions, the following hypotheses must be tested:

H1: An algorithm, when implemented in a set of programming languages, will 

perform differently in each language. 
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H2: Given a specific algorithm and a set of languages, it is possible to determine 

which language is best suited for the given algorithm. 

In order to illustrate the concept that a programming language can have an effect 

on algorithm performance, several classical algorithms have been implemented in 

multiple languages.  The algorithms were chosen from a variety of problem domains and 

the languages from a common platform.  Each implementation has been tested and 

measurements have been applied statically, dynamically, and with respect to .NET 

metadata.  The details of this experiment are described in Chapter 3.  As a basis for 

comparison, these measurement results have been put through a statistical process 

described in Chapter 7 in which a greater understanding of language complexities 

becomes visible.  Looking at these statistical data, it can be determined which languages 

are best suited for the given algorithms based on this data.  The final goal of this research, 

however, is not to decide for the programmer which language to use in a particular 

situation.  Due to the multitude of aspects inherent in a programming language, the 

constraints of the software being developed must be the factor in choosing an 

implementation language.  There are three measurement categories, namely static 

measurements, dynamic measurements, and measurements on .NET metadata.  As 

detailed in Chapters 8, 9, 10, and 11, it has been determined that languages that perform 

better in one category might not perform well in another, so instead the goal of this 

research is to provide the programmer with several questions that should be asked and 

how these questions should be answered before choosing an implementation language. 

This work expands on the ideas of Munson (2003) in that he uses a set of metrics 

and statistical analysis in order to determine the most complex code modules in a large 
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software system.  What is different in this work, however, is that this study does not 

compare program modules, but rather programming languages.  In other words, the same 

program module is written several times, each in a different language, is measured and 

compared, and results are given.  In the Munson work (2003), this same process is used, 

but he compares the individual modules, all written in one language.  As a result of 

Munson’s process, there is little to explain what complexity was introduced as a side 

effect of the language used.  This study adds this dimension to what has already been 

done in Munson’s process.  Munson and Khoshgaftaar (1990) have also done a fair 

amount of work in the area of creating a one-valued representation for the complexity of 

a program module, and this concept is used here to determine how a programming 

language introduces additional, possibly unseen complexities.  The methodology used in 

this work has not previously been applied to language comparisons or .NET metadata. 

Within the constraints of this study, the final results establish that programming 

languages do in fact introduce possibly unseen complexites into program 

implementations.  It is also possible from the results of this study to determine which 

language is best suited for a given problem.  Again, suitability is defined in terms of 

software metrics and their analysis.
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CHAPTER II 

RELATED WORK 

2.1 Introduction 

In this chapter, articles and other publications on measurement analysis and 

language comparisons are reviewed and related to this work. 

 

2.2 Studies in Software Engineering and Language Comparisons 

The following works compare different aspects of software engineering using 

empirical studies.  Also, this section lists articles and other publications that compare 

languages using various methods.  The strengths and weakness of each are discussed as 

well as what this research project contributes to the literature.  Taking a look at these 

articles can give validity to this project as other authors have done similar work.

 

2.2.1 An Empirical Comparison of C, C++, Java, Perl, Python, Rexx, and Tcl for a 

Search/String-Processing Program 

The study involved language comparisons as implemented by a number of 

different programmers. The study compared for various properties, including run-time, 

memory constraints, reliability, etc. They concluded that scripting languages are more 

productive than compiled languages, given all such factors involved (Prechelt, 2005). 

This is similar to this study because it compared languages for efficiency. The differences 
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lie in the fact that while this study compares across a common platform for efficiency in 

language constructs, Prechelt's study focuses on human factors, such as various 

programming styles, and does not compare across a consistent framework. Also, due to 

the nature of the study, it does not (and can not) use a Relative Complexity Metric, a one 

valued representation of a program’s metrics, to statistically compare the programming 

languages, as there is additional unseen variation as a result of using different 

programming styles and different frameworks.  This study can use a Relative Complexity 

Metric as it avoids this problem by using the .NET framework, and one machine as the 

common approach for comparison. 

 

2.2.2 Software Faults in Evolving a Large, Real-Time System:  A Case Study 

This study looks at the faults found in a large, real-time system and categorizes 

them by when they were found, what testing procedure was used in finding the fault, how 

difficult these were to fix, and perhaps what the underlying causes of these faults are.  It 

is the hope of this study that by finding these causes, future projects may benefit from the 

knowledge gained about the faults in the system measured.  All of the data in this study 

were gathered using a standard questionnaire in which the requirements, design, and code 

of the system are inspected.  In a second questionnaire, the methods of testing and quality 

assurance are examined, as it is important to find at what point in the testing process the 

faults were found (Perry & Stieg, 1990). 

This study does not use formal statistics, as it is more of an analysis of the 

software process used by the organization rather then a comparison of code modules; 

however it does contribute work in the areas of design and requirements, in which some 
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base faults may be found before coding begins.  It is similar to this research project in 

that the faults are categorized and analyzed, much like the measurement categories of 

static, dynamic, and metadata metrics taken on each of the code modules written for this 

project.  It is a similar goal of this study that future knowledge of programming languages 

might give insight into preventing faults, much like the fault prevention hope of the study 

in this article.  One benefit of this research project over the one found in the article is that 

a major system did not need to be developed in which time and money were spent in 

order to learn anything new, and thus the data gained may perhaps be useful before a real 

system begins development. 

 

2.2.3 A Comparison of the Programming Languages C and Pascal 

In this article, the authors look at the language constructs and design patterns of C 

and Pascal.  The authors believe that Pascal programs tend to be more reliable then C 

because of its richer set of data types, its strong typing, readability and portability.  On 

the other hand, the authors believe that C is much more flexible and can be used 

effectively in more applications then Pascal as it gives the programmer more control.  

The authors list all of the strengths and weakness of each language in much the same way 

as this research project.  They than go into all of the features and data types of each 

language with an in-depth look at all of the language aspects of C and Pascal.  Once the 

languages are described in detail, the authors list which applications each language is best 

suited for (Feuer & Gehani, 1982).  The main problem with this study is that there is no 

measurement data, or statistical analysis to give valid insight into the comparison of these 

two languages.  It seems as though this article is more a collection of programmer 
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opinions rather than fact.  The research performed in the study performed here, however, 

obtains data on running programs written in these languages, and gives insight into the 

complexities of each language using researched metrics, and formal statistical analysis. 

 

2.2.4 Java as a Better C++ 

The author of this article was at the time of the writing learning the Java 

programming language.  He believes that the use of Java as an alternative to C++ would 

make a better teaching tool in the classroom.  He presents pros and cons to each language 

and how it would affect students in their learning process.  There is a presentation of the 

different data types offered by each language, and a synopsis of the constructs in each 

language (Bergin, 1996).  Sadly, however, this article is not backed with much scientific 

data, and is simply an opinion of the author that Java would make a better teaching tool.  

There are not code measurements and in turn, no statistical analysis.  It is impossible 

from this article to gain any knowledge as to why one language behaves “better” then the 

other. 

 

2.2.5 C# as a First Language:  A Comparison with C++ 

The author of this article was at one time a student of computer science at a 

university.  He discusses the pros and cons to C# being a better teaching tool.  He gives 

some code examples and then asks thought-provoking questions, i.e. “What is a main() 

function, and why do I need it?”  These questions serve to give the reader a sense of the 

author’s thought process and how it is he came to his conclusions (Bates, 2004).  Again, 

as with the previous articles, the author may have written well, but there is no science 
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here.  There again is no measurement data, no statistical analysis, and no conclusions 

drawn from these techniques.  It again is not possible to come to a reasonable conclusion 

simply because the author believes that he is right 

 

2.2.6 A Comparison of Ada and Java as a Foundation Teaching Language 

This article once again discusses the benefits and drawbacks of one language over 

another as a teaching tool, in this case, Ada and Java.  The author presents his case based 

on code examples, thought-provoking questions, and his personal opinions about each 

language.  For each language, a list of the common data types, constructs, and modules in 

each language are compared and contrasted, and the author gives his conclusions based 

on these comparisons (Brosgol, 1998).  Once again, as with the articles above, there is no 

science here.  Again there is a lack of code measurement data, statistical analysis, and the 

like preventing the conclusions drawn from being of any use.  Most of this article is 

opinion rather than fact.  Even if this author’s opinions are valid, there is no data to back 

these opinions. 

 

2.2.7 The Effects of Using a Nonprocedural Computer Language on Programmer 

Productivity 

This article looks at the differences of two languages, COBOL, a procedural 

language, and Focus, a nonprocedural language.  The differences studied include 

programmer productivity and execution time by the CPU.  Several programmers using 

both languages developed six “mid-sized” applications.  There are several independent 

variables associated with the empirical study performed on these languages.  These are 
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hardware, programming mode (all development online), organizational characteristics of 

the program development, the source languages, the types of applications, and 

programmer expertise.  Associated with these independent variables, are several 

dependent variables, namely time to understand the applications, program design time, 

programming time, testing and debugging time, consulting time, and documentation time. 

In addition, several run-time factors were studied.  These include total CPU time for 

complication, total CPU time for execution, total clock time for execution, total number 

of I/O operations, the number and size of input and output files, and the total number of 

source lines.  Each of these variables is measured and studied.  Each set of measurements 

goes through several statistical processes.  These include simple averages, standard 

deviation, and many others.  Once all of the data is processed, the authors give their 

results, concluding that COBOL is faster and more efficient for the CPU, but that Focus 

is a more productive language from the perspective of the programmer (Harel & McLean, 

1985).   

The study in this article follows much the same process as this research project; 

however, there are some key factors to consider.  Many of the variables in this study may 

contain noise.  There is no mention anywhere, for example, of how programming time is 

handled with respect to coffee breaks, and other factors that might cause problems in the 

data.  Also, there is little mention of why the programs developed are classified, as they 

are, i.e. complex, simple, etc.  Also, another problem exists in that there is little mention 

of the type of hardware used, even though it is considered an independent variable.  This 

research project hopes to look at these issues and remove the problems that might be 
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caused by them, i.e. noise in the measurements, providing a standard data set, and using a 

standard platform for all programming. 

 

2.2.8 Are Visual Programming Languages Better?  The Role of Imagery in 

Program Comprehension 

This article looks at programming languages differently.  The authors here wish to 

look at programming from a human-factors prospective.  The experiment conducted in 

this article looks at program comprehension as seen by C programmers and spreadsheet 

users.  The spreadsheet users have formulas at their disposal for computation, while 

programmers have many operations that may be used with inputs and outputs.  The 

spreadsheet users tended to look at programs from a data flow representation in all 

situations.  The C programmers, on the other hand, looked at control flow and logical 

construction before data was applied.  The experiment conducted involved groups of 

users, divided by their preferred medium, looking at problems and solving them on paper.  

From the results, it is believed that visual programmers can create semantic information 

quicker then non-visual programmers based on the data flow approach.  With this in 

mind, it is believed that programs can be developed quicker using visual tools (Navarro-

Prieto & Canas, 2001). 

The results of this study bring to the foreground interesting points regarding 

problem comprehension as viewed by groups of programmers.  These programmers use 

different technologies and therefore see programs and their structure differently.  The 

problem, however, is that these concepts are purely subjective.  The article makes general 

assumptions with regard to programmers based on a small select group of individuals.  
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There really is no measurement data found in this article nor is there anything to base 

statistics upon.  While the points in the article might be useful, it is not possible to prove 

anything true or false on how fast programs can be developed, or how correct and 

productive programmers can be simply based on the tool they use without actually 

developing applications.  This study, while not focused on programmer development 

time, does focus on the objective, rather than the subjective.  This is why measurement 

data and scientific analysis are performed in order to prove the hypothesis. 

 

2.2.9 Towards More Natural Functional Programming Languages 

The author of this article looks at programming languages from the human factors 

perspective.  It is believed that programmers might be more productive and would use 

languages more effectively if more human factors concerns were taken into account 

during the language design process.  With human factors considerations, language 

constructs would more closely match human thnking and capabilities.  The data and 

background research in this article are taken from known information from empirical 

studies in software engineering and from programming psychology.  Since much is 

known about what people find difficult in programming, languages can be designed to 

address issues with regard to syntax, and bug-prone constructs, making them easier for 

human thinking to comprehend programming and algorithms (Myers, 2002).   

In this article, the author addresses human factors related issues in programming 

and algorithm understanding.  The method used in this study involves review of code 

from programmers who have written several programs in several languages.  

Measurements are taken on each program’s code in order to see which languages yielded 
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the most bugs.  From the results in this study, it was decided that visual languages, such 

as Visual BASIC, gave programmers the chance to see their program visually allowing 

them the chance to better understand the problem before code was finished.  This project 

uses a similar approach in that programs are written in several types of languages and an 

empirical study is performed to analyize the results.  This author believes that languages 

that have syntax similar to Visual BASIC are superior to others when human factors 

considerations are taken into account. 

 

2.3 Using Principal Components Analysis 

The following is a list of articles from various fields, journals, and sources that 

use the technique of Principal Components Analysis (PCA) as the authors’ mode of 

analysis of measurement results.  Since a statistical tool is needed to process the raw 

metrics into meaningful data, PCA was chosen.  It is clear from the work in the following 

publications that PCA is a valuable tool for many fields and using the tool for this study 

is valid and reproducible.  In the following works, the authors use several of the same 

steps as they appear in this study.  Measurements are taken, components are determined, 

and valuable data is returned.  In all cases, the sources of variation that might be found in 

the works below are removed through the use of PCA for study.  This variation is 

important but it is also important to look at variation without noise being introduced.  

PCA removes this noise and discards it, allowing for pure results, meaning that all 

sources of variation not associated with the independent variables are removed.  It is 

these reasons that PCA was chosen as the analysis tool for this study.  Use of these 
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articles in this study is only meant to illustrate the value PCA and most do not relate to 

the topic of this study directly. 

 

2.3.1 Young Adolescents’ Leisure Patterns 

This article evaluates data collected on a study of pre-teen and adolescent leisure 

activities. The children were broken up into two groups: 10-12 year-olds, and 14-15 year-

olds. The study involved variables such as class differentiation and sex, and involved

both organized and unorganized activities. To evaluate relationships between these 

activities and the subgroups, the study used Principal Components Analysis for 

categorical data to explore nominal, ordinal, and interval data collected by the study 

(Zeijl, du Bois-Reymond, & Poel, 2001).  The article relates to this study through its use 

of multiple variables that are combined to form a basis of comparison. PCA is the tool 

that is used and the authors are able to ascertain valuable and comparable results. 

 

2.3.2 Water quantity and quality dynamics in high-elevation watersheds: 

Developing a scientific approach to understanding ski area impacts 

in Vermont 

This study explores the impact of ski area development on high-elevation 

watersheds in Vermont. The study evaluated several watersheds of Mt. Mansfield, similar 

in such things as geology, soil, and vegetation. Water samples were collected and 

evaluated to determine the solute concentrations in the water. Measurements were taken 

on the amounts of differenent chemicals and than these are logged for analysis.  Principal 

Components Analysis was used to explore the variability of the chemicals in the solutes 
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as well as the seasonal chemical changes regarding runoff (Wemple, 2004).  This is 

similar to the use of PCA in this study because it analyzes the individual effects of these 

chemicals in separate groups.  This approach is almost exactly like this study, in that the 

separate groups here are the static, dynamic, and metadata measurements.  Each of these 

groups is looked at separately.  The article also points out that variation in the 

measurement results can be impacted by sources of variation found in each of the 

samples.  PCA illustrates those sources of variation and highlights them for comparison. 

 

2.3.3 Sex Differences in the Vocalizations and Syrinx of the Collared Dove 

(Streptopelia Decaocto) 

This study involves the pitch and frequency of the voices of collard doves. It 

studies acoustic discrimination ratios as they relate to sex differentiation in the birds. The 

study concludes that the vocal and anatomical data demonstrate that physical differences 

contribute to sexual differentiation of their vocalizations. To gather these data, they 

measured the syrinx of the individual test subjects, and these measurements were taken in 

three groups: those taken after perfusion-fixation, those taken from cartilage-bone stained 

syringes, and those taken from horizontal sections. The authors used Principal 

Components Analysis to reduce the number of variables in these groups (Ballintjn & Ten 

Cate, 1997). In this way, their work relates to this study because its principal components 

are simplified using PCA.  Again, it can be seen here in this article that PCA is used to 

determine sources of variation when the different categories of measurements are applied.  

These variations present themselves as the individual principal components and this new 

data can be compared. 
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2.3.4 Multivariate analysis of Mammalian Communities: Membership and Species 

Lineage ranges in the Tertiary of North America 

This study discusses mammalian fossils in North America, using primarily 

localities in Wyoming and Nebraska. The study concentrates on using statistical tools to 

parse out differences among many localities simultaneously, rather than focusing on 

individual communities. The study was limited to fossils from the Wasatchian through 

the Arikareean periods. Principal Components Analysis was used to simplify the vast 

amount of data that was collected on the fauna of this period. Each fauna was described 

by a function of 600 variables indicating the presence or absence of each species (Dewar, 

2003). This is similar to what this study focuses on, in that it simplifies the data 

for analysis using PCA, but there is another similarity in that the fossil study also groups 

the PCA results in order to measure degrees of similarity among various faunas. 

 

2.3.5 Associations Between Perinatal Interventions and Hospital Stillbirth Rates 

and Neonatal Mortality 

This study investigated the effects of various factors on hospital stillbirth and 

mortality rates. Data analyzed included staffing rates, facilities, and birth weight. The 

study concluded that higher staffing helped to neutralize birth weight factors in 

stillbirth rates. Principal Components Analysis was used in situations where the data was 

significantly related to the outcome and was highly correlated.  They combined variables 

within the groups into more concise representations of their effects (Joyce, Webb & 

Peacock, 2003). The relation of this article to the work in this study stems from finding 
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variables that are highly correlated, as many software measurements tend to be (Munson, 

2003). 

 

2.3.6 Software Engineering Measurement 

This textbook by Munson, referenced throughout this study, is a great tool for 

those learning the measurement and scientific processes in software engineering.  His 

approach is used as the basis for the comparison of languages in this study.  Munson 

(2003) looks at many of the measurements typically found in the software engineering 

world, analyses their usefulness, and uses this as a basis for creating a standard set of 

metrics.  With a standard set of metrics, measurement becomes reproducible, and useful.  

But that is not all of what he describes.  In addition to looking at raw measurement 

results, he goes on to say that measurements are nothing more than base data, and do not 

mean much without statistics.  The tool he uses to create the statistics is PCA, from which 

a Relative Complexity Metric (RCM) can be found.  This RCM value represents a one 

metric representation of a programming module’s complexity (Munson, 2003).  It is this 

process that will give valid and useful results for this project. 

 

2.3.7 Applications of a Relative Complexity Metric for Software Project 

Management 

As in the above work, this article presents the concept of a Relative Complexity 

Metric in the use of software development.  Munson (the author of the above work) and 

Khoshgoftaar (1990) discuss how such a one number representation may be used in 

software project management to the benefit of the team building the software.  The 
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authors discuss that there is a problem with so many different metrics available that it is 

difficult to make sense of the data, and present the use of the one-number representation 

in the form of the Relative Complexity Metric on software projects.  The calculation of 

the Relative Complexity Metric is done through the use of Principal Components 

Analysis and this process was completed on 27 pieces of software developed over several 

years by several developers.  The authors find that there is an important correlation 

between writing-debugging time and the value of the Relative Complexity Metric, where 

higher numbers indicate seemingly more complex software and longer writing-debugging 

times (Munson & Khoshgoftaar, 1990).  This research study uses the same approach as in 

this article as measurements are taken, and a Relative Complexity Metric is calculated 

giving meaning to the data collected.  This article is an important piece of research that 

illustrates the validity of the approach in this project. 

 

2.4 Conclusions on Related Work 

From the first section of articles, it is clear that there is a large number of opinions 

and research in the study of languages.  Many of the above articles lack scientific data 

and analysis to prove what the authors believe.  Others, however, do, but these take 

different approaches that might introduce noise and other problems in the data that might 

not be visible.  The point of using PCA as an approach and using the RCM that can be 

derived is to remove any possible noise or other useless variation that might be in the 

data.   This study employs measurement data, analysis, and conclusions based on that 

analysis, and the work is objective and simply based on the scientific approach used.  

This study also hopes to serve as a future lesson in language comparisons. 
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In the second section of articles, those that use PCA as a scientific statistical approach, it 

is clear that it is a respected and useful tool.  Many disciplines use this tool effectively 

and through the use of this tool, researchers are able to produce excellent, and useful 

results.  In the software engineering world, it is possible the next phase in the evolution of 

software engineering is the use of PCA and RCM, producing a one-value representation 

of quality.  Munson (2003) suggests this is possible, and has given plenty of evidence to 

support his claim.  Even if this process does not take hold in the software engineering 

community, it still provides valid and reproducable statistical data from which future 

lessons can be learned. 
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CHAPTER III 

EXPERIMENTAL DESIGN 

3.1 Overview 

Following is a description of each of the elements of the experiement.  These are 

the independent variables, the dependent variables, the subjects, and the method of 

operation, each of which is an important piece that needs to be defined.  Since the 

experiment described below requires funding, manpower, and resources beyond the scope 

of this study, the experiment actually conducted is a subset. 

 

3.2 Independent Variables 

In first describing this experiment, it is important to understand the independent 

variables in the study, those factors in which outside influence has no effect.  These are 

actually very simple.  The first is the programming languages themselves.  All languages 

that are commonly used among students and industry professionals would be measured 

and studied.  The second variable is the algorithms.  Nine different algorithms, each 

performing different programming tasks, have been implemented in each language.  

Several problem spaces have been chosen for simulation in this research.  The selection 

criteria for the languages and their compilers will come from market share reports from 

industry sources and the market share percentage must add to 70% of the general code
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writing population.  The algorithms chosen are frequently used and represent a cross-

section of problem domains.  Similarly, the languages and platforms are chosen for their 

popularity 

 

3.3 Dependent Variables 

For the design of this experiment, it is important to discuss the dependent 

variables that are associated with the above independent variables.  Each language will 

need to be measured and compared, and these measurements depend on both the 

algorithm, and the programming language in which it was written.  These measurements 

can also be individually looked at as their own variables, but regardless, in order for 

measurement to take place, it is necessary to have something to measure.  Therefore, it is 

only possible for the measurements to be the dependent variables in this experiment.  The 

most commonly used metrics among students and industry professionals will be used to 

describe the performance of each program.  It is important to find metrics that can be 

reproducible, that are accepted by the general software engineering community, and that 

are valid and have meaning (Munson, 2003).  There is, however, a second dependent 

variable:  the statistical analysis that is performed on each set of measurements.  In a way, 

this analysis is dependent on the measurements themselves, but transitively is still 

dependent on the programming languages, and the algorithms.  Once again, only the most 

common statistical tools would be used.  These tools are chosen from those commonly 

used in software projects as documented in the literature. 
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3.4 Subjects 

As with almost all research studies, there must be a set of subjects that will be 

involved in conducting the experiment.  In the case of this study, we have two very 

important subjects that must be discussed.  The first is the programmers who write, test, 

and execute the code to ensure valid program execution.  These programmers may each 

see a programming problem differently and therefore coding style might be a factor in 

measurement results.  In order to account for the different types of coding styles that can 

appear a group of programmers is selected randomly at different levels.  These levels 

include experienced professionals, graduate students, and undergraduate students, each 

with their own understanding of programming concepts.  With this large range of skill 

level, it is possible to see how many different ways an algorithm can be coded, 

illustrating much of the way a particular programming language works. 

The second subject is the set of compilers used.  These are selected from the most 

commonly used sources both by students and in industry.  Also, the compiler set includes 

work from both commercial development organizations as well as open source non-profit 

resources.  The reason for several compilers is to compare the optimization techniques 

within each, as these may have an effect on dynamic measurement. 

 

3.5 Operation of Experiment 

3.5.1 Producing the Programs 

Once compilers and developers have been chosen, programming can now begin.  

Developers will write each algorithm in each language given.  Throughout the writing 

process, each program must be tested for correctness, ensuring that each program 
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produces the correct output.  A program that is incorrect will introduce noise into the 

measurement data so it is important that each produce the intended results.  Once all of 

the programs have been written, each is submitted to a set of measurement specialists that 

will produce all of the measurement data necessary for analysis.  Once measurement has 

been completed, analysis can begin. 

 

3.5.2 Performing Measurement 

Each program is measured statically and dynamically, and with respect to the size 

and complexity of the resulting executable program (.NET metadata).  Once all of these 

data has been gathered, it can be put through an intense statistical process.  One thing 

must be clear, however, before beginning this analysis.  This is a comparison of 

languages, not algorithms, and therefore, only programs written for one algorithm will be 

compared, rather than against all of the programs as a whole.  It does not make sense, for 

example, to compare programs written to perform a string matching process and a sort.  

These are different problems and can therefore not be directly comparable.  The 

measurements that are used must be chosen from research on the subject.  So too must 

the statistical processes follow these same concepts.  Since measurements are simply only 

raw data and have no meaning in and of themselves, statistics and analysis must be 

applied.  The analysis must also be taken from research sources and must be generally 

accepted by the software engineering community.  Chapter 6 defines one such practice as 

used by Munson (2003).  Among the many statistical tools available, only ones that are 

relevant to the project are used. 
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3.5.3 Conducting Measurement Analysis 

The first step in the analysis is to take all of the data on each program, and create 

simple averages of like units.  This means that, for example, all of the Lines of Code 

measurements on each of the C language programs written to perform a string-matching 

algorithm will be made into a simple average as all of the individual measurements are a 

single value. This simple average will from this point forward represent the single 

measurement of Lines of Code, on C implementations of a string-matching algorithm.  

Now the statistical analysis can formally begin. 

Several statistical tools will be used.  These include finding the standard 

deviation, z-scores, and many other calculations.  Also, a useful tool is Principal 

Components Analysis (PCA), in which a Relative Complexity Metric (RCM) can be 

found, a one number representation of all of the measurements taken on each language as 

applied to each algorithm (Munson, 2003).  With all of this analysis data available, it is 

possible to determine that languages have an effect on algorithm performance, and which 

languages perform better given the problems presented to the developer writing the code.  

The higher the RCM value, the more complex and difficult writing the program becomes 

(Munson & Khoshgoftaar, 1990). 

 

3.6 Threats to Validity 

 As with any empirical study, it is important to discuss any possible threats to 

validity.  Following are definitions of the types of validity in question and a discussion of 

the possible threats. 
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3.6.1 External Validity 

 External validity refers to the degree to which the findings of the study can be 

replicated outside the context of the experiment.  A research study is said to have external 

validity if the claims made from the results of the study can be generalized in other 

situations.  The first threat to external validity is with regard to the choice of programmer, 

one of the subjects in this study.  As discussed in the next section of this chapter, only 

one programmer will be writing the programs, testing, and performing the analysis.  It is 

difficult to generalize any claims about programming languages from the abilities of one 

programmer.  With only one programmer available, the variables of coding style and 

problem comprehension are over simplified.  If several programmers completed the tasks 

of the experiment, it is likely that the results of this study may change and therefore be 

more general. 

 Another threat to external validity is with the choice of operating system.  All of 

the programs of this study were run using Microsoft Windows XP.  Each was executed 

several times under as close to the same conditions as possible to reduce measurement 

error.  Since operating systems each have different specifications, requiring various 

amounts of background processes and memory usage, this can affect the dynamic 

attributes of the results.  The choice of operating system also affects the method chosen to 

measure the complexity of the actual executable program itself.  The use of .NET 

metadata, as one of the measurement categories, is only available from within the .NET 

environment and this is only found on Microsoft platforms.  By changing operating 

system, .NET metadata is eliminated as a measurement category forcing the 

implementation of some other method.  Another measurement method for executable 
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program measurement may allow for better generalization of the study’s results.  The 

choice of operating system is seen as a threat to external validity since the operating 

system is part of the environment in which the programs execute.  To address this threat, 

additional operating systems might be considered for a fuller test of each program. 

 The choice of compiler also presents a threat to external validity.  Compilers can 

have possibly unseen influence on the dynamic run-time attributes of a program.  This is 

seen as a threat to external validity since the compiler is also seen as part of the 

programs’ development environment.  A different compiler might change the final results 

of the experiment’s analysis.  In order to better generalize the claims made from this 

study, additional compilers might be needed in order to test the programs more 

completely. 

 One last threat to external validity is with the choice of computer.  Only one 

computer system was used to execute the programs.  Computer systems each have 

different hardware specifications with different processor speeds and memory 

availability.  Like the operating system, the actual hardware system is considered for this 

study as part of the execution environment.  It is difficult to generalize claims having 

tested the programs on only one system.  As with the operating system, to address this 

threat, additional computer systems would need to be used in order to more fully test each 

program. 

 

3.6.2 Internal Validity 

 Internal validity refers to the relationships between the independent and 

dependent variables.  A research study is said to have internal validity if there is evidence 
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to support that the independent variables cause the effects seen in the dependent 

variables.  One threat to internal validity is with regard to measurement collection and 

analysis.  It is possible that errors may have appeared in the general measurement 

collection process.  This is seen as a threat to internal validity since errors can have an 

unwanted effect on the dependent variables, and should be as accurate as possible.  To 

ensure proper accurate measurement data, tools were used with clear definitions for each 

metric.  A tool was also used for the collection of analysis data.  The measurement tools 

are described in detail in Chapter 6, and the analysis tool is described in detailed in 

Chapter 7. 

A second threat to internal validity is concerned with dynamic measurement data.  

It is possible that errors may appear on the dynamic, run-time attributes of a program if 

something unexpected happens in the background processes of a given operating system.  

It is possible that these background activities within the operating system can have an 

effect on the final results.  This is seen as a threat to internal validity since the 

measurement data should depend on the choice of algorithm and language, not the 

operations in the background of an operating system.  To address this threat, each 

program was run several times and the measurements were taken on each run and then 

averaged together.  This ensures that any values seen as outliers are removed before 

analysis begins. 

 Another threat to internal validity is with regard to algorithm implementation.  It 

is possible that faults may be present in the source code itself.  This is seen as a threat to 

internal validity given that unwanted noise can be introduced into the measurement data, 

and subsequently the analysis if incorrect output is discovered.  Again, only the language 
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and algorithm choices should have an effect on the measurements taken in this 

experiment.  To address this threat, randomized test cases were used and the output of 

each program was validated for correctness.  By ensuring that each program returns 

correct output, errors in measurement data can be reduced. 

 

3.6.3 Construct Validity 

 A study is said to have construct validity if what is measured actually supports or 

refutes the hypothesis.  It is also concerned with ensuring what is measured is what 

actually should be measured in order to conduct a successful experiment.  In order to 

remove threats to construct validity, measurements must be appropriate to the experiment 

itself.  Since this is a study on programming languages, it is necessary to ensure that what 

is actually measured is the language and not its compiler.  This is why static attributes on 

the source code itself are taken into account as part of the analysis of this experiment.  

Compilers do not affect the printed source code since a language has some form of 

standard syntax.  All of the metrics that are used in this study, and why they were chosen, 

are explained in full detail in Chapter 6.  Using the several measurement categories 

described will ensure that the languages are what is actually compared, allowing the 

experiment to support the hypotheses stated in Chapter 1. 

 

3.7 Project Scope 

The first of several major components for this research project is the 

programming languages themselves.  Each algorithm chosen has been implemented in C, 

C++, C#, Java, and Visual BASIC.  To ensure consistent results for later analysis, each 
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program is written using the Microsoft Visual Studio .NET Enterprise Edition 

environment.  This gives the project a single tool, providing a common environment.  

Using compilers created in the open source software world might introduce variability 

into the measurement results since each of these compilers are engineered using different 

methods.  The Microsoft tool offers one suite of compilers in which executable 

assemblies are created in the same format, a feature boasted by .NET developers 

(Petzold, 2001).  In addition, accompanying this project is a discussion on each of the 

languages and how they evolved into what they are designed for today (Sebesta, 1999).  

Each programming language in this study has its own set of strengths and drawbacks 

causing differences in software performance (Pratt & Zelkowitz, 2001). 

The second component to this project is the algorithms.  Algorithms have been 

coded that do sorting, searching, mathematical calculation, string processing, and order 

statistic evaluations.  For every algorithm implemented there is a discussion on why the 

algorithm was chosen, its important features, and a description of its time complexity.  

The algorithm and language discussions together will give the full scope of this research, 

providing the reasons why algorithms would perform differently from one language to 

another. 

The third component for this project is the set of metrics and statistical analysis.  

Several metrics have been carefully chosen and defined using suggestions from Munson 

(2003).  On each of the implementations, measurements have been taken and formatted 

so that the necessary statistical analysis can be performed.  From this analysis, it can be 

determined which implementations had the best success (least complex measurement 
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results) for each of the algorithms, giving programmers a useful tool for choosing the best 

programming language for the implementations of various algorithms. 

Each algorithm will be implemented by one developer using a specific coding 

style (Sedgewick, 1983) in each of the five .NET languages, and only the programs for a 

particular algorithm will be compared.  There will not be a case where a program written 

that solves one algorithm will be compared to a program written in the same language, or 

any other language, that solves a second algorithm.  This is not the purpose of this study.  

The purpose instead is to see how a particular algorithm behaves when a specific 

programming language is applied.  The statistical tool used in this study to show the 

differences in behavior is PCA, producing the RCM value described earlier.  The RCM 

values only relate to a single algorithm.  Munson (2003) uses this approach in that he 

compares program modules by taking the same set of metrics on several program 

modules and compares them based on the RCM produced when PCA is used.  The 

difference in this study is that languages are compared, not modules, and therefore it does 

not make sense to compare the programs written for different algorithms.  The higher the 

RCM value, the more complex the program has become, and therefore, each program 

written to implement the same algorithm can be compared based on this value (Munson, 

2003: Munson & Khoshgoftaar, 1990). 

 

3.8 Understanding .NET Metadata 

Microsoft has created an innovative approach to software development by 

allowing programs compiled in different languages to understand each other.  While 

other areas of software development have utilitzed multiple languages in the same 
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project, the difference that Microsoft has introduced is that regardless of the language, the 

.NET Framework is available and uses the same function calls and the same set of classes 

creating a common inferface.  This common interface is contained in a set of dynamically 

linked libraries developed by Microsoft and these libraries are available for use on most 

Microsoft platforms.  This cross language integration is done through the use of metadata 

(Petzold, 2001).  The structure of .NET metadata is much like a database, containing 

tables of data that programs can search through and obtain information from regarding 

the way a program module functions.  Each .NET assembly, be it an executable (EXE) or 

dynamically linked library (DLL), is compiled in the metadata format, allowing a module 

written in one language to be run from another language in the same suite.  As an 

example, a portion of code or a class implementation written in C# may be used by 

Visual BASIC.  This allows developers the choice of using a specific language better 

suited to the given problem with the ease of integration into a larger software project 

(Petzold, 2001).  This project will serve to help developers take the best advantage of the 

languages offered for Windows platforms. 

With the understanding of metadata within the .NET environment, measurements 

can be taken on the assemblies themselves.  Assemblies in this context are defined as 

either dynamically linked libraries (DLL) or executable (EXE) files.  These 

measurements will be independent of both the static and dynamic measurements that will 

be discussed later in this project.  Understanding the complexities of .NET metadata will 

give a greater understanding of the performance of a specific algorithm when 

implemented in a particular language, although this can only be achieved when using 

.NET compilers found in the Microsoft tool set.
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CHAPTER IV 

THE PROGRAMMING LANGUAGES 

4.1 The Environment 

This project utilizes the Microsoft Visual Studio .NET Enterprise Edition 

environment.  The .NET system provides several interesting features.  Programs written 

in any of the .NET languages can take advantage of the Common Language Runtime 

Library (CLR).  The CLR allows programmers to use the same set of classes across all of 

the languages that Visual Studio provides (Petzold, 2001).  While each language is given 

the same class library as a tool for cross-language development, each individual language 

sill retains its traditional approach.  The Microsoft implementation of Java, for example, 

can use both the CLR and the standard Sun Microsystems set of functionality, and can 

use them both simultaneously (Petzold, 2001).  The .NET environment also utilizes what 

is called Windows Forms, a method of generating source code through a design window 

where an actual application can be built visually.  Prior to this approach, The Microsoft 

Foundation Class library (MFC) and Win32 API were used and were commonly coded 

by hand (Petzold, 2001).  The .NET environment removes the repetitive programming 

tasks required of MFC and Win32 API.  This project, however, does not take full 

advantage of these features.  All of the algorithms are implemented to function solely on 

the command line.  No graphical elements have been used to run the algorithms.  It is 

important to note, however, that the .NET editor and environment provides a common
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and identically engineered environment from one language to another without the use of 

multiple tools.  Also, by using the Microsoft set of compilers, it is possible to take 

advantage of one engineering model.  Each compiler associated with the .NET 

Framework is built to the same standard (Petzold, 2001), allowing the most common 

environment possible with the purest possible data collection. 

 

4.2 The C Programming Language  

The C Programming Language was developed by Bell Laboratories in 1972 and 

evolved from the ALGOL 68 project.  It was originally developed for systems 

programming and was made for low-level architectures (Sebesta, 1999).  The language 

was standardized for the first time in 1978 and has been used in a wide variety of areas.  

The programmer has control over much of the memory management.  Variables and 

pointers are declared statically, forcing programmers to declare them before their use.  

Pointers are exceptionally interesting as the programmer has direct access to what is 

contained in the memory address, rather than through automatic dereferencing and can 

add and subtract memory during run-time (Pratt & Zelkowitz, 2001).  C has an entry 

point in a “main” function in which the operating system passes control to the process 

created by the program. 

C has many useful control constructs common to many other languages.  These 

include features like loops, conditional jumping, and data control.  In addition to these 

built-in controls, the C language can also take advantage of recursion in which routines 

may call themselves in order to decompose a larger problem into several pieces.  Also, C 

allows for casting, which can change a data type from within memory that has already 
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been set-aside at compile time.  For example, an integer can be changed “on the fly” to a 

floating-point representation.  There are dangers with doing this, however, as precision 

can be lost and cast values can have unexpected results (Pratt & Zelkowitz, 2001).  While 

C is not traditionally an object oriented language and provides a much more sequential 

approach to programming, data can be structured into records by using the “struct” 

keyword (Pratt & Zelkowitz, 2001).  Using this keyword, a programmer has the option of 

structuring sets of data into manageable, reusable pieces.  Linked lists are often made 

from pointers to “struct” type data sets. 

The C Programming Language provides the programmer with several primitive 

data types for use in many areas.  Included in these data types are 32 bit integers, 64 bit 

long integers, 32 bit floating-point real numbers, 64 bit double floating-point real 

numbers, characters, and bool values (true or false).  Each of these primitive types can be 

structured into an array of one or more dimensions.  This can create easy maneuvering 

through sets of values of the same type for inserting and retrieving.  The only strange 

case among these is character strings.  Character strings are actually represented in terms 

of arrays of characters, or “char” values.  The strings can be traversed in much the same 

way as their numerical counterparts (Pratt & Zelkowitz, 2001).  Programmers, in addition 

to these primitive types, have the option of creating their own in using the “struct” 

keyword, or using the “enum” keyword.  The “enum” keyword allows a programmer to 

assign a numerical value to a set of characters and these characters can be used in place 

of the primitive types.  Also, the “typedef” keyword gives the programmer the option of 

creating original new data types that are software specific. 
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C, however, does have its drawbacks, as do all programming languages.  The 

language has no specific standard input or output built into the language.  In order to take 

advantage of input and output, the programmer must include libraries contained in header 

files at the top of the source code (Pratt & Zelkowitz, 2001: Sebesta, 1999).  It is here that 

the developers of the language create the streams for displaying or collecting data to and 

from standard sources respectively.  Users of the language, however, can create their own 

header files that contain function prototypes, declared data structures, and other 

constructs that have been implemented in other source code files for use in programs 

(Pratt & Zelkowitz, 2001). 

 

4.3 The C++ Programming Language 

C++ as a language is almost exactly like C in many ways, and evolved from C 

directly (Sebesta, 1999).  Its main feature and benefit is the introduction of Object 

Oriented Programming (OOP) to a C-like environment (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  With OOP, concepts such as inheritance, polymorphism, and 

encapsulation, which typically define what an object oriented programming language 

offers, can now be used (Pratt & Zelkowitz, 2001).  Given to the programmer is a new 

keyword, “class.”  A class is a definition of an object that both performs work and retains 

data simultaneously.  Instances of class objects can work independently of each other as 

well as communicate through message passing.  Most typically, programmers of C++ 

create a header file containing the class’s definition, and another source file in which the 

methods in the class are implemented.  The term “method” is used here to describe 

functions within class definitions.  C++ has an external entry point, which means that 
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class instances must then be declared within the program’s main function.  The main 

function is called by the operating system’s shell and is used to pass control from the 

operating system to the program.  Typically in C++ programs, the main function exists in 

its own source code file (Pratt & Zelkowitz, 2001: Sebesta, 1999). 

C++ has the same primitive data types as C, and data enumeration is also handled 

the same way.  C++ also has at its disposal the “struct” keyword and can structure data 

into records much like C (Sebesta, 1999).  Data structures can also be members of classes 

and can be incorporated into objects in much the same way as integers or character 

strings.  Instances of class objects may also be members of other classes.  Unlike C, 

however, C++ gains the benefit of using the Standard Template Library (STL).  Through 

STL, constructs like maps (a type of array construct), iterators (a type of looping control), 

and standard strings (an STL character string object) become available.  While C++ can 

still use an array of char type values to represent strings, the language also has the option 

of the standard string, which not only contains the string’s value, but can operate on it as 

well (Pratt & Zelkowitz, 2001).  Although not part of the original language, STL has 

become part of the ANSI standard for C++ implementations (Sebesta, 1999). 

C++ can be used in a variety of situations.  Although not designed for systems 

programming, it is possible to do such tasks with C++ (Pratt & Zelkowitz, 2001: Sebesta, 

1999).  It is more designed for encapsulation of data and routines (methods) and can 

easily create applications from within several environments (Pratt & Zelkowitz, 2001).  

The language has been used on Windows, Unix/Linux, Macintosh, and the IBM OS 

series (OS/2, OS/390, etc.).  Implementations, however, differ from one platform to 

another and there can be times when different code is needed for the same program to 
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compile when ported to another platform.  If the programmer stays with the ANSI 

standard it is possible to port programs to additional platforms with almost no changes in 

the source code (Sebesta, 1999). 

C++ has many of the same drawbacks as C.  An additional step is needed to link 

all of the source files together to create the executable program.  After compiling the 

program, the compiler creates object files containing hexadecimal instructions matching 

that of the hardware architecture.  In order for the executable to be created, these files 

must be linked together in a separate step and all external, non-static entries must be 

resolved.  The potential for additional errors is possible and debugging can sometimes be 

a tedious process (Pratt & Zelkowitz, 2001: Sebesta, 1999). 

 

4.4 The C# Programming Language 

Microsoft has created a new language that can function with the .NET 

environment.  This language, known as C#, is a hybrid of Java, C and C++ (Petzold, 

2001).  The entry point for a C# program is contained within a class definition and is 

statically bound to be used by the operating system.  Unlike C and C++, C# uses a virtual 

machine architecture and has the potential to be completely platform independent 

(Petzold, 2001).  What this means is that if another company were to create a new 

implementation of the C# virtual machine, programmers could write C# applications in 

the same way that they previously were able in Microsoft Windows.  Currently there are 

several open source projects that focus on making C# available to Unix/Linux 

programmers.  Microsoft does not affiliate themselves with these developers since its 

implementations are proprietary, and code is not shared with the general public.  While 
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C# is primarily interpreted, it can be compiled to an executable program with the virtual 

machine included.  This can cause a large amount of memory to be used but allows 

additional portability between machines (Petzold, 2001).  The virtual machine is not 

platform independent, but the C# code potentially can be, and recompiling on another 

platform should warrant no change in the C# source.  

C# is fully object oriented.  It allows for all of the benefits of object orientation, 

meaning objects can take advantage of inheritance, polymorphism, and encapsulation 

(Petzold, 2001).  C# has several primitive data types available for use.  These include 32 

bit signed integers, 32 bit unsigned integers, 64 bit long integers, 64 bit unsigned long 

integers, 8 bit bytes, 16 bit short integers, 16 bit unsigned short integers, 32 bit floating-

point real numbers, 64 bit floating-point real numbers, characters, and bool (Petzold, 

2001).  Different from C and C++, coupled with the language are character string objects 

that are part of the standard library of classes.  While STL was an add-on to the original 

ANSI Standard C++ language, the C# equivalents came as an original feature.  These 

string objects both contain and can operate on the string value.  These strings are class 

objects as any other in C#.  Standard input and output stream classes are also available 

and no additional libraries are necessary (Petzold, 2001).  C# also has many of the same 

program flow constructs that are a benefit in C and C++.  Looping, conditional jumping, 

and object communication are all available within C#.  An important language feature to 

note is that of C#’s memory management.  Garbage collection and the handling of 

pointers is taken care of automatically by the language, freeing a programmer from 

having to do this manually as in C or C++ (Petzold, 2001). 
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C# source code has the interesting benefit of easy integration within web pages.  

HTML browsers can load small programs into these pages and the programs can perform 

a variety of tasks.  These tasks range from user authentication, database look-up and 

insertion, and online gaming (Petzold, 2001).  HTML browsers, however, must be 

equipped with a C# interpreter in order for this to be possible from within a web page.  

This research project does not take advantage of this feature in any way, but it is 

important to note as a feature of the language. 

Although this research project does not take advantage of graphical user 

interfaces, it is important to note that as part of the language’s environment, a window 

design editor is included.  Programmers can easily build window prototypes of the 

application in order to see quickly what it will look like (Petzold, 2001).  The code 

generated is included in the main libraries of C# and additional libraries are not always 

necessary.  All of the standard Microsoft Windows controls are available to the 

programmer and through this method application development becomes much faster and 

less error prone (Petzold, 2001).  Microsoft contends that C# is a perfect hybrid of Java, 

C, and C++, which creates a better, more efficient language for all Windows developers 

(Petzold, 2001). 

C#, like any other language, also has its drawbacks.  As a result of the virtual 

machine architecture and full interpretation, programs written in C# potentially suffer in 

performance.  C# programs can be compiled directly to an executable, but the virtual 

machine is coupled within the executable, as it is necessary for these programs to run 

properly (Petzold, 2001).  As will be seen from the measurement results, C# programs 

use large amounts of available memory for even the simplest of programming tasks.  
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Another drawback of C# is that not all web browsers come with C# interpreters, unlike 

Java, which tends to be more universal across almost every major computing platform 

(Sebesta, 1999).  In order for web page embedded code to function, an interpreter must be 

present within the web browser.  This can limit the programmer’s browser choices, 

forcing the users of the application to be limited as well. 

 

4.5 The Java Programming Language 

Java was developed by Sun Microsystems in the mid 1990s and was used 

originally as a C++-like language for web page embedded programming (Sebesta, 1999).  

Much like C#, its entry point is coupled within a class object and is statically bound for 

use by the operating system.  Java, as with C#, is a fully object oriented programming 

language and can also take advantage of inheritance, polymorphism, and encapsulation 

(Pratt & Zelkowitz, 2001).  Java code is also run through a virtual machine architecture, 

and while the virtual machine’s own implementation may be platform specific, code 

written in Java is not.  In order to be certified by Sun as a standard Java implementation, 

the virtual machine must comply with all of Sun Java’s features (Pratt & Zelkowitz, 

2001). 

Java has many of the same primitive data types as C#.  These include 8, 16, 32, 

and 64 bit signed and unsigned integers, 32 and 64 bit floating-point real numbers, 16 bit 

Unicode characters, and bool.  Java also has an object class available for character 

strings.  These objects both contain and operate on the string much as C# does (Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  Standard input and output are handled through Java’s 

extensive class library of objects and, in most cases, additional libraries are not necessary 
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for these tasks (Pratt & Zelkowitz, 2001).  As with the other languages, the control 

constructs include looping, conditional jumping, and object communication.  Memory 

management is also handled directly by the language structure, allowing programmers 

less worry in regard to pointers and their values, which may not be directly accessed by 

the programmer.  Garbage collection is also handled automatically, leaving less room for 

memory leaks to occur (Pratt & Zelkowitz, 2001). 

Java, like C#, has the additional benefit of being integrated into web pages.  These 

programs, in the Java context, are known as applets (Pratt & Zelkowitz, 2001).  Applets 

can take the form of games, database look-up and entry forms, user authentication and 

password protection, and many other types of applications (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  Java is more universal than C# as more browsers are available with a 

Java interpreter.  Java has been successfully implemented and certified by Sun on both 

open source and proprietary platforms.  Although not used in this project, its “Swing” 

library can create standard graphical elements like check boxes, radio buttons, etc. that 

can be used in Unix/Linux, Microsoft Windows, and Macintosh, and can take on the 

motif of each (Pratt & Zelkowitz, 2001). 

Java has several drawbacks.  The language has very limited console application 

and is better suited for graphical environments.  This can cause performance problems 

when Java programs are run over a command line interface (Pratt & Zelkowitz, 2001).  

Java, like C#, uses a virtual machine, and while Java code can be compiled to an 

executable, the virtual machine must be coupled within the code at the cost of extra 

memory (Sebesta, 1999).  Also, while most browsers come equipped with Java 
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interpreters, this does not mean that all browsers do, limiting the choices of both the 

programmer and the user of the application (Pratt & Zelkowitz, 2001). 

 

4.6 The Visual BASIC Programming Language 

Visual BASIC (VB) started out as BASIC, the Beginners All Purpose Symbolic 

Instruction Code.  It was designed for the liberal arts students at Dartmouth University in 

the 1960s (Sebesta, 1999).  While science students had little trouble with ALGOL or 

FORTRAN, there was a need among liberal arts and other non-science students for a 

language that was easy to learn and friendly for a fast homework turnaround (Sebesta, 

1999).  In the beginning, BASIC had no way of accepting interactive input and, as a 

result, programs were written to be run in a batch, much like FORTRAN.  Although 

Digital Equipment Corporation used BASIC to write one of its operating systems, the 

language was never really meant for large-size applications of great significance, which 

is why its greatest criticism is its poor program structure (Sebesta, 1999). 

In the mid 1980s, development of Quick BASIC (QBASIC) by Microsoft 

enhanced BASIC for a greater range of use (Sebesta, 1999).  Standard input and output 

became available and sub routines became easier to create.  Unlike C or C++, the input 

and output systems were an integral part of the language, requiring no additional 

libraries.  With the changes made to BASIC by Microsoft, users could still benefit from 

its ease of use while creating significantly large sized applications (Petzold, 2001: 

Sebesta, 1999).  QBASIC does not, however, contain a library for use in creating 

graphical user interfaces.  
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In the early 1990s, Microsoft created another version, now known to its users as 

Visual BASIC.  It was one of the first languages to incorporate a design window for 

application prototyping (Sebesta, 1999).  After a window is created, programmers can 

then “attach” QBASIC code to the objects on screen, creating an event driven 

environment.  Through this unique development model, programmers are able to produce 

full-size, quality applications in smaller amounts of time.  With the innovations that 

Microsoft has made to this language, VB has become a fully functional language in its 

own right (Petzold, 2001). 

VB, as with the other languages in this project, has a set of primitive data types.  

These include characters, character strings, integers, floating-point real numbers, and 

bool.  The choices are much more limited in VB than in the other languages, as it was 

believed that not many of its users would gain benefit from more than this (Sebesta, 

1999).  VB behaves much like an object oriented language utilizing encapsulation, but 

lacks polymorphism and inheritance.  Its entry point is a statically bound main routine 

from within an object (Petzold, 2001).  Visual BASIC tends to be easier to read than most 

languages with its statements appearing in an almost English-like structure.  The 

language has an extensive library of objects that may be used in graphical Microsoft 

Windows interfaces.  It includes all of the components frequently found in Windows and 

can be used to develop applications quickly and with little need for repetitive and tedious 

programming tasks (Petzold, 2001). 

The drawbacks of VB are numerous, as again it was never meant to be a language 

for significant application development (Sebesta, 1999).  VB is also a language run 

through an interpreter.  Although VB source code can be compiled to the form of an 
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executable, the interpreter must be coupled within causing large amounts of memory 

usage and significant performance problems.  In addition, while the English-like structure 

allows for readability, it forces many more reserved words to be used, frequently making 

programs less readable (Sebesta, 1999).  Visual BASIC, in its current form, lacks 

significant functionality for use within command line interfaces.  It is much more suited 

for graphical environments, specifically Microsoft Windows. Few other operating 

systems can use the language making application portably extremely limited.  The form 

of BASIC used with other operating systems resembles more the original form of the 

language with minimal input and output capability and is exclusively limited for 

applications on the command line interface (Sebesta, 1999).
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CHAPTER V 

THE ALGORITHMS 

5.1 Definition of Selection Criteria 

Before choosing algorithms for this research study, it was important to understand 

exactly what algorithms are.  An algorithm can be simply defined as a computational 

process, in which input is given, work is performed, and a useful set of output is found 

(Cormen, Leiserson, Rivest, & Stein, 2001).  Since algorithms are created to solve 

problems, it was imperative to decide which programming problems were most important 

before choosing the algorithms to solve those problems.  Since it is impossible to 

examine every imaginable programming situation, it became important to find problems 

that would be useful for research purposes.  The problems chosen in this study are used 

often in industry and are applied to many applications (Cormen et al., 2001).  The criteria 

for choosing the problems in this study include how much research is available on each, 

and how often the problem is used in industry, while at the same time keeping them small 

enough so that they may fit into the time constraints involved in the course of this project.   

It is next important to understand the differences between what simple and 

complex algorithms are.  Simple algorithms tend to use the “brute force” approach.  The 

simplest solution may be the easiest to implement but it may not be the best solution.  

Simple algorithms tend also to be slower and take more computational instructions to 

complete (Cormen et al., 2001).  Complex algorithms, on the other hand, are usually
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better solutions than the simple and tend to make better use of processor time and are 

typically faster.  These algorithms might be more difficult to implement.  Programmers 

must often decide between either creating software faster, or creating faster software 

(Cormen et al., 2001). 

Five programming problems were chosen that often occur in software 

development and have been heavily researched.  These problems are searching, sorting, 

mathematical computation, string processing, and order statistics.  Each of these 

problems has several characteristics that are important.  Searching and look-up is found 

very often in database programming as well as simpler applications.  Sorting is another 

problem widely used in database applications as well as for the display of items on 

screen.  The need to solve systems of equations arises frequently in mathematical, 

scientific, and engineering computational problems.  String processing can be found in 

compilers for syntax highlighting, spell checking, and other systems and application 

programming (Cormen et al., 2001).  The finding of order statistics was chosen so that 

each language can be measured on how well it performs when there is perhaps a more 

optimal algorithm available.  This gives insight into how a language can perform when 

presented with an unusually lengthy problem.  With the exception of searching, a 

complex and a simple algorithm was chosen to solve each of these problems. 

 

5.2 Definition of Implementation Criteria 

In writing the implementations for the algorithms presented in this chapter, an 

example was taken from Sedgewick (1983) with regard to the use of the languages.  He 

states in his book that in order to best highlight the constructs of each language, only the 
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simplest of language constructs should be used, and also as few comments as possible (in 

this study’s case, no comments).  This study uses this approach so as to keep the code 

easy to read and in a common format.  The variable names are small and perhaps non-

descriptive but again this further highlights the control constructs contained in the 

algorithms by keeping them more visible.  In addition, the function names are the same as 

in the pseudocode diagrams found below, simply describing what each function does.  

With this common format, the implementations from language to language can be 

compared on several different levels.  Sedgewick (1983) explains that this method of 

algorithm implementation is a positive approach when the project is under time and 

resource constraints such as this project’s scope dictates. 

One thing that must be defined clearly before moving on to the algorithm 

descriptions is what is meant by simple vs. complex.  For purposes of this study, 

algorithms considered to be simple use the “brute force” approach.  Simple algorithms 

take a naïve look at problem solving.  These algorithms are Linear Search, Bubble Sort, 

Naïve String Matching, Polynomial Addition, and Minimum / Maximum.  Simple 

algorithms obtain a solution to a problem without regard to efficiency or elegance and are 

often easier to understand from a programmer’s perspective.  It is possible, however, for 

a simple algorithm to be the most efficient.   

Complex algorithms, on the other hand, use more elegant techniques, such as 

recursion for example.  These algorithms are not naïve, and can often be difficult to 

understand from the perspective of a programmer.  Complex algorithms work to find 

problem solutions that are efficient, even though some simple algorithms perform faster 
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over smaller data sets.  For purposes of this study, the complex algorithms implemented 

are Quicksort, KMP String Matching, Gaussian Elimination, and Random Selection. 

 

5.3 Searching 

The searching problem may be described as follows:  given an array L indexed 

from 0 to n, and a key k, k is searched against in the array comparing each element of the 

array to k.  The first index in which k is found in L is returned, otherwise –1 is returned, 

indicating that k is not an element of L. 

 

5.3.1 Linear Search 

Linear Search was chosen to solve the searching problem.  It is one of the most 

widely used searching algorithms in computer science and uses important features 

common in most programs.  This algorithm is often one of the first taught to computer 

science and programming students in high schools and colleges (Cormen et al., 2001).  

Linear Search, while not complex, is optimal.  It has a worst case and average case time 

performance of O(n), and it is one of the simplest algorithms to implement (Cormen et 

al., 2001).  It uses a single loop to walk through the elements included in the search, 

looking for a key that perhaps does or does not exist.  Each element of the searched area, 

an array, a string, or a linked list, is compared with the key.  The algorithm returns the 

index in which the first instance of the key can be found.  This is commonly known as the 

“brute force” approach, as is described by Cormen et al. (2001). 
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LinearSearch (L, k) 
{ 
   i = 0 
 
   while (i <= n and L[i] <> k) 
      i = i + 1 
 
   if (i > sizeof(L)) 
      i = -1 
} 

 

Figure 5.1 Linear Search Pseudocode. 

While this algorithm may not seem complex, as noted by the figure above 

(Cormen et al., 2001), there are important things to note.  The algorithm uses one of the 

most common programming constructs, a “for” loop.  In the implementations used for 

this research, integers are used for the search criteria, so the best data structure for 

containing all of the data is an array of integers.  Since the algorithm is not complex, each 

programming language used less memory than some of the algorithms’ more complex 

counterparts.  All data was generated randomly so that average case performance could 

be measured over the course of running the program several times. 

 

5.4 Sorting 

The sorting problem can be described as follows:  given a random sequence of n 

numbers (a1, a2, …, an), find a permutation of the original sequence such that (a’1 <= a’2 

<= … <= a’n) (Cormen et al., 2001). 
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5.4.1 Bubblesort 

The Bubblesort is one of the most commonly used algorithms in computer science 

and is another often taught first to computer science students (Cormen et al., 2001).  It is 

one of the simplest yet slowest algorithms that solve the sorting problem and uses sorts in 

place (Martin, 1971).  For small data sets this algorithm is sufficient as it is easy to 

understand and implement.  Larger sets of data require something more advanced if 

performance is an issue (Cormen et al., 2001).  Bubblesort runs in O(n2) time as every 

element must be compared to every other element. After two adjacent elements are 

compared, if one element is larger (or smaller depending on the sort), then the two 

elements will switch places (Martin, 1971).  Once no change occurs, the data is sorted, 

and the algorithm terminates. The version used in this research study is that of Cormen et 

al. (2001). 

 

 
BubbleSort (A) 
{ 
   for (n = 1 to sizeof(A)) 
      for (m = sizeof(A) to n + 1 step -1) 
         if A[m] < A[m - 1] 
        exchange(A[m], A[m - 1]) 
} 

 

Figure 5.2 Bubblesort Pseudocode.  

Appearing in this algorithm is a nested loop since each item must be compared to 

every other item.  This is why the time analysis for Bubblesort is O(n2) (Cormen et al., 

2001).  Again integers were used for the data in the program and so the most appropriate 

data structure was an array of integers.  This algorithm, like Linear Search, is very simple 

and should not require large amounts of memory to run or large numbers of lines of code 
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to write.  The results for Bubblesort vary from Linear Search in terms of the 

programming languages and their performance.  Again, all data for this algorithm were 

randomly generated so that the average case could be measured.  The worst case is still 

possible, however, and happens when the array is in the reverse order from that desired 

(Cormen et al., 2001). 

 

5.4.2 Quicksort 

Quicksort is probably the most used algorithm that solves the sorting problem and is 

considered to be one of the most complex.  It has been used in many situations in both 

systems programming and application programming (Cormen et al., 2001).  The 

algorithm was originally developed by C.A.R. Hoare in 1961 and was published in the 

Computer Journal in 1962 (Hoare (Algorithm 64), 1961, 1962).  The idea was that a new 

algorithm could be created that solves the sorting problem by reducing large problems 

into trivial simple ones, thereby solving the large problem as a whole using known 

methods once the problem is reduced (Hoare, 1962).  The version of the algorithm 

presented in this study is that of Cormen et al. (2001).  With a timing of O(n log n), 

Quicksort is much faster than Bubblesort in the average case.  Quicksort uses a divide 

and conquer approach commonly implemented through recursion.  It can be implemented 

iteratively, but for this research, recursion was chosen to illustrate how programming 

languages handle this common practice.  First, a partition procedure is used to place an 

element (the pivot) where it belongs in the final sorted set of elements (Hoare (Algorithm 

64), 1961, 1962).  All elements on the left are smaller than the pivot, and all elements on 

the right are larger than the pivot (Hoare (Algorithm 63), 1961).  At this point, the 
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Quicksort procedure is called again on each side of the partition and the process repeats 

until there are no longer changes necessary and the elements are sorted.  The algorithm 

has an implied loop created from its recursive structure (Cormen et al., 2001).  Quicksort 

is ideal for large sets of data and can reduce processing time for its application when 

compared to Bubblesort. 

 

Partition (A, p, r)   Quicksort(A, p, r) 
{      {    
   k = A[r]      if (p < r)      
   j = p - 1         q = Partition (A, p, r)    
             Quicksort(A, p, q - 1) 
   for (n - p to r - 1)       Quicksort(A, q + 1, r) 
      if (A[n] <= k)  } 
         j = j + 1 
         exchange(A[j], A[n]) 
 
   exchange(A[j + 1], A[r])  
  
   return j + 1 
} 

 

Figure 5.3 Quicksort Pseudocode. 

The important aspect of Quicksort for this research is that the recursive 

implementation is used so that languages can demonstrate how they behave when this 

technique is applied.  Quicksort’s main procedure calls itself until the sort is complete.  

Only the pointers are passed and the sort is done in-place.  The data structure once again 

was the array of integers, and all values were generated randomly so that the average case 

could be measured. 

 

5.5 String Matching 

The string matching problem can be described as follows:  given a string of text 

T[1…n] and a string pattern P[1…m] of length m <= n,  we say that the pattern P occurs 
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within the text T at a valid shift.  If there is no valid shift s, then the pattern P does not 

exist in text T.  Returned are all of the beginning indices of the pattern in the text 

(Cormen et al., 2001). 

 

5.5.1 Naïve String Matching 

The Naïve String Matching algorithm is a simple algorithm that is used to match 

patterns against larger sets of characters, also known as the string matching problem.  It is 

slow over large data sets when compared to other string matching algorithms as a result 

of every element in the pattern having to be compared with every element in the main 

text.  Naïve String Matching is timed at Ө(n x m) where n is the size of the text and m is 

the size of the pattern (Cormen et al., 2001).  This algorithm has often been described in 

terms of a slide rule, where the pattern is slid across the text and reports every time the 

pattern is found.  Naïve String Matching is ideal for small sets of data but does not 

perform well over larger sets (Cormen et al., 2001).  The algorithm terminates once the 

number of characters in the text left to compare is less then the number of characters in 

the pattern. 

 

NaiveStringMatch (T, P) 
{ 
   j = sizeof(T) 
   k = sizeof(P) 
 
   for (s = 0 to j - k) 
      if (P[1...k] = T[s + 1...s + k]) 
         print ("Pattern occurs with shift %d", s) 
} 

 

Figure 5.4 Naïve String Matching Pseudocode. 
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Implementing Naïve String Matching presented several challenges.  Results 

varied greatly from language to language and in some cases passing pointers to arrays of 

characters proved difficult. The algorithm uses a nested loop structure, however, the inner 

loop and the outer loop do not have the same termination value which is why the timing 

is not O(n2) (Cormen et al., 2001).  Randomly generating the data for this algorithm did 

not prove economical in that randomly creating a data set and pattern does not guarantee 

that the pattern will be matched from within the text.  Instead, the song “Take Me Out to 

the Ball Game” was used and the pattern searched was the word “ball.”  Also used was 

the text of the United States Constitution, and the pattern “the.”   In addition, another data 

set in which the pattern was not found was also used.  For every run on this algorithm, 

each element in the text must be compared to every element in the pattern (Cormen et al., 

2001) and therefore randomly generating data would not have proven useful.  The 

profiler used to take dynamic run-time measurements was able to get accurate timings 

based on these problems. 

 

5.5.2 KMP String Matching 

Developed by Knuth, Morris, and Pratt, the KMP String Matching algorithm is a 

more efficient alternative over Naïve String Matching (Knuth, Morris & Pratt, 1977).  

Through the algorithm’s routine to compute prefixes, information can be gathered on 

both the text and the pattern so that unnecessary comparisons can be eliminated.  With 

this prefix information, a non-match can be assumed right away once the prefix of the 

current position in the text does not match the prefix of the pattern (Knuth et al., 1977). 

This information can be assumed without testing the entire pattern, which is what Naïve 
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String Matching does.  At this point, the algorithm moves the pattern along the text in the 

amount of the length of the pattern forward to try a new match in which the process 

begins again. The algorithm terminates once the entire text has been searched and all 

relevant matches have been found (Knuth et al., 1977).   This makes KMP String 

Matching a much better candidate for large data sets (Cormen et al., 2001: Knuth et al., 

1977).  

With the elimination of the unnecessary comparisons of characters, the algorithm 

can be timed at O(n log m) in the average case where n is the size of the text and m is the 

size of the pattern (Knuth et al., 1977).  This Algorithm is considered to be a complex 

algorithm when compared to Naïve String Matching and is used widely in many 

applications (Cormen et al., 2001).  While this algorithm was created by Knuth, Morris, 

and Pratt (1977), the implementation used here is that from Cormen et al. (2001). 

 
KMPMatch (T, P) 
{ 
   n  = sizeof(T) 
   m  = sizeof(P) 
   Pi = ComputePrefixFunction(P) 
   q  = 0 
 
   for (i = 1 to n) 
   { 
      while (q > 0 && P[q + 1] <> T[i] 
      { 
         q = pi[q] 
          
         if (P[q + 1] = T[i] 
            q = q + 1 
 
         if (q == m) 
            print ("Pattern occurs with shift %d", i - m) 
            q = pi[q] 
      } 
   } 
} 
 

Figure 5.5 KMP String Matching Pseudocode. 
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As with Naïve String Matching, KMP String Matching presented many 

programming challenges.  One of the larger challenges in implementing this algorithm 

was the passing of character strings as arguments as each language has its own format for 

doing such a thing (Pratt & Zelkowitz, 2001).  The algorithm uses loops in order to 

compute the prefix of both the pattern and the text.  Each language performed very 

differently with regard to this algorithm as will be seen from the data presented later.  

Again, as with Naïve String Matching, it was not economical to create random data for 

this algorithm.  All of the same text and pattern combinations were used as was with 

Naïve String Matching.  Because the performance of the algorithm is not based on 

random data, results were very consistent from one run of the program to the next. 

 

5.6 Arithmetic Algorithms 

Two mathematical problems are addressed in this section.  The first is polynomial 

addition.  The problem is defined by saying that there is a set of coefficients C(x) such 

that A(x) + B(x) = C(x) where A and B are arrays that represent coefficients in 

polynomials.  A polynomial can be described as an algebraic expression consisting of one 

or more summed terms, each term consisting of a constant multiplier and one or more 

variables raised to integral powers. For example, x2 − 5x + 6 is considered a polynomial.  

The new polynomial with coefficients in C will be of the same degree as A and B.  

Degree in this context is defined as the term raised to the highest power.  It is possible to 

add two polynomials of different degrees, but the sum is expressed in terms of the highest 

degree (Cormen et al., 2001). 
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The second problem that is solved in this section is that of finding solutions to 

systems of linear equations.  Given the equation Ax = b where A is an n by n matrix 

containing the coefficients of each linear equation, b is the set of constants, and x is the 

set of n unknowns, we wish to find the set x so that Ax = b.  If A is non-singular, there 

will be a unique solution to the system (Cormen et al., 2001).   

 

5.6.1 Polynomial Addition 

The addition of polynomials, the adding together of expression coefficients, is a 

simple illustration of arithmetic as done through computer programming (Cormen et al., 

2001).  Polynomial Addition is often used in applications that involve algebra and other 

uses in mathematics and science.  It is not a very complex process and has a run-time of 

O(n), where n is the number of coefficients in the polynomial, including zeros.  This time 

performance is for all cases.  Polynomial Addition is the simple pairing of coefficients 

and combining them into a new polynomial of the same power, such that A(x) + B(x) = 

C(x) (Cormen et al., 2001).    Written in the general form we can say that A = a0xn + 

a1xn−1 + a2xn−2 +...+ an−1x +an and B = b0xn + b1xn−1 + b2xn−2 +...+ bn−1x + bn.  Using this 

general form we can say that C = (a+ b)0xn + (a+b)1xn−1 + (a+b)2xn−2 +...+ (a+b)n−1x + 

(a+b)n.   It is possible for a coefficient to be equal to zero, in which case a zero is placed 

in the array.  The study of this algorithm allows for greater understanding of how each of 

the programming languages performs while completing simple mathematical 

calculations. 
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PolyAdd (A, B, C) 
{ 
   i = sizeof(A) 
 
   for (n = 0 to i) 
      C[n] = A[n] + B[n] 
 
   return C 
} 

   

Figure 5.6 Polynomial Addition Pseudocode. 

In the implementations of this algorithm, random data was created to fill two 

arrays of integers.  Each array element represents a coefficient of a polynomial.  The ith 

element in the first array is added to the ith element in the second array, producing the ith 

coefficient of the sum (Cormen et al., 2001).  This was done through a “for” loop and the 

process terminates once all of the coefficients have been added together producing the 

new array.  An important point to note is that even though random data were used, all 

cases perform the same, as each element in each array must be processed regardless of 

value (Cormen et al., 2001).  This is important because each programming language 

yields easily comparable measurement results when the metrics are applied. 

 

5.6.2 Gaussian Elimination 

Gaussian Elimination is a mathematical algorithm that has been in use for more 

than 150 years (Cormen et al., 2001).  It is used to solve for the unknowns in a system of 

linear equations.  This algorithm is more complex than the addition of polynomials.  As a 

result of its 3-level nested loop structure, Gaussian Elimination has a timing analysis of 

O(n3) (Cormen et al., 2001).  The purpose of the algorithm is to solve for any number of 

unknowns as long as the number of unknowns is equal to the number of equations.  The 
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product of this algorithm is the unknowns themselves, resulting in the solution to the 

system of equations (Cormen et al., 2001). 

 

LUPDecomposition (A)   LUPSolve (L, U, pi, b) 
{      { 
   k  = Rows(A)         n = Rows[L] 
   Pi = 0      
   p  = 0       for (i = 1 to n) 
              y[i] = b[pi[i]] - sumof(i - 1, j = 1, (L[i][j] * y[i])) 
   for (x = 1 to k)        
      Pi[x] = x          for (i = n to 1 setp - 1) 
                 x[i] = (y - (sumof(j = i + 1, n, (U[i][j] * x[j])) / U[i][i]) 
   for (y = 1 to k) 
   {        return x 
      p = 0    } 
       
      for (x = y to k) 
      { 
         if (A[x][y] > p) 
            p = A[x][y] 
            k' = x 
      } 
        
      if (p == 0) 
         print("Error, Singular Matrix") 
    
      exchange(Pi[y], pi[y']) 
 
      for (x = 1 to k) 
         exchange(A[y][x], A[y'][x] 
 
      for (x = y + 1 to k) 
      { 
         A[x][y] = A[x][y] / A[y][y] 
          
         for (z = y + 1 to k) 
            A[x][z] = A[x][z] - (A[x][y] * A[y][z]) 
     } 
} 

 

Figure 5.7 Gaussian Elimination Pseudocode. 

Gaussian Elimination uses two routines each of which performs distinct tasks.  

The first routine factors a permutation of the matrix of coefficients into an upper 

triangular matrix and a lower triangular matrix. After this is complete, the second routine 

can perform the back substitutions needed to solve for the unknowns themselves (Cormen 

et al., 2001).  Random integer data was used to generate the matrix coefficients.  For the 

first time in this research study, floating-point arithmetic is used (Cormen et al., 2001). 

 

5.7 Order Statistics 

The ith order statistic of a set of n elements is the ith smallest value in the set. The 

minimum is the smallest element in an array.  The maximum is the largest element in an 

array. If the minimum is desired, i = 1 and if the maximum value is desired then i = n 

(Cormen et al., 2001).   
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5.7.1 Minimum and Maximum 

In order to find the minimum and maximum values in a given data set, every 

value must be addressed. This produces results in the worst case and average case time of 

O(n) and is optimal (Cormen et al., 2001).  By using this algorithm, we can see how each 

language performs under the worst case using only elementary operations (Cormen et al., 

2001).  This is different from sorting in that we are not re-ordering the set of elements, 

only returning a single element from the set.   

 

Minimum (A) 
{ 
   m = A[1] 
  
   for (x = 2 to sizeof[A]) 
      if (m > A[x]) 
         m = A[x] 
 
   return m 
} 
 
 

Figure 5.8 Minimum Pseudocode. 

The process for determining the minimum and maximum values in a data set is 

simple and both statistics use the same process with only a slight modification.  In the 

case of the minimum value, the first element in the data set placed is in the “leader” 

variable, meaning that the first element in the array is the smallest (Cormen et al., 2001).  

This value is then compared with the next element in the array and if this new element is 

smaller then it is in turn placed in the “leader” variable.  This process is repeated until the 

entire data set has been compared (Cormen et al., 2001).  Finding the maximum value is 

similar.  Random generation of integers is used to produce the data set. 
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5.7.2 Random Selection 

The final algorithm chosen for this research study is Random Selection.  This is 

an algorithm that performs in O(n2) for worst case time and O(n) expected time (Cormen 

et al., 2001).  This algorithm produces the ith smallest number in the data set and returns 

this value to the calling routine.  The reason this algorithm performs in O(n2) worst-case 

time is that it is compared to every element in the data set (Cormen et al., 2001).  The 

difference between this algorithm and the minimum and maximum selections is the 

introduction of recursion.  With both randomization and recursion, it is possible to see 

how well each language performs with these two techniques (Cormen et al., 2001).  

 

RandomPartition (A, p, r)  RandomSelect (A, p, r, i) 
{     { 
   x = Random(p, r)      if (p == r) 
           return A[p] 
   exchange(A[r], A[x]) 
        q = RandomPartition(A, p, r) 
   return Partition(A, p, r)            k = q - p + 1 
} 
               if (i = k) 
                                              return A[q] 
         elseif (i < k) 
           return RandomSelect(A, p, q - 1, i) 
        else 
           return RandomSelect (A, q + 1, r, i - k) 

          } 
    

Figure 5.9 Random Selection Pseudocode. 

Data for this algorithm were generated randomly and integers were placed into an 

array.  For research purposes, the smallest number in the array was selected, however any 

ith smallest number can be selected, i.e. 2nd smallest or 3rd smallest (Cormen et al., 2001).  

Random Selection uses the Randomized Partition procedure to return a pivot where all of 

the elements are less than or equal to the pivot on one side of the array.  Any element is 

as equally likely to be returned (Cormen et al., 2001).  As a result of the partitioning, it is 

impossible to determine if the ith smallest number in the data set is above or below the 
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pivot before hand and so this must be calculated.  This condition is the determining factor 

on which side of the data set is to be compared (Cormen et al., 2001).  The algorithm will 

continue to recursively decompose the data set using further partitions until the ith 

smallest number in the set has been found (Cormen et al., 2001). 
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CHAPTER VI 

METRICS AND THEIR DEFINITIONS 

6.1 Definition of Selection Criteria 

In order to gain a full understanding on how each language will perform with 

respect to each algorithm, measurements must be taken on each implementation.  For this 

research, a comprehensive metrics suite has been defined from static, dynamic, and .NET 

metadata measurements.  All of the metrics used for this research come from the work of 

experts in the field of software development and have been widely applied.  Each metric 

chosen clearly defines what is being measured, is easy to reproduce, and represents 

important and valid attributes of each program (Munson, 2003: Wohlin, 1996).  

These attributes fall into two categories: quantitative and qualitative.  Quantitative 

metrics measure attributes related to the size of the program.  Qualitative metrics measure 

attributes related to program complexity, writing difficulty, and readability (Munson, 

2003).  For example, a high Lines of Code metric might indicate that the program is 

large.  This is a quantitative measurement.  On the other hand, if the program’s 

Cyclomatic Complexity is high, this indicates complex code.  This is qualitative metric 

(Munson, 2003: Wohlin, 1996).  These metrics are defined in detailed in later sections.  

All metrics, regardless of what they measure, can be classified as quantitative or 

qualitative (Wohlin, 1996).  Both of these categories together can give the programmer a 
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wide range of knowledge on how fault-prone the program may be (Munson, 2003).  

Programs that tend to me more fault-prone usually have more bugs, design flaws, and 

other problems associated with complex software (Munson, 2003). 

Each program is measured both statically and dynamically, with qualitative and 

quantitative metrics provided as part of each.  Static measurements are taken on the 

source code itself, while dynamic measurements are taken on the program at run-time 

(Munson, 2003).  Each of these has a very important purpose.  Static measurements give 

indications about how large the program is, how difficult it was to write, and how long it 

may have taken to finish.  Dynamic metrics give insight into how well programs perform, 

how much memory is used during run-time, and how many routines are called (Wohlin, 

1996).  Quantity and quality can both be measured statically and dynamically, producing 

a full data set for developers to analyze for decision-making purposes (Wohlin, 1996).  

All of these factors must be considered in order for a set of metrics to have any meaning 

(Munson, 2003).  While programs implementing the same algorithm might have similar 

values, the slight differences show variations in how each language performs with respect 

to a given algorithm.  This can be seen through the process of PCA, described in detail in 

Chapter 7. 

In addition to measuring each program both statically and dynamically, a look at 

the .NET assembly for each program proves useful as well.  .NET assemblies use the 

Common Language Runtime library (CLR), which produces metadata that can be 

imported into other programs, even if those programs are created in different languages 

(Petzold, 2001).  While both the metadata and static categories might seem similar in that 

the program is not needed to run in order to obtain measurement, they are different with 
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respect to what is actually measured.  Static measurements are taken directly on the 

source code itself, rather than the executable program that it creates.  The metatadata 

looks at how the .NET environment puts together an executable program from the inside, 

showing the viewer the many attributes available with the proper data reader.  Since the 

.NET tool is used to provide a common development tool, the metadata created for each 

program can be measured providing another tool in the understanding of how well each 

algorithm performs from language to language.  Several metrics on this metadata are 

defined in the following sections of this chapter. 

Measurements were taken on each implementation in the same way and under the 

same conditions to produce comparable results.  Since any computer system can 

introduce useless noise into a measurement, each metric was taken several times to 

ensure that an accurate result was produced (Munson, 2003). All static measurements 

were taken using Resource Standard Metrics (RSM), a tool created by M Squared 

Technologies (M Squared Technologies, 2005).  The tool enables the use of several static 

metrics that are described in detail in the next few sections. Dynamic measurements were 

taken using the tool “AQTime 4”, by AutomatedQA Corp (1996), a tool that measures 

.NET run-time attributes.  This tool profiles .NET programs in many ways and without 

regard to programming language.  A memory profile and an execution profile were used 

to produce the measurements.   

The last portion of the measurement process is on the .NET metadata from each 

program’s assembly code.  These measurements were taken using the “A .NET Assembly 

Viewer” (The Code Project, 2002), a tool used to break down and categorize the 

information contained within the .NET metadata.  This format of the metadata will not 
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change from system to system and therefore any tool that can view this information can 

be used on any computer carrying the .NET Framework, making these measurements 

easier to reproduce.  The data that is of interest comes from the tables contained within 

the metadata.  An important fact to note is that the metadata will contain information 

outside the scope of the source file, meaning that all of the libraries imported into the 

assembly will be measured. 

 

6.2 Factors Present in the Measurement Environment 

First and foremost, the data in this study was collected using the .NET set of 

compilers.  Each compiler has its own optimization methods and the .NET compiler suite 

is no different in this regard (Petzold, 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).  

The use of the .NET compiler suite ensures that each program is compiled to the same 

format (Petzold, 2001). When looking at the metadata created by .NET compilers, it is 

possible to see exactly how the .NET virtual machine creates the objects present in each 

program, showing the differences between implementations from an internal point of 

view.   It is possible that conclusions drawn from the data collected here might not be 

valid for other compiler suites, such as the GNU suite under Unix based environments. 

The dynamic measurements are also bound by the optimizations created by the 

.NET Framework as well as the specifics of the machine in which the runs are taken.  It is 

important to run these programs for dynamic measurements under as close to the same 

conditions as possible.  Several runs were done on each program and the data collected 

are averages of all of these runs, ensuring that if anything happens in the background of 

the operating system, it does not introduce unnecessary noise into the measurements 
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(Munson, 2003).  Because of this unforeseen operating system noise (new processes, 

memory management, etc.) the dynamic data, while in theory useful on any system, is 

only tested and currently valid using Windows XP Professional, SP2.  In addition to 

operating system noise, the machine itself can also cause measurement noise causing 

dynamic measurement variability.  The machine noise can come in the form of processor 

speed, memory availability, etc., and thus in order for the data to be preserved, the 

measurements should be reproduced on the same type of machine as well.    

Lastly, the static measurements are dependent on the particular implementation. It 

is possible, as was mentioned earlier, that there is any number of implementations that 

will satisfy an algorithm’s requirements.  Because of the Sedgewick (1983) guidelines 

used in writing the code for these programs, the static measurements can only be 

reproduced with validity using his approach.  Each algorithm was written using this strict 

coding style, ensuring that only core language constructs were used (Sedgewick, 1983). 

Very little .NET specific code was used to ensure that the base language was all that was 

measured.  It is of course possible to write certain lines in a combined fashion, but all 

operations were broken up into individual and easily readable pieces.  A look at the code 

in Appendix A will give further insight into exactly how the coding was done for each 

program written for the use of this project.  It is with this code that the static 

measurements have valid results as Munson suggests is necessary to conduct science 

(Munson, 2003).  Again, as described in Chapter 3, in order to truly gain a full 

understanding of how the code may be influenced by other developers, many programs 

need to be written and many measurements need to be taken and averaged before 

statistical analysis may be done. 
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6.3 Static Metric Definitions 

6.3.1 Physical Lines of Code 

The first metric of importance is that of the infamous Lines of Code (LOC).  

Being one of the oldest metrics, it is commonly used to determine program size, effort in 

units of time, and other development related data (Fenton & Neil, 1999).  This is a crude 

metric, often used to determine more than intended (Munson, 2003), and is often misused 

(Fenton & Neil, 1999).  Physical Lines of Code, or pLOC, is the first of several LOC 

metrics that will be included in this study.  The “Resource Standard Metrics” (RSM) tool 

defines this metric as the total number of lines contained within the file without regard to 

blank spaces, comments, and the like.  The pLOC metric will be used as a representation 

of file size, a quantitative attribute.  It is important to note that the pLOC metric does not 

take into account executable statements versus non-executable statements.  After pLOC is 

taken, additional metrics, such as those described below, are needed to gain a fuller 

understanding of the meaning behind the pLOC value. 

 

6.3.2 Effective Lines of Code 

The second LOC metric will be the Effective Lines of Code, or eLOC. This 

metric determines the number of lines of code in which work is performed, including the 

executable statements, and decision-making Boolean checks.  The RSM tool takes this 

metric by excluding comments, blank lines, lines with only braces used as scope 

delimiters, and the like.  The eLOC value will offer a better understanding of the total 

lines of code contained within a file, defining which lines will actually perform useful 

work.  Again, this is a measure of functional size, rather than actual size (Fenton & Neil, 
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1999), making this another quantitative attribute.  This measurement is important in 

determining other metrics, such as McCabe’s Cyclomatic Complexity (McCabe, 1976), 

which is discussed in section 6.3.4. 

 

6.3.3 Code Statements 

This is the last of the LOC metrics.  The RSM tool defines code Statements, or 

lLOC as those lines that contain a statement separator.  It is important to determine what 

a statement actually is in order to take this metric, meaning that a clear definition is 

necessary so that this value remains unambiguous (Fenton, 1994). For the C-style syntax, 

the semi-colon is used, and for VB, it is the carriage return, since there is no need for a 

semi-colon in the latter (Petzold, 2001).  All of the LOC metrics used in this study are 

highly correlated (Weyuker, 1988).  This means that with a high pLOC count, a high 

eLOC and lLOC count will most likely be the result.  As a result of the high correlation 

between the LOC metrics, lLOC is classified as a quantitative size metric. 

 

6.3.4 McCabe’s Cyclomatic Complexity 

McCabe created one of the most commonly used qualitative complexity metrics 

used in software engineering, the Cyclomatic Complexity Metric, commonly noted as 

V(g) (McCabe, 1976). It is a measure of both size and program complexity, and generally 

is a good indication of program fault content.  A higher V(g) value results in a more 

complex code module (McCabe, 1976).    The RSM tool uses the classical definition 

(there have been many enhancements to this metric (Zhao, Wohlin, Ohlsson & Xie, 

1998), the total number of edges and nodes in a given program or program module 
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(McCabe, 1976: Munson, 2003).  Edges are the conditional paths and nodes are the 

processing that takes place at the end of those paths (McCabe, 1976).  In an “if” block, 

for example, a new path is created.  If the block’s conditional holds true, then the code 

takes a new path, otherwise, the code continues as normal without performing the 

operations within the block.  A conditional node is created determining the Boolean value 

of the “if” statement and a connection node is created joining the two possible paths 

together.  Again, this can all be seen in a flow diagram much like the examples given by 

Munson (2003).  It is these edges and nodes that define the V(g) value.  

 

 Figure 6.1 Control Flow Diagram of a For Loop.  

This is much more of a qualitative metric than those that measure LOC.  High 

LOC counts are not necessarily correlated to the number of edges and nodes contained 

within a program code module, however, in many cases high LOC counts indicate high 

V(g) values.  For example, a program can be written to perform one set of operations 

where there are no decision structures.  The operations may take 1000 lines of code but 

the V(g) value is small.  On the other hand, many decision structures add to the LOC 

counts, giving both high LOC and V(g).  This metric can generally be computed even 

before coding begins if there is detailed design documentation.  It is thus available to the 
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programmers at an early stage of development (Jung, Pikva & Kim, 2000: McCabe, 

1976). 

 

6.3.5 Compiler Directives 

Each programming language has a standard set of libraries that must be included 

when compiling and running programs (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Since 

each language has different numbers of libraries that are needed in order for the program 

to run properly, counting the number of compiler directives and files included is a good 

measure of program complexity.  With each header line, an additional library is loaded 

into the program by the compiler, producing larger executable files and additional 

chances for faults.  Of course, these headers do not always have to be the standard ones 

included in the language.  Programmers can create their own, which is why this metric is 

important for the discussion of how complex a program can become.  Compiler 

Directives tends to be more of a qualitative metric, meaning that this measurement may 

not have a direct impact on program size but may impact its overall complexity.  The 

RSM tool defines this metric as all of the #include, import(s) and using statements, used 

by C and C++, Java and Visual Basic, and C# respectively. 

 

6.4 Dynamic Metric Definitions 

6.4.1 Memory Usage 

The amount of memory used by a program is one of the important factors in the 

program’s performance (Ebert, 1995). Using the memory profiler of the AQTime tool, it 

is possible to take a snapshot of the memory used at its maximum point. The results are 
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often significantly different, showing that the libraries included by each language have 

complexities unseen by the programmer.  This metric is both quantitative and qualitative.  

Large numbers in this measurement can lead to memory management issues, with 

memory leaks a possibility.  One thing to note is that these programs are not interactive 

and memory size can change with different size inputs. 

 

6.4.2 Total Objects Created 

The total number of objects created can often describe how complex language 

libraries tend to be and how many are used (Ebert, 1995).  Objects in this measurement 

refer to the number of items placed in memory.  These do not have to be objects in the 

object oriented programming sense, but rather they can be things as simple is integers, 

strings, constants, etc.  Larger numbers of objects created can show another factor of 

dynamic size and complexity.  Memory usage is of course related to the numbers of 

objects created, but it does not accurately describe the size of the objects in memory.  

Memory usage values can be large for small numbers of objects, and it can be small for 

large numbers of objects.  Knowing how many objects have been created gives insight 

into what memory usage actually means.  The AQTime memory profiler can again take 

snapshots of the value of objects created on a given execution.  This is more of a 

quantitative metric as it relates to program size. 

 

6.4.3 Average Execution Time 

Execution time is a direct measure of software performance (Munson, 2003).  

Execution time is affected by factors other than the complexity of the program. 
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Operations from within the operating system can stall the measured process for seconds 

at a time if another process takes priority.  It is these extra factors that force the need for 

an average over several runs.  The AQTime execution profiler times the program from 

start to finish.  The programs written for this project are very simple and have no 

interaction with the user, so no user interferences are possible in slowing down the run.  

The average execution time is taken as the simple mean of ten consecutive timing 

measurements.  This metric is qualitative in that faster software is usually desired.  The 

programs were all run on a stand-alone machine and each run was performed under the 

same conditions.  This variation leads to asking for more information, which is why the 

following two metrics were introduced. 

 

6.4.4 Minimum Execution Time 

Average run-time is not enough to describe exactly how long it takes each 

algorithm to run.  Large outliers below the mean value can skew an average, making the 

average meaningless without additional information.  Of the ten executions in which 

timing measurements were taken, the lowest of these ten is recorded for this metric.  

Again, since faster software is what is desired, this metric relates to software quality. 

 

6.4.5 Maximum Execution Time 

This metric is similar to the Minimum Execution Time.  The difference here, 

however, is that among the ten values used in the average, the largest is recorded. Once 

again, quality is the attribute here since faster software usually is what’s desired. 
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6.4.6 Total Routine Calls 

Another measure of program complexity is the total number of routine calls made 

during execution.  This can also be a factor in the execution time of the program 

(Munson, 2003). Using the AQTime execution profiler, it is possible to see how often 

routines are used to complete the programming objective.  The profiler counts the number 

of function calls throughout each execution and records the value.  Complexities unseen 

by the programmer can be brought to light as object definitions are often hidden. 

 

6.4.7 Routines Executed 

This complexity metric is a measure of all of the unique routine calls through a 

given run.  Unlike the total number of routines, this metric only counts a given routine 

one time after it has been called and ignored if the routine is called subsequent times.  

Without this metric the total number of routine calls when running a program loses some 

of its meaning.  Small numbers of unique routines can be called many times producing 

large values for Total Routine Calls.  Also, large numbers of unique routines can be 

called only a few times, producing smaller numbers in Total Routine Calls.  The AQTime 

execution profiler records this data at the end of each execution.  This metric is 

qualitative. 

 

6.4.8 Total Routines 

This metric describes the total number of routines defined in the objects created.  

This does not necessarily mean that every routine defined will be used in the program’s 

execution.  The Total Routines metric can be another measure of the complexity that can 
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explain the variation of memory usage from program to program.  The routines 

mentioned here are not only the ones defined in the source code, but those routines 

defined in header files and object files that are available to the programmer.  The 

AQTime execution profiler records this data once a given run has completed. 

 

6.5 Metadata Metric Definitions 

6.5.1 Type References 

This metric is used to describe the number of built-in data types referenced from 

within a given assembly.  These include types such as int, char, float, double, and 

language specific types such as System or PrintStream (Petzold, 2001).  This is useful in 

understanding the many different data types used to implement an algorithm.  Within the 

metadata, there is a table known as TypeRef, which contains a listing of all of the types 

used within the assembly.  Also included in this table is the information used to find 

where the data type is defined in the language libraries. 

 

6.5.2 Type Definitions 

This table lists all of the programmer defined data types.  These include class 

definitions, #define references, arrays, and other objects not already available in the 

language libraries (Petzold, 2001).  Languages suited for a given algorithm allow users to 

use built-in objects rather than defining their own.  When programmers define their own 

objects, it becomes easier for faults to enter into code since the new types are not always 

fully tested. 
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6.5.3 Fields 

This table contains a listing of all of the variables used within the assembly.  

These may be as simple as a single integer or as complex as an array of objects (Petzold, 

2001).  As more variables are declared, both the programmer and the operating system 

must undertake more memory management.  If an assembly contains many fields, it is 

clear that the program is complex in terms of the number of objects that must be used in 

order to complete the algorithm. 

 

6.5.4 Methods 

This table contains the number of methods called from within the source files.  

This is different with respect to the number of methods called in the dynamic 

measurements section.  This table only includes the methods called at the highest scope.  

This means that if a method calls another method, it is ignored, showing only the number 

of root calls (Petzold, 2001).  This is important in understanding how many methods, 

both user defined and built-in, must be used in order to complete an algorithm.  This is 

taken from the perspective of the programmer with regard to information hiding, 

commonly used in object oriented programming (Sebesta, 1999), not the system as a 

whole as is seen by the AQTime tool used to take dynamic measurements. 

 

6.5.5 Member References 

This table contains all of the members referenced in all of the classes and data 

structures used by a given assembly.  These include items such as class member functions 

and variables at the scope of the entire assembly (Petzold, 2001).  References from deep 
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within a language’s structure may be found in this table.  Also, user defined references 

may be found in this table, including the entry point called by the operating system.  A 

large number of member references is a clear indication of memory management 

complexities both on the part of the programmer and the operating system. 

 

6.5.6 Assembly References 

Described within this table are the external references needed by a program to 

properly resolve all of the function calls.  In some cases no assemblies are referenced, as 

the base definition of the programming language may be suitable enough on its own 

(Petzold, 2001).  In other cases, however, pre-compiled objects must be imported into the 

assembly so that the program may find all of the objects needed to complete an operation.  

These operations include items such as I/O, arithmetic, and other operations that .NET 

programs may perform (Petzold, 2001).  With many additional assembly references, a 

program’s executable may become large and difficult to manage from the perspective of 

the operating system, causing slower performance and larger amounts of memory usage.  

This can be a major factor in the speed of .NET programs (Petzold, 2001). 

 

6.5.7 Stand Alone Signatures 

In .NET programs, data is described by its signature. Signatures are used to 

describe all of the references necessary for overloading data members externally by 

outside assemblies (Petzold, 2001).  This means that a routine (i.e. function within a 

class) or operator (such as a ‘+’ or ‘-‘) used in a C# program might be overloaded by a 

Visual BASIC program.  The assembly that wishes to do the overloading must first read 
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the signature of the routine or operator to gain the location information of the given 

routine or operator, at which time it may gain access to the fields containing the data that 

is to be overloaded.  The signature can be seen as a gateway to the fields section of the 

metadata (Petzold, 2001).  The number of signatures is directly correlated with both the 

number of fields and the number of methods contained in other data, as these are the 

objects that may be overloaded (Petzold, 2001).  Obviously, with more data that must be 

signed, there will be more items that must be managed in memory and more objects that 

must be created by both the operating system and by the programmer. 
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CHAPTER VII 

PRINCIPAL COMPONENTS ANALYSIS 

7.1 Understanding Metric Data 

Defining primitive metrics and taking measurements is only the first part in 

understanding the size and complexity of each program written as part of this research 

study.  The metrics defined in Chapter 6 are only the primitive data elements that 

describe certain aspects of each program but give little meaning without further analysis 

(Munson, 2003).  This analysis can be found in the form of derived metrics; linear and 

non-linear composites of the primitive data sets created from taking measurements 

(Munson, 2003).  Maurice Halstead was one of the original derived metric pioneers using 

what he called the Software Science Metrics to obtain additional information from his 

primitives (Halstead, 1977). 

The Software Science Metrics used addition, multiplication, and logarithmic 

functions on the primitives to create new derived values without regard for measurement 

unit.  What Halstead failed to understand was that simple mathematical computations on 

values do not give additional information from the primitive data, but in fact a loss of 

information is possible instead (Halstead, 1977: Munson, 2003).  Munson suggests an 

example.  If 5000 undergraduate students attend a university, and 1000 graduates attend 

the same university, then it is simple to assert that there are 6000 students at the 

university.  The addition of these two groups does not lead to new information about the
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relationships between graduates and undergraduates (Munson, 2003).  Adding numbers 

together gives no new information and does not explain the variation between 

undergraduate students and graduate students.  What is needed instead is a derived metric 

that will combine the primitives in such a way that sources of variation can be accounted 

for and understood.  Software metrics tend to be highly correlated and so reasons for the 

differences in measurements must be made visible (Munson, 2003).  This is the purpose 

of Principal Components Analysis. 

 

7.2 Understanding Sources of Variation 

Finding mean, median, and mode can certainly describe some of the central 

tendencies found in primitive metric data (Halstead, 1977: Jackson, 1991).  While these 

statistics may be useful, it is important, however, to understand the relationships of what 

is being measured.  Information on the sources of variation among different measurement 

values can be both intrinsic and systemic.  Intrinsic variation can be as simple as saying 

that some programs have more lines of code than others.  Systemic variation, on the other 

hand, is related to errors in measurement and can introduce noise into the analysis 

(Munson, 2003).  It is hoped that the systemic variation can be eliminated from the 

measurement process. 

If two related metrics share a common element of variation, they are said to have 

covariance.  If the two metrics vary about the mean in much the same way, the shared 

variance is considered to be large.  If, conversely, the two metrics do not vary about the 

mean in a similar way, the covariance is considered to be small (Jackson, 1991).  Since 
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most of the metrics used in this study will tend to be highly correlated, it is important to 

understand that some may share common factors in variation (Munson, 2003). 

Each metric for a given algorithm will have its own mean and variance and with 

this in mind it can become difficult to impossible to learn anything about a program 

(Munson, 2003).  By adjusting each metric for the effect of its own mean and standard 

deviation then it is possible to look at the adjusted values and understand something more 

about the metric in question (Jackson, 1991).  To do this, a value known as a z-score must 

be calculated.  The z-scores will now have a mean of 0 and a standard deviation of 1.  

Positive z-scores indicate that the measurement was greater than the mean, while 

negative z-scores indicate that a measurement was less than the mean (Munson, 2003).  

By using z-scores, it is possible to determine which metrics share variation.  Two metrics 

with similar z-score values will be covariate, and metrics with dissimilar z-score values 

will be non-covariate.  Understanding covariance can lead to additional and useful 

information that raw metric data cannot give on its own (Jackson, 1991: Munson, 2003).  

Using the z-scores, it is now possible to begin the process of Principal Components 

Analysis. 

A z-score is calculated simply by the following formula: 

 

Zi = (xi – x’i) / δ 
 

where subscript i represents the current measurement, x is the measurement value, x’ is 

the mean of the measurement values, and the δ is the Standard Deviation (Jackson, 1991).  

Now, as was mentioned, the z-score values will have a mean of 0 and a Standard 

Deviation of 1 (Jackson, 1991: Munson, 2003).  If z-score values are greater than 1.0, this 
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means that the measurement is larger by at least one Standard Deviation from the mean.  

If they are less then –1.0, this means that the measurement is smaller by at least one 

Standard Deviation from the mean (Jacskon, 1991). 

The next step is to find the relationship coefficient, which will be based on the z-

score values above (Jackson, 1991).  Using the z-scores, it is possible to calculate the 

Pearson product moment correlation statistic (Munson, 2003).  The formula is as follows: 

  

rxy = (1/n-1) * SUM[(from i = to n) ZxZy] 

 

This yields a diagonal matrix of correlation coefficients showing how each value is 

related to every other value in the data set for a given algorithm (Jackson, 1991: Munson, 

2003).  With both the z-scores and the Pearson technique, it is possible to see how each 

variable (in this case measurements taken on a particular algorithm in a particular 

language) is related to every other variable and how they share variance. 

 

7.3 Metric Domains 

Metric data, as was already stated, are simply data and nothing more.  It is very 

difficult to draw any useful conclusions from simply reading raw metric values (Munson, 

2003).  In Principal Components Analysis, it is necessary to transform the highly 

correlated raw values into a set of unrelated domains; metrics on specific attributes of the 

object measured, in this case, software (Munson, 2003).  The main problem here is to 

determine exactly how many usable sources of variation can be identified in the original 
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metric values.  The domain metrics are seen as principal components, each illustrating an 

underlying common attribute from among the raw values (Munson, 2003). 

Principal Components Analysis is a straightforward process.  We wish to 

transform our set of correlated values into a set of non-correlated values.  Given a set of n 

metrics M indexed from 1 to n such that M = (m1,…,mn) we wish to transform them into 

a set n domain metrics D such that D = (d1,…,dn).  Each measurement value will be 

mapped to the domain in which it is most correlated (Jackson, 1991: Munson, 2003).  

This is done by extracting the eigenvalues and the corresponding eigenvectors from the 

elements in the matrix created in the previous section.  The complete mathematical basis 

for extracting the eigenvalues and eigenvectors can be found in Appendix 1 of Munson’s 

textbook (Munson, 2003).  Once the eigenvalues and eigenvectors have been found, 

calculating the product moment will yield all of the principal components.  The principal 

components represent the orthogonal measurements in which there is no correlation to 

any other value.  There is a point of diminishing returns, however, as the principal 

components will not yield any information about variation if the eigenvalues are too 

small.  For this reason, the stopping point for eigenvalue extraction is an eigenvalue 

minimum of 1.0.  In this way, only the orthogonal domains that are most correlated with 

the metric values will be visible (Jackson, 1991: Munson, 2003).  A domain matrix 

results from the operations performed on the covariance matrix from the previous section. 

Once the new orthogonal metric domains have been found and have been placed 

in their new matrix, new sources of variation will become apparent.  This variation can be 

seen in the fact that often metrics will be highly correlated to one domain but not to 

another.  Higher metric domain values indicate higher correlation to that domain and this 
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new source of variation is a direct artifact of the Principal Components Analysis process 

(Jackson, 1991).  To clarify this new variation, a varimax rotation will be performed on 

the domain matrix (Jackson, 1991).  The resulting rotated matrix will show factor 

patterns for the metric domains that have been extracted (Munson, 2003).  Now raw 

metrics are shown to be highly related to certain domains without unclear sources of 

variation.  All unseen possible noise has been removed from the data.  All of the 

mathematical foundations of Principal Components Analysis can be found in Appendix 1 

of Munson’s textbook (2003). 

 

7.4 The Relative Complexity Metric 

Once Principal Components Analysis has been completed, there can still be an 

additional simplification of the metric data.  Munson suggests that if it is possible to 

describe a program or program module in terms of a single complexity value, this value 

can be used in a linear function to describe how fault-prone a program or module might 

be (Munson, 2003: Munson & Khoshgoftaar, 1990).   This value is known as a Relative 

Complexity Metric (RCM).  This new metric is a weighted sum of a set of uncorrelated 

attribute domain metrics, the orthogonal domains found earlier (Munson, 2003).  The 

sum is weighted against the eigenvalues that were also extracted earlier.  In order to 

calculate the RCM, the following formula is used: 

 

RCM = SUM(ljdji) 
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where l is the eigenvalue extracted from jth measurement and d is the ijth domain metric 

found in the last matrix created from the previous section after the varimax rotation is 

performed.  From this RCM value, one measurement can describe a single program 

module. 

Once the RCM has been found, it is much simpler to understand how complex a 

given program or module is.  The programs being measured for this research can now be 

grouped and arranged by this single metric (Munson, 2003).  The RCM provides a simple 

mechanism of aggregating the many similar complexity metrics into one single metric 

used to describe a set of programs (Munson, 2003).  The RCM however is not a complete 

measure but rather a stand-in for aspects of software quality that are not measurable and 

it can be simply stated as a surrogate for software faults (Munson, 2003).  The RCM 

value will be used in the following discussions on how each programming language 

performed with respect to a given algorithm.  The higher the RCM value, the more 

complex the program and the more likely faults may be contained within the source code.  

An example of this entire process may be found in Munson’s textbook, Chapter 6 (2003).  

Appendix C contains all of the process output, the domain metrics, and the RCM values 

for each algorithm if reference is needed.  It must be made clear, however, that even 

though a program might have a higher RCM value, meaning that the program has a 

greater fault-prone nature, this does not mean that the program actually contains faults.  It 

is a measure of how likely faults may appear when compared to other RCM values 

(Munson, 2003). 
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CHAPTER VIII 

STATIC MEASUREMENT ANALYSIS 

8.1 Introduction 

Before looking at the overall results of the measurement process, the process must 

first be broken down into three parts: the static measurements, the dynamic 

measurements, and the metadata measurements.  After the process of Principal 

Components Analysis, the static, dynamic, and metadata metrics will be broken into two 

domains representing the quantitative and qualitative software attributes.  Understanding 

the three parts measured independently will allow for greater understanding of the entire 

process.  In this chapter, the first part of the measurement process, the static 

measurements, will be analyzed and discussed in detail, revealing important trends that 

have surfaced while writing the programs.  Appendix B contains all of the raw 

measurement values. 

The static metrics used in this research are designed to show the difficulty of 

actually writing the code.  When remembering the language descriptions from Chapter 4, 

some of the results may be surprising, while others may be what were expected.  In either 

case, the measurements taken here will be a good indication of the overall difficulty of 

actually writing the programs.  One thing that is important to remember when looking at 

these results is that coding style was maintained in all five languages whenever possible
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(Sedgewick, 1983), and all of the implementations were structured using traditional 

approaches (Pratt & Zelkowitz, 2001: Sebesta, 1999). 

 

8.2 Individual Algorithm Results 

8.2.1 Linear Search 

One of the simplest algorithms in this study is Linear Search.  It produced 

different results from language to language, but the simplest language for this algorithm 

was Java.  It produced the smallest LOC measurements and was small in the area of 

Cyclomatic Complexity.  Next was C#, which is not surprising simply because the code 

syntax is similar.  Third for this algorithm was Visual BASIC, which is a little 

unexpected given that Visual BASIC is designed for readability rather than with construct 

in mind.  Even so, it still scored well (Pratt & Zelkowitz, 2001: Sebesta, 1999).  The C 

implementation was fourth.  It had a larger amount of LOC but scored well on V(g).  

Finally, at the end of the list, was C++, which is expected, as it is a super set of C rather 

than its own language (Sebesta, 1999).  It produced higher lines of code and higher V(g).  

C++, with the way it structures class objects, adds what seems like a higher level of 

complexity. 
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Figure 8.1 Linear Search Static Measurement RCM Results. 

8.2.2 Bubblesort 

For the second time, Java was the leader and proved to be the least complex 

solution.  Again, its LOC measurements were the smallest.  Second again was C#, but its 

values were still close to Java since its syntax structure is similar.  Third this time was the 

C implementation; better than Visual BASIC, which is expected as Visual BASIC, with 

its English like structure tends to be more complex (Pratt & Zelkowitz, 2001).  Visual 

BASIC was fourth, as it had higher LOC and V(g) measurements than all of the other 

implementations except for C++.  C++, as before, proved the most complex as it is a 

super set of another language, rather than its own language.  Again, the class 

implementation portion of the C++ language proved to be the main complexity factor, as 

it added counts to the LOC and V(g) values. 
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Figure 8.2 Bubblesort Static Measurement RCM Results. 

8.2.3 Quicksort 

In this set of implementations, things changed from the previous.  The leader with 

the lowest RCM value this time was C#.  It produced lower LOC and V(g) metrics than 

its counterparts.  Java, while not the leader this time, was still close to the C# 

implementations with the same reasons as before, that its syntax and code structure are 

very much like Java.  Java was developed first, and, as stated in Chapter 4, C# was 

developed to be based on Java and C++ together (Petzold, 2001: Pratt & Zelkowitz, 

2001: Sebesta, 1999).  Third again was the C program, which was a little higher for this 

algorithm than for the others when related to its competition.  It had a value of 47.3, 

nearly six points higher than the leader.  Visual BASIC was fourth once again as it 

produced a larger amount of LOC.  C++ once again falls fifth, with its syntax again the 



89 

 

 

culprit.  C++, as was stated in Chapter 4, was meant for object organization and 

readability, which is why these results are not surprising.  With organizational features, 

additional lines of code are required (Pratt & Zelkowitz, 2001: Sebesta, 1999). 
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Figure 8.3 Quicksort Static Measurement RCM Results. 

 

8.2.4 Naïve String Matching 

In this algorithm, C was the clear leader with the lowest RCM value.  As this is a 

string-matching algorithm, and since the processing of strings is necessary, C came out 

ahead with its use of arrays of characters to perform string operations.  The other 

languages fell slightly behind due to the use of additional constructs and language 

features for the processing of strings.  One surprising result is that Visual BASIC was 

second, even though the language is not designed for this purpose (Pratt & Zelkowitz, 

2001).  One thing that can be reasoned about Visual BASIC’s results is that because 

Visual BASIC is designed to be simple, and since this is a simple algorithm by 
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comparison to KMP String Matching, it produced lower static measurement values 

(Cormen et al., 2001).  Java and C# were third and fourth respectively, proving again that 

they are close in value because of their syntax structure.  C++, while using the same 

convention as C for its string processing, still proved to be the most complex statically 

with its class object organization and implementation. 
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. 

Figure 8.4 Naïve String Matching Static Measurement RCM Results. 

 

8.2.5 KMP String Matching 

For this algorithm, C was the leader producing the lowest RCM value.  The C 

implementation had the fewest LOC and V(g).  C++, however, continues to be plagued 

by problems in the very same areas mentioned above.  Again, the C++ implementation 

was the worst performer, posting an RCM value of nearly 68.  Visual BASIC did not fare 

as well with this algorithm as it posted high measurement results, the highest it has done 

so far.  This is a more complex algorithm and Visual BASIC was not designed for this 

kind of processing (Cormen et al., 2001: Sebesta, 1999).  Java and C# had the same 
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problems with this algorithm that it did with Naïve String Matching.  The addition and 

use of the String object proved difficult to parse and more lines of code were needed for 

this process.  They were again close to each other for the same reasons as before, that 

their syntax is almost the same. 
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Figure 8.5 KMP String Matching Static Measurement RCM Results. 

 

8.2.6 Polynomial Addition 

The C programming language fared best with this algorithm posting the lowest 

RCM value.  The factor that gave C the edge was the need for fewer LOC to write the 

program.  C++ was once again the worst having the highest measurement data for all of 

the static metrics.  The language features of C++, C#, and Java proved too complex for 

this simple algorithm (Cormen et al., 2001: Sebesta, 1999).  These languages might have 
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been overkill for a program of this size and complexity.  Java and C#, as all of the 

algorithms before, had similar values when compared to the others for their syntax is 

similar.  C++, while closer to a competitor this time, Visual BASIC, still did not perform 

like the others, posting higher measurements, making this algorithm more complex.  

Again, a class implementation simply for this use of adding polynomials together, might 

have been more than was needed.  It is important to illustrate, however, since C++ is so 

often used.  Perhaps in a larger piece of software, a simple function for computing this 

process might have been a benefit, but for such a small scope, it was not. 
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Figure 8.6 Polynomial Addition Static Measurement RCM Results. 

 

8.2.7 Gaussian Elimination 

The results for this algorithm were as expected.  For the first time, C++ was not 

fifth in the list for an algorithm.  Visual BASIC was the most complex with the highest 

RCM value.  This makes sense, as Visual BASIC was not designed for this kind of 

processing.  It had the highest LOC and V(g) measurements.  The leader for this 
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algorithm was C with its simple structure, language constructs, and small values for the 

LOC measurements.  This makes sense since C was designed for scientific programming, 

and while this is not scientific software, the calculations done in this algorithm might be 

compared with software that uses large amounts of mathematics.  Close again were C# 

and Java, second and third respectively, and they were once again close for the reasons as 

stated above for all of the algorithms thus far.  C++ was fourth, not last this time, but 

again, the way it handles its class of objects implementation proves to cause higher LOC 

and V(g) measurements. 
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Figure 8.7 Gaussian Elimination Static Measurement RCM Results. 

 

8.2.8 Minimum and Maximum 

For this algorithm, the C implementation produced the least complex source code, 

followed very closely by C#.  Since the algorithm used to find the minimum and 

maximum values in a given array was simple (Cormen et al., 2001), the features of 
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object-oriented programming may not have been necessary (Cormen et al., 2001: Sebesta, 

1999).  C++ was the most complex and its biggest problem was in high measurement 

values.  For the first time, Visual BASIC has fallen further behind as it had high LOC 

counts.  The Visual BASIC implementation required higher LOC than all of the other 

implementations (except C++).  An odd result in this algorithm is that Java and C# are 

not as close as in the algorithms prior.  There is a difference of over two RCM points, as 

C# was less complex than Java.  This algorithm, while not complex and with simple array 

processing, produced different results as compared with the other algorithms. 
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Figure 8.8 Minimum and Maximum Static Measurement RCM Results. 

 

8.2.9 Random Selection 

In this algorithm, Java was the language that produced the least complex solution.  

The highest RCM value was posted by C++ with its object implementation structure 
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again the culprit for its high complexity.  Second was C#, again with a value close to Java 

for their syntax styles are similar.  C was third, with its low LOC and V(g) counts when 

compared to Visual BASIC and C++.  Visual BASIC was fourth with an RCM value of 

about 55.  Visual BASIC had the expected results, as the use of recursion tends to be 

more complex.  Rather than an explicit loop, this technique provides an implicit loop that 

can be hard to parse in a language with the design structure as Visual BASIC (Cormen et 

al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999). 
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Figure 8.9 Random Selection Static Measurement RCM Results. 

 

8.3 Evaluation of Results 

Since the static measurements defined for this study are designed to measure the 

complexity on the source code itself for each implementation, it is important to discuss a 
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few trends.  Since C is not an object-oriented language, some of the complexities of class 

definitions are removed, and as a result the C programs require fewer LOC to complete 

an implementation of each of these algorithms.  Visual BASIC, as has been discussed, 

was designed to be a simple language and for the most part, it has achieved this goal as 

often enough its V(g) was small and so were its LOC measurements (Sebesta, 1999).  

One thing to note, however, is that Visual BASIC’s results were a bit of a surprise.  For 

some of the more complex algorithms, it did well as far as not being complex, going 

against what is expected based on its design (Pratt & Zelkowitz, 2001: Sebesta, 1999). 

C++ was the worst performing language for each algorithm.  In every case the 

C++ programs required more LOC and in most cases had a higher V(g).  C++ class 

definitions are typically written into a header file and these classes can be reused as 

libraries in the future.  The implementations of these class definitions are usually found in 

corresponding source files.  In class definitions, additional lines of code are needed as the 

function prototypes are declared in the header, and then written again in the 

implementation file.  Source code then typically looks like the following in the 

implementation file: 

 

ReturnType ClassName :: MethodName () { … } 

 

This line is repeated in the header file where it is declared.  C++ is also different in that 

class definitions are done externally from the main running program.  C# and Java main 

entry points are always as part of class definitions, so scope operators and additional 

declarations are not always necessary (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Also, 
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with this basic feature of both Java and C#, fewer lines of code are required to declare 

and implement a class and its members. 

One interesting fact about the measurements is that the C and C++ Compiler 

Directives metric was variable, while the other languages each had a standard value.  C 

and C++ require additional headers since the libraries that are coupled with the language 

are separated into logical parts.  For example, there are libraries that define input and 

output, higher-level mathematical functions, and many others.  For all of the other 

languages, one or two imported libraries gave to the compiler everything it needed.  As 

will be seen in Chapter 9, where dynamic measurement results are discussed, this will 

have interesting effects on memory management. 

Another interesting trend that can be observed is that both the C# and Java RCM 

values were often very close to one another.  As has been stated by Microsoft, the design 

of C# was intended to match the syntax of Java with the power of C++ (Petzold, 2001).  

As a result, the programs look almost identical and tend to use the same control 

constructs and data structures.  In almost all cases, the Java and C# measurements vary 

from each other only slightly which is the direct reason that the RCM values for each are, 

in most cases, very close. 

 

8.4 Conclusions 

Static metrics give developers a more functional understanding of how difficult 

programs are to implement.  What is more important, however, is what can be learned 

from the results (Munson, 2003).  Some languages will be more complex than others, 

forcing developers to make educated decisions about the tools that will be used in a 
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software life cycle.  From the static measurement results and the trends presented here, 

developers will be able to gain better understanding of programming language semantics 

that can be applied to projects in the future.  All static measurement results and analysis 

documents may be found in the appendix. 
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CHAPTER IX 

DYNAMIC MEASUREMENT ANALYSIS 

9.1 Introduction 

The second part of the measurement analysis is the study of the dynamic metrics 

that have been obtained on all of the programs written for this study.  As has been 

discussed, the dynamic measurements refer to the actual performance of the programs 

rather than the complexity of the source code (Munson, 2003).  Here the speed, 

efficiency, and memory management of each language can be seen through the 

measurements of each algorithm program.  With this information, developers will be able 

to best understand how programs will behave under specific language environments.  The 

two principal components singled out are the qualitative and quantitative variations. 

After Principal Components Analysis was performed on each algorithm’s 

measurements, the results that were found tended to be consistent with the language 

descriptions in Chapter 4.  In most cases, each language performed as expected with the 

exception of Visual BASIC, which had the most variable measurement data.  This 

affected the outcome of the Principal Components Analysis process to some degree as it 

introduced some new sources of variation.  Understanding this source of variation will be 

the most important factor in making sense of the raw data.  All raw measurement results 

can be found in Appendix B. 
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9.2 Individual Algorithm Results 

9.2.1 Linear Search 

The C# implementation of Liner Search was the best performer over all.  It was 

strong in the areas of declared routines, routine calls, and routines executed.  Also, the 

run-times were better here than with the other programs.  The C program had the second 

highest RCM value.  Its strengths lied in memory size, routines executed, and total 

objects created.  Visual BASIC was next and had some interesting results.  While 

performing better in some areas than the other languages, its memory size became a 

weakness since this measurement value was the second highest.  Also, execution times 

for Visual BASIC were among the highest.  C++ was fourth and had some weak areas.  

The C++ implementation produced high measurements in the areas of total routines 

defined, routines executed, and total routine calls.  Finally, Java was the worst performer 

producing the highest RCM value.  The weakness in Java was found in its large size in 

memory, its slow execution times, and its large number of objects created.  Each of these 

measurements was highest in the Java implementation. 
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Figure 9.1 Linear Search Dynamic Measurement RCM Results. 

9.2.2 Bubblesort 

For the second time the C# implementation was the best performer, posting an 

RCM value of under 40.  The implementation’s strongest areas were found in objects 

created, executions times, and the metrics concerning routines.  It was weak, however, in 

memory size.  The second best performer was the C implementation with strengths in 

memory size, objects created, and execution times.  C# and C were separated only by a 

point in their RCM values.  Third in this algorithm was C++, which had strengths in 

objects created, execution times, and routines executed when compared to the other 

languages.  It was weak, however, in memory size.  Java was next although it was weak 

in many areas.  The memory size was large, it had slow execution times, and the total 

routine calls were the highest.  Visual BASIC was this time the worst performer with 

large size in memory, executions times and total routine calls.  The main problem area for 

Visual BASIC was its total objects created measurement which was significantly higher 

when compared to the other implementations.  The results for Visual BASIC make sense 
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since the algorithm was not designed for programs with the amount of operations that 

Bubblesort has (Cormen et al., 2001: Sebesta, 1999). 
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Figure 9.2 Bubblesort Dynamic Measurement RCM Results. 

 

9.2.3 Quicksort 

C was, for the first time, the best performing algorithm.  The C implementation 

produced the smallest measurement values for routines executed, objects created, and 

was strong in execution times.  The introduction of recursion may have been the reason 

since this application is often used in systems programming (Cormen et al., 2001: Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  C# was a close second producing the best execution 

time values and a small measurement for the number of routines executed.  Also, the total 

number of objects created was among the smallest.  C++ was third again, producing 

small values for the measurements of execution time and objects created.  C++ was weak, 

however, in the memory size metric.  Visual BASIC was fourth with weaknesses in 

memory size, objects created, and total routine calls.  Quicksort is a complex algorithm 
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and Visual BASIC may not have been well suited for this implementation (Cormen et al., 

2001: Sebesta, 1999).  Java was again last, posting an RCM of over 60.  The main 

weakness for Java once again was in its memory size, where it was the highest.  Also, the 

executions times once again hurt the Java performance.  An interesting result is that the 

Quicksort routine offered in the environment and used in each language did not change 

the results. 
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Figure 9.3 Quicksort Dynamic Measurement RCM Results. 

 

9.2.4 Naïve String Matching 

For Naïve String Matching, C was the best performer.  The C implementation had 

the strongest values in memory size, objects created, and routines executed.  The C# 

implementation was second from C with less than one point difference in the RCM 

values.  C# showed strength in execution times, routines executed, and total routines.  It 

was weak, however, in the objects created measurement.  C++ was third again with 

strong measurements for execution times and objects created.  It had weakness, however, 

in the total number of routine calls.  Java was fourth with a major weakness in its 
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memory size.  Also, since Java needed an additional String object for the data processing, 

higher numbers were found in the total objects created measurement (Sebesta, 1999).  

Visual BASIC was again the worst performer.  It was weak in memory size and was 

worst in execution time.  The algorithm was run a second time in the worst-case (no 

pattern match) and the results did not change, an interesting fact to observe. 
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Figure 9.4 Naïve String Matching Dynamic Measurement RCM Results. 

 

9.2.5 KMP String Matching 

C# produced the best performing implementation for KMP String Matching.  Its 

areas of strength were found in execution times, size in memory, and the measurements 

concerning the numbers of routines involved in the program.  C was second with 

strengths in memory size and objects created.  C was a little weaker for this algorithm 

with respect to execution times.  This may have been caused by not having a specific 

object related to strings, since C uses arrays of characters that must be parsed (Pratt & 
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Zelkowitz, 2001: Sebesta, 1999).  Visual BASIC was third this time, performing well in 

the areas of execution time and total routines.  This was surprising since Visual BASIC 

was not designed for an algorithm with this much complexity (Cormen et al., 2001: 

Sebesta, 1999).  C++ was fourth and tended to be weaker in memory size and execution 

times.  Java was the worst performer producing high measurements in memory size, 

execution time, and total routine calls. 
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Figure 9.5 KMP String Matching Dynamic Measurement RCM Results. 

 

9.2.6 Polynomial Addition 

The C# implementation produced the only RCM value under 40.  C# was once 

again strong in execution time, routines executed, and objects created.  C was second 

with an RCM value only two points higher.  C was strong in memory size, objects 

created, execution times, and routines executed.  Visual BASIC was third with an RCM 
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value over 45.  Although strong in execution time, Visual BASIC was weak in memory 

size and total routine calls.  C++ was fourth with a clear weakness in the total routine 

calls, memory size, and in execution times.  Since Polynomial Addition is a simpler 

mathematic algorithm, C++ may have been too complex (Cormen et al., 2001: Sebesta, 

1999).  Java was once again the worst performer and again the weakness lies in memory 

size, execution times, and the total number of routine calls. 
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Figure 9.6 Polynomial Addition Dynamic Measurement RCM Results. 

 

9.2.7 Gaussian Elimination 

The results for this algorithm were surprising in that Gaussian Elimination is a 

much more complex algorithm than the others in this study (Cormen et al., 2001).  C# 

proved the best performer with fast execution times and strong measurements in objects 
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created, total routines defined, and total routine calls.  C was second, and this makes 

sense since C was developed to be a language for complex use (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  C was strong in memory size, objects created, and execution times but 

was one of the worst in total routine calls.  The most surprising result for this algorithm is 

that Visual BASIC was third.  Visual BASIC was not designed for high-level operations 

such as this and yet had strong values for execution time, memory size, and routines 

executed (Pratt & Zelkowitz, 2001: Sebesta, 1999).  C++ was fourth with respect to this 

algorithm.  This implementation was strong in memory size but weak in most other areas.  

Java was once again the worst performer with extreme weakness in memory size and 

total routines called. 
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Figure 9.7 Gaussian Elimination Dynamic Measurement RCM Results. 
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9.2.8 Minimum and Maximum 

The results were also a little surprising for this algorithm as well.  C# was once 

again the best performer.  While weak in memory size, the execution time was the best 

among the others.  C was again second with strong areas in memory size and total objects 

created.  C again was one of the best in execution times.  Visual BASIC performed well 

considering that this algorithm is intended to be in worst-case time (Cormen et al., 2001).  

The strengths for Visual BASIC lie in execution time and in the number of routines 

executed while running the program.  Java was fourth for this algorithm with weakness 

again in memory size, objects created, and execution times.  The most surprising of all of 

the results for this algorithm was that C++ was the worst performer.  With its diverse 

application, C++ was thought to have performed better given that this algorithm is 

intended for worst-case time analysis (Cormen et al., 2001: Sebesta, 1999).  The major 

weakness in this implementation was in the area of total routine calls.  C++ was the worst 

in this area.  Also, execution time was a factor. 
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Figure 9.8 Minimum and Maximum Dynamic Measurement RCM Results. 

 

9.2.9 Random Selection 

The results for this algorithm were as expected.  Random Selection is complex, in 

worst-case time, and involves recursion (Cormen et al., 2001).  As a result, C# was the 

best performer overall but by just less than one point over C.  C# once again excelled in 

execution time, total routine calls, and memory size.  C was second with memory size its 

greatest strength.  C was a little weaker in this algorithm for execution times, however.  

C++ was third with strengths in memory size, and execution time, but weak in the areas 

of total routine calls, routines executed, and total routines.  Java was fourth with 

weakness in memory size and objects created.  Java performed better in this algorithm for 

the routines executed metric.  The worst performer was Visual BASIC.  While Visual 

BASIC produced the smallest memory size, it was the weakest in almost every area.  Its 

execution times were the worst of any language across all algorithms. 
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Figure 9.9 Random Selection Dynamic Measurement RCM Results. 

 

9.3 Evaluation of Results 

Since the dynamic metrics are a measure of the performance of each program, as 

with the static metrics, it is important to discuss a few trends.  The C and C# 

implementations were always the best performers.  This makes sense since C was 

designed for systems programming, which tends to take many operations that must be 

done in short amounts of time.  In programming operating systems, resource management 

and efficiency were key areas in the C language design (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  C consistently had the best results for memory size and was always 

strong in execution times.  It seems that C performs under its design considerations.  C# 

performed well since it is very closely tied with the Microsoft Windows operating system 
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(Petzold, 2001).  C# might not perform as well when built to compile under other 

environments. 

The three remaining languages were somewhat more variable.  C++, while 

efficient and fast, seemed to always produce high values for the total number of routines 

defined.  This is not surprising since the code written for each algorithm was intended to 

take advantage of the object-oriented features of C++.  The libraries needed to run these 

programs all included data and operations that were not always necessary for each 

program but are available to the programmer.  This is why smaller numbers were found 

in the measurements for routines executed. 

Java, whose developers normally boast of the language’s memory management 

capability, always seemed to fall short in this area (Sebesta, 1999).  The largest values for 

memory size were found using Java.  This may be because garbage collection is found to 

occur after the program terminates and since the profiler takes its memory snapshot at 

peak memory usage levels.  If garbage collection were to be handled more frequently, the 

language may have performed better in this area. 

Visual BASIC had the most variable results for its memory usage.  In many cases 

it was the worst performer, but there were instances where memory usages were small.  

Another highly variable area was in the number of objects created.  The Random 

Selection algorithm produced an odd result in that the total objects created was very large 

while the memory usage was small.  Each object created for this algorithm may not have 

been very large but many still needed to be processed causing execution times to suffer as 

a result.  While Visual BASIC generally did well in the static measurement portion of this 

analysis, clearly the variability found in this language’s implementations were as a result 
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of the poor structure mentioned in Chapter 4 (Sebesta, 1999).  Visual BASIC is not 

strongly typed and therefore memory is created dynamically.  The programmer does not 

have full control over this memory allocation and so unpredictable results tend to occur 

(Sebesta, 1999). 

 

9.4 Conclusions 

Each language seemed to perform as the designers intended.  C and C# were the 

most efficient languages while C++, Java, and Visual BASIC were not.  The designs of 

the latter three development environments centered on code writing ease and data 

structuring rather than on performance (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Again 

the important thing about studying metrics is what can be learned (Munson, 2003).  As 

with the static metrics, with the trends presented here, developers will have a more 

educated outlook on how well languages perform for given programming problems 

allowing for better decisions throughout the software life cycle. 
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CHAPTER X 

METADATA MEASUREMENT ANALYSIS 

10.1 Introduction 

The third and final part of the measurement analysis is on the .NET metadata.  As 

was talked about earlier, the metadata is the .NET Framework’s way of passing 

information from one assembly (executable) to another, even of the different assemblies 

are written in different languages (Petzold, 2001).  The benefit of the .NET environment 

is that pre-written modules may be used as long as they are compatible with other .NET 

programs.  Each program has a set of tables contained within the executable code that 

work like a database.  Each table describes some information that other programs can 

read from and use by making calls to routines, reading and using publicly stored data, or 

declaring instances of objects contained in each program (Petzold, 2001). 

As will be seen in the following sections, each program produced different data 

even though each program was written using the same format.  This is a direct effect of 

the different language constructs that are used (Petzold, 2001: Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  This is very much like using the English language in human speech as a 

communication system.  If the .NET Framework is thought of as its own communication 

system, then it is agreed that there are possibly many ways to say the same thing.  So in a 

way, the different languages that run on the .NET Framework are like the different
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expressions that people can use in the English communication system.  Therefore, all of 

these different uses of the Framework must be converted to a common format that all 

assemblies using the Framework are able to understand.  It is because of this reason that 

different data resulted for each program written for each algorithm. 

 

10.2 Individual Algorithm Results 

10.2.1 Linear Search 

The leader in this algorithm was the implementation written in C#.  This is not 

surprising as the language was designed to work closely with the Windows operating 

system through the use of the .NET Framework (Petzold, 2001).  Second for this 

algorithm was the C implementation.  Despite the object oriented nature of C#, C 

performed well since it is not object oriented.  There is no reason then to provide data 

contained in objects that are never used.  The third performer was Visual BASIC.  With 

this language there are less constructs as, again, it was not designed for complex 

processing (Sebesta, 1999).  Fewer symbols are then needed for the language to do its 

work, and for it to be understood by other languages.  Next was C++, which was slightly 

higher than the other implementations as a result of the way it performs object oriented 

operations.  With the #include notation to import libraries, there are many objects that are 

compiled into the program that are not used.  C does this as well, but looking back at the 

static measurement results, there were always less imported libraries in the C programs 

than used by C++.  Finally, Java performed with the highest RCM value.  This likely is 

caused by the Java virtual machine being compiled into the program (Pratt & Zelkowitz, 
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2001).  Not only is the source code for the program included in the program, but also so 

is the Java virtual machine instruction set, and this must be passed to other programs. 
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Figure 10.1 Linear Search Metatadata Measurement RCM Results. 

 

10.2.2 Bubblesort 

For this algorithm, C# was once again the leader, as again this language is closely 

related to the Windows operating system.  Second again was the C program as it does not 

use object-oriented features and therefore produces less metadata to be passed from one 

program to another.  Third and fourth respectively were C++ and Java.  Higher RCM 

values can be found here because again, C++ uses many more libraries than the other 

languages and these data have to be made available.  Also, more objects tend to be 

created for C++ programs than the others, as can be seen in the dynamic measurement 

data in Chapter 9.  Java has its virtual machine compiled into the program.  Again, this 

causes a need for additional metadata to be created so that other programs can import 

what it needs of the Java virtual machine to execute methods in Java objects.  Finally, 
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Visual BASIC produced the highest RCM value.  Again, Visual BASIC is not meant for 

complex processing, and a Bubblesort has many instructions when compared to other 

faster sorting algorithms (Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).   
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Figure 10.2 Bubblesort Metadata Measurement RCM Results. 

 

10.2.3 Quicksort 

For this algorithm, C was the least complex solution.  With the efficient way in 

which C programs are structured, C seems ideal for Quicksort as it handles recursion 

well.  Second, and for the same reasons as before, C# performed well.  C and C# were 

close in this algorithm separated by less than half an RCM point.  Third for this algorithm 

was C++, performing better as it gains some of the benefits of C, but at a disadvantage 

with the way it handles its object oriented structure.  Fourth for this algorithm was Visual 

BASIC.  This was slightly surprising based on Visual BASIC’s simple design (Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  Recursion is considered a complex process with an 
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implied loop, yet it did better than Java, a language designed for higher-level applications 

(Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).  And finally, Java is fifth 

with the highest RCM value for this algorithm with a result of over sixty.   
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Figure 10.3 Quicksort Metadata Measurement RCM Results. 

 

10.2.4 Naïve String Matching 

A slightly surprising result in this algorithm is that C# was the leader.  By looking 

at the static measurements, it was one of the more complex algorithms with the way it 

handles its string processing.  Second on this list was C, and this does make sense as it 

handles its strings as though they are arrays of characters, not with a separate object with 

perhaps unused properties as in the many of the other languages (Pratt & Zelkowitz, 

2001: Sebesta, 1999).  Third for this algorithm was Visual BASIC, which is not 

unexpected.  Since the algorithm was probably the simplest in the study, producing some 

of the lowest measurements in almost every category, it seems to follow along with the 
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design of Visual BASIC discussed in Chapter 4 (Pratt & Zelkowitz, 2001: Sebesta, 1999).  

Fourth was Java, still hurt by the fact that the Java virtual machine instruction set must be 

compiled into the assembly.  Finally, last was C++.  Even though its string processing is 

like C with its array of character array notation, it produced high measurement as a result 

of the way it handles its class implementation. 
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Figure 10.4 Naïve String Matching Metadata Measurement RCM Results. 

 

10.2.5 KMP String Matching 

First for this algorithm, with the least complex metadata, was C#.  Again, this is 

slightly surprising since it had complex measurements in the other categories.  Because 

C# is so tightly bound to the Windows operating system, it produced less metadata 

(Petzold, 2001).  Second again was C, which again was the result of its simple notation 

for handling strings (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Third again was Visual 

BASIC.  The RCM value for this algorithm was, however, higher than the Naïve String 

Matching value since this is a more complex algorithm.  Visual BASIC again does not 
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always do well when given a complex problem since it is not designed for this (Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  Fourth on the list was again Java, with a much higher 

RCM value, due once again to the virtual machine having to be added to the assembly.  

Finally, C++ was found to be the most complex, as its class implementation continues to 

add to the complexity of code written in that language. 
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Figure 10.5 KMP String Matching Metadata Measurement RCM Results. 

 

10.2.6 Polynomial Addition 

For this algorithm, the leader with the lowest RCM value was C#.  The algorithm 

is not complex, and C# gains much from being tightly bound to the Windows operating 

system (Cormen et al., 2001: Petzold, 2001).  It is this combination of factors that gave 

C# the edge.  Second was Visual BASIC, which makes sense since this algorithm is 

simple, and since this was the intent of Visual BASIC as a language (Pratt & Zelkowitz, 

2001: Sebesta, 1999).  Third was the C language, although not that distant in results from 

Visual BASIC.  Fourth for Polynomial Addition was Java, which continues to show 
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complexity in the fact that it has to compile the virtual machine as part of its programs.  

Last again was C++, which has struggled all throughout this category of measurements. 
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Figure 10.6 Polynomial Addition Metadata Measurement RCM Results. 

 

10.2.7 Gaussian Elimination 

The results for this algorithm were about as expected.  The leader was once again 

C#, gaining its strength from the fact that it is tightly bound to the Windows operating 

system (Petzold, 2001).  Second was the C implementation, which makes sense, as this 

algorithm is the most complex in this study (Cormen et al., 2001).  While not tested in 

this study, it is clear that the systems programming design of C pays off well for a 

complex program with many calculations.  Visual BASIC was third, with its simple code 

structure.  Fourth was Java, and this makes sense since it is a complex algorithm with a 

virtual machine compiled into the program.  Last again was C++, which, as in many of 

the algorithms before, continues to be hurt by the way its class definitions are designed.   
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Figure 10.7 Gaussian Elimination Metadata Measurement RCM Results. 

 

10.2.8 Minimum and Maximum 

This algorithm produced some different results.  First was C#, which again uses 

the Windows operating system closely (Petzold, 2001).  Second this time was Visual 

BASIC.  This is due to its simple structure on a simple algorithm (Cormen et al., 2001: 

Pratt & Zelkowitz, 2001: Sebesta, 1999).  Third this time was C, which is a little 

surprising given that this algorithm is simple and requires nothing complex.  The C 

implementation did well statically and dynamically, however more transferable metadata 

was created for this implementation.  Fourth was Java, which again, as before, is 

continuously hurt by its virtual machine implementation.  Lastly again was C++, which 

needs additional metadata to pass all of the libraries that can be used by programmers.  

This has been a major problem for C++ over the course of this part of the study. 
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Figure 10.8 Minimum and Maximum Metadata Measurement RCM Results. 

 

10.2.9 Random Selection 

The lowest RCM value for this algorithm was posted once again by C#.  Second 

was the C implementation, which makes sense as it did well with the Quicksort 

algorithm, and since both Quicksort and Random Selection are both recursive.  Third was 

Visual BASIC, posting a much higher RCM value for this algorithm than previously.  It 

also posted a slightly higher RCM value for Quicksort.  Recursion can be complex when 

it uses an implied loop rather than an actual loop and because of the way Visual BASIC 

is structured, with its simple notation, recursion caused some complexities to appear in 

the implementation (Cormen et al., 2001: Pratt & Zelkowitz, 2001: Sebesta, 1999).  Java 

was once again fourth, still plagued by its issues involving the virtual machine compiled 

into the program.  Last again was C++, which has been consistent for almost every 

algorithm. 
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Figure 10.9 Random Selection Metadata Measurement RCM Results. 

 

10.3 Evaluation of Results 

Again, as with the static and dynamic measurements, a few trends are important 

to discuss.  The first is that C++ continues to be hurt by all of the libraries it imports and 

by the way it handles its class definitions.  The other languages that use classes of objects 

all use them as part of the main object, where C++ must define one externally.  It is this 

notation, and the fact that it imports libraries that are not always used by programmers, 

which inflates its measurement numbers.  The other language that did not perform well 

was Java, which as was mentioned in the previous sections, gains complexity in the fact 

that its virtual machine must be included into the programs.  This complexity is seen 

despite the fact that C# and Java have similar constructs. 
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The language that continued to show the least complexity was C#.  This 

completely makes sense since C# was designed to work closely with the Windows 

operating system.  Since the operating system does not need much information from this 

language, the only metadata that is created is simply used for passing to other languages 

(Petzold, 2001).  The other languages in this study must create additional objects as a 

result of the fact that they must lower their notations into the .NET Framework format.  

C# does not have to do this as its design already includes .NET features (Petzold, 2001).  

C also performed well as it was typically second or third in almost every algorithm.  It 

gains ground on its competitors because it is not object oriented and it does not import or 

export many unused objects, like C++, a super set of C (Pratt & Zelkowitz, 2001: 

Sebesta, 1999). 

The language that was variable, once again, was Visual BASIC.  In simpler 

algorithms, Visual BASIC did well, keeping true to its designers’ intent (Sebesta, 1999).  

It did not perform as well when compared to the other languages when presented with a 

complex algorithm since Visual BASIC was not designed for serious programming (Pratt 

& Zelkowitz, 2001).  It uses simple structures, causing the need for less metadata to be 

passed from one program to another, but uses large amounts of metadata in complex 

algorithms since it must create many more of its simple structures to complete the same 

tasks as the other languages. 

 

10.4 Conclusions 

After seeing the “inside” of a .NET assembly, one can now see exactly how the 

executable programs themselves are created.  Each program produced what it needed in 
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order for other programs written on top of the .NET Framework to understand and gain 

access to its data structures and function prototypes.  Some languages needed more of 

this data, others needed less, but this information is valuable in understanding how .NET 

programs function against different types of algorithms.  
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CHAPTER XI 

OVERALL MEASUREMENT ANALYSIS 

11.1 Introduction 

In order for this study to be complete, a look at the overall analysis of each 

algorithm must be present.  Each language has its positives and negatives, and these were 

seen in the previous three chapters.  A language might perform better in one category of 

measurement data than in another.  When all of these positives and negatives are placed 

into a single process, a clear picture of which languages perform better can be seen.  

Using this overall view, a developer can see how well languages perform given a specific 

programming problem.   

All of the measurement data taken previously was used in this portion of the 

study.  The RCM values calculated take into account the static, dynamic, and metadata 

measurement values.  Each RCM value represents a whole view of each language’s 

performance with respect to each algorithm.  All of the differences, no matter how small, 

that are found in the measurements will all be a factor in this part of the study.  Now that 

all of the individual pieces have been seen in detail, an overall look will prove useful in 

the definition of how languages will perform given different problems and conditions.
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11.2 Individual Algorithm Results 

11.2.1 Linear Search 

For this algorithm, C# was the leader with an RCM value of nearly 37.  Second 

for Linear Search is the C implementation.  This is a simple algorithm and C did well 

statically and dynamically.  Visual BASIC came in third, which makes sense, since while 

this algorithm may be simple, dynamically Visual BASIC did not perform as well as 

some of the other languages (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Fourth was C++, 

which has an interesting result because both the static and dynamic measurements were 

much higher than the other algorithms, but it performed well enough dynamically that it 

did not fall behind completely.  Java was last for this algorithm, having the only RCM 

value over 60.  Java was also interesting in that it performed well in the static category, 

but the dynamic and metadata measurements were not as good as the other languages, 

causing Java to fall behind to fifth. 
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Figure 11.1 Linear Search Overall Measurement RCM Results. 
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11.2.2 Bubblesort 

The implementation that performed with the lowest RCM value was C.  

Bubblesort is considered a simple sorting algorithm and as a result, C had lower 

measurement values for each of the three categories (Cormen et al., 2001).  Second was 

C#, showing once again that the language takes many benefits from being tightly bound 

to the Windows operating system (Petzold, 2001).  Third for this algorithm was the Java 

implementation.  Java performed well statically and dynamically but fell behind in the 

metadata category, causing the language to fall slightly behind.  Fourth was Visual 

BASIC, which performed well in the static category but was hurt in the dynamic and 

metadata measurements.  Finally, C++ follows the end of this list giving in to its static 

performance.  While C++ performed well in the dynamic measurements, the metadata 

and static measurements proved to be its main areas of complexity. 
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Figure 11.2 Bubblesort Overall Measurement RCM Results. 
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11.2.3 Quicksort 

The least complex solution for this algorithm was written in C#.  In this 

algorithm, C# produced small numbers for all of the categories in this study.  Second was 

C, which did well in all of the categories for both recursive algorithms.  The remaining 

three languages all produced much higher numbers for Quicksort and were close to each 

other by comparison to C and C#.  Third was Java, which produced higher measurements 

in the metadata and dynamic categories.  Visual BASIC scored fourth, as Quicksort is a 

more complex algorithm (Cormen et al., 2001).  Visual BASIC was not designed for this 

type of processing and, while it performed well in the static measurement category, it did 

not, however, perform well in the others (Pratt & Zelkowitz, 2001: Sebesta, 1999).  C++ 

was once again fifth, showing that there was great complexity in its static and metadata 

measurements.  It did perform well dynamically, but the other categories had 

measurements too high for it to compete with the other languages. 
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Figure 11.3 Quicksort Overall Measurement RCM Results. 
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11.2.4 Naïve String Matching 

This algorithm produced interesting results.  C was the leader for this algorithm as 

it gains benefit by the way it handles strings as an array of characters rather than as a 

separate class of objects.  It is quick to parse those arrays and it can handle string 

processing quickly (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Second was C#, which is 

interesting because it uses a separate string object with its own set of functions and data 

members, but the language fared so well in the dynamic and metadata categories that it 

came out ahead of the others.  Third for this algorithm was Visual BASIC, which scored 

much higher than the first two languages as a result of its high dynamic measurements.  

The language produced sound static numbers, but did not fare well in the other 

categories.  Fourth was Java, also posting a high RCM number.  This was due to a 

combination of things.  These include the virtual machine structure of Java, its higher 

dynamic measurements, and its lack of performance statically.  Last was C++, which, 

while exactly like C in string processing, its static and metadata numbers brought it to 

fifth for the Naïve String Matching algorithm. 
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Figure 11.4 Naïve String Matching Overall Measurement RCM Results. 
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11.2.5 KMP String Matching 

The KMP String Matching algorithm had almost the same results as its less 

complex counterpart.  C# was the leader for this algorithm as it out performed C 

dynamically due to its closeness with the Windows operating system.  C was second on 

the list again, taking strength from its array of characters notation for strings.  Third was 

Visual BASIC, actually performing better for this algorithm, which is a little strange 

given Visual BASIC’s design for simple programming (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  Fourth again was Java, taking on the same disadvantages as it did 

previously, creating complexities from its virtual machine implementation and its 

metadata measurements being higher than most of the other languages.  Dynamically 

Java also did not perform well posting higher run-times than many of the other 

languages.  Finally C++ comes in fifth for this algorithm, taking again disadvantages in 

the metadata and static measurements.  The language performed well dynamically but not 

enough to out weigh the other categories, forcing it to fifth for this algorithm. 
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Figure 11.5 KMP String Matching Overall Measurement RCM Results. 
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11.2.6 Polynomial Addition 

This algorithm is one of the simplest in the study, and the languages seemed to 

perform to their design considerations (Petzold, 2001: Pratt & Zelkowitz, 2001: Sebesta, 

1999).  The leader for this algorithm was once again C#, gaining its strengths once again 

from its closeness with the Windows operating system.  Also, it performed well in each 

of the three categories and better than its competitors.  C was second, using its design for 

systems programming to perform the calculations quickly when run.  Also, C performed 

well in the metadata and static categories of measurement.  Third, and not far off from the 

first two, was Visual BASIC, using its simple design to perform well statically and 

dynamically.  It was hurt slightly in the metadata category forcing it behind the first two 

languages.  Fourth was C++, gaining some of its strength in its dynamic measurements, 

but it found disadvantages in the metadata and static categories of measurement.  Java 

falls fifth for this algorithm, plagued by its lesser performance in the dynamic category.  

The slow run-times and high amount of memory used caused Java to fall behind the 

others. 
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PolyAdd Overall
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Figure 11.6 Polynomial Addition Overall Measurement RCM Results. 

 

11.2.7 Gaussian Elimination 

This algorithm is probably the most complex in this study (Cormen et al., 2001).  

As a result of this complexity, it seems that the languages performed as expected based 

on the design considerations discussed in Chapter 4.  C# was again the leader for this 

algorithm, once again using its features that are tightly bound to the Windows operating 

system.  C proved that its system programming design could calculate numbers quickly 

and with small memory usage, giving strength to its dynamic measurements.  Third was 

Visual BASIC, which falls behind the others due to its lack of design for such a highly 

complex algorithm (Pratt & Zelkowitz, 2001: Sebesta, 1999).  Fourth for this algorithm 

was C++, which struggled mainly in the static and metadata areas.  It did, however, 

perform well dynamically but not enough to carry the rest of the weight.  Last again was 

Java, falling behind in all three categories, but mainly in the dynamic measurements.  Its 

run-times were slower than the rest and it used larger amounts of memory. 
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Figure 11.7 Gaussian Elimination Overall Measurement RCM Results.

 

11.2.8 Minimum and Maximum 

This algorithm also produced the expected results.  C# was once again first and 

continues to draw strengths in the metadata and dynamic categories.  C was second, 

performing well dynamically and statically, but the metadata measurements proved 

complex enough to bring it to a higher RCM value than C#.  Third for this algorithm was 

Visual BASIC.  The algorithm is not all that complex but Visual BASIC fell behind in 

the static and dynamic categories forcing it slightly back (Cormen et al., 2001).  Fourth 

was Java, which again struggles in the same areas: the metadata and the dynamic 

measurements.  Last for this algorithm was C++, which struggled in all three areas when 

compared to the other languages.  It had the highest LOC metrics, memory usage, and 

metadata measurements.   
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Min/Max Overall
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Figure 11.8 Minimum and Maximum Overall Measurement RCM Results. 

 

11.2.9 Random Selection 

For this algorithm, C# was the leader with the lowest RCM value.  It once again 

out performed the other languages in all three categories.  C was second, as it also did 

well with Quicksort.  Both Random Selection and Quicksort are recursive and this can 

tend to be a complex process, but C did better in almost all areas than most of the other 

languages (Cormen et al., 2001).  Third for this algorithm was actually Java, which is a 

little surprising, given that for simpler algorithms it did not perform as well.  Java still 

struggled however in the dynamic and metadata categories.  The language that came in 

fourth for Random Selection was Visual BASIC, which struggled in all three areas.  This 

language also was behind some of the others in the Quicksort algorithm.  Last again was 

C++, which found its main complexity factor in the metadata measurement section of this 

study. 
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Random Select Overall
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Figure 11.9 Random Selection Overall Measurement RCM Results. 

 

11.3 Evaluation of Results 

As with the other measurement chapters, a few trends are important to highlight.  

For every algorithm either C or C# were the least complex solutions.  These languages 

have drawn strength from very different language features.   C was designed for systems 

programming and for scientific applications (Pratt & Zelkowitz, 2001: Sebesta, 1999).  It 

is important to highlight because these two important programming areas use languages 

that must perform quickly and with low memory usages (Pratt & Zelkowitz, 2001: 

Sebesta, 1999).  C# on the other hand was not designed for such purposes but instead 

gains much strength from the Windows operating system (Petzold, 2001).  It was 

designed to be an integral part of the .NET Framework and many of the function calls are 

native to the environment that is used in this study.  As a result, the language uses less 

memory and produces less metadata.  The C# language did not perform as well statically 

but it gained enough ground in the other categories that it produced lower RCM values. 
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The languages that were somewhat more variable and complex were Visual 

BASIC, Java, and C++.  Visual BASIC was probably the most variable of all of the 

languages.  There were cases where it had lower RCM values, and cases where it was 

fifth for a given algorithm.  The variability can be attributed to the fact that Visual 

BASIC was intended to be a teaching language (Sebesta, 1999).  It was not designed for 

large data processing or fast run-times.  In simpler algorithms, however, it works as a 

better language because the simple structure of the language when combined with a 

simple algorithm will produce smaller measurement values for all three categories.  Thus 

not much can be learned from the language, as it is does not have predictable behavior. 

The two most complex languages in the study were C++ and Java.  Java struggled 

again and again due to its virtual machine structure.  The language performed well 

statically, but when the metadata and the dynamic factors are considered, the language 

becomes more complex as a result of the virtual machine being compiled into each 

program.  Java programs produced higher memory values, metadata, and slower run-

times, causing a level of complexity that might be quickly seen by a developer writing 

code under hardware constraints (Pratt & Zelkowitz, 2001: Sebesta, 1999).  The C++ 

language, on the other hand, found problems and complexities in other areas.  While Java 

performed well when considered statically, C++ did not.  In fact, C++ was most complex 

using static measurements than all of the other languages for every algorithm.  Also, C++ 

had much larger metadata measurements than the other languages.  The strength of C++ 

was found in its dynamic measurements as it produced faster run-times and lower 

memory amounts.  Unfortunately for C++, however, the other two categories were so 

complex that it forced C++ in the last position for most of the algorithms in the study.   
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11.4 Conclusions 

In this part of the study, all of the results were based on all measurement values 

taken from the other three categories.  It is now possible to see how each language 

compares when all data is taken into account.  Some languages performed as expected 

given the descriptions in Chapter 4, and others performed with some unexpected results.  

Regardless of the results, a clear view of how each language performs can now be seen.  

The RCM values can be used to describe the fault-prone nature of each program.  This 

does not mean, however, that the programs measured actually have faults.  RCM values 

instead measure the possibility that faults might exist.  The higher the RCM value for a 

given program as compared to the same program written in the other languages, the more 

likely bugs might be found (Munson, 2003: Munson & Khoshgoftaar, 1990).  While this 

might not mean much for small programs such as the ones in this study, it can be a useful 

tool when used on a piece of software with thousands of lines of code.  The following 

table shows a summary of the overall RCM results taken on each language during this 

project. 
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  C  C++  C#  Java  
Visual 
BASIC 

           
Linear Search  42.00631  58.89297  36.67004  62.87749  49.5532 

           
Bubble Sort  38.3864  61.26959  39.1137  51.08201  60.1483 

           
Quick Sort  38.23321  59.36904  37.73008  56.75872  57.90894 

           
Naïve String Match  38.28832  62.22638  38.8535  58.09994  52.53186 

           
KMP String Match  41.20859  62.06487  38.27136  60.85649  47.5987 

           
Polynomial Addition  40.6864  57.48677  39.8126  65.17641  46.83782 

           
Gaussian Elimination  39.39356  57.23655  37.53157  62.27368  53.56464 

           
Minimum / Maximum  41.66479  61.85344  37.39361  60.74776  48.34039 

           
Polynomial Addition  39.78897  59.31335  36.52673  55.27323  59.09772 

 
Table 11.1 Summary of Overall RCM Values. 
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CHAPTER XII 

RESEARCH PRODUCTS AND CONCLUSIONS 

12.1 Lessons Learned 

As was stated in Chapter 1, the motivation for this project was to provide a useful 

tool that developers can use in choosing an implementation language.  By coding several 

different algorithms, it is possible to see how programs written in different languages 

behave and compare to each other.  Now that all of the data has been collected, analyzed, 

and discussed, it is possible to understand the lessons learned from this project.  All of the 

lessons come from the experience of writing code in several different languages, 

maintaining coding style, and taking applicable measurements on each program to see 

exactly how the program behaves. 

The first and most important lesson to be learned is a classical one.  Simply put, 

there is no perfect method for solving software engineering problems and there is no 

perfect development tool for any situation (Munson, 2003).  At the time this experiment 

was designed, it was originally thought that given certain data constructs or processing 

methods (i.e. recursion), certain languages would perform with better measurement data.  

This hypothesis was not studied, however, because there is not a large enough scope for 

such an undertaking.  In order to gain a full understanding of each language and how it 

performs, more than once compiler set must be used in order for this hypothesis to have 
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any validity.  While this was not exactly the case, certain languages did have their 

strengths and weaknesses in certain situations.  For complex algorithms, defined for 

purposes of this project as those more difficult to write, the C, Java, and Visual BASIC 

languages performed well when static measurement was applied.  This makes sense since 

each language was designed to support the production of simple source code (Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  Simple source code, as in Munson’s work and for the 

purposes of this study, produces lower RCM values (Munson & Khoshgoftaar, 1990).  

The C# and C++ implementations, on the other hand, were constructed of source code 

that was more complex when static measurements were applied as in section 5.3 above.  

Dynamically, C#, C, and C++ were the better performers as can be seen from their RCM 

values.  This is mainly because while C has a wide variety of applications, its main 

design focus was for systems programming which requires efficiency of time and 

memory (Pratt & Zelkowitz, 2001).  C# is tightly coupled with the Microsoft Windows 

XP operating system, as has been mentioned previously, and so code was also more 

efficient in terms of run-times and memory (Petzold, 2001).  While it may seem like C++ 

programs are highly complicated when compared to programs written in the other 

languages, its design focused on information hiding and code structure (Sebesta, 1999).  

C++ header files are available for programmers to “take for granted” the workings of 

class objects.  Another main benefit of using C++ is that the language is actually a 

superset of C, and performs well when dynamic measurements are applied. 

In metadata analysis, the clearly least complex implementations, those with the 

smallest RCM values, were written in C# and again this is a result of its design.  As was 

mentioned earlier, C# was designed to work closely with the operating system and 
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therefore many of its basic function calls are native to Windows (Petzold, 2001).  One 

thing that is gained from less metadata is a smaller executable file, which in turn 

produces smaller memory usage.  Of course in today’s computers, memory and space are 

much “cheaper” in both cost and size than in the earlier days of computing, but this is 

significant in that the programs written in C# produce less complex code.  The other 

languages did not fare as well when metadata analysis was applied, C++ being the worst.  

In each C++ program, metadata measurements were much higher when compared to the 

other languages.  C++ uses external libraries for its function calls and must communicate 

with the operating system more indirectly than C#, and therefore, in order for other .NET 

programs to understand its structure, more transferable data is required.  C, Java, and 

Visual BASIC all performed between these two extremes. 

Another important lesson learned in conducting this research is that no one raw 

measurement can fully describe how large or complex a program may be (Munson, 

2003).  Groups of metrics that measure different aspects of software must be combined in 

order to gain a full understanding of how a program performs (Wohlin, 1996).  After the 

measurement data were collected, it was believed that certain programs would have 

higher or lower RCM values than they actually did.  This is why it is important to 

produce as many valid and reproducible measurements as possible in which meaning and 

understanding of the program can be gained. 
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12.2 Software Development Questions and Answer Guidelines 

Listed here are common questions developers may ask when choosing a language 

to use for a given programming problem.  Answers to these questions may vary based on 

the developer’s priorities and so certain programming languages may be more logical 

choices than others.  The question is listed first followed by suggested answers.  Based on 

these answers, specific programming languages are recommended for the specific 

problem based on the measurement analysis conducted in this project. 

 

12.2.1 Questions Regarding Static Software Attributes 

In simple, slower algorithms, which factor is the most important? 

If the answer to this question is readability, then there are two languages that 

would best fit this requirement.  The first was C with its low static RCM values, found in 

Chapter 8.  C had the lowest RCM value for almost every algorithm as applied to static 

measurements.  The second language, Visual BASIC, was designed to be easily used by 

non-technical students and with its English-like structure it can be easily read and 

understood (Petzold, 2001: Sebesta, 1999).  Visual BASIC also did well in RCM values 

and raw measurements, but this might not always be the deciding factor for a readability 

requirement.  From the static RCM values, it can be concluded that these programs had 

fewer lines of code and cyclomatic complexity, therefore allowing for easier 

understanding of the contents within each C and Visual BASIC program. 

For simple algorithms, if the language that produces the simplest program is 

desired, languages that are likely choices tend to be C, C#, and Java.  C, meant for more 

complex algorithms and systems programming, also does well in simple algorithms with 
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its linear structure (Pratt & Zelkowitz, 2001: Sebesta, 1999).  In these simple algorithms, 

C produced smaller lines of code, fewer compiler directives, and had smaller RCM 

values.  C# and Java, while not the simplest overall, use a code structure that includes 

data, routines, and the entry point all coupled in the same object (Petzold, 2001: Pratt & 

Zelkowitz, 2001: Sebesta, 1999).  This allows for fewer lines of code and fewer compiler 

directives.  Visual BASIC can also be included in this list, as its RCM values were 

typically very low for static attributes.  Overall Visual BASIC performed well in all 

areas.  It is both useful for code readability and code simplicity given a simpler 

programming task. 

 

In more complex algorithms, which factor is the most important? 

If readability is the answer to this question, C++, C#, and Java stand out as the 

leading choices.  C++ again uses information hiding and class definitions to reduce the 

amount of code to be read and understood (Pratt & Zelkowitz, 2001: Sebesta, 1999).  In 

the case of both C# and Java, since routines, data, and program entry point can all be 

contained within a single class, it brings down the complexity measurements of more 

complex algorithms.  Developers do not have to traverse large quantities of code to 

understand code flow and organization (Petzold, 2001: Sebesta, 1999).  With this type of 

language structure, fewer lines of code and compiler directives are needed to conduct 

complex programming tasks. Visual BASIC would most likely not be the best candidate 

if code readability were the primary factor in choosing a language for a more complex 

algorithm.  While the language uses simple constructs, these constructs can tend to be 

difficult to put together for larger programs.  The Visual BASIC Gaussian Elimination 
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program is a good example.  Since this was a more complex algorithm, Visual BASIC 

struggled in compiler directives, lines of code, and the total RCM value gained from 

Principal Components Analysis (Cormen et al., 2001: Sebesta, 1999). 

If overall code simplicity is the factor desired by developers for more complex 

algorithms, then C is the perfect choice.  C was designed for algorithms such as these, 

and with its linear structure, programs in this language tend to have fewer lines of code 

and compiler directives, bringing down the RCM values (Pratt & Zelkowitz, 2001).  C, in 

almost every case for static software attributes, had the smallest RCM value for almost 

every algorithm.  Its versatile and adaptable design makes it very capable of being used 

for the most complex of algorithms. 

 

12.2.2 Questions Regarding Dynamic Software Attributes 

In simple, slower algorithms, which factor is the most important? 

If run-times efficiency is the main requirement for choosing a language, then the 

clear leader is the C# programming language.  Since C# was designed to be tightly 

coupled with the Microsoft Windows operating system, its function calls interface with 

the operating system itself producing much faster run-times (Petzold, 2001).  In most 

cases, the run-times for C# were faster than the other programs in each algorithm.  A 

close second would be C, whose very design was intended to produce programs with 

faster run-times for use in systems programming (Pratt & Zelkowitz, 2001: Sebesta, 

1999).  For slower algorithms, a third choice would be Visual BASIC.  Since this 

language was designed to take on smaller projects, Visual BASIC does well in this 
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category.  Its run-times were among the fastest.  The language, however, did not perform 

as well for more complex algorithms as this goes against its design (Sebesta, 1999).   

If developers feel that memory management is a key requirement over run-times, 

then C would be the best choice.  C had for almost every algorithm the smallest memory 

usage.  Second on this list would again be C# which interfaces well with the Microsoft 

Windows operating system (Petzold, 2001).  Visual BASIC was the most variable in this 

area.  While sometimes the leader, most often Visual BASIC was last in memory usage 

and tended to yield unreliable results.  The most surprising of all was how Java 

performed in this area.  While Sun Microsystems, the creators of the Java platform, 

boasts of how well programs in their language perform in terms of memory management, 

Java did the worst in this category.  While Java does handle all creation and deletion of 

pointers for the programmer, the garbage collection happens at the end of the run, causing 

the snapshot of memory to yield a high value (Pratt & Zelkowitz, 2001: Sebesta, 1999). 

Finally, if the answer to this question is in regards to the number of routines that 

the program must define and execute, the most consistent for simpler algorithms was the 

C language.  Its total routines, routines executed, and total routine calls were most often 

among the smallest.  C++ actually tends to do well in this category.  While the total 

routines defined are slightly high, its routines executed measurement was lower.  C# also 

does well in this category, producing strong measurements in all three routine counting 

metrics.  Visual BASIC, however, as with its memory management, was erratic and could 

not yield reliable results.  While the language sometimes produces smaller numbers for 

the routine measurements, often times it was the other extreme, making Visual BASIC 

difficult to predict. 
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In more complex algorithms, which factor is the most important? 

If run-time efficiency is again the main requirement for choosing an 

implementation language, then for complex algorithms the best choice is C#.  C#, for 

both the simple and the complex programming tasks, showed the strongest measurement 

values for run-time speed in seconds.  C was a close competitor in most cases and so this 

language would also be a good candidate for an implementation language based on a run-

time efficiency requirement. Lastly, C++ has decent measurements in this area.  Since 

C++ is compiled in a similar manner to C (since C++ is a super set of C it tends to use the 

same compiler), it is understandable why this is true (Pratt & Zelkowitz, 2001: Sebesta, 

1999).  If run-time efficiency is a major factor in choosing a language, the Java language 

would most likely not be a candidate worth considering.  This language for almost every 

complex algorithm performed the worst in this area. 

If memory management is the key factor for a complex algorithm, C and C# 

would be the likely candidates.  C had the most consistent use of memory in the complex 

algorithms used in this study.  Each program run in C produced memory snapshots less 

then 10 Kilobytes.  C#, while not nearly the performer C was in this regard, had the 

second strongest measurements in this area.  While Visual BASIC often performed well 

in the memory management category, the results were unreliable.  Visual BASIC would 

be a better choice for simpler algorithms.  Once again, the biggest surprise is how Java 

performed.  Java, boasting of clean memory usage and automatic garbage collection, 

produced memory snapshots much larger than its competitors. 
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Lastly, if routine definition and execution were the major factor in choosing a 

language, the clear choice for complex algorithms would be C#.  While the total routine 

calls was on occasion high, its coupling with the Windows operating system allowed for 

fewer routines to be defined and used in the various runs of the C# programs (Petzold, 

2001).  C would be a good second choice.  While its total routine calls is lower then C#, 

more routines are defined than in the C# programs.  This leads to declarations in memory 

that are not always necessary.  A surprising result in this category is how well Visual 

BASIC performed.  For simpler algorithms, Visual BASIC did not perform well, but for 

the more complex, results were relatively consistent. 

 

12.2.3 Questions Regarding Metadata Complexity 

In simpler, slower algorithms, what is the most important factor? 

If the program space is the most important of design factors, then C# is the clear 

choice.  The language had the smallest RCM value for every algorithm in the study.  It is 

clear that C#’s design improves the overall performance of the way .NET programs can 

perform.  A second choice would be C as it also had simple data that was needed in order 

for another program to understand its structure. 

If space is not the issue, and again factors like readability are the issue at hand, 

then languages like C++, Java, and Visual BASIC are the answers to this question.  These 

three languages had issues in the metadata category but again, efficiency of time and 

space were not the design considerations for these languages.  Of course, this is a matter 

of programmer taste and the development model. 
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If space and time were not the issues when developing software, what languages would 

be the preferred choice? 

As we have seen, it is clear that C and C# are the leaders in this study with respect 

to the metadata measurements.  But if space and time are not the issues, and factors like 

reliability and readability are more important for the project at hand, then C++ is the key 

answer.  Again, it uses the concept of information hiding, allowing developers to let the 

objects do the work for them.  Visual BASIC would again be near the top of the list as it 

has its simple, English-like structure that has given non-technical students the chance to 

learn programming (Pratt & Zelkowitz, 2001: Sebesta, 1999).  The language today is 

fully functional, but it retains its traditional approach of being simple to read and write. 

 

12.2.4 Language Recommendations Based On Overall Performance 

Based on the static, dynamic, and .NET metadata measurements, and the PCA 

that was performed, the overall best performers were C# and C.  In almost every case, 

either one or the other had the lowest RCM values for each algorithm in the study.  In 

many cases, the two languages performed almost equally.  The third best performer 

among the five languages was Java.  While Java performed very well statically, it did not 

perform as well dynamically or in the metadata measurements.  Fourth was Visual 

BASIC, which proved that simple language structure could improve complexity scores in 

some areas.  Finally C++ would be last for a language recommendation but it must be 

pointed out that this is simply based on the measurements analyzed.  C++ has language 

features that allow developers to have easier organization of source code combined with 

its object-oriented features. It has been made clear that language does have a factor in 
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algorithm performance, and that even with a common platform and coding style, these 

difference make themselves visible when measurements are applied.  Illustrating these 

differences was the final goal of this research.

 

12.3 Further Research 

Further writings on this study could include comparing languages across 

platforms using this study’s same approach.  Perhaps a developer could compare the 

RCM scores obtained in a Unix environment to those obtained here in the Microsoft 

environment and see how each language behaves differently.  Another direction that this 

study could take is to include scripting languages such as Perl, Tcl, etc.  Since these 

languages are interpreted and not compiled, it might introduce some interesting results 

when measurements are applied dynamically.  Some studies have already been done 

comparing scripting languages, but as was mentioned earlier, this was not done on a 

common platform (Prechelt, 2005). 

 

12.4 General Conclusions 

The goal of all the work performed in this study is to give software engineers an 

understanding of how languages perform when applied to classical algorithms and 

measurement techniques.  The results in this study are based only on the measurements 

defined in Chapter 6.  Also, the results of this study are only valid when used in the 

Microsoft .NET environment and might not have the same behaviors when used 

elsewhere.  If programmers feel that a language that is easier to read and write would be a 

better fit for the problem at hand, then another approach to deciding the language would 
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be necessary.  This research only looks at where complexities in programming languages 

exist and what developers need to think about in that regard.  Sadly, measurement on 

source code tends to happen very late in the software life cycle (Munson, 2003).  It is 

hoped that from the results presented in this study, developers will have an understanding 

of how C, C++, C#, Java, and Visual BASIC will perform before used.
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APPENDIX A 

SOURCE CODE 

A.1 Linear Search 
 

 
A.1.1 LinearSearchInC.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
int LSearch (int L[], int n, int x, int index) 
{ 
 int Index = index; 
 
 while (Index <= n && L[Index] != x) 
  Index = Index + 1; 
 
 if (Index > n) 
  Index = 0; 
 
 return Index; 
} 
 
int main (void) 
{ 
 int x = 0; 
 int n = 100; 
 int index = 0; 
 int L[100]; 
 
 srand((unsigned int) time((time_t *) NULL)); 
  
 for (int i = 0; i < 100; i++) 
  L[i] = (rand() % 100); 
 
 x = (rand() % 100);
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 index = LSearch(L, n, x, index); 
 
 if (index == 0) 
  printf("%d was not found in L.", x); 
 else 
  printf("%d was found at index %d.", x, index); 
 
 for (int i = 0; i < 100; i++) 
  L[i] = 0; 
 
 index = 0; 
 x = 0; 
 
 return 0; 
} 
 
A.1.2 LinearSearchInCPP.cpp 
 
#include <iostream> 
#include "LinearSearchClass.h" 
 
using namespace std; 
 
int main (void) 
{ 
 LinearSearch *linearsearch = new LinearSearch; 
 int index = 0; 
 
 index = linearsearch -> DoLinearSearch(); 
 
 if (index == 0) 
  cout << linearsearch -> GetX() << " not found in L." << endl; 
 else 
  cout << linearsearch -> GetX() << " found at index " << index << "." << 
endl; 
 
 delete linearsearch; 
 index = 0; 
 
 return 0; 
} 
 
A.1.3 LinearSearchClass.h 
 
class LinearSearch 
{ 
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 public: 
  LinearSearch (void); 
  ~LinearSearch (void); 
 
  int DoLinearSearch (void); 
  int GetX (void); 
 
 private: 
  int x; 
  int n; 
  int index; 
  int L[100]; 
}; 
 
A.1.4 LinearSearchClass.cpp 
 
#include <stdlib.h> 
#include <time.h> 
 
#include "LinearSearchClass.h" 
 
LinearSearch :: LinearSearch (void) 
{ 
 srand ((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
  L[i] = (rand() % 100); 
 
 x = (rand() % 100); 
 
 index = 0; 
 n = 100; 
} 
 
LinearSearch :: ~LinearSearch (void) 
{ 
 for (int i = 0; i < 100; i++) 
  L[i] = 0; 
 
 index = 0; 
 x = 0; 
 n = 0; 
} 
 
int LinearSearch :: DoLinearSearch (void) 
{ 
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 while (index <= n && L[index] != x) 
  index = index + 1; 
 
 if (index > n) 
  index = 0; 
 
 return index; 
} 
 
int LinearSearch :: GetX (void) 
{ 
 return x; 
} 
 
A.1.5 LinearSearchInCS.cs 
 
using System; 
 
namespace LinearSearchInCS 
{ 
 public class LinearSearchInCS 
 { 
  private int x; 
  private int n; 
  private int index; 
  private int[] L = new int [100]; 
   
  public LinearSearchInCS() 
  { 
   x = 0; 
   n = 100; 
   index = 0; 
 
   Random r = new Random(); 
 
   for (int i = 0; i < 100; i++) 
    L[i] = r.Next(0, 100); 
    
   x = r.Next(0, 100); 
  } 
 
  private void DoLinearSearch () 
  { 
   while (index < n && L[index] != x) 
    index = index + 1; 
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   if (index > n) 
    index = 0; 
  } 
  
  public static void Main () 
  { 
   LinearSearchInCS lsearch = new LinearSearchInCS(); 
 
   lsearch.DoLinearSearch(); 
 
   if (lsearch.index == 0) 
    Console.WriteLine(lsearch.x + " not found in L."); 
   else 
    Console.WriteLine(lsearch.x + " found at index " + 
lsearch.index + "."); 
  } 
 } 
} 
 
A.1.6 LinearSearchInJava.jsl 
 
import java.util.*; 
 
public class LinearSearchInJava 
{ 
 private int x; 
 private int n; 
 private int index; 
 private int[] L = new int [100]; 
  
 public LinearSearchInJava() 
 { 
  x = 0; 
  n = 100; 
  index = 0; 
 
  Random r = new Random(); 
   
  for (int i = 0; i < 100; i++)   
   L[i] = r.nextInt() % n; 
   
  x = r.nextInt() % n; 
 } 
 
 private void DoLinearSearch () 
 { 
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  while (index < n && L[index] != x) 
   index = index + 1; 
 
  if (index > n) 
   index = 0; 
 } 
  
 public static void main (String args[]) 
 { 
  LinearSearchInJava lsearch = new LinearSearchInJava();  
   
  lsearch.DoLinearSearch(); 
   
  if (lsearch.index == 0) 
   System.out.println(lsearch.x + " not found in L."); 
  else 
   System.out.println(lsearch.x + " found at index " + lsearch.index + 
"."); 
 } 
} 
 
A.1.7 LinearSearchInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class LinearSearchInVB 
    Shared Sub Main() 
        Dim x = 0 
        Dim n = 100 
        Dim index = 0 
        Dim i = 0 
        Dim L(100) As Integer 
 
        Randomize() 
 
        For i = 0 To 99 Step 1 
            L(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        x = Int((100 - 0 + 1) * Rnd()) + 0 
 
        While index < n And L(index) <> x 
            index = index + 1 
        End While 
 



158 

 

 

        If index > n Then 
            index = 0 
        End If 
 
        If index = 0 Then 
            Console.WriteLine("{0} was not found in L.", x) 
        Else 
            Console.WriteLine("{0} was found at index {1}.", x, index) 
        End If 
    End Sub 
End Class 
 
A.2 Bubblesort 
 
 
A.2.1 BubbleSortInC.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
void BubbleSort (int *A, int n) 
{ 
 int temp = 0; 
 bool sorted = false; 
  
 for (int i = 1; i < n; i++) 
 { 
  sorted = true; 
 
  for (int j = 0; j <= n-1-i; j++) 
  { 
   if (A[j] > A[j+1]) 
   { 
    temp = A[j]; 
    A[j] = A[j+1]; 
    A[j+1] = temp; 
    sorted = false; 
   } 
  } 
 
  if (sorted == true) 
   break; 
 } 
} 
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int main (void) 
{ 
 int A[100]; 
 int n = 100; 
  
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
  A[i] = (rand() % 100); 
 
 BubbleSort(A, n); 
 
 printf("Sorted Array is as follows:\n"); 
 
 for (int i = 0; i < 100; i++) 
 { 
  printf("%d\n", A[i]); 
  A[i] = 0; 
 } 
 
 printf("End of Array.\n"); 
 
 return 0; 
} 
 
A.2.2 BubbleSortInCPP.cpp 
 
#include <iostream> 
#include <stdlib.h> 
#include <time.h> 
#include "BubbleSortClass.h" 
 
using namespace std; 
 
int main (void) 
{ 
 BubbleSort *bubblesort = new BubbleSort; 
 int A[100]; 
 int n = 100; 
 
 srand((unsigned int) time((time_t *) NULL)); 
  
 for (int i = 0; i < 100; i++) 
  A[i] = (rand() % 100); 
  
 bubblesort -> DoBubbleSort(A, n); 
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 cout << "Sorted Array:" << endl; 
 
 for (int i = 0; i < 100; i++) 
 { 
  cout << A[i] << endl; 
  A[i] = 0; 
 } 
 
 cout << "End of Array." << endl; 
 
 delete bubblesort; 
 
 return 0; 
} 
 
A.2.3 BubbleSortClass.h 
 
class BubbleSort 
{ 
 public: 
  BubbleSort (void); 
  ~BubbleSort (void); 
 
  void DoBubbleSort (int *A, int n); 
 
 private: 
  bool sorted; 
  int temp; 
}; 
 
A.2.4 BubbleSortClass.cpp 
 
#include "BubbleSortClass.h" 
 
BubbleSort :: BubbleSort (void) 
{ 
 sorted = false; 
 temp = 0; 
} 
 
BubbleSort :: ~BubbleSort (void) 
{ 
 sorted = false; 
 temp = 0; 
} 
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void BubbleSort :: DoBubbleSort (int *A, int n) 
{ 
    for (int i = 1; i < n; i++) 
 { 
  sorted = true; 
 
  for (int j = 0; j <= n-1-i; j++) 
  { 
   if (A[j] > A[j+1]) 
   { 
    temp = A[j]; 
    A[j] = A[j+1]; 
    A[j+1] = temp; 
    sorted = false; 
   } 
  } 
 
  if (sorted == true) 
   break; 
 } 
} 
 
A.2.5 BubbleSortInCS.cs 
 
using System; 
 
namespace BubbleSortInCS 
{ 
 public class BubbleSortInCS 
 { 
  private int n; 
  private int temp; 
  private int[] A = new int [100]; 
  private bool sorted; 
   
  public BubbleSortInCS() 
  { 
   n = 100; 
   temp = 0; 
   sorted = false; 
 
   Random r = new Random(); 
 
   for (int i = 0; i < 100; i++) 
    A[i] = r.Next() % 100; 
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  } 
 
  private void DoBubbeSort() 
  { 
   for (int i = 1; i < n; i++) 
   { 
    sorted = true; 
 
    for (int j = 0; j <= n-1-i; j++) 
    { 
     if (A[j] > A[j+1]) 
     { 
      temp = A[j]; 
      A[j] = A[j+1]; 
      A[j+1] = temp; 
      sorted = false; 
     } 
    } 
 
    if (sorted == true) 
     break; 
   } 
  } 
 
  public static void Main() 
  { 
   BubbleSortInCS bsort = new BubbleSortInCS(); 
 
   bsort.DoBubbeSort(); 
 
   Console.WriteLine("Sorted Array as follows:"); 
 
   for (int i = 0; i < 100; i++) 
    Console.WriteLine(bsort.A[i]); 
 
   Console.WriteLine("End of Array."); 
  } 
 } 
} 
 
A.2.6 BubbleSortInJava.jsl 
 
import java.util.*; 
 
public class BubbleSortInJava 
{ 
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 private int n; 
 private int temp; 
 private int[] A = new int [100]; 
 private boolean sorted; 
  
 public BubbleSortInJava() 
 { 
  n = 100; 
  temp = 0; 
  sorted = false; 
 
  Random r = new Random(); 
   
  for (int i = 0; i < 100; i++) 
   A[i] = r.nextInt() % 100; 
 } 
 
 private void DoBubbleSort() 
 { 
  for (int i = 1; i < n; i++) 
  { 
   sorted = true; 
 
   for (int j = 0; j <= n-1-i; j++) 
   { 
    if (A[j] > A[j+1]) 
    { 
     temp = A[j]; 
     A[j] = A[j+1]; 
     A[j+1] = temp; 
     sorted = false; 
    } 
   } 
 
   if (sorted == true) 
    break; 
  } 
 } 
  
 public static void main (String args[]) 
 { 
  BubbleSortInJava bsort = new BubbleSortInJava(); 
 
  bsort.DoBubbleSort(); 
 
  System.out.println("Sorted Array is as follows:"); 
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  for (int i = 0; i < 100; i++) 
   System.out.println(bsort.A[i]); 
 
  System.out.println("End of Array"); 
 } 
} 
 
A.2.7 BubbleSortInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class BubbleSortInVB 
    Shared Sub Main() 
        Dim n = 100 
        Dim temp = 0 
        Dim i = 0 
        Dim j = 0 
        Dim A(100) As Integer 
        Dim sorted = False 
 
        Randomize() 
 
        For i = 0 To 99 Step 1 
            A(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        For i = 0 To n - 1 Step 1 
            sorted = True 
 
            For j = 0 To n - 1 - i Step 1 
                If A(j) > A(j + 1) Then 
                    temp = A(j) 
                    A(j) = A(j + 1) 
                    A(j + 1) = temp 
                    sorted = False 
                End If 
            Next 
 
            If sorted = True Then 
                Exit For 
            End If 
        Next 
 
        System.Console.WriteLine("Sorted Array as follows:") 
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        For i = 0 To 99 Step 1 
            System.Console.WriteLine("{0}", A(i)) 
        Next 
 
        System.Console.WriteLine("End of Array.") 
    End Sub 
End Class 
 
A.3 Quicksort 
 
 
A.3.1 QuicksortInC.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
int Partition (int *A, int p, int r) 
{ 
 int x = A[r]; 
 int i = p - 1; 
 int temp = 0; 
 
 for (int j = p; j <= r - 1; j++) 
 { 
  if (A[j] <= x) 
  { 
   i = i + 1; 
    
   temp = A[i]; 
   A[i] = A[j]; 
   A[j] = temp; 
  } 
 } 
 
 temp = A[i + 1]; 
 A[i + 1] = A[r]; 
 A[r] = temp; 
 
 return (i + 1); 
} 
 
void Quicksort (int *A, int p, int r) 
{ 
 int q = 0; 
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 if (p < r) 
 { 
  q = Partition(A, p, r); 
  Quicksort(A, p, q - 1); 
  Quicksort(A, q + 1, r); 
 } 
} 
 
 
int main (void) 
{ 
 int A[100]; 
 int n = 100; 
 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < n; i++) 
  A[i] = (rand() % 100); 
  
 Quicksort(A, 1, n); 
  
 printf("Sorted Array is as follows:\n"); 
 
 for (int i = 0; i < n; i++) 
 { 
  printf("%d\n", A[i]); 
  A[i] = 0; 
 } 
 
 printf("End of Array.\n"); 
 
 return 0; 
} 
 
A.3.2 QuicksortInCPP.cpp 
 
#include <iostream> 
#include <time.h> 
#include <stdlib.h> 
#include "QuicksortClass.h" 
 
using namespace std; 
 
int main (void) 
{ 
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 int A[100]; 
 int n = 100; 
 
 QuicksortClass *QuicksortClass = new QuicksortClass; 
 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < n; i++) 
  A[i] = (rand() % 100); 
 
 QuicksortClass -> DoQuicksort(A, 1, n); 
 
 cout << "Sorted Array is as follows: " << endl; 
 
 for (int i = 0; i < n; i++) 
 { 
  cout << A[i] << endl; 
  A[i] = 0; 
 } 
 
 cout << "End of Array." << endl; 
  
 delete QuicksortClass; 
 
 return 0; 
} 
 
A.3.3 QuicksortClass.h 
 
class QuicksortClass 
{ 
 public: 
  QuicksortClass (void); 
  ~QuicksortClass (void); 
 
  void DoQuicksort (int *A, int p, int r); 
 
 private: 
  int Partition (int *A, int p, int r); 
 
  int temp; 
}; 
 
A.3.4 QuicksortClass.cpp 
 
#include "QuicksortClass.h" 
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QuicksortClass :: QuicksortClass (void) 
{ 
 temp = 0; 
} 
 
QuicksortClass :: ~QuicksortClass (void) 
{ 
 temp = 0; 
} 
 
int QuicksortClass :: Partition (int *A, int p, int r) 
{ 
 int x = A[r]; 
 int i = p - 1; 
 
 temp = 0; 
 
 for (int j = p; j <= r - 1; j++) 
 { 
  if (A[j] <= x) 
  { 
   i = i + 1; 
 
   temp = A[i]; 
   A[i] = A[j]; 
   A[j] = temp; 
  } 
 } 
 
 temp = A[i + 1]; 
 A[i + 1] = A[r]; 
 A[r] = temp; 
 
 return (i + 1); 
} 
 
void QuicksortClass :: DoQuicksort (int *A, int p, int r) 
{ 
 int q = 0; 
  
 if (p < r) 
 { 
  q = Partition(A, p, r); 
  DoQuicksort(A, p, q - 1); 
  DoQuicksort(A, q + 1, r); 
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 } 
} 
 
A.3.5 QuicksortInCS.cs 
 
using System; 
 
namespace QuicksortInCS 
{  
 public class QuicksortInCS 
 { 
  private int n; 
  private int temp; 
  private int[] A = new int [100]; 
   
  public QuicksortInCS() 
  { 
   n = 100; 
   temp = 0; 
 
   Random r = new Random(); 
 
   for (int i = 0; i < n; i++) 
    A[i] = r.Next(0, n); 
  } 
 
  private int Partition (int p, int r) 
  { 
   int x = A[r]; 
   int i = p -1; 
    
   temp = 0; 
 
   for (int j = p; j <= r - 1; j++) 
   { 
    if (A[j] <= x) 
    { 
     i = i + 1; 
 
     temp = A[i]; 
     A[i] = A[j]; 
     A[j] = temp; 
    } 
   } 
 
   temp = A[i + 1]; 
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   A[i + 1] = A[r]; 
   A[r] = temp; 
 
   return (i + 1); 
  } 
 
  public void DoQuicksort (int p, int r) 
  { 
   int q = 0; 
 
   if (p < r) 
   { 
    q = Partition(p, r); 
    DoQuicksort(p, q - 1); 
    DoQuicksort(q + 1, r); 
   } 
  } 
 
  public static void Main () 
  { 
   QuicksortInCS qsort = new QuicksortInCS(); 
 
   qsort.DoQuicksort(0, qsort.n - 1); 
 
   Console.WriteLine("The Array is as follows:"); 
 
   for (int i = 0; i < qsort.n; i++) 
   { 
    Console.WriteLine(qsort.A[i]); 
    qsort.A[i] = 0; 
   } 
  } 
 } 
} 
 
A.3.6 QuicksortInJava.jsl 
 
import java.util.*; 
 
public class QuicksortInJava 
{ 
 private int temp; 
 private int n; 
 private int[] A = new int [100]; 
  
 public QuicksortInJava() 
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 { 
  temp = 0; 
  n = 100; 
 
  Random r = new Random(); 
 
  for (int i = 0; i < n; i++) 
   A[i] = r.nextInt() % n; 
 } 
 
 private int Partition (int p, int r) 
 { 
  int x = A[r]; 
  int i = p - 1; 
   
  temp = 0; 
 
  for (int j = p; j <= r - 1; j++) 
  { 
   if (A[j] <= x) 
   { 
    i = i + 1; 
 
    temp = A[i]; 
    A[i] = A[j]; 
    A[j] = temp; 
   } 
  } 
 
  temp = A[i + 1]; 
  A[i + 1] = A[r]; 
  A[r] = temp; 
 
  return (i + 1); 
 } 
 
 public void DoQuicksort (int p, int r) 
 { 
  int q = 0; 
 
  if (p < r) 
  { 
   q = Partition(p, r); 
   DoQuicksort(p, q - 1); 
   DoQuicksort(q + 1, r); 
  } 
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 } 
 
 public static void main (String args[]) 
 { 
  QuicksortInJava qsort = new QuicksortInJava(); 
 
  qsort.DoQuicksort(0, qsort.n - 1); 
 
  System.out.println("The Array is sorted as follows:"); 
 
  for (int i = 0; i < qsort.n; i++) 
   System.out.println(qsort.A[i]); 
 
  System.out.println("End of Array."); 
 } 
} 
 
A.3.7 QuicksortInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class QuicksortInVB 
    Function Partition(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer) 
        Dim x = A(r) 
        Dim i = p - 1 
        Dim j As Integer 
        Dim temp = 0 
 
        For j = p To r - 1 Step 1 
            If A(j) <= x Then 
                i = i + 1 
 
                temp = A(i) 
                A(i) = A(j) 
                A(j) = temp 
            End If 
        Next 
 
        temp = A(i + 1) 
        A(i + 1) = A(r) 
        A(r) = temp 
 
        Return (i + 1) 
    End Function 
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    Sub DoQuicksort(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer) 
        Dim q = 0 
 
        If p < r Then 
            q = Partition(A, p, r) 
            DoQuicksort(A, p, q - 1) 
            DoQuicksort(A, q + 1, r) 
        End If 
    End Sub 
 
    Shared Sub Main() 
        Dim i 
        Dim n = 100 
        Dim A(100) As Integer 
        Dim qsort As New QuicksortInVB 
 
        Randomize() 
 
        For i = 0 To 99 Step 1 
            A(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        qsort.DoQuicksort(A, 1, (n - 1)) 
 
        Console.WriteLine("Sorted Array is as follows:") 
 
        For i = 0 To 99 Step 1 
            Console.WriteLine("{0}", A(i)) 
        Next 
 
        Console.WriteLine("End of Array.") 
    End Sub 
End Class 
 
A.4 Naïve String Matching 
 
 
A.4.1 NavieMatchInC.cpp 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
 
void NaiveMatch(char T[], char P[]) 
{ 
 int n = strlen(T); 
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 int m = strlen(P); 
 
 for (int s = 0; s <= (n - m); s++) 
 { 
  if (strncmp(P, &T[s], m) == 0) 
   printf("Pattern found at shift %d\n", s); 
 } 
} 
 
int main (void) 
{ 
 char P[] = "ball"; 
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
 
 NaiveMatch(T, P); 
 
 return 0; 
} 
 
A.4.2 NaiveMatchInCPP.cpp 
 
#include "NaiveMatchClass.h" 
 
int main (void) 
{ 
 char P[] = "ball"; 
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
  
 NaiveMatch *N_Match = new NaiveMatch; 
 
 N_Match -> DoNaiveMatch(T, P); 
 
 delete N_Match; 
 
 return 0; 
} 
 
A.4.3 NaiveMatchClass.h 
 
class NaiveMatch 
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{ 
 public: 
  NaiveMatch (void); 
  ~NaiveMatch (void); 
 
  void DoNaiveMatch (char T[], char P[]); 
 
 private: 
  int n; 
  int m; 
}; 
 
A.4.4 NaiveMatchClass.cpp 
 
#include <iostream> 
#include <string.h> 
#include "NaiveMatchClass.h" 
 
using namespace std; 
 
NaiveMatch :: NaiveMatch (void) 
{ 
 n = 0; 
 m = 0; 
} 
 
NaiveMatch :: ~NaiveMatch (void) 
{ 
 n = 0; 
 m = 0; 
} 
 
void NaiveMatch :: DoNaiveMatch (char T[], char P[]) 
{ 
 n = strlen(T); 
 m = strlen(P); 
  
 for (int s = 0; s <= (n - m); s++) 
 { 
  if (strncmp(P, &T[s], m) == 0) 
   cout << "Pattern found at shift " << s << endl; 
 } 
} 
 
A.4.5 NaiveMatchInCS.cs 
 



176 

 

 

using System; 
 
namespace NaiveMatchInCS 
{ 
 public class NaiveMatchInCS 
 { 
  private int n; 
  private int m; 
  private String P; 
  private String T; 
   
  public NaiveMatchInCS() 
  { 
   n = 0; 
   m = 0; 
    
   P = "ball"; 
   T = "Take me out to the ball game, Take me out to the crowd, Buy 
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root 
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes 
your out, At the old ball game!"; 
  } 
 
  public void DoNaiveMatch () 
  { 
   char [] subText = new char[P.Length]; 
 
   n = T.Length; 
   m = P.Length; 
 
   for (int s = 0; s <= (n - m); s++) 
   { 
    String compareText = T.Substring(s, m); 
 
    if (P.CompareTo(compareText) == 0) 
     Console.Out.WriteLine("Pattern found at shift " + 
s); 
   } 
  } 
 
  public static void Main () 
  { 
   NaiveMatchInCS N_Match = new NaiveMatchInCS(); 
 
   N_Match.DoNaiveMatch(); 
  } 
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 } 
} 
 
A.4.6 NaiveMatchInJava.jsl 
 
import java.util.*; 
 
public class NaiveMatchInJava 
{ 
 private int n; 
 private int m; 
 private String P; 
 private String T; 
 
 public NaiveMatchInJava() 
 { 
  n = 0; 
  m = 0; 
 
  P = "ball"; 
  T = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
 } 
 
 public void DoNaiveMatch () 
 {  
  char [] subText1 = new char[P.get_Length()]; 
   
  n = T.get_Length(); 
  m = P.get_Length(); 
 
  for (int s = 0; s <= (n - m); s++) 
  { 
   T.getChars(s, (s + m), subText1, 0); 
    
   String subText2 = new String(subText1); 
    
   if (P.compareTo(subText2) == 0) 
    System.out.println("Pattern found at shift " + s); 
  } 
 } 
 
 public static void main (String args[]) 
 { 
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  NaiveMatchInJava N_Match = new NaiveMatchInJava(); 
 
  N_Match.DoNaiveMatch(); 
 } 
} 
 
 
 
A.4.7 NaiveMatchInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class NaiveMatchInVB 
    Shared Sub Main() 
        Dim T As String = "Take me out to the ball game, Take me out to the crowd, Buy 
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root 
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes 
your out, At the old ball game!" 
        Dim P As String = "ball" 
        Dim n = T.Length 
        Dim m = P.Length 
        Dim s = 0 
 
        For s = 0 To (n - m) Step 1 
            Dim compareText As String = T.Substring(s, m) 
 
            If (P.CompareTo(compareText) = 0) Then 
                Console.WriteLine("Pattern was found at shift {0}", s) 
            End If 
        Next 
    End Sub 
End Class 
 
A.5 KMP String Matching 
 
 
A.5.1 KMPMatchInC.cpp 
 
#include <stdio.h> 
#include <string.h> 
 
int * ComputePrefixFunction (char *P) 
{  
 int m = strlen(P); 
 int *pi = new int[m]; 
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    int k = 0; 
 
 pi[0] = 0; 
 
 for (int q = 2; q <= m; q++) 
 { 
  while ((k > 0) && (P[k] != P[q])) 
   k = pi[k]; 
 
  if (P[k] == P[q]) 
   k = k + 1; 
 
  pi[q] = k; 
 } 
 
 return pi; 
} 
 
void KMPMatch (char *T, char *P) 
{ 
 int n = strlen(T); 
 int m = strlen(P); 
 int *pi = new int[n]; 
  
 int q = 0; 
  
 pi = ComputePrefixFunction(P); 
  
 for (int i = 1; i < n; i++) 
 { 
  while ((q > 0) && (P[q] != T[i])) 
   q = pi[q]; 
 
  if (P[q] == T[i]) 
   q = q + 1; 
 
  if (q == m) 
  { 
   printf("Pattern found at shift %d\n", ((i + 1) - m)); 
   q = pi[q]; 
  } 
 } 
} 
 
int main (void) 
{ 
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 char P[] = "ball"; 
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
 
 KMPMatch(T, P); 
 
 return 0; 
} 
 
A.5.2 KMPMatchInCPP.cpp 
 
#include "KMPMatchClass.h" 
 
int main (void) 
{ 
 char P[] = "ball"; 
 char T[] = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
 
 KMPMatchClass *kmpMatchClass = new KMPMatchClass(T, P); 
 
 kmpMatchClass -> DoKMPMatch(T, P); 
 
 delete kmpMatchClass; 
 
 return 0; 
} 
 
A.5.3 KMPMatchClass.h 
 
class KMPMatchClass 
{ 
 public: 
  KMPMatchClass (char *T, char *P); 
  ~KMPMatchClass (void); 
 
  void DoKMPMatch (char *T, char *P); 
 
 private: 
  int * ComputePrefixFunction (char *P); 
 
  int n; 
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  int m; 
}; 
 
A.5.4 KMPMatchClass.cpp 
 
#include "KMPMatchClass.h" 
#include <string.h> 
#include <iostream> 
 
using namespace std; 
 
KMPMatchClass :: KMPMatchClass (char *T, char *P) 
{ 
 n = strlen(T); 
 m = strlen(P); 
} 
 
KMPMatchClass :: ~KMPMatchClass (void) 
{ 
 n = 0; 
 m = 0; 
} 
 
int * KMPMatchClass :: ComputePrefixFunction (char *P) 
{ 
 int *pi = new int[m]; 
    int k = 0; 
 
 pi[0] = 0; 
 
 for (int q = 2; q <= m; q++) 
 { 
  while ((k > 0) && (P[k] != P[q])) 
   k = pi[k]; 
 
  if (P[k] == P[q]) 
   k = k + 1; 
 
  pi[q] = k; 
 } 
 
 return pi; 
} 
 
void KMPMatchClass :: DoKMPMatch (char *T, char *P) 
{ 
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 int *pi = new int[n]; 
  
 int q = 0; 
  
 pi = ComputePrefixFunction(P); 
  
 for (int i = 1; i < n; i++) 
 { 
  while ((q > 0) && (P[q] != T[i])) 
   q = pi[q]; 
 
  if (P[q] == T[i]) 
   q = q + 1; 
 
  if (q == m) 
  { 
   cout << "Pattern found at shift " << ((i + 1) - m) << endl;; 
   q = pi[q]; 
  } 
 } 
} 
 
A.5.5 KMPMatchInCS.cs 
 
using System; 
 
namespace KMPMatchInCS 
{ 
 public class KMPMatchInCS 
 { 
  private int n; 
  private int m; 
  private String P; 
  private String T; 
   
  public KMPMatchInCS() 
  { 
   P = "ball"; 
   T = "Take me out to the ball game, Take me out to the crowd, Buy 
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root 
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes 
your out, At the old ball game!";  
 
   n = T.Length; 
   m = P.Length; 
  } 
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  private int [] ComputePrefixFunction () 
  { 
   int[] pi = new int[n]; 
   int k = 0; 
 
   pi[0] = 0; 
 
   for (int q = 2; q <= m; q++) 
   { 
    while ((k > 0) && (P[k] != P[q])) 
     k = pi[k]; 
 
    if (P[k] == P[q - 1]) 
     k = k + 1; 
 
    pi[q] = k; 
   } 
 
   return pi; 
  } 
 
  public void DoKMPMatch () 
  { 
   int[] pi = new int[n]; 
   int q = 0; 
 
   pi = ComputePrefixFunction(); 
 
   for (int i = 1; i < n; i++) 
   { 
    while ((q > 0) && (P[q] != T[i])) 
     q = pi[q]; 
 
    if (P[q] == T[i]) 
     q = q + 1; 
 
    if (q == m) 
    { 
     Console.Out.WriteLine("Pattern found at shift " + 
((i + 1) - m)); 
     q = pi[q]; 
    } 
   } 
  } 
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  public static void Main () 
  { 
   KMPMatchInCS K_Match = new KMPMatchInCS(); 
 
   K_Match.DoKMPMatch(); 
  } 
 } 
} 
 
A.5.6 KMPMatchInJava.jsl 
 
import java.util.*; 
 
public class KMPMatchInJava 
{ 
 private int n; 
 private int m; 
 private String P; 
 private String T; 
  
 public KMPMatchInJava () 
 { 
  P = "ball"; 
  T = "Take me out to the ball game, Take me out to the crowd, Buy me 
some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root for 
the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes your 
out, At the old ball game!"; 
 
  n = T.get_Length(); 
  m = P.get_Length(); 
 } 
 
 private int[] ComputePrefixFunction () 
 { 
  int pi[] = new int[m]; 
  int k = 0; 
 
  pi[0] = 0; 
 
  for (int q = 2; q < m; q++) 
  { 
   while ((k > 0) && (P.get_Chars(k) != P.get_Chars(q))) 
    k = pi[k]; 
 
   if (P.get_Chars(k) == P.get_Chars(q)) 
    k = k + 1; 
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   pi[q] = k; 
  } 
 
  return pi; 
 } 
  
 public void DoKMPMatch () 
 { 
  int pi[] = new int[n]; 
  int q = 0; 
 
  pi = ComputePrefixFunction(); 
 
  for (int i = 1; i < n; i++) 
  { 
   while ((q > 0) && (P.get_Chars(q) != T.get_Chars(i))) 
    q = pi[q]; 
 
   if (P.get_Chars(q) == T.get_Chars(i)) 
    q = q + 1; 
 
   if (q == m) 
   { 
    System.out.println("Patter found at shift " + ((i + 1) - m)); 
    q = pi[q - 1]; 
   } 
  } 
 } 
  
 public static void main (String args[]) 
 { 
  KMPMatchInJava K_Match = new KMPMatchInJava(); 
 
  K_Match.DoKMPMatch(); 
 } 
} 
 
A.5.7 KMPMatchInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class KMPMatchInVB 
    Function ComputePrefixFunction(ByVal P As String) 
        Dim m = P.Length 
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        Dim pi(m) As Integer 
        Dim k = 0 
        Dim q As Integer 
 
        pi(0) = 0 
 
        For q = 2 To (m - 1) Step 1 
            While ((k > 0) And (P.Chars(k) <> P.Chars(q))) 
                k = pi(k) 
            End While 
 
            If P.Chars(k) = P.Chars(q) Then 
                k = k + 1 
            End If 
 
            pi(q) = k 
        Next 
 
        Return pi 
    End Function 
 
    Sub DoKMPMatch(ByVal T As String, ByVal P As String) 
        Dim n = T.Length 
        Dim m = P.Length 
        Dim pi(n) As Integer 
        Dim q = 0 
        Dim i As Integer 
 
        pi = ComputePrefixFunction(P) 
 
        For i = 0 To (n - 1) Step 1 
            While (q > 0) And (P.Chars(q) <> T.Chars(i)) 
                q = pi(q) 
            End While 
 
            If P.Chars(q) = T.Chars(i) Then 
                q = q + 1 
            End If 
 
            If q = m Then 
                Console.WriteLine("Pattern found at shift {0})", ((i + 1) - m)) 
                q = pi(q) 
            End If 
        Next 
    End Sub 
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    Shared Sub Main() 
        Dim T As String = "Take me out to the ball game, Take me out to the crowd, Buy 
me some peanuts and Cracker Jack, I don't care if I ever get back, So lets root, root root 
for the Home Team,If they don't win its a shame, For its ONE, TWO, THREE strikes 
your out, At the old ball game!" 
        Dim P As String = "ball" 
        Dim K_Match As New KMPMatchInVB 
 
        K_Match.DoKMPMatch(T, P) 
    End Sub 
End Class 
 
A.6 Polynomial Addition 
 
 
A.6.1 PolyAddInC.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
int main (void) 
{ 
 int A[100]; 
 int B[100]; 
 int C[100]; 
 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
 { 
  A[i] = (rand() % 100); 
  B[i] = (rand() % 100); 
 } 
 
 for (int j = 0; j < 100; j++) 
  C[j] = A[j] + B[j]; 
 
 printf("Polynomial coefficients as follows:"); 
  
 for (int k = 0; k < 100; k++) 
  printf("%d\n", C[k]); 
 
 return 0; 
} 
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A.6.2 PolyAddInCPP.cpp 
 
#include "PolyAddClass.h" 
 
int main (void) 
{ 
 PolyAddClass *polyAddClass = new PolyAddClass(); 
 
 polyAddClass -> DoPolyAdd(); 
 polyAddClass -> OutputCoEs(); 
 
 delete polyAddClass; 
 
 return 0; 
} 
 
A.6.3 PolyAddClass.h 
 
class PolyAddClass 
{ 
 public: 
  PolyAddClass (void); 
 
  void DoPolyAdd (void); 
  void OutputCoEs (void); 
 
 private: 
  int A[100]; 
  int B[100]; 
  int C[100]; 
}; 
 
A.6.4 PolyAddClass.cpp 
 
#include <stdlib.h> 
#include <time.h> 
#include <iostream> 
#include "PolyAddClass.h" 
 
using namespace std; 
 
PolyAddClass :: PolyAddClass (void) 
{ 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
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 { 
  A[i] = (rand() % 100); 
  B[i] = (rand() % 100); 
 } 
} 
 
void PolyAddClass :: DoPolyAdd (void) 
{ 
 for (int j = 0; j < 100; j++) 
  C[j] = A[j] + B[j]; 
} 
 
void PolyAddClass:: OutputCoEs (void) 
{ 
 cout << "Polynomial coefficients as follows:" << endl; 
  
 for (int k = 0; k < 100; k++) 
  cout << C[k] << endl; 
} 
 
A.6.5 PolyAddInCS.cs 
 
using System; 
 
namespace PolyAddInCS 
{ 
 class PolyAddInCS 
 { 
  private int[] A = new int [100]; 
  private int[] B = new int [100]; 
  private int[] C = new int [100]; 
 
  public PolyAddInCS() 
  { 
   Random r = new Random(); 
 
   for (int i = 0; i < 100; i++) 
   { 
    A[i] = r.Next() % 100; 
    B[i] = r.Next() % 100; 
   } 
  } 
 
  private void DoPolyAdd() 
  { 
   for (int j = 0; j < 100; j++) 



190 

 

 

    C[j] = A[j] + B[j]; 
  } 
 
  private void OutputCoEs() 
  { 
   Console.WriteLine("Polynomial coefficients as follows:"); 
 
   for (int k = 0; k < 100; k++) 
    Console.WriteLine(C[k]); 
  } 
 
  public static void Main() 
  { 
   PolyAddInCS polyAddInCS = new PolyAddInCS(); 
 
   polyAddInCS.DoPolyAdd(); 
   polyAddInCS.OutputCoEs(); 
  } 
 } 
} 
 
A.6.6 PolyAddInJava.jsl 
 
import java.util.*; 
 
public class PolyAddInJava 
{ 
 private int[] A = new int[100]; 
 private int[] B = new int[100]; 
 private int[] C = new int[100]; 
 
  
 public PolyAddInJava() 
 { 
  Random r = new Random(); 
   
  for (int i = 0; i < 100; i++) 
  { 
   A[i] = r.nextInt() % 100; 
   B[i] = r.nextInt() % 100; 
  } 
 } 
 
 private void DoPolyAdd() 
 { 
  for (int j = 0; j < 100; j++) 
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   C[j] = A[j] + B[j]; 
 } 
 
 private void OutputCoEs() 
 { 
  System.out.println("Polynomial coefficients as follows:"); 
 
  for (int k = 0; k < 100; k++) 
   System.out.println(C[k]); 
 } 
 
 public static void main (String args[]) 
 { 
  PolyAddInJava polyAddInJava = new PolyAddInJava(); 
 
  polyAddInJava.DoPolyAdd(); 
  polyAddInJava.OutputCoEs(); 
 } 
} 
 
A.6.7 PolyAddInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class PolyAddInVB 
    Shared Sub Main() 
        Dim A(100) As Integer 
        Dim B(100) As Integer 
        Dim C(100) As Integer 
        Dim i As Integer 
 
        Randomize() 
 
        For i = 0 To 100 Step 1 
            A(i) = Int((100 - 0 + 1) * Rnd()) + 0 
            B(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        For i = 0 To 100 Step 1 
            C(i) = A(i) + B(i) 
        Next 
 
        Console.WriteLine("Polynomial coefficients as follows:") 
 
        For i = 0 To 100 Step 1 
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            Console.WriteLine("{0}", C(i)) 
        Next 
    End Sub 
End Class 
 
 
 
 
A.7 Gaussian Elimination 
 
 
A.7.1 GaussElimInC.cpp 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
#define n 100 
 
float A[n][n]; 
float b[n]; 
float x[n]; 
int Pi[n]; 
 
void LUP_Decomposition (void) 
{ 
 int k_prime = 0; 
 int temp = 0; 
  
 for (int i = 0; i < n; i++) 
  Pi[i] = i; 
 
 for (int k = 0; k < n; k++) 
 { 
  double p = 0; 
 
  for (int i = k; i < n; i++) 
  { 
   if (abs(A[i][k]) > p) 
   { 
    p = abs(A[i][k]); 
    k_prime = i; 
   } 
  } 
 
  if (p == 0) 
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  { 
   printf("Error, Singular Matrix"); 
   return; 
  } 
   
  temp = Pi[k]; 
  Pi[k] = Pi[k_prime]; 
  Pi[k_prime] = temp; 
 
  for (int i = 0; i < n; i++) 
  { 
   temp = A[k][i]; 
   A[k][i] = A[k_prime][i]; 
   A[k_prime][i] = temp; 
  } 
 
  for (int i = (k + 1); i < n; i++) 
  { 
   A[i][k] = (A[i][k] / A[k][k]); 
 
   for (int j = (k + 1); j < n; j++) 
    A[i][j] = A[i][j] - (A[i][k] * A[k][j]); 
  } 
 } 
} 
 
void LUP_Solve (void) 
{ 
 float y[n]; 
 float temp = 0; 
  
 y[1] = b[Pi[1]]; 
  
 for (int i = 0; i < n; i++) 
 { 
  for (int j = 1; j < (i - 1); j++) 
    temp = temp + (A[i][j] * y[j]); 
 
  y[i] = (b[Pi[i]] - temp); 
  temp = 0; 
 } 
 
 x[n] = (y[n] / A[n][n]); 
  
 for (int i = (n - 1); i >= 0; i--) 
 { 
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  for (int j = i + 1; j < n; j++) 
   temp = temp + (A[i][j] * x[j]); 
 
  x[i] = ((y[i] - temp) / A[i][i]); 
  temp = 0; 
 } 
} 
 
int main (void) 
{ 
 int Uks = n; 
  
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; j++) 
   A[i][j] = (rand() % 100); 
 
 for (int i = 0; i < n; i++) 
  b[i] = (rand() % 100); 
 
 LUP_Decomposition(); 
 LUP_Solve(); 
 
 printf("Solutions for %d unknowns:\n", Uks); 
  
 for (int i = 0; i < n; i++) 
  printf("%f\n", x[i]); 
 
 return 0; 
} 
 
A.7.2 GaussElimInCPP.cpp 
 
#include "GaussClass.h" 
 
int main (void) 
{ 
 GaussElim *gaussElim = new GaussElim(); 
 
 gaussElim -> LUP_Decomposition(); 
 gaussElim -> LUP_Solve(); 
 gaussElim -> OutputUnknowns(); 
 
 delete gaussElim; 
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 return 0; 
} 
 
A.7.3 GaussClass.h 
 
#define n 100 
 
class  GaussElim 
{ 
 public: 
  GaussElim (void); 
 
  void LUP_Decomposition (void); 
  void LUP_Solve (void); 
  void OutputUnknowns (void); 
 
 private: 
  float A[n][n]; 
  float b[n]; 
  float x[n]; 
  int Pi[n]; 
}; 
 
A.7.4 GaussClass.cpp 
 
#include <stdio.h> 
#include <time.h> 
#include <iostream> 
#include "GaussClass.h" 
 
using namespace std; 
 
GaussElim :: GaussElim (void) 
{ 
 srand((unsigned int) time((time_t *) NULL)); 
  
 for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; j++) 
   A[i][j] = (rand() % 100); 
 
 for (int i = 0; i < n; i++) 
  b[i] = (rand() % 100); 
} 
 
void GaussElim :: LUP_Decomposition (void) 
{ 
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 int k_prime = 0; 
 int temp = 0; 
  
 for (int i = 0; i < n; i++) 
  Pi[i] = i; 
 
 for (int k = 0; k < n; k++) 
 { 
  double p = 0; 
 
  for (int i = k; i < n; i++) 
  { 
   if (abs(A[i][k]) > p) 
   { 
    p = abs(A[i][k]); 
    k_prime = i; 
   } 
  } 
 
  if (p == 0) 
  { 
   cout << "Error, Singular Matrix" << endl; 
   return; 
  } 
   
  temp = Pi[k]; 
  Pi[k] = Pi[k_prime]; 
  Pi[k_prime] = temp; 
 
  for (int i = 0; i < n; i++) 
  { 
   temp = A[k][i]; 
   A[k][i] = A[k_prime][i]; 
   A[k_prime][i] = temp; 
  } 
 
  for (int i = (k + 1); i < n; i++) 
  { 
   A[i][k] = (A[i][k] / A[k][k]); 
 
   for (int j = (k + 1); j < n; j++) 
    A[i][j] = A[i][j] - (A[i][k] * A[k][j]); 
  } 
 } 
} 
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void GaussElim :: LUP_Solve (void) 
{ 
 float y[n]; 
 float temp = 0; 
  
 y[1] = b[Pi[1]]; 
  
 for (int i = 0; i < n; i++) 
 { 
  for (int j = 1; j < (i - 1); j++) 
    temp = temp + (A[i][j] * y[j]); 
 
  y[i] = (b[Pi[i]] - temp); 
  temp = 0; 
 } 
 
 x[n] = (y[n] / A[n][n]); 
  
 for (int i = (n - 1); i >= 0; i--) 
 { 
  for (int j = i + 1; j < n; j++) 
   temp = temp + (A[i][j] * x[j]); 
 
  x[i] = ((y[i] - temp) / A[i][i]); 
  temp = 0; 
 } 
} 
 
void GaussElim :: OutputUnknowns (void) 
{ 
 cout << "Solutions for " << n << " unknowns:" << endl; 
  
 for (int i = 0; i < n; i++) 
  cout << x[i] << endl; 
} 
 
A.7.5 GaussElimInCS.cs 
 
using System; 
 
namespace GaussElimInCS 
{ 
 public class GaussElimInCS 
 { 
  private const int n = 100; 
  private float [ , ] A = new float[n, n]; 
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  private float [] b = new float[n]; 
  private float [] x = new float [n]; 
  private int [] Pi = new int[n]; 
 
  public GaussElimInCS() 
  { 
   Random r = new Random(); 
 
   for (int i = 0; i < n; i++) 
    for (int j = 0; j < n; j++) 
     A[i, j] = r.Next() % n; 
 
   for (int i = 0; i < n; i++) 
    b[i] = r.Next() % n; 
  } 
 
  private void LUP_Decomposition() 
  { 
   int k_prime = 0; 
   int temp1 = 0; 
  
   for (int i = 0; i < n; i++) 
    Pi[i] = i; 
 
   for (int k = 0; k < n; k++) 
   { 
    double p = 0; 
 
    for (int i = k; i < n; i++) 
    { 
     if (Math.Abs(A[i, k]) > p) 
     { 
      p = Math.Abs(A[i, k]); 
      k_prime = i; 
     } 
    } 
 
    if (p == 0) 
    { 
     Console.WriteLine("Error, Singular Matrix"); 
     return; 
    } 
   
    temp1 = Pi[k]; 
    Pi[k] = Pi[k_prime]; 
    Pi[k_prime] = temp1; 



199 

 

 

 
    for (int i = 0; i < n; i++) 
    { 
     float temp2 = A[k, i]; 
     A[k, i] = A[k_prime, i]; 
     A[k_prime, i] = temp2; 
    } 
 
    for (int i = (k + 1); i < n; i++) 
    { 
     A[i, k] = (A[i, k] / A[k, k]); 
 
     for (int j = (k + 1); j < n; j++) 
      A[i, j] = A[i, j] - (A[i, k] * A[k, j]); 
    } 
   } 
  } 
 
  private void LUP_Solve() 
  { 
   float []y = new float[n]; 
   float temp = 0; 
  
   y[1] = b[Pi[1]]; 
  
   for (int i = 0; i < n; i++) 
   { 
    for (int j = 1; j < (i - 1); j++) 
     temp = temp + (A[i, j] * y[j]); 
 
    y[i] = (b[Pi[i]] - temp); 
    temp = 0; 
   } 
 
   x[n - 1] = (y[n - 1] / A[n - 1, n - 1]); 
  
   for (int i = (n - 1); i >= 0; i--) 
   { 
    for (int j = i + 1; j < n; j++) 
     temp = temp + (A[i, j] * x[j]); 
 
    x[i] = ((y[i] - temp) / A[i, i]); 
    temp = 0; 
   } 
  } 
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  private void OutputUnknwons() 
  { 
   Console.WriteLine("Solutions for " + n + " unknowns:"); 
 
   for (int i = 0; i < n; i++) 
    Console.WriteLine(x[i]); 
  } 
 
  public static void Main() 
  { 
   GaussElimInCS gaussElim = new GaussElimInCS(); 
 
   gaussElim.LUP_Decomposition(); 
   gaussElim.LUP_Solve(); 
   gaussElim.OutputUnknwons(); 
  } 
 } 
} 
 
A.7.6 GaussElimInJava.jsl 
 
import java.util.*; 
 
public class GaussElimInJava 
{ 
 private static int n = 100; 
 private float [ , ] A = new float[n, n]; 
 private float [] b = new float[n]; 
 private float [] x = new float [n]; 
 private int [] Pi = new int[n]; 
 
 public GaussElimInJava() 
 { 
  Random r = new Random(); 
 
  for (int i = 0; i < n; i++) 
   for (int j = 0; j < n; j++) 
    A[i, j] = r.nextInt() % n; 
 
  for (int i = 0; i < n; i++) 
   b[i] = r.nextInt() % n; 
 } 
 
 private void LUP_Decomposition() 
 { 
  int k_prime = 0; 
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  int temp1 = 0; 
  
  for (int i = 0; i < n; i++) 
   Pi[i] = i; 
 
  for (int k = 0; k < n; k++) 
  { 
   double p = 0; 
 
   for (int i = k; i < n; i++) 
   { 
    if (Math.abs(A[i, k]) > p) 
    { 
     p = Math.abs(A[i, k]); 
     k_prime = i; 
    } 
   } 
 
   if (p == 0) 
   { 
    System.out.println("Error, Singular Matrix"); 
    return; 
   } 
   
   temp1 = Pi[k]; 
   Pi[k] = Pi[k_prime]; 
   Pi[k_prime] = temp1; 
 
   for (int i = 0; i < n; i++) 
   { 
    float temp2 = A[k, i]; 
    A[k, i] = A[k_prime, i]; 
    A[k_prime, i] = temp2; 
   } 
 
   for (int i = (k + 1); i < n; i++) 
   { 
    A[i, k] = (A[i, k] / A[k, k]); 
 
    for (int j = (k + 1); j < n; j++) 
     A[i, j] = A[i, j] - (A[i, k] * A[k, j]); 
   } 
  } 
 } 
 
 private void LUP_Solve() 
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 { 
  float []y = new float[n]; 
  float temp = 0; 
  
  y[1] = b[Pi[1]]; 
  
  for (int i = 0; i < n; i++) 
  { 
   for (int j = 1; j < (i - 1); j++) 
    temp = temp + (A[i, j] * y[j]); 
 
   y[i] = (b[Pi[i]] - temp); 
   temp = 0; 
  } 
 
  x[n - 1] = (y[n - 1] / A[n - 1, n - 1]); 
  
  for (int i = (n - 1); i >= 0; i--) 
  { 
   for (int j = i + 1; j < n; j++) 
    temp = temp + (A[i, j] * x[j]); 
 
   x[i] = ((y[i] - temp) / A[i, i]); 
   temp = 0; 
  } 
 } 
 
 private void OutputUnknwons() 
 { 
  System.out.println("Solutions for " + n + " unknowns:"); 
 
  for (int i = 0; i < n; i++) 
   System.out.println(x[i]); 
 } 
 
 public static void main (String args[]) 
 { 
  GaussElimInJava gaussElim = new GaussElimInJava(); 
 
  gaussElim.LUP_Decomposition(); 
  gaussElim.LUP_Solve(); 
  gaussElim.OutputUnknwons(); 
 } 
} 
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A.7.7 GaussElimInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class GaussElimInVB 
    Const n = 100 
    Dim A(n, n) As Single 
    Dim b(n) As Single 
    Dim x(n) As Single 
    Dim Pi(n) As Integer 
 
    Sub LUP_Decomposition() 
        Dim k_prime = 0 
        Dim temp = 0 
        Dim i As Integer 
        Dim k As Integer 
        Dim j As Integer 
        Dim temp1 As Integer 
        Dim temp2 As Single 
 
        For i = 0 To n Step 1 
            Pi(i) = i 
        Next 
 
        For k = 0 To n Step 1 
            Dim p As Single 
            p = 0 
 
            For i = k To n Step 1 
                If Math.Abs(A(i, k)) > p Then 
                    p = Math.Abs(A(i, k)) 
                    k_prime = i 
                End If 
            Next 
 
            If p = 0 And i <> (n + 1) Then 
                Console.WriteLine("Error, Singular Matrix") 
                End 
            End If 
 
            temp1 = Pi(k) 
            Pi(k) = Pi(k_prime) 
            Pi(k_prime) = temp1 
 
            For i = 0 To n Step 1 
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                temp2 = A(k, i) 
                A(k, i) = A(k_prime, i) 
                A(k_prime, i) = temp2 
            Next 
 
            For i = (k + 1) To n Step 1 
                A(i, k) = (A(i, k) / A(k, k)) 
 
                For j = (k + 1) To n Step 1 
                    A(i, j) = A(i, j) - (A(i, k) * A(k, j)) 
                Next 
            Next 
        Next 
    End Sub 
 
    Sub LUP_Solve() 
        Dim y(n) As Single 
        Dim temp As Single 
        Dim i As Integer 
        Dim j As Integer 
 
        y(0) = b(Pi(0)) 
 
        For i = 0 To n Step 1 
            For j = 1 To (i - 1) Step 1 
                temp = temp + (A(i, j) * y(j)) 
            Next 
 
            y(i) = (b(Pi(i)) - temp) 
            temp = 0 
        Next 
 
        x(n) = (y(n) / A(n, n)) 
 
        For i = n To 0 Step -1 
            For j = i + 1 To n Step 1 
                temp = temp + (A(i, j) * x(j)) 
            Next 
 
            x(i) = ((y(i) - temp) / A(i, i)) 
            temp = 0 
        Next 
    End Sub 
 
    Shared Sub Main() 
        Dim gaussElim As New GaussElimInVB 
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        Dim i As Integer 
        Dim j As Integer 
 
        Randomize() 
 
        For i = 0 To n Step 1 
            For j = 0 To n Step 1 
                gaussElim.A(i, j) = Int((n - 0 + 1) * Rnd()) + 0 
            Next 
        Next 
 
        For i = 0 To n Step 1 
            gaussElim.b(i) = Int((n - 0 + 1) * Rnd()) + 0 
        Next 
 
        gaussElim.LUP_Decomposition() 
        gaussElim.LUP_Solve() 
 
        Console.WriteLine("Solutions for {0} unkowns:", gaussElim.n) 
 
        For i = 0 To n Step 1 
            Console.WriteLine(gaussElim.x(i)) 
        Next 
    End Sub 
End Class 
 
A.8 Minimum and Maximum 
 
 
A.8.1 MinMaxInC.cpp 
 
#include <stdio.h> 
#include <time.h> 
 
int Minimum (int *A) 
{ 
 int min = A[0]; 
 
 for (int i = 1; i < 100; i++) 
  if (min > A[i]) 
   min = A[i]; 
 
 return min; 
} 
 
int Maximum (int *A) 
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{ 
 int max = A[0]; 
  
 for (int i = 1; i < 100; i++) 
  if (max < A[i]) 
   max = A[i]; 
 
 return max; 
} 
 
int main (void) 
{ 
 int A[100]; 
 int min = 0; 
 int max = 0; 
 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
  A[i] = (rand() % 100); 
 
 min = Minimum(A); 
 max = Maximum(A); 
 
 printf("The minimum value in the array is %d\n", min); 
 printf("The maximum value in the array is %d\n", max); 
 
 return 0; 
} 
 
A.8.2 MinMaxInCPP.cpp 
 
#include <iostream> 
#include "MinMaxClass.h" 
 
using namespace std; 
 
int main (void) 
{ 
 int min = 0; 
 int max = 0; 
 
 MinMaxClass *mmc = new MinMaxClass(); 
 
 min = mmc -> DoMinimum(); 
 max = mmc -> DoMaximum(); 
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 cout << "The minimum value in the array is " << min << endl; 
 cout << "The maximum value in the array is " << max << endl; 
 
 delete mmc; 
 
 return 0; 
} 
 
A.8.3 MinMaxClass.h 
 
class MinMaxClass 
{ 
 public: 
  MinMaxClass (void); 
 
  int DoMinimum (void); 
  int DoMaximum (void); 
 
 private: 
  int A[100]; 
}; 
 
A.8.4 MinMaxClass.cpp 
 
#include <stdlib.h> 
#include <time.h> 
#include "MinMaxClass.h" 
 
MinMaxClass :: MinMaxClass (void) 
{ 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
  A[i] = (rand() % 100); 
} 
 
int MinMaxClass :: DoMinimum (void) 
{ 
 int min = A[0]; 
 
 for (int i = 1; i < 100; i++) 
  if (min > A[i]) 
   min = A[i]; 
 
 return min; 
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} 
 
int MinMaxClass :: DoMaximum (void) 
{ 
 int max = A[0]; 
  
 for (int i = 1; i < 100; i++) 
  if (max < A[i]) 
   max = A[i]; 
 
 return max; 
} 
 
A.8.5 MinMaxInCS.cs 
 
using System; 
 
namespace MinMaxClass 
{ 
 public class MinMaxClass 
 { 
  private int[] A = new int[100]; 
  private int min = 0; 
  private int max = 0; 
 
  public MinMaxClass() 
  { 
   Random r = new Random(); 
 
   for (int i = 0; i < 100; i++) 
    A[i] = r.Next() % 100; 
  } 
 
  private void DoMinimum() 
  { 
   min = A[0]; 
 
   for (int i = 1; i < 100; i++) 
    if (min > A[i]) 
     min = A[i]; 
  } 
 
  private void DoMaximum() 
  { 
   max = A[0]; 
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   for (int i = 1; i < 100; i++) 
    if (max < A[i]) 
     max = A[i]; 
  } 
 
  public static void Main() 
  { 
   MinMaxClass mmc = new MinMaxClass(); 
 
   mmc.DoMinimum(); 
   mmc.DoMaximum(); 
  
   Console.WriteLine("The minimum value in the array is {0}", 
mmc.min); 
   Console.WriteLine("The maximum value in the array is {0}", 
mmc.max); 
  } 
 } 
} 
 
A.8.6 MinMaxInJAVA.jsl 
 
import java.util.*; 
 
public class MinMaxClass 
{ 
 private int[] A = new int[100]; 
 private int min = 0; 
 private int max = 0; 
 
 public MinMaxClass() 
 { 
  Random r = new Random(); 
 
  for (int i = 0; i < 100; i++) 
   A[i] = r.nextInt() % 100; 
 } 
 
 private void DoMinimum() 
 { 
  min = A[0]; 
 
  for (int i = 1; i < 100; i++) 
   if (min > A[i]) 
    min = A[i]; 
 } 
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 private void DoMaximum() 
 { 
  max = A[0]; 
    
  for (int i = 1; i < 100; i++) 
   if (max < A[i]) 
    max = A[i]; 
 } 
 
 public static void main (String args[]) 
 { 
  MinMaxClass mmc = new MinMaxClass(); 
 
  mmc.DoMinimum(); 
  mmc.DoMaximum(); 
  
  System.Console.WriteLine("The minimum value in the array is " + 
mmc.min); 
  System.Console.WriteLine("The maximum value in the array is " + 
mmc.max); 
 } 
} 
 
A.8.7 MinMaxInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class MinMaxInVB 
    Dim A(100) As Integer 
    Dim min As Integer 
    Dim max As Integer 
 
    Sub DoMinimum() 
        Dim i As Integer 
 
        min = A(0) 
 
        For i = 1 To 100 Step 1 
            If min > A(i) Then 
                min = A(i) 
            End If 
        Next 
    End Sub 
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    Sub DoMaximum() 
        Dim i As Integer 
 
        max = A(0) 
 
        For i = 1 To 100 Step 1 
            If max < A(i) Then 
                max = A(i) 
            End If 
        Next 
    End Sub 
 
    Shared Sub Main() 
        Dim mmc As New MinMaxInVB 
        Dim i As Integer 
 
        Randomize() 
 
        For i = 0 To 100 Step 1 
            mmc.A(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        mmc.DoMinimum() 
        mmc.DoMaximum() 
 
        Console.WriteLine("The minimum value in the array is {0}", mmc.min) 
        Console.WriteLine("The maximum value in the array is {0}", mmc.max) 
    End Sub 
End Class 
 
A.9 Random Selection 
 
 
A.9.1 RandomSelectInC.cpp 
 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
 
int Partition (int *A, int p, int r) 
{ 
 int x = A[r]; 
 int i = p - 1; 
 int temp = 0; 
 
 for (int j = p; j <= r - 1; j++) 
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 { 
  if (A[j] <= x) 
  { 
   i = i + 1; 
    
   temp = A[i]; 
   A[i] = A[j]; 
   A[j] = temp; 
  } 
 } 
 
 temp = A[i + 1]; 
 A[i + 1] = A[r]; 
 A[r] = temp; 
 
 return (i + 1); 
} 
 
int RandomizedPartition (int *A, int p, int r) 
{ 
 int temp = 0; 
 int i = (rand() % r) + p; 
  
 temp = A[r]; 
 A[r] = A[i]; 
 A[i] = temp; 
 
 return Partition(A, p, r); 
} 
 
int RandomizedSelect (int *A, int p, int r, int i) 
{ 
 int q = 0; 
 int k = 0; 
  
 if (p == r) 
  return A[p]; 
 
 q = RandomizedPartition(A, p, r); 
 k = q - p + 1; 
 
 if (i == k) 
  return A[q]; 
 else if (i < k) 
  return RandomizedSelect(A, p, q - 1, i); 
 else 
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  return RandomizedSelect(A, q + 1, r, i - k); 
} 
 
int main (void) 
{ 
 int A[100]; 
 int n = 100; 
 int x = 0; 
 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < n; i++) 
  A[i] = (rand() % 100); 
 
 x = RandomizedSelect(A, 0, 100, 1); 
 
 printf("The ith smallest element in the array where i = 1 is %d", x); 
 
 return 0; 
} 
 
A.9.2 RandomSelectInCPP.cpp 
 
#include <iostream> 
#include "RandomSelectClass.h" 
 
using namespace std; 
 
int main (void) 
{ 
 int x = 0; 
 
 RandomSelect *rc = new RandomSelect(); 
 
 x = rc -> RandomizedSelect(0, 99, 1); 
 
 cout << "The ith smallest element in the array where i = 1 is " << x << endl; 
 
 delete rc; 
 
 return 0; 
} 
 
A.9.3 RandomSelectClass.h 
 
class RandomSelect 



214 

 

 

{ 
 public: 
  RandomSelect (void); 
 
  int RandomizedSelect (int p, int r, int i); 
  
 private: 
  int RandomizedPartition (int p, int r); 
  int Partition (int p, int r); 
 
  int A[100]; 
}; 
 
A.9.4 RandomSelectClass.cpp 
 
#include <stdlib.h> 
#include <time.h> 
#include "RandomSelectClass.h" 
 
RandomSelect :: RandomSelect (void) 
{ 
 srand((unsigned int) time((time_t *) NULL)); 
 
 for (int i = 0; i < 100; i++) 
  A[i] = (rand() % 100); 
} 
 
int RandomSelect :: RandomizedSelect (int p, int r, int i) 
{ 
 int q = 0; 
 int k = 0; 
  
 if (p == r) 
  return A[p]; 
 
 q = RandomizedPartition(p, r); 
 k = q - p + 1; 
 
 if (i == k) 
  return A[q]; 
 else if (i < k) 
  return RandomizedSelect(p, q - 1, i); 
 else 
  return RandomizedSelect(q + 1, r, i - k); 
} 
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int RandomSelect :: RandomizedPartition (int p, int r) 
{ 
 int temp = 0; 
 int i = (rand() % r) + p; 
  
 temp = A[r]; 
 A[r] = A[i]; 
 A[i] = temp; 
 
 return Partition(p, r); 
} 
 
int RandomSelect :: Partition (int p, int r) 
{ 
 int x = A[r]; 
 int i = p - 1; 
 int temp = 0; 
 
 for (int j = p; j <= r - 1; j++) 
 { 
  if (A[j] <= x) 
  { 
   i = i + 1; 
    
   temp = A[i]; 
   A[i] = A[j]; 
   A[j] = temp; 
  } 
 } 
 
 temp = A[i + 1]; 
 A[i + 1] = A[r]; 
 A[r] = temp; 
 
 return (i + 1); 
} 
 
A.9.5 RandomSelectInCS.cs 
 
using System; 
 
namespace RandomSelect 
{ 
 public class RandomSelect 
 { 
  private int[] A = new int [100]; 
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  public RandomSelect() 
  { 
   Random r = new Random(); 
 
   for (int i = 0; i < 100; i++) 
    A[i] = r.Next(0, 100); 
  } 
 
  private int RandomizedSelect (int p, int r, int i) 
  { 
   int q = 0; 
   int k = 0; 
  
   if (p == r) 
    return A[p]; 
 
   q = RandomizedPartition(p, r); 
   k = q - p + 1; 
 
   if (i == k) 
    return A[q]; 
   else if (i < k) 
    return RandomizedSelect(p, q - 1, i); 
   else 
    return RandomizedSelect(q + 1, r, i - k); 
  } 
 
  private int RandomizedPartition (int p, int r) 
  { 
   Random x = new Random(); 
    
   int temp = 0; 
   int i = (x.Next(0, p)) + r; 
  
   temp = A[r]; 
   A[r] = A[i]; 
   A[i] = temp; 
 
   return Partition(p, r); 
  } 
 
  private int Partition (int p, int r) 
  { 
   int x = A[r]; 
   int i = p - 1; 
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   int temp = 0; 
 
   for (int j = p; j <= r - 1; j++) 
   { 
    if (A[j] <= x) 
    { 
     i = i + 1; 
 
     temp = A[i]; 
     A[i] = A[j]; 
     A[j] = temp; 
    } 
   } 
 
   temp = A[i + 1]; 
   A[i + 1] = A[r]; 
   A[r] = temp; 
 
   return (i + 1); 
  } 
 
  public static void Main () 
  { 
   int x = 0; 
    
   RandomSelect rm = new RandomSelect(); 
 
   x = rm.RandomizedSelect(0, 99, 1); 
 
   Console.WriteLine("The ith smallest element in the array where i 
= 1 is " + x); 
  } 
 } 
} 
 
A.9.6 RandomSelectInJava.jsl 
 
import java.util.*; 
 
public class RandomSelect 
{ 
 private int[] A = new int [100]; 
   
 public RandomSelect() 
 { 
  Random r = new Random(); 
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  for (int i = 0; i < 100; i++) 
   A[i] = r.nextInt() % 100; 
 } 
 
 private int RandomizedSelect (int p, int r, int i) 
 { 
  int q = 0; 
  int k = 0; 
  
  if (p == r) 
   return A[p]; 
 
  q = RandomizedPartition(p, r); 
  k = q - p + 1; 
 
  if (i == k) 
   return A[q]; 
  else if (i < k) 
   return RandomizedSelect(p, q - 1, i); 
  else 
   return RandomizedSelect(q + 1, r, i - k); 
 } 
 
 private int RandomizedPartition (int p, int r) 
 { 
  Random x = new Random(); 
    
  int temp = 0; 
  int i = x.nextInt() % r; 
  
  temp = A[r]; 
  A[r] = A[Math.abs(i)]; 
  A[Math.abs(i)] = temp; 
 
  return Partition(p, r); 
 } 
 
 private int Partition (int p, int r) 
 { 
  int x = A[r]; 
  int i = p - 1; 
  int temp = 0; 
 
  for (int j = p; j <= r - 1; j++) 
  { 
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   if (A[j] <= x) 
   { 
    i = i + 1; 
 
    temp = A[i]; 
    A[i] = A[j]; 
    A[j] = temp; 
   } 
  } 
 
  temp = A[i + 1]; 
  A[i + 1] = A[r]; 
  A[r] = temp; 
 
  return (i + 1); 
 } 
 
 public static void main (String args[]) 
 { 
  int x = 0; 
    
  RandomSelect rm = new RandomSelect(); 
 
  x = rm.RandomizedSelect(0, 99, 1); 
 
  System.Console.WriteLine("The ith smallest element in the array where i 
= 1 is " + x); 
 } 
} 
 
A.9.7 RandomSelectInVB.vb 
 
Imports System 
Imports Microsoft.VisualBasic 
 
Public Class RandomSelectInVB 
    Function Partition(ByRef A() As Integer, ByRef p As Integer, ByRef r As Integer) 
        Dim x = A(r) 
        Dim i = p - 1 
        Dim j As Integer 
        Dim temp = 0 
 
        For j = p To r - 1 Step 1 
            If A(j) <= x Then 
                i = i + 1 
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                temp = A(i) 
                A(i) = A(j) 
                A(j) = temp 
            End If 
        Next 
 
        temp = A(i + 1) 
        A(i + 1) = A(r) 
        A(r) = temp 
 
        Return (i + 1) 
    End Function 
 
    Function RandomizedPartition(ByRef A() As Integer, ByRef p As Integer, ByRef r As 
Integer) 
        Dim i = 0 
        Dim temp = 0 
 
        Randomize() 
 
        i = Int((r - p + 1) * Rnd()) + 0 
 
        temp = A(r) 
        A(r) = A(i) 
        A(i) = temp 
 
        Return Partition(A, p, r) 
    End Function 
 
    Function RandomizedSelect(ByRef A() As Integer, ByRef p As Integer, ByRef r As 
Integer, ByRef i As Integer) 
        Dim q = 0 
        Dim k = 0 
 
        If p = r Then 
            Return A(p) 
        End If 
 
        q = RandomizedPartition(A, p, r) 
        k = q - p + 1 
 
        If i = k Then 
            Return A(q) 
        ElseIf i < k Then 
            Return RandomizedSelect(A, p, q - 1, i) 
        Else 
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            Return RandomizedSelect(A, q + 1, r, i - k) 
        End If 
    End Function 
 
    Shared Sub Main() 
        Dim i 
        Dim x 
        Dim n = 100 
        Dim A(100) As Integer 
        Dim rc As New RandomSelectInVB 
 
        Randomize() 
 
        For i = 0 To 99 Step 1 
            A(i) = Int((100 - 0 + 1) * Rnd()) + 0 
        Next 
 
        x = rc.RandomizedSelect(A, 0, 100, 1) 
 
        Console.WriteLine("The ith smallest element in the array where i = 1 is {0}", x) 
    End Sub 
End Class 



 

222 

 

APPENDIX B 

RAW MEASUREMENT DATA 

B.1 Static Measurements
 
Linear Search   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   46  80  48  44  34 
Effective Lines of Code   29  29  26  26  27 
Code Statements   20  33  18  18  25 
McCabe's V(g)   8  11  9  7  10 
Compiler Directives   3  5  1  1  2 
            
Bubblesort   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   53  81  60  53  44 
Effective Lines of Code   29  36  32  29  35 
Code Statements   22  33  25  24  26 
McCabe's V(g)   8  10  9  9  10 
Compiler Directives   3  4  1  1  2 
            
Quicksort   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   66  97  60  67  60 
Effective Lines of Code   36  53  36  36  46 
Code Statements   28  39  30  30  44 
McCabe's V(g)   8  10  9  9  11 
Compiler Directives   3  5  1  1  2 
            
Naïve String Matching   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   25  56  44  43  20 
Effective Lines of Code   14  32  23  23  17 
Code Statements   8  21  17  18  15 
McCabe's V(g)   4  5  4  5  7 
Compiler Directives   3  4  1  1  2 
            
KMP String Matching   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   60  91  72  69  60 
Effective Lines of Code   33  50  38  37  47 
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Code Statements   23  35  27  27  35 
McCabe's V(g)   12  14  11  11  17 
Compiler Directives   2  4  1  1  2 
            
Polynomial Addition   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   28  57  44  42  28 
Effective Lines of Code   17  33  22  21  22 
Code Statements   13  22  16  16  20 
McCabe's V(g)   4  6  7  7  8 
Compiler Directives   3  5  1  1  2 
            
Gaussian Elimination   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   110  133  118  115  115 
Effective Lines of Code   62  76  64  63  91 
Code Statements   53  61  55  55  80 
McCabe's V(g)   19  21  21  21  24 
Compiler Directives   4  6  1  1  2 
            
Minimum and 
Maximum   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   44  66  48  45  49 
Effective Lines of Code   26  39  26  25  37 
Code Statements   19  26  18  18  26 
McCabe's V(g)   8  9  9  11  13 
Compiler Directives   2  5  1  1  2 
            
Random Selection   C  C++  C#  Java  Visual BASIC 
            
Physical Lines of Code   77  99  86  83  80 
Effective Lines of Code   47  59  48  47  61 
Code Statements   35  42  36  36  55 
McCabe's V(g)   10  11  11  13  15 
Compiler Directives   3  5  1  1  2 
            

Table B.1 Static Raw Measurements. 
 
 
B.2 Dynamic Measurements 
 

Linear Search   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8638  24314  21022  181358  34513 
Total Objects Created   40  274  185  3114  585 
Execution Time Max (Seconds)   2.734  3.001  2.281  3.016  2.828 
Execution Time Min (Seconds)   1.813  2.172  1.765  2.626  1.968 
Execution Time Average (Seconds)   2.0563  2.4457  1.9376  2.825  2.5294 
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Total Routines   433  1110  198  633  430 
Routines Executed   108  372  108  383  248 
Total Routine Calls   1034  7674  394  21540  7855 
            

Bubblesort   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8642  24298  22902  202586  33494 
Total Objects Created   41  274  275  4176  438423 
Execution Time Max (Seconds)   2.531  3.875  2.296  3.469  3.578 
Execution Time Min (Seconds)   1.765  2.375  1.719  2.656  2.782 
Execution Time Average (Seconds)   1.9703  2.8734  1.8858  3.0439  3.1626 
Total Routines   368  1109  201  665  435 
Routines Executed   96  370  111  405  250 
Total Routine Calls   3208  23275  3495  28762  176229 
            

Quicksort   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8684  24290  22908  202408  3821 
Total Objects Created   42  274  276  4174  80725 
Execution Time Max (Seconds)   2.406  3.172  2.484  3.453  3.297 
Execution Time Min (Seconds)   1.844  2.421  1.782  2.625  1.937 
Execution Time Average (Seconds)   1.9671  2.6125  1.9521  3.0018  2.672 
Total Routines   369  1110  202  666  434 
Routines Executed   96  370  111  407  249 
Total Routine Calls   3294  23603  3547  28973  20710 
            

Naïve String Matching   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8642  24298  28458  187752  31443 
Total Objects Created   41  274  460  3370  735 
Execution Time Max (Seconds)   1.11  1.344  1.078  1.703  3.095 
Execution Time Min (Seconds)   0.813  1.031  0.844  1.344  1.781 
Execution Time Average (Seconds)   0.986  1.2344  0.9703  1.3936  2.2292 
Total Routines   362  1101  214  629  225 
Routines Executed   91  365  123  380  125 
Total Routine Calls   970  8496  1035  22199  5186 
            

KMP String Matching   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8676  24295  22954  181934  34437 
Total Objects Created   42  275  181  3111  1278 
Execution Time Max (Seconds)   2.36  2.25  1.125  2.578  1.172 
Execution Time Min (Seconds)   1.734  1.873  0.828  1.344  0.922 
Execution Time Average (Seconds)   1.9156  2.052  0.9767  1.5685  1.0532 
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Total Routines   364  1110  191  624  205 
Routines Executed   92  360  105  379  106 
Total Routine Calls   468  8421  206  21180  7975 
            

Polynomial Addition   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8668  24324  23818  203160  49330 
Total Objects Created   42  275  276  4163  1207 
Execution Time Max (Seconds)   1.125  1.391  1.125  1.719  1.25 
Execution Time Min (Seconds)   0.859  1.078  0.844  1.437  0.984 
Execution Time Average (Seconds)   1.039  1.2781  0.9564  1.5781  1.1185 
Total Routines   367  1108  202  666  388 
Routines Executed   95  372  112  408  226 
Total Routine Calls   3622  24659  3686  29208  8027 
            

Gaussian Elimination   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8768  24374  65582  331356  81930 
Total Objects Created   44  276  282  5604  934 
Execution Time Max (Seconds)   1.343  1.75  1.141  1.75  1.282 
Execution Time Min (Seconds)   0.984  1.36  0.922  1.422  1.75 
Execution Time Average (Seconds)   1.1639  1.6002  1.07167  1.6001  1.2297 
Total Routines   433  1116  209  706  405 
Routines Executed   122  397  117  435  239 
Total Routine Calls   50808  81214  23287  75835  58690 
            

Minimum and Maximum   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8660  24550  21636  152270  31282 
Total Objects Created   42  276  193  2607  410 
Execution Time Max (Seconds)   1.11  1.324  1  1.578  1.234 
Execution Time Min (Seconds)   0.844  1.093  0.719  1.25  0.985 
Execution Time Average (Seconds)   0.9422  1.1579  0.8999  1.3375  1.1358 
Total Routines   369  1111  202  535  382 
Routines Executed   95  390  111  328  223 
Total Routine Calls   776  23289  429  7087  5936 
            

Random Selection   C  C++  C#  Java  
Visual 
BASIC 

            
Size in Memory (Bytes)   8993  24706  22794  205664  3985 
Total Objects Created   45  275  279  4283  81725 
Execution Time Max (Seconds)   1.45  1.576  1.231  1.593  3.569 
Execution Time Min (Seconds)   1.21  1.329  1.057  1.254  2.587 
Execution Time Average (Seconds)   1.3078  1.4587  1.1125  1.3578  3.0489 
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Total Routines   380  1266  205  591  459 
Routines Executed   100  522  119  370  291 
Total Routine Calls   768  10139  487  23590  21815 
 

Table B.2 Dynamic Raw Measurements. 

 

B.3 Metadata Measurements 

Linear Search   C  C++  C#  Java  Visual BASIC 
            
Type References   10  20  5  15  14 
Type Definitions   3  84  2  2  2 
Fields   2  82  4  4  0 
Methods   5  159  3  5  2 
Member References   7  17  6  18  16 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   4  129  2  2  1 
            
Bubblesort   C  C++  C#  Java  Visual BASIC 
            
Type References   11  20  4  14  11 
Type Definitions   5  85  2  2  2 
Fields   3  81  4  4  0 
Methods   7  158  3  5  2 
Member References   6  17  5  15  14 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   6  131  3  3  1 
            
Quicksort   C  C++  C#  Java  Visual BASIC 
            
Type References   11  20  4  14  11 
Type Definitions   5  86  2  2  2 
Fields   3  81  3  3  0 
Methods   8  159  4  6  4 
Member References   6  17  5  15  15 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   6  130  4  4  3 
            
Naïve String Matching   C  C++  C#  Java  Visual BASIC 
            
Type References   10  20  6  16  9 
Type Definitions   6  87  2  2  2 
Fields   3  82  4  4  0 
Methods   6  156  3  5  2 
Member References   6  17  7  20  11 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   6  131  2  2  1 
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KMP String Matching   C  C++  C#  Java  Visual BASIC 
            
Type References   10  20  5  16  9 
Type Definitions   6  87  2  2  2 
Fields   3  82  4  4  0 
Methods   7  156  4  5  2 
Member References   6  17  6  20  11 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   8  134  2  2  1 
            
Polynomial Addition   C  C++  C#  Java  Visual BASIC 
            
Type References   11  20  4  14  7 
Type Definitions   4  84  2  2  2 
Fields   2  80  3  3  0 
Methods   6  157  4  6  2 
Member References   6  17  5  15  8 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   3  130  3  3  1 
            
Gaussian Elimination   C  C++  C#  Java  Visual BASIC 
            
Type References   12  21  7  21  10 
Type Definitions   7  87  2  2  2 
Fields   7  82  5  5  5 
Methods   8  160  5  8  4 
Member References   8  18  10  26  14 
Assembly References   2  2  1  4  2 
Stand Alone Signatures   7  135  5  6  3 
            
Minimum and 
Maximum   C  C++  C#  Java  Visual BASIC 
            
Type References   11  20  4  14  7 
Type Definitions   3  84  2  2  2 
Fields   2  81  3  3  3 
Methods   8  157  4  6  4 
Member References   6  17  4  17  7 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   5  128  3  3  3 
            
Random Selection   C  C++  C#  Java  Visual BASIC 
            
Type References   11  20  5  15  12 
Type Definitions   3  84  2  2  2 
Fields   1  80  1  1  0 
Methods   9  158  5  7  5 
Member References   6  17  5  18  14 
Assembly References   2  2  1  3  2 
Stand Alone Signatures   7  130  5  4  4 
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B.3 Metadata Raw Measurements. 
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APPENDIX C 

PCA-RCM TOOL OUTPUT 

C.1 Static RCM Results 

C.1.1 Linear Search 

Module             DOMAIN1       RCM 
 
LSearchInC        0.02059     50.20592 
LSearchInCPP      1.78576     67.85758 
LSearchInCS      -0.67606     43.23943 
LSearchInJava    -1.01667     39.83332 
LSearchInVB      -0.11363     48.86375 
 
C.1.2 Bubblesort 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
BubbleSortInC     -0.89617   1.26372     45.86751 
BubbleSortInCPP    1.76799   0.64755     68.82833 
BubbleSortInCS    -0.31316  -0.29715     46.04476 
BubbleSortInJava  -0.76727  -0.23703     41.97851 
BubbleSortInVB     0.20861  -1.37709     47.28089 
 
C.1.3 Quicksort 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
QuickSortInC     -0.72580   0.92770     47.38275 
QuickSortInCPP    1.56988   0.95232     68.25952 
QuickSortInCS    -0.82095  -0.26198     41.45637 
QuickSortInJava  -0.71540  -0.05921     43.27473 
QuickSortInVB     0.69227  -1.55884     49.62663 
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C.1.4 Naïve String Matching 
 
Module              DOMAIN1       RCM 
 
NaiveMatchInC     -1.18986     38.10136 
NaiveMatchInCPP    1.50454     65.04539 
NaiveMatchInCS     0.27967     52.79666 
NaiveMatchInJava   0.27592     52.75918 
NaiveMatchInVB    -0.87026     41.29740 
 
C.1.5 KMP String Matching 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
KMPMatchInC      -0.93832  -0.08991     40.91790 
KMPMatchInCPP     1.50481   1.08511     67.93742 
KMPMatchInCS     -0.62999   0.40321     45.56369 
KMPMatchInJava   -0.71650   0.24888     44.20303 
KMPMatchInVB      0.78001  -1.64729     51.37796 
 
C.1.6 Polynomial Addition 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
PolyAddInC       -1.06713  -1.49415     33.52708 
PolyAddInCPP      1.80359  -0.63226     62.89410 
PolyAddInCS      -0.26580   0.55495     50.28573 
PolyAddInJava    -0.37464   0.55885     49.34546 
PolyAddInVB      -0.09603   1.01261     53.94764 
 
C.1.7 Gaussian Elimination 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
GaussElimInC     -1.04198  -0.03810     40.90937 
GaussElimInCPP    0.22681   1.81079     61.37518 
GaussElimInCS    -0.43493  -0.50142     43.67452 
GaussElimInJava  -0.49140  -0.69212     42.19850 
GaussElimInVB     1.74151  -0.57915     61.84244 
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C.1.8 Minimum and Maximum 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
PolyAddInC       -1.06713  -1.49415     33.52708 
PolyAddInCPP      1.80359  -0.63226     62.89410 
PolyAddInCS      -0.26580   0.55495     50.28573 
PolyAddInJava    -0.37464   0.55885     49.34546 
PolyAddInVB      -0.09603   1.01261     53.94764 
 
C.1.9 Random Selection 
 
Module                DOMAIN1   DOMAIN2       RCM 
 
RandomSelectInC     -0.94195   0.15369     43.54998 
RandomSelectInCPP    0.75028   1.68540     66.32114 
RandomSelectInCS    -0.74285  -0.12394     43.39678 
RandomSelectInJava  -0.56052  -0.65792     41.52603 
RandomSelectInVB     1.49504  -1.05723     55.20607 
 
C.2 Dyanmic PCA Results 

C.2.1 Linear Search 
 
Module            DOMAIN1   DOMAIN2        RCM 
 
LSearchInC       -0.81650   0.10585     42.37891 
LSearchInCPP      0.38930   1.63342     57.94902 
LSearchInCS      -1.15573  -0.84411     36.66545 
LSearchInJava     1.62794  -0.93566     63.33794 
LSearchInVB      -0.04501   0.04049     49.66868 
 
C.2.2 Bubblesort 
 
Module              DOMAIN1   DOMAIN2       RCM 
 
BubbleSortInC     -1.11255   0.04126     40.11982 
BubbleSortInCPP    0.63694  -0.88373     51.97794 
BubbleSortInCS    -1.26334   0.12175     39.10102 
BubbleSortInJava   0.81756  -0.94899     53.33151 
BubbleSortInVB     0.92139   1.66971     65.46972 
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C.2.3 Quicksort 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
QuicksortInC     -1.08609  -0.46104     38.28461 
QuicksortInCPP    0.74679  -0.47627     55.84521 
QuicksortInCS    -1.11409  -0.35265     38.31768 
QuicksortInJava   1.34132  -0.55524     61.33506 
QuicksortInVB     0.11208   1.84519     56.21744 
 
C.2.4 Naïve String Matching 
 
Module              DOMAIN1   DOMAIN2   DOMAIN3       RCM 
 
NaiveMatchInC     -1.05511  -0.23480  -0.38044     39.52060 
NaiveMatchInCPP    0.02189  -0.79517   1.62310     49.49306 
NaiveMatchInCS    -0.90031  -0.23748  -0.78964     39.71005 
NaiveMatchInJava   1.64170  -0.60304  -0.75242     57.39745 
NaiveMatchInVB     0.29183   1.87049   0.29941     63.87885 
 
C.2.5 KMP String Matching 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
KMPMatchInC      -0.17511  -1.09910     42.66456 
KMPMatchInCPP     0.88759  -1.11421     51.57864 
KMPMatchInCS     -1.21317   0.26460     41.14096 
KMPMatchInJava    1.32868   1.26631     67.98971 
KMPMatchInVB     -0.82799   0.68239     46.62614 
 
C.2.6 Polynomial Addition 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
PolyAddInC       -0.88937  -0.11951     41.05787 
PolyAddInCPP      0.42288   1.76815     57.94366 
PolyAddInCS      -0.93629  -0.49619     39.78714 
PolyAddInJava     1.69861  -0.83207     64.79111 
PolyAddInVB      -0.29583  -0.32037     46.42020 
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C.2.7 Gaussian Elimination 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
GaussElimInC     -0.77269  -0.37148     41.52299 
GaussElimInCPP    0.89778  -1.51512     54.13345 
GaussElimInCS    -1.26054   0.46903     39.32732 
GaussElimInJava   1.32563   1.27590     66.41823 
GaussElimInVB    -0.19018   0.14167     48.59801 
 
C.2.8 Minimum and Maximum 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
MinMaxInC        -0.90963  -0.11025     41.13435 
MinMaxInCPP       0.74145   1.70408     63.15437 
MinMaxInCS       -1.14799  -0.31541     38.16387 
MinMaxInJava      1.44206  -1.20336     58.99384 
MinMaxInVB       -0.12588  -0.07505     48.55355 
 
C.2.9 Random Selection 
 
Module              DOMAIN1   DOMAIN2    DOMAIN3     RCM 
 
RandomSelectInC    -0.64571  -0.89580   -0.16622   39.96725 
RandomSelectInCPP  -0.21674   1.16667   -1.41276   49.85313 
RandomSelectInCS   -0.82612  -0.93131    0.14039   39.06773 
RandomSelectInJava -0.19579   1.12466    1.44623   57.26040 
RandomSelectInVB    1.88436  -0.46421   -0.00764   63.85149 
 
 
C.3 Metadata PCA Results 

C.3.1 Linear Search 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
LSearchInC       -0.60613  -0.24699     43.45476 
LSearchInCPP      1.87152  -0.52873     65.30878 
LSearchInCS      -0.89357  -1.26426     36.93502 
LSearchInJava    -0.08477   1.46179     54.76302 
LSearchInVB      -0.28705   0.57819     49.53842 
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C.3.2 Bubblesort 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
BubbleSortInC     -0.52032  -0.12501     44.67509 
BubbleSortInCPP    1.88772  -0.47684     66.25950 
BubbleSortInCS    -0.88911  -1.31706     37.27259 
BubbleSortInJava  -0.11808   1.46743     53.71004 
BubbleSortInVB    -0.36021   0.45149     48.08278 
 
C.3.3 Quicksort 

Module             DOMAIN1   DOMAIN2       RCM 
 
QuickSortInC     -0.52171  -0.14108     44.61035 
QuickSortInCPP    1.88834  -0.47243     66.24503 
QuickSortInCS    -0.89203  -1.32571     37.18531 
QuickSortInJava  -0.13665   1.44702     53.51360 
QuickSortInVB    -0.33795   0.49220     48.44570 
 
C.3.4 Naïve String Matching 
 
Module              DOMAIN1   DOMAIN2       RCM 
 
NaiveMatchInC     -0.55684  -0.23541     43.95671 
NaiveMatchInCPP    1.87634  -0.51242     65.61470 
NaiveMatchInCS    -0.79522  -1.06681     38.71243 
NaiveMatchInJava   0.02280   1.71051     56.43357 
NaiveMatchInVB    -0.54708   0.10413     45.28259 
 
C.3.5 KMP String Matching 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
KMPMatchInC      -0.53224  -0.19415     44.33732 
KMPMatchInCPP     1.87211  -0.52712     65.41536 
KMPMatchInCS     -0.83021  -1.10450     38.18419 
KMPMatchInJava    0.02340   1.68885     56.50146 
KMPMatchInVB     -0.53306   0.13693     45.56167 
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C.3.6 Polynomial Addition 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
PolyAddInC       -0.47771   0.03275     45.54353 
PolyAddInCPP      1.89096  -0.46411     66.63264 
PolyAddInCS      -0.80086  -1.21421     38.70535 
PolyAddInJava    -0.03756   1.61332     54.50248 
PolyAddInVB      -0.57483   0.03225     44.61600 
 
C.3.7 Gaussian Elimination 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
GaussElimInC     -0.54357  -0.37995     43.41660 
GaussElimInCPP    1.87924  -0.49260     64.27769 
GaussElimInCS    -0.75503  -0.86295     39.28147 
GaussElimInJava   0.00492   1.83561     58.66395 
GaussElimInVB    -0.58555  -0.10010     44.36028 
 
C.3.8 Minimum and Maximum 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
MinMaxInC        -0.46142   0.03739     45.75710 
MinMaxInCPP       1.88344  -0.49220     66.21613 
MinMaxInCS       -0.82373  -1.16836     38.41569 
MinMaxInJava     -0.02092   1.65162     55.16425 
MinMaxInVB       -0.57736  -0.02845     44.44683 
 
C.3.9 Random Selection 
 
Module                DOMAIN1      DOMAIN2        RCM 
 
RandomSelectInC      -0.55178     -0.17728     44.21566 
RandomSelectInCPP     1.87559     -0.51840     65.57495 
RandomSelectInCS     -0.89751     -1.24688     37.09667 
RandomSelectInJava   -0.06480      1.54239     55.01995 
RandomSelectInVB     -0.36150      0.40017     48.09276 
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C.4 Overall PCA Results 

C.4.1 Linear Search 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
LSearchInC       -0.59458  -0.53907     42.00631 
LSearchInCPP      1.74330  -0.83196     58.89297 
LSearchInCS      -1.18779  -0.63916     36.67004 
LSearchInJava     0.21542   1.85091     62.87749 
LSearchInVB      -0.17636   0.15927     49.55320 
 
C.4.2 Bubblesort 
 
Module              DOMAIN1   DOMAIN2   DOMAIN3      RCM 
 
BubbleSortInC     -0.87967  -0.69416   -0.37961    38.38640 
BubbleSortInCPP    1.76322  -0.88300    0.02818    61.26959 
BubbleSortInCS    -0.99675  -0.80783    0.47012    39.11370 
BubbleSortInJava   0.02515   1.09555   -1.51729    51.08201 
BubbleSortInVB     0.08805   1.28944    1.39859    60.14830 
 
C.4.3 Quicksort 

Module             DOMAIN1   DOMAIN2   DOMAIN3       RCM 
 
QuickSortInC     -0.86671  -0.62944  -0.59915     38.23321 
QuickSortInCPP    1.63222  -1.06518  -0.16741     59.36904 
QuickSortInCS    -1.16335  -0.52243  -0.00474     37.73008 
QuickSortInJava   0.34271   1.61022  -1.02251     56.75872 
QuickSortInVB     0.05512   0.60683   1.79383     57.90894 
 
C.4.4 Naïve String Matching 
 
Module              DOMAIN1   DOMAIN2   DOMAIN3       RCM 
 
NaiveMatchInC     -0.78996  -0.86739  -0.29299     38.28832 
NaiveMatchInCPP    1.74898  -0.67623   0.59625     62.22638 
NaiveMatchInCS    -0.59153  -0.78039  -0.76851     38.85350 
NaiveMatchInJava   0.43571   1.53566  -1.09385     58.09994 
NaiveMatchInVB    -0.80320   0.78835   1.55910     52.53186 
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C.4.5 KMP String Matching 
 
Module             DOMAIN1   DOMAIN2   DOMAIN3       RCM 
 
KMPMatchInC      -0.46101  -0.17270  -1.54207     41.20859 
KMPMatchInCPP     1.82679  -0.70989   0.00793     62.06487 
KMPMatchInCS     -0.99566  -0.66914  -0.07659     38.27136 
KMPMatchInJava    0.18254   1.91586   0.12043     60.85649 
KMPMatchInVB     -0.55266  -0.36413   1.49030     47.59870 
 
C.4.6 Polynomial Addition 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
PolyAddInC       -0.86889  -0.36440     40.68640 
PolyAddInCPP      1.59069  -1.16564     57.48677 
PolyAddInCS      -0.95083  -0.39790     39.81260 
PolyAddInJava     0.69448   1.77302     65.17641 
PolyAddInVB      -0.46546   0.15492     46.83782 
 
C.4.7 Gaussian Elimination 
 
Module             DOMAIN1   DOMAIN2   DOMAIN3       RCM 
 
GaussElimInC     -0.70067  -0.40206  -0.92442     39.39356 
GaussElimInCPP    1.56922  -1.16484  -0.01351     57.23655 
GaussElimInCS    -1.14455  -0.38403  -0.39659     37.53157 
GaussElimInJava   0.67423   1.75630  -0.51192     62.27368 
GaussElimInVB    -0.39822   0.19463   1.84644     53.56464 
 
C.4.8 Minimum and Maximum 
 
Module             DOMAIN1   DOMAIN2       RCM 
 
MinMaxInC        -0.71299  -0.43225     41.66479 
MinMaxInCPP       1.79735  -0.75397     61.85344 
MinMaxInCS       -1.04166  -0.71784     37.39361 
MinMaxInJava      0.16150   1.88139     60.74776 
MinMaxInVB       -0.20420   0.02267     48.34039 
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C.4.9 Random Selection 
 
Module              DOMAIN1    DOMAIN2   DOMAIN3     RCM 
 
RandomSelectInC    -0.69703  -0.66557  -0.34606    39.78897 
RandomSelectInCPP   1.86088  -0.54339  -0.33777    59.31335 
RandomSelectInCS   -0.94027  -0.75333  -0.65767    36.52673 
RandomSelectInJava -0.14438   0.08665   1.91475    55.27323 
RandomSelectInVB   -0.07921   1.87564  -0.57326    59.09772 
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