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PREFACE 

The motivation for writing this thesis with the emphasis on metric spaces and metrization 

of topological spaces arose from the pleasant properties that allow us to relate the abstract 

realm of topological spaces to our very familiar concrete environment in which exists the 

concept of distance, size, and order between objects. 

With the general reader in mind, this paper is written and developed to be self

contained. Therefore, some of the material included provides a background for the 

development of ideas and proofs. This work contains a sequence of theorems dealing 

with metrization of topological spaces, which serve to prove Urysohn's Metrization 

Theorem. 

In 1924, shortly before his drowning at the age of twenty-six, the Russian 

mathematician Paul Urysohn first stated and proved this metrization theorem, 

concurrently with Alexandroff The work of Urysohn andAlexandroff opened a new area 

for research in topology that gained the interest of many mathematicians worldwide. 

I wish to thank my adviser Dr. Singh for his patience and unconditional support and 

encouragement during my writing of this thesis as well as Dr. Gu and Dr. McCabe for 

their suggestions and help in preparing my paper. I am grateful to my committee 

members and extend my thanks to all the members of the Department of Mathematics at 

Southwest Texas State University for inspiring me and imparting their knowledge during 

my studies of mathematics. 

Monika Bender 
November 1999 

IV 



Contents 

PREFACE ......................................................... iv 

ABSTRACT ........................................................ VI 

Chapter 

1 

2 

3 

4 

5 

6 

BACKGROUND 1 
1.1 Table of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.2 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

METRIC SPACES 

TOPOLOGICAL SPACES, GENERAL 

PRODUCT SPACES 

SPACES OF PARTICULAR TYPES 

SEPARATION BY CONTINUOUS FUNCTIONS 

7 

13 

21 

27 

32 

REFERENCES ..................................................... 49 

V 



ABSTRACT 

METRIZATION THEOREMS 

Monika Bender, B.S. 
Southwest Texas State University 
November 1999 

SUPER VISING PROFESSOR: Sukhjit Singh 

The goal of this study is to prove The Urysohn Metrization Theorem. This paper 

represents an introduction to topological spaces with the focus on metric spaces. We 

provide a background in set theory and function theory first, then proceed introducing the 

distance function and looking at some examples of metric spaces, especially the 

Euclidean n-space. The overview of topological spaces in general leads us to product 

spaces. Our study of connectedness and separability of topological spaces paves the way 

to the separation by continuous functions. In conclusion, the proofs of Urysohn's Lemma 

and The Tietze Extension Theorem enable us to prove The Urysohn Metrization 

Theorem. 

V1 



Chapter 1 

BACKGROUND 

This chapter begins with a table containing the explanations of symbols used through

out this paper. It furthermor~ provides a collection of definitions and propositions 

selected from topics of set theory and some basics of function theory. 

1.1 Table of Symbols 

SYMBOL: DEFINITION: 

Z set of integers 

IR. set of real numbers 

JR.2 Cartesian plane 

IR_n Euclidean space of n-dimensions 

]HI Hilbert space 

0 origin of n-dimensional Euclidean space 

(x, y), (x1,x2 , •.. , Xn) ordered pair, ordered n-tuple 
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SYMBOL: 

Ac 

A' 

A 

E 

(j_ 

L 

IT 

(a, b) 

[a, b] 

{a,b, c, ... n} 

{a} 

{an} 

0 

=I-

:3 

3 

C 

u,u 
n,n 

DEFINITION: 

complement of set A 

set of all limit points of a set A 

closure of A 

an element of, belongs to 

not an element of 

summation 

product of sets 

open interval, segment, subset of the real number line 

closed interval, subset of the real number line 

set or collection of elements 

singleton set 

sequence 

empty set 

not equal to 

inequality symbols 

there exists 

given that 

such that 

subset of a set 

union of sets 

intersection of sets 
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SYMBOL: 

f:X--+Y 

1-1 

V 

DEFINITION: 

function from a set X to a set Y 

inverse of a function f 

for every 

implies 

if and only if 

conclusion, therefore 

fog function composition 

I where I C z+ indexing set 

3 
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1.2 Set Theory 

Definition 1 A set is a collection of elements. A is a subset of B, A C B, if every 

element of A is in B. A = B if and only if A C B and B C A. 

Definition 2 Then the union of sets A and B is a set consisting of all elements x 

which belong to at least one of the sets A and B: AU B = {x: x EA or x EB}. 

Definition 3 Suppose A,B are sets. The intersection of A and B is a set consisting 

of all elements x which belong to both A and B: An B = {x: x EA and x EB}. 

Definition 4 Suppose A,B are sets. A and B are disjoint if An B = 0. 

Definition 5 Suppose A and B are sets. The set difference B\A is the set of all 

points of B which do not belong to A: B\A = { x : x E B and x (j. A}. 

Definition 6 The complement of A C X is the set A0 = { x : x E X and x (j. A}. 

Definition 7 A number u is an upper bound for a set A of real numbers provided 

that a :Su for all a EA. If there is a smallest upper bound Uo for A, an upper bound 

Uo less than all other upper bounds for A, then u0 is called the least upper bound 

of A, denoted by lubA. A number l is a lower bound for a set A of real numbers 

provided that l :S a for all a E A. If there is a largest lower bound lo for A, that is, a 

lower bound greater than all other lower bounds for A, then l0 is called the greatest 

lower bound of A, denoted by glbA. 

Proposition 8 De Morgan's Laws: Let X be a set and let {~tEr be a family of 

subsets of X. Then, ( _n ~)c =Uk' 
iEI iEI 

and (u Ai) C =n A~. 
iEl iEl 
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1.3 Functions 

Definition 9 Let X and Y be two sets. A function f from X to Y is a rule which 

assigns to each member x E X a unique member y = f ( x) E Y, and l is denoted by 

f:X---+Y. 

Definition 10 The Cartesian plane Ill2 = Illxlll. 

Definition 11 The Cartesian product Ax B = {(a, b) : a EA and b EB}. Infi

nite products are defined in Chapter 4. 

Definition 12 Suppose X and Y are sets, A C X and B C Y, and f : X ---+ Y. 

Then, 

1. f (A)= {y E Y: y = l (x) for some x EA} is the image of A under f. 

2. 1-1 (B) = {x EX: f (x) EB} is the inverse image of B under f. 

3. f is one-to-one, if for X1, X2 EX and x1 -=/- x2, f (x1) -=/- l (x2). 

4- f is onto if f (X) = Y. 

Definition 13 Suppose A,, is a set, i E J where I is an indexing set. Then, 

1. uiEJAi = {x: XE A,,, for at least one i E J}. 

Proposition 14 Suppose f : X ---+ Y, A1, A2 C X, and B1, B2 C Y. Then, 

1. f (A1 u A2) = l (A1) U l (A2)-

2. f (A1 n A2) Cl (A1) n l (A2). 

3. 1-1 (B1 U B2) = 1-1 (B1) U 1-1 (B2)-

4. 1-1 (B1 n B2) = 1-1 (B1) n 1-1 (B2). 
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Proposition 15 Let I: X-----+ Y be a function, and let {Ai}iEI be a family of subsets 

of X, and {Bi} iEJ be a family of subsets of Y. Then, 

1. I (UiEJAi) = UiEJI (Ai). 

2. 1 (niEJ Ai) c niEJ 1 (Ai). 

3. i-l ( nJEJ Bj) = nJEJ i-1 (Bj) 

4. 1-1 (u3EJBJ) =U3EJ1-1 (B3)-

Proposition 16 Let I : X -----+ Y be a function. Let A C X and B C Y. Then, 

1. Ac 1-1 (f (A)). 

2. I (f-1 (B)) CB. 

3. if I is one-to-one, then 1-1 (f (A)) = A. 

4. if I is onto, then I (f- 1 (B)) = B. 

Proposition 17 If I is one-to-one and onto, then 1-1 is one-to-one and onto. 

Definition 18 Let I : X -----+ Y and g : Y -----+ Z. The composite function g o I : 

X-----+ Z is defined by (go f) (x) = g (f (x)) for x EX. 

Definition 19 Let a= (a1 , a2) E IR2 and let r be a positive number. The open ball 

B (a, r) with center a and radius r is the set B (a, r) = {x = (x1 , x2) E IR2 : d (a, x) < r} 

where the distance between a and x is defined by d (a, x) = J(a1 - x1) 2 + (a2 - x2) 2 . 

Definition 20 A set O C IR2 is open if it is the union of some family of open balls. 

Definition 21 A set A C IR2 is closed if its complement IR2\A is open. 



Chapter 2 

METRIC SPACES 

In this section we define the distance function and the metric space, then focus on 

the Euclidean space showing that the Euclidean Metric is indeed a metric. We also 

include the definition for the discrete metric, among other definitions, and a proof 

that shows that the conditions of the definition of the metric are safisfied for the 

discrete metric. 

Definition 22 Let X be a set and d : X x X ---+ IR be a function such that for all 

x, y, z EX, d (x, y) ~ O, and the conditions 

1. d (x,y) = 0 if and only if x = y. 

2. d ( x, y) = d (y, x). 

3. d (x, z) ~ d (x, y) + d (y, z) 

hold, then d is a metric or distance function on X x X and d ( x, y) is the distance 

from x toy. 

Definition 23 The set (X, d) denotes a metric space. 

7 
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Definition 24 Euclidean n-space (IR.n, d) or the usual topology for IR_n is the set 

IR.n = { x = (xi, X2, ... , Xn) : xi E IR. for i = 1, 2, ... , n} with the metric d defined for 

each n by 

d(x, y) = ( t. (x, - y,) 2), X = (xi, x,, x,, ... , Xn), Y = (Yi, Y,, y,, ... , Yn) E lit". 

Proposition 25 The Euclidean Metric on IR_n is indeed a metric. 

PROOF: 

a= (a1, a2, ... , an), b = (b1, b2, ... , bn), d (a, b) = ✓ (I::1 (ai - bi)2). 

1. d (a, b) = 0 ⇒ (ai - bi) 2 = 0 Vi E z+ ⇒ ai = bi Vi E z+ 

ai = bi Vi E z+ ⇒ d(a,b) = 0 

d(a,b)=O-¢::::=? ai=bi ViEZ+. 

2. ( ai - bi)2 = (bi - ai)2 ⇒ J (L~=l ( ai - bi)2) = J (L~=l (bi - ai)2) 

d(a,b) = d(b,a) 

3. To show that d (x, z) ~ d (x, y) + d (y, z) for x, y, z E IR_n, it suffices to study 

the three sides of the triangle in IR.2 • Consider a triangle in the plane. Place the 

triangle with one of its vertices at the origin and, if needed, rotate the triangle 

such that one of its sides coincides with the positive side of the x-axis. 

A-b ~B 

b ~C 
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y 

B 
(b,c) 

C 
! 

C ! B C: 
I 

(0,0) A (a,O) X 

Triangle Inequality 

Choosing a set of arbitrary three points x, y, z E Rn, we can construct a triangle 

with each of x, y, z as one of the vertices. Three points determine a plane, thus the 

triangle resides in a plane Rk whose properties correspond to R2 • Then, our triangle 

with the vertices x, y, z existing in Rk is equivalent to the triangle explored in the 

above example for R2• By induction then, the triangle inequality holds for Rn. 

:. Since d (x, z) S:. d (x, y) + d (y, z) for x, y, z E Rn holds, the Euclidean Metric 

is indeed a metric. 

The triangle inequality can also be proved using the Minkowski Inequality which can 

be derived from the Cauchy-Schwarz inequality. One version of the proof is found on 

page 57 [1] and a different version is utilizing La Grange multipliers [11]. 

Definition 26 Let X be a set and define d : X xX - Ilt by d (x, y) - ( : 

Then d is called the "discrete metric." 

ifx = y 

if X =/- y 

Proposition 27 The discrete metric d on X x X as defined above is indeed a metric. 

PROOF: Suppose x,y,z EX. 



Need to show: 1) d (x, y) = 0 {=}x=y 

2) d(x,y)=d(y,x) 

3) d(x,z) ~ d(x,y) +d(y,z). 

1) Supposed (x, y) = 0 and assume x =J- y. 

x =J- y =} d (x, y) = 1. But, by hypothesis, d (x, y) = 0. 

d(x,y)=O =} x=y 

:. d (x, y) = 0 {::} x = y. 

By way of contraposition. 

2) (i) Suppose x = y. 

x=y =} d(x,y)=O 

y = x =} d (y, x) = 0 

=} d ( x, y) = d (y, x) = 0 

(ii) Suppose x =J- y. 

x=J-y =} d(x,y)=l 

y =J- x =} d (y, x) = 1 

=} d ( x, y) = d (y, x) = 1 

d (x, y) = d (y, x) holds. 

3) Cases to examine: 

(i) X = y = Z 

( ii) x =J- y, y =J- z, and x =/:- z. 

(iii) x = y, but x =/:- z. 

and since (x = y) - (y = x), 

and since (x =J- y) = (y =J- x), 

The case where x = z, but y =/:- z is similar and we omit the proof. 

(i) x = y = z =} d (x, y) = d (y, z) = d (x, z) = 0 

=} d(x,z) = d(x,y) +d(y,z) 

10 
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(ii) Suppose x =/ y, y =/ z, and x =/ z. 

x=/ z ⇒ d(x,z) = 1 

x =/ y, and y =/ z ⇒ d(x,y) = 1 and d(y,z) = 1 

⇒ d (x, z) < d (x, y) + d (y, z) = 2 

(iii) Suppose x = y and x =/ z. 

x=/ z ⇒ d(x,z) = 1 

x = y and y =/ z ⇒ d(x,y) = 0 and d(y,z) = 1 

⇒ d(x,z) = d(x,y) +d(y,z) 

d(x,z) ~ d(x,y) +d(y,z) 

The function d : X x X -+ IR. satisfies the definition for a metric. Therefore, the 

discrete metric is indeed a metric. 

Definition 28 Let ( X, d) be a metric space and A C X. A point x E X is a limit 

point of A if every open set containing x contains a point of A distinct from x. The 

derived set A' is the set of limit points of A. 

Definition 29 Let (X,d) be a metric space, ACX and A=/ 0 .. lf{d (x,y): x,y EA} 

has an upper bound, then A is called a bounded set and l'llh { d ( x, y) : x, y E A} = 

D (A) is called the diameter of A. The diameter of the empty set is zero. If the set 

X is bounded, then (X, d) is a bounded metric space. 

Definition 30 Let (X, d) be a metric space, A C X be non-empty, and x E X. The 

distanced (x, A) from x to A is defined by d (x, A) = glb { d (x, y) : y EA}. 

Definition 31 Let (X, d) be a metric space, a E X, and r E IR_+. The open ball 

Bd (a, r) is the set Bd (a, r) = {x EX: d (a, x) < r }, with center a and radius r. 
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The closed ball is the set Ed [a,r] = {x EX: d (a,x)::; r}, with center a and radius 

r. U'hen dealing with a single metric, we use the notation B (a,r) and B [a,r]. 

Definition 32 Let (X, d) and (Y, d') be metric spaces and f : X ---t Y a function. 

Then f is continuous at a point a E X if for each € > 0 there is a 8 > 0 such that 

if x E X and d (x, a) < 8, then d' (f (x), f (a)) < €. A function is continuous if it 

is continuous at each point of its domain. 



Chapter 3 

TOPOLOGICAL SPACES, 

GENERAL 

In this chapter we consider topological spaces from a general perspective. Here, 

examples of topological spaces with different kinds of topologies are given, definitions 

are included, and several proofs are worked out. 

Definition 33 Let X be a set and let T be a family of subsets of X satisfying the 

fallowing conditions: 

1. The set X and the empty set 0 belong to T. 

2. The union of any family of members of T is a member of T. 

3. The intersection of any finite family of members of T is a member of T. 

Then T is a topology for X and the members of T are open sets. The ordered pair 

(X, T) is called a topological space. Often we refer to the topological space (X, T) 

simply as "the space X." 

13 



Example 34 A topology induced on a set X by a metric is a metric topology. 

A set with the metric topology is a metric space. 

14 

Example 35 For a set X, the topology generated by the discrete metric (Def. 26) is 

the discrete topology. In the discrete topology, every subset of X is open. Thus, 

the discrete topology consists of all open subsets of X, and it is the largest possible 

collection of open subsets of X. A set with the discrete topology is a discrete space. 

Example 36 The topology Tr= {X, 0} is called the trivial, or indiscrete topology. 

Example 37 The topology T' consisting of 0 and all O C X for which X\ 0 is finite 

is called the finite complement topology. 

Definition 38 Let (X, T) be a topological space. A basis B for T is a subcollection 

of elements of T such that each element of T is a union of elements of B. The 

elements of B are called basic open sets, and T is the topology generated by B. 

Usually we refer to B as the basis for X. 

Proposition 39 Let X be a set on which the discrete metric is defined. The topology 

Tx induced by the discrete metric on the set X is the discrete topology. 

PROOF: 

Let x EX. Then Vy EX 3 y -=f. x, d (x, y) = l Def. 26 

⇒ B(x, ½) = {x} and B(y, ½) = {y} are open balls. 

Let u C X, and u,, Eu for i E J. Then, u = uiEJ {u,,} = UiEJB (ui, ½)

{ ui} is an open ball Vi E J ⇒ { ui} is an open set Vi E J 
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⇒ UC Xis open (arbitrary union of open sets is open) 

⇒ X is a union of open sets 

⇒ Tx is the discrete topology 

: . The topology induced on a set X by the discrete metric is the discrete topology. 

Definition 40 A subset C of a topological space Xis closed provided its complement 

X\C is open. 

Definition 41 Let ( X, T) be a topological space and A C X. A point x E X is a 

limit point of A if every open set containing x contains a point of A distinct from 

x. The set of limit points A' is called the derived set of A. 

Definition 42 Let A be a sub,set of a topological space X. A point x E A is an 

interior point of A if there is an open set O containing x and contained in A. The 

interior of A is the set of all interior points of A. The closure of A is the set 

A = A U A'. A point x E X is a boundary point of A if x belongs to both A and 

X\A. The set of boundary points of A is called the boundary of A. 

Definition 43 Let A be a subset of a topological space X. A collection CJ = { U a : a E A} 

of subsets of Xis an open cover of A ifLJ {UaLEA contains A. A subcover derived 

from an open cover CJ is a subcollection CJ ' of CJ whose union contains A. An open 

cover of a space X is a family of open subsets of X whose union is X. 

Definition 44 A topological space X is compact if every open cover of X has a 

finite subcover. X is countably compact if every countable open cover of X has 
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a finite subcover. X is a Lindelof space if every open cover of X has a countable 

subcover. 

Lemma 45 If there exists a basis B for a topological space X such that every open 

cover of X by elements of B has a finite subcover, then X is compact 

PROOF: 

Let X be a space and B be a basis for X such that every open cover by elements of 

B has a finite subcover. 

Let O be an open cover of X composed of elements of B, x EX. 

Then there is an open set Ox E O that contains x. 

⇒ ~Bx EB 3 x E Bx C Ox (basis) 

⇒ the collection { Bx : x E X} is an open cover of X which by hypothesis has a finite 

subcollection { Bx.} ~=l for i E z+. Then, { Bx.} ~ 1 is a finite subcover that covers X. 

The corresponding collection {Ox.}~=l is a finite subcover of O that covers X. 

X is a compact space. 

Definition 46 A subset A of a space X is dense in X if for each point p EX, p 

is a limit point of A. Thus, A is dense in X if A = X. If X has a countable dense 

subset, then X is a sepamble space. 

Example 47 IR is a separable space since the set of rational numbers Q is a countable 

dense subset of IR. 

Theorem 48 A f amity B of subsets of a set X is a basis for some topology for X if 

and only if both of the fallowing conditions hold: 
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l. UBEBB =X. 

2. 'i!B1,B2 EB andx E B1 n B2, =lBx EB 3 x E Bx C (B1 n B2). 

Definition 49 Let (X, T) be a space, a E X. A local basis at a is a subcollection 

Ba of T such that 

1. a belongs to each member of Ba 

2. for each open set Q containing a, there is a member r of Ba such that r E Q. 

Definition 50 A space X is first countable provided that there is a countable local 

basis at each point of X. The space X is second countable provided the topology of 

X has a countable basis. 

Definition 51 Let B and B' be bases for topologies T and T' for a set X. Then B 

and B' are equivalent bases provided that the topologies T and T' are identical. 

Definition 52 Let (X, T) be a space. A subcollection S of T is a subbasis for T if 

the family B of all finite intersections of members of S is a basis for T. 

Definition 53 A function f : (X, T) -+ (Y, T ') is continuous means that for each 

open set V in Y, 1-1 (V) is an open set in X. 

Proposition 54 Suppose ( X, Tx) and (Y, Ty) are topological spaces and Tx is the 

discrete topology. Then any function f : X -+ Y is continuous. 

PROOF: 

Let f be a function from X to Y and OE Ty be an open set. Note that O Cf (X). 
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l is a function ::::} 1-1 (0) exists and 1-1 (0) E Tx 

Tx is discrete ::::} 1-1 ( 0) C X is open 

1-1 (0) E Tx \r/0 E Ty =} l : X-----+ Y is continuous. 

If Tx is the discrete topology, then any function l : X -----+ Y is continuous. 

Definition 55 Let l : X -----+ Y be a function on the indicated spaces. Then l is an 

open function if for each open set O C X, l ( 0) is open in Y. The function l is a 

closed function if for each closed set C C X, l ( C) is closed in Y. 

Proposition 56 Let l : X -----+ Y be a continuous function between the spaces (X, Tx) 

and (Y, Ty). Then 1-1 (F) is a closed subset of X for every closed subset F of Y. 

PROOF: 

Let F C Y be closed. Then Y\F is open and 1-1 (Y\F) C X is open since l is 

continuous. 

To complete the proof, it suffices to show: 1-1 (Y\F) = X\ (f-1 (F)). 

(a) Let x E J-1 (Y\F). 

=} X (j. 1-1 (F) ::::} X E [x\1-1 (F)] ::::} 1-1 (Y\F) C x\1- 1 (F). 

(b) Let z E 1-1 (F). 

⇒ z ff_ 1-1 (Y\F) ⇒ z E [X\ (f-1 (Y\F))] 

::::} 1-1 (F) C X\ u-1 (Y\F)) ::::} (x\1-1 (F)) C u-1 (Y\F)). 

By the results of (a) and (b): 1-1 (Y\F) = X\ (f-1 (F)). 

⇒ X\ (f-1 (F)) is open, and 

1-1 (Y\F) is open ::::} X\l- 1 (Y\F) is closed, and 
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X\l- 1 (Y\F) = 1-1 (F) ⇒ 1-1 (F) c X is a closed set. 

1-1 (F) is a closed subset of X for every closed subset F of Y. 

Definition 57 Topological spaces X and Y are topological,ly equivalent or home

omorphic if there is a one-to-one and onto function l: X-----+ Y such that each of l 

and 1-1 is continuous. The function l is called a homeomorphism. 

Definition 58 If space X is homeomorphic to a subspace A of Y, then X is said to 

be embedded in Y and the homeomorphism l : X -----+ A C Y is an embedding of X 

in Y. 

Definition 59 A topological space ( X, T) is metrizable if and only if there exists a 

metric d for X such that the metric topology generated by d is identical to the original 

topology T. 

Definition 60 A topological space X is a Hausdorff space if for each pair a, b of 

distinct points of X there exist disjoint open sets U and V such that a E U and b E V. 

Theorem 61 Let (X, d) be a metric space and x, y E X such that x =/- y. Then, 

there exist two open sets U, V C X in T such that x EU, y EV, and Un V = 0. 

Thus, every metric space is Hausdorff. 

PROOF: 

x-=/ y =} d (x, y) > 0. Define c < ½d (x, y). 

=lB (x, c) c X, and =lB (y, c) C X, and B (x, c) n B (y, c) = 0. 

Suppose the intersection is not empty. Assume z EB (x,c) n B (y,c). Then, 



d(x,z) < c and d(z,y) < c 

d(x,y) ~ d(x,z) +d(z,y) < c+c < 2 (½d(x,y)) = d(x,y) 

But, d (x, y) -/. d (x, y); contradiction, means the assumption was false. 

Call U = B ( x, c) and V = B (y, c). 

U is an open set containing x, 

V is an open set containing y, and 

unv = 0. 

Any metric space (X, T) is Hausdorff. 

20 

Proposition 62 The indiscrete topology on a set with more than one element is not 

metrizable. 

PROOF: 

For simplicity, we prove the statement holds for a set of two elements. Let X ={ a, b}. 

The in discrete topology on X is the set { X, 0} = {{ a, b} , 0}. 

For any metric on X, d (a, b) = c > 0, and 

B(b,½) = {a} and B (b,½) = {b} areopensetswhicharemembersofthemetric 

topology on X. 

But, {a}¢ {X, 0} and {b} ¢ {X, 0}, and thus the metric topology generated by 

d is not identical with the original indiscrete topology . 

. ·. The indiscrete topology on a set with more than one element is not metrizable. 

Definition 63 A topological space Xis disconnected or sepamted if it is the union 

of two disjoint, non-empty open sets. Such a pair A, B of subsets of X is called a 

sepamtion of X. A space X is connected zf it is not disconnected. 



Chapter 4 

PRODUCT SPACES 

Chapter Four is dedicated to product spaces. Connectedness and separability of 

topological spaces and the properties of products of topological spaces are introduced 

and surveyed. 

Definition 64 Let (X1, Ti), (X2, T:i), ... , (Xn, Tn) be a non-empty collection of topo

logical spaces, and let X denote the Cartesian product 

X = TI x. = X1 X X2 X ... X Xn = { X1' X2' ... ' Xn : x. E xi' i = l, 2, ... n}. 

Let B be a family of all subsets of X of the form O = TI~=l 0, = 01 X 0 2 x · · · X On 

where each set 0, is an open set in the topology 'L for Xi. Then B is a basis for 

a topology Tx for X. This topology is called the product topology, and the set 

(X, Tx) is a product space. The spaces X 1, X 2, ... , Xn are the coordinate spaces 

or factor spaces of X. Since each point x EX is of the form x = (x1 , x 2 , ..• , Xn), 

x, E X,, l ~ i ~ n, there exists a function Pi : X -----+ Xi where l ~ i ~ n, defined by 

Pi (x1 , x 2 , ... , xn) = x •. This function Pi is called the ith projection m,ap. 

21 
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Theorem 65 The continuous image of a connected set is connected. 

Lemma 66 The projection map Pi : X - Xi from a product space to the factor 

spaces is continuous. 

PROOF: The following is a summary of the proof given in [l]. 

p:;1 (Oi) is a finite product of open sets ⇒ p-;1 (Oi) is an open set 

⇒ Pi is continuous. 

The projection map from a product space to the factor spaces is continuous. 

Theorem 67 The product of two Hausdorff spaces is a Hausdorff space. 

PROOF: Suppose each of X and Y is a Hausdorff space. 

Let (a, b), (c, d) EX x Y 3 (a, b) -/- (c, d). 

(a, b) -/- (c, d) ⇒ a-/- c, orb-/- d. Assume a-/- c (argument is similar for b-/- d). 

X Hausdorff ⇒ :3 U, V c X 3 a E U, c E V, U n V = 0. 

(a,b) EU x Y, (c,d) EV x Y, (U x Y) n (V x Y) = 0. 

The product of two Hausdorff spaces is a Hausdorff space. 

uxv VXY 
r I 

I 
I 

I I I 
I ! 

• 
• {c,d) 

(a,b) 

u T X 

Product of Hausdorff Spaces 
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Theorem 68 The product X x Y is connected if and only if each of X and Y is a 

connected space. 

PROOF: 

----'-Let each of X and Y be connected, a E X and b E Y. 

Define Z: XX Y-+ subspace of XX Y as follows. 

Z(a,b) = X x {b} U {a} x Y = { (p, q) : p E X and q = b or p = a and q E Y} 

Each of X and Y connected ⇒ each of X x { b} and 

{a} X Y is connected byThm.65. 

{a}xr 
Y------~--------~ 

b 1------------11------------1Xx {b} 

a X 

Product of Connected Spaces 

LJ Z(a,b) = LJ (X X {b}) U ({a} x Y) 

⇒ {a}, {b} E Z(a,b) Va EX and Vb E Y. 

⇒ X x Y is connected. 

,_ Suppose Xx Y is connected. 

Define Px: XxY-+ X,py: XxY-+ Y, by (x,y) ~ x forx EX and(x,y) ~ y 

for y E Y. 

The projection maps from a product space to the coordinate spaces are continuous 

by Lemma 66. 
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⇒ each of X and Y is connected by Thm. 65 

X x Y is connected {:} each of X and Y is connected. 

Inductively, the product of a finite number of connected spaces is connected if and 

only if each of the factor spaces is itself connected. 

Theorem 69 Let X and Y be separable spaces. Then the product Xx Y is separable. 

PROOF: Let A C X be countable and dense, B C Y be countable and dense. 

Let Q be and open subset of XX Y where Q = U X V for U C Xis open and 

V CY is open. 

X separable ⇒ :3 a E U 3 a E A C X 

Y separable ⇒ :3 b E V 3 b E B C Y 

Pick a E U 3 a E A c X and b E V 3 b E B CY. 

⇒ :3 (a, b) E U x V 3 (a, b) EA x B C Xx Y 

⇒ A x B is dense in X x Y 

each of A and B is countable =* A X B C X x Y is countable. 

:. XX Y is a separable space by Def.46. 

Theorem 70 { 1) The product of a finite number of first countable spaces is first 

countable. 

{2) The product of a finite number of second countable spaces is second countable. 

PROOF: It suffices to prove that the theorem holds for n = 2. 

(1) Let A, B be first countable spaces, and (a, b) EA x B ⇒ a EA, b EB. 

Let W C A x B be open E ( a, b) E W. 
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⇒ :3 open sets Uc A and V C B 3 (U x V) CW and a E U, b E V. 

A first countable=> :3 a countable basis A at a, where A is the collection of open sets 

{Od:1 where a E Oi CU for some i E z+, 

B first countable=> :3 a countable basis Bat b, where Bis the collection of open sets 

{P1};:1 where b E P1 CV for some j E z+, 

=> (a, b) E (Oi x P1 ) C (U x V) CW 

A,B countable=> AX B countable=> AX Bis a countable local basis at (a, b). 

A x B is a first countable space. 

(2) Let each of X and Y be a second countable space. 

X second countable => :3 countable basis {Ui}:1 for X 

Y second countable => :3 countable basis {½} ; 1 for Y. 

Define B = { U x V: U E {Ui}:1 , VE {½};:1 }. 

Since each of {Ui}:1 and {½};:1 is countable, Bis countable. 

To show that B is a basis for X x Y, use Thm. 48: 

( a) u:1 u. X u;l ½ = X X y 

(b) Let (U, x ½), (Ur x ½) EB, and (a, b) E (Ui x ½) n (Ur x ½) 

(Ui x ½) n (Ur x ½) is an open set, and 

(U, n Ur) is an open set containing a=> :3 Ua C (U, n Ur) 3 Ua E {U,} : 1 and a E U0 

(½ n ½) is an open set containing b => :3¼ C (½ n ½) 3 ¼ E {½};1 and b E ¼ 

=> (a, b) E (Ua X ¼), (Ua X ¼) C (Ui X 1'j) n (Ur X ½), and (Ua X ¼) EB 

=> B is a basis for a topology of X X Y 
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::::;,- B is a countable basis for X x Y 

XX Y is a second countable space. 

Theorem 71 The product of a finite number of compact spaces is compact. 

PROOF: Suppose each of X, Y is a compact space. 

Let B = { U x V : U C X, V C Y, and each of U, V is open} be a basis for X x Y and 

B be an open cover for Xx Y where 

{ Ui} ~ 1 is an open cover for X, and {½} ;':1 is an open cover for Y 

X compact ::::;,- :3 a finite subcover {Ui} ~=l that covers X 

Y compact ::::;,- :3 a finite subcover {½} ;:1 that covers Y 

::::;,- { Ui x ½ : Ui E {Ui}~=I and½ E {½};:1 for i,j E z+} is a finite subcover of B 

that covers Xx Y. By Lemma 45, Xx Y is compact . 

. ·. If each of X and Y is a compact space, then Xx Y is a compact space. Inductively, 

the product of a finite number of compact spaces is compact. 



Chapter 5 

SPACES OF PARTICULAR 

TYPES 

In this chapter, topological spaces will be studied and categorized according to the 

properties that arbitrary pairs of subsets of a topological space have in relation to 

each other. In particular, these are the properties determining whether a pair of 

subsets can be enclosed in a pair of disjoint open subsets of a space. These properties 

are called separation properties. 

Definition 72 T 0 -space A space X is a T0 -space if for each pair a, b EX, there 

exists an open set U C X such that a E U, but b (/:. U. 

T 1 -space A space X is a T1 -space if for each pair a, b E X, there eJist open sets 

U, V c X such that a E U but b (/:. U, and b E V but a (/:. V. 

T 2-space, Hausdorff space A space X is a T2-space if for each pair a, b E X, 

there eJist open sets U, V C X such that a EU, b EV, and Un V = 0. 

27 
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T3 -space, regular space is a T1 -space X such that for each closed set CCX and 

each point a ¢ C, there exi,st open sets U, V C X such that a E U, C c V, and 

T 4 -space, normal space is a T1 -space X with the property that for each pair of 

closed sets A, B C X, An B = 0 there exi,st open sets U,V C X such that AC U, 

B c V, and U n V = 0. 

Theorem 73 A T1 space X is regular if and only if for each a E X and for each 

open set U containing a, there exi,sts an open set W containing a such that W c U. 

PROOF: 

Suppose Xis regular. Let a EX and UC X such that a EU. 

⇒ X\U is closed and a fj. X\U 

X regular ⇒ :3 W, V C X are open and disjoint 3 a E Wand (X\U) CV 

V open ⇒ X\ V is closed 

W c (X\ V) and X\ V closed ⇒ W c (X\ V) 

WC WC (X\ V) C X\ (X\U) = U 

⇒ wcu 

Supppose Va E X and V open set U containing a, :3 W open 3 a E Wand W C U. 

Let a E X and C C X be a closed set 3 a fj. C. 

C closed ⇒ X\ C open 

Define U = X\ C 

⇒ a EU and, by hypothesis, :3W open 3 a E Wand WC U. 

⇒ X\W is open and Cc (X\W) 
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W c W and W n (X\ W) = 0 ⇒ W n (X\ W) = 0 

a E W, CC (X\W), and W n (X\W) = 0 ⇒ Xis regular . 

. ·. X regular ~ Va E X and V open set U containing a, :3 W open set containing a 

and 3 WC U. 

Theorem 7 4 A T1 space X is regular if and only if for each a E X and each C C X 

closed, with a (/. C, there exist open sets U, V C X such that a E U, C C V, and 

PROOF: 

--'- Suppose X is regular. 

Let a EX, Cc X be closed, and a (j. C. 

C closed ⇒ X\ C open 

a (/. C ⇒ a E X\ C 

⇒ :3W open 3 a E W, W c (X\C), and :3U open 3 a EU, Uc W by Thm.73 

Uc W c W c (X\C) ⇒ CC X\W where X\W is open 

Define V = X\W. ⇒ V = X\W 

Wn (X\W) = 0 and UC W ⇒ UnX\W c Wn (x\w) = 0 

⇒ UnV=0 

,._ Suppose for each a EX and closed set CCX, a (j. C, :3 open sets U, V C X 3 

a EU, Cc V, and Un V = 0. 

By definition, Xis regular, and X is normal. 

X is regular ~ Va EX and VC C X closed, 3 a(/. C, there exist open sets 

U, V c X 3 a E U, C C V, and Un V = 0. 
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Theorem 75 A T1 space X is normal if and only if \:/ closed A C X and open U 

containing A, there exi,sts an open set W containing A such that W C U. 

PROOF: _,_ Suppose X is normal. Let A C X be closed and U be an open set 

containing A. 

U open ⇒ X\ U closed 

X normal ⇒ :3W, V open 3 AC W, (X\U) CV, and W n V = 0 

(X\U) c V ⇒ (X\V) c U 

A C W C W C (X\ V) C U ⇒ :3 W open, A C W, 3 W c U . 

..------ Let each of A, B c X be closed and A n B = 0. 

Let U c X be open 3 A c U and W1 be an open set 3 A c W1 c W1 c U. 

U open ⇒ X\ U closed 

W1 closed ⇒ X\ W1 open 

W1 cU ⇒ X\UcX\W1 

W1 n X\ W1 = 0 and W1 c W1 ⇒ W1 n X\ W1 = 0 

Let V = X\W1• So, Vis open and B c V. 

:3W2 open 3 B C W2 C W2 C V 

W2 n X\ W2 = 0 and W2 c W2 ⇒ W2 n X\ W2 = 0 

W1 n V = 0 and W2 c V ⇒ W1 n W2 = 0 

W1 n W2 = 0 and A C W1 and B C W2 ⇒ X is normal by definition. 

X normal ~ \;/ A C X closed and VU open 3 A C U, :3 W open and A C W 

3WCU. 
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Theorem 76 A T1 space X is normal if and only if\:/ pair A, B of disjoint closed 

sets in X, there exist open set;s U,V such that AC U and BCV, Un V = 0. 

PROOF: 

_____,_ Suppose Xis normal. 

Let A,B c X be closed and disjoint. 

X normal ⇒ :3 open S,W C X 3 A C S, B C W, Sn W = 0 

⇒ :3 open U 3 A c U and U C S by Thm. 75 

⇒ :3 open V 3 B c V and V c W by Thm. 75 

s n w = 0, u c s, and v c w 

⇒ UnV=0. 

Suppose A, B C X are closed, the sets U, V C X are open 

3 Ac U, B CV, and Un V = 0. 

Thus, A c U c U, and B c V c V, and Un V = 0 ⇒ Un V = 0 

⇒ X is normal. 

X is normal {::} V A, B closed in X 3 A n B = 0, :3 U, V open 

3 Ac U, B c V, Un V = 0. 

Theorem 77 Every regular Lindelof space is normal. The proof of this theorem is 

given on page 238 in [ 1 j. 



Chapter 6 

SEPARATION BY 

CONTINUOUS FUNCTIONS 

In this chapter, one method of constructing the set of dyadic numbers is given, along 

with the proof of its denseness in the real number system. Furthermore, the instru

mental tools for the proof of The Urysohn's Metrization Theorem-Urysohn's Lemma 

and The Tietze Extension Theorem-are proved here. 

Definition 78 Suppose f : X _. Ii is a continuous function on a space X and 

A,B c X. Then f separates A and B if there exist a,b E Ii, a =I b, such that 

f ( A) = a and f ( B) = b. 

Definition 79 A function that separates a singleton set { x} from a set B separates 

the point x from the set B. 

Definition 80 A function that separates the singletons { x} and {y} separates the 

points x and y. 
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Definition 81 A dyadic number is a rational number ~, m, k E Z, in its reduced 

form. 

Example 82 The fallowing is a method of constructing the set of dyadic numbers 

D0 contained in the unit interval [O, 1]. 

First, divide [O, 1] into two subintervals of equal length. The midpoint {½}is the first 

member of D0 • Next, divide each of the two resulting intervals into two subintervals 

of equal length. The set of midpoints obtained in this step { i) , 232 } is a subset of D0 • 

Continue this process of halving the intervals obtained in each step; union each set 

of midpoints of the intervals from the preceeding step with the set of dyadic numbers 

obtained in the preceeding steps as illustrated below. 

Step Sets formed 

1 {½} 

2 {½}u{l2,;2} 

After k iterations, k E z+, the interval [O, 1] will be divided into 2k subintervals of 

length --l,. whose endpoints are dyadic numbers and are members of D0 C [O, 1]. 

Note: Moving along the real number line and repeating the above procedure for 

any interval of the form [n, n + l], n E Z will produce the set of dyadic numbers 

Dn C [n, n + l]. Thus, the set of all dyadic numbers is D = LJ Dn. 
nEZ 



34 

Lemma 83 The set of dyadic numbers is dense in IR. 

PROOF: 

Define DC IR to be the set of dyadic numbers. 

Let x E IR and c > 0. 

D is dense if there exists a point a ED 3 a E (x - c, x + c). 

The length of the resulting intervals with dyadic endpoints in the construction of the 

set of dyadic numbers after k-iterations is 2
1k, k E z+ (Example82). 

lim ik = 0 ⇒ :3 [a,b] C (x-c,x+c) with a,b ED 
k---->oo 

x E IR and c > 0 were arbitrary ⇒ \:Ix E IR and c > 0, :3 a E D 3 x E [a, b]. 

: . The set of dyadic numbers is a dense subset of IR. 

Lemma 84 Given a space X, D C JR+ dense such that \:ft E D :3 open Ut C X 3 

then f: X-+ IR defined by f (x) = glb{t ED: x E Ut}, x EX, is continuous. 

PROOF: We proceed by following the outline of proof in [l]. 

It suffices to show: 

(1) f is well defined, and (2) 1-1 [I] is open VI= (a, b) CIR. 

(1) x EX ⇒ x E Ut for some t E D 

DC JR+ ⇒ f (x) = glb{t ED: x E Ut} -=J 0 

⇒ f (x) is unique 

f is well defined. 

JR+is bounded below 

GLB is unique 
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(2) Define 11 = (-oo, b) and 12 = (a, oo) such that a< b. Then 11 n 12 = (a, b) C JR. 

To prove 1-1 [(a, b)] C Xis open\:/ (a, b) CIR, we will first show that 

(a) 1-1 [11] is open and (b) 1-1 [12] is open by showing that X\l- 1 [12] is closed. 

(a) 1-1 [11] = {x EX: l(x) < b} 

1 (x) < b ⇒ x E Ut for some t E D 

⇒ 1 [Ut] C 11 

⇒ 1-1 [11] = {x EX: l(x) < b} = UtED{Ut: t < b} 

Ut open Vt E D ⇒ UtED {Ut: t < b} open 

1-1 [11] is open in X. 

(b) 1-1 [12] = {x EX: 1 (x) > a} ⇒ X\l- 1 [12] = {x EX: 1 (x) s; a} 

WTS: x\1- 1 [h] = {x EX: 1 (x) s; a}= ntED {Ut: t >a} 

x E {x EX: 1 (x) s; a} ⇒ 1 (x) = glb{t ED: x E Ut} s; a 

D dense ⇒ 1 (x) s; a< t 

1 (x) < t ⇒ x E Ut \:It > a 

Ut C Ut ⇒ x E Ut \:It > a 

⇒ XE ntED {Ut: t >a} 

=? { X E X : 1 ( X) s; a} C ntED { U t : t > a} 

XE ntED {Ut : t >a} ⇒ XE Ut \:It> a, t E D 

Suppose x E Ut since Ut C Ut 

⇒ 1 (x) = glb { t ED : x E Ut} s; t \:It> a 

a< t ⇒ 1 (x) s; a 

⇒ x E {x EX: 1 (x) s; a}= X\l- 1 [12] 

=? ntED {Ut: t >a} C X\1- 1 [12] 



36 

Ut closed Vt ED =} ntED {Ut : t >a} closed 

::::} 1-1 [I2] C X open 

Each of 1-1 [11] C X and 1-1 [12] C X open ::::} 1-1 [11] n 1-1 [/2] open 

1-1 [11] n 1-1 [12] = 1-1 [11 n 12] Prop.14 

= 1-1 [(-oo,b) n (a,oo)] 

= 1-1 [(a, b)] open 

1-1 [(a, b)] C Xis open V (a, b) C JR, a< b. 

WTS: 1-1 [O] open when O C JR, 0 open. 

0 = LJJEJ 11 where 11 is an open interval 

Prop.14 

since 1-1 [ 11 ] was proved to be open. 

l is a continuous function. 



Lemma 85 Urysohn's Lemma 

Suppose X is a T1 -space. The fallowing statements are equivalent. 

(a) Xis normal. 

(b) V pair A, B c X, An B = 0, A, B closed, :3 1: X-----+ [O, 1] continuous 

3 1 (A)= {O} and 1 (B) = {l}. 

PROOF: The following is based on the proof given in [1]. 
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(b)=>(a) Suppose each of A, B C X is closed, An B = 0, and 1 : X -----+ [O, 1] is 

continuous 3 1 (A) = {O} and 1 (B) = {1}. 

=> :3 U, V open, disjoint in [O, 1] 3 0 E U and 1 EV 

1 continuous => 1-1 ( U), 1-1 ( V) open in X, 1-1 ( U) n 1-1 ( V) = 0 

Xis normal. 

(a)=>(b) Suppose Xis normal. 

Let DC [O, 1] contain dyadic numbers, A, BC X be closed and An B = 0. 

B closed 

X normal, A c X\B 

A C W1 and W 1 C X\B 
2 2 

=> X\B open and A c X\B 

=> :3W1 :::) A 3 W l C X\B 
2 2 

:3Wi:::) W1 3 Wi c X\B 
4 2 4 

Continue the indicated process. Define Wt = X for t = 1 E D. 

By Lemma 83, the set of dyadic numbers DC [O, 1] is dense. 

Define 1: X-----+ [O, 1] by 1 (x) = glb {t ED: x E Wt} 

Thm.75 

Thm.75 
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As shown in Lemma 84, f is continuous. 

AC Wt \ft ED => f (x) = 0 \fx EA => f (A) = {O} 

B c Wt{:} t = 1 => f (y) = l \fy EB => f (B) = {1} 

:3a continuous function f: X----+ [0, 1] 3 f (A)= {0} and f (B) = {l}. 

The conclusion of the Urysohn's Lemma is a true statement. 

From this point on, we will refer to functions that satisfy the conditions stated in 

Urysohn's Lemma simply as Urysohn's functions. 

Lemma 86 Suppose A C B C X, A is closed in B, and B is closed in X. 

Then, A is closed in X. 

PROOF: 

WTS: The closure of A in X, A= A. 

A c A by definition, we will show that A = A U A' c A. 

t suffices to show that A' C A. 

Let a EA'. 

a E A' => a E B' => a E B since B is closed and B = B. 

Either a E A or a ¢ A. 

Assume a ¢ A. This will lead to a contradiction. 

Define 0= B\A. 

A closed => 0 open and a E 0. 

OnA = 0, but a EA' => A is not closed in B contradicts the hypothesis 

=> A'cA => A=A 

A is closed in X. 
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Theorem 87 The Tietze Extension Theorem 

If a space X is normal, the set A C X is closed, and if the function f : A -----+ JR is 

continuous, then f has a continuous extension F: X----+ JR. 

PROOF: The following is an elaboration on the proof in [l]: 

Suppose Xis a normal space, ACX is closed, and f: A----+ JR is continuous. 

First, we indicate a breakdown of the proof by steps using diagrams to illustrate the 

mapping of the given closed set A C X under f and the procedure leading to the 

definition of the extension F : X -----+ JR whose existence and continuity we are to prove. 

I. Define a homeomorphism <p : JR -----+ ( -1, 1), and J* = </J o f. An open interval 

(a, b) C JR, a < b, is homeomorphic to the set JR since there is a homeomorphism 

¢:JR-----+ (a, b). 

A 
f (-1,1) 

.r= cp ·f 

II. Show: 3F*: X-----+ [-1, 1] 3 for a EA, F* (a)= J* (a) and F* is continuous. 

r 4,-,0 1-vr 
A - " (- l ~ 1) - - ~ Ill 

l F* 

X 

III. Show: 3F: X-----+ [-1, 1] 3 for a EA, F (a)= J* (a) and Fis continuous. 

A (-1,1) 

X 
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In summary, an element a EA is mapped as follows: 

a t-----f{a) t-------cj, 0 f(a) 1-----4' 04'-1 ff(a)] =J7a) = F(a) 

I. Suppose¢: Ill ----t (-1,1) is a homeomorphism, define J*(a) = ¢[!(a)], and 

initially assume that J* [A] C [-1, l]. 

Let A1 = { x EA: J* (x) :S -½} and B1 = { x EA: J* (x) ~ ½ }. 

A1 and B1 are closed subsets of A since f is continuous, and 

A1, B1 are closed in A, and since A is closed in X, then A1, B1 are closed in X (L.86). 

A1, B1 C X closed, A1 n B1 = 0 ⇒ ~Ji: X ----t [-½, ½] continuous 

3 Ji (A1) ={-½},Ji (B1) = {½} L.85 

Observe that \:/x EA, If* (x) - Ji (x)I :S ! 

Define j1 : A ----t [-!, !] by J1 (x) = J* (x) - Ji (x), x EA. Then j1 is continuous. 

Construct a sequence of continuous functions {f11 } :=l as follows. 

There exist: Vx EA 

Ji: X----t [-½,½] 3 Ji [A1] = {-½} Ji [B1] = {½} Iii (x)I :S ½ 

h: X - [-~, U 3 !2 [A2] = { -i} h [B2] = {i} lh (x)I :Si 

h: X - [-2\, 2\J 3 h [Aa] = { - 2\} h [B3] = {i,} lh (x)I :S 2\ 

f4 : X ----t [-:1, :1] 3 f4 [~] = {-:1} f4 [B4] = {:1} lh (x)I :S :1 

fi·X [ rn rn] 5 · ----t - 243 ' 243 3 f5 [~] = {-i!} f5 [B5] = {~} lf5(x)I :Si! 
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Define: 

f1: A - [-i, i] f 1 (x) = J* (x) - Ji(x) 

J2: A - [-i, i] J2 (x) = J* (x) - [f1 (x) + f 2 (x)] 

j3 : A - [ - !1, !1] f 3 ( X) = J* ( X) - [Ji ( X) + f2 ( X) + h] 

f4: A-[-!~,!~] f 4 (x) = J* (x) - [!1 (x) + h (x) + f3 - f4 (x)] 

f 5 : A-[-~, ;i3] f 5 (x) = J* (x) - [Ji (x) + h (x) + h + f4 (x) + f5 (x)] 

00 

fn: A- [-;:, ;:] fn (x) = J* (x) - L fn (x) 
n=l 

Vx EA, Ir (x) - ntl fn (x)I ~ Gr and Vx EX, lfn (x)I ~ 2;:
1 =½(If 

and since 
00 2n-l • L 31' exists, and 

n=l 

Vn EN, lfn (x)I ~ 2;:1 
00 00 00 

==? L lfn (x)I ~ L 2;:
1 = 1 ==? L lfn (x)I exists 

n=l n=l n=l 
00 

-1 ~ L fn (x) ~ 1 
n=l 

00 

Put F* (x) = L fn (x) ⇒ F* (x) E [-1, 1] 
n=l 

Next, we show that F* is continuous. 

Let c > 0, x EX. 

Let O C JR be open 3 ( F* ( x) - E, F* ( x) + E) C O. 

00 

Pick N E N 3 L (Ir < i-
n=N +1 

00 

L lfn (x)I < ½ 
n=N+l 

fn continuous Vn EN 

Choose y E Ux, y =/- x. Then, 



IF* (x) - F* (y)I 1
11
~ 1 fn (x) -

11
~ 1 fn (y) I 

In; fn (x) - n; fn (y) + n=t+l fn (x) - n=t+l fn (y)I 
< Ii. [/n (x) - fn (y)]I + Intl fn (x)I + Intl fn (y)I 

U.r; C X open, x E Ux,Y E Ux ⇒ F* (y) E (F* (x) - c,F* (x) +c) C 0 

F* is continuous. 

III. Assume J* [A] C [-1, 1] and :3y EA 3 IF* (y)I = {1}. 
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At this point <r 1 o F* (y) is undefined. To provide a solution for this discontinuity, 

we apply Lemma 85 once more. 

Define B = {x EX: IF* (x)I = {1}} 

F*continuous, { -1} , {1} closed ⇒ B closed ( inv. image) 

A, B c X closed, A n B = 0 ⇒ =lg : X - [O, 1] 3 

g (X) __ { 0 for x E B L 85 emma 

1 forxEA 

Each of g and F* continuous ⇒ g • F* continuous. 

x E B ⇒ g ( x) · F* ( x) = 0 · F* ( x) = 0 

x E A ⇒ g ( x) • F* ( x) = 1 · F* ( x) = F* ( x) E ( -1, 1) 

⇒ g · F* [X] C (-1, 1) and ¢-1 o [g · F*] c X 

Define F: X - ~ by F (x) = ¢-1 [g (x) · F* (x)], x EX. 



a E A ⇒ F (a) = ,r I [g (a) . F* (a) l 

= <r1 [1 · F* (a)] 

= <r 1 [F* (a)] 

= <r1 [f* (a)] 

= f (a) 

since F* is continuous 

F (a) = f (a) ⇒ F: X -t Risa continuous extension off . 

. ·. The function f : A -t R has a continuous extension F : X -t R 
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Theorem 88 The product of a countable collection of metric spaces is metrizable. The 

proof of this theorem can be found in/1/. 



Theore m 89 The Urysohn Metrization Theorem. 

Every second countable regular space is metrizable. 

PROOF : The following is an elaboration of the proof in [1]. 

Suppo e X is second countable and regular. 

Let x EX. 

X regular ⇒ Xis a Ti-space by definition 

X second countable ⇒ X is Lindelof 

X regular and Lindelof ⇒ X is normal. 

Let B = {En} n=l be a countable basis for X . 

Let i , j EN and consider the collection of ordered pairs (i, j) 3 B i C Bj, 

0 1 

By Lemma 5, there exists a Urysohn function J: X ~ [O , l] 3 

Let {J n} ~ = l be the collection of functions such that \/ ( i , j) , Bi C Bj . 

Since B is countable, {fn} ~ = l is countable. 

Define F: X ~ 1HI by F (x) = (Ji (x) , h~x) , hix) , · · · , f n~x), • • •) where 

]II[= { x EX: X = (x1 ,X2,X3 , ... ,Xn, .. . ) for Xn E fil.\fn EN 3 n~l (xn) 2 <oo }· 

44 
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oo ( )2 00 For each n, 0::; fn::; 1, thus n~l fn~x) :::; n~ ,;2 • 

oo 00 ( )2 Since n~l i exists (p-series with p > l), n~ fn!x) is bounded by the convergent 

00 00 ( )2 series n~ _;2 , and thus n~ fnlx) converges (term-by-term comparison). 

Then, F: X-----+ lHI is well defined, and F (x) E lHI\:/x EX . 

. ·. F ( X) c lHI and F is well defined. 

To complete the proof, we will show that 

(1) F is one-to-one, 

(2) Fis continuous, 

(3) the restricted map F: X-----+ F (X) is open, and 

( 4) the function p-1 : F (X) -----+ X is continuous. 

Clearly, Fis onto its image F (X). 

From these properties it will follow that X is homeomorphic to F (X) C lHI. 

(1) X regular =* Xis a Ti-space by definition 

=* X is a T 0-space 

=* 3fn E {fn}:'=1 corresponding to (i,j) such that 

fn [Bi] = {O} and fn [X\B1 ] = {1} and thus 

fn (x) = 0 while fn(Y) = l 

since x E Bi, and y (j_ Bi, but y E X\B1 • 

Thm.73 

Because F (x) and F (y) differ in their n-th coordinate, then F (x) =/- F (y). 

Thus, x =/- y ⇒ F (x) =/- F (y) 

.·. The function F: X-----+ F (X) is one-to-one. 
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(2) F is continuous if and only if for every open UC IHI, p-l ( U) C X is open. 

Let x EX, c > 0, and B(F (x), c) be an open ball in IHI. Choose NE N 3 

= 2 = L ~2 < c:2 . Such a number N exists since E ~2 converges. 
n=N+l n=l 

Since fn is continuous \::/n EN and continuous for 1 < n::; N, there exists a collection 

of open sets 01, 02, 03, ... , On, ON, such that for any y E On and y =/- x, 

lfn (x) - fn (y)I < hN for 1 < n::; N. 

Since O is the intersection of finitely many open sets, 0 is open in X. 

Next, we show that O C p-l [B (F (x), c)] C X by first showing that 

F[O] CB (F (x), c). 

Let y E O. Recall, 

F (x) = (f (x) h(x) h(x) . . . fn(x) .. ·) and F (y) = (f (y) h(y) h(y) . . . fn(Y) .. ·) 
1 '2'3' 'n' l '2'3' 'n' · 

Then, 

IF (x) - F (y)I 

< 

< 

< 
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IF ( X) - F (y) I < C ⇒ F (y) EB [F (x) , c] 

⇒ F[O] c B (F (x) ,c) c lHI F[O] is open 

⇒ 0 c-F- 1 [B (F (x) , c)] C X Prop.16 

⇒ p - l [B (F (x) ,c)] C X 1s open U of open sets 

F : X -t F (X) c lHI is continuous. 

(3) The function F : X -t F (X) is an open function if for each open set Uc X, 

F ( U) is open in F (X). 

Let Uc X be open and x EU. 

X regular 

⇒ :3 f n E {fn}~ 1 3 fn [Bi] = 0, fn [X\Bj] = l 

x E Bi , (X\ U) C (X\Bj) ⇒ f n (x) = 0 and f n (X\ U) = l. 

Let y E X such that F (y) E B ( F ( x) , ¾) n F ( X). 

Then, d(F (x) , F (y) < ¾ ⇒ fn (y) -::/ l ⇒ y ff-_ X\ U ⇒ yE U 

⇒ B (F (x) , ¾) n F (X) c F ( U) 

⇒ F(U) is a union of open sets 

⇒ F(U) is an open set 

Uc X open ⇒ F ( U) c F (X) 1s open. 

X 

~ ~ 

~ X\~-
"\ 

~ 

~ 
' 

XIU 

BJ \ 

F : X -t F ( X) is an open function. 
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(4) To show that Fis a homeomorphism, we show that p-l is a continuous function. 

Let Oc X be an open set. 

F open function :::;,- F ( 0) C F ( X) is open 

F onto ⇒ F (F-1 (F ( 0))) = F ( 0) by Prop.16 

:::;,- F (F-1 (F ( 0))) is open 

F one-to-one ⇒ p-1 ( F ( 0)) = 0 by Prop.16 

:::;,- p- 1 (F ( 0)) is open in X 

:::;,- p-1 is continuous. 

F: X-----+ F (X) C lHI is a homeomorphism by Definition 57. 

By Definition 58, F is an embedding. 

Observe: F (X) is metrizable since it is a subspace of the metric space lHI. 

But, X is topologically equivalent to F (X) (Def.57) implies that X is metrizable. 

As an example, the metric on X can be derived from the metric on F (X) as follows. 

F: X-----+ Y = F (X) where Y is metrizable, defined by dx (a, b) = dy (F (a), F (b)). 

The Urysohn Metrization Theorem: Every second countable regular space is 

metrizable is a true statement. 
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