
OCCUPANCY AND ABUNDANCE OF GOLDEN-CHEEKED WARBLERS 
(DENDROICA CHRYSOPARIA) ON THE BALCONES 

CANYONLANDSPRESERVE 

THESIS 

Presented to the Graduate Council of 
Texas State University-San Marcos 

in Partial Fulfillment 
of the Requirements 

for the Degree 

Master of SCIENCE 

by 

Jason W. Hunt, B.S. 

San Marcos, Texas 

August2010 



COPYRIGHT 

by 

Jason W. Hunt 

2010 



ACKNOWLEDGEMENTS 

I would like to express my thanks to the City of Austin for funding my research, 

and to the biologists at the Balcones Canyonlands Preserve who facilitated access to the 

preserve. I would like to thank my advisors, Dr. Butch Weckerly and Dr. Jim Ott, not 

only for their helpful guidance throughout my graduate studies, but for their diligent 

efforts in the field that made this research project possible. To my committee member, 

Dr. Joseph Veech: for his helpful comments and insight that strengthened the quality of 

this research project. Thanks to Garrett Street and Chris Warren, who took time out of 

their busy schedules to assist with field work. I would also like to reconginze the 

invaluable help of Stephen Rameriez, who guided me through the process of creating the 

map in Figure 3. 

I am grateful to my parents, Ron and Becky Hunt, who have always been there to 

support me and offer words of encouragement. They instilled in me the determination to 

follow my dreams and to preserve through the challenges and difficulties encountered in 

pursuit of those dreams. I thank them for believing in me and their continued love and 

support inspires me to keep reaching for the stars. 

This manuscript was submitted on June ib. 2010. 

iii 



TABLE OF CONTENTS 
Page 

ACKNOWLEDGEMENTS ............................................................................................... iv 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

ABSTRACT ..................................................................................................................... viii 

CHAPTER 
I. THE INFLUENCE OF OBSERVER VARIABILITY IN DETECTION 

OF GOLDEN-CHEEKED WARBLERS (DENDROICA 
CHRYSOPARIA) .................................................................................. 1 

II. OCCUPANCY AND ABUNDANCE OF GOLDEN
CHEEKED WARBLERS ON THE BALCONES 
CANYONLANDS PRESERVE ........................................................ 20 

LITERATURE CITED ...................................................................................................... 57 

iv 



LIST OF TABLES 

Table Page 

1. Model Selection Summary (Influence of Observer) ...................................................... 10 

2. Model Selection Summary (Influence of Observer) ...................................................... 11 

3. Model Selection Summary (Covariates of Detection) ................................................... 34 

4. Model Selection Summary (Estimating 'I') ................................................................... .40 

5. Model Selection Summary (Inclusion of Site Covariate) ............................................. .41 

6. Model Selection Summary (Covariates of Detection) .................................................. .45 

7. Model Selection Summary (Estimating 11.) .................................................................... .46 

8. Model Selection Summary (Inclusion of Site Covariate) ............................................. .47 

V 



LIST OF FIGURES 

Figure Page 

1. Observer Detection Probabilities (species) ............................................................. .12 

2. Observer Detection Probabilities (individuals) ........................................................ 14 \ 

3. Map of BCP ............................................................................................................. 26 

4. Number of GCWA Detected .................................................................................... 32 

5. Detection Distances ................................................................................................. 33 

6. Detection Probabilities per Site .............................................................................. .35 

7. Detection Probabilities per Week ............................................................................ 36 

8. Detection Probabilities for Single Survey ............................................................... .39 

9. Estimates ofOccupancy ........................................................................................... 42 

10. Estimates of Occupancy and Spatial Scale ........................................................... .43 

11. Estimates of Abundance ........................................................................................ 48 

VI 



ABSTRACT 

OCCUPANCY AND ABUNDANCE OF GOLDEN-CHEEKED WARBLERS 
(DENDROICA CHRYSOPARIA) ON THE BALCONES 

CANYONLANDSPRESERVE 

By 

Jason W. Hunt, B.S. 

Texas State University-San Marcos 

August2010 

SUPERVISING PROFESSORS: FLOYD W. WECKERLY AND JAMES R. OTT 

Reliable estimates of population parameters derived from logistically feasible 

wildlife survey methods are essential for making management decisions regarding 

endangered species. Observer variability in detection can be a substantial source of ·error 

in avian survey methods, resulting in biased population estimates. Additionally, the 

degree of among-observer variability in detection may be influenced by population 

density. I evaluated the degree of within-and among-observer variability in detection of 

the federally endangered golden-cheeked warbler (GCWA, Dendroica chrsoparia) by 

means of point-count surveys conducted at two sites exhibiting high and low population 

densities. Surveys consisted of four surveyors simultaneously, but independently 

recording the number of GCW A detected during five-minute intervals at each of 36 

points at each site. Count data were analyzed using both multi-season occupancy models 

and binomial mixture models (BMM) to estimate each observer's probability of 
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detection at both the species and individual level. Model selection revealed that observer 

had a strong influence on detection of GCW A. I found significant variation in detection 

probabilities among observers and the degree of observer variability was greatest at the 

low density site. Extrapolating observer-specific estimates of detecting the species to 

four survey occasions revealed that observer variability was negligible at the high density 

site, yet observer variability was still substantial at the low density site. Among-observer 

variability in detecting individuals was more extensive at both sites, therefore I concluded 

that the inclusion of a covariate for observer would be necessary for modeling abundance. 

Herein, I also investigated the utility of point-count surveys in conjunction with 

occupancy and BMM as a feasible and reliable approach for monitoring the golden

cheeked warbler on the Balcones Canyonlands Preserve in Travis County, Texas. 

Occupancy and abundance were estimated using data from point-count surveys 

conducted on each of five 100 hectare detection girds in 2008 and seven grids in 2009. 

Data were analyzed using both single season occupancy models and BMM to estimate 

occupancy and abundance, respectively. Occupancy estimates per grid ranged from 0.48 

to 1.0 in 2008 and 0.52 to 1.0 in 2009. Estimates of abundance were compared with 

territory densities independently estimated using a more labor-intensive spot-mapping 

method. The BMM generated abundance estimates that were nearly five times as high as 

estimates of territory density based on spot-mapping. Thus, I concluded that BMM 

estimates of abundance for this species were biologically unrealistic. Using an 

alternative approach, I also estimated abundance using a novel C/p estimator that 

incorporated the probability of detecting individuals obtained from occupancy models. 

This alternative approach provided abundance estimates similar to territory density 

estimates obtained from spot-mapping. Point-count surveys conducted for this study 

required considerably less time and surveyed a larger area compared to spot-mapping. 

The results of this study suggest that using a model-based approach to estimate 

occupancy and abundance from point-count data is a reliable and feasible monitoring 

alternative to spot-mapping. 
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CHAPTER I 

THE INFLUENCE OF OBSERVER VARIABILITY IN DETECTION OF GOLDEN
CHEEKED WARLBERS (DENDROICA CHRYSOPARIA) 

Introduction 

Variation in the detectability (i.e., probability of detecting a species if present) of 

avian species is a significant source of bias for survey methods used to estimate 

population parameters (Alldredge et al. 2007, Johnson 2008). Many avian species are 

often imperfectly detected by surveyors, hence nondetection of individuals at a survey 

site does not always confirm the absence of a species (MacKenzie et al. 2002, Thompson 

et al. 2002). Standardization of survey protocols has been advocated as a means of 

minimizing some of the variability in detection (Ralph et al. 1995). Additionally, the 

development of methods for estimating probabilities of detection has been applied to 

directly addressing the problem of imperfect detection by adjusting population estimates 

(Royle 2004, MacKenzie et al. 2006, Alldredge et al. 2007). The factors that influence 

detection probabilities are diverse and include time of year (Best 1981, Skirvin 1981), 

time of day (Robbins 1981 a), habitat characteristics (Diehl 1981, McShea and Rappole 

1997), weather conditions (Mayfield 1981, Robbins 1981 b, Simons et al. 2007), and 

species (Alldredge et al. 2007, Kubel and Yahner 2007). 

Multiple surveyors are often involved in both large-scale avian monitoring 

programs (Sauer et al. 1994) and species-specific population studies (Anders and 

Dearborn 2004). Thus, observer variability in detection of birds has long been 
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recognized as an important source of error in avian survey methods (Faanes and Bystrak 

1981, Emlen and DeJong 1992, Sauer et al. 1994, Alldredge et al. 2007, Riddle et al. 

2010). However, few studies measure observer variability or incorporate techniques to 

effectively mitigate or decrease observer variability when developing their methods or 

study design (Diefenbach et al. 2003). The few recommendations typically given to 

mitigate observer variability in detection include training surveyors (Kepler and Scott 

1981), testing hearing ability (Ramsey and Scott 1981), and hiring experienced observers 

(Faanes and Bystrak 1981). The inherent assumption of these recommendations is that 

observer variability in detection will be negligible under these guidelines (Rosenstock et 

al. 2002). Yet variability in detection of avian species is often evident even among well

trained and experienced observers (Diefenbach et al. 2003, Alldredge et al. 2007). 

The point-count method is a commonly used avian survey technique by which one 

or more surveyors record all birds detected within a fixed or an unlimited distance from a 

point during a specified period (Hutto et al. 1986). Count data collected using this method 

is often treated as an index and used to infer the relative abundance of populations over 

time or across locations (Caughley 1977, Johnson 2008). In recent years, point-count 

data has also been applied to models that incorporate probabilities of detection to 

estimate directly population parameters such as occupancy (proportion of area occupied) 

and abundance (MacKenzie et al. 2002, Rolye 2004). However, since multiple surveyors 

are often employed to conduct point-count surveys, observer variability in detection is a 

potential source of error that can bias count data and thus lead to biased population 

estimates (Sauer et al. 1994, Diefenbach et al. 2003, Alldredge et al. 2007). 
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A second factor influencing detection of avian species is the interaction of singing 

behavior with population density (Howell et al. 2004, Sillet et al. 2004). Point-count 

surveys, which are primarily aurally based, can exhibit density-related biases in the 

number of birds detected (Bart and Schoultz 1984, Tarvin et al. 1998, Jones et al. 2000, 

Howell et al. 2004). In higher-density avian populations singing rate can be greater 

(Jones et al. 2000, Howell et al. 2004, Sillet et al. 2004, Rios Chelen et al. 2005, Sexton 

et al. 2007, Laiolo 2008, Laiolo and Tella 2008, Robbins et al. 2009), and singing rate of 

passerines can influence detection probabilities (Mayfield 1981, Wilson and Bart 1985, 

McShea and Rappole 1997, Alldredge et al. 2007). If singing behavior of individuals is 

positively correlated with density, then detection probabilities may also be correlated 

with population densities. However, no studies have directly examined the magnitude of 

such an effect. If present a correlation between population density and detection of avian 

species could affect the degree of observer variability in point-count surveys used to 

monitor threatened and endangered avian species with low population densities. 

Correcting these types of biases is difficult when counts are used as indices of 

relative abundance (Bart and Schoultz 1984, Johnson 2008). However, using a model

based approach to estimate population parameters adjusted for imperfect detection 

provides a way of explicitly addressing these sources of variation in detection (Alldredge 

et al. 2007, Riddle et al. 2010). Furthermore, correcting biases stemming from both 

observer variability and population density can be accomplished by increasing the 

number of repeated survey occasions, a recommendation advocated especially when 

surveying species with low detectability (MacKenzie and Royle 2005). Herein, I first 

quantify within- and among- observer variability in the probabilities of detection for an 
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endangered songbird surveyed at low- and high- density sites and then I use a model

based approach to explore practical techniques to account for and mitigate these biases in 

the design of point-count surveys. 

The golden-cheeked warbler (GCWA, Dendroica chrysoparia) is a federally 

endangered neotropical songbird with a breeding range restricted to central Texas (Pulich 

1976). Surveys used to monitor this species heavily rely on aural detections of singing 

males (U.S. Fish and Wildlife Service 1992). Given the forgoing standardized survey 

protocols and the documented variation in population density noted across its range 

(Wahl et al. 1990), the GCW A is a suitable species for investigating both the degree of 

observer variability in detection and the correlation between detection and population 

density. 

The goals of this study were to evaluate the degree of observer variability in 

detection in point-count surveys of the GCWA among sites known to exhibit contrasting 

population densities and to develop practical solutions that can be applied to the design of 

point-count surveys to mitigate the influence of observer variability. 

Methods 

Point-count surveys of GCW A were conducted at two locations with different 

population densities. The study area for this project was the Balcones Canyonlands 

Preserve (BCP) located in Travis County, Texas. This 5,355-ha preserve contains 

woodlands of mature Ashe juniper (Juniperus asheri) mixed with Texas oak (Quercus 

buckleyi), live oak (Q.fusiformis), shin oak (Q. sinuate), cedar elm (Ulmus crassifolia), 

Texas ash (Fraxinus texensis), and escarpment black cherry (Prunus serotina) (Pulich 
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1976, Ladd and Glass 1999, Dearborn and Sanchez 2001). The terrain of this area 

consists of rolling hills interspersed with steep-sided canyons. Two sites within the BCP 

were selected to represent extremes in the range of suspected GCW A densities, with the 

Ivanhoe site having a high density of GCWA (53 and 44 territories/I 00 ha in 2008 and 

2009, respectively) and the Bohls site having a considerably lower density (7 and 9 

territories/100 ha in 2008 and 2009, respectively) (City of Austin 2009). The densities at 

these two sites fall within the range of known GCWA densities across its geographic 

range (Wahl et al. 1990). A 100-ha grid consisting of 36 points, each positioned 200 m 

apart, served as the framework for conducting point-count surveys. Surveys consisted of 

four surveyors simultaneously surveying the 36 points at a site, with each observer 

independently recording the number of GCW A aurally detected during a five-minute 

period at each point. During the five-minute period, surveyors did not communicate. 

The five-minute sample period per point was deemed adequate to provide sufficiently 

high probabilities of detection, as this interval has proven sufficient for most species of 

forest songbirds (Ralph et al. 1995, Dettmers et al. 1999). Each site was surveyed once in 

both 2008 and 2009 by the same four surveyors. Surveys required an average of about six 

hours to complete. 

The four surveyors represented a broad range of experience and age. Three 

surveyors had prior experience conducting avian surveys and one had no prior survey 

experience. The ages of the surveyors ranged from two surveyors in their 20s (1 

experienced, 1 nonexperienced) to two surveyors in their 50s (both experienced). The 

four surveyors are henceforth labeled as observer 1 (young, experienced), observer 2 



(young, nonexperienced), observer 3 ( older, experienced), and observer 4 ( older, 

experienced). 
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To estimate detection probabilities for each surveyor, point-count data were 

analyzed using both occupancy and binomial mixture models to estimate probabilities of 

detecting the species and individuals, respectively (program PRESENCE 2.3, MacKenzie 

et al. 2002). Since survey data were collected in each of two years, multi-season 

occupancy models were used to estimate probabilities of detecting GCW A at the species 

level for each observer (MacKenzie et al. 2003). Multi-season occupancy models 

included parameters for occupancy('!'), colonization (y), extinction (e), and probabilities 

of detection (p). The parameter estimates for occupancy, colonization, and extinction 

were not of direct interest in this study; however, the models in this analysis included a 

site covariate for these parameters because it was suspected that these parameters would 

differ between the high- and low- density sites. 

Since occupancy models utilize detection-nondetection data, the estimate of 

detection for each surveyor produced refers to the probability of detecting the species 

(i.e., > 1 GCWA) in a single survey (MacKenzie et al. 2002). I developed nine multi

season occupancy models to assess the influence of the following potential covariates on 

probability of species-level detection: observer, site, year, time of day with a linear effect 

(time/linear), and time of day with a quadratic effect (time/quadratic). The covariates 

site, season, and observer were discrete variables, whereas time of day (the minutes after 

sunrise that a detection was recorded) was considered a continuous covariate. 

To evaluate observer variability in detecting GCW A individuals, survey data was 

analyzed using binomial mixture models (BMM) that included parameters for abundance 



(11,) and probability of detecting individuals (p). Currently, there are no multi-season 

BMM available, thus abundance data were analyzed separately in each year (Royle 

2004). Eight models were considered in each year to assess the influence of covariates 

on probability of detecting individuals. The covariates included site, observer, 

time/linear, and time/quadratic. The observer covariate for the BMM was coded using 

dummy variables that pooled observers 1-3 together and compared them to observer 4. 

The arrangement of this observer covariate was chosen based on the degree of observer 

variability in detection found in the multi-season occupancy models. Model selection 

was conducted for both multi-season occupancy and BMM using the information

theorectical approach with Akaike Information Criterion corrected for small sample size 

(AICc) (Burnham and Anderson 2002). I selected the model or models that fit the data 

best, relative to the other candidate models, based on small AICc values and high Akaike 

weight (Akaike 1973). 

Detection probabilities estimated in this study represented the probability of 

detecting the species or the individual during a single survey. Repeated surveys at a 

location are often suggested to obtain higher probabilities of detection and more precise 

parameter estimates (MacKenzie and Royle 2005). Therefore, to extrapolate s,ingle

survey detection probabilities to multiple survey occasions, estimates of detection for 

each observer were extrapolated to multiple survey occasions by means of an equation 

from MacKenzie et al. 2006: 

P* = 1 - (1-p)8 (1) 
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Where, P* is the probability of detecting the species among all survey occasions, p is the 

detection probability of a single survey, and s is the number of survey occasions. The 

number of survey occasions considered in both occupancy models and BMM is 

constrained by the assumption that the population is closed during the total sampling 

season (MacKenzie et al. 2002, MacKenzie et al. 2003, Royle 2004). I evaluated the 

effect of four survey occasions using equation (1) since it's likely that with a weekly 

sample interval the assumption of population closure for this species is met during a 

sampling season of four weeks (Watson et al. 2008). Thus, observer-specific probabilities 

of detection representing a sampling season of four weeks were used to assess variability 

among the four surveyors in this study. 

Results 

Both multi-season occupancy and BMM indicated that the probability of detecting 

GCW A varied among observers (Tables 1 and 2). The selected multi-season occupancy 

model with the lowest AICc contained site (my proxy for GCW A density) and observer 

covariates for detection and was competitively superior to all other candidate models 

(Table 1 ). This indicates that both density and observer had a strong influence on the 

probability of detecting GCW A within a single survey. Estimates of detection for 

observers ranged from 0.68-0.90 at the high-density site (Ivanhoe) and 0.32-0.66 at the 

low-density site (Bohls) (Figure 1). There was a consistent pattern in the variability 

among the four observers across sites as observers 1, 2, and 3 had similar probabilities of 

detection. However, observer 4 had a considerably lower probability of detection 



compared with the other observers at both sites. The variation in detection between 

observers 1-3 and observer 4 was greatest at Bohls, the low-density site. 

9 

Despite the comparatively lower probability of detection for observer 4 during a 

single survey occasion, estimates of detection when extrapolated to four survey occasions 

showed that variability among observers in detecting GCWA became negligible. For 

example, using equation (1), estimates of detection for the surveyor with the lowest 

detection probability, observer 4, at Ivanhoe (0.68) were extended to four survey 

occas10ns: 

P* = 1 - (1 - 0.68)4 (1) 

P* = 0.99. 

The probability value of 0.99 indicates that each of the four observers in this study would 

thus have cumulative probabilities of detection for the species near 1.0 when extrapolated 

to four survey occasions. Therefore, increasing the number of survey occasions to four 

diminished the effect of the variability among the surveyors in detecting GCW A at the 

high-density site. However, increasing the number of surveys to four at the low-density 

site is not adequate to mitigate observer differences in detection of this species. 

Observers 1, 2, and 3 had sufficiently high probabilities of detection during a single 

survey occasion at the low-density site, such that each of these observers would have 

probabilities of detection of the species greater than 0.95 when extrapolated to four 
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Table 1. Model Selection Summary (Influence of Observer). 
Summary of model selection for the multi-season occupancy models. The four 
parameters estimated included occupancy('!'), colonization (y), extinction (E), and 
probability of detection (p). Possible covariates included site, observer, year, time of day 
with a linear effect (time/linear), time of day with a quadratic effect (time/quadratic), and 
no influence of a covariate(.). Model selection statistics were Akaike Information 
Criterion value corrected for small sample size (AICc), AICc weight (W), number of 
parameters (N. par.), and twice the log likelihood (-2LL). Sample size was 144. 

Model AICc w N. ~ar. -2LL 
q,(site), y(site), t(site), p(site, observer) 419.62 0.907 11 395.61 
ljJ(site), y(s1te), E(site), p(s1te, observer, year) 425.77 0042 14 394.53 
4J(site), y(s1te), E(s1te), p(site) 426.19 0.034 8 40915 
4J(site), y(site), E(s1te), p(site, time/hnear) 428.46 0.011 9 409.19 
4J(site), y(site), E(site), p(site, time/quadratic) 429.90 0005 10 408.23 
4J(site), y(site), E(s1te), p(observer) 434.43 <0.001 10 412.85 
4J(site), y(s1te), E(s1te), p(time/linear) 441.14 <0.001 8 424.12 
4J(site), y(site), E(s1te), p(t1me/quadratic) 442.06 <0.001 9 422.77 
ljJ(.), y(.), E(.), p(.) 471.82 <0.001 4 463.52 



Table 2. Model Selection Summary (Influence of Observer). 
Summary of model selection for the binomial mixture models in 2008 and 2009. The two parameters estimated in these models were 
abundance (A) and probability of detection (p ). Possible covariates included site, observer, time of day with a linear effect 
(time/linear), time of day with a quadratic effect (time/quadratic), and no influence of a covariate(.). Model selection statistics were 
Akaike Information Criterion corrected for small sample size (AICc), AICc weight (W), number of parameters (N. par.) and twice the 
log likelihood (-2LL). Sample size was 72 in both years. 

2008 2009 

Model AICc w N.par. -2LL AICc w N. :ear. -2LL 
A(site), p(site, observer) 306.54 0.885 4 297.92 377.56 0.021 4 369.01 
A(site), p(observer) 311.62 0.070 4 303.01 369.85 0.978 4 361.32 
11.(site), p(site) 313.71 0.024 3 307.45 391.54 <0.001 3 385.23 
11.(site), p(site, time/linear) 315.46 0.010 4 306.93 393.78 <0.001 4 385.24 
11.(site), p(site, time/quadratic) 315.85 0.008 4 307.24 391.08 <0.001 4 382.58 
11.(s1te), p(time/quadratic) 319.57 0.001 4 311.06 384.60 <0.001 4 376.09 
11.(site), p(time/linear) 320.26 <0.001 4 311.74 384.68 <0.001 4 376.14 
A(.), p(.) 340.17 <0.001 2 336.09 420.70 <0.001 2 416.54 

--
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Figure 1. Observer Detection Probabilities (species). 
Probability of detecting GCWA at the species level, p(species), for observers 
1, 2, 3, and 4 estimated from the selected multi-season occupancy model. 
Detection probabilities for each observer are shown at both the high {Ivanhoe) 
and low (Bohls) density sites. Error bars represent 95% Cl. 
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surveys occasions. However, observer 4, who had a considerably lower probability of 

detection (0.32) at the low-density site during a single survey occasion, would require at 

least eight repeated surveys in order to have a cumulative probability of detection greater 

than 0.95. Variability in the probability of detecting GCWA individuals was also evident 

among the four observers in this study as the BMM containing both site and observer as 

covariates for probability of detecting individuals was selected in 2008 (Table 2). At 

Ivanhoe the probability of detecting individuals ranged from 0.47 to 0.73 among 

observers and at Bohls ranged from 0.18 to 0.40 (Figure 2). Again, observers 1-3 had a 

much higher probability of detecting individuals than did observer 4 at both the high and 

low density sites. Extrapolating single survey probabilities of detecting individuals for 

observers 1-3 to multiple survey occasions revealed that four repeated surveys would 

yield a 0.99 probability at the high-density site while at least six surveys would be 

required at the low-density site to raise detection probabilities to ~.95. However, due to 

observer 4's comparatively lower single survey probability of detecting individuals, at 

least 5 surveys at the high-density site and 15 surveys at the low-density site would be 

required to raise detection probabilities to ~.95. The BMM selected in 2009 contained 

only an observer covariate, indicating again, significant differences among observers in 

the probability of detecting individuals (Table 2). Observers 1-3 had an average 

probability of detection of 0.66, whereas observer 4 had a 0.38 probability of detection 

(Figure 2). Again, equation (1) reveals that observers 1-3 would have a probability of 

detection for individuals of 0.98 for four survey occasions, whereas observer 4 would 

require at least seven surveys to achieve a detection probability greater than 0.95. 
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Figure 2. Observer Detection Probabilities (individuals). 
Probability of detecting GCW A at the individual level, p(individual), for observers 1-3 
( combined) and observer 4, as estimated from the selected binomial mixture models in 2008 
and 2009. The selected model in 2008 contained site and observer as covariates of detecting 
GCW A individuals, thus detection probabilities for observers are shown for both the high 
(Ivanhoe) and low (Bohls) density sites. The selected model in 2009 contained only an 
observer covariate for probability of detecting individuals, thus estimates of detection for 
that year represent only observer differences. Error bars represent 95 % CI. 
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Estimates of GCW A occupancy and abundance based on the single survey 

occasions used for this study differed between the two sites. Occupancy estimates (± SE) 

for 2008 and 2009, respectively, were 0.61 (± 0.08) and 0.83 (± 0.06) for Ivanhoe and 

0.17 (± 0.06) and 0.20 (± 0.07) for Bohls. Estimates of abundance (average number 

of male GCWA per,point) for 2008 and 2009, respectively, were 1.05 (± 0.17) and 1.59 

(± 0.22) for Ivanhoe and 0.26 (± 0.07) and 0.23 (± 0.08) for Bohls. 

Discussion 

The analysis I conducted documented significant variability among four surveyors 

in the probability of detecting GCW A at both the species and individual level. Moreover, 

I found that variation in the degree of observer variability differed among two sites 

characterized by low and high densities of GCW A. Together these results point to the 

need to develop survey designs for monitoring GCW A that explicitly acknowledge and 

account for within- and among- observer variability in detection as a function of 

population density. Alldredge et al. (2007) have pointed out the broad ramifications for 

monitoring avian species if these sources of error are not accounted for in survey design. 

The variation in detection probabilities I observed among surveyors in this study 

is consistent with the among-observer variation reported by Sauer et al. (1994), 

Diefenbach et al. (2003), and Alldredge et al. (2007). There are several potential 

solutions that can be implemented in the design of avian point-count surveys to diminish 

the influence of observer variability (Sauer et al. 1994, Alldredge et al. 2007). For 

example, if comparisons are being made concerning the relative occupancy or abundance 

among different sites, then one solution is to employ a study design in which every 

observer surveys every site at least once during the field season (Sauer et al. 1994). 
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However, this approach may not be feasible for large-scale monitoring programs 

involving many sites for which extensive training may be required to familiarize 

surveyors with the multiple survey locations. As shown herein, simply increasing the 

number of survey occasions may sufficiently mitigate the effects of observer variability 

for some study designs (MacKenzie and Royle 2005). The effectiveness of this solution 

for mitigating observer variability, however, may be influenced by population density. I 

found low detection probabilities at sites with low GCW A population densities, and my 

analysis revealed that the number of repeated surveys necessary to obtain reasonably high 

detection probabilities for each observer may be impractical in such cases, from both a 

logistical and survey design perspective. For example, when using single-season 

occupancy models the number of survey occasions should be constrained to meet the 

assumption of population closure (MacKenzie et al. 2002). This study demonstrated that 

even when one observer had a significantly lower detection probability for the species 

compared with the other observers at the site with high GCW A density, increasing the 

number of survey occasions to four resulted in detection probabilities of near 1.0. 

Therefore, in this case, the variability among the observers did not bias estimates of 

occupancy. Multi-season occupancy models, however, allow for changes in occupancy 

within a breeding season (MacKenzie et al. 2003). Relaxation of the assumption of 

population closure under multi-season models provides a more flexible framework for 

including additional surveys within the sampling season (MacKenzie et al. 2003, Watson 

et al. 2008). 

As expected, there was much more variability among the four observers in the 

probability of detecting individuals, and the significance of the discrepancy cannot be 
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ignored. Even after extrapolating detection probabilities to four survey occasions for 

each observer, observer 4 still had estimates of detection considerably lower than did the 

other observers in the study, potentially leading to biased estimates of GCW A abundance. 

Logistical constraints often limit the number of repeated surveys that can be conducted 

(Thompson 2002, MacKenzie and Royle 2005,). Additionally, meeting the assumption 

of population closure necessary for BMM can also limit the number of survey occasions 

within a sampling period for which this assumption is reasonable (MacKenzie et al. 2002, 

Royle 2004). Therefore, to account for greater variation among observers in detection of 

individuals it may be necessary to include covariates representing observers with 

significantly lower detection probabilities in models used to estimate population 

parameters. The ability to incorporate such covariates illustrates the advantage of using a 

model-based approach to estimate population parameters over the commonly used 

approach of using count data as an index of relative abundance (MacKenzie et al. 2002, 

Johnson 2008). 

Directly investigating the relationship between detection and population density 

of passerines is a complicated task, confounded by unknown sources of variability in 

detection (Bart and Shoulzt 1984, Alldredge et al. 2007). However, my study indicated 

that site was an important covariate influencing detection of GCW A, both on the species 

and individual level. The two sites considered in this study had independently estimated 

high and low population densities; however, it is uncertain if other variables not 

considered in this analysis (e.g., habitat characteristics) may have contributed to this 

difference in detection. 
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I found considerable variation in the degree of observer variability among the two 

sites with high and low densities of GCW A. My results showed higher variation in the 

probability of detecting GCW A among the four observers at the low-density site, 

indicating that observer bias could be especially problematic at low-density sites. 

Additionally, observer estimates of detecting individuals showed more variability at the 

low-density site. Therefore, observer differences in detection may be further influenced 

by an additive effect of population density (Bart and Shouzltz 1984). The results of this 

study suggest that future research is warranted into the relationship between observer 

variability in detection and population density. For example, in this system surveying 

additional sites selected to represent a range of GCW A densities and applying a multiple 

observer approach would provide information on the functional form of the probability of 

detection by density relationship within and among observers. 

The results of this study also reinforce the view that estimation of probabilities of 

detection using a model-based approach is the most appropriate way to account for 

variability in detection (MacKenzie et al. 2002, Alldredge et al. 2007). Furthermore, my 

results suggest that correcting for the bias introduced by observer variability in detection 

can be addressed by implementing survey designs that incorporate methods to estimate 

and mitigate variability in detection among observers (Alldredge et al. 2007). 

Researchers and managers who rely on point-count surveys conducted by multiple 

observers to monitor avian populations may want to consider assessing variability in 

detection among observers as part of a pilot study, prior to the sampling season. 

Conducting point-count surveys in which all observers simultaneously survey each point 

allows for the direct evaluation of the degree of observer variability in detection, largely 
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independent of other confounding factors influencing detection. Finally, this study 

provides additional support to the view that the effects of observer variability can be 

mitigated by increasing the number of surveys during the sampling season (Thompson 

2002, MacKenzie and Royle 2005). Ignoring the issue of observer variability in detection 

may introduce bias into survey data and result in misleading conclusions regarding 

population parameters. 



CHAPTER II 

OCCUPANCY AND ABUNDANCE OF GOLDEN-CHEEKED WARBLERS 
ON THE BALCONES CANYONLANDS PRESERVE 

Introduction 

Reliable population estimates, that are unbiased and precise, are essential for making 

informed management decisions regarding endangered species (MacKenzie and Nichols 

2004). Survey techniques used in estimating population parameters must also be feasible 

given limitations on time, personnel, and resources. Therefore, achieving a balance 

between obtaining reliable population estimates and developing feasible survey 

techniques is a fundamental challenge in the design of any wildlife survey method 

(MacKenzie and Royle 2005). 

Estimating abundance, or population size, has long been a parameter of interest 

in ecological studies (Dice 1941, He and Gaston 2000). Obtaining estimates of 

abundance is often logistically unfeasible, therefore counts obtained from population 

surveys are often used as indices ofrelative abundance (Johnson 2008). Indices can be 

, used to make inferences about abundance across temporal and spatial scales, if the count 

is the same proportion of the population that is surveyed each sampling occasion. 

20 
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However, the condition of constant proportionality is rarely met in most field studies 

(Thompson et al. 2002). Consequently, variation in counts can indicate both variation in 

actual population size and variation in the detectability of the species. This relationship 

is described by the equation: 

C=N*p. (2) 

Where, C is the recorded count of a species during a survey, N is the true number of 

individuals in the survey area, and p is the probability of detecting an individual of the 

species (Johnson 2008). Imperfect detection (i.e. species is present at a sampling unit but 

is not detected during a survey) leads to variation in p, which confounds the ability of 

indices to make inferences regarding relative abundance across time and space. Failure 

to account for imperfect detection may lead to misleading inferences about spatial and 

temporal population dynamics (MacKenzie et al. 2002). Estimating detection 

probabilities is thus a necessary step for dealing with imperfect detection in survey 

design. A conceptual framework of how survey methods account for imperfect detection 

is illustrated by rearranging equation (2): 

N=C/p. (3) 

Although this equation is the basic premise of detectability-adjusted estimators, there are 

different approaches to estimating p. Capture-recapture techniques, for example, use 

information from the re-sighting or re-capturing of marked individuals to estimate p 

(Seber 1982, Williams et al. 2002). However, capture-recapture approaches involve 

frequent efforts to capture or observe marked animals and the logistics of using this 

technique on a large spatial scale is not feasible for some species (Royle 2004). 
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The inherent challenges associated with obtaining detectability-adjusted estimates 

of abundance have prompted interest in the development of methods for estimating 

occupancy (MacKenzie et al. 2002). Occupancy is defined as the proportion of surveyed 

area occupied by a species, and thus is estimated using data regarding the presence or 

"absence" of a species from a series of sampling units. Methods for occupancy 

estimation have been refined over the last few decades (Geissler and Fuller 1987, Azuma 

et al. 1990, MacKenzie et al. 2002, Tyre et al. 2003). MacKenzie et al. (2002) developed 

a comprehensive model from likelihood based methods that estimates both occupancy 

and detection probabilities for closed populations. A valuable feature of occupancy 

models is the ability to incorporate covariates such as habitat type, weather conditions, 

and time of season that may influence occupancy and detection probabilities (MacKenzie 

2005). Occupancy models have an expanding range of applications in ecological studies, 

including research on species distribution (Ceballos and Ehrlich 2002, Goehring et al. 

2007, Karanth et al. 2009), habitat and resource use (MacKenzie 2006, Krishna et al. 

2008, Zylstra and Steidl 2009), and metapopulation biology (Moilanen 2002, Hodgson et 

al. 2009). 

The recent advances in survey design for estimating occupancy have also spurred 

the development of similar approaches for estimating abundance (Royle 2004, Kery et al. 

2005). Additionally, the difficulties of implementing capture-recapture techniques on 

large spatial scales, has lead to interest in developing feasible alternatives to estimating 

population size. (Kery et al. 2005). Royle (2004) developed binomial mixture models 

(BMM) that directly estimate abundance and detection probabilities of closed populations 

using temporally and spatially replicated count data. This class of models assumes that 
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site-specific abundance is governed by some type of prior statistical distribution ( e.g. 

Poisson). The Poisson distribution is often considered as a likely candidate for modeling 

abundance when the abundance at each sampling unit is assumed to be random across the 

surveyed area (Royle 2004, Kery et al. 2005, Joseph et al. 2009). The negative binomial 

and zero inflated distribution have also been applied to modeling abundance using BMM 

(Wenger and Freeman 2008, Joseph et al. 2009). The mean of the prior distribution, 

representing the average abundance across all sampling units in the surveyed area, can be 

estimated by integrating the binomial likelihood of the count data over possible values of 

abundance for each site (Royle 2004). 

Previous studies have demonstrated that BMM generate unbiased estimates of 

abundance under simulated conditions and can provide ecologically realistic abundance 

estimates under field conditions (Dodd and Dorazio 2004, Royle 2004, Kery et al. 2005, 

Wenger and Freeman 2008). This method does not require individual identification of 

animals during successive surveys and its ability to estimate abundance is not limited by 

sparse survey data (Royle 2004). Thus the advantages offered by BMM over other 

abundance estimation techniques suggest that this approach could potentially be a useful 

tool for monitoring populations at large spatial scales and such use has been strongly 

advocated (Royle 2004, Kery 2008). Yet, BMM have, for some species, provided 

biologically unrealistic estimates of abundance with inflated estimates of error (Dodd and 

Dodd and Dorazio 2004, Kery et al. 2005, Joseph et al. 2008), thus continued 

reassessment of the reliability of this technique is warranted. 

Spot-mapping is an established method used to estimate the territory density of 

breeding birds by mapping territories within a designated plot (Bibby et al. 1992). This 
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technique has long been considered the standard by which all other avian survey methods 

are compared (Szaro and J aide 1982, Verner and Ritter 1988, Verner and Milne 1990, 

Bibby et al. 1992). However, spot-mapping fails to account for imperfect detection, as 

does occupancy and BMM; moreover, accurate delineation of territories is a function of 

sample effort, and delineating territories of individual birds that cannot be uniquely 

identified can be challenging (Verner and Milne 1990). Additionally, spot-mapping does 

not provide estimates of error. Nevertheless, comparisons of spot-mapping results to 

estimates of occupancy and abundance adjusted for imperfect detection demands close 

scrutiny and under conditions where spot-mapping results are considered robust and 

reliable, spot-mapping results may be used to test the reliability of established occupancy 

and abundance estimators. 

When evaluating the reliability of survey techniques, one issue to consider is the 

effect of area surveyed on estimates of population parameters. For logistical reasons, 

surveys typically only sample a small portion of the area occupied by a population 

(MacKenzie 2005). Under these circumstances, it is usually of interest to make 

inferences regarding population parameters at spatial scales larger than the area surveyed. 

However, abundance estimates can be positively biased when an insufficient amount of 

area is surveyed, thus estimates of population size may be scale dependent (Jablonski 

1976, Franklin et al. 1990, Pettorelli et al. 2009). Occupancy estimates are also scale 

dependent, given that a larger survey area will likely result in a higher probability of 

occupancy (MacKenzie et al. 2006). Ignoring the influence of area surveyed may result 

in population estimates that do not accurately reflect the actual population state. 
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Herein, I investigated the utility of occupancy and BMM as a feasible and reliable 

monitoring approach for monitoring the federally endangered golden-cheeked warbler 

(GCWA, Dendroica chrysoparia) by comparing parameter estimates from these models 

to territory densities estimated using a more labor-intensive spot-mapping method. The 

golden-cheeked warbler (GCWA) is a Neotropical migrant songbird with a breeding 

range restricted to central Texas (Pulich 1976). The Balcones Canyonlands Preserve 

(BCP) is a collection of properties managed for the GCW A and other endangered species 

(Becker and Koehler 2004). Since 1998, GCWA populations on the BCP have been 

monitored using the spot-mapping method, which has entailed estimating territory 

density within 40.5 ha plots at seven locations throughout the preserve. One goal of the 

BCP is to maintain and increase the GCW A population on the preserve (Becker and 

Koehler 2004). Effective management of GCWA on this preserve depends on reliable 

tracking of spatial and temporal variation in population dynamics. 

There were four objectives for this study. First, I evaluated potential covariates 

influencing detection of GCW A. Second, I estimated occupancy at each of the seven 

BCP plots surveyed and evaluated the influence of spatial scale on estimates of 

occupancy. Third, I estimated abundance at each BCP plot surveyed using both BMM 

and by using the equation C/p = N. Fourth, we compared my estimates of GCWA 

abundance with estimates of territory density independently derived from spot-mapping 

on multiple sites. 

Methods 

The 5,365- ha BCP consists of a discontinuous collection of properties in Travis 

County, Texas. The City of Austin (COA) annually monitors GCWA populations on the 
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preserve by conducting spot-mapping surveys on seven different sites (Figure 3). Five of 

these sites (Ivanhoe, Forest Ridge, St. Edwards, Emma Long, and Barton Creek) are 

considered areas of prime GCW A habitat, which consists of mature ash-juniper 

(Juniperus ashei) and oak (Quercus spp.) forest with at least 75 percent of the area 

containing more than 70 percent canopy cover (Abbruzzese and Koehler 2002). Two 

plots (Bohls and Double J &T) were established in transitional GCW A habitat, which was 

defined as areas with noticeably less than 75 percent prime habitat (Abbruzzese and 

Koehler 2002). Square-shaped 40.5 ha plots were established on six of theses sites, while 

a polygon-shaped plot was established on the Bohls plot, due to topography. Territory 

densities have been estimated annually by the COA on the prime habitat plots and 

biannually on the transitional plots. Spot-mapping consists of six hour surveys conducted 

over ten weeks, for a total of 60 hours of survey effort per plot (Becker and Koehler 

2004). 

On each of these seven sites, a grid consisting of 36 detection stations was 

established to provide the framework for conducting point-count surveys. Each detection 

grid encompassed an area of approximately 100 ha and overlaid the 40.5 ha spot-mapping 

plot on each site. As previous studies indicated that the mean diameter of GCW A 

territories is 143 m, detection stations were located 200 m apart to insure that detections 

were independent (Ladd and Glass 1999, DeBoer and Diamond 2006). Point count 

surveys consisted of an observer recording all GCW A detected by sight or sound during a 

5 minute interval at each point. For the purposes of this study, only male GCWA were 

considered in the subsequent data analysis, although females were noted when detected 

during the 5 minute intervals at each point. The compass direction of each bird detected 
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was recorded and observers estimated and recorded the distance of the bird from the 

survey point to one of three categories: immediate proximity (0-20 m), moderate to 

distant (20-100 m), and far away(> 1 00m). Surveys began shortly after sunrise under 

appropriate weather conditions for detecting GCWA (U.S. Fish and Wildlife Service 

1992). The order in which points 1-36 were surveyed in each grid was reversed for each 

successive visit to reduce time of day bias. Each site was surveyed approximately 

weekly, four times from late March to early April, 2008-2009. Five sites were surveyed 

in both 2008 and 2009 and two sites were surveyed only in 2009. 

Survey data were analyzed by means of both single-season occupancy models and 

BMM using program PRESENCE 2.2 (MacKenzie et al. 2002). Each year was analyzed 

separately in both types of models. Single-season occupancy models included parameters 

for occupancy ('I') and probability (p) of detecting the species (MacKenzie et al. 2002), 

whereas BMM included parameters for abundance (A.) and probability (p) of detecting 

individuals (Royle 2004). The abundance parameter A. represents the average number of 

animals per point, and is used herein to make inferences regarding the number of male 

GCW A on each 100 ha detection grid. 

The essential first step in estimating occupancy or abundance was to determine 

the covariates that influence detection of GCW A at both the species and the individual 

level. Covariates of detection considered in this first step of model selection included 

site, survey week (season), and time of day with a linear relationship (time/linear), or 

time of day with a quadratic relationship (time /quadratic). Additionally, a covariate for 

observer was included in the BMM due to previously described significant differences in 

probability of detecting individuals among the surveyors involved in this study (Figure 
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2). The covariates site, season, and observer were considered discrete variables, whereas 

time of day (referring to the minutes after sunrise that a detection was recorded) was 

considered a continuous variable. I considered both linear and quadratic time of day 

covariates in model selection because the exact relationship between detection of GCW A 

and time of day was unknown. Since this first stage of model selection examined only 

covariates influencing detection, both occupancy and abundance were set as constants. 

Model selection was conducted using the information-theorectical approach, with 

Akiaike Information crieterion corrected for small sample size (AICc) (Akaike 1973). 

The next step of model selection for both single season occupancy models and 

BMM focused on selecting models to directly estimate occupancy and abundance at each 

BCP site. Models considered in this analysis included a site covariate for either 

occupancy or abundance, as well as the covariates for detection selected in the first step 

of model selection. In cases where multiple models had equally competitive AI Cc values 

( ~ AI Cc units) model averaging was used to obtain parameter estimates to account for 

uncertainty in model selection (Burnham and Anderson 2004). 

To evaluate the effect that spatial scale had on estimates of occupancy, I randomly 

selected contiguous sections for each detection grid, representing the following spatial 

scales: 25 ha (9 detection stations), 50 ha (18 detection stations), 75 ha (27 detection 

stations). Occupancy was estimated at each scale using the survey data from the selected 

stations. The influence of spatial scale on estimates of abundance was not considered in 

this study due to difficulties encountered using the BMM. 
J 

Following inspection of estimates of abundance based on BMM, I developed an 

alternative estimate of abundance using equation (2). I obtained C by calculating the 
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average number of GCW A detected at each site across the four week sampling period. 

The estimate of p was obtained from single season occupancy models using survey data 

only from those survey stations at which GCW A were detected. Thus, for this estimator, 

occupancy was fixed at 1 (i.e. 100% of detection stations occupied) for each site. When 

only one individual is available to be detected at each sampling unit, p estimates the 

probability of detecting individuals (MacKenzie et al. 2002). The results of this study, 

however, suggested that multiple birds were often available at detection stations. I 

therefore assumed that detection is positively correlated to GCW A population density at 

each site, which is a reasonable assumption (Watson et al. 2008). If this is true, then the 

site covariates used in my models should accommodate the possibility of multiple birds 

in estimates of detection. Covariates of detection considered in this analysis, as before, 

included site, season, time/linear, and time/quadratic. Estimates of p for each site were 

then obtained from models with the smallest AICc, and averaged across each day and 

week. 

Finally estimates of abundance from both the BMM and the C/p estimator were 

compared with territory densities independently estimated in each respective site during 

2008 and 2009 at the same time and during the same breeding season. Territory density 

was initially estimated on 40.5 ha plots, thus comparisons were made to territory 

densities extrapolated to 100 ha. 

Results 

Nearly all detections (99%) of GCW A during this study were aurally based. 

Nmve occupancies (proportion of stations where GCWA were detected) per site ranged 
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from 0.43 (Bohls) to 1.0 (Ivanhoe and St. Edwards) in 2008 and 0.45 (Bohls) to 1.0 

(Emma Long, Barton Creek, Ivanhoe) in 2009. Among both years there were 5 sites with 

an occupancy of 1.0 (i.e. 100% of the stations occupied by GCWA). Among stations 

where GCW A were detected, the majority of stations had ~ individuals detected across 

the four week sampling season (Figure 4). An analysis of the distribution of detections as 

a function of distance, revealed that most detections (88 % in 2008 and 87% in 2009) 

were estimated by surveyors as being within 20 to 100 meters from the survey point 

(Figure 5). 

Model selection examining covariates of detection indicated two equally 

competitive single-season occupancy models in each year that were superior to all other 

candidate models considered in this analysis (Table 3). Both models contained site and 

season covariates for detection, while one model contained the covariate time/linear and 

the other contained time/quadratic. These results indicate that the probability of detecting 

GCW A is influenced by time of day, time of season, and site. I found differences in 

detection probabilities among the seven sites in each year ranging from 0.29 to 0.81 in 

2008 and 0.19 to 0. 70 in 2009 (Figure 6). Furthermore, detection probabilities for each 

site were consistent across the two years and the ranking of order among sites (from 

lowest to highest probabilities) was identical in each year, indicating that the estimation 

of detection probabilities accurately accounted for important covariates influencing 

detection of GCW A. Seasonal variation in detection showed a consistent pattern among 

all sites with the first survey week each year having the highest detection probabilities 

and detection probabilities declining consistently across the four week sampling period 
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The maximum number of GCW A individuals detected across the four week 
sampling period for detection stations across all sites, in both 2008 and 2009. The 
number of individuals detected per station ranged from 0 to 5. 
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Figure 5. Detection Distances. . 
The percentage of total detections across all sites, in both 2008 and 2009, as a 
function of distance from the survey point. The distance of each GCW A detected as 
estimated by surveyors into one of three categories: 0-20 m (Close), 20-100 m 
(Medium), > 1 00m (Far). The total number of detections were 623 and 722 for 2008 
and 2009, respectively. 
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Table 3. Model Selection Summary (Covariates of Detection). 
Summary of model selection for the single-season occupancy models in 2008 and 2009, showing covariates influencing the 
probability of detecting GCW A. Parameters estimated in these models were occupancy ('I') and probability of detection (p ). 
Covariates examined included site, season, time of day with a linear effect (time/linear) and time of day with a quadratic effect 
(time/quadratic), and no influence of a covariate(.). Model selection statistics presented are Akaike information criterion value 
corrected for small sample size (AICc), AICc weight (w), number of parameters (N. par.) and twice the log likelihood (-2 LL). 
Sample sizes (number of point-count surveys across all sites) were 180 and 252 for 2008 and 2009, respectively. Selected models 
are indicated in bold font. 

2008 2009 

Model AICc w N.par. -2LL AICc w N. Ear. -2LL 
'I'(.) p(site, season, time/quadratic) 835.61 0.573 8 818.77 1204.62 0.436 10 1183.71 
'I' (.) p(site, season, time/linear) 836.20 0.428 8 819.36 1204.13 0.557 10 1183.22 
'I'(.) p(site, season) 855.65 <0.001 7 841.00 1216.71 <0.001 9 1197.97 
'I'(.) p(site, time/quadratic) 856.42 <0.001 7 841.77 1214.83 <0.001 9 1196.09 
'I'(.) p(site, time/linear) 857.29 <0.001 7 842.64 1214.35 <0.001 9 1195.61 
'I'(.) p(site) 875.59 <0.001 6 863.10 1226.80 <0.001 8 1210.21 
'I'(.) p(.) 909.44 <0.001 2 905.37 1325.66 <0.001 2 1321.61 
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Figure 7. Detection Probabilities per Week. 
Average detection probability of GCW A for all sites across the four week 
sampling season in 2008 and 2009. Error bars represent 95% CI. 
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(Figure 7). Although this pattern was evident in both years, detection probabilities for 

each week in 2008 were comparatively higher than estimates in 2009. Both time of day 

covariates (linear, quadratic) revealed that the probability of detecting GCWA gradually 

declined throughout a day (Figure 8). 

Two single-season occupancy models containing the selected covariates of 

detection as well as a site covariate for the occupancy parameter 'I' were equally 

competitive in both 2008 and 2009 {Table 4). The inclusion of a site covariate for 'I' 

produced models that fit the survey data better (i.e. smaller AICc values) relative to 

models where 'I' was set as a constant, indicating that estimates of occupancy were 

strongly influenced by site {Table 5). Model-averaged estimates of occupancy adjusted 

for imperfect detection for each site ranged from 0.48 (Bohls) to 1.0 (Ivanhoe and St. 

Edwards) in 2008 and 0.52 (Bohls) to 1.0 (Emma Long, Barton Creek, Ivanhoe) in 2009 

(Figure 9). With the exception of sites with 'I' = 1, occupancy estimates from the single

season models were higher than naive occupancy at each site. For the five sites surveyed 

in both years, estimates of occupancy did not differ significantly between years. 

Estimates of occupancy(± 95% CI) at smaller spatial scales within the detection 

grids suggested that there were no substantial differences in estimating occupancy at 

spatial scales ranging from 25 to 100 ha (Figure 10). At sites with lower occupancy 

estimates based on the 100 ha scale (Bohls and Double J &T), there appeared to be more 

variation at smaller scales, however 95 % CI for these estimates were large and 

overlapping indicating that there were no substantial differences in estimates even at 

these low density sites. 
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Model selection for the BMM, containing potential covariates influencing 

detection of GCW A individuals, revealed four models in each year which were equally 

competitive (Table 6). All four models included covariates for site, season, and either the 

time/linear or time/quadratic, and two models included an observer covariate. Since each 

of the four models were equally competitive in model selection, we concluded that each 

combination of covariates represented in these models strongly influenced detection of 

GCWA on the individual-level. The subsequent inclusion of a site covariate for the 

abundance parameter 'A, in BMM containing these four combinations of covariates of 

influencing detection of individuals, once again led to each model being equally 

competitive in both years (Table 7). Additionally, models including a site covariate for 

abundance fit the survey data better (i.e. smaller AICc) relative to models where 

abundance was set to be constant, indicating that estimates of abundance were strongly 

influenced by site (Table 8). Model-averaged estimates of'A. per site, which for this study 

represented the average number of male GCWA per point, ranged from 1.2 (Bohls) to 3.6 

(Ivanhoe) in 2008 and 2.2 (Double J&T) to3.6 (Ivanhoe) in 2009. Estimates of A 

extrapolated across all 36 points per site (A multiplied 36) revealed estimates of the total 

number of male GCW A for each 100 ha site, and rounded to the nearest whole number, 

these estimates ranged from 64 (Bohls) to 142 (Ivanhoe) in 2008 and 96 (Double J&T) to 

225 (Ivanhoe and St. Edwards) in 2009 (Figure 11). Although the ranking of the sites, 

from lowest to highest abundance, was consistent between years, estimates were 

considerably higher in 2009. Estimates of error, represented by 95 % CI, were very large 

for these abundance estimates, especially in 2009, when the upper limit of the CI 

extended to at least 700 for five sites (EL, IV, SE, FR, BC). 
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Figure 8. Detection Probabilities for Single Survey. 
Detection probabilities of GCWA over the course of a single survey among all sites in 2008 and 2009. Both the 
linear and quadratic time of day covariates are shown. The solid line represents the probability of detection, 
while the dotted lines represent the upper and lower limits of the 95% CL 



Table 4. Model Selection Summary (Estimating 'fl). 
Summary of model selection for the single-season occupancy models in 2008 and 2009, showing selected covariates for probability 
of detection (p) and a site covariate for occupancy (II' ). 

Model 
'I' (site) p (site, season, time/quadratic) 
'I' (site) p (site, season, time/linear) 

805.09 
806.10 

w 
0.633 
0.367 

2008 

N.par. -2LL 
12 779.14 
12 780.23 

1192.79 
1193.81 

2009 

w 
0.625 
0.375 

N.par. -2LL 
16 1158.47 
16 1159.49 



Table 5. Model Selection Summary (Inclusion of Site Covariate). 
Summary of model selection comparing single-season occupancy models with and without site covariates for occupancy ('I') in 2008 
and 2009. Selected models are indicated in bold font. 

2008 2009 

Model AICc w N. :ear. -2LL AICc w N. :ear. -2LL 
'I' (site) p(site, season, time/quadratic) 805.09 0.633 12 779.14 1192.79 0.625 16 1158.47 
'I' (site) p(site, season, time/linear) 806.10 0.367 12 780.23 1193.81 0.375 16 1159.49 
'fl(.) p(site, season, time/quadratic) 835.61 <0.001 8 818.77 1204.62 <0.001 10 1183.71 
'fl(.) p(site, season, time/linear) 836.20 <0.001 8 819.36 1204.13 <0.001 10 1183.22 
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Figure 9. Estimates of Occupancy. 
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Estimates of occupancy (proportion of 36 stations occupied by > 1 GCW A) for 
each site surveyed in 2008 and 2009. Error bars represent 95% CI and are 
indicated only for sites with 'I' ~1. 
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Figure 10. Estimates of Occupancy and Spatial Scale. 
Estimates of occupancy for each site at different spatial scales in 2008 and 2009. 
Error bars represent 95% CI. Two sites in 2008 (IV and SE) and three sites in 2009 
(IV, EL, and BC) are excluded due to naive occupancy estimates of 1 at 100 ha, 
which negates any potential variability at the smaller spatial scales. 
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A comparison between BMM estimates of abundance to territory densities 

estimated from spot-mapping revealed a large discrepancy in the number of male GCW A 

estimated at each 100 ha site. Spot-mapping estimates of the number of GCW A 

territories per 100 ha site ranged from 7 (Bohls) to 54 (Ivanhoe) in 2008 and from 6 

(Double J&T) to 44 (Ivanhoe and St. Edwards) in 2009 (Figure 11). The ranking of the 

sites, from lowest to highest number of territories, is consistent with ranking estimates of 

abundance from the BMM; however, BMM estimates of abundance were on average four 

and six times higher than territory density in 2008 and 2009, respectively. In most cases, 

the degree of discrepancy between abundance and territory density was greatest at the 

low density sites and smallest at the higher density sites. This pattern was evident in both 

years, with the only exception being Barton Creek (BC) in 2009, which showed the 

greatest discrepancy among all sites, despite being ranked among the higher density sites. 

Both the disparity with territory density and inflated 95 % CI, led me to conclude that the 

BMM estimates of GCW A abundance were biologically unrealistic for each of these 

sites. 

The altemativ~ abundance estimator, using the equation C/p, provided reasonable 

estimates of GCW A abundance for each site. The average number of GCW A detected 

during each survey of36 detections stations (C) varied among sites, ranging from 12 

(Bohls) to 39 (Ivanhoe) in 2008 and from-8 (Double J&T) to 38 (Ivanhoe) in 2009. 

Model selection for the single-season occupancy models fixed at 1.0, resulted in two 

models competitively superior in both years, each containing the same covariates of p 

selected in modeling detection probabilities (Table 3). Model-averaged estimates of p 

were obtained from these two models and subsequently used in the C/p estimator. 



Table 6. Model Selection Summary (Covariates of Detection). 
Summary of model selection for the binomial mixture models in 2008 and 2009, showing covariates influencing the probability of 
detecting GCW A individuals. Parameters estimated in these models were abundance (h) and probability of detection for individuals (p ). 
Covariates examined included site, season, observer, time of day with a linear effect (time/linear) and time of day with a quadratic effect 
(time/quadratic), and no influence of a covariate(.). Model selection statistics presented are Akaike information criterion value 
corrected for small sample size (AICc), AICc weight (w), number of parameters (N. par.) and twice the log likelihood (-2 LL). Sample 
sizes were 180 and 252 for 2008 and 2009, respectively. Selected models are indicated in bold font. 

2008 2009 

Model AICc w N.Ear. -2LL AICc w N.par. -2LL 
l (.) p(site, season, time/linear) 1577.07 10.401 8 1560.23 2045.84 0.289 10 2024.54 
l (.) p(site, season, time/quadratic) 1577.34 10.351 8 1560.50 2044.88 0.467 10 2023.58 
l (.) p(site, season, time/linear, observer) 1579.29 10.132 9 1560.23 2048.11 0.093 11 2024.54 
l (.) p(site, season, time/quadratic, observer) 1579.56 0.116 9 1560.50 2047.15 0.150 11 2023.58 
A (.) p( site, time/quadratic) 1598.99 <0.001 7 1584.34 2058.30 <0.001 9 2039.24 
A(.) p(site, time/linear) 1599.19 <0.001 7 1584.54 2059.37 <0.001 9 2040.31 
11. (.) p(site, season) 1601.12 <0.001 7 1586.47 2058.39 <0.001 9 2039.33 
11. (.) p(site) 1621.75 <0.001 6 1609.26 2074.64 <0.001 8 2057.80 
A(.) p(site, observer) 1623.91 <0.001 3 1659.27 2076.86 <0.001 9 2057.80 
A(.) p(observer) 1665.41 <0.001 3 1659.27 2183.51 <0.001 3 2177 37 
A(.) p(.) 1669.89 <0.001 2 1665.82 2181.92 <0.001 2 2177.85 



Table 7. Model Selection Summary (Estimating l). 
Summary of model selection for the binomial mixture models in 2008 and 2009, showing selected covariates for probability of detection 
for individuals (p) and a site covariate for abundance (>.. ). 

2008 2009 

Model AICc w N. :ear. -2LL AICc w N. :ear. -2LL 
l (site) p(site, season, time/quadratic) 1568.98 0.336 8 1552.14 2039.45 0.391 10 2018.15 
l (site) p(site, season, time/quadratic, observer) 1569.21 0.300 8 1552.37 2045.84 0.225 11 2016.99 
l (site) p(site, season, time/linear) 1570.11 0.191 9 1551.05 2040.40 0.243 10 2019.10 
l (site) p(site, season, time/linear, observer) 1570.32 0.172 9 1551.26 2041.49 0.141 11 2017.92 



Table 8. Model Selection Summary (Inclusion of Site Covariate). 
Summary of model selection comparing binomial mixture models with and without site covariates for abundance (>.) in 2008 and 2009 

2008 2009 

Model AICc w N.ear. -2LL AICc w N.Ear. -2LL 
l. (site) p(site, season, time/quadratic) 1568.98 0.336 8 1552.14 2039.45 0.391 10 2018.15 
l. (site) p(site, season, time/quadratic, observer) 1569.21 0.300 8 1552.37 2045.84 0.225 11 2016.99 
l. (site) p(site, season, time/linear) 1570.11 0.191 9 1551.05 2040.40 0.243 10 2019.10 
l. (site) p(site, season, time/linear, observer) 1570.32 0.172 9 1551.26 2041.49 0.141 11 2017.92 
1 ( .) p(site, season, time/linear) 1577.07 <0.001 8 1560.23 2045.84 <0.001 10 2024.54 
1 (.) p(site, season, time/quadratic) 1577.34 <0.001 ' 8 1560.50 2044.88 <0.001 10 2023.58 
1 (.) p(site, observer, season, time/linear) 1579.29 <0.001 9 1560.23 2048.11 <0.001 11 2024.54 
1 (.) p(site, observer, season, time/quadratic) 1579.56 <0.001 9 1560.50 2047.15 <0.001 11 2023.58 
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Figure 11. Estimates of Abundance. 
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Estimates of number of male GCW A per 100 hectares for each of five sites in 
2008 and seven sites in 2009, inferred from binomial mixture models, C/p 
estimator, and territory density assessed by spot-mapping. Error bars 
represent 95% CI. The upper limits of confidence intervals in 2009 extended 
to at least 700 for five sites (EL, IV, SE, FR, BC) in 2009. 
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Estimates of abundance using the C/p estimator were significantly lower than the 

BMM's estimates and also had smaller 95 % CI (Figure 11). These abundance estimates 

ranged from 23 to 56 in 2008 and 16 to 58 in 2009. In most cases, the lower limit of the 

95 %CI, included the territory density estimated at each site. Among both years there 

were four sites with a C/p estimate that was significantly higher than territory density. 

Discussion 

This study demonstrates that using point-count surveys in conjunction with a 

model-based approach that estimates population parameters adjusted for imperfect 

detection is a reliable and feasible approach to monitoring GCW A. The spot-mapping 

method, while considered the most reliable of avian survey techniques for estimating 

density of breeding birds (Szaro and J al<le 1982, Verner and Ritter 1988, Verner and 

Milne 1990, Bibby et al. 1992), is limited by its labor-intensive approach in the amount 

of area that can be surveyed. Spot-mapping plots typically do not exceed 40 ha in size, 

thus restricting the area at which density can be estimated (Bibby et al. 1992). The study 

design for this project allowed for a much larger area to be surveyed (100 ha) by 

collecting survey data using the point count method. Furthermore, considerably less time 

was required to conduct point count surveys (four weeks) compared to spot-mapping (ten 

weeks). Abundance estimated from point count data that incorporated a novel approach 

to estimating p, provided estimates that were largely in agreement with territory densities 

obtained from the spot-mapping method. The agreement between the C/p estimator and 

spot-mapping suggests that using a model-based approach to estimating abundance is a 

reliable technique for monitoring GCW A. When spot-mapping is relied upon as a means 

of monitoring avian populations, I advocate, based on the results of this study, that a 



more efficient monitoring approach that estimates detectability-adjusted population 

parameters based on point count data be considered as a feasible alternative. 
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I found that detection probabilities varied among sites, and showed temporal 

variation across the day and during the survey season. The sources of variability in 

detection among sites was not directly investigated in this study. Although there were 

habitat differences among the sites, prior research indicates that detection of GCW A is 

not greatly influenced by variation in habitat characteristics (Watson et al. 2008). One 

possible explanation for the variability among sites in this study is that population density 

is influencing probabilities of detection. Detection probabilities for each site ranged from 

0.18 to 0. 70, and the order of ranking from lowest to highest also coincides with the order 

of ranking for site abundance. This pattern suggests a possible correlation between 

population density and detection, and future studies should directly investigate this 

relationship and its implications on avian survey design. 

Estimates of occupancy showed no significant differences among the spatial 

scales considered (25 ha -100 ha). This indicates that a study area within this size range 
' 

would be sufficient for obtaining reliable estimates of occupancy. Investigating the 

influence of spatial scale on estimates of abundance was prohibited due to the failure of 

the BMM in providing reliable estimates. Additionally, spatial scale was not evaluated 

for the C/p estimator because survey data was already truncated (i.e. discounted stations 

where birds were not detected) to obtain an estimate of detecting individuals, thus 

removing additional stations would have been problematic, especially for sites with few 

detections. For territorial species like GCWA, however, occupancy and abundance 

should be strongly correlated, thus conclusions regarding the influence of spatial scale on 
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occupancy would also give insight into estimating abundance (He and Gaston 2000). The 

results of this analysis indicate that a study area as small as 25 ha would provide reliable 

estimates of occupancy; however, an area of this size would severely restrict the number 

of independent sampling units for avian point count surveys (Hutto et al. 1986). 

Additionally, surveying over a larger area, when logistically feasible, provides more 

survey data and thus improves precision of population estimates (MacKenzie et al. 2006). 

My estimates of GCW A abundance from BMM consistently exceeded territory 

densities estimated on these same plots by independent researchers using spot-mapping 

techniques and were on average five times higher than territory densities among both 

years (Figure 11 ). Moreover, the degree of difference between BMM estimates and 

territory density varied among sites, with the greatest discrepancies noted at the lowest 

density sites. Estimates of abundance from BMM's were not only significantly higher 

than the COA's territory density estimates, but also exceeded the upper limit of observed 

GCW A territory density ( 63 territories/100 ha) found by other researchers throughout 

central Texas (Wahl et al. 1990). Thus, I concluded that my estimates of abundance were 

ecologically unrealistic. 

The limited application of BMM in published studies has revealed this technique 

can generate reliable estimates under simulated conditions, and in some cases provide 

reasonable estimates of abundance for some species (Dodd and Dorazio 2004, Royle 

2004, Kery et al. 2005, Wenger and Freeman 2008). However, the ability ofBMM to 

provide unbiased estimates of abundance under field conditions is difficult to assess when 

there is no available information on the true population size (Royle 2004, Kery et al. 

2005). To date, only one additional study compares BMM estimates of abundance to 
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independently derived estimates of territory density obtained from spot-mapping (Kery et 

al. 2005). Kery et al. (2005) compared BMM estimates to territory densities for eight 

avian species and found that the abundance estimates from this model were higher than 

estimates based on territory mapping. Most of the species considered in that study had 

abundance estimates that were about twice as high as territory density, while one species 

had an.,abundance estimate that was 8.9 times greater than territory density. Determining 

the source of bias in discrepancies of this magnitude requires a close examination of the 

assumptions inherent in both of these sampling approaches. 

There are a number of possibilities to explain the large discrepancy between the 

BMM estimates and territory density estimates based on spot-mapping. For the purposes 

of this study territory densities obtained from spot-mapping were used as a base line 

comparison to evaluate the reliability of detectability-adjusted estimates of abundance 

obtained from point count data. Estimates of abundance based on point count data may 

be biased high, compared to spot-mapping, due to systematic detection of birds outside 

the 100 ha grid when surveyors are on points along the perimeter of the detection grid. 

Thus, when territory density is extrapolated to 100 ha, there is certainly some inherent 

bias in the study design for estimates of abundance to be higher than territory density. 

However, the degree of overestimation by the BMM suggests that one or more 

assumptions of this model may have been violated, thus leading to biased estimates of 

abundance. 

A fundamental assumption of BMM is that the population within the surveyed 

area is closed during the total sampling season (Royle 2004). I choose a survey season of 

four weeks, lasting from late March to early April, to coincide with the beginning of the 
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GCW A breeding season. Population closure for a period of four weeks during this time 

of year is likely to be met for this species (Watson et al. 2008). The assumption that the 

distribution of the population across the surveyed area fits some prior statistical 

distribution 1s difficult to assess in this study. Estimates from BMM and their associated 

estimates of error appear to be sensitive to the type of statistical distribution used to 

model the population's spatial distribution (Kery et al. 2005, Joseph et al. 2009). I 

choose to model abundance using the Poisson distribution, which assumes that the true 

abundance at each point is random, and independent of the number of individuals at any 

other point (Kery et al. 2005). Independence between survey points is likely to be met 

for this species when points are at least 200 m apart (Ladd and Glass 1999, DeBoer and 

Diamond 2006, Watson et al. 2008). Additionally, survey data from our study suggests 

that the majority of birds were detected within 100 m of each point (Figure 5). However, 

considering the variability in both population density and territory size of individual 

males noted for this species across its range, it is unclear if the Poisson distribution is an 

appropriate assumption for the GCWA (Ladd and Glass 1999, Wahl et al. 1990). The 

negative binomial distribution has also been considered for modeling abundance, and is 

appropriate when there is significant variation in parameter estimates (Wegner and 

Freeman 2008). Yet, several studies have demonstrated the negative binomial 

distribution often results in not only poorer fit to survey data (i.e. larger AIC) compared 

to models with Poisson distribution, but unreasonable estimates of abundance with 

inflated error estimates as well (Wenger and Freeman 2008, Joseph et al. 2009). The 

zero-inflated variants of both the Poisson and negative binomial BMM show great 

potential, in that these models simultaneously estimate probability of detection, 



54 

abundance, and occupancy (Joseph et al. 2009). While, these models appear to be 

appropriate for data sets that are truly "zero-inflated", my GCWA survey data contained 

numerous detections, often involving multiple individuals, thus the zero-inflated 

distribution was likely not a strong candidate for modeling abundance for this study. 

Additionally, failure ofBMM could also be due to the absence of ecological covariates 

that influence local abundance within the population (Royle 2004, Joseph et al. 2009). 

Models not containing such covariates would be unlikely to account for heterogeneity in 

count data resulting from ecologically mechanisms, such as habitat characteristics (Royle 

2004). While I did not directly include habitat as a covariate for abundance in my 

analysis, the site covariates considered in these models reflected a broad range of habitat 

features. 

The alternative approach used in this study to estimate GCW A abundance using 

the C/p estimator provided lower estimates of abundance, with smaller 95% Cl. This 

estimator, unlike BMM, is not constrained by the assumption regarding the population's 

spatial distribution. However, obtaining' an estimate of the probability of detecting 

individuals from fixed occupancy models assumes that only one individual is available to 

be detected at each survey point. There was a clear violation of this assumption, in that 

most of the points surveyed in each year had ~ individuals recorded (Figure 4). Despite 

this violation, estimates of abundance obtained from the C/p estimator provided 

reasonable estimates, as evidenced by the close agreement with territory density 

estimates. A comparison of my C/p estimates of abundance to territory densities 

estimated using spot-mapping revealed that territory density extrapolated to 100 ha was, 

in most cases, slightly lower than the C/p estimates of abundance. However, for most 
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sites the lower limit of the 95 % CI included the 100 ha territory density estimate, 

indicating that there was no significant difference between estimates of abundance and 

territory density. Among both years, there were four sites with territory density estimates 

outside the 95 % CI for the C/p estimates of abundance (2008:Bohls; 2009: Emma Long, 

Double J&T, and Barton Creek). The largest discrepancy was at Barton Creek, which 

had an abundance estimate of 48 male GCWA, yet only 12 territories were estimated in 

this same 100 ha area. It is unclear whether this discrepancy is associated with error in 

the C/p estimator or the spot-mapping method, or a combination of errors from both 

survey techniques. Nevertheless, I believe that the C/p estimator provided more precise 

and unbiased estimates of GCW A abundance, than did the BMM. I suggest that using 

this novel approach for estimating the probability of detecting individuals be considered, 

especially in light of the uncertainty associated BMM estimates (Dodd and Dodd and 

Dorazio 2004, Kery et al. 2005, Joseph et al. 2008). 

This study demonstrated that monitoring GCW A using point-count surveys to 

estimate detectability-adjusted population parameters is a feasible alternative to spot

mapping. Evaluating the reliability of survey techniques to estimate unbiased population 

estimates is difficult without knowledge of the true population size. However, I found 

that estimates of detectability-adjusted abundance using the C/p equation were largely in 

agreement with territory densities obtained using the spot-mapping method. Associated 

error in the form of 95% CI for the population parameters in this study conveys the 

degree of precision for these estimates. The spot-mapping technique provides an index of 

population size without any associated error estimate, and thus no means of evaluating 

precision, a component of reliability. Survey designs that allow for estimation of 



detection probabilities and either occupancy or abundance should be considered as a 

feasible monitoring approach for avian species. 
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