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ABSTRACT

Often people need to make comparisons in order to make selections and

decisions. Increasingly such comparison activities are conducted online. For example,

consumers typically read many reviews and compare various models before an online

purchase. Since this comparison-based analytical and decision-making process often

involves significant manual effort, it is greatly beneficial if the process can be largely

automated and effectively performed by computers. In this thesis, we make an effort

to design and implement COMPA, a web-based comparative retrieval and analytical

engine in the context of consumer products, which takes two entities as input and

returns a comprehensive comparison report to effectively assist decision-making.
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I. INTRODUCTION

Comparative assessment of options is crucial in decision-making especially in

E-commerce, where consumers typically read many reviews and compare various

models before an online purchase. This comparison-based analytical and

decision-making process can be very time-consuming involving significant manual

effort, which motivates our study to design and implement COMPA, a comparative

retrieval and analytical engine that aims to effectively automate this process and

assist decision-making.

COMPA is a web-based system implemented in the context of consumer

products, however, the idea and system can be directly applied to other application

domains involving online comparative decision-making. It features a simple web

interface that takes user-input queries similar to web search. For a given query in

the form of A vs B, where A and B are two entities (e.g., consumer product

models), COMPA will search through various data sources (e.g, Amazon product

reviews) and generate a comprehensive comparison report that includes comparison

scores as well as supporting evidence.

As far as we know COMPA is one of the first comparative analytical systems of

its kind. COMPA is related to comparative opinion mining, a sub-field of opinion

mining. Opinion mining, or sentiment analysis is “the field of study that analyzes

people’s opinions, sentiments, evaluations, appraisals, attitudes, and emotions

towards entities” [1]. Comparative opinion mining can be referred to as the task of

extracting valuable comparative opinions from text. Relatively little research has

been done in comparative opinion mining as it is a relatively new line of research.

To generate a comparison report for the A vs B query, COMPA performs

comprehensive analysis that integrates three components: independent analysis,

comparative analysis, and inference analysis. Independent analysis is where we
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analyze reviews/comments containing only A or only B. Comparative analysis is

where we perform a direct comparison analysis for A and B based on comparative

reviews involving both A and B. With comparative analysis, we are able to calculate

how A and B directly compare. Inference analysis is where we don’t have a direct

comparison between A and B but instead both A and B have a comparison with a

third entity C, so we can infer how A and B compare by how A and C compare and

B and C compare. The produced comparison report contains ‘Relative Strength’

scores that suggest how A and B compare in the eyes of consumers. For example,

0.7 vs 0.3 suggests 70% of consumers prefer product A whereas 30% prefer product

B. The comparison report also contains evidence supporting these scores for the

user to verify. The supporting evidence contains highlighted keywords from product

reviews. By verifying the evidence, the user can assign a degree of confidence for the

calculated comparison scores.

Contributions

This thesis work makes the following contributions.

• We propose a novel comparative retrieval and analytical engine in the context

of consumer products that potentially has great practical significance.

• Our system, COMPA, is designed to perform comprehensive analysis by

integrating three components: independent analysis, comparative analysis, and

inference analysis.

• We implement COMPA as a publicly accessible system running on real data

sets, demonstrating the utility of the system.

• We collect and process multiple real consumer product review data sets that

can be shared with other researchers for the study of comparison opinion

mining.
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• The COMPA system and methodology can be easily adapted to other

application domains involving online comparative decision-making.

This thesis is divided into 6 chapters, Chapter 2 will go over a background on

opinion mining and some related work in the field. Chapter 3 will discuss our

methodology before we go into our implementation of COMPA in Chapter 4.

Chapter 5 will provide a demonstration of COMPA and some experiments using

COMPA. Chapter 6 will offer final thoughts as well as discuss future work that can

be done with COMPA.
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II. RELATED WORK

Sentiment Analysis

Sentiment analysis techniques can be broadly classified into three categories

Rule based, Machine Learning based, and Natural Language Processing [2]. In

COMPA we are primarily focusing on libraries that use Rule based and Natural

Language Processing otherwise known as NLP. Current state-of-the-art sentiment

analysis techniques use concepts of NLP and Deep learning. In recent years, Deep

Learning models have been extensively applied in the field of NLP and show great

potential [3]. Recently substantial work has shown that pre-trained models (PTMs),

on the large corpus can learn universal language representations, which are

beneficial for downstream NLP tasks and can avoid training a new model from

scratch [4]. These methods might not be perfect for analyzing product reviews

because it gives sentiment polarity of a sentence or an opinion document, not

targeted sentiment of the product in the review.

Sentiment analysis is growing in popularity and there is an increased need to

perform sentiment analysis. Some popular models used in Opinion Mining are the

BiDirectional Encoder Representations from Transformers [5] language model also

known as BERT, and Aspect Based Sentiment Analysis also known as ABSA.

Currently, many are turning to using BERT or models based on BERT, as it is a

great model for a large range of tasks, it is very capable for language inference, and

NLP tasks. There are not many easy to use/plug-and play models for Sentiment

Analysis. Other people have noticed that there is a lack of a plug-and-play sentiment

analysis libraries, and they have created their own collection of sentiment analysis

models called pysentimiento [6]. Pysentimiento contains beto a BERT model trained

in Spanish, and BERTweet a BERT model trained on English tweets for use with
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the English language. Both of these models have been pre-trained for use for

evaluating sentiment and emotion analysis. They selected BERTweet as the starting

BERT model since it performed a bit better than BERT in their testing. We

encountered a similar problem with easy to use models and in their paper they also

call out VADER as being one of the few models that you can just install and use.

BERT is frequently used when performing sentiment analysis, so there is a lot

of research into how well BERT performs with the default model. There is research

to modify the pre-trained BERT model to perform text classification, Chi Sun,

Xipeng Qiu, Yige Xu and Xuanjing Huang worked on improving the performance of

BERT when performing these text classification tasks [7]. They discovered that

some pre-training could significantly boost its performance and that BERT could

improve the task with small-size data. Another recent paper has focused on using

the pre-trained BERT model and enhancing the BERT model to perform TABSA

otherwise known as Targeted Aspect Based Sentiment Analysis [8] which improves

on ABSA by focusing on object as sometimes a sentence or document may refer to

more than one object. There is active research towards creating smaller, more

performant versions of BERT, DistilBERT created by Victor Sanh, Lysandre Debut,

Julien Chaumond, Thomas Wolf “a general-purpose pre-trained version of BERT,

40% smaller, 60% faster, that retains 97% of the language understanding

capabilities” [9]. They were able to use Knowledge distillation to compress the size

of the BERT model, and were able to retain 97% of the capabilities which is pretty

incredible. XLnet a generalized autoregressive pre-training method overcomes the

limitations of BERT and achieves state-of-the-art performance on sentiment analysis

datasets [10].

There is an increase in researching better approaches for ABSA and optimizing

how results are calculated, Amit Kushwaha and Shubham Chaudhary use an ML

and rule based approach for performing ABSA [11]. Their results had good accuracy
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and were able to mitigate some of the noise which is encountered when performing

the ABSA extraction which happens when the syntactic rule parses a sentence it

was not supposed to. GRACE stands for GRadient hArmonized and CascadEd

labeling model, which uses BERT as the backbone [12]. They focused on making

sure that GRACE is more resistant to the imbalance of labels, as sometimes a label

occurs more often leading to skewed results, GRACE is a great example of building

aspect based sentiment analysis models using BERT.

Comparative Opinion Mining

Within Opinion Mining is Comparative Opinion Mining, a subfield that deals

with identifying and extracting information that is expressed in comparative form.

Relatively less research has been done in comparative opinion mining. According to

Bing Liu and Nitin Jindal, a comparative sentence “expresses an ordering relation

between two sets of entities with respect to some common features” [13]. The

earliest exploration in this field was conducted by Bing Liu and Nitin Jindal in the

same paper. They suggest that comparatives can be classified into two main types:

“gradable, and non-gradable” [13]. Non-gradable comparatives are more implicit,

while the gradable comparatives are more direct and can be assigned a value like

greater than or less than. In COMPA we will be using both types of comparative

sentences to form a complete opinion. In Liu and Jindal’s research paper they use

keywords to filter out sentences that are unlikely to be comparisons, and we take a

similar approach to reduce our reviews under evaluation to ensure more relevant

data is used in the system. Another challenging aspect of Comparative Opinion

Mining is identifying comparative sentences. Nitin Jindal and Bing Liu have looked

into the problem of identifying comparative sentences. They started by creating a

list of comparative keywords, and checking if these words were present in a sentence

[14] which led to a high recall but lower precision. To solve this lower precision
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problem, they added Naïve Bayes to the resulting classification to help remove the

false positives, and improve precision. In COMPA, we also initially took an

approach where we created a list of comparative keywords and then used this list to

determine if a sentence is comparative. Instead of adding to this approach, we

overcome this problem by performing the analysis using libraries that have

overcome this problem such as VADER.

Comparegem is an example of model created to classify the comparative

direction and rank entities, it is a generative model based on Gibbs Sampling [15].

In CompareGem, the model classifies each sentence and then is able to generate a

conclusion from the summaries. At that time CompareGem outperformed other

machine learning approaches such as Support Vector Model (SVM), or Naive Beye’s

(NB). It does this by modeling two layers of comparative relations, at the sentence

level and at the entity pair level [15]. Mirco Franzek, Alexander Panchenko and

Chris Biemann created an annotated dataset of comparative sentences and used

different approaches for classification, word embeddings, bag of words and

concluded that InferSent model performed best [16]. He et al focused on creating a

list of comparative words which were used with 6 patterns to classify mobile reviews

in Chinese [17]. They were able to achieve high precision and recall but were only

focusing on nouns, so they felt that they might’ve been missing a few things.

COMPA differs from these previous approaches in performing comparative

opinion mining, by performing three types of analysis on the reviews to get a

comprehensive look to how these two entities compare while also providing evidence

for this conclusion. Most of the research has been focused on a singular type of

review while COMPA is able to perform its analysis on reviews relating to each

entity and reviews directly comparing both entities.
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Comparative Systems

There have been a few attempts at creating systems that compare products

automatically. Opinion Observer [18] is a system that aims to present a visual

comparison of product features. The system primarily focuses on short sentences

since Opinion observer focuses on the pro/con review format. This system

automatically gathers the reviews from the internet and periodically updates its

database. This system uses class sequential rules mining, using a training data set to

automatically do feature extraction and comparison between two objects. Most of

the data for this system is structured, with the only unstructured data being the

free-format reviews. The reviews were also all about the individual products

themselves, focusing on displaying difference of scores in common attributes.

COMPA instead focuses on the review as a whole instead of just focusing on small

sentences, and the review structure can vary as we are gathering reviews from

different websites. Another recent attempt in creating a comprehensive comparison

search system is Comparative Argumentative Machine otherwise known as CAM.

CAM [19] retrieves comparative opinions, and uses a machine learning approach by

using InferSent on their data to derive a conclusion if A better than B, B better

than A or A equal to B. COMPA in addition to comparative opinions, analyzes

reviews only about A, reviews only about B and reviews containing both A and B

to determine which product is superior. This approach, which is similar to a human

approach, will give a more informed result, when compared to CAM which considers

only comparative opinions.
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III. METHODOLOGY

COMPA Overview

Figure 1: COMPA System Overview

This figure demonstrates the design of COMPA the comparative retrieval and

analytical engine. From this figure we can tell the key components, and how the

data flows through the system. When designing COMPA, we aimed to perform

three types of analysis: Independent Analysis, Comparative Analysis, Inference

Analysis. These three analysis types form the three distinct Analysis Components,

9



Independent Analysis Component, Inference Analysis Component, Comparative

Analysis Component which are used later in this system. We start by issuing a

query via the Frontend Interface, this is done by issuing a query in the form of A vs

B where A and B are distinct products. After submitting the query the user will be

presented with a loading icon as the rest of components start to process this query.

The Information Retrieval Component takes this query and starts searching the

internal dataset to select relevant reviews. The Information Retrieval Component

selects reviews related to the query that fit in one of three categories, only A

Reviews, only B reviews and only A vs B reviews. The reviews only containing one

product, the only A and only B reviews are then sent to the Independent Analysis

Component, while the reviews containing A and B are sent to the Comparative

Analysis Component. The Independent Analysis Component analyzes the reviews,

finding the product’s sentiment in each review and categorizing it into either

positive, negative or neutral reviews. It then calculates a statistically correct score

CS that is used later to compute the final scores. The A vs B reviews are passed to

the Comparative Analysis Component which then analyzes the reviews and places

them into three categories of A vs B better, B vs A better and A vs B neutral which

are used to calculate its own statistically corrected score CS. After these scores are

calculated they are then submitted to the Comparative Analysis Component and

the Evidence Producing Component to calculate the final scores and generate some

evidence supporting the final scores. The Comprehensive Analysis Component

computes two final scores RSA and the resulting RSB, which represent the

percentage of how many people prefer A or B, and the evidence producing engine

will produce supporting evidence for this conclusion in a format easy for the user to

understand and evaluate. The following sections will go over these components in

more detail.
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Frontend Interface Component

The Frontend Interface Component is where the user will be able to submit a

query and view the final results from COMPA after the reviews have been

processed. The user will be able to submit a query to the application in the form of

A vs B query where A and B are distinct products, and the source that COMPA

should use. They will be able to do this by having two text boxes one for A and one

for B, as well as a dropdown that specifies the source YouTube, Amazon, Google as

examples and a button to submit the query once the user is done with inputting

their selections. After the submit button is pressed the Frontend Interface issues this

query to the Information Retrieval Component which will then pass along the

retrieved reviews through the rest of the system, which computes a conclusion and

returns a result in the format of RSA, RSB and evidence. Details about the output

returned from COMPA will be defined more later in this paper.

Information Retrieval Component

The Information Retrieval Component is the first part of the analysis

components and is the most important part of this system, as it provides the data

that flows through the rest of the system. The A vs B query is issued to this

Component, and the Information Retrieval Component processes this query by

querying its internal dataset with the requested Products A, and B from the

selected sources. After it queries the internal dataset, if it doesn’t have any data for

A or B with the selected sources, the Information Retrieval Component will go and

gather new data so that the analysis can be performed. After it retrieves the reviews

it needs to ensure that the reviews are relevant to the query, so it has to make sure

it only contains A or B and reviews containing both A and B. It filters out reviews

that don’t contain A, or B or A and B, for example filtering out reviews that
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mention the products in the title but don’t actually mention the product in the

review body. By doing this only relevant reviews should be retrieved from the

Information Retrieval Component.

Independent Analysis Component

The Independent Analysis Component is responsible for evaluating the

individual reviews. This component receives reviews that only contain A or B, and

then analyzes the reviews and place the review result into one of three categories,

positive, negative and neutral. It adds up the number of reviews in each category to

get values for #positive, #neutral and #negative which are the totals for each

category.

Analysis Approaches

To perform the analysis we came up with three distinct approaches. These

approaches are used by both the Independent Analysis Component and the

Comparative Analysis Component. The three approaches are a simple Natural

Language Processing approach, a Machine Learning Approach, and a Natural

Language Processing with a sophisticated rule based approach.

The first approach is a simple approach where we perform some Natural

Language Processing on the review and use some simple positioning strategies to

help with identifying the category for the review. A simple approach for this could

be creating a set of adjectives identified as positive, negative and neutral. We could

then use these to get an initial idea of the polarity in a sentence, by using a basic

system identifying which word came first.

The second approach is to employ some Machine Learning Techniques on the

data to perform Comparative Opinion Mining. Some possible approaches that have

been used in the field previously have been to use the Naive Beye’s Classifier,
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Support Vector Model, or a rule-based model. There has been increasing research to

use an ML approach for performing Comparative Opinion Mining.

The third approach is similar to the first one, where we use lists of comparative

adjectives/adverbs to start classifying the sentence, and then instead of simple

positioning strategies we apply a variety of rules to help with this classification. To

come up with the rules we would analyze how the adjectives/adverbs were used in

sample sentences, and then come up with some rules based on some common

patterns that we observed in the sample sentences. We would then be able to use

these rules to help with the classification of the sentence.

Score Computation for Independent Analysis Component

For each product A or B, we compute a score S as follows:

We define #total as:

#total = #positive+#neutral +#negative

where #positive, #neutral, #negative are the total number of reviews for each

category. Therefore, S can be defined as:

S = (1 ∗#positive+ 0.5 ∗#neutral + 0 ∗#negative)/#total

We then compute a statistically corrected score CS as follows:

CS = (S ∗#total + 0.5 ∗ c)/(#total + c)

c is a constant representing a threshold for the number of reviews, beyond
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which, we would have decent statistical confidence about the score S. c is set based

on applications. For our purposes we have set c to 10 as we have a decent number of

reviews but not too many reviews.

From the formula we can tell, if #total is very small, then CS will be close to

0.5 representing neutral. If #total = 0, CS = 0.5. If #total is very big, then CS will

be close to S, indicating S is a statistically trustworthy score. If #total reaches

infinity, then CS = S.

We compute CSA for product A and CSB for product B separately using the 3

numbers for A and the 3 numbers for B.

Then based on CSA and CSB, we can compute “Relative Strength based on

Independent Analysis” scores RSIAA and RSIAB as follows:

RSIAA = CSA/(CSA + CSB)

RSIAB = CSB/(CSA + CSB)

We can see that RSIAA and RSIAB are in the range of 0 to 1, and they add

up to be 1.

Comparative Analysis Component

The Comparative Analysis Component focuses on reviews that have a direct

comparison between both Product A and Product B. The approach to analyze these

reviews is different as we are not computing a simple polarity on the review, but

instead focusing on how these two objects are directly compared. Here we employ

the same analysis approaches mentioned in the Independent Analysis Component,

but apply them to find out how A and B fare when compared to one another.
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Score Computation for Comparative Analysis Component

The 3 numbers that our component computes for these AB reviews are as

follows:

• #A (number of reviews where A is better than B)

• #T (number of reviews where A and B are tied)

• #B (number of reviews where B is better than A)

Based on the 3 numbers, we can compute “Relative Strength based on Comparative

Analysis” scores RSCAA and RSCAB as follows:

To compute RSCAA, we use exactly the same formula for CSA, where

#pos = #A,#neu = #T, and#neg = #B

To compute RSCAB, we use exactly the same formula for CSB, where

#pos = #B,#neu = #T, and#neg = #A

Both RSCAA and RSCAB are in the range of 0 to 1, and they add up to be 1.

Since the amount of comparative reviews is generally much lower than the amount

of reviews we set the value for c much lower than the c value used in Part I, for our

purposes we set c to a value of 5.

Inference Analysis Component

The Inference Analysis Component is a key component for when we don’t have

a direct comparison between A or B, but we can still calculate a comparison

between the two by inferring the difference. For example, suppose there is a product

A and a Product B that have no direct comparisons, but there is a product C that
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is compared with both product A and product B. We can therefore analyze how

product A compares to product C and how product B compares to product C. After

we get the results of these comparisons we can use them to infer how product A and

product B compare. We did not implement this component, as there are many

unknowns about what inputs this should take and what this component will output,

but this is part of the original design for COMPA, so it is mentioned here.

Comprehensive Analysis Component

After calculating we get these outputs from the other components we need to

combine their values to compute a final score to indicate the consumer preference

between the two products.

Score Computation for Comprehensive Analysis Component

Now we can combine the 4 scores RSIAA, RSIAB, RSCAA, and RSCAB to

compute two “Relative Strength” scores RSA and RSB. We need to use a weight w

(in range of 0 to 1, for our purposes this is set to 0.5) indicating how important the

comparative analysis is. Then,

RSA = w ∗RSCAA + (1− w)RSIAA

RSB = w ∗RSCAB + (1− w)RSIAB

RSA and RSB are our final output scores. They are in the range of 0 to 1, and they

add up to be 1. We can now use these numbers as voting from reviewers, they can

be interpreted as a percentage from reviewers for example if the values were 0.75 for

RSA, and 0.25 for RSB, we can say that 0.75 of reviewers would select A over B

while only 0.25 of reviewers would select B over A.
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Evidence Producing Component

After the calculation of the final two values RSA, RSB, the end user also needs

to have some evidence for the final result. The Evidence Producing Component

focuses on creating evidence that is easy for the user to understand, it selects

relevant reviews that were used in the decision-making process, and highlights the

words that were key to the comparison result. This evidence should make it easy for

the user to understand the final result. For example if the user submitted a query

where Product A was ‘Coke’ and Product B was ‘Sprite’, and the resulting RSA

value was 0.74, and the resulting RSB was 0.26, COMPA needs to present some

evidence that would show that roughly 74% of reviewers prefer coke. An example of

evidence produced by the Evidence Producing component would be as follows:

“Coke tastes better than Pepsi, and is often cheaper and more available in more

places.” This would be one of many supporting evidences for this conclusion, which

would inspire more confidence in COMPA’s result. This evidence with keywords in

the comparison being underlined, and easily visible allows the user to gain much

more confidence in the final result. Since the result is a ratio, some evidence from

this component will favor the other product. For example there may be a sentence

like “Pepsi has more variety than Coke”, which would help inspire confidence with

the user as Product A is preferred more than Product B, but some still prefer

Product B, so having this evidence helps inspire more confidence as the evidence is

not lopsided towards one direction but rather demonstrates that the result is

correct. The Evidence Producing Component produces these sentences from the

original reviews that were used in calculating the scores in the other components.
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IV. IMPLEMENTATION

In the following sections we cover how COMPA is implemented.

Dataset Generation and Processing

When first approaching this problem there was barely any data available except

for an Amazon reviews dataset published in the Stanford SNAP website [20]. We

loaded this initial dataset but found that the reviews only went up to the year 2013,

which was difficult to use as we would be limited to products released up to that

year. With the problem of not having a suitable dataset at the time of the project’s

inception we discussed having three distinct sources, Articles from Google Search,

YouTube Video Captions, and Amazon Reviews. We designed COMPA to be able to

gather results from each of these sources as requested, and scrape the web to gather

more reviews if the internal dataset has no available data for the given query.

Scraping the Web

As part of building COMPA the capability to gather data when requested was

critical, so we created a service that is able to scrape the web as well as download

articles from the web. It leverages two libraries Python 3 libraries Newspaper3k, and

BeautifulSoup. Newspaper3k is used to remove all the HTML tags from a web page

and only return the written text on the page, it works decently well at removing

most tags although sometimes the data it gets back has some leftover tags.

BeautifulSoup is used when scraping Amazon reviews to help with extracting only

Amazon reviews, by selecting specific HTML tags. This system finds articles on the

web by performing a Google search on the two items, it then looks for YouTube

reviews where both A and B are mentioned in the title. We are then able to look at
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the caption data for that video and use that as a potential review. For Amazon we

are able to search and gather Amazon reviews from Product Pages that contain A

or B. In order to perform this web scrapping Python 3 uses Selenium to invoke a

version of headless chrome that helps with bot detection while also helping with

rendering the page on a browser for better results.

Frontend Interface Component Implementation

The Frontend Interface is implemented as it was described in the methodology

chapter, with two text boxes labeled for Product A, Product B and a dropdown to

select the Source(s) for the comparison. The result is displayed in two boxes one

that contains all the final score values, how many reviews were used and which

sources were used for this conclusion with another box being used to display the

resulting evidence. The Frontend Interface is built using Angular a web framework

developed by Google to create responsive Single Page Applications. Angular uses

Typescript and to have a responsive web design with minimal styling, the

Angular-Material library is used. Angular Material follows the Material UI design

principles, and is very similar to other CSS libraries like Bootstrap that provide

some reusable components. Angular is used as it is easy to create a web application,

and to make HTTP service calls and render that on the page easily.

Information Retrieval Component Implementation

The Information Retrieval Component is implemented very similarly to how it

was described in the methodology chapter. A query for two products is submitted in

the format of A vs B where A and B are two entities (e.g., consumer products

models) that are going to be compared to the system, along with the selected data

sources. The Information Retrieval Component searches for reviews in its internal

dataset that are from the selected data sources, Amazon, Google and YouTube and
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contain A or B or both A and B. It is designed to gather data in real time but to

improve performance it caches the latest results for each source and retrieves them

based on A or B, and performs some data refreshing asynchronously. After it has

retrieved the reviews it categorizes all the reviews into three categories, reviews

containing only A, reviews containing only B and reviews containing both A and B.

In Methodology it is mentioned that this system filters out reviews that do not

contain A or B in the review body, and that feature is implemented in this

Information Retrieval Component. An example of filtering out reviews is when using

cell phones as product A and B. Cell phones have many reviews available, but as

they are cell phones they also have many accessories which means that we get a lot

of accessories(e.g., phone cases) instead of the phone. Currently, to avoid this a

simple method is implemented to check for products where the product name

doesn’t contain one of the phrases in a list of small stop words that are commonly

used when describing accessories, and also checking that the product is mentioned

in the review. The stop list was created after observing that many of these products

for example cases would commonly use the same words over and over, these words

being ‘and’, ‘for’, and ‘with’. This approach helps with filtering out some reviews

that don’t talk about the product which helps with keeping the reviews relevant to

the query, and even though they are a small list of words they have filtered out

many reviews. This approach is simple and works well for most reviews but in some

occasions if a product’s name is used in a different context you might get some not

relevant review results, this will be discussed more in depth in the experiments

section.

The Information Retrieval Component leverages Java 8 and the Spring Boot

framework to provide a REST API for gathering relevant information to perform

Comparative Opinion Mining. It communicates directly with a MySQL database

and an Elasticsearch database. Our Elasticsearch database is used to extract
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relevant reviews, so Amazon reviews, YouTube captions and internet articles are

stored in Elasticsearch. The MySQL database is used to keep track of some metrics

like what has been searched and how often, and it is often used as a persistent cache

so that new versions of COMPA do not need to rebuild their cache layer. The

Information Retrieval Component also talks to a microservice written in Python 3

which is able to scrape Amazon reviews and retrieve different articles from Google

Search Results. After it retrieves the reviews it returns them in a JSON format to

be processed by the next components.

Independent and Comparative Analysis Component Implementation

As mentioned in the methodology section the Independent Analysis Component

and the Comparative Analysis Component both leverage the same approach but

have different inputs. As mentioned in the methodology, there are two possible

approaches to calculate the initial results that would be used in score calculations.

Initially we worked on implementing a simple NLP approach with rules. This initial

approach worked fairly well, and was extremely simple to implement but quickly

found that this process itself would require more research to improve the

implementation. An example of more research is that we would need a good set of

comparative adjectives and grammar rules for different situations, which would take

a while to implement/research. Instead, we focused on implementing our ML

approach with some easy to use libraries to perform the actual ML analysis. The

two libraries we looked into using were VADER and Aspect Based Sentiment

Analysis or ABSA for short. Both Vader and ABSA were used to perform analysis

on the same dataset as we were unsure about which would perform better,

ultimately we found that ABSA is a better library for our purposes. As mentioned

in the methodology section, there are a lot of unknowns for the Inference

Component and for our purposes we did not implement the Inference Component.
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In each component we will still describe the approaches for both VADER and ABSA

to provide a clearer picture for why we used ABSA. Both Vader and ABSA are

available as Python Libraries so the Independent Analysis Component and the

Comparative Analysis Component are both implemented in Python 3 using the

FLASK framework to provide a REST API.

VADER

Valence Aware Dictionary for sEntiment Reasoning or VADER [21] is a simple

rule-based model based on a valence-based, human-curated gold standard sentiment

lexicon. VADER is fast and works well on social media style text and readily

generalizes to multiple domains, so we are able to use it to analyze our reviews. It

was built and tested against many state of practice benchmarks and even

outperforms humans at rating sentences with an overall F1 classification accuracy of

0.96 versus a human’s accuracy of 0.84 on the same data [21]. VADER improves on

Linguistic Inquiry and Word Count (LIWC) dictionary which was a previous gold

standard, by focusing on sentiment analysis and ensuring that it has high accuracy.

VADER focuses on the polarity of the sentence and the intensity of the emotion in

the sentence.

ABSA

The other library we are using is using targeted sentiment analysis, also known

as Aspect Based Sentiment Analysis (ABSA), which aims at detecting fine-grained

sentiment polarity towards targets in a given opinion document [22]. The ABSA

open source library has a ready to use model that consists of the BERT language

model, which provides features and the linear classifier [23]. BERT is chosen for how

it performs it’s next-sentence prediction, which is done as a sequence-pair

classification. BERT is very successful in various tasks due to “massive pre-training
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on large amounts of unlabeled text” [24], meaning that it is an excellent choice to be

used as part of the ABSA library. One of the key issues with using BERT is that the

model can approximate and find patterns that don’t reflect how language is actually

used. The author of the library published an article [23], where he documents the

flaws with using BERT by itself for sentiment analysis, and notes that we could train

with better data but that it could still result in the model being skewed. The author

proposes using a new tool that can be used while training called the Professor which

helps tweak the model in real time to help prevent this model from skewing. We are

able to leverage a model that the author has published which is the default because

it has better performance, and is trained from the restaurant’s dataset from the

Sentiment Analysis Workshop, Semeval’14. ABSA has a few issues while using it for

Sentiment Analysis, one is that the default model works out of the box, but the

author of the Absa library says it is preferred to re-train the model with your data.

Another issue is that the pre-trained model has some issues with some reviews, so

we are losing some data which will be evident in the experiments section.

Independent Analysis Implementation

Our Independent Analysis Component takes reviews containing only A or B as

inputs and then passes the value into the two libraries. Our approach when using

VADER is that we go through all the reviews containing only A or B, and pass in

the review into VADER and get the sentiment and place it in one of the categories

of positive, negative or neutral. The other approach when using ABSA is to pass

the review as the text being analyzed and using the Product as the aspect. Then we

get the sentiment value and add it to a list of positive, negative or neutral.

After the libraries are done processing we are able to take the resulting values

and compute the statistically corrected score CS and the ‘Relative Strength based

on Independent Analysis” scores RSIAA and RSIAB which can then be passed into
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the Comprehensive Analysis Component for final calculations.

Comparative Analysis Component Implementation

Our Comparative Analysis Component takes in reviews directly comparing A

and B as inputs and then passes these reviews into the two libraries for analysis.

For VADER the approach is a bit complex, as VADER is designed to calculate

the sentiment for a sentence, so we had to employ our own changes to use it for

performing direct comparison analysis. We go through and gather all the sentences

that directly compare Product A and Product B, and then pass each sentence into

VADER to calculate the sentiment. We then use the positioning of the two products

in the sentence to calculate how they compare. For example given a sentence

‘Nintendo Gameboy has longer lasting battery life than the Sega Game Gear’,

VADER would say this is a positive sentiment sentence, and if we were comparing

‘Nintendo Gameboy’ as Product A and ‘Sega Game Gear’ as Product B then we

would say that Product A is better than Product B, as Product A is first in the

sentence and add it to that list. If Product B was in front then we would add it to

the list for Product B is better than Product A. Otherwise if it is a neutral

sentiment we would add it to the Neutral A vs B list. Then depending on which list

had more sentences we award that review to that category, and add that list of

sentences to the final list. While we are traversing through the reviews sentence by

sentence to gather sentences about Product A and Product B, we can create

groupings of sentences that were only about Product A and only about Product B

to enhance the numbers for the individual analysis. We can do this by reading

through the full review sentence by sentence and if the sentence mentions Product

A then we assume all sentences afterwards are about Product A until we encounter

a sentence that talks about Product B or a sentence that talks about A and B. We

do the same for sentences for Product B. We gather all the sentences that were
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talking about just Product A or just Product B and pass that combined sentence

into Vader to compute polarity. After these values are computed we can add the

Product A or Product B review values (positive review, negative review, neutral

review) from the A vs B reviews and add them to A or B in their respective slots.

In comparison, the process for using ABSA is significantly simpler when

directly comparing A and B reviews. To use ABSA we pass in the full review, and

use A and B as the two aspects we are comparing against. We then compare the

output for each aspect. If the review is Positive for A and A is first then we add it

to a list of positive A vs B, If the review is Positive for B and B is first then we add

it the list for B is better than A, Otherwise if both aspects are neutral then it is a

neutral review. After we perform this analysis with both libraries, we now have an

output of 3 numbers that we’re able to use to calculate “Relative Strength based on

Comparative Analysis” scores RSCAA and RSCAB as mentioned in the

methodology section and using the formula specified there. These values can then be

used by the Comprehensive Analysis Component to compute the final result.

Comprehensive Analysis Component

The Comprehensive Analysis Component is implemented using Python 3, and

as mentioned in methodology is in charge of taking the scores computed in the other

components to create a final result. This component performs the score calculation,

and rounds the numbers to two decimal places to make it easier for the user to

visualize the final result. It adds the values to an array that is added to the final

JSON returned to the Frontend Interface to be displayed elegantly.

Evidence Producing Component Implementation

In our implementation the Evidence Producing Component is very basic due to

how the libraries we used to perform the different kinds of analysis work, where they
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output a sentiment but no evidence for how that sentiment is calculated. We still

implemented an Evidence Producing Component, so there would be some evidence

to help support the conclusion. This component starts by gathering the direct

comparisons that directly support the conclusion and then adds supplementary

information from the individual reviews. For example if we had two products

Product A as ‘Sprite’ and Product B as ‘Coke’, and the review conclusion was an

RSA value of 0.65 meaning that 65% prefer ‘Sprite’ then this Component would first

gather reviews where Sprite is better than Coke in the same review, and then grab

reviews where the Sprite is talked about positively. This component gathers 20

results for each query, and limits them to reviews that only have 6 or fewer

sentences so that the user is able to read all the information and not be

overwhelmed. Longer reviews could be used for evidence if we had the capability to

highlight keywords so that it would make the reviews easier to read. Counting

sentences is done by leveraging the Python library called the natural language

toolkit or nltk for short, which is used for natural language processing. The user is

still presented with some reviews and the UI is set up to have a button to gather

more interviews, so in the future a user could click on the button to load more

reviews, currently this button does not do anything. These reviews are presented in

the Front-end Interface Component in their own box, with some spacing between

each review so that the user can review the outcome.
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V. DEMONSTRATION AND EXPERIMENTATION

Demonstration

Figure 2: COMPA UI with Evidence

This picture demonstrates the Front end Interface for COMPA after a query is

issued and results are computed. In this given query Product A is ‘Nintendo
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Gamecube’ and Product B is ‘PS2’. From the picture we can tell that the sources

requested were Amazon, Google and YouTube, but we only got results from

Amazon, and we know that there was a total of 1354 reviews from Amazon used in

these calculations. We are also able to see some Evidence for the result, in its

separate box. Within the evidence box each paragraph separated by white space is

another different review. We can tell that the first two reviews are evidence from the

direct comparison reviews, and the remaining reviews are all from the individual

reviews. From reading the reviews, most of them are talking about the ‘Nintendo

Gamecube’ positively, which reflects the outcome of this comparison as calculated

by COMPA. The first two reviews are the most crucial reviews as they are the

direct comparisons and talk about the Product A and B directly, so a user is able to

get more specific info on how the two products compare. The other reviews while

talking positively about the ‘Nintendo Gamecube’ talk more about the games that

play on the product instead of the product itself. In this specific case this works

fairly well as the ‘Nintendo Gamecube’ is a video game console, so talking about the

games that are playable on the console works great because it is the key

functionality of this product. This result also demonstrates how the two values for

RSA, RSB add up to 1, and is a good example of the values being close but not too

close together. This demonstrates how easy it is to issue a query to COMPA, and

how the evidence helps with understanding the final scores. With this evidence we

can tell that some reviews are talking about the ‘Nintendo Gamecube’ while others

are talking about ‘PS2’, which matches with our end result with roughly 55%

preferring the ‘Nintendo Gamecube’ while 45% preferred the ‘PS2’.

Experiments

These experiments were run on a Desktop PC with an AMD Ryzen 5 3600

processor a 6 core CPU with 12 threads, 16GB of DDR4 3200 RAM and using Pop
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OS 21.04, a Linux Distribution based on Ubuntu. COMPA and all of its components

were running in a Docker container which was able to fully utilize all the system

resources, both databases were also present in this container. The Python libraries

were only able to use the CPU, as the GPU would frequently run out of memory as

it was a GPU designed for Gaming and not performing Machine Learning tasks.

Comparing VADER and ABSA

To choose a library to use for COMPA we needed to evaluate ABSA and

VADER and see how they performed on our data. To do this we selected five

different queries to test how ABSA and VADER performed with different queries.

We tried a few specific queries using the product names, some queries using part of

the product name and some broad queries to see what the Information Retrieval

Component would return and how ABSA and VADER would process these reviews.

To make this analysis consistent we use the same five queries in the following

analysis sections.

Table 1: Total Reviews Processed by ABSA and VADER

Review Query # of Reviews by
VADER

# of Reviews by
ABSA

Total number of re-
views available

vive vs rift 1,040 832 1,092
xbox one vs ps4 2061 832 3006
star trek vs star wars 2,124 1,574 2,160
pepsi vs coke 572 306 578
ps3 vs xbox 360 2663 2,661 3,002

First we started by issuing queries to COMPA, seeing how many reviews the

Information Retrieval Component retrieved and then evaluating how many reviews

ABSA and VADER processed. The table reveals that VADER is able to find a

sentiment for most of the supplied reviews including finding neutral or no sentiment,

but ABSA is only able to analyze some of the reviews. This is likely due to using
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the default model, so we are losing some possible analysis since we have not trained

ABSA using our data. In the next table we can see precision and recall for ABSA

and VADER using the same sample queries. In our experiments through finding

good sample queries we discovered that being more specific returned less reviews

and going more broad led to retrieving more reviews. In general the amount of

comparative reviews was usually less than the reviews retrieved for the individual

products.

Precision + Recall

After looking at how many reviews were processed, we now shift our focus on to

how well the ABSA and VADER performed, as being able to process a lot of

reviews isn’t good if we don’t have a good precision or recall value. To make

processing the total amount of information easier we opted to select the same

amount of reviews for five sample queries, so we are selecting 100 reviews for each

category (only A, only B and only A and B), leading us to having 300 reviews total.

This next table is similar to the previous table and will show us how many were

processed by both algorithms.

Table 2: Total Reviews Processed by ABSA and VADER out of 300 Reviews

Review Query # of Reviews by
VADER

# of Reviews by
ABSA

Total number of re-
views available

vive vs rift 273 222 300
xbox one vs ps4 261 267 300
star trek vs star wars 278 244 300
pepsi vs coke 282 235 300
ps3 vs xbox 360 271 261 300

Upon this more consistent data set, we are able to see that VADER still

classifies more but ABSA is closer than the previous table. Now that we have a

more consistent data set we are able to focus on the correct classification of
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sentiment in a review. This next table shows the results,in this case we view a

correct classification of sentiment as positive and the correct classification of a

review as neutral is viewed as a negative. In order to compute these classifications I

had to pull up the individual sentences as grouped by the algorithms and had to

score these by hand, which was a very time consuming process.

Table 3: VADER and ABSA Precision + Recall for Overall Sentiment Classification

Library VADER ABSA
Review Query Precision Recall Precision Recall

vive vs rift 0.85 0.95 0.94 0.84
xbox one vs ps4 0.86 0.98 0.90 0.78
star trek vs star wars 0.65 0.99 0.92 0.92
pepsi vs coke 0.73 0.99 0.86 0.43
ps3 vs xbox 360 0.81 0.97 0.82 0.88

From this table we can immediately see that although VADER has processed

more reviews, that ABSA has higher precision in it’s classification of sentiment in

comparative reviews. As far as why VADER achieved such high recall in the Star

Trek and Star Wars was due to there being a small amount of neutral reviews. This

is corrected in the next table.

This next table focuses on the correct classification of sentiment, so for the

purposes of calculating these values we focused on just the positive and negative

sentiment, and we now ignore the correct classification of neutral reviews.

Table 4: VADER and ABSA Precision + Recall for Correct Sentiment Classification

Library VADER ABSA
Review Query Precision Recall Precision Recall

vive vs rift 0.90 0.92 0.77 0.82
xbox one vs ps4 0.86 0.97 0.94 0.94
star trek vs star wars 0.82 0.73 0.89 0.98
pepsi vs coke 0.77 0.88 0.93 0.91
ps3 vs xbox 360 0.80 0.94 0.85 0.94

With this comparison we are able to see that ABSA has higher precision than
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VADER but at a cost as ABSA processing takes longer to process the queries,

meaning most of the time is spent waiting on the ABSA library to run on all the

data. ABSA also has higher recall so it is able to gather more relevant documents,

and correctly classify them.

One notable thing when evaluating the two libraries and their performance was

that on when using the more broad queries, there was definitely a distinct drop of

relevant individual reviews. For example there were a few reviews that had nothing

to do with Pepsi or Coke, as there were some books where those were the

character’s names or books referencing the company instead of the product. This led

to an inaccurate conclusion for pepsi vs coke, but helped with evaluating the

performance of ABSA and VADER effectively. A similar thing happened with vive

and rift, if you use the more specific query you get more relevant data but if you

switch to a more broad query you start getting those words as part of speech

instead of the products that were requested. As a result of these experiments, we

discovered that ABSA was a better library to use for COMPA despite the amount

of time it took for the queries to run.

COMPA Verification

After testing the individual libraries, we needed to test COMPA’s output and

validate that it matched our expectations. For these experiments we ran a series of

queries and evaluated if their results were good results based on the evidence

displayed. We also took a note on how long these took to process these queries. For

matches expectations we have ‘Y’ for Yes, ‘N’ for No, and ‘M’ for Mostly where it’s

mostly true.

This table demonstrates the various level of performance with COMPA’s

performance. Here we had 5 queries that we agreed with the conclusion, 3 that we

felt were mostly correct and 2 that definitely were not correct based on the
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Table 5: COMPA Output Verification: Queries, results and processing time

Review Query Matches Expectations Total # of Reviews Total Processing
Time

HTC Vive vs Ocu-
lus Rift

Y 1093 13 mins 15 seconds

Xbox One vs PS4 Y 3006 33 mins 50 seconds
Star Trek vs Star
Wars

Y 2343 27 mins 36 seconds

Pepsi vs Coke N 1307 12 mins 11 seconds
PS3 vs Xbox 360 Y 3002 33 mins 53 seconds
iPad Mini vs Kindle
Fire

N 2070 23 mins 38 seconds

Sony WH1000XM4
vs Airpods Max

M 97 2 mins 43 seconds

iPhone 12 vs iPhone
13

M 357 9 mins 54 seconds

iPhone X vs iPhone
XS

N 364 5 mins 25 seconds

Nintendo Game-
cube vs PS2

Y 1354 16 mins 30 seconds

evidence. These were all evaluated by me by running the query, looking at the

resulting values for RSA, RSB and reading the evidence and seeing if the evidence

matched the final scores RSA, RSB.

Just like finding written reviews for the products that you are searching for,

COMPA downloads a lot of reviews for the given queries but not every review is

stellar. A common issue is that just because a review mentions a product doesn’t

mean that the review is about that product. So after reading the evidence you can

get a feel for how accurate COMPA’s response is after reading the first five reviews.

Overall there is reasonable confidence that COMPA’s calculation is correct,

especially if you use a more specific name instead of a more common/broader name.

Another thing to note is that if you go much broader than COMPA will process a

lot larger sample of reviews, so we have a higher probability of getting a more

correct answer, although we also have a higher probability of getting a worse

answer. Most of the ones that we agreed with are the ones that had a lot larger
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amount of reviews, with an exception being Pepsi and Coke. Pepsi and Coke we

disagreed with mainly because there was a lot of values for a book where Pepsi and

Coke are the primary characters, which lead to a lot of the reviews being

skewed/miscalculated. In the future the Information Retrieval Component needs to

do a more complex job of filtering our reviews that are really not relevant to the

query, which is in its own an interesting research problem, with this simple solution

working well most of the time but improving could lead to improved results.

Another aspect to look at is the processing time for these reviews, which from

the table we can see increases greatly the more reviews it needs to process. From my

experience running the queries and looking at how COMPA was processing the

queries, the version of BERT could probably perform better and process more

reviews, currently ABSA is trained on smaller reviews, so it is not processing all the

reviews that the information retrieval component retrieves we are losing some

reviews due to this limitation. Overall this library processes a decent amount of

reviews and is processing them relatively well. Although the processing time is

initially long, after we complete the initial processing we are able to cache the result

so that the subsequent results are returned in a few seconds, so that later queries

are able to return much quicker.
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VI. CONCLUSION

In this thesis work, we proposed and implemented COMPA, a novel

comparative retrieval and analytical engine in the context of consumer products.

Potentially the system can have great practical significance as consumers typically

spend lots of time reading reviews and comparing various models before an online

purchase. COMPA is designed to perform comprehensive analysis integrating three

components of independent, comparative, and inference analysis. We evaluated the

performance of COMPA on real datasets, demonstrating its utility and promise.

Comparison is ubiquitous in real life. Although COMPA is implemented for

consumer products, the system and methodology can be easily adapted to other

application domains involving online comparative decision-making.

There are many directions for future work beyond our preliminary effort in

COMPA. For example, we designed but didn’t implement inference analysis, which

can improve analysis accuracy by leveraging indirect comparisons. In general, how

to optimize accuracy is a major research focus and many machine learning, data

mining and natural language processing techniques can be considered. Another

important research focus is to optimize query processing time because the user will

be waiting online for analysis result after issuing a comparison query. One possible

solution is to provide the user with alternative analysis accuracy and processing

time trade-offs. Currently COMPA is designed to perform a comparison between

two products. Such pairwise comparisons can be extended to perform evaluation for

a set of products, for example, by aggregating partial rankings into a total ranking.
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