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Existence results for neutral functional

differential and integrodifferential inclusions in

Banach spaces ∗

M. Benchohra & S. K. Ntouyas

Abstract

In this paper we investigate the existence of solutions on a compact
interval for the first and second order initial-value problems for neutral
functional differential and integrodifferential inclusions in Banach spaces.
We shall use of a fixed point theorem for condensing maps introduced by
Martelli.

1 Introduction

Existence of solutions on compact intervals for neutral functional differential
equations has received much attention in recent years. We refer for instance to
the books of Erbe, Qingai and Zhang [4], Hale [5] and Henderson [6], the paper
of Ntouyas [13] and Ntouyas, Sficas and Tsamatos [17]. For other results on
functional differential and integrodifferential equations, we mention for instance
the paper of Hristova and Bainov [7], Nieto, Jiang and Jurang [12], Ntouyas
[14], [15] and Ntouyas and Tsamatos [16].
In the above mentioned papers the main tools used for the existence of

solutions are the monotone iterative method combined with upper and lower
solutions or the topological transversality theory of Granas. For more details
on these theories we refer the interesting reader to the book of Ladde, Laksh-
mikantham and Vatsala [9] and the monograph of Dugundji and Granas [3].
This paper is organized as follows. In section 2, we introduce some defi-

nitions and preliminary facts from multi-valued analysis which are used later.
In section 3, we give an existence result of solutions on compact intervals to
the initial value problem (IVP for short) of the first order neutral functional
differential inclusion

d

dt
[y(t)− f(t, yt)] ∈ F (t, yt), a.e. t ∈ J = [0, T ], (1.1)

y0 = φ, (1.2)
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where F : J ×C(J0, E)→ 2E (J0 = [−r, 0]) is a bounded, closed, convex multi-
valued map, f : J × C(J0, E) → E, φ ∈ C(J0, E), and E a real Banach space
with the norm | · |.
For any continuous function y defined on the interval J1 = [−r, T ] and any

t ∈ J , we denote by yt the element of C(J0, E) defined by

yt(θ) = y(t+ θ), θ ∈ J0.

Here yt(·) represents the history of the state from time t− r, up to the present
time t.

Section 4 is devoted to the study of the existence of solutions to the first
order IVP for neutral functional integrodifferential inclusion of the form

d

dt
[y(t)− f(t, yt)] ∈

∫ t
0

K(t, s)F (s, ys)ds, t ∈ J = [0, T ], (1.3)

y0 = φ, (1.4)

where F , f , φ are as in the problem (1.1)-(1.2) and K : D → R, D = {(t, s) ∈
J × J : t ≥ s}.
In Section 5, we give an existence theorem for solutions to the second order

IVP for neutral functional differential inclusions of the form

d

dt
[y′(t)− f(t, yt)] ∈ F (t, yt), t ∈ J = [0, T ], (1.5)

y0 = φ, y
′(0) = η. (1.6)

where F , f , φ are as in the problem (1.1)-(1.2) and η ∈ E.
The strategy is to reduce the existence of solutions to problems (1.1)-(1.2),

(1.3)-(1.4) and (1.5)-(1.6) to the search for fixed points of a suitable multi-valued
map on the Banach space C(J1, E). To prove the existence of fixed points, we
shall rely on a fixed point theorem for condensing maps introduced by Martelli
[11].

2 Preliminaries

This section presents notation, definitions, and preliminary facts from multi-
valued analysis which are used throughout this paper.

Let C(J,E) be the Banach space of continuous functions from J into E with
the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.

Let B(E) denote the Banach space of bounded linear operators from E into
E.

A measurable function y : J → E is Bochner integrable if and only if |y| is
Lebesgue integrable. (For properties of the Bochner integral see Yosida [19]).
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Let L1(J,E) denote the Banach space of continuous functions y : J → E
which are Bochner integrable and have norm

‖y‖L1 =

∫ T
0

|y(t)|dt for all y ∈ L1(J,E).

Let (X, ‖ · ‖) be a Banach space. Then a multi-valued map G : X → 2X is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X . G is bounded
on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for any bounded set B
of X (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).

G is called upper semi-continuous (u.s.c.) on X if for each x∗ ∈ X the
set G(x∗) is a nonempty, closed subset of X , and if for each open set B of
X containing G(x∗), there exists an open neighbourhood V of x∗ such that
G(V ) ⊆ B.

G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B ⊆ X .
If the multi-valued map G is completely continuous with nonempty compact

values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn →
y∗, yn ∈ Gxn imply y∗ ∈ Gx∗).

G has a fixed point if there is x ∈ X such that x ∈ Gx.
In the following BCC(X) denotes the set of all nonempty bounded, closed

and convex subsets of X .
A multi-valued map G : J → BCC(E) is said to be measurable if for each

x ∈ E the function Y : J → R defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)}

belongs to L1(J,R). For more details on multi-valued maps see the books of
Deimling [2] and Hu and Papageorgiou [8].
An upper semi-continuous map G : X → X is said to be condensing [1] if for

any subset B ⊆ X with α(B) 6= 0, we have α(G(B)) < α(B), where α denotes
the Kuratowski measure of noncompacteness [1].
We remark that a completely continuous multi-valued map is the easiest

example of a condensing map.
Our existence results will be proved using the following fixed point result.

Lemma 2.1 [11]. Let X be a Banach space and N : X → BCC(X) a con-
densing map. If the set

Ω := {y ∈ X : λy ∈ Ny for some λ > 1}

is bounded, then N has a fixed point.

3 Existence results for differential inclusions

In this section we give an existence result for the problem (1.1)-(1.2). For the
study of this problem we first list the following hypotheses:
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(H1) There exists constants 0 ≤ c1 < 1 and c2 ≥ 0 such that

|f(t, u)| ≤ c1‖u‖+ c2, t ∈ J, u ∈ C(J0, E);

(H2) F : J × C(J0, E) → BCC(E); (t, u) 7−→ F (t, u) is measurable with
respect to t for each u ∈ C(J0, E), u.s.c. with respect to u for each t ∈ J and
for each fixed u ∈ C(J0, E) the set

SF,u =
{
g ∈ L1(J,E) : g(t) ∈ F (t, u) for a.e. t ∈ J

}

is nonempty;

(H3) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J and
all u ∈ C(J0, E), where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and
increasing with ∫ T

0

p(s)ds <

∫ ∞
c

dτ

ψ(τ)
;

where c = 1
1−c1
[(1 + c1)‖φ‖+ 2c2];

(H4) The function f is completely continuous and for any bounded set A ⊆
C(J1, E) the set {t→ f(t, yt) : y ∈ A} is equicontinuous in C(J,E);

(H5) For each bounded B ⊂ C(J1, E), u ∈ B and t ∈ J the set

{∫ t
0

g(s)ds : g ∈ SF,u
}

is relatively compact.

Remark 3.1 (i) If dimE < ∞, then for each u ∈ C(J0, E), SF,u 6= ∅ (see
Lasota and Opial [10]).
(ii) SF,u is nonempty if and only if the function Y : J → R defined by

Y (t) := inf{|v| : v ∈ F (t, u)}

belongs to L1(J,R) (see Papageorgiou [18]).

Definition 3.2 By a solution to the IVP (1.1)-(1.2) it mean a function y :
J1 → E such that y0 = φ, yt ∈ C(J0, E), the function y(t)−f(t, yt) is absolutely
continuous and the inclusion (1.1) hold a.e. on J .

The following Lemma is crucial in the proof of our existence results.

Lemma 3.3 [10]. Let I be a compact real interval and X be a Banach space.
Let F be a multivalued map satisfying (H2) and let Γ be a linear continuous
mapping from L1(I,X) to C(I,X), then the operator

Γ ◦ SF : C(I,X)→ BCC(C(I,X)), y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I,X)× C(I,X).
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Now, we are in a position to state and prove our main theorem for this
section

Theorem 3.4 Assume that hypotheses (H1)-(H5) hold. Then the IVP (1.1)-
(1.2) has at least one solution on J1.

Proof. Let C(J1, E) be the Banach space of continuous functions from J1 into
E endowed with the sup-norm

‖y‖∞ := sup{|y(t)| : t ∈ [−r, T ]}, for y ∈ C(J1, E).

Transform the problem into a fixed point problem. Consider the multivalued
map, N : C(J1, E) −→ 2C(J1,E) defined by:

Ny :=

{
h ∈ C(J1, E) : h(t) =

{
φ(t), if t ∈ J0
φ(0)− f(0, φ) + f(t, yt) +

∫ t
0 g(s)ds, if t ∈ J

}

where

g ∈ SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J

}
.

Remark 3.5 It is clear that the fixed points of N are solutions to (1.1)-(1.2).

We shall show that N is a completely continuous multivalued map, u.s.c. with
convex closed values. The proof will be given in several steps.

Step 1: Ny is convex for each y ∈ C(J1, E). Indeed, if h1, h2 belong to Ny,
then there exist g1, g2 ∈ SF,y such that for each t ∈ J we have

h1(t) = φ(0)− f(0, φ) + f(t, yt) +

∫ t
0

g1(s)ds

and

h2(t) = φ(0)− f(0, φ) + f(t, yt) +

∫ t
0

g2(s)ds.

Let 0 ≤ k ≤ 1. Then for each t ∈ J we have

(kh1 + (1− k)h2)(t) = φ(0)− f(0, φ) + f(t, yt) +

∫ t
0

[kg1(s) + (1− k)g2(s)]ds.

Since SF,y is convex (because F has convex values) then

kh1 + (1− k)h2 ∈ Ny

which finish the proof of Step 1.
We next shall prove that N is a completely continuous operator. Using (H4)

it suffices to show that the operator N1 : C(J1, E) −→ 2C(J1,E) defined by:

N1y :=

{
h ∈ C(J1, E) : h(t) =

{
φ(t), if t ∈ J0∫ t
0
g(s)ds, if t ∈ J

}

is completely continuous.
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Step 2: N1 maps bounded sets into bounded sets in C(J1, E). Indeed, it
is enough to show that there exists a positive constant ` such that for each
h ∈ N1y, y ∈ Bq = {y ∈ C(J1, E) : ‖y‖∞ ≤ q} one has ‖h‖∞ ≤ `.

If h ∈ N1y, then there exists g ∈ SF,y such that for each t ∈ J we have

h(t) =

∫ t
0

g(s)ds.

By (H3) we have for each t ∈ J

‖h(t)‖ ≤

∫ t
0

‖g(s)‖ds

≤ sup
y∈[0,q]

ψ(y)
(∫ t
0

p(s)ds
)

≤ sup
y∈[0,q]

ψ(y)
(∫ t
0

p(s)ds
)
.

Then for each h ∈ N(Bq) we have

‖h‖∞ ≤ sup
y∈[0,q]

ψ(y)
(∫ T
0

p(s)ds
)
:= `.

Step 3: N1 maps bounded sets into equicontinuous sets of C(J1, E). Let
t1, t2 ∈ J, t1 < t2 and Bq = {y ∈ C(J1, E) : ‖y‖∞ ≤ q} be a bounded set of
C(J1, E).

For each y ∈ Bq and h ∈ N1y, there exists g ∈ SF,y such that

h(t) =

∫ t
0

g(s)ds.

Thus

‖h(t2)− h(t1)‖ ≤
∥∥∥
∫ t2
t1

g(s)ds
∥∥∥

≤ sup
y∈[0,q]

ψ(y)
(∫ t2
t1

p(s)ds
)
.

As t2 → t1 the right-hand side of the above inequality tends to zero.

The equicontinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 are obvious.

As a consequence of Step 2, Step 3, (H4) and (H5) together with the Ascoli-
Arzela theorem we can conclude that N : C(J1, E) → 2C(J1,E) is a compact
multivalued map, and therefore, a condensing map.
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Step 4: N has a closed graph. Let yn → y∗, hn ∈ Nyn, and hn → h∗. We
shall prove that h∗ ∈ Ny∗. hn ∈ Nyn means that there exists gn ∈ SF,yn such
that

hn(t) = φ(0)− f(0, φ) + f(t, ynt) +

∫ t
0

gn(s)ds, t ∈ J.

We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = φ(0)− f(0, φ) + f(t, y∗t) +

∫ t
0

g∗(s)ds, t ∈ J.

Since f is continuous we have that

‖(hn − φ(0) + f(0, φ)− f(t, ynt))− (h∗ − φ(0) + f(0, φ)− f(t, y∗t))‖∞ → 0,

as n→∞. Consider the linear continuous operator

Γ : L1(J,E)→ C(J,E)

g 7→ Γ(g)(t) =

∫ t
0

g(s)ds.

From Lemma 3.3, it follows that Γ ◦ SF is a closed graph operator. Moreover,
we have that

(hn(t)− φ(0) + f(0, φ)− f(t, ynt)) ∈ Γ(SF,yn).

Since yn → y∗, it follows from Lemma 3.3 that

(h∗(t)− φ(0) + f(0, φ)− f(t, yt)) =

∫ t
0

g∗(s)ds

for some g∗ ∈ SF,y∗ .

Step 5: The set Ω := {y ∈ C(J1, E) : λy ∈ Ny for some λ > 1} is bounded.
Let y ∈ Ω. Then λy ∈ Ny for some λ > 1. Thus there exists g ∈ SF,y such that
for t ∈ J ,

y(t) = λ−1φ(0)− λ−1f(0, φ) + λ−1f(t, yt) + λ
−1

∫ t
0

g(s)ds .

This implies by (H1), (H3) that for each t ∈ J we have

‖y(t)‖ ≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+

∫ t
0

p(s)ψ(‖ys‖)ds.

We consider the function µ defined by

µ(t) = sup{|y(t)| : −r ≤ s ≤ t}, t ∈ J.
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Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J, by the previous inequality
we have for t ∈ J

µ(t) ≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+

∫ t
0

p(s)ψ(‖ys‖)ds

≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1µ(t) +

∫ t
0

p(s)ψ(µ(s))ds.

Thus

µ(t) ≤
1

1− c1

{
(1 + c1)‖φ‖+ 2c2 +

∫ t
0

p(s)ψ(µ(s))ds.
}

If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t), then we have

c = v(0) =
1

1− c1

{
(1 + c1)‖φ‖+ 2c2

}
and µ(t) ≤ v(t), t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ p(t)ψ(v(t)), t ∈ J.

This implies for each t ∈ J that

∫ v(t)
v(0)

du

ψ(u)
≤

∫ T
0

p(s)ds <

∫ ∞
v(0)

du

ψ(u)
.

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J ,
and hence µ(t) ≤ b, t ∈ J . Since for every t ∈ J, ‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup{|y(t)| : −r ≤ t ≤ T } ≤ b,

where b depends only on T and on the functions p and ψ. This shows that Ω is
bounded.
Set X := C(J1, E). As a consequence of Lemma 2.1 we deduce that N has

a fixed point which is a solution of (1.1)-(1.2). ♦

4 Existence results for integrodifferential inclu-
sions

In this section we consider the solvability of IVP (1.3)-(1.4). Let us state the
following hypotheses:

(H6) For each t ∈ J, K(t, s) is measurable on J and

K(t) = ess sup{|K(t, s)|, 0 ≤ s ≤ t},

is bounded on J ;
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(H7) The map t 7−→ Kt is continuous from J to L∞(J,R); here Kt(s) =
K(t, s);

(H8) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J and
all u ∈ C(J0, E), where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and
increasing with

T sup
t∈J

K(t)

∫ T
0

p(s)ds <

∫ ∞
c

dτ

ψ(τ)
;

where c = 1
1−c1

{
(1 + c1)‖φ‖+ 2c2

}
;

(H9) For each bounded B ⊂ C(J1, E), u ∈ B and t ∈ J the set

{∫ t
0

∫ s
0

K(s, σ)g(σ)dσds : g ∈ SF,u
}

is relatively compact.

Definition 4.1 By a solution to the IVP (1.3)-(1.4) it mean a function y :
J1 → E such that y0 = φ, yt ∈ C(J0, E), the function y(t)−f(t, yt) is absolutely
continuous and the inclusion (1.3) hold a.e. on J .

Now, we are able to state and prove our main theorem.

Theorem 4.2 Assume that hypotheses (H1), (H2), (H4), (H6)-(H9) are satis-
fied. Then the IVP (1.3)-(1.4) has at least one solution on J1.

Proof. Let C(J1, E) be the Banach space of continuous functions from J1 into
E endowed with the sup-norm

‖y‖∞ := sup{|y(t)| : t ∈ [−r, T ]}, for y ∈ C(J1, E).

Transform the problem into a fixed point problem. Consider the multivalued
map, N : C(J1, E) −→ 2C(J1,E) defined by:

Ny :=


h ∈ C(J1, E) : h(t) =




φ(t), if t ∈ J0

φ(0)− f(0, φ) + f(t, yt)

+
∫ t
0

∫ s
0
K(s, u)g(u)duds, if t ∈ J




where

g ∈ SF,y =
{
g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J

}
.

Remark 4.3 It is clear that the fixed points of N are solutions to (1.3)-(1.4).
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As in Theorem 3.4 we can show that N is a completely continuous multi-valued
map, u.s.c. with convex closed values, and therefore a condensing map.
Here we repeat the proof that the set

Ω := {y ∈ C(J1, E) : λy ∈ Ny, for some λ > 1}

is bounded. Let y ∈ Ω. Then λy ∈ Ny for some λ > 1. Thus there exists
g ∈ SF,y such that for t ∈ J ,

y(t) = λ−1φ(0)− λ−1f(0, φ) + λ−1f(t, yt) + λ
−1

∫ t
0

∫ s
0

K(s, u)g(u) du ds.

This implies by (H1), (H6)-(H8) that for each t ∈ J we have

‖y(t)‖ ≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+
∥∥∥
∫ t
0

∫ s
0

K(s, u)g(u) du ds
∥∥∥

≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+

∫ t
0

∫ s
0

|K(s, u)|p(u)ψ(‖yu‖) du ds

≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+ T sup
t∈J

K(t)

∫ t
0

p(s)ψ(‖ys‖)ds.

We consider the function µ defined by

µ(t) = sup{|y(t)| : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality
we have for t ∈ J

µ(t) ≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1‖yt‖+ T sup
t∈J

K(t)

∫ t
0

p(s)ψ(‖ys‖)ds

≤ ‖φ‖+ c1‖φ‖+ 2c2 + c1µ(t) + T sup
t∈J

K(t)

∫ t
0

p(s)ψ(µ(s))ds.

Thus

µ(t) ≤
1

1− c1

{
(1 + c1)‖φ‖+ 2c2 + T sup

t∈J
K(t)

∫ t
0

p(s)ψ(µ(s))ds
}
.

If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds.
Let us take the right-hand side of the above inequality as v(t), then we have

c = v(0) =
1

1− c1

{
(1 + c1)‖φ‖ + 2c2

}
and µ(t) ≤ v(t), t ∈ J.

Using the nondecreasing character of ψ we get

v′(t) ≤ T sup
t∈J

K(t)p(t)ψ(v(t)), t ∈ J.
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This implies for each t ∈ J that

∫ v(t)
v(0)

du

ψ(u)
≤ T sup

t∈J
K(t)

∫ T
0

p(s)ds <

∫ ∞
v(0)

du

ψ(u)
.

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J ,
and hence µ(t) ≤ b, t ∈ J . Since for every t ∈ J, ‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup{|y(t)| : −r ≤ t ≤ T } ≤ b,

where b depends only on T and on the functions p and ψ. This shows that Ω is
bounded.

Set X := C(J1, E). As a consequence of Lemma 2.1 we deduce that N has
a fixed point which is a solution of (1.3)-(1.4). ♦

5 Second order differential inclusions

In this section we consider the solvability of IVP (1.5)-(1.6). For the study of
this problem we first list the following hypotheses:

(H10) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J
and all u ∈ C(J0, E), where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous
and increasing with ∫ T

0

M(s)ds <

∫ ∞
c

dτ

u+ ψ(τ)
;

where c = ‖φ‖+ [|η|+ c1‖φ‖+ 2c2]T and M(t) = max{1, c1, p(t)};

(H11) for each bounded B ⊂ C(J1, E), y ∈ B and t ∈ J the set

{∫ t
0

∫ u
0

g(u) du ds : g ∈ SF,y
}

is relatively compact.

Definition 5.1 By a solution to the IVP (1.5)-(1.6) we shall mean a differ-
entiable function y : J1 → E such that y0 = φ, y′(0) = η, yt ∈ C(J0, E), the
function y′(t) − f(t, yt) is absolutely continuous and the inclusion (1.5) hold
a.e. on J .

Now, we are in a position to state and prove our main theorem in this section.

Theorem 5.2 Assume that hypotheses (H1), (H2), (H4), (H10), (H11) hold.
Then the IVP (1.5)-(1.6) has at least one solution on J1.
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Proof. Let C(J1, E) be the Banach space of continuous functions from J1 into
E endowed with the sup norm

‖y‖∞ := sup{|y(t)| : t ∈ [−r, T ]}, for y ∈ C(J1, E).

Transform the problem into a fixed point problem. Consider the multivalued
map, N : C(J1, E) −→ 2C(J1,E) defined by:

Ny :=


h ∈ C(J1, E) : h(t) =




φ(t), if t ∈ J0

φ(0) + [η − f(0, φ)]t

+
∫ t
0 f(s, ys)ds+

∫ t
0

∫ s
0 g(u)duds, if t ∈ J




Remark 5.3 It is clear that the fixed points of N are solutions to (1.5)-(1.6).

As in Theorem 3.4 we can show that N is a completely continuous multi-
valued map, u.s.c. with convex closed values.

Now we prove only that the set

Ω := {y ∈ C(J1, E) : λy ∈ Ny, for some λ > 1}

is bounded.

Let y ∈ Ω. Then λy ∈ Ny for some λ > 1. Thus there exists g ∈ SF,y such
that for t ∈ J ,

y(t) = λ−1φ(0) + λ−1[η− f(0, φ)]t+ λ−1
∫ t
0

f(s, ys)ds+ λ
−1

∫ t
0

∫ u
0

g(u) du ds .

This implies by (H1), (H3) that for each t ∈ J we have

‖y(t)‖ ≤ ‖φ‖+ [|η|+ c1‖φ‖+ 2c2]T

+c1

∫ t
0

‖ys‖ds+

∫ t
0

∫ s
0

p(u)ψ(‖yu‖) du ds

≤ ‖φ‖+ [|η|+ c1‖φ‖+ 2c2]T

+

∫ t
0

M(s)‖ys‖ds+

∫ t
0

M(s)

∫ s
0

ψ(‖yu‖) du ds ,

where M(t) = max{1, c1, p(t)}. We consider the function µ defined by

µ(t) = sup{|y(t)| : −r ≤ s ≤ t}, t ∈ J.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ J , by the previous inequality
we have for t ∈ J

µ(t) ≤ ‖φ‖+[|η|+ c1‖φ‖+2c2]T +

∫ t
0

M(s)µ(s)ds+

∫ t
0

M(s)

∫ s
0

ψ(µ(u)) du ds.
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If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality holds. Denoting by u(t)
the right hand side of the above inequality we have

u(0) = ‖φ‖+ [|η|+ c1‖φ‖+ 2c2]T = c, µ(t) ≤ u(t), t ∈ J

and

u′(t) ≤ M(t)µ(t) +M(t)

∫ t
0

ψ(µ(s))ds

≤ M(t)

[
u(t) +

∫ t
0

ψ(u(s))ds

]
, t ∈ J.

Put

v(t) = u(t) +

∫ t
0

ψ(u(s))ds, t ∈ J.

u(0) = ‖φ‖+ [|η|+ c1‖φ‖+ 2c2]T = c, µ(t) ≤ u(t), t ∈ J

and

v′(t) = u′(t) + ψ(u(t))

≤ M(t)[v(t) + ψ(v(t))], t ∈ J.

This implies that for each t ∈ J ,

∫ v(t)
v(0)

du

u+ ψ(u)
≤

∫ T
0

M(s)ds <

∫ ∞
v(0)

du

u+ ψ(u)
.

This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ J ,
and hence µ(t) ≤ b, t ∈ J . Since for every t ∈ J, ‖yt‖ ≤ µ(t), we have

‖y‖∞ := sup{|y(t)| : −r ≤ t ≤ T } ≤ b,

where b depends only on T and on the functions p and ψ. This shows that Ω is
bounded.
Set X := C(J1, E). As a consequence of Lemma 2.1 we deduce that N has

a fixed point which is a solution of (1.5)-(1.6). ♦
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