Electronic Journal of Differential Equations, Vol. 2003(2003), No. 35, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

RADIAL MINIMIZER OF A VARIANT OF THE P-GINZBURG-LANDAU FUNCTIONAL

YUTIAN LEI

Abstract. We study the asymptotic behavior of the radial minimizer of a variant of the p -Ginzburg-Landau functional when $p \geq n$. The location of the zeros and the uniqueness of the radial minimizer are derived. We also prove the $W^{1, p}$ convergence of the radial minimizer for this functional.

1. Introduction

Let $n \geq 2, B=\left\{x \in R^{n} ;|x|<1\right\}$. Consider the minimizers of the variant for the p-Ginzburg-Landau-type functional

$$
E_{\varepsilon}(u, B)=\frac{1}{p} \int_{B}|\nabla u|^{p}+\frac{1}{4 \varepsilon^{p}} \int_{B}|u|^{2}\left(1-|u|^{2}\right)^{2}, \quad(p \geq n)
$$

on the class functions

$$
W=\left\{u(x)=f(r) \frac{x}{|x|} \in W^{1, p}\left(B, R^{n}\right) ; f(1)=1, r=|x|\right\} .
$$

By the direct method in the calculus of variations we see that the minimizer u_{ε} exists. It will be called the radial minimizer.

When $p=n=2$, the asymptotic behavior of the minimizer u_{ε} of $E_{\varepsilon}(u, B)$ in the class H_{g}^{1} were studied in [5]. In this paper, we will study the asymptotic behavior of the radial minimizer u_{ε}. We will prove the following theorems.

Theorem 1.1. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then for any $\eta \in(0,1 / 2)$, there exists a constant $h=h(\eta)$ independent of $\varepsilon \in(0,1)$ such that $Z_{\varepsilon}=\{x \in$ $\left.B ;\left|u_{\varepsilon}(x)\right|<1-\eta\right\} \subset B(0, h \varepsilon)$. For any given $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the radial minimizers u_{ε} of $E_{\varepsilon}(u, B)$ are unique on W.

Theorem 1.2. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then as $\varepsilon \rightarrow 0$,

$$
u_{\varepsilon} \rightarrow \frac{x}{|x|}, \quad \text { in } W_{\operatorname{loc}}^{1, p}\left(\bar{B} \backslash\{0\}, R^{n}\right)
$$

Some basic properties of minimizers are given in $\S 2$. The proof of Theorem 1.1 is presented in $\S 3$. The proof of Theorem 1.2. is based uniform estimates proved in §4.

[^0]
2. Preliminaries

Let

$$
V=\left\{f \in W_{\mathrm{loc}}^{1, p}(0,1] ; r^{\frac{n-1}{p}} f_{r} \in L^{p}(0,1), r^{(n-1-p) / p} f \in L^{p}(0,1), f(1)=1\right\}
$$

Then $V=\left\{f(r) ; u(x)=f(r) \frac{x}{|x|} \in W\right\}$. As stated in [6, Proposition 2.1], we have
Proposition 2.1. The set V defined above is a subset of $\{f \in C[0,1] ; f(0)=0\}$.
Proposition 2.2. The minimizer $u_{\varepsilon} \in W$ is a weak radial solution of

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=\frac{1}{\varepsilon^{p}} u\left(1-|u|^{2}\right)|u|^{2}-\frac{1}{2 \varepsilon^{p}} u\left(1-|u|^{2}\right)^{2}, \quad \text { on } \quad B, \tag{2.1}
\end{equation*}
$$

Proof. Denote u_{ε} by u. For any $t \in[0,1)$ and $\phi=f(r) \frac{x}{|x|} \in W_{0}^{1, p}\left(B, R^{n}\right)$, we have $u+t \phi \in W$ as long as t is small sufficiently. Since u is a minimizer we obtain $\left.\frac{d E_{\varepsilon}(u+t \phi, B)}{d t}\right|_{t=0}=0$, namely,

$$
\begin{equation*}
0=\int_{B}|\nabla u|^{p-2} \nabla u \nabla \phi d x-\frac{1}{\varepsilon^{p}} \int_{B} u \phi\left(1-|u|^{2}\right)|u|^{2} d x+\frac{1}{2 \varepsilon^{p}} \int_{B} u \phi\left(1-|u|^{2}\right)^{2} d x \tag{2.2}
\end{equation*}
$$

Proposition 2.3. Let $u_{\varepsilon} \in W$ satisfying (2.2). Then $\left|u_{\varepsilon}\right| \leq 1$ a.e. on \bar{B}.
Proof. Let $u=u_{\varepsilon}$ in (2.2) and set $\phi=u\left(|u|^{2}-1\right)_{+}$, where for a positive constant $k,\left(|u|^{2}-1\right)_{+}=\min \left(k, \max \left(0,|u|^{2}-1\right)\right)$. Then

$$
\begin{aligned}
& \int_{B}|\nabla u|^{p}\left(|u|^{2}-1\right)_{+}+2 \int_{B}|\nabla u|^{p-2}(u \nabla u)^{2} \\
& +\frac{1}{\varepsilon^{p}} \int_{B}|u|^{4}\left(|u|^{2}-1\right)_{+}^{2}+\frac{1}{2 \varepsilon^{p}} \int_{B}|u|^{2}\left(|u|^{2}-1\right)_{+}\left(|u|^{2}-1\right)^{2}=0
\end{aligned}
$$

from which it follows that

$$
\frac{1}{\varepsilon^{p}} \int_{B}|u|^{4}\left(|u|^{2}-1\right)_{+}^{2}=0
$$

Thus $|u|=0$ or $\left(|u|^{2}-1\right)_{+}=0$ a.e. on B. Using proposition 2.1 we know that $|u|=\left|u_{\varepsilon}\right| \leq 1$ a.e. on B.

By the same argument as in [6, Proposition 2.5], we obtain the following statement.

Proposition 2.4. Assume u_{ε} is a weak radial solution of (2.1). Then there exist positive constants C_{1}, ρ which are both independent of ε such that

$$
\begin{gather*}
\left\|\nabla u_{\varepsilon}(x)\right\|_{L(B(x, \rho \varepsilon / 8))} \leq C_{1} \varepsilon^{-1}, \quad \text { if } \quad x \in B(0,1-\rho \varepsilon), \tag{2.3}\\
\left|u_{\varepsilon}(x)\right| \geq \frac{29}{30}, \quad \text { if } \quad x \in \bar{B} \backslash B(0,1-2 \rho \varepsilon) . \tag{2.4}
\end{gather*}
$$

Proposition 2.5. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then there exists a constant C independent of $\varepsilon \in(0,1)$ such that

$$
\begin{array}{ll}
E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq C \varepsilon^{n-p}+C ; \quad \text { for } p>n, \\
E_{\varepsilon}\left(u_{\varepsilon}, B\right) \leq C|\ln \varepsilon|+C, \quad \text { for } p=n . \tag{2.6}
\end{array}
$$

Proof. Let

$$
I(\varepsilon, R)=\min \left\{\int_{B(0, R)}\left[\frac{1}{p}|\nabla u|^{p}+\frac{1}{\varepsilon^{p}}\left(1-|u|^{2}\right)^{2}\right] ; u \in W_{R}\right\},
$$

where $W_{R}=\left\{u(x)=f(r) \frac{x}{|x|} \in W^{1, p}\left(B(0, R), R^{n}\right) ; r=|x|, f(R)=1\right\}$. Then

$$
\begin{align*}
I(\varepsilon, 1) & =E_{\varepsilon}\left(u_{\varepsilon}, B\right) \\
& =\frac{1}{p} \int_{B}\left|\nabla u_{\varepsilon}\right|^{p} d x+\frac{1}{4 \varepsilon^{p}} \int_{B}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}\left|u_{\varepsilon}\right|^{2} d x \\
& =\varepsilon^{n-p}\left[\frac{1}{p} \int_{B\left(0, \varepsilon^{-1}\right)}\left|\nabla u_{\varepsilon}\right|^{p} d y+\frac{1}{4} \int_{B\left(0, \varepsilon^{-1}\right)}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}\left|u_{\varepsilon}\right|^{2} d y\right. \tag{2.7}\\
& =\varepsilon^{n-p} I\left(1, \varepsilon^{-1}\right)
\end{align*}
$$

Let u_{1} be a solution of $I(1,1)$ and define

$$
u_{2}= \begin{cases}u_{1}, & \text { if } 0<|x|<1 \\ x & x \mid, \\ \text { if } 1 \leq|x| \leq \varepsilon^{-1}\end{cases}
$$

Thus $u_{2} \in W_{\varepsilon^{-1}}$, and

$$
\begin{aligned}
I\left(1, \varepsilon^{-1}\right) & \leq \frac{1}{p} \int_{B\left(0, \varepsilon^{-1}\right)}\left|\nabla u_{2}\right|^{p}+\frac{1}{4} \int_{B\left(0, \varepsilon^{-1}\right)}\left(1-\left|u_{2}\right|^{2}\right)^{2}\left|u_{2}\right|^{2} \\
& =\frac{1}{p} \int_{B}\left|\nabla u_{1}\right|^{p}+\frac{1}{4} \int_{B}\left(1-\left|u_{1}\right|^{2}\right)^{2}\left|u_{1}\right|^{2}+\frac{1}{p} \int_{B\left(0, \varepsilon^{-1}\right) \backslash B}\left|\nabla \frac{x}{|x|}\right|^{p} \\
& =I(1,1)+\frac{(n-1)^{p / 2}\left|S^{n-1}\right|}{p} \int_{1}^{\varepsilon^{-1}} r^{n-p-1} d r
\end{aligned}
$$

Hence

$$
\begin{gathered}
I\left(1, \varepsilon^{-1}\right) \leq I(1,1)+\frac{(n-1)^{p / 2}\left|S^{n-1}\right|}{p(p-n)}\left(1-\varepsilon^{p-n}\right) \leq C, \quad \text { for } p>n \\
I\left(1, \varepsilon^{-1}\right) \leq I(1,1)+\frac{(n-1)^{p / 2}\left|S^{n-1}\right|}{p}|\ln \varepsilon|, \quad \text { for } \quad p=n
\end{gathered}
$$

Substituting this into (2.7) yields (2.5) and (2.6).

3. Proof of Theorem 1.1

Proposition 3.1. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Then there exists a positive constant ε_{0} such that as $\varepsilon \in\left(0, \varepsilon_{0}\right)$,

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq C \tag{3.1}
\end{equation*}
$$

where C is independent of ε.
Proof. When $p>n$, the conclusion follows from multiplying (2.5) by ε^{p-2}. When $p=n$, the proof is similar to the proof in [7, Theorem 1]. Thus we can obtain this proposition by using (2.6).

Proposition 3.2. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Assume $p>n$. Then for any $\eta \in(0,1 / 2)$, there exist positive constants λ, μ independent of $\varepsilon \in(0,1)$ such that if

$$
\begin{equation*}
\frac{1}{\varepsilon^{p}} \int_{B \cap B^{2 l \varepsilon}}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu \tag{3.2}
\end{equation*}
$$

where $B^{2 l \varepsilon}$ is some ball of radius $2 l \varepsilon$ with $l \geq \lambda$, then

$$
\left|u_{\varepsilon}(x)\right| \in[0,1-\eta] \cup[1-\eta / 2,1], \quad \forall x \in B \cap B^{l \varepsilon}
$$

Proof. First we observe that there exists a constant $\beta>0$ such that for any $x \in B$ and $0<\rho \leq 1,|B \cap B(x, \rho)| \geq \beta \rho^{2}$.

From Proposition 2.3 and (2.5) it follows that $\left\|u_{\varepsilon}\right\|_{W^{1, p}(B)} \leq C \varepsilon^{\frac{2-p}{2}}$. By embedding theorem we know that there exists a positive constant C_{0} which is independent of ε, such that for any $x, x_{0} \in B$,

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}\left(x_{0}\right)\right| \leq C_{0} \varepsilon^{\frac{2-p}{p}}\left|x-x_{0}\right|^{1-\frac{2}{p}} .
$$

To obtain the conclusion, we choose

$$
\begin{equation*}
\lambda=\frac{\eta}{4 C_{0}}, \quad \mu=\frac{\beta}{16} \eta^{2}(1-\eta)^{2} \lambda^{n} . \tag{3.3}
\end{equation*}
$$

Suppose that there is a point $x_{0} \in B \cap B^{l \varepsilon}$ such that $1-\eta<\left|u_{\varepsilon}\left(x_{0}\right)\right|<1-\eta / 2$. Then

$$
\left|u_{\varepsilon}(x)-u_{\varepsilon}\left(x_{0}\right)\right| \leq C_{0} \varepsilon^{\frac{2-p}{p}}\left|x-x_{0}\right|^{1-\frac{2}{p}} \leq C_{0} \lambda=\frac{\eta}{4}, \quad \forall x \in B\left(x_{0}, \lambda \varepsilon\right)
$$

Hence $\left(1-\left|u_{\varepsilon}(x)\right|^{2}\right)^{2}>\left(\frac{\eta}{4}\right)^{2}$, for all $x \in B\left(x_{0}, \lambda \varepsilon\right)$, and

$$
\begin{equation*}
\int_{B\left(x_{0}, \lambda \varepsilon\right) \cap B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}>\frac{\eta^{2}}{16}(1-\eta)^{2}\left|B \cap B\left(x_{0}, \lambda \varepsilon\right)\right| \geq \beta \frac{\eta^{2}}{16}(1-\eta)^{2}(\lambda \varepsilon)^{n}=\mu \varepsilon^{n} \tag{3.4}
\end{equation*}
$$

Since $x_{0} \in B^{l \varepsilon} \cap B$, and $\left(B\left(x_{0}, \lambda \varepsilon\right) \cap B\right) \subset\left(B^{2 l \varepsilon} \cap B\right)$, (3.4) implies

$$
\int_{B^{2 l \varepsilon} \cap B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2}>\mu \varepsilon^{n}
$$

which contradicts (3.2) and thus proposition 3.2 is proved.
Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B), p>n$. Given $\eta \in(0,1 / 2)$. Let λ, μ be constants in Proposition 3.2 corresponding to η. If

$$
\begin{equation*}
\frac{1}{\varepsilon^{n}} \int_{B\left(x^{\varepsilon}, 2 \lambda \varepsilon\right) \cap B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu \tag{3.5}
\end{equation*}
$$

then $B\left(x^{\varepsilon}, \lambda \varepsilon\right)$ is called good ball. Otherwise $B\left(x^{\varepsilon}, \lambda \varepsilon\right)$ is called bad ball.
Now suppose that $\left\{B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right), i \in I\right\}$ is a family of balls satisfying

$$
\begin{array}{ll}
(i): & x_{i}^{\varepsilon} \in B, i \in I \\
(i i): & B \subset \cup_{i \in I} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right) \tag{3.6}\\
(i i i): & B\left(x_{i}^{\varepsilon}, \lambda \varepsilon / 4\right) \cap B\left(x_{j}^{\varepsilon}, \lambda \varepsilon / 4\right)=\emptyset, i \neq j
\end{array}
$$

Denote $J_{\varepsilon}=\left\{i \in I ; B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right)\right.$ is a bad ball $\}$.
Proposition 3.3. Assume $p>n$, there exists a positive integer N independent of $\varepsilon \in(0,1)$, such that the number of bad balls satisfies $\operatorname{Card} J_{\varepsilon} \leq N$.

Proof. Since (3.6) implies that every point in B can be covered by finite, say m (independent of ε) balls, from Proposition 3.1 and the definition of bad balls, we
have

$$
\begin{aligned}
\mu \varepsilon^{n} C a r d J_{\varepsilon} & \leq \sum_{i \in J_{\varepsilon}} \int_{B\left(x_{i}^{\varepsilon}, 2 \lambda \varepsilon\right) \cap B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \\
& \leq m \int_{\cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, 2 \lambda \varepsilon\right) \cap B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \\
& \leq m \int_{B}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq m C \varepsilon^{n}
\end{aligned}
$$

and hence Card $J_{\varepsilon} \leq \frac{m C}{\mu} \leq N$.
Similar to the argument in [1, Theorem IV.1], we have the following statement.
Proposition 3.4. Assume $p>n$, there exist a subset $J \subset J_{\varepsilon}$ and a constant $h \in\left[\lambda, \lambda 9^{N}\right]$ such that

$$
\begin{equation*}
\cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right) \subset \cup_{i \in J} B\left(x_{j}^{\varepsilon}, h \varepsilon\right), \quad\left|x_{i}^{\varepsilon}-x_{j}^{\varepsilon}\right|>8 h \varepsilon, \quad i, j \in J, \quad i \neq j . \tag{3.7}
\end{equation*}
$$

Applying proposition 3.4, we may modify the family of bad balls such that the new one, denoted by $\left\{B\left(x_{i}^{\varepsilon}, h \varepsilon\right) ; i \in J\right\}$, satisfies

$$
\begin{gathered}
\cup_{i \in J_{\varepsilon}} B\left(x_{i}^{\varepsilon}, \lambda \varepsilon\right) \subset \cup_{i \in J} B\left(x_{i}^{\varepsilon}, h \varepsilon\right), \\
\lambda \leq h ; \quad \operatorname{Card} J \leq \operatorname{Card} J_{\varepsilon} \\
\left|x_{i}^{\varepsilon}-x_{j}^{\varepsilon}\right|>8 h \varepsilon, i, j \in J, i \neq j .
\end{gathered}
$$

The last condition implies that every two balls in the new family are not intersected. Now we prove our main result of this section.

Theorem 3.5. Let u_{ε} be a radial minimizer of $E_{\varepsilon}(u, B)$. Assume $p \geq n$. Then for any $\eta \in(0,1 / 2)$, there exists a constant $h=h(\eta)$ independent of $\varepsilon \in(0,1)$ such that $Z_{\varepsilon}=\left\{x \in B ;\left|u_{\varepsilon}(x)\right|<1-\eta\right\} \subset B(0, h \varepsilon)$. In particular the zeroes of u_{ε} are contained in $B(0, h \varepsilon)$.

Proof. When $p>n$. Denote $Y_{\varepsilon}=\left\{x \in B ; 1-\eta \leq\left|u_{\varepsilon}(x)\right| \leq 1-\eta / 2\right\}$. Suppose there exists a point $x_{0} \in Y_{\varepsilon}$ such that $x_{0} \bar{\in} B(0, h \varepsilon)$. Then all points on the circle $S_{0}=\left\{x \in B ;|x|=\left|x_{0}\right|\right\}$ satisfy $\left|u_{\varepsilon}(x)\right|<1-\eta$ and hence by virtue of Proposition 3.3 all points on S_{0} are contained in bad balls. However, since $\left|x_{0}\right| \geq h \varepsilon, S_{0}$ can not be covered by a single bad ball. S_{0} can be covered by at least two bad balls. However this is impossible. This means $Y_{\varepsilon} \subset B(0, h \varepsilon)$.

Furthermore, for any given y_{0} satisfying $\left|u_{\varepsilon}\left(y_{0}\right)\right|=f\left(r_{0}\right)<1-\eta$, where $\left|y_{0}\right|=r_{0}$, we claim $y_{0} \in B(0, h \varepsilon)$. In fact, From $f\left(r_{0}\right)<1-\eta, f(1)=1>1-\eta / 2$, and the continuity of f, it follows that there exists $\xi \in\left(r_{0}, 1\right)$ such that $1-\eta<f(\xi)<$ $1-\eta / 2$, so $\xi \in Y_{\varepsilon} \subset(0, h \varepsilon)$ which implies $r_{0} \in(0, h \varepsilon)$.

When $p=n$, The space $W^{1, n}(B)$ does not embed into $C^{\alpha}(\bar{B})$. Hence in the proof of Proposition 3.2 we can not derive the similar conclusion in \bar{B} globally. Now, by virtue of Proposition 2.4, we may do argument on $B(0,1-\rho \varepsilon)$ instead of on B in the proof of Proposition 3.2 by using (2.3) and it is also true that we may take

$$
\frac{1}{\varepsilon^{n}} \int_{B\left(x^{\varepsilon}, 2 \lambda \varepsilon\right) \cap B(0,1-\rho \varepsilon)}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} \leq \mu
$$

as a ruler to distinguish the bad balls in $B(0,1-\rho \varepsilon)$. Similarly, we also obtain that the set $\left\{x \in B(0,1-\rho \varepsilon) ; 1-\eta \leq\left|u_{\varepsilon}(x)\right| \leq 1-\eta / 2\right\}$ must be covered by finite disintersected bad balls for any $\eta \in(0,1 / 2)$. Moreover, it follows that the set
$\left\{x \in B(0,1-\rho \varepsilon) ;\left|u_{\varepsilon}(x)\right| \leq 1-\eta\right\} \subset B(0, h \varepsilon)$ by the same argument above. Noting (2.4), we can see that the theorem holds.

By Proposition 2.4, Proposition 3.2 and Theorem 3.5 we can see that

$$
\begin{equation*}
\left|u_{\varepsilon}(x)\right| \geq \min \left(\frac{29}{30}, 1-2 \eta\right), \quad \forall x \in \bar{B} \backslash B(0, h \varepsilon) \tag{3.8}
\end{equation*}
$$

Theorem 3.6. For any given $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the radial minimizers u_{ε} of $E_{\varepsilon}(u, B)$ are unique on W.

Proof. Fix $\varepsilon \in(0,1)$. Suppose $u_{1}(x)=f_{1}(r) \frac{x}{|x|}$ and $u_{2}(x)=f_{2}(r) \frac{x}{|x|}$ are both radial minimizers of $E_{\varepsilon}(u, B)$ on W, then they are both weak radial solutions of (2.1). Namely, they satisfy

$$
\int_{B}|\nabla u|^{p-2} \nabla u \nabla \phi+\frac{1}{2 \varepsilon^{p}} \int_{B}\left[\left(1+3|u|^{4}\right)-4|u|^{2}\right] \phi=0
$$

Taking $\phi=u_{1}-u_{2}=\left(f_{1}-f_{2}\right) \frac{x}{|x|}$, we have

$$
\begin{aligned}
& \int_{B}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \nabla\left(u_{1}-u_{2}\right) d x \\
& +\frac{1}{2 \varepsilon^{p}} \int_{B}\left(f_{1}-f_{2}\right)^{2}\left[1+3\left(f_{1}^{4}+f_{1}^{3} f_{2}+f_{1}^{2} f_{2}^{2}+f_{1} f_{2}^{3}+f_{2}^{4}\right)\right. \\
& \left.-4\left(f_{1}^{2}+f_{2}^{2}+f_{1} f_{2}\right)\right] d x=0
\end{aligned}
$$

Letting η in (3.8) be sufficiently small such that

$$
1 \geq f_{1}, \quad f_{2} \geq \frac{29}{30}, \quad \text { on } B \backslash B(0, h(\eta) \varepsilon)
$$

for any given $\varepsilon \in(0,1)$. Hence

$$
\int_{B}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \nabla\left(u_{1}-u_{2}\right) d x \leq \frac{C}{\varepsilon^{p}} \int_{B(0, h \varepsilon)}\left(f_{1}-f_{2}\right)^{2} d x
$$

Applying (2.11) of [8], we can see that there exists a positive constant γ independent of ε and h such that

$$
\begin{equation*}
\gamma \int_{B}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x \leq \frac{1}{\varepsilon^{p}} \int_{B(0, h \varepsilon)}\left(f_{1}-f_{2}\right)^{2} d x \tag{3.9}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\int_{B}\left|\nabla\left(f_{1}-f_{2}\right)\right|^{2} d x \leq \frac{1}{\gamma \varepsilon^{p}} \int_{B(0, h \varepsilon)}\left(f_{1}-f_{2}\right)^{2} d x \tag{3.10}
\end{equation*}
$$

When $n>2$. Applying [4, Theorem 2.1], we have $\|f\|_{\frac{2 n}{n-2}} \leq \beta\|\nabla f\|_{2}$, where $\beta=\frac{2(n-1)}{n-2}$. Taking $f=f_{1}-f_{2}$ and applying (3.10), we obtain $f(|x|)=0$ as $x \in \partial B$ and

$$
\left[\int_{B}|f|^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}} \leq \beta^{2} \int_{B}|\nabla f|^{2} d x \leq \beta^{2} \gamma^{-1} \int_{G}|f|^{2} d x \varepsilon^{-p}
$$

where $G=B(0, h \varepsilon)$. Using Holder inequality, we derive

$$
\int_{G}|f|^{2} d x \leq|G|^{1-\frac{n-2}{n}}\left[\int_{G}|f|^{\frac{2 n}{n-2}} d x\right]^{\frac{n-2}{n}} \leq|B|^{1-\frac{n-2}{n}} h^{2} \varepsilon^{2-p} \frac{\beta^{2}}{\gamma} \int_{G}|f|^{2} d x .
$$

Hence for any given $\varepsilon \in(0,1)$,

$$
\begin{equation*}
\int_{G}|f|^{2} d x \leq C(\beta,|B|, \gamma, \varepsilon) h^{2} \int_{G}|f|^{2} d x . \tag{3.11}
\end{equation*}
$$

Denote $F(\eta)=\int_{B(0, h(\eta) \varepsilon)}|f|^{2} d x$, then $F(\eta) \geq 0$ and (3.11) implies that

$$
\begin{equation*}
F(\eta)\left(1-C(\beta,|B|, \gamma, \varepsilon) h^{2}\right) \leq 0 \tag{3.12}
\end{equation*}
$$

On the other hand, since $C(\beta,|B|, \gamma, \varepsilon)$ is independent of η, we may take η so small that $h=h(\eta) \leq \lambda 9^{N}=9^{N} \frac{\eta}{2 C_{0}}$ (which is implied by (3.3)) satisfies

$$
0<1-C(\beta,|B|, \gamma, \varepsilon) h^{2}
$$

for the fixed $\varepsilon \in(0,1)$, which and (3.12) imply that $F(\eta)=0$. Namely $f=0$ a.e. on G, or

$$
f_{1}=f_{2}, \quad \text { a.e. } \quad \text { on } \quad B(0, h \varepsilon) .
$$

Substituting this into (3.9), we know that $u_{1}-u_{2}=C$ a.e. on B. Noticing the continuity of u_{1}, u_{2} which is implied by Proposition 2.1, and $u_{1}=u_{2}=x$ on ∂B, we can see at last that

$$
u_{1}=u_{2}, \quad \text { on } \bar{B} .
$$

When $n=2$, applying [4, Theorem 2.1], we have $\|f\|_{6} \leq \beta\|\nabla f\|_{2 / 3}$, where β does not depend on η. By the similar argument above, we may see the same conclusion.

4. Proof of Theorem 1.2

Let $u_{\varepsilon}(x)=f_{\varepsilon}(r) \frac{x}{|x|}$ be a radial minimizer of $E_{\varepsilon}\left(u, B_{1}\right)$, namely f_{ε} be a minimizer of $E_{\varepsilon}(f)$ in V. From Proposition 2.5, we have

$$
\begin{equation*}
E_{\varepsilon}\left(f_{\varepsilon}\right) \leq C \varepsilon^{n-p}, \quad \text { for } p>n ; \quad E_{\varepsilon}\left(f_{\varepsilon}\right) \leq C|\ln \varepsilon|, \quad \text { for } p=n \tag{4.1}
\end{equation*}
$$

for some constant C independent of $\varepsilon \in(0,1)$. In this section we further prove that for any given $R \in(0,1)$, there exists a constant $C(R)$ such that

$$
\begin{equation*}
E_{\varepsilon}\left(f_{\varepsilon} ; R\right) \leq C(R) \tag{4.2}
\end{equation*}
$$

for $\varepsilon \in\left(0, \varepsilon_{0}\right)$ with $\varepsilon_{0}>0$ sufficiently small, where

$$
E_{\varepsilon}(f ; R)=\frac{1}{p} \int_{R}^{1}\left(f_{r}^{2}+(n-1) r^{-2} f^{2}\right)^{p / 2} r^{n-1} d r+\frac{1}{4 \varepsilon^{p}} \int_{R}^{1} f^{2}\left(1-f^{2}\right)^{2} r^{n-1} d r
$$

Proposition 4.1. Assume $p>n$. Given $T \in(0,1)$. There exist constants $T_{j} \in$ $\left[\frac{(j-1) T}{N+1}, \frac{j T}{N+1}\right],(N=[p])$ and C_{j}, such that

$$
\begin{equation*}
E_{\varepsilon}\left(f_{\varepsilon} ; T_{j}\right) \leq C_{j} \varepsilon^{j-p} \tag{4.3}
\end{equation*}
$$

for $j=n, n+1, \ldots, N$, where $\varepsilon \in\left(0, \varepsilon_{0}\right)$ with ε_{0} sufficiently small.
Proof. For $j=n$, the inequality (4.3) can be obtained by (4.1) easily. Suppose that (4.3) holds for all $j \leq m$. Then we have, in particular,

$$
\begin{equation*}
E_{\varepsilon}\left(f_{\varepsilon} ; T_{m}\right) \leq C_{m} \varepsilon^{m-p} . \tag{4.4}
\end{equation*}
$$

If $m=N$ then we are done. Suppose $m<N$, we want to prove (4.3) for $j=m+1$.

From (4.4) and integral mean value theorem, we can see that there exists $T_{m+1} \in$ $\left[\frac{m T}{N+1}, \frac{(m+1) T}{N+1}\right]$ such that

$$
\begin{equation*}
\left.\frac{1}{\varepsilon^{p}}\left(1-f_{\varepsilon}^{2}\right)^{2}\right|_{r=T_{m+1}} \leq \frac{C}{f_{\varepsilon}^{2}\left(T_{m+1}\right)} E_{\varepsilon}\left(u_{\varepsilon}, \partial B\left(0, T_{m+1}\right)\right) \leq C_{m} \varepsilon^{m-p} \tag{4.5}
\end{equation*}
$$

It is used that $f_{\varepsilon}\left(T_{m+1}\right) \geq \frac{29}{30}$ by virtue of (3.8) as long as ε_{0} and η sufficiently small. Consider the minimizer ρ_{1} of the functional

$$
E\left(\rho, T_{m+1}\right)=\frac{1}{p} \int_{T_{m+1}}^{1}\left(\rho_{r}^{2}+1\right)^{p / 2} d r+\frac{1}{2 \varepsilon^{p}} \int_{T_{m+1}}^{1}(1-\rho)^{2} d r
$$

It is easy to prove that the minimizer ρ_{ε} of $E\left(\rho, T_{m+1}\right)$ on $W_{f_{\varepsilon}}^{1, p}\left(\left(T_{m+1}, 1\right), R^{+}\right)$ exists and satisfies

$$
\begin{gather*}
-\varepsilon^{p}\left(v^{(p-2) / 2} \rho_{r}\right)_{r}=1-\rho, \quad \text { in }\left(T_{m+1}, 1\right), \tag{4.6}\\
\left.\rho\right|_{r=T_{m+1}}=f_{\varepsilon},\left.\quad \rho\right|_{r=1}=f_{\varepsilon}(1)=1, \tag{4.7}
\end{gather*}
$$

where $v=\rho_{r}^{2}+1$. Since $f_{\varepsilon} \leq 1$, it follows from the maximum principle

$$
\begin{equation*}
\rho_{\varepsilon} \leq 1 \tag{4.8}
\end{equation*}
$$

Applying (4.1) we see easily that

$$
\begin{equation*}
E\left(\rho_{\varepsilon} ; T_{m+1}\right) \leq E\left(f_{\varepsilon} ; T_{m+1}\right) \leq C E_{\varepsilon}\left(f_{\varepsilon} ; T_{m+1}\right) \leq C \varepsilon^{m-p} \tag{4.9}
\end{equation*}
$$

Now choosing a smooth function $0 \leq \zeta(r) \leq 1$ in $(0,1]$ such that $\zeta=1$ on $\left(0, T_{m+1}\right), \zeta=0$ near $r=1$ and $\left|\zeta_{r}\right| \leq C\left(T_{m+1}\right)$, multiplying (4.6) by $\zeta \rho_{r}\left(\rho=\rho_{\varepsilon}\right)$ and integrating over $\left(T_{m+1}, 1\right)$ we obtain

$$
\begin{equation*}
\left.v^{(p-2) / 2} \rho_{r}^{2}\right|_{r=T_{m+1}}+\int_{T_{m+1}}^{1} v^{(p-2) / 2} \rho_{r}\left(\zeta_{r} \rho_{r}+\zeta \rho_{r r}\right) d r=\frac{1}{\varepsilon^{p}} \int_{T_{m+1}}^{1}(1-\rho) \zeta \rho_{r} d r \tag{4.10}
\end{equation*}
$$

Using (4.9) we have

$$
\begin{align*}
& \left|\int_{T_{m+1}}^{1} v^{(p-2) / 2} \rho_{r}\left(\zeta_{r} \rho_{r}+\zeta \rho_{r r}\right) d r\right| \\
& \leq \int_{T_{m+1}}^{1} v^{(p-2) / 2}\left|\zeta_{r}\right| \rho_{r}^{2} d r+\frac{1}{p}\left|\int_{T_{m+1}}^{1}\left(v^{p / 2} \zeta\right)_{r} d r-\int_{T_{m+1}}^{1} v^{p / 2} \zeta_{r} d r\right| \tag{4.11}\\
& \leq C \int_{T_{m+1}}^{1} v^{p / 2}+\left.\frac{1}{p} v^{p / 2}\right|_{r=T_{m+1}}+\frac{C}{p} \int_{T_{m+1}}^{1} v^{p / 2} d r \\
& \leq C \varepsilon^{m-p}+\left.\frac{1}{p} v^{p / 2}\right|_{r=T_{m+1}}
\end{align*}
$$

and using (4.5), (4.7) and (4.9) we have

$$
\begin{align*}
& \left|\frac{1}{\varepsilon^{p}} \int_{T_{m+1}}^{1}(1-\rho) \zeta \rho_{r} d r\right| \\
& =\frac{1}{2 \varepsilon^{p}}\left|\int_{T_{m+1}}^{1}\left((1-\rho)^{2} \zeta\right)_{r} d r-\int_{T_{m+1}}^{1}(1-\rho)^{2} \zeta_{r} d r\right| \tag{4.12}\\
& \left.\leq\left|\frac{1}{2 \varepsilon^{p}}(1-\rho)^{2}\right|_{r=T_{m+1}}+\frac{C}{2 \varepsilon^{p}} \int_{T_{m+1}}^{1}(1-\rho)^{2} d r \right\rvert\, \leq C \varepsilon^{m-p} .
\end{align*}
$$

Combining (4.10) with (4.11), (4.12) yields

$$
\left.v^{(p-2) / 2} \rho_{r}^{2}\right|_{r=T_{m+1}} \leq C \varepsilon^{m-p}+\left.\frac{1}{p} v^{p / 2}\right|_{r=T_{m+1}} .
$$

Hence for any $\delta \in(0,1)$,

$$
\begin{aligned}
\left.v^{p / 2}\right|_{r=T_{m+1}} & =\left.v^{(p-2) / 2}\left(\rho_{r}^{2}+1\right)\right|_{r=T_{m+1}} \\
& =\left.v^{(p-2) / 2} \rho_{r}^{2}\right|_{r=T_{m+1}}+\left.v^{(p-2) / 2}\right|_{r=T_{m+1}} \\
& \leq C \varepsilon^{m-p}+\left.\frac{1}{p} v^{p / 2}\right|_{r=T_{m+1}}+\left.v^{(p-2) / 2}\right|_{r=T_{m+1}} \\
& =C \varepsilon^{m-p}+\left.\left(\frac{1}{p}+\delta\right) v^{p / 2}\right|_{r=T_{m+1}}+C(\delta)
\end{aligned}
$$

from which it follows by choosing $\delta>0$ small enough that

$$
\begin{equation*}
\left.v^{p / 2}\right|_{r=T_{m+1}} \leq C \varepsilon^{m-p} . \tag{4.13}
\end{equation*}
$$

Now we multiply both sides of (4.6) by $\rho-1$ and integrate. Then

$$
-\varepsilon^{p} \int_{T_{m+1}}^{1}\left[v^{(p-2) / 2} \rho_{r}(\rho-1)\right]_{r} d r+\varepsilon^{p} \int_{T_{m+1}}^{1} v^{(p-2) / 2} \rho_{r}^{2} d r+\int_{T_{m+1}}^{1}(\rho-1)^{2} d r=0 .
$$

From this, using(4.5), (4.7) and (4.13), we obtain

$$
\begin{align*}
E\left(\rho_{\varepsilon} ; T_{m+1}\right) & \leq C\left|\int_{T_{m+1}}^{1}\left[v^{(p-2) / 2} \rho_{r}(\rho-1)\right]_{r} d r\right| \\
& =C v^{(p-2) / 2}\left|\rho_{r}\right||\rho-1|_{r=T_{m+1}} \leq C v^{(p-1) / 2}|\rho-1|_{r=T_{m+1}} \tag{4.14}\\
& \leq\left(C \varepsilon^{m-p}\right)^{(p-1) / p}\left(C \varepsilon^{m}\right)^{1 / 2} \leq C \varepsilon^{m-p+1} .
\end{align*}
$$

Define

$$
w_{\varepsilon}= \begin{cases}f_{\varepsilon} & \text { for } r \in\left(0, T_{m+1}\right) \\ \rho_{\varepsilon} & \text { for } r \in\left[T_{m+1}, 1\right]\end{cases}
$$

Since f_{ε} is a minimizer of $E_{\varepsilon}(f)$, we have $E_{\varepsilon}\left(f_{\varepsilon}\right) \leq E_{\varepsilon}\left(w_{\varepsilon}\right)$. Thus, it follows that $E_{\varepsilon}\left(f_{\varepsilon} ; T_{m+1}\right) \leq \frac{1}{p} \int_{T_{m+1}}^{1}\left(\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right)^{p / 2} r^{n-1} d r+\frac{1}{4 \varepsilon^{p}} \int_{T_{m+1}}^{1} \rho^{2}\left(1-\rho^{2}\right)^{2} r^{n-1} d r$ by virtue of $\Gamma \leq \varepsilon<T_{m+1}$ since ε is sufficiently small. Noticing that

$$
\begin{aligned}
& \int_{T_{m+1}}^{1}\left(\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right)^{p / 2} r^{n-1} d r-\int_{T_{m+1}}^{1}\left((n-1) r^{2} \rho^{2}\right)^{p / 2} r^{n-1} d r \\
& =\frac{p}{2} \int_{T_{m+1}}^{1} \int_{0}^{1}\left[\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right) s \\
& \left.\quad+(n-1) r^{-2} \rho^{2}(1-s)\right]^{(p-2) / 2} d s \rho_{r}^{2} r^{n-1} d r \\
& \leq C \int_{T_{m+1}}^{1}\left(\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right)^{(p-2) / 2} \rho_{r}^{2} r^{n-1} d r \\
& \quad+C \int_{T_{m+1}}^{1}\left((n-1) r^{-2} \rho^{2}\right)^{(p-2) / 2} \rho_{r}^{2} r^{n-1} d r \\
& \leq C \int_{T_{m+1}}^{1}\left(\rho_{r}^{p}+\rho_{r}^{2}\right) d r
\end{aligned}
$$

and using (4.8) we obtain

$$
\begin{aligned}
& E_{\varepsilon}\left(f_{\varepsilon} ; T_{m+1}\right) \\
& \leq \frac{1}{p} \int_{T_{m+1}}^{1}\left((n-1) r^{-2} \rho^{2}\right)^{p / 2} r^{n-1} d r+C \int_{T_{m+1}}^{1}\left(\rho_{r}^{p}+\rho_{r}^{2}\right) d r+\frac{C}{4 \varepsilon^{p}} \int_{T_{m+1}}^{1}\left(1-\rho^{2}\right)^{2} d r \\
& \leq \frac{1}{p} \int_{T_{m+1}}^{1}\left((n-1) r^{-2}\right)^{p / 2} r^{n-1} d r+C E\left(\rho_{\varepsilon} ; T_{m+1}\right)
\end{aligned}
$$

Combining this with (4.14) yields (4.3) for $j=m+1$. It is just (4.3) for $j=$ $m+1$.

Proposition 4.2. Assume $p \geq n$. Given $T \in(0,1)$. There exist constants $T_{N+1} \in$ ($0, T]$ and $C>0$ such that

$$
\begin{aligned}
& E_{\varepsilon}\left(u_{\varepsilon} ; T_{N+1}\right)-(n-1)^{p / 2} \frac{\left|S^{n-1}\right|}{p} \int_{T_{N+1}}^{1} r^{n-p-1} d r \leq C \varepsilon^{N+1-p},(p>n) \\
& E_{\varepsilon}\left(u_{\varepsilon} ; T_{N+1}\right)-(n-1)^{p / 2} \frac{\left|S^{n-1}\right|}{p} \int_{T_{N+1}}^{1} r^{n-p-1} d r \leq C \varepsilon|\ln \varepsilon|,(p=n)
\end{aligned}
$$

where $N=[p]$.
Proof. From (4.1) and (4.3) we can see $E_{\varepsilon}\left(u_{\varepsilon} ; T_{N}\right) \leq C F(\varepsilon)$, where $F(\varepsilon)=|\ln \varepsilon|$ as $p=n$, and $F(\varepsilon)=\varepsilon^{N-p}$ as $p>n$. Hence by using integral mean value theorem we know that there exists $T_{N+1} \in(0, T]$ such that

$$
\begin{equation*}
\frac{1}{p} \int_{\partial B\left(0, T_{N+1}\right)}\left|\nabla u_{\varepsilon}\right|^{p} d x+\frac{1}{4 \varepsilon^{p}} \int_{\partial B\left(0, T_{N+1}\right)}\left|u_{\varepsilon}\right|^{2}\left(1-\left|u_{\varepsilon}\right|^{2}\right)^{2} d x \leq C F(\varepsilon) \tag{4.15}
\end{equation*}
$$

Note that ρ_{2} is a minimizer of the functional

$$
E\left(\rho, T_{N+1}\right)=\frac{1}{p} \int_{T_{N+1}}^{1}\left(\rho_{r}^{2}+1\right)^{p / 2} d r+\frac{1}{2 \varepsilon^{p}} \int_{T_{N+1}}^{1}(1-\rho)^{2} d r
$$

on $W_{f_{\varepsilon}}^{1, p}\left(\left(T_{N+1}, 1\right), R^{+} \cup\{0\}\right)$. It is not difficult to prove by maximum principle that

$$
\begin{equation*}
\rho_{2} \leq 1 \tag{4.16}
\end{equation*}
$$

As in the derivation of (4.14), from (4.3) and (4.15) it can be proved that

$$
\begin{equation*}
E\left(\rho_{2}, T_{N+1}\right) \leq C \varepsilon F(\varepsilon) \tag{4.17}
\end{equation*}
$$

Using that u_{ε} is a minimizer and $\rho_{2} \frac{x}{|x|} \in W_{2}$, we also have

$$
\begin{align*}
E_{\varepsilon}\left(f_{\varepsilon} ; T_{N+1}\right) & \leq E_{\varepsilon}\left(\rho_{2} ; T_{N+1}\right) \\
& \leq \frac{1}{p} \int_{T_{N+1}}^{1}\left[\rho_{2 r}^{2}+\rho_{2}^{2}(n-1) r^{-2}\right]^{p / 2} r^{n-1} d r+\frac{1}{2 \varepsilon^{p}} \int_{T_{N+1}}^{1} \rho^{2}\left(1-\rho_{2}\right)^{2} d r \tag{4.18}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{T_{N+1}}^{1}\left[\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right]^{p / 2} r^{n-1} d r-\int_{T_{N+1}}^{1}\left[(n-1) r^{-2} \rho^{2}\right]^{p / 2} r^{n-1} d r \\
& =\frac{p}{2} \int_{T_{N+1}}^{1} \int_{0}^{1}\left[\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right]^{(p-2) / 2} s+(n-1) r^{-2} \rho^{2}(1-s) d s \rho_{r}^{2} r^{n-1} d r \\
& \leq C \int_{T_{N+1}}^{1}\left[\rho_{r}^{2}+(n-1) r^{-2} \rho^{2}\right]^{(p-2) / 2} \rho_{r}^{2} r^{n-1} d r \\
& \quad+C \int_{T_{N+1}}^{1}\left[(n-1) r^{-2} \rho^{2}\right]^{(p-2) / 2} \rho_{r}^{2} r^{n-1} d r \\
& \leq C \int_{T_{N+1}}^{1}\left[\rho_{r}^{p}+\rho_{r}^{2}\right] d r .
\end{aligned}
$$

Substituting this into (4.18), we have

$$
\begin{aligned}
& E_{\varepsilon}\left(f_{\varepsilon} ; T_{N+1}\right) \\
& \leq \frac{1}{p} \int_{T_{N+1}}^{1}(n-1)^{p / 2} \rho_{2}^{p} r^{n-p-1} d r+C \int_{T_{N+1}}^{1}\left(\rho_{2 r}^{p}+\rho_{2 r}^{2}\right) d r+\frac{C}{\varepsilon^{p}} \int_{T_{N+1}}^{1}\left(1-\rho_{2}\right)^{2} d r \\
& \leq \frac{1}{p} \int_{T_{N+1}}^{1}(n-1)^{p / 2} \rho_{2}^{p} r^{n-p-1} d r+C \varepsilon F(\varepsilon) \\
& \leq \frac{1}{p}(n-1)^{p / 2} \int_{T_{N+1}}^{1} r^{n-p-1} d r+C \varepsilon F(\varepsilon),
\end{aligned}
$$

using (4.16) and (4.17). This completes the proof.
Theorem 4.3. Let $u_{\varepsilon}=f_{\varepsilon}(r) \frac{x}{|x|}$ be a radial minimizer of $E_{\varepsilon}\left(u, B_{1}\right)$. Then

$$
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}=\frac{x}{|x|}, \quad \text { in } W^{1, p}\left(K, R^{n}\right)
$$

for any compact subset $K \subset \overline{B_{1}} \backslash\{0\}$.
Proof. Without loss of generality, we may assume $K=\overline{B_{1}} \backslash B\left(0, T_{N+1}\right)$. From Proposition 4.2, we have

$$
\begin{equation*}
E_{\varepsilon}\left(u_{\varepsilon}, K\right)=\left|S^{n-1}\right| E_{\varepsilon}\left(f_{\varepsilon} ; T_{N+1}\right) \leq C \tag{4.19}
\end{equation*}
$$

where C is independent of ε. This and $\left|u_{\varepsilon}\right| \leq 1$ imply the existence of a subsequence $u_{\varepsilon_{k}}$ of u_{ε} and a function $u_{*} \in W^{1, p}\left(K, R^{n}\right)$, such that

$$
\begin{gather*}
\lim _{\varepsilon_{k} \rightarrow 0} u_{\varepsilon_{k}}=u_{*}, \quad \text { weakly in } W^{1, p}\left(K, R^{n}\right), \\
\lim _{\varepsilon_{k} \rightarrow 0} u_{\varepsilon_{k}}=u_{*}, \quad \text { in } L^{q}(K, R), \quad \forall q>0, \tag{4.20}\\
\lim _{\varepsilon_{k} \rightarrow 0} f_{\varepsilon_{k}}(r)=\left|u_{*}\right|, \quad \text { in } C^{\alpha}\left(\left[T_{N+1}, 1\right], R\right), \quad \alpha>1-1 / p .
\end{gather*}
$$

Inequality (4.19) implies $\left|u_{*}\right| \in\{0,1\}$. Using also (4.20) and $f_{\varepsilon_{k}}(1)=1$ we see that $\left|u_{*}\right|=1$ or $u_{*}=\frac{x}{|x|}$. Hence, noticing that any subsequence of u_{ε} has a convergent
subsequence and the limit is always $x /|x|$, we can assert

$$
\begin{array}{ll}
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}=\frac{x}{|x|}, & \text { weakly in } W^{1, p}\left(K, R^{n}\right) . \\
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}=u_{*}, & \text { in } L^{q}(K, R), \quad \forall q>0 . \tag{4.22}
\end{array}
$$

From this and the weakly lower semicontinuity of $\int_{K}|\nabla u|^{p}$, using Proposition 4.2, it follows that

$$
\begin{aligned}
\int_{K}\left|\nabla \frac{x}{|x|}\right|^{p} & \leq \liminf _{\varepsilon_{k} \rightarrow 0} \int_{K}\left|\nabla u_{\varepsilon}\right|^{p} \leq \limsup _{\varepsilon_{k} \rightarrow 0} \int_{K}\left|\nabla u_{\varepsilon}\right|^{p} \\
& \leq\left|S^{n-1}\right| \int_{T_{N+1}}^{1}\left((n-1) r^{-2}\right)^{p / 2} r^{n-1} d r
\end{aligned}
$$

and hence

$$
\lim _{\varepsilon \rightarrow 0} \int_{K}\left|\nabla u_{\varepsilon}\right|^{p}=\int_{K}\left|\nabla \frac{x}{|x|}\right|^{p}
$$

since

$$
\int_{K}\left|\nabla \frac{x}{|x|}\right|^{p}=\left|S^{n-1}\right| \int_{T_{N+1}}^{1}\left((n-1) r^{-2}\right)^{p / 2} r^{n-1} d r
$$

Combining this with (4.21)(4.22) completes the proof.

References

[1] F. Bethuel, H. Brezis, F. Helein: Ginzburg-Landau Vortices, Birkhauser. 1994.
[2] R. M. Herve, M. Herve: Etude qualitative des solutions reelles d'une equation differentielle liee a l'equation de Ginzburg-Landau, Ann. IHP. Analyse nonLineaire, 11 (1994),427-440.
[3] M. C. Hong: Asymptotic behavior for minimizers of a Ginzburg-Landau type functional in higher dimensions associated with n-harmonic maps, Adv. in Diff. Eqns., 1 (1996), 611-634.
[4] O.Ladyzhenskaya, N.Uraltseva: Linear and quasilinear elliptic equations, Acad, Press, NewYork and London, 1968.
[5] L. Lassoued, C. Lefter: On a variant of the Ginzburg-Landau energy, Nonlinear Differ. Equ. Appl. ,5 (1998), No.43, 39-51.
[6] Y. T. Lei: Uniqueness for radial Ginzburg-Landau type functional minimizers, Electron. J. Diff. Equs., 2002 (2002), No. 43, 1-11.
[7] M. Struwe: An asymptotic estimate for the Ginzburg-Landau model, C. R. Acad. Sci. Paris, 317 (1993), 677-680.
[8] P. Tolksdorff: Everywhere regularity for some quasilinear systems with a lack of ellipticity, Anna. Math. Pura. Appl. ,134 (1983), 241-266.

Yutian Lei
Department of Mathematics, Nanjing Normal University, Nanjing, Jiangsu 210097, China E-mail address: lythxl@163.com

[^0]: 2000 Mathematics Subject Classification. 35J70, 49K20.
 Key words and phrases. Radial minimizer, variant of p-Ginzburg-Landau functional. (C)2003 Southwest Texas State University.

 Submitted December 30, 2002. Published April 3, 2003.

