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RADIAL MINIMIZER OF A VARIANT OF THE
P-GINZBURG-LANDAU FUNCTIONAL

YUTIAN LEI

Abstract. We study the asymptotic behavior of the radial minimizer of a
variant of the p-Ginzburg-Landau functional when p ≥ n. The location of the
zeros and the uniqueness of the radial minimizer are derived. We also prove

the W 1,p convergence of the radial minimizer for this functional.

1. Introduction

Let n ≥ 2, B = {x ∈ Rn; |x| < 1}. Consider the minimizers of the variant for
the p-Ginzburg-Landau-type functional

Eε(u, B) =
1
p

∫
B

|∇u|p +
1

4εp

∫
B

|u|2(1− |u|2)2, (p ≥ n)

on the class functions

W =
{
u(x) = f(r)

x

|x|
∈ W 1,p(B,Rn); f(1) = 1, r = |x|

}
.

By the direct method in the calculus of variations we see that the minimizer uε

exists. It will be called the radial minimizer.
When p = n = 2, the asymptotic behavior of the minimizer uε of Eε(u, B) in the

class H1
g were studied in [5]. In this paper, we will study the asymptotic behavior

of the radial minimizer uε. We will prove the following theorems.

Theorem 1.1. Let uε be a radial minimizer of Eε(u, B). Then for any η ∈ (0, 1/2),
there exists a constant h = h(η) independent of ε ∈ (0, 1) such that Zε = {x ∈
B; |uε(x)| < 1− η} ⊂ B(0, hε). For any given ε ∈ (0, ε0), the radial minimizers uε

of Eε(u, B) are unique on W .

Theorem 1.2. Let uε be a radial minimizer of Eε(u, B). Then as ε → 0,

uε →
x

|x|
, in W 1,p

loc (B \ {0}, Rn).

Some basic properties of minimizers are given in §2. The proof of Theorem 1.1
is presented in §3. The proof of Theorem 1.2. is based uniform estimates proved in
§4.
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2. Preliminaries

Let

V =
{
f ∈ W 1,p

loc (0, 1]; r
n−1

p fr ∈ Lp(0, 1), r(n−1−p)/pf ∈ Lp(0, 1), f(1) = 1
}

.

Then V = {f(r);u(x) = f(r) x
|x| ∈ W}. As stated in [6, Proposition 2.1], we have

Proposition 2.1. The set V defined above is a subset of {f ∈ C[0, 1]; f(0) = 0}.

Proposition 2.2. The minimizer uε ∈ W is a weak radial solution of

−div(|∇u|p−2∇u) =
1
εp

u(1− |u|2)|u|2 − 1
2εp

u(1− |u|2)2, on B, (2.1)

Proof. Denote uε by u. For any t ∈ [0, 1) and φ = f(r) x
|x| ∈ W 1,p

0 (B,Rn), we have
u + tφ ∈ W as long as t is small sufficiently. Since u is a minimizer we obtain
dEε(u+tφ,B)

dt |t=0 = 0, namely,

0 =
∫

B

|∇u|p−2∇u∇φdx− 1
εp

∫
B

uφ(1−|u|2)|u|2dx+
1

2εp

∫
B

uφ(1−|u|2)2dx. (2.2)

�

Proposition 2.3. Let uε ∈ W satisfying (2.2). Then |uε| ≤ 1 a.e. on B.

Proof. Let u = uε in (2.2) and set φ = u(|u|2 − 1)+, where for a positive constant
k, (|u|2 − 1)+ = min(k,max(0, |u|2 − 1)). Then∫

B

|∇u|p(|u|2 − 1)+ + 2
∫

B

|∇u|p−2(u∇u)2

+
1
εp

∫
B

|u|4(|u|2 − 1)2+ +
1

2εp

∫
B

|u|2(|u|2 − 1)+(|u|2 − 1)2 = 0

from which it follows that
1
εp

∫
B

|u|4(|u|2 − 1)2+ = 0.

Thus |u| = 0 or (|u|2 − 1)+ = 0 a.e. on B. Using proposition 2.1 we know that
|u| = |uε| ≤ 1 a.e. on B. �

By the same argument as in [6, Proposition 2.5], we obtain the following state-
ment.

Proposition 2.4. Assume uε is a weak radial solution of (2.1). Then there exist
positive constants C1, ρ which are both independent of ε such that

‖∇uε(x)‖L(B(x,ρε/8)) ≤ C1ε
−1, if x ∈ B(0, 1− ρε), (2.3)

|uε(x)| ≥ 29
30

, if x ∈ B \B(0, 1− 2ρε). (2.4)

Proposition 2.5. Let uε be a radial minimizer of Eε(u, B). Then there exists a
constant C independent of ε ∈ (0, 1) such that

Eε(uε, B) ≤ Cεn−p + C; for p > n, (2.5)

Eε(uε, B) ≤ C| ln ε|+ C, for p = n. (2.6)
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Proof. Let

I(ε, R) = min
{ ∫

B(0,R)

[
1
p
|∇u|p +

1
εp

(1− |u|2)2];u ∈ WR

}
,

where WR = {u(x) = f(r) x
|x| ∈ W 1,p(B(0, R), Rn); r = |x|, f(R) = 1}. Then

I(ε, 1) = Eε(uε, B)

=
1
p

∫
B

|∇uε|pdx +
1

4εp

∫
B

(1− |uε|2)2|uε|2dx

= εn−p[
1
p

∫
B(0,ε−1)

|∇uε|pdy +
1
4

∫
B(0,ε−1)

(1− |uε|2)2|uε|2dy

= εn−pI(1, ε−1).

(2.7)

Let u1 be a solution of I(1, 1) and define

u2 =

{
u1, if 0 < |x| < 1
x
|x| , if 1 ≤ |x| ≤ ε−1.

Thus u2 ∈ Wε−1 , and

I(1, ε−1) ≤ 1
p

∫
B(0,ε−1)

|∇u2|p +
1
4

∫
B(0,ε−1)

(1− |u2|2)2|u2|2

=
1
p

∫
B

|∇u1|p +
1
4

∫
B

(1− |u1|2)2|u1|2 +
1
p

∫
B(0,ε−1)\B

|∇ x

|x|
|p

= I(1, 1) +
(n− 1)p/2|Sn−1|

p

∫ ε−1

1

rn−p−1dr

Hence

I(1, ε−1) ≤ I(1, 1) +
(n− 1)p/2|Sn−1|

p(p− n)
(1− εp−n) ≤ C, for p > n;

I(1, ε−1) ≤ I(1, 1) +
(n− 1)p/2|Sn−1|

p
| ln ε|, for p = n.

Substituting this into (2.7) yields (2.5) and (2.6). �

3. Proof of Theorem 1.1

Proposition 3.1. Let uε be a radial minimizer of Eε(u, B). Then there exists a
positive constant ε0 such that as ε ∈ (0, ε0),

1
εn

∫
B

|uε|2(1− |uε|2)2 ≤ C, (3.1)

where C is independent of ε.

Proof. When p > n, the conclusion follows from multiplying (2.5) by εp−2. When
p = n, the proof is similar to the proof in [7, Theorem 1]. Thus we can obtain this
proposition by using (2.6). �

Proposition 3.2. Let uε be a radial minimizer of Eε(u, B). Assume p > n. Then
for any η ∈ (0, 1/2), there exist positive constants λ, µ independent of ε ∈ (0, 1)
such that if

1
εp

∫
B∩B2lε

|uε|2(1− |uε|2)2 ≤ µ, (3.2)
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where B2lε is some ball of radius 2lε with l ≥ λ, then

|uε(x)| ∈ [0, 1− η] ∪ [1− η/2, 1], ∀x ∈ B ∩Blε.

Proof. First we observe that there exists a constant β > 0 such that for any x ∈ B
and 0 < ρ ≤ 1, |B ∩B(x, ρ)| ≥ βρ2.

From Proposition 2.3 and (2.5) it follows that ‖uε‖W 1,p(B) ≤ Cε
2−p
2 . By embed-

ding theorem we know that there exists a positive constant C0 which is independent
of ε, such that for any x, x0 ∈ B,

|uε(x)− uε(x0)| ≤ C0ε
2−p

p |x− x0|1−
2
p .

To obtain the conclusion, we choose

λ =
η

4C0
, µ =

β

16
η2(1− η)2λn. (3.3)

Suppose that there is a point x0 ∈ B ∩Blε such that 1− η < |uε(x0)| < 1− η/2.
Then

|uε(x)− uε(x0)| ≤ C0ε
2−p

p |x− x0|1−
2
p ≤ C0λ =

η

4
, ∀x ∈ B(x0, λε)

Hence (1− |uε(x)|2)2 > (η
4 )2, for all x ∈ B(x0, λε), and∫

B(x0,λε)∩B

|uε|2(1−|uε|2)2 >
η2

16
(1−η)2|B∩B(x0, λε)| ≥ β

η2

16
(1−η)2(λε)n = µεn

(3.4)
Since x0 ∈ Blε ∩B, and (B(x0, λε) ∩B) ⊂ (B2lε ∩B), (3.4) implies∫

B2lε∩B

|uε|2(1− |uε|2)2 > µεn

which contradicts (3.2) and thus proposition 3.2 is proved. �

Let uε be a radial minimizer of Eε(u, B), p > n . Given η ∈ (0, 1/2). Let λ, µ
be constants in Proposition 3.2 corresponding to η. If

1
εn

∫
B(xε,2λε)∩B

|uε|2(1− |uε|2)2 ≤ µ (3.5)

then B(xε, λε) is called good ball. Otherwise B(xε, λε) is called bad ball.
Now suppose that {B(xε

i , λε), i ∈ I} is a family of balls satisfying

(i) : xε
i ∈ B, i ∈ I;

(ii) : B ⊂ ∪i∈IB(xε
i , λε)

(iii) : B(xε
i , λε/4) ∩B(xε

j , λε/4) = ∅, i 6= j

(3.6)

Denote Jε = {i ∈ I;B(xε
i , λε) is a bad ball}.

Proposition 3.3. Assume p > n, there exists a positive integer N independent of
ε ∈ (0, 1), such that the number of bad balls satisfies CardJε ≤ N .

Proof. Since (3.6) implies that every point in B can be covered by finite, say m
(independent of ε) balls, from Proposition 3.1 and the definition of bad balls, we
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have

µεnCardJε ≤
∑
i∈Jε

∫
B(xε

i ,2λε)∩B

|uε|2(1− |uε|2)2

≤ m

∫
∪i∈JεB(xε

i ,2λε)∩B

|uε|2(1− |uε|2)2

≤ m

∫
B

|uε|2(1− |uε|2)2 ≤ mCεn

and hence CardJε ≤ mC
µ ≤ N . �

Similar to the argument in [1, Theorem IV.1], we have the following statement.

Proposition 3.4. Assume p > n, there exist a subset J ⊂ Jε and a constant
h ∈ [λ, λ9N ] such that

∪i∈JεB(xε
i , λε) ⊂ ∪i∈JB(xε

j , hε), |xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j. (3.7)

Applying proposition 3.4, we may modify the family of bad balls such that the
new one, denoted by {B(xε

i , hε); i ∈ J}, satisfies

∪i∈Jε
B(xε

i , λε) ⊂ ∪i∈JB(xε
i , hε),

λ ≤ h; Card J ≤ CardJε

|xε
i − xε

j | > 8hε, i, j ∈ J, i 6= j .

The last condition implies that every two balls in the new family are not intersected.
Now we prove our main result of this section.

Theorem 3.5. Let uε be a radial minimizer of Eε(u, B). Assume p ≥ n. Then
for any η ∈ (0, 1/2), there exists a constant h = h(η) independent of ε ∈ (0, 1) such
that Zε = {x ∈ B; |uε(x)| < 1 − η} ⊂ B(0, hε). In particular the zeroes of uε are
contained in B(0, hε).

Proof. When p > n. Denote Yε = {x ∈ B; 1 − η ≤ |uε(x)| ≤ 1 − η/2}. Suppose
there exists a point x0 ∈ Yε such that x0∈B(0, hε). Then all points on the circle
S0 = {x ∈ B; |x| = |x0|} satisfy |uε(x)| < 1− η and hence by virtue of Proposition
3.3 all points on S0 are contained in bad balls. However, since |x0| ≥ hε, S0 can
not be covered by a single bad ball. S0 can be covered by at least two bad balls.
However this is impossible. This means Yε ⊂ B(0, hε).

Furthermore, for any given y0 satisfying |uε(y0)| = f(r0) < 1−η, where |y0| = r0,
we claim y0 ∈ B(0, hε). In fact, From f(r0) < 1 − η, f(1) = 1 > 1 − η/2, and the
continuity of f , it follows that there exists ξ ∈ (r0, 1) such that 1 − η < f(ξ) <
1− η/2, so ξ ∈ Yε ⊂ (0, hε) which implies r0 ∈ (0, hε).

When p = n, The space W 1,n(B) does not embed into Cα(B). Hence in the
proof of Proposition 3.2 we can not derive the similar conclusion in B globally.
Now, by virtue of Proposition 2.4, we may do argument on B(0, 1− ρε) instead of
on B in the proof of Proposition 3.2 by using (2.3) and it is also true that we may
take

1
εn

∫
B(xε,2λε)∩B(0,1−ρε)

|uε|2(1− |uε|2)2 ≤ µ

as a ruler to distinguish the bad balls in B(0, 1 − ρε). Similarly, we also obtain
that the set {x ∈ B(0, 1 − ρε); 1 − η ≤ |uε(x)| ≤ 1 − η/2} must be covered by
finite disintersected bad balls for any η ∈ (0, 1/2). Moreover, it follows that the set
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{x ∈ B(0, 1−ρε); |uε(x)| ≤ 1−η} ⊂ B(0, hε) by the same argument above. Noting
(2.4), we can see that the theorem holds. �

By Proposition 2.4, Proposition 3.2 and Theorem 3.5 we can see that

|uε(x)| ≥ min(
29
30

, 1− 2η), ∀x ∈ B \B(0, hε). (3.8)

Theorem 3.6. For any given ε ∈ (0, ε0), the radial minimizers uε of Eε(u, B) are
unique on W .

Proof. Fix ε ∈ (0, 1). Suppose u1(x) = f1(r) x
|x| and u2(x) = f2(r) x

|x| are both
radial minimizers of Eε(u, B) on W , then they are both weak radial solutions of
(2.1). Namely, they satisfy∫

B

|∇u|p−2∇u∇φ +
1

2εp

∫
B

[(1 + 3|u|4)− 4|u|2]φ = 0

Taking φ = u1 − u2 = (f1 − f2) x
|x| , we have∫

B

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx

+
1

2εp

∫
B

(f1 − f2)2[1 + 3(f4
1 + f3

1 f2 + f2
1 f2

2 + f1f
3
2 + f4

2 )

− 4(f2
1 + f2

2 + f1f2)]dx = 0

Letting η in (3.8) be sufficiently small such that

1 ≥ f1, f2 ≥
29
30

, on B \B(0, h(η)ε)

for any given ε ∈ (0, 1). Hence∫
B

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2)∇(u1 − u2)dx ≤ C

εp

∫
B(0,hε)

(f1 − f2)2dx.

Applying (2.11) of [8], we can see that there exists a positive constant γ independent
of ε and h such that

γ

∫
B

|∇(u1 − u2)|2dx ≤ 1
εp

∫
B(0,hε)

(f1 − f2)2dx, (3.9)

which implies ∫
B

|∇(f1 − f2)|2dx ≤ 1
γεp

∫
B(0,hε)

(f1 − f2)2dx. (3.10)

When n > 2. Applying [4, Theorem 2.1], we have ‖f‖ 2n
n−2

≤ β‖∇f‖2, where

β = 2(n−1)
n−2 . Taking f = f1 − f2 and applying (3.10), we obtain f(|x|) = 0 as

x ∈ ∂B and[ ∫
B

|f |
2n

n−2 dx
]n−2

n ≤ β2

∫
B

|∇f |2dx ≤ β2γ−1

∫
G

|f |2dxε−p,

where G = B(0, hε). Using Holder inequality, we derive∫
G

|f |2dx ≤ |G|1−
n−2

n [
∫

G

|f |
2n

n−2 dx]
n−2

n ≤ |B|1−
n−2

n h2ε2−p β2

γ

∫
G

|f |2dx.
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Hence for any given ε ∈ (0, 1),∫
G

|f |2dx ≤ C(β, |B|, γ, ε)h2

∫
G

|f |2dx. (3.11)

Denote F (η) =
∫

B(0,h(η)ε)
|f |2dx, then F (η) ≥ 0 and (3.11) implies that

F (η)(1− C(β, |B|, γ, ε)h2) ≤ 0. (3.12)

On the other hand, since C(β, |B|, γ, ε) is independent of η, we may take η so small
that h = h(η) ≤ λ9N = 9N η

2C0
(which is implied by (3.3)) satisfies

0 < 1− C(β, |B|, γ, ε)h2

for the fixed ε ∈ (0, 1), which and (3.12) imply that F (η) = 0. Namely f = 0 a.e.
on G, or

f1 = f2, a.e. on B(0, hε).

Substituting this into (3.9), we know that u1 − u2 = C a.e. on B. Noticing the
continuity of u1, u2 which is implied by Proposition 2.1, and u1 = u2 = x on ∂B,
we can see at last that

u1 = u2, on B.

When n = 2, applying [4, Theorem 2.1], we have ‖f‖6 ≤ β‖∇f‖2/3, where β
does not depend on η. By the similar argument above, we may see the same
conclusion. �

4. Proof of Theorem 1.2

Let uε(x) = fε(r) x
|x| be a radial minimizer of Eε(u, B1), namely fε be a minimizer

of Eε(f) in V . From Proposition 2.5, we have

Eε(fε) ≤ Cεn−p, for p > n; Eε(fε) ≤ C| ln ε|, for p = n (4.1)

for some constant C independent of ε ∈ (0, 1). In this section we further prove that
for any given R ∈ (0, 1), there exists a constant C(R) such that

Eε(fε;R) ≤ C(R) (4.2)

for ε ∈ (0, ε0) with ε0 > 0 sufficiently small, where

Eε(f ;R) =
1
p

∫ 1

R

(f2
r + (n− 1)r−2f2)p/2rn−1 dr +

1
4εp

∫ 1

R

f2(1− f2)2rn−1 dr.

Proposition 4.1. Assume p > n. Given T ∈ (0, 1). There exist constants Tj ∈
[ (j−1)T

N+1 , jT
N+1 ], (N = [p]) and Cj, such that

Eε(fε;Tj) ≤ Cjε
j−p (4.3)

for j = n, n + 1, . . . , N , where ε ∈ (0, ε0) with ε0 sufficiently small.

Proof. For j = n, the inequality (4.3) can be obtained by (4.1) easily. Suppose that
(4.3) holds for all j ≤ m. Then we have, in particular,

Eε(fε;Tm) ≤ Cmεm−p. (4.4)

If m = N then we are done. Suppose m < N , we want to prove (4.3) for j = m+1.
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From (4.4) and integral mean value theorem, we can see that there exists Tm+1 ∈
[ mT
N+1 , (m+1)T

N+1 ] such that

1
εp

(1− f2
ε )2|r=Tm+1 ≤

C

f2
ε (Tm+1)

Eε(uε, ∂B(0, Tm+1)) ≤ Cmεm−p (4.5)

It is used that fε(Tm+1) ≥ 29
30 by virtue of (3.8) as long as ε0 and η sufficiently

small. Consider the minimizer ρ1 of the functional

E(ρ, Tm+1) =
1
p

∫ 1

Tm+1

(ρ2
r + 1)p/2dr +

1
2εp

∫ 1

Tm+1

(1− ρ)2dr

It is easy to prove that the minimizer ρε of E(ρ, Tm+1) on W 1,p
fε

((Tm+1, 1), R+)
exists and satisfies

−εp(v(p−2)/2ρr)r = 1− ρ, in (Tm+1, 1), (4.6)

ρ|r=Tm+1 = fε, ρ|r=1 = fε(1) = 1, (4.7)

where v = ρ2
r + 1. Since fε ≤ 1, it follows from the maximum principle

ρε ≤ 1. (4.8)

Applying (4.1) we see easily that

E(ρε;Tm+1) ≤ E(fε;Tm+1) ≤ CEε(fε;Tm+1) ≤ Cεm−p. (4.9)

Now choosing a smooth function 0 ≤ ζ(r) ≤ 1 in (0,1] such that ζ = 1 on
(0, Tm+1), ζ = 0 near r = 1 and |ζr| ≤ C(Tm+1), multiplying (4.6) by ζρr(ρ = ρε)
and integrating over (Tm+1, 1) we obtain

v(p−2)/2ρ2
r|r=Tm+1 +

∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr =
1
εp

∫ 1

Tm+1

(1− ρ)ζρr dr.

(4.10)
Using (4.9) we have∣∣ ∫ 1

Tm+1

v(p−2)/2ρr(ζrρr + ζρrr) dr
∣∣

≤
∫ 1

Tm+1

v(p−2)/2|ζr|ρ2
r dr +

1
p

∣∣ ∫ 1

Tm+1

(vp/2ζ)r dr −
∫ 1

Tm+1

vp/2ζr dr
∣∣

≤ C

∫ 1

Tm+1

vp/2 +
1
p
vp/2

∣∣
r=Tm+1

+
C

p

∫ 1

Tm+1

vp/2dr

≤ Cεm−p +
1
p
vp/2

∣∣
r=Tm+1

(4.11)

and using (4.5),(4.7) and (4.9) we have∣∣ 1
εp

∫ 1

Tm+1

(1− ρ)ζρr dr
∣∣

=
1

2εp

∣∣ ∫ 1

Tm+1

((1− ρ)2ζ)r dr −
∫ 1

Tm+1

(1− ρ)2ζr dr
∣∣

≤
∣∣ 1
2εp

(1− ρ)2
∣∣
r=Tm+1

+
C

2εp

∫ 1

Tm+1

(1− ρ)2 dr
∣∣ ≤ Cεm−p.

(4.12)
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Combining (4.10) with (4.11), (4.12) yields

v(p−2)/2ρ2
r|r=Tm+1 ≤ Cεm−p +

1
p
vp/2|r=Tm+1 .

Hence for any δ ∈ (0, 1),

vp/2|r=Tm+1 = v(p−2)/2(ρ2
r + 1)|r=Tm+1

= v(p−2)/2ρ2
r|r=Tm+1 + v(p−2)/2|r=Tm+1

≤ Cεm−p +
1
p
vp/2|r=Tm+1 + v(p−2)/2|r=Tm+1

= Cεm−p + (
1
p

+ δ)vp/2|r=Tm+1 + C(δ)

from which it follows by choosing δ > 0 small enough that

vp/2
∣∣
r=Tm+1

≤ Cεm−p. (4.13)

Now we multiply both sides of (4.6) by ρ− 1 and integrate. Then

−εp

∫ 1

Tm+1

[v(p−2)/2ρr(ρ− 1)]r dr + εp

∫ 1

Tm+1

v(p−2)/2ρ2
r dr +

∫ 1

Tm+1

(ρ− 1)2 dr = 0.

From this, using(4.5), (4.7) and (4.13), we obtain

E(ρε;Tm+1) ≤ C|
∫ 1

Tm+1

[v(p−2)/2ρr(ρ− 1)]r dr|

= Cv(p−2)/2|ρr||ρ− 1|r=Tm+1 ≤ Cv(p−1)/2|ρ− 1|r=Tm+1

≤ (Cεm−p)(p−1)/p(Cεm)1/2 ≤ Cεm−p+1.

(4.14)

Define

wε =

{
fε for r ∈ (0, Tm+1)
ρε for r ∈ [Tm+1, 1]

Since fε is a minimizer of Eε(f), we have Eε(fε) ≤ Eε(wε). Thus, it follows that

Eε(fε;Tm+1) ≤
1
p

∫ 1

Tm+1

(ρ2
r+(n−1)r−2ρ2)p/2rn−1 dr+

1
4εp

∫ 1

Tm+1

ρ2(1−ρ2)2rn−1 dr

by virtue of Γ ≤ ε < Tm+1 since ε is sufficiently small. Noticing that∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)p/2rn−1dr −

∫ 1

Tm+1

((n− 1)r2ρ2)p/2rn−1dr

=
p

2

∫ 1

Tm+1

∫ 1

0

[ρ2
r + (n− 1)r−2ρ2)s

+ (n− 1)r−2ρ2(1− s)](p−2)/2dsρ2
rr

n−1dr

≤ C

∫ 1

Tm+1

(ρ2
r + (n− 1)r−2ρ2)(p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

Tm+1

((n− 1)r−2ρ2)(p−2)/2ρ2
rr

n−1dr

≤ C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr
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and using (4.8) we obtain

Eε(fε;Tm+1)

≤ 1
p

∫ 1

Tm+1

((n− 1)r−2ρ2)p/2rn−1 dr + C

∫ 1

Tm+1

(ρp
r + ρ2

r)dr +
C

4εp

∫ 1

Tm+1

(1− ρ2)2dr

≤ 1
p

∫ 1

Tm+1

((n− 1)r−2)p/2rn−1 dr + CE(ρε;Tm+1).

Combining this with (4.14) yields (4.3) for j = m + 1. It is just (4.3) for j =
m + 1. �

Proposition 4.2. Assume p ≥ n. Given T ∈ (0, 1). There exist constants TN+1 ∈
(0, T ] and C > 0 such that

Eε(uε;TN+1)− (n− 1)p/2 |Sn−1|
p

∫ 1

TN+1

rn−p−1dr ≤ CεN+1−p, (p > n);

Eε(uε;TN+1)− (n− 1)p/2 |Sn−1|
p

∫ 1

TN+1

rn−p−1dr ≤ Cε| ln ε|, (p = n),

where N = [p].

Proof. From (4.1) and (4.3) we can see Eε(uε;TN ) ≤ CF (ε), where F (ε) = | ln ε|
as p = n, and F (ε) = εN−p as p > n. Hence by using integral mean value theorem
we know that there exists TN+1 ∈ (0, T ] such that

1
p

∫
∂B(0,TN+1)

|∇uε|pdx +
1

4εp

∫
∂B(0,TN+1)

|uε|2(1− |uε|2)2dx ≤ CF (ε). (4.15)

Note that ρ2 is a minimizer of the functional

E(ρ, TN+1) =
1
p

∫ 1

TN+1

(ρ2
r + 1)p/2dr +

1
2εp

∫ 1

TN+1

(1− ρ)2dr

on W 1,p
fε

((TN+1, 1), R+ ∪ {0}). It is not difficult to prove by maximum principle
that

ρ2 ≤ 1. (4.16)

As in the derivation of (4.14), from (4.3) and (4.15) it can be proved that

E(ρ2, TN+1) ≤ CεF (ε). (4.17)

Using that uε is a minimizer and ρ2
x
|x| ∈ W2, we also have

Eε(fε;TN+1) ≤ Eε(ρ2;TN+1)

≤ 1
p

∫ 1

TN+1

[ρ2
2r + ρ2

2(n− 1)r−2]p/2rn−1dr +
1

2εp

∫ 1

TN+1

ρ2(1− ρ2)2dr.

(4.18)
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On the other hand,∫ 1

TN+1

[ρ2
r + (n− 1)r−2ρ2]p/2rn−1dr −

∫ 1

TN+1

[(n− 1)r−2ρ2]p/2rn−1dr

=
p

2

∫ 1

TN+1

∫ 1

0

[ρ2
r + (n− 1)r−2ρ2](p−2)/2s + (n− 1)r−2ρ2(1− s)dsρ2

rr
n−1dr

≤ C

∫ 1

TN+1

[ρ2
r + (n− 1)r−2ρ2](p−2)/2ρ2

rr
n−1dr

+ C

∫ 1

TN+1

[(n− 1)r−2ρ2](p−2)/2ρ2
rr

n−1dr

≤ C

∫ 1

TN+1

[ρp
r + ρ2

r]dr.

Substituting this into (4.18), we have

Eε(fε;TN+1)

≤ 1
p

∫ 1

TN+1

(n− 1)p/2ρp
2r

n−p−1dr + C

∫ 1

TN+1

(ρp
2r + ρ2

2r)dr +
C

εp

∫ 1

TN+1

(1− ρ2)2dr

≤ 1
p

∫ 1

TN+1

(n− 1)p/2ρp
2r

n−p−1dr + CεF (ε)

≤ 1
p
(n− 1)p/2

∫ 1

TN+1

rn−p−1dr + CεF (ε),

using (4.16) and (4.17). This completes the proof. �

Theorem 4.3. Let uε = fε(r) x
|x| be a radial minimizer of Eε(u, B1). Then

lim
ε→0

uε =
x

|x|
, in W 1,p(K, Rn)

for any compact subset K ⊂ B1 \ {0}.

Proof. Without loss of generality, we may assume K = B1 \ B(0, TN+1). From
Proposition 4.2, we have

Eε(uε,K) = |Sn−1|Eε(fε;TN+1) ≤ C , (4.19)

where C is independent of ε. This and |uε| ≤ 1 imply the existence of a subsequence
uεk

of uε and a function u∗ ∈ W 1,p(K, Rn), such that

lim
εk→0

uεk
= u∗, weakly in W 1,p(K, Rn),

lim
εk→0

uεk
= u∗, in Lq(K, R), ∀q > 0,

lim
εk→0

fεk
(r) = |u∗|, in Cα([TN+1, 1], R), α > 1− 1/p.

(4.20)

Inequality (4.19) implies |u∗| ∈ {0, 1}. Using also (4.20) and fεk
(1) = 1 we see that

|u∗| = 1 or u∗ = x
|x| . Hence, noticing that any subsequence of uε has a convergent
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subsequence and the limit is always x/|x|, we can assert

lim
ε→0

uε =
x

|x|
, weakly in W 1,p(K, Rn). (4.21)

lim
ε→0

uε = u∗, in Lq(K, R), ∀q > 0. (4.22)

From this and the weakly lower semicontinuity of
∫

K
|∇u|p, using Proposition 4.2,

it follows that ∫
K

|∇ x

|x|
|p ≤ lim inf

εk→0

∫
K

|∇uε|p ≤ lim sup
εk→0

∫
K

|∇uε|p

≤ |Sn−1|
∫ 1

TN+1

((n− 1)r−2)p/2rn−1 dr

and hence
lim
ε→0

∫
K

|∇uε|p =
∫

K

|∇ x

|x|
|p

since ∫
K

|∇ x

|x|
|p = |Sn−1|

∫ 1

TN+1

((n− 1)r−2)p/2rn−1 dr.

Combining this with (4.21)(4.22) completes the proof. �
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