ASSESSING PATTERNS OF MOISTURE CONTENT IN DECOMPOSING,

DESICCATED, AND MUMMIFIED TISSUE:

A BASELINE STUDY

by

Autumn N. Lennartz, B.A.

A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Arts with a Major in Anthropology May 2018

Committee Members:

Michelle D. Hamilton, Chair

Nicholas P. Herrmann

Daniel J. Wescott

Russell Weaver

COPYRIGHT

by

Autumn N. Lennartz

FAIR USE AND AUTHOR'S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author's express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Autumn Lennartz, refuse permission to copy in excess of the "Fair Use" exemption without my written permission.

ACKNOWLEDGEMENTS

I would like to thank the following people for their support during my time at Texas State University, San Marcos:

My committee chair and advisor, Dr. Michelle Hamilton: For your guidance, advice, and encouragement over the last two years. Thank you for supporting my strange idea of probing desiccated tissue and being willing to meet with me every week for four semesters.

My committee members Dr. Nicholas P. Herrmann, Dr. Daniel Wescott, and Dr. Russell Weaver: Thank you all for your edits and advice to make this thesis possible.

Tom Laurenzi and the Delmhorst Instrument Company: For the countless emails and irreplaceable expertise that you offered to help me find an instrument that would be appropriate for this research.

My graduate cohort and the FACTS team: For being incredible friends and colleagues that I am thankful to have taken this journey with. I'm so thankful for the opportunity to have taken classes and work with such wonderful, intelligent, hardworking women.

Susan Sincerbox and Kate Flor-Stagnato: For being the most supportive friends and fellow advisees, thank you for being there every single step of the way, and encouraging me to be a better student and researcher.

My family: Thank you for always being sincerely interested in my research and encouraging me to pursue my passions.

Robert Hubbard: For your endless support and listening to my rambling thoughts while I tried to figure out where this research was going.

Finally, thank you to the individuals and families who have donated their bodies to the Forensic Anthropology Center at Texas State for use in scientific research. Without their generosity, none of this research would have been possible.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
CHAPTER	
I. INTRODUCTION	1
Mummification Practices Forensic Context Research Questions	1 3 6
II. MATERIALS Donations Site/Environment Equipment	8 9 10
III. METHODS Observations Statistical Analysis	11
IV. RESULTS Head Observations Torso Observations Limb Observations Extremity Observations	17 17 19 20 21
Upper and Lower Limb Observations Predictive Models V. DISCUSSION	22 25 26
Broad Patterns of Desiccation Differences in Upper and Lower Limbs Mummification Point Environmental Effects	26 28 29 30
PMI Estimation Significance Further Research	31 31 32

VI. CONCLUSION	
APPENDIX SECTION	34
REFERENCES	62

LIST OF TABLES

Table	Page
1. Biological Information for Donors	9
2. ICC and R ² Values	17
3. Fixed Effects Coefficients for Each Region	18

LIST OF FIGURES

Figure	Page
1. RDM3 Moisture Meter with 26-E Electrodes	10
2. Diagram of data points	11
3. RDM3 controls and display	12
4. Scatterplot with LOESS curve of head measurements	
5. Scatterplot with LOESS curve of torso measurements	19
6. Scatterplot with LOESS curve of limb measurements	
7. Scatterplot with LOESS curve of extremity measurements	21
8. Scatterplot with LOESS curve of upper limb measurements	22
9. Scatterplot with LOESS curve of lower limb measurements	23
10. Predictive model for head measurements	25
11. Predictive model for torso measurements	25
12. Predictive model for limb measurements	25
13. Predictive model for extremity measurements	25

I. INTRODUCTION

Desiccation and mummification are relatively unstudied decompositional processes, especially with reference to potential postmortem interval applications in forensic contexts. The focus of this research is natural mummification, and the sequence and rate at which it occurs. This research will aid in a more comprehensive understanding of late-stage decomposition, providing the groundwork for more accurate estimates of time since death in investigative settings. Specifically, this research aims to quantify desiccation in the decomposition process and examine broad trends in mummification of human remains.

MUMMIFICATION PRACTICES

Optimal factors necessary for desiccation and eventual mummification are generally accepted as a hot and dry climate, preferably with a significant amount of airflow (Schotsman et al. 2011, Galloway 1996, El-Najjar 1998, Campobasso et al. 2009). However, mummification can also occur in cold and dry environments, as well as hot and humid ones (Carter and Tibbet 2008; Micozzi 1991; Schotsman et al. 2011), and mummification can occur as a result of natural or intentional causes.

Mummification is common at archaeological sites in parts of the Southwestern United States. In Arizona, for example, partially mummified remains of a five- to sixyear-old child ("Mummy 5") were recovered from Ventana Cave. The remains have been attributed to the Hohokam culture and likely date to between 1000 and 1450 AD (Reinhard & Hevly 1991). This cave is located in the Sonoran Desert, which is

categorized by its high temperatures and low humidity (Galloway 1996). In the case of Mummy 5, much of the internal tissue was mummified, allowing for researchers to examine internal coprolites in order to draw conclusions about parasitological and dietary practices of the Hohokam people (Reinhard & Hevly 1991).

One example of natural mummification in a cold environment is the Tyrolean Iceman, or Ötzi. Analysis of bacterial DNA in skin and muscle samples suggest that shortly after death (estimated between 3350 and 3100 BC), the Iceman's corpse was covered in ice, and much later (possibly during Roman times) the ice surrounding the body thawed and Ötzi was covered in water that had collected in the depression that had formed (Rollo et al. 2000). During this relatively brief warming period, decompositional effects such as loss of the epidermis and adipocere formation took place, followed by desiccation through sublimation (Rollo et al. 2000). Sublimation, or "freeze-drying", occurs when water in the frozen soft tissue trapped within glacial ice sublimates into the air bubbles, thereby slowly desiccating the body (Aufderheide 2003).

Intentional mummification can take many forms and is often performed as part of a ritualized practice. The Chinchorro people inhabited areas along the Pacific coast of southern Peru and northern Chile from approximately 7020 to 1110 BC (Arriaza 1995). Sites associated with the Chinchorro have yielded both naturally and intentionally mummified remains. The intentionally mummified remains take many forms such as: *Black Mummies* which were eviscerated and disarticulated then dried using hot ashes or coals, and then the skin was covered and molded with a white paste that was later painted black with manganese; *Red Mummies* which were treated similarly to Black Mummies, however they were most often not disarticulated, thus not exhibiting incisions and

sutures; *Bandage Mummies* which are a variation of the Red Mummy but have head-totoe skin wrappings; and *Mud-Coated Mummies* which are smoked and dried with hot coals, then covered with mud that would harden to a cement-like substance (Arriaza 1995).

Egyptian mummies, such as those excavated from Ismant el-Kharab, are preserved using two typical methods: evisceration and resin application. In some cases, the resin had been put onto linen straps to hold wrappings in position, in others the resin had been painted onto the surface of the skin (Aufderheide et al. 1999). In Pharaonic Egypt, once eviscerated, corpses were enveloped in a layer of natron. Due to the highly hydrophilic nature of natron, this method of mummification by desiccation was highly effective for long-term soft tissue preservation (Aufderheide 2003).

FORENSIC CONTEXT

In forensic anthropological contexts, estimating the postmortem interval (PMI) via an estimation of time since death is a critical component of investigation. Many methods of scoring decomposition follow a general five-stage model laid out by Galloway et al. (1989). The first stage is fresh, typically characterized by a lack of discoloration and insect activity; followed by early decomposition, which includes skin slippage, marbling, and the beginning stages of bloat; advanced decomposition is described as showing purging of decomposition fluids, sagging of tissue, mummification, and an increase in maggot activity. The last two stages, skeletonization and skeletal erosion, are not dependent on tissue status, but instead on status of bone. Remains have reached the skeletonization stage when more than half of the body has exposed bone, and

skeletal erosion is seen through bleaching of bone and its fragmentation (Galloway, et al. 1989).

Megyesi's scoring method expands on this descriptive model by attempting to isolate quantifiable stages and adding the use of accumulated degree days (ADD) (Megyesi et al. 2005). While Megyesi's method of total body scoring has become widely used, (e.g. the University of Tennessee), there are problems with scoring decomposition in the later stages. One of these problems is that mummification is considered one of the last stages of decomposition, implying that every other stage of the decomposition process was sequential and has already occurred.

In fact, preservation as a result of mummification can last years, meaning that a body may never reach the last stages of decomposition. Further, Parsons (2009) argues that the ADD model does not take the state of mummification into account, since the body is unlikely to progress to skeletonization despite the continued accumulation of degree-days, given that mummification is a state of halted decomposition (Parsons 2009). Additionally, mummified tissue can become rehydrated if exposed to events such as rainfall, which can further skew decomposition scoring (Suckling 2011). Because of this, current PMI estimations that involve advanced decomposition are hindered by the lack of knowledge about the sequence and timing of desiccation and mummification.

Despite often being used interchangeably, desiccation refers to moisture loss in tissue, while mummification refers to the point at which decomposition and decay are suspended (Schotsmans, et al. 2011). As used in this study, desiccation is a process, while mummification is a decompositional state. As stated above, the typical conditions needed for desiccation and mummification are a hot and dry environment, but there are

also documented examples of mummification occurring in cold or humid environments (Carter & Tibbet 2008; Micozzi 1991; Schotsman et al. 2011). The climate in Central Texas is considered subtropical, meaning that it is particularly humid during the summer months, and human remains at the Forensic Anthropology Research Facility (FARF) at Texas State University has still regularly show varying degrees of desiccation and mummification.

While desiccation can occur in all soft tissue, external desiccation is the focus of this study. Schotsman et al. (2011) explain that desiccation of internal organs is highly variable and they are most often the last parts of the body to desiccate. Based on previous studies at FARF, internal desiccation is not anticipated, primarily because of the continuation of insect activity. One reason for this is that insects such as flies will lay eggs within crevices and orifices of the body, providing maggots with an advantage to break down muscle tissue, thereby breaking down the body from the inside out.

This research builds from studies already completed in Central Texas, such as that of Parks (2011), and Suckling (2011), and more general studies about decomposition such as those performed by Megyesi et. al (2005). During the course of her examination of an individual decomposition in Central Texas region, Parks determined that mummification occurred at day twelve of the donor's exposure (Parks 2011). This correlates to the study by Schotsman and colleagues (2011) who determined mummification occurs between days ten and thirty (Schotsman, et al. 2011). This varies slightly from the explanation given by Campobasso and colleagues (2009) in the case study of an 86 year-old man who was found preserved in his apartment for seven years, where they state that while natural mummification can occur within the first two weeks

postmortem, twelve weeks is the more standard and accurate estimation (Campobasso, et al. 2009).

The literature surrounding contemporary natural desiccation and mummification is composed primarily of single case studies and small reference-style paragraphs that provide little more than working definitions. There is no research that examines whether desiccation follows a sequential, predictable pattern, nor is there data available to establish when tissue has reached the point of mummification. This research works to remedy this gap in the literature by working to determine if desiccation follows a predictable and consistent pattern and rate, both in terms of symmetry within an individual, and between individuals. Additionally, the research will examine correlations between temperature, humidity, and solar radiation in order to determine how desiccation and mummification can occur in environments that are not hot and arid.

RESEARCH QUESTIONS

1. Is there an observable pattern to the order that the body desiccates?

1a. Is there a difference in timing of the desiccation of upper and lower limbs?

- 2. Does desiccation follow a constant rate?
- 3. Is there a quantifiable point of mummification?
- 4. Is there a stronger correlation of moisture content to humidity, temperature, or solar radiation?
- 5. How does precipitation affect the rate of desiccation?
- 6. Can state of desiccation be tied to PMI?

These questions will be addressed by taking a series of moisture readings from 20 sites on donor bodies on a daily basis, in order to establish a sequence and rate of moisture loss. This study will aid in the understanding of desiccation as a process, which in turn will offer more accurate estimations of postmortem interval in cases of advanced decomposition.

II. MATERIALS

DONATIONS

Five donor bodies were used in this research. All of the individuals were acquired through the Texas State Willed Body Donation program. Through this program, the Texas State Forensic Anthropology Center picks up willed remains from within 200 miles of San Marcos, Texas to be brought back to the Forensic Anthropology Research Facility (FARF) at Freeman Ranch for research on processes of decomposition and skeletal biology (FACTS 2017). During the time between death and placement at FARF, a variety of postmortem actions may have affected the body. For example, remains may have been refrigerated, as well as possibly having been autopsied. Once a donation is picked up from a funeral home, hospital, or medical examiner's office, it is brought to Texas State's Osteological Research and Processing Laboratory (ORPL). Upon arrival, a suite of information is collected, including: height, weight, inventory of personal effects, blood, nail samples, hair samples, photographs of body and identifying marks such as tattoos and scars. The donor is then placed outdoors at FARF, with documentation taken from the moment of placement until the remains are picked up for processing (usually after a year or so).

Of the five specific individuals that were used in this study, two of them were autopsied, four were male, and one was female. The donors ranged in age from 55 to 84, in height from 167cm to 188cm, and in weight from 128lb to 303lb. Biological information for each individual is displayed in Table 1. None of the donors were clothed at placement, however the hands of D32-2017 were placed in gloves, as was standard practice prior to the start of this research. Every donation was covered by a metal and

chicken wire cage in an attempt to prevent terrestrial or aerial scavenging. Finally, due to the nature of transport and arrival to the Willed Body Donation program, there was a gap between day of death and day of placement for every individual.

Donor	Sex	Age	Height (cm.)	Weight (lb.)	Autopsied?	Health Conditions
D32-2017	F	71	167	303	Yes	Diabetic
D35-2017	М	70	188.5	201	Yes	Diabetic
D37-2017	М	84	178	176	No	
D40-2017	М	78	173	168	No	Possible colon cancer
D42-2017	М	55	178	128	No	Undergoing
						chemotherapy

Table 1: Biological Information for Donors

SITE/ENVIRONMENT

The Forensic Anthropology Research Center is located on Freeman Ranch in San Marcos, Texas. Central Texas experiences a wide variety of climatic condition, ranging from periods of drought to flash flooding; the region is classified as a subtropical subhumid environment (Larkin 1983). All weather data were collected at the FARF onsite weather station, which records hourly temperatures, precipitation, humidity, and solar radiation levels (Daniel Wescott, personal communication 2017). During the course of this study, May – August 2017 the highest recorded temperature was 42.06°C with 344.66mm of rainfall.

EQUIPMENT

A Delmhorst RDM3 Moisture Meter with type 26-E electrodes was used for this study (Figure 1). The 26-E electrodes are insulated along the sides in order to reduce the likelihood that moisture readings will be influenced by ambient moisture. The RDM3 meter is manufactured for the examination of wood, this particular model having the widest range of readings possible; since there are no moisture meters intended for use on human tissue this was determined to be best suited for this study based on the wide moisture range that can be measured (Tom Laurenzi, Personal Communication 2017). Being a pin-based moisture meter, the device measures the amount of electrical resistance between the two electrodes, and then converts it to a percent-saturation level (Laurenzi 2017). Given that the moisture meter is designed and calibrated to measure moisture content in wood and not human tissue, the readings are not able to be utilized as standalone data, rather as relative data. Daily photos were taken with a Nikon D40 camera with an 18mm-55mm lens.

Figure 1: RDM3 Moisture Meter with 26-E Electrodes, photo by author 10

III. METHODS

OBSERVATIONS

The first cadaver was placed on June 6, 2017, after which photos were taken of the head and face (from above, left side, and right side), the torso (from right and left sides), both arms, both legs, and of the body overall. Additionally, moisture readings were taken from a total of twenty sites: nose, lip, right and left ears, right and left armpits, right and left arms (around the elbow), right and left first finger, right and left fifth finger, torso, groin, right and left thighs, right and left first toe, and right and left fifth toe (Figure 2) and recorded in the Data Collection Form (Appendix 1). This process was repeated daily for every cadaver placed (except in the event of heavy rainfall, when data were not collected) starting the day of individual placement and ending at the termination of study on August 29, 2017.

Figure 2: Diagram of data points, adapted from template.com

The RDM3 moisture meter has two read-settings: trigger and continuous. The trigger setting will take a reading every time the "select" button (Figure 3) is pressed, while the continuous setting will take readings from the time the "select" button is pressed to start until it is pressed again to stop. The continuous setting was utilized for this project, and it was determined that once the pins were in contact with the tissue, the measurements would begin, and the value would be recorded once the displayed values stabilized.

Figure 3: RDM3 controls and display, photo by author

Moisture content data were minimized by grouping data into four categories: extremities, head, torso, and limbs. For the extremity group, values from first toes, fifth toes, first fingers, and fifth fingers from each side were averaged. To compose the limb group, measurements from the arms and legs on both sides were averaged. Torso measurements were created from groin, torso, and armpit measurements, and the head measurement group was comprised of both ears, nose, and lip measurements. Additionally, upper and lower limb and extremity values were averaged in order to evaluate symmetry between upper and lower limb desiccation. Desiccation observations for each body are published in Appendix 2. These data are compared to temperature, humidity, and solar radiation and precipitation.

Temperature data is measured via the FARF weather station in degrees Celsius. Data were collected every half hour, minimum and maximum values were extracted and averaged for each day of data collection. Using these data, each average was added to the averages from all days previous, resulting in Accumulated Degree Days that act to standardize time analysis of the study. The weather station also recorded humidity data as a percentage of relative humidity at the same frequency as temperature, solar radiation data were collected in units of W/m², and precipitation was recorded in mm. These weather data were kept in their raw form as opposed to being accumulated to provide more robust statistical analysis. Weather data for the data collection period is presented in Appendix 3.

STATISTICAL ANALYSIS

In order to assess the degree to which moisture content measurements are correlated between individuals, an Intraclass Correlation Coefficient (ICC) was calculated for each region. ICC is a measure of the proportion of dependent variable variation that occurs between individuals against the total variation that is present (Russell Weaver, personal communication 2018). These values suggest a significant (non-zero) correlation among moisture content measures. A multilevel, mixed effect model would be the most appropriate method to account for the inherent error and variance between individuals, because as an ICC increases in value it becomes more necessary to employ multilevel modeling strategies (Finch et al. 2014).

Analysis began by specifying unconditional, or null, models for each regionspecific dependent variable. The purpose of these models is to understand how variation in moisture content is distributed between variation within individuals and variation between individuals (Russell Weaver, personal communication 2018). Adding independent variables allowed the model to evaluate the extent to which the models' goodness of fit improve as a result of these variables; more simply put, adding the independent variables after running the models with only dependent variables made it possible to determine which independent variables are significant. Independent variables are treated as "fixed effects" because the relationship between moisture content and the weather variables are fixed across individuals.

Moisture content was then graphically represented in a scatterplot utilizing ADD, due to precedent of using ADD as a standard time-scale. A LOESS (Locally Weighted

Scatterplot Smoothing) curve was added to the scatter plot to more accurately capture the curve of moisture loss.

Pseudo R² values were also calculated for each region, both marginal and conditional, in order to assess the goodness of fit for each model. The marginal values display the amount of variation in moisture loss that is explained by the fixed effects (temperature, humidity, solar radiation, rain). Conditional values consider these fixed effects, but also accounts for individual variation between donors (random effects).

Drawing on Megyesi et al., the ADD data were transformed to increase goodness of fit in the modeling process. With the given data, the relationship between ADD and moisture content is not linear, and exploratory transformations revealed that a logarithmic transformation produced the best fit (Megyesi et al. 2005). Using logADD, a mixed effects model was conducted on each measurement region. The model takes the following general form:

Moisture = f(logADD, AvgHumidity, AvgSR, Precip)

where moisture content is a function of the log-transformed ADD, average humidity rates, average rates of solar radiation, and the amount of precipitation on a given day.

Additionally, following common practice in multilevel modeling, and the high amount of correlation between fixed effects, the independent variables (other than logADD and precipitation) were centered about their means to reduce collinearity (Finch et al. 2014). Finally, predicted values of the region-specific moisture content variables were measured for each individual. These values were obtained by holding each fixed effect constant at its mean (Russell Weaver, personal communication 2018), with the exception of ADD, in order to visualize patterns of predicted moisture levels and patterns based on temperature.

IV. RESULTS

HEAD OBSERVATIONS

The ICC for the minimized head measurements was 0.353, high enough to justify a multilevel model. The marginal pseudo R^2 value for the head is 0.554 while the conditional value is 0.6495521. These values are displayed in Table 2.

	ICC	$\mathbb{R}^2 \mathbb{M}$	$\mathbb{R}^2 \mathbb{C}$
	value	value	value
	0.050		0.170
Head	0.353	0.554	0.650
Torso	0.224	0.528	0.578
Limbs	0.136	0.514	0.524
Extremities	0.179	0.508	0.523

Table 2: ICC and R² Values

The results from the head measurements multilevel mixed effects model are presented in Table 3. The effect coefficient of temperature is determined to be -10.735, humidity is 0.244, solar radiation is 0.013, and precipitation is 0.262. These fixed effects are presented in Table 3. Moisture content was plotted against ADD with a LOESS smoothing curve added to assess broad patterns of desiccation (Figure 4).

	logADD	Humidity	Precipitation	Solar Radiation
Head	-10.735	0.244	0.262	0.013
Torso	-8.794	0.496	0.095	0.013
Limbs	-8.436	0.434	-0.014	0.012
Extremities	-8.227	0.447	0.213	0.016
Average	-9.048	0.405	0.139	0.014

 Table 3: Fixed Effects Coefficients for Each Region, >0.05 are significant

Figure 4: Scatterplot with LOESS curve of head measurements, the Y-axis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

TORSO OBSERVATIONS

The ICC Coefficient for the minimized torso measurements was 0.224. The R^2 M value for the torso is 0.528 while the R^2 C value is 0.578 (Table 2). The mixed effects coefficient of temperature is -8.794, humidity is 0.496, solar radiation is 0.013, and precipitation is 0.095 (Table 3). The scatterplot with LOESS smoothing curve of the moisture content of the torso is presented in Figure 5.

Figure 5: Scatterplot with LOESS curve of torso measurements, the Y-axis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

LIMB OBSERVATIONS

The ICC for the minimized limb measurements was 0.136. The R^2 M value for the limbs is 0.514 while the R^2 C value is 0.524 (Table 2). The mixed effects coefficient of temperature is -8.436, humidity is 0.434, solar radiation is 0.012, and precipitation is 0.014 (Table 3). The scatterplot with LOESS smoothing curve of the moisture content of the limbs is presented in Figure 6.

Figure 6: Scatterplot with LOESS curve of limb measurements, the Y-axis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

EXTREMITY OBSERVATIONS

The ICC for the extremity measurements was 0.179. The R^2 M value for the extremities is 0.508 while the R^2 C value is 0.523 (Table 2). The mixed effects coefficient of temperature is -8.227, humidity is 0.447, solar radiation is 0.016, and precipitation is 0.213 (Table 3). The scatterplot with LOESS smoothing curve of the moisture content of the extremities is presented in Figure 7.

Figure 7: Scatterplot with LOESS curve of extremity measurements, the Y-axis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

UPPER AND LOWER LIMB OBSERVATIONS

Upper and lower limbs were only analyzed for differences in broad patterns, and were plotted against ADD in scatterplots with LOESS smoothing curves. These are presented in Figures 8 and 9.

Figure 8: Scatterplot with LOESS curve of upper limb measurements, the Y-axis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

Figure 9: Scatterplot with LOESS curve of lower limb measurements, the Yaxis represents moisture content, while the X-axis represents ADD. The shaded area represents the statistically smoothed data.

PREDICTIVE MODELS

The following models were created by keeping the fixed effects constant and predicting moisture content for various ADD values. These models can be used to estimate moisture content by ADD, or vice versa, in order to draw conclusions about PMI.

Figure 12: Predictive model for limb measurements

Figure 13: Predictive model for extremity measurements

V. DISCUSSION

BROAD PATTERNS OF DESICCATION

Moisture content of a living individual was determined to be within the 40 to 50% moisture content range. However, the moisture content for the individuals at placement leaned toward the upper threshold of 60%. An explanation for this is the diffusion of water through skin after death. Berenson and Burch (1951) found that at a temperature of 95°F, water is diffused through tissue at a rate of between 2 and 4.5 mg/5cm²/hr. The time between death and placement of donors used in this study, as well as the time between placement and measurement, could account for these differences between epidermal moisture content percentages in living versus deceased individuals.

Overall, body region for each donor followed similar patterns of desiccation. Measurements from the head (Figure 4) exhibit a general exponential decline from the upper threshold of 60% moisture content while D32-2017 and D35-2017 show a nearly asymptotic approach to 10%, however at different rates. D37-2017 shows a similar pattern, however there is little evidence of an asymptote, due to the cessation of data collection prior to ADD 2000. D40-2017 and D42-2017 do not exhibit patterns similar to the other three donors, which is most likely a result of their later placement not reaching ADD 1500.

Torso measurements (Figure 5) follow the pattern of head measurements, every individual except D40-2017 had measurements reaching the upper moisture threshold that gradually decline to between 10 to 20% moisture content. Measurements from D40-2017 started between 40 and 50% moisture content and ended around 20%.

D40-2017 was undergoing chemotherapy prior to death, which may have had an effect on the moisture content of the skin. Chemotherapy is known to affect the skin, such as through formation of rashes and general dryness (de Boer-Dennert et al. 1997, Pernambuco-Holsten 2013), however more in-depth studies about chemotherapy's effect on moisture content of skin could not be found. Large upticks in moisture content with the last data point for each individual correspond to large amounts of rainfall owing to Hurricane Harvey that passed through Central Texas in late August 2017.

Limb measurements (Figure 6) of D32-2017, D35-2017, and D37-2017 followed patterns of desiccation that correspond to head and torso measurements. Limb measurements for D37-2017 are based exclusively on lower limb measurements after ADD 190 due to the skeletonization of the upper limbs. As discussed previously, measurements for D40-2017 and D42-2017 do not display the same curve shape, most likely owing to the cessation of the data collection period. Extremity measurements (Figure 7) for D35-2017 and D37-2017 display what has come to be the expected pattern of desiccation, while D40-2017 and D42-2017 show larger fluctuations of desiccation, most likely because of the data collection period termination, as well as the effects of precipitation from Hurricane Harvey as discussed above. Extremity measurements for D32-2017 do not follow any pattern. This is due to the hands of the donor being placed in gloves, in compliance with FACTS protocols prior to the start of this research, as well as the skeletonization of the toes around ADD 700.

In general, after death, water is diffused through the skin tissue and appears to cause an increase in moisture content from that of a living individual. The pattern of desiccation resembles an exponential decline, until the rate of desiccation decreases
sharply between ADD 750 and 1000, and moisture content appears to "plateau" or approach a point between 10 and 20% asymptotically, often around ADD 1000 or 1500.

Due to the extenuating circumstances surrounding most of the donors, the data could not be compared one-to-one. D32-2017 and D35-2017 were the only two autopsied individuals, the hands D32-2017 were gloved which impeded data collection, D37-2017 experienced rapid skeletonization of the posterior portion of the body, and D42-2017 was undergoing chemotherapy prior to death, which may have had an effect on the living moisture content of the individual. Despite this, broad trends could still be evaluated and show significant results.

DIFFERENCES IN UPPER AND LOWER LIMBS

Upper and lower limb desiccation observations are presented in Figures 8 and 9. D32-2017 exhibited lower moisture content in the lower limbs from the time of placement. The upper limbs began with a moisture content of between 40 and 60% while the lower limbs began with a moisture content of between 20 and 40%. The reason for this discrepancy is not known, however it may be correlated with the amount of time between death and placement. D35-2017 showed nearly identical curves for upper and lower limbs, implying that there is not a difference between upper and lower limbs. D37-2017 only has data for lower limbs and is therefore not useful for this analysis. D40-2017 showed a similar pattern to D32-2017 in that the upper limbs began at or around 60% moisture content, while the lower limbs' starting moisture content was between 15 and 40%. Despite this, they both appeared to cluster around 20% before the termination of data collection. D42-2017 does not have a clear curve, likely due to the

relatively small amount of data collection days, however both the upper and lower limbs start at or around 60% and then decline sharply to between 20 and 30% around ADD 500. A larger sample, as well as a longer data collection period is necessary in order to draw conclusions about differences in desiccation rate of upper and lower limbs, however based on the data collected in this study, there is not a significant difference between desiccation of upper and lower limbs.

MUMMIFICATION POINT

Mummification refers to the point at which the tissue is no longer losing moisture or continuing to decompose. This study shows that a moisture content approaching 10% is indicative of desiccation to the point of mummification. Once the moisture content reaches this level, it effectively bottoms out and fluctuates only slightly. Longer data collection periods would be necessary to conclude if this is where desiccation stops in the long term, therefore resulting in mummification, or if it continues to desiccate at a rate too slow to be seen over the course of this pilot study. The lowest moisture value that was recorded throughout the study was 5.8%, an extremity measure of D32-2017, but this was not sustainable and the next data collection period approximately 24 hours later showed a value of 11.1%. Moisture content measurement for individuals D58-2016, D46-2016, and D59-2016 that had been exposed for approximately seven months, respectively, were between 7% and 14%. These measurements further support that mummification occurs around 10%.

ENVIRONMENTAL EFFECTS

Based on the R² values, variation in the fixed (environmental) effects accounted for between approximately 50 and 55% of the variation in moisture content while individual variation accounted for between 1 and 10% of moisture content variation (Table 2). The fixed effects coefficients presented in Table 3 provide estimates for the influence that each environmental factor has on moisture content; for analysis, values for each region are averaged. Given that the data is centered, the coefficients are to be interpreted as the change in moisture content given an increase in 1 unit of the fixed effect. Temperature has the greatest effect on moisture content, -9.048, meaning that for every degree Celsius increase, moisture content should decrease by 9%. Humidity had the next largest effect on moisture content, however in the opposite way. With a coefficient of 0.405, for every percent increase of relative humidity, there was an increase of 0.4% in moisture content. Precipitation was less influential, only raising moisture content by 0.14% for each millimeter of rain. Solar radiation was found to have a surprisingly low impact on moisture content. The coefficient for solar radiation was 0.014, an increase in 1 W/m² would increase moisture content by just over 0.01%.

Temperature having the greatest influence over moisture content was an expected outcome. Likewise, precipitation and humidity were anticipated to have an additive effect on moisture content given that they are sources additional moisture to the environment. Solar radiation was the most surprising result. Possible explanations include collinearity, given that solar radiation and temperature may be so closely linked; or perhaps that the weather station from which the environmental measurements were

taken is in an area of full sun exposure, unlike the individuals, and therefore conditions measured at the weather station did not mirror those experienced by the individuals. Given the layout of FARF, none of the individuals were placed in areas completely free of tree coverage. Based on these values, solar radiation is the only documented environmental variable that does not have a significant impact on moisture content.

PMI ESTIMATION

In order to provide estimations of PMI, predictive models were created holding all fixed effects but temperature constant (Figures 10, 11, 12, and 13). Based on these models, the limbs and extremities would be the most consistent indicators of PMI, showing the smallest amount of individual variation. These models would potentially be helpful in both early and late stage decomposition estimations, however a long-term study would be more helpful in late stage decomposition studies to determine how mummified tissue is influenced by the environment over months or years. This pilot study shows potential for developing a PMI estimation method, however more data would need to be collected to refine this approach.

SIGNIFICANCE

Studies of mummification and desiccation are helpful beyond PMI estimation considerations. In a forensic context, greater understanding of mummified tissue can allow for rehydration under laboratory conditions to obtain fingerprints or help estimate ancestry (Schmidt et al. 2000). In a bioarchaeological context, understanding tissue's response to environmental conditions can allow for greater understanding of local and

climatic conditions that result in mummified remains, including the environmental factors that were the focus of this study as well as other factors such as ancient bacteria (Rollo et al. 2000).

FURTHER RESEARCH

The constraints of this research, primarily in terms of sample size and length of data collection period, limit the number of research questions that could be addressed. Utilizing this study as a baseline, the researcher would like to address differences in desiccation rates based on clothing, seasonality, soil type, and sun exposure exploring the use of surface temperature of the tissue as a more reliable indicator than solar radiation. Further, the equipment used is not intended for use on human tissue and therefore can not be utilized as standalone data. Continued research with various instruments would be necessary to demonstrate the applicability of these values on estimations of PMI. A greater understanding of desiccatory processes could also aid in bioarchaeological endeavors such as improving rehydration techniques and conservation techniques.

VI. CONCLUSION

This study examined broad patterns of desiccation in cases of naturally decomposing human remains. By measuring the amount of moisture in a given region of the body daily, it was possible to draw conclusions about which regions of the body demonstrate more significant desiccation, as well as the relative rates of desiccation among these regions. In general, after death there is a small, but measureable increase in moisture content, followed by a steady decrease in moisture content that eventually plateaus, thus signifying mummification. There does not appear to be a significant difference between desiccation of the upper and lower limbs, as earlier research in the discipline had suggested.

Based on the predictive models created from the data (Figures 10-13), limb measurements may be the strongest indicator of desiccation and its connection to PMI, which should be explored through future research. Utilizing this as a pilot study, it is clear that there is still much to be gained from further examination of moisture and its effects on the decomposition sequence of the human body. Potential applications in medicolegal investigations and bioarchaeological research of this data include postmortem interval estimation, understanding taphonomic events, environmental and climate reconstruction, and purposeful versus natural mummification.

APPENDIX SECTION

APPENDIX A: SAMPLE MOISUT	RE READING DATA COLLECTION FORM
Donor:	Date:

Weather:

Time: _____

Moisture Readings:

Nose	Thumb (left)
Lip	Thumb (right)
Ear (left)	Torso
Ear (right)	Groin
Armpit (left)	Mid-thigh (left)
Armpit (right)	Mid-thigh (right)
Arm (left)	1 st toe (left)
Arm (right)	1 st toe (right)
5 th finger (left)	5 th toe (left)
5 th finger (right)	5 th toe (right)

Notes: _____

Visual Notes:

Dat e	ID	Head	Torso	Limbs	Extre mities	Upper Limbs	Lower Limbs	ADD	AHD	ASR D
6/8/ 17	D3 2- 201 7	47.9	23.65	29.05	18.675	29.5	21.9833 3333	0	0	0
6/9/ 17	D3 2- 201 7	39.5	40.85	41.5	20.825	40.6	28.0166 6667	27.59 55	72.25	263.7 5
6/10 /17	D3 2- 201 7	44.8	52.625	50.075	19.925	55.95	28.0166 6667	58.72 35	146.9	871.2 5
6/11 /17	D3 2- 201 7	45.025	46.675	54.625	19.875	50.6	32.8	84.97 05	214.4 5	1478. 75
6/12 /17	D3 2- 201 7	48.1	57.125	51.125	32.05	60	35.45	112.5 115	284.8 5	2117. 5
6/13 /17	D3 2- 201 7	27.2	29.25	31.025	22.8	38.7	22.9833 3333	141.8 47	356.6	2739. 35
6/14 /17	D3 2- 201 7	28.9	32.45	26.2	22.025	26.95	23.1666 6667	170.9 285	427.6 5	3378. 1
6/15 /17	D3 2- 201 7	39.125	53.75	46.625	24.25	44.9	32.2833 3333	200.7 5	496.8 5	3978. 7
6/16 /17	D3 2- 201 7	35.075	49.65	43.025	25.425	42.95	31.3166 6667	230.4 56	565.6	4601. 8
6/17 /17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	260.5 895	634.3 5	5150. 55
6/18 /17	D3 2- 201 7	26.9	15.75	21.85	16.275	23.35	17.6333 3333	290.8 507	701.3	5684. 3
6/19 /17	D3 2- 201 7	37.975	47.275	43.425	21.575	49.05	26.9833 3333	319.2 462	775.2 5	6046. 8
6/20 /17	D3 2-	38.6	43.05	49.7	25.8	47.2	34.6	348.2 347	842.4 5	6629. 3

APPENDIX B: DESICCATION OBSERVATIONS

	201 7									
6/21 /17	D3 2- 201 7	17.075	12.55	16.95	9.65	15.6	12.5333 3333	376.3 412	903.6	7184. 9
6/22 /17	D3 2- 201 7	15.75	13.75	15.625	12.85	18.5	12.8166 6667	405.9 357	961.8 5	7801. 75
6/23 /17	D3 2- 201 7	16.475	15.15	15.875	13.475	14.35	14.7833 3333	436.4 847	1028. 3	8336. 75
6/24 /17	D3 2- 201 7	37.4	38.8	38.8	24.5	43.15	27.8166 6667	460.8 342	1086. 4635	8653. 6
6/25 /17	D3 2- 201 7	26.95	21.25	18.45	23.95	14.55	23.4166 6667	486.0 392	1165. 3635	9292. 35
6/26 /17	D3 2- 201 7	43.4	60	46.125	50.325	50.6	47.4333 3333	513.8 612	1238. 5135	9931. 1
6/27 /17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	540.6 747	1316. 2635	1052 1.7
6/28 /17	D3 2- 201 7	55.625	54.125	56.15	51.15	52.3	54.1	567.0 602	1391. 6135	1116 0.45
6/29 /17	D3 2- 201 7	39.375	45.15	37.25	38.75	44.3	35.9	595.8 147	1465. 9135	1175 5.45
6/30 /17	D3 2- 201 7	27.8	33.15	28.575	31.475	32.9	29.0666 6667	626.3 332	1536. 1635	1230 2.3
7/1/ 17	D3 2- 201 7	30.225	43.325	27.525	31.475	29.95	29.35	656.1 857	1606. 3135	1283 1.05
7/2/ 17	D3 2- 201 7	15.4	14.625	13.425	No Data	14.1	12.75	686.1 817	1678. 0135	1340 6.65
7/3/ 17	D3 2- 201 7	31.125	27.875	25.15	No Data	26.15	24.15	715.7 707	1748. 8135	1402 0.4

7/4/ 17	D3 2- 201 7	28.75	24.65	26.25	No Data	28.95	23.55	745.8 817	1817. 2135	1459 6.65
7/5/ 17	D3 2- 201 7	27.575	29.2	22.375	No Data	22.2	22.55	776.3 712	1879. 8135	1514 7.25
7/6/ 17	D3 2- 201 7	26.5	22.25	23.95	No Data	23.15	24.75	806.0 947	1948. 6135	1573 8.5
7/7/ 17	D3 2- 201 7	29.35	22.675	26.075	No Data	24.45	27.7	834.5 202	2017. 1635	1635 8.5
7/8/ 17	D3 2- 201 7	23.725	21.55	25.5	No Data	24.2	26.8	863.0 667	2082. 5635	1689 5.35
7/9/ 17	D3 2- 201 7	11.3	17.625	12.625	No Data	12.65	12.6	892.2 482	2145. 5635	1745 3.45
7/10 /17	D3 2- 201 7	21.95	21.74	22.4	No Data	23.2	21.5	920.2 737	2210. 5135	1798 6.55
7/11 /17	D3 2- 201 7	28.925	27.325	27.425	No Data	26	28.85	950.1 052	2276. 7635	1855 0.9
7/12 /17	D3 2- 201 7	27	21.225	27.95	No Data	35.05	20.85	979.5 457	2344. 2635	1916 0.25
7/13 /17	D3 2- 201 7	26.05	23.475	25.625	No Data	28	23.25	1008. 7717	2411. 4135	1979 2.75
7/14 /17	D3 2- 201 7	26.15	27.55	25.4	No Data	25.75	25.05	1038. 2062	2476. 3135	2035 7.75
7/15 /17	D3 2- 201 7	14.85	16.65	17	No Data	20.9	13.1	1067. 8977	2539. 7635	2096 4
7/16 /17	D3 2- 201 7	23.45	24.225	23.4	No Data	24.6	22.2	1095. 7597	2608. 0135	2150 5.85
7/17 /17	D3 2-	22.575	18.2	19.65	No Data	19.8	19.5	1125. 2057	2674. 4635	2208 2.1

	201 7									
7/18 /17	D3 2- 201 7	23	21.3	22.35	No Data	22.35	22.35	1153. 7932	2743. 5635	2267 3.35
7/19 /17	D3 2- 201 7	11.85	12.875	13.25	No Data	14.45	12.05	1183. 6707	2809. 9635	2327 4.6
7/20 /17	D3 2- 201 7	24.425	21.5	25.075	No Data	26.95	23.2	1214. 4427	2874. 7135	2380 6.45
7/21 /17	D3 2- 201 7	24.45	21.2	22.25	No Data	19.1	25.4	1244. 1817	2937. 8135	2433 9.55
7/22 /17	D3 2- 201 7	26.8	22.475	26.425	No Data	25.55	27.3	1274. 6887	3002. 4135	2490 5.15
7/23 /17	D3 2- 201 7	13.275	15.6166 6667	13.2	No Data	12.85	13.55	1305. 5807	3069. 7635	2543 2.65
7/24 /17	D3 2- 201 7	21.075	20.45	18.3	No Data	17.2	19.4	1336. 0992	3131. 4135	2595 7
7/25 /17	D3 2- 201 7	21.5	21.2	20.425	No Data	18.95	21.9	1367. 5852	3195. 4635	2654 3.25
7/26 /17	D3 2- 201 7	25.025	23.35	24.125	No Data	21.45	26.8	1398. 3472	3260. 7635	2708 0.1
7/27 /17	D3 2- 201 7	23.45	20.925	20.925	No Data	19.15	22.7	1427. 4492	3325. 1635	2761 1.95
7/28 /17	D3 2- 201 7	25.575	23.25	24.875	No Data	20.4	29.35	1457. 7667	3385. 5635	2815 0.7
7/29 /17	D3 2- 201 7	10.375	12.025	10.875	No Data	10.75	11	1489. 4187	3445. 3135	2870 2.55
7/30 /17	D3 2- 201 7	14.5	14.4	13.875	No Data	13.2	14.55	1521. 2032	3502. 4635	2931 0.05

7/31 /17	D3 2- 201 7	12.7	13.075	11.925	No Data	11.3	12.55	1551. 4862	3551. 7635	2993 2.55
8/1/ 17	D3 2- 201 7	10.775	10.75	10.275	No Data	10.35	10.2	1580. 0067	3609. 1135	3052 5.65
8/2/ 17	D3 2- 201 7	11.875	12.35	11.475	No Data	11.25	11.7	1607. 4967	3682. 7635	3078 3.15
8/3/ 17	D3 2- 201 7	29.95	26.05	23.4	No Data	26.25	20.55	1635. 8317	3757. 1135	3123 5
8/4/ 17	D3 2- 201 7	40.35	31.35	31.05	No Data	30.9	31.2	1665. 3152	3822. 1635	3183 8.75
8/5/ 17	D3 2- 201 7	13.5	14.975	17.025	No Data	21.1	12.95	1695. 2707	3889. 2135	3241 2.5
8/6/ 17	D3 2- 201 7	20.95	17.875	16.575	No Data	15.1	18.05	1726. 0567	3956. 8135	3305 1.25
8/7/ 17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1751. 8437	4040. 1635	3347 3.75
8/8/ 17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1779. 1712	4116. 0635	3398 4.35
8/9/ 17	D3 2- 201 7	20.2	26.75	21.9	No Data	20.95	22.85	1807. 6112	4184. 9135	3456 2.45
8/10 /17	D3 2- 201 7	18.5	19.2666 6667	22.5	No Data	14.55	22.5	1836. 4697	4255. 4135	3516 7.45
8/11 /17	D3 2- 201 7	10.45	15.075	11.85	No Data	10.95	12.75	1865. 6547	4323. 9635	3573 6.8
8/12 /17	D3 2- 201 7	11.2	14.1	11.65	No Data	12.05	11.25	1895. 7717	439 <u>2</u> . 7635	3626 7.4
8/13 /17	D3 2-	15.25	17.25	17.325	No Data	14.5	20.15	1925. 7782	4460. 8135	3679 4.25

	201 7									
8/14 /17	D3 2- 201 7	13.45	17.275	17.75	No Data	16.95	18.55	1955. 7647	4528. 6135	3731 6.75
8/15 /17	D3 2- 201 7	13.65	15.75	15.275	No Data	12.95	17.6	1985. 9332	4596. 5635	3790 9.25
8/16 /17	D3 2- 201 7	14.4	16.3	14.375	No Data	12.95	15.8	2016. 7967	4665. 4135	3851 3.6
8/17 /17	D3 2- 201 7	14.475	15.675	16.75	No Data	16.4	17.1	2048. 3937	4730. 4635	3903 1.1
8/18 /17	D3 2- 201 7	13.55	17.3	16.65	No Data	15.35	17.95	2079. 2712	4795. 8135	3955 1.7
8/19 /17	D3 2- 201 7	9.6	10.45	9.75	No Data	9	10.5	2108. 8962	4861. 7135	4007 7.95
8/20 /17	D3 2- 201 7	13.925	13.25	19.725	No Data	15.25	24.2	2138. 4902	4927. 8135	4063 1.7
8/21 /17	D3 2- 201 7	12.15	14.175	14.35	No Data	11.6	17.1	2168. 1227	4986. 384	4117 7.95
8/22 /17	D3 2- 201 7	11.175	13.575	17.275	No Data	14.3	20.25	2196. 7967	5051. 234	4171 1.05
8/23 /17	D3 2- 201 7	12.625	14.375	16.25	No Data	12.5	20	2225. 7212	5116. 084	4225 0.4
8/24 /17	D3 2- 201 7	11.8	12	12.875	No Data	10.65	15.1	2254. 9772	5183. 384	4285 0.4
8/25 /17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	2281. 1692	5259. 584	4316 8.5
8/26 /17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	2304. 3917	535 <u>2</u> . 784	4329 1.6

8/27 /17	D3 2-	No Data	No Data	No Data	No Data	No Data	No Data	2325. 8547	5452. 584	4343 5.35
	201 7									
8/28 /17	D3 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	2349. 9507	5533. 784	4381 7.2
8/29 /17	D3 2- 201 7	27.375	25.175	25.05	No Data	24.55	25.55	2376. 1362	5603. 934	4435 9.05
6/21 /17	D3 5- 201 7	56.975	45.1	45.95	43.312 5	55.65	32.7333 3333	28.10 65	61.15	555.6
6/22 /17	D3 5- 201 7	51.775	44.85	36.2	48.55	55.8166 6667	33.05	57.70 1	119.4	1172. 45
6/23 /17	D3 5- 201 7	27.725	50.475	53.525	47.925	58.85	40.7333 3333	88.25	185.8 5	1707. 45
6/24 /17	D3 5- 201 7	60	60	59.325	57.4	59.46	56.9666 6667	112.5 995	244.0 135	2024. 3
6/25 /17	D3 5- 201 7	60	53.75	53.05	51.75	53.85	50.5166 6667	137.8 045	322.9 135	2663. 05
6/26 /17	D3 5- 201 7	53.0333 3333	57.2	57.4	60	59.6833 3333	58.3	165.6 265	396.0 635	3301. 8
6/27 /17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	192.4 4	473.8 135	3892. 4
6/28 /17	D3 5- 201 7	54.4	55.75	48.325	37.1	47.4	41.7666 6667	218.8 255	549.1 635	4531. 15
6/29 /17	D3 5- 201 7	37.9333 3333	48.675	39.55	45.55	24.6666 6667	58.4333 3333	247.5 8	623.4 635	5126. 15
6/30 /17	D3 5- 201 7	27.5666 6667	39.075	31.025	25.75	32.9	25.6333 3333	278.0 985	693.7 135	5673
7/1/ 17	D3 5-	29.1	39.95	24.6	21.15	23.2666 6667	23.6333 3333	307.9 51	763.8 635	6201. 75

	201 7									
7/2/ 17	D3 5- 201 7	10.7	16.975	15.275	8.8	11.9666 6667	14.2666 6667	337.9 47	835.5 635	6777. 35
7/3/ 17	D3 5- 201 7	26.7	31.15	26.325	19.8	25.8333 3333	22.4666 6667	367.5 36	906.3 635	7391. 1
7/4/ 17	D3 5- 201 7	23.1666 6667	35.075	26.95	23.8	28.2333 3333	23.5666 6667	397.6 47	974.7 635	7967. 35
7/5/ 17	D3 5- 201 7	24.9333 3333	28.225	21.8	20.45	22.4	20.3	428.1 365	1037. 3635	8517. 95
7/6/ 17	D3 5- 201 7	22.0666 6667	30.725	27.65	18.2	28.7333 3333	20.2666 6667	457.8 6	1106. 1635	9109. 2
7/7/ 17	D3 5- 201 7	23.7	26.9	24.35	21.45	24.6666 6667	22.1	486.2 855	1174. 7135	9729. 2
7/8/ 17	D3 5- 201 7	21.7333 3333	25.225	22.625	19.65	22.3333 3333	20.9333 3333	514.8 32	1240. 1135	1026 6.05
7/9/ 17	D3 5- 201 7	9.26666 6667	11.625	11.55	14.05	10.5333 3333	14.2333 3333	544.0 135	1303. 1135	1082 4.15
7/10 /17	D3 5- 201 7	17.7666 6667	20.575	20.75	16.75	20.2666 6667	18.5666 6667	572.0 39	1368. 0635	1135 7.25
7/11 /17	D3 5- 201 7	20.9333 3333	24.15	23.7	18.95	24.7666 6667	19.4666 6667	601.8 705	1434. 3135	1192 1.6
7/12 /17	D3 5- 201 7	21.7	26.025	21.875	20	22.6333 3333	19.8666 6667	631.3 11	1501. 8135	1253 0.95
7/13 /17	D3 5- 201 7	19.3666 6667	23.05	20.675	14.35	20.0333 3333	17.1	660.5 37	1568. 9635	1316 3.45
7/14 /17	D3 5- 201 7	21.1	23.225	21.75	19.25	21.7333 3333	20.1	689.9 715	1633. 8635	1372 8.45

7/15 /17	D3 5- 201 7	12.0666 6667	16.2	16	10.3	13.7	14.5	719.6 63	1697. 3135	1433 4.7
7/16 /17	D3 5- 201 7	18.4	20.675	19.925	16.45	19.8	17.7333 3333	747.5 25	1765. 5635	1487 6.55
7/17 /17	D3 5- 201 7	15.3666 6667	18.1	15.875	14.8	15.9666 6667	15.0666 6667	776.9 71	1832. 0135	1545 2.8
7/18 /17	D3 5- 201 7	15.6	22.05	22.3	16.15	20.9666 6667	19.5333 3333	805.5 585	1901. 1135	1604 4.05
7/19 /17	D3 5- 201 7	9.3	13.275	10.475	8.45	9.9	9.7	835.4 36	1967. 5135	1664 5.3
7/20 /17	D3 5- 201 7	17.1	21.875	19.2	16.8	20.1	16.7	866.2 08	2032. 2635	1717 7.15
7/21 /17	D3 5- 201 7	17	20.525	18.4	16.25	19.4666 6667	15.9	895.9 47	2095. 3635	1771 0.25
7/22 /17	D3 5- 201 7	18.0333 3333	20.75	20.35	15.9	20.4	17.3333 3333	926.4 54	2159. 9635	1827 5.85
7/23 /17	D3 5- 201 7	10.3333 3333	13.225	12.65	9.25	11.6333 3333	11.4	957.3 46	2227. 3135	1880 3.35
7/24 /17	D3 5- 201 7	15.6333 3333	19.7	20.025	14.65	17.3333 3333	19.1333 3333	987.8 645	2288. 9635	1932 7.7
7/25 /17	D3 5- 201 7	15.7	19.075	18.15	14.95	16.6666 6667	17.5	1019. 3505	2353. 0135	1991 3.95
7/26 /17	D3 5- 201 7	17.8	21.55	20.3	16.1	18.9666 6667	18.8333 3333	1050. 1125	2418. 3135	2045 0.8
7/27 /17	D3 5- 201 7	16.5	20.1	19.5	14.7	18	17.8	1079. 2145	2482. 7135	2098 2.65
7/28 /17	D3 5-	18.3666 6667	20.475	20.125	15.45	19.5	17.6333 3333	1109. 532	2543. 1135	2152 1.4

	201 7									
7/29 /17	D3 5- 201 7	9	11.275	9.625	7.6	9.16666 6667	8.73333 3333	1141. 184	2602. 8635	2207 3.25
7/30 /17	D3 5- 201 7	10.2666 6667	12.7	12.425	11.05	11.8	12.1333 3333	1172. 9685	2660. 0135	2268 0.75
7/31 /17	D3 5- 201 7	9.86666 6667	12	11.45	9.7	10.8666 6667	10.8666 6667	1203. 2515	2709. 3135	2330 3.25
8/1/ 17	D3 5- 201 7	7.56666 6667	11.05	10.825	7.5	9.7	9.73333 3333	1231. 772	2766. 6635	2389 6.35
8/2/ 17	D3 5- 201 7	9.16666 6667	11.375	11.05	9.15	9.86666 6667	10.9666 6667	1259. 262	2840. 3135	2415 3.85
8/3/ 17	D3 5- 201 7	25.3	36.65	21.175	26.3	24.2333 3333	21.5333 3333	1287. 597	2914. 6635	2460 5.7
8/4/ 17	D3 5- 201 7	30.3	42.475	46.775	32.75	46.1	38.1	1317. 0805	2979. 7135	2520 9.45
8/5/ 17	D3 5- 201 7	10.4666 6667	13.6	16.025	10.65	11.6666 6667	16.8	1347. 036	3046. 7635	2578 3.2
8/6/ 17	D3 5- 201 7	13.0666 6667	19.7	18.775	17.35	15.6666 6667	20.9333 3333	1377. 822	3114. 3635	2642 1.95
8/7/ 17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1403. 609	3197. 7135	2684 4.45
8/8/ 17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1430. 9365	3273. 6135	2735 5.05
8/9/ 17	D3 5- 201 7	17.0666 6667	27.125	47.05	20.6	29.2333 3333	47.2333 3333	1459. 3765	3342. 4635	2793 3.15
8/10 /17	D3 5- 201 7	14.0333 3333	23.55	21.45	20.15	17.1666 6667	24.8666 6667	1488. 235	3412. 9635	2853 8.15

8/11 /17	D3 5- 201 7	8.7	11.325	10.575	8	9.23333 3333	10.2	1517. 42	3481. 5135	2910 7.5
8/12 /17	D3 5- 201 7	8.8	10.825	10.5	7.55	9.1	9.93333 3333	1547. 537	3550. 3135	2963 8.1
8/13 /17	D3 5- 201 7	12.2333 3333	14.925	15.2	15.1	13.5	16.8333 3333	1577. 5435	3618. 3635	3016 4.95
8/14 /17	D3 5- 201 7	11.5	15.275	13.775	13.7	12.4333 3333	15.0666 6667	1607. 53	3686. 1635	3068 7.45
8/15 /17	D3 5- 201 7	11.7	13.85	13.25	13.8	11.9333 3333	14.9333 3333	1637. 6985	3754. 1135	3127 9.95
8/16 /17	D3 5- 201 7	11.4333 3333	14.025	13.775	12.85	11.9	15.0333 3333	1668. 562	3822. 9635	3188 4.3
8/17 /17	D3 5- 201 7	11.4333 3333	13.925	12.875	13.4	12.3666 6667	13.7333 3333	1700. 159	3888. 0135	3240 1.8
8/18 /17	D3 5- 201 7	11.5666 6667	13.825	13.65	13.7	12.9666 6667	14.3666 6667	1731. 0365	3953. 3635	3292 2.4
8/19 /17	D3 5- 201 7	8.13333 3333	9.875	8.95	6.7	8.36666 6667	8.03333 3333	1760. 6615	4019. 2635	3344 8.65
8/20 /17	D3 5- 201 7	12.5333 3333	15.875	14.725	13.85	14.8666 6667	14	1790. 2555	4085. 3635	3400 2.4
8/21 /17	D3 5- 201 7	11.1	13.775	11.65	12.45	11.4666 6667	12.3666 6667	1819. 888	4143. 934	3454 8.65
8/22 /17	D3 5- 201 7	13.2333 3333	15.125	14.75	14.8	14	15.5333 3333	1848. 562	4208. 784	3508 1.75
8/23 /17	D3 5- 201 7	11.9666 6667	13.775	14.375	12.8	13.2333 3333	14.4666 6667	1877. 4865	4273. 634	3562 1.1
8/24 /17	D3 5-	9.96666 6667	12.425	11.8	11.15	11.1	12.0666 6667	1906. 7425	4340. 934	3622 1.1

	201 7									
8/25 /17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1932. 9345	4417. 134	3653 9.2
8/26 /17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1956. 157	4510. 334	3666 2.3
8/27 /17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1977. 62	4610. 134	3680 6.05
8/28 /17	D3 5- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	2001. 716	4691. 334	3718 7.9
8/29 /17	D3 5- 201 7	14	31.225	27.55	16.1	27.5	19.9666 6667	2027. 9015	4761. 484	3772 9.75
6/23 /17	D3 7- 201 7	60	25.5	41.25	46.912 5	60	30.05	30.54 9	66.45	535
6/24 /17	D3 7- 201 7	53.4333 3333	47	56.725	51.45	60	43.125	54.89 85	124.6 135	851.8 5
6/25 /17	D3 7- 201 7	47.5333 3333	50.175	46.625	50.55	60	38.4833 3333	80.10 35	203.5 135	1490. 6
6/26 /17	D3 7- 201 7	60	60	57.6333 3333	55.9	60	56.12	107.9 255	276.6 635	2129. 35
6/27 /17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	134.7 39	354.4 135	2719. 95
6/28 /17	D3 7- 201 7	#REF!	#REF!	#REF!	#REF!	60	56.6166 6667	161.1 245	429.7 635	3358. 7
6/29 /17	D3 7- 201 7	45.85	33.4	60	42.2	No Data	49.32	189.8 79	504.0 635	3953. 7
6/30 /17	D3 7- 201 7	33.7666 6667	22.85	36.6	43.75	No Data	37.5	220.3 975	574.3 135	4500. 55

7/1/ 17	D3 7- 201 7	26.45	24.05	25.9	31.025	No Data	29.3166 6667	250.2 5	644.4 635	5029. 3
7/2/ 17	D3 7- 201 7	12.65	8.9	8.05	11.225	No Data	12.3875	280.2 46	716.1 635	5604. 9
7/3/ 17	D3 7- 201 7	25.9	24.9	19.05	28.425	No Data	25.3	309.8 35	786.9 635	6218. 65
7/4/ 17	D3 7- 201 7	32.8	25.15	27.15	28.85	No Data	27.6	339.9 46	855.3 635	6794. 9
7/5/ 17	D3 7- 201 7	27.7	21.05	25.55	26.3	No Data	26.05	370.4 355	917.9 635	7345. 5
7/6/ 17	D3 7- 201 7	24.55	20.35	25.6	26.3	No Data	26.5	400.1 59	986.7 635	7936. 75
7/7/ 17	D3 7- 201 7	29.2	22.85	27.8	27.775	No Data	27.7833 3333	428.5 845	1055. 3135	8556. 75
7/8/ 17	D3 7- 201 7	25.2	20.35	26.5	21.775	No Data	19.6125	457.1 31	1120. 7135	9093. 6
7/9/ 17	D3 7- 201 7	8.7	7.4	8.4	9.225	No Data	8.95	486.3 125	1183. 7135	9651. 7
7/10 /17	D3 7- 201 7	22.9	14.55	22.75	21.25	No Data	23.2125	514.3 38	1248. 6635	1018 4.8
7/11 /17	D3 7- 201 7	25.4	16.65	27.6	23.25	No Data	24.7	544.1 695	1314. 9135	1074 9.15
7/12 /17	D3 7- 201 7	22.7	19.7	21	23.75	No Data	23.6625	573.6 1	1382. 4135	1135 8.5
7/13 /17	D3 7- 201 7	28.25	21.95	26.15	24.25	No Data	24.8833 3333	602.8 36	1449. 5635	1199 1
7/14 /17	D3 7-	27.35	20.65	25.7	23.925	No Data	21.375	632.2 705	1514. 4635	1255 6

	201 7									
7/15 /17	D3 7- 201 7	15.95	12.75	11.95	13.35	No Data	12.8833 3333	661.9 62	1577. 9135	1316 2.25
7/16 /17	D3 7- 201 7	24.3	19.75	24.7	21.225	No Data	21.9	689.8 24	1646. 1635	1370 4.1
7/17 /17	D3 7- 201 7	23.35	14.25	20.45	20.15	No Data	20.25	719.2 7	1712. 6135	1428 0.35
7/18 /17	D3 7- 201 7	26.4	16.9	24.25	20.575	No Data	18.3125	747.8 575	1781. 7135	1487 1.6
7/19 /17	D3 7- 201 7	9.85	7.45	7.85	9.425	No Data	8.9	777.7 35	1848. 1135	1547 2.85
7/20 /17	D3 7- 201 7	24.3	17.7	24.7	21.1	No Data	22.3	808.5 07	1912. 8635	1600 4.7
7/21 /17	D3 7- 201 7	23.85	15	22.3	19.75	No Data	20.6	838.2 46	1975. 9635	1653 7.8
7/22 /17	D3 7- 201 7	25.55	17.65	26.05	21.725	No Data	19.8375	868.7 53	2040. 5635	1710 3.4
7/23 /17	D3 7- 201 7	12.45	10.45	9.85	10.975	No Data	10.6	899.6 45	2107. 9135	1763 0.9
7/24 /17	D3 7- 201 7	22.9	17	21.4	19.175	No Data	20.325	930.1 635	2169. 5635	1815 5.25
7/25 /17	D3 7- 201 7	23.6	17.6	21.55	18.325	No Data	19.4	961.6 495	2233. 6135	1874 1.5
7/26 /17	D3 7- 201 7	23.7	18.45	22.95	19.825	No Data	21.6625	992.4 115	2298. 9135	1927 8.35
7/27 /17	D3 7- 201 7	23.55	16.9	24.05	18.725	No Data	20.5	1021. 5135	2363. 3135	1981 0.2

7/28 /17	D3 7- 201 7	24.15	16.75	24.15	18.8	No Data	17.25	1051. 831	2423. 7135	2034 8.95
7/29 /17	D3 7- 201 7	8.2	7.15	7.25	7.65	No Data	7.51666 6667	1083. 483	2483. 4635	2090 0.8
7/30 /17	D3 7- 201 7	14.8	10.4	12.55	10.8	No Data	11.075	1115. 2675	2540. 6135	2150 8.3
7/31 /17	D3 7- 201 7	11	8.8	10.15	10.35	No Data	10.2833 3333	1145. 5505	2589. 9135	2213 0.8
8/1/ 17	D3 7- 201 7	6.85	7.2	5.65	6.45	No Data	6.875	1174. 071	2647. 2635	2272 3.9
8/2/ 17	D3 7- 201 7	11.55	7.5	8.95	10.15	No Data	9.75	1201. 561	2720. 9135	2298 1.4
8/3/ 17	D3 7- 201 7	25.15	17.1	12.8	14.325	No Data	17.3375	1229. 896	2795. 2635	2343 3.25
8/4/ 17	D3 7- 201 7	44.35	24.9	27.9	29.475	No Data	28.95	1259. 3795	2860. 3135	2403 7
8/5/ 17	D3 7- 201 7	9.4	8.55	7.5	9.175	No Data	10.9	1289. 335	2927. 3635	2461 0.75
8/6/ 17	D3 7- 201 7	21.6	19.15	17.75	21.775	No Data	20.4333 3333	1320. 121	2994. 9635	2524 9.5
8/7/ 17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1345. 908	3078. 3135	2567 2
8/8/ 17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1373. 2355	3154. 2135	2618 2.6
8/9/ 17	D3 7- 201 7	16.75	15.4	16.3	23.65	No Data	20.975	1401. 6755	3223. 0635	2676 0.7
8/10 /17	D3 7-	16.75	13.75	20.3	24.5	No Data	23.1	1430. 534	3293. 5635	2736 5.7

	201 7									
8/11 /17	D3 7- 201 7	8.15	7.5	7.5	9.575	No Data	8.425	1459. 719	3362. 1135	2793 5.05
8/12 /17	D3 7- 201 7	7.5	7.05	7.05	7.775	No Data	7.53333 3333	1489. 836	3430. 9135	2846 5.65
8/13 /17	D3 7- 201 7	14.55	12.95	18.4	19.45	No Data	18.4875	1519. 8425	3498. 9635	2899 2.5
8/14 /17	D3 7- 201 7	13.8	12.05	16.65	15.725	No Data	16.0333 3333	1549. 829	3566. 7635	2951 5
8/15 /17	D3 7- 201 7	13.3	12.1	16.75	17.525	No Data	16.8875	1579. 9975	3634. 7135	3010 7.5
8/16 /17	D3 7- 201 7	13.75	11.45	15.75	15.825	No Data	15.8	1610. 861	3703. 5635	3071 1.85
8/17 /17	D3 7- 201 7	13.7	13.15	14.95	17.05	No Data	16.35	1642. 458	3768. 6135	3122 9.35
8/18 /17	D3 7- 201 7	13.15	12.5	16.35	17.025	No Data	16.8	1673. 3355	3833. 9635	3174 9.95
8/19 /17	D3 7- 201 7	7.55	7	6.95	7.225	No Data	9.7375	1702. 9605	3899. 8635	3227 6.2
8/20 /17	D3 7- 201 7	15.75	16.75	17.55	16.975	No Data	17.1666 6667	1732. 5545	3965. 9635	3282 9.95
8/21 /17	D3 7- 201 7	13.2	11.8	15.15	15.675	No Data	16.225	1762. 187	4024. 534	3337 6.2
8/22 /17	D3 7- 201 7	15.7	14.65	18.4	17.525	No Data	17.8166 6667	1790. 861	4089. 384	3390 9.3
8/23 /17	D3 7- 201 7	14.3	12.35	10.8	16.35	No Data	14.0875	1819. 7855	4154. 234	3444 8.65

8/24 /17	D3 7- 201 7	12.45	10.35	12.85	14.9	No Data	14.2166 6667	1849. 0415	4221. 534	3504 8.65
8/25 /17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1875. 2335	4297. 734	3536 6.75
8/26 /17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1898. 456	4390. 934	3548 9.85
8/27 /17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1919. 919	4490. 734	3563 3.6
8/28 /17	D3 7- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1944. 015	4571. 934	3601 5.45
8/29 /17	D3 7- 201 7	13.75	13.15	10.6	13.4	No Data	13.7875	1970. 2005	4642. 084	3655 7.3
7/19 /17	D4 0- 201 7	60	25.025	38.875	45.237 5	60	26.2333 3333	29.87 75	69.1	601.2 5
7/20 /17	D4 0- 201 7	60	42.875	34.65	38.862 5	48	26.9166 6667	60.64 95	135.5	1133. 1
7/21 /17	D4 0- 201 7	60	39.875	30.625	43.075	43.65	34.2	90.38 85	200.2 5	1666. 2
7/22 /17	D4 0- 201 7	60	44.575	27.525	42.387 5	44.25	30.6166 6667	120.8 955	263.3 5	2231. 8
7/23 /17	D4 0- 201 7	60	29.05	29.625	34.787 5	38.4333 3333	27.7	151.7 875	327.9 5	2759. 3
7/24 /17	D4 0- 201 7	60	46.575	31.1	40.887 5	44.6166 6667	30.6333 3333	182.3 06	395.3	3283. 65
7/25 /17	D4 0- 201 7	60	42.45	46.8	39.712 5	41.9333 3333	42.2166 6667	213.7 92	456.9 5	3869. 9
7/26 /17	D4 0-	60	43.625	34.325	30.1	32.0166 6667	31	244.5 54	521	4406. 75

	201 7									
7/27 /17	D4 0- 201 7	39.425	31.45	30.45	31.6	32.3	30.1333 3333	273.6 56	586.3	4938. 6
7/28 /17	D4 0- 201 7	60	35.425	35.15	25.85	27.8666 6667	30.0333 3333	303.9 735	650.7	5477. 35
7/29 /17	D4 0- 201 7	22.125	14.75	24.1	11.837 5	13.0666 6667	18.7833 3333	335.6 255	711.1	6029. 2
7/30 /17	D4 0- 201 7	45.325	28.35	21.175	16.275	18.8833 3333	16.9333 3333	367.4 1	770.8 5	6636. 7
7/31 /17	D4 0- 201 7	36.375	19.2	19.825	12.975	17.5166 6667	13	397.6 93	828	7259. 2
8/1/ 17	D4 0- 201 7	34.25	15.2	21.525	12.35	13.1666 6667	17.65	426.2 135	877.3	7852. 3
8/2/ 17	D4 0- 201 7	28.725	18.65	18.7	14.812 5	16.1833 3333	16.0333 3333	453.7 035	934.6 5	8109. 8
8/3/ 17	D4 0- 201 7	50.575	36.6	28.175	36.975	40.9833 3333	27.1	482.0 385	1008. 3	8561. 65
8/4/ 17	D4 0- 201 7	56.775	42.425	41.075	43.725	38.4666 6667	47.2166 6667	511.5 22	1082. 65	9165. 4
8/5/ 17	D4 0- 201 7	38.975	17.375	15.225	15.9	16.5833 3333	14.7666 6667	541.4 775	1147. 7	9739. 15
8/6/ 17	D4 0- 201 7	46.475	26.2	25.075	23.375	23.2333 3333	24.65	572.2 635	1214. 75	1037 7.9
8/7/ 17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	598.0 505	1282. 35	1080 0.4
8/8/ 17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	625.3 78	1365. 7	1131 1

8/9/ 17	D4 0- 201 7	52.325	26.875	22.4	29.775	23.5666 6667	31.0666 6667	653.8 18	1441. 6	1188 9.1
8/10 /17	D4 0- 201 7	41.825	32.225	23.925	27.65	25.1333 3333	27.6833 3333	682.6 765	1510. 45	1249 4.1
8/11 /17	D4 0- 201 7	24.15	15.4	16	11.925	10.7166 6667	15.85	711.8 615	1580. 95	1306 3.45
8/12 /17	D4 0- 201 7	18.125	13.225	11.425	12.475	10	14.25	741.9 785	1649. 5	1359 4.05
8/13 /17	D4 0- 201 7	24.525	21.6	23	21.875	21.1333 3333	23.3666 6667	771.9 85	1718. 3	1412 0.9
8/14 /17	D4 0- 201 7	22.575	22.9	19.825	20.475	18.3	22.2166 6667	801.9 715	1786. 35	1464 3.4
8/15 /17	D4 0- 201 7	22.375	31.375	23.725	21.962 5	18.9833 3333	26.1166 6667	832.1 4	1854. 15	1523 5.9
8/16 /17	D4 0- 201 7	24.525	21.5	17.3	20.187 5	17.55	20.9	863.0 035	1922. 1	1584 0.25
8/17 /17	D4 0- 201 7	22.8	20.85	22	18.35	18.15	20.9833 3333	894.6 005	1990. 95	1635 7.75
8/18 /17	D4 0- 201 7	19.4275	22.175	23.05	19.725	18.9833 3333	22.6833 3333	925.4 78	2056	1687 8.35
8/19 /17	D4 0- 201 7	14.65	7.65	9.95	10.35	9.36666 6667	11.0666 6667	955.1 03	2121. 35	1740 4.6
8/20 /17	D4 0- 201 7	22.575	17.9	32	17.75	17.5166 6667	27.4833 3333	984.6 97	2187. 25	1795 8.35
8/21 /17	D4 0- 201 7	22.6	20.1	21.25	17.575	18.85	18.75	1014. 3295	2253. 35	1850 4.6
8/22 /17	D4 0-	21.775	19.4	27.725	17.775	17.9333 3333	23.6833 3333	1043. 0035	2311. 9205	1903 7.7

	201 7									
8/23 /17	D4 0- 201	20.55	21.125	10.775	15.005	18.2333 3333	23.95	1071. 928	2376. 7705	1957 7.05
8/24 /17	7 D4 0- 201 7	20.55	21.125	19.775	15.825	15.7666 6667	18.5166 6667	1101. 184	2441. 6205	2017 7.05
8/25 /17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1127. 376	2508. 9205	2049 5.15
8/26 /17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1150. 5985	2585. 1205	2061 8.25
8/27 /17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1172. 0615	2678. 3205	2076 2
8/28 /17	D4 0- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1196. 1575	2778. 1205	2114 3.85
8/29 /17	D4 0- 201 7	37.45	27.825	29.975	22.512 5	32.3	17.7	1222. 343	2859. 3205	2168 5.7
7/21 /17	D4 2- 201 7	48.4	33.5	25.225	30.6	47.9166 6667	29.7	29.73 9	63.1	533.1
7/22 /17	D4 2- 201 7	56.125	38.6	39.525	54.125	47.9166 6667	50.6	60.24 6	127.7	1098. 7
7/23 /17	D4 2- 201 7	47.15	46.75	54.55	41.125	53.7333 3333	38.5833 3333	91.13 8	195.0 5	1626. 2
7/24 /17	D4 2- 201 7	60	60	56.975	54.35	53.7333 3333	56.7166 6667	121.6 565	256.7	2150. 55
7/25 /17	D4 2- 201 7	60	44	50.7	50.287 5	37.45	52.9166 6667	153.1 425	320.7 5	2736. 8
7/26 /17	D4 2- 201 7	51.725	53	37.475	48.125	37.45	51.7	183.9 045	386.0 5	3273. 65

7/27 /17	D4 2- 201 7	60	33.925	29.325	30.075	30.0333 3333	26.1666 6667	213.0 065	450.4 5	3805. 5
7/28 /17	D4 2- 201 7	35.375	32.35	32.525	31.75	30.0333 3333	33.9833 3333	243.3 24	510.8 5	4344. 25
7/29 /17	D4 2- 201 7	17.925	14.825	14.225	11.062 5	20.4666 6667	11.2833 3333	274.9 76	570.6	4896. 1
7/30 /17	D4 2- 201 7	23.85	23.2	25.2	19	20.4666 6667	21.6666 6667	306.7 605	627.7 5	5503. 6
7/31 /17	D4 2- 201 7	21.025	21.025	22.75	15.562 5	16	16.9	337.0 435	677.0 5	6126. 1
8/1/ 17	D4 2- 201 7	14.95	17.325	19.7	12.637 5	16	13.9833 3333	365.5 64	734.4	6719. 2
8/2/ 17	D4 2- 201 7	20.625	18.475	21.35	14.675	25.8	16.1833 3333	393.0 54	808.0 5	6976. 7
8/3/ 17	D4 2- 201 7	40.325	24.3	29.35	36.825	25.8	42.8666 6667	421.3 89	882.4	7428. 55
8/4/ 17	D4 2- 201 7	56.125	32.2333 3333	42.2	46.012 5	17.05	51.6333 3333	450.8 725	947.4 5	8032. 3
8/5/ 17	D4 2- 201 7	20.9	14.275	16.475	16.35	17.05	15.7333 3333	480.8 28	1014. 5	8606. 05
8/6/ 17	D4 2- 201 7	31.625	23.45	29.475	27.025	No Data	30.3166 6667	511.6 14	1082. 1	9244. 8
8/7/ 17	D4 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	537.4 01	1165. 45	9667. 3
8/8/ 17	D4 2- 201 7	No Data	No Data	No Data	No Data	24.6833 3333	No Data	564.7 285	1241. 35	1017 7.9
8/9/ 17	D4 2-	37.675	27.3	24.95	32.95	24.6833 3333	35.8833 3333	593.1 685	1310. 2	1075 6

	201 7									
8/10 /17	D4 2- 201 7	28.075	28.425	32.575	32.725	16.8	36.0833 3333	622.0 27	1380. 7	1136 1
8/11 /17	D4 2- 201 7	16.25	15.3	18.175	17.562 5	16.8	18.7333 3333	651.2 12	1449. 25	1193 0.35
8/12 /17	D4 2- 201 7	11.7	13.875	15.15	13.025	27.0333 3333	14.4	681.3 29	1518. 05	1246 0.95
8/13 /17	D4 2- 201 7	22.675	22.05	29.1	25.5	27.0333 3333	26.3666 6667	711.3 355	1586. 1	1298 7.8
8/14 /17	D4 2- 201 7	20.825	20.3	22.125	23.212 5	22.5	22.45	741.3 22	1653. 9	1351 0.3
8/15 /17	D4 2- 201 7	23.65	21.875	22.525	23.075	22.5	23.2833 3333	771.4 905	1721. 85	1410 2.8
8/16 /17	D4 2- 201 7	21.425	21.275	20.7	21	21.3166 6667	21.25	802.3 54	1790. 7	1470 7.15
8/17 /17	D4 2- 201 7	21.425	22.325	22.65	21.425	21.3166 6667	22.35	833.9 51	1855. 75	1522 4.65
8/18 /17	D4 2- 201 7	22.2	20.825	23.375	21.812 5	12.3	21.8833 3333	864.8 285	1921. 1	1574 5.25
8/19 /17	D4 2- 201 7	12.125	11.325	13.15	11.35	12.3	11.6	894.4 535	1987	1627 1.5
8/20 /17	D4 2- 201 7	21.675	22.7	22.875	21.025	17.35	22.3833 3333	924.0 475	2053. 1	1682 5.25
8/21 /17	D4 2- 201 7	19.6	17.8	19.4	18.125	17.35	19.75	953.6 8	2111. 6705	1737 1.5
8/22 /17	D4 2- 201 7	22.325	21.625	23.625	21.062 5	20.0666 6667	22.8333 3333	982.3 54	2176. 5205	1790 4.6

8/23 /17	D4 2- 201 7	21.625	20.575	22	19.287 5	20.0666 6667	20.3166 6667	1011. 2785	2241. 3705	1844 3.95
8/24 /17	D4 2- 201 7	20.15	17.825	19.775	18.137 5	No Data	18.7833 3333	1040. 5345	2308. 6705	1904 3.95
8/25 /17	D4 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1066. 7265	2384. 8705	1936 2.05
8/26 /17	D4 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1089. 949	2478. 0705	1948 5.15
8/27 /17	D4 2- 201 7	No Data	No Data	No Data	No Data	No Data	No Data	1111. 412	2577. 8705	1962 8.9
8/28 /17	D4 2- 201 7	No Data	No Data	No Data	No Data	29.3166 6667	No Data	1135. 508	2659. 0705	2001 0.75
8/29 /17	D4 2- 201 7	26.225	25.225	35.425	28.087 5	29.3166 6667	31.75	1161. 6935	2729. 2205	2055 2.6

Date	Temperature (°C)			Relative Humidity (%)			Solar Radiation (W/m ²)			Rain (mm)
	High	Low	Avg	High	Low	Avg	High	Low	Avg	
6/9/17	32.175	23.01 6	27.595 5	86.3	58.2	72.25	526.9	0.6	263. 75	0
6/10/1 7	31.128	17.35 5	31.128	94.4	54.9	74.65	1214.4	0.6	607. 5	0
6/11/1 7	31.128	21.36 6	26.247	94.4	40.7	67.55	1214.4	0.6	607. 5	0
6/12/1 7	34.36	20.72 2	27.541	96.4	44.4	70.4	1276.9	0.6	638. 75	0
6/13/1 7	35.823	22.84 8	29.335 5	96.4	47.1	71.75	1243.1	0.6	621. 85	0
6/14/1 7	33.365	24.79 8	29.081 5	92	50.1	71.05	1276.9	0.6	638. 75	0
6/15/1 7	35.689	23.95 4	29.821 5	95	43.4	69.2	1200.6	0.6	600. 6	0
6/16/1 7	35.555	23.85 7	29.706	92.9	44.6	68.75	1245.6	0.6	623. 1	0
6/17/1 7	36.362	23.90 5	30.133 5	93.7	43.8	68.75	1096.9	0.6	548. 75	0
6/18/1 7	36.255 4	24.26 7	30.261 2	92.3	41.6	66.95	1066.9	0.6	533. 75	0
6/19/1 7	33.391	23.4	28.395 5	95.6	52.3	73.95	724.4	0.6	362. 5	0
6/20/1 7	36.444	21.53 3	28.988 5	92.4	42	67.2	1164.4	0.6	582. 5	0
6/21/1 7	36.039	20.17 4	28.106 5	93.4	28.9	61.15	1110.6	0.6	555. 6	0
6/22/1 7	37.37	21.81 9	29.594 5	81.3	35.2	58.25	1233.1	0.6	616. 85	0
6/23/1 7	38.896	22.20 2	30.549	95.8	37.1	66.45	1069.4	0.6	535	0
6/24/1 7	28.072	20.62 7	24.349 5	95.7	20.627	58.1635	633.1	0.6	316. 85	1.01
6/25/1 7	30.95	19.46	25.205	96.2	61.6	78.9	1276.9	0.6	638. 75	34.8
6/26/1 7	33.131	22.51 3	27.822	96.4	49.9	73.15	1276.9	0.6	638. 75	1.01
6/27/1 7	32.691	20.93 6	26.813 5	99	56.5	77.75	1180.6	0.6	590. 6	1.75
6/28/1 7	33.287	19.48 4	26.385 5	99.2	51.5	75.35	1276.9	0.6	638. 75	0.25
6/29/1 7	35.235	22.27 4	28.754 5	97.4	51.2	74.3	1189.4	0.6	595	0
6/30/1 7	35.609	25.42 8	30.518 5	90.1	50.4	70.25	1093.1	0.6	546. 85	0
7/1/17	34.81	24.89 5	29.852 5	93.5	46.8	70.15	1056.9	0.6	528. 75	0
7/2/17	35.315	24.67 7	29.996	96.1	47.3	71.7	1150.6	0.6	575. 6	0

APPENDIX C: WEATHER DATA

7/3/17	35.128	24.05	29.589	93.9	47.7	70.8	1226.9	0.6	613. 75	0
7/4/17	35.931	24.29 1	30.111	93.7	43.1	68.4	1151.9	0.6	576. 25	0
7/5/17	36.471	24.50 8	30.489 5	92.7	32.5	62.6	1100.6	0.6	550. 6	0
7/6/17	37.508	21.93 9	29.723 5	95.4	42.2	68.8	1181.9	0.6	591. 25	0
7/7/17	36.796	20.05 5	28.425 5	95.8	41.3	68.55	1239.4	0.6	620	0
7/8/17	36.633	20.46	28.546 5	94.3	36.5	65.4	1073.1	0.6	536. 85	0
7/9/17	36.878	21.48 5	29.181 5	90.2	35.8	63	1115.6	0.6	558. 1	0
7/10/1 7	36.281	19.77	28.025 5	94.6	35.3	64.95	1065.6	0.6	533. 1	0
7/11/1 7	36.335	23.32 8	29.831 5	95.5	37	66.25	1128.1	0.6	564. 35	0.51
7/12/1 7	35.985	22.89 6	29.440 5	94.7	40.3	67.5	1218.1	0.6	609. 35	0
7/13/1 7	37.206	21.24 6	29.226	95.6	38.7	67.15	1264.4	0.6	632. 5	0
7/14/1 7	38.004	20.86 5	29.434 5	95.7	34.1	64.9	1129.4	0.6	565	0
7/15/1 7	38.756	20.62 7	29.691 5	93.5	33.4	63.45	1211.9	0.6	606. 25	0
7/16/1 7	36.525	19.19 9	27.862	96.3	40.2	68.25	1083.1	0.6	541. 85	0
7/17/1 7	36.905	21.98 7	29.446	94.2	38.7	66.45	1151.9	0.6	576. 25	0
7/18/1 7	36.119	21.05 6	28.587 5	95	43.2	69.1	1181.9	0.6	591. 25	0
7/19/1 7	37.673	22.08 2	29.877 5	94.5	38.3	66.4	1201.9	0.6	601. 25	0
7/20/1 7	38.504	23.04	30.772	95	34.5	64.75	1063.1	0.6	531. 85	0
7/21/1 7	37.921	21.55 7	29.739	93.6	32.6	63.1	1065.6	0.6	533. 1	0
7/22/1 7	38.309	22.70 5	30.507	95.6	33.6	64.6	1130.6	0.6	565. 6	0
7/23/1 7	38.504	23.28	30.892	95.4	39.3	67.35	1054.4	0.6	527. 5	0
7/24/1 7	38.476	22.56 1	30.518 5	93.3	30	61.65	1048.1	0.6	524. 35	0
7/25/1 7	38.004	24.96 8	31.486	92.1	36	64.05	1171.9	0.6	586. 25	0
7/26/1 7	38.532	22.99 2	30.762	96.9	33.7	65.3	1073.1	0.6	536. 85	0
7/27/1 7	37.673	20.53 1	29.102	93.1	35.7	64.4	1063.1	0.6	531. 85	0
7/28/1 7	38.84	21.79 5	30.317 5	94.8	26	60.4	1076.9	0.6	538. 75	0
7/29/1 7	41.795	21.50 9	31.652	92.7	26.8	59.75	1103.1	0.6	551. 85	0

7/30/1 7	42.06	21.50 9	31.784 5	87.5	26.8	57.15	1214.4	0.6	607. 5	0
7/31/1	37.315	23.25	30.283	68.7	29.9	49.3	1244.4	0.6	622. 5	0
8/1/17	37.866	19.17 5	28.520 5	85.6	29.1	57.35	1185.6	0.6	593. 1	0
8/2/17	31.868	23.11	27.49	91.1	56.2	73.65	514.4	0.6	257.	0
8/3/17	33.678	22.99 2	28.335	95.4	53.3	74.35	903.1	0.6	451. 85	12.45
8/4/17	37.673	21.29 4	29.483 5	96.4	33.7	65.05	1206.9	0.6	603. 75	0.76
8/5/17	37.206	22.70 5	29.955 5	93.6	40.5	67.05	1146.9	0.6	573. 75	0
8/6/17	37.015	24.55 7	30.786	92.1	43.1	67.6	1276.9	0.6	638. 75	0
8/7/17	30.495	21.07 9	25.787	98.8	67.9	83.35	844.4	0.6	422. 5	63.74
8/8/17	33.313	21.34 2	27.327 5	98	53.8	75.9	1020.6	0.6	510. 6	0
8/9/17	35.395	21.48 5	28.44	95.6	42.1	68.85	1155.6	0.6	578. 1	0
8/10/1 7	36.065	21.65 2	28.858 5	95.9	45.1	70.5	1209.4	0.6	605	0
8/11/1 7	35.689	22.68 1	29.185	91.2	45.9	68.55	1138.1	0.6	569. 35	0
8/12/1 7	36.039	24.19 5	30.117	94.7	42.9	68.8	1060.6	0.6	530. 6	0
8/13/1 7	36.661	23.35 2	30.006 5	95.8	40.3	68.05	1053.1	0.6	526. 85	0
8/14/1 7	36.525	23.44 8	29.986 5	95	40.6	67.8	1044.4	0.6	522. 5	0
8/15/1 7	35.877	24.46	30.168 5	92.7	43.2	67.95	1184.4	0.6	592. 5	0
8/16/1 7	36.444	25.28 3	30.863 5	93.8	43.9	68.85	1208.1	0.6	604. 35	0
8/17/1 7	36.987	26.20 7	31.597	90	40.1	65.05	1034.4	0.6	517. 5	0
8/18/1 7	37.343	24.41 2	30.877 5	93.7	37	65.35	1040.6	0.6	520. 6	0
8/19/1 7	36.905	22.34 5	29.625	95.4	36.4	65.9	1051.9	0.6	526. 25	0
8/20/1 7	36.579	22.60 9	29.594	94.2	38	66.1	1106.9	0.6	553. 75	0
8/21/1 7	36.824	22.44 1	29.632 5	94.7	22.441	58.5705	1091.9	0.6	546. 25	0
8/22/1 7	36.769	20.57 9	28.674	94.9	34.8	64.85	1065.6	0.6	533. 1	0
8/23/1 7	37.508	20.34 1	28.924 5	93.9	35.8	64.85	1078.1	0.6	539. 35	0
8/24/1 7	35.448	23.06 4	29.256	91.2	43.4	67.3	1199.4	0.6	600	0
8/25/1 7	30.875	21.50 9	26.192	94.3	58.1	76.2	635.6	0.6	318. 1	0

8/26/1	24.171	22.27	23.222	100	86.4	93.2	245.6	0.6	123.	146.06
7		4	5						1	
8/27/1	22.633	20.29	21.463	100	99.6	99.8	286.9	0.6	143.	77.49
7		3							75	
8/28/1	28.518	19.67	24.096	99.8	62.6	81.2	763.1	0.6	381.	4.83
7		4							85	
8/29/1	31.816	20.55	26.185	90.2	50.1	70.15	1083.1	0.6	541.	0
7		5	5						85	

REFERENCES

Arriaza, Bernardo T 1995 Chinchorro bioarchaeology: Chronology and mummy seriation. Late American Antiquity 6(1): 35-55. Aufderheide, Arthur C, Michael Zlonis, Larry L Cartmell, Michael R Zimmerman, Peter Sheldrick, Megan Cook, Joseph E Molto 1999 Human mummification practices at Ismant el-Kharab. The Journal of Egypitian Archaeology 85: 197-210. Aufderheide, Arthur C 2003 The Scientific Study of Mummies. Cambridge: Cambridge University Press. Bates, Lennon N, and Daniel J Wescott 2016 Comparison of decomposition rates between autopsied and non-autopsied human remains. Forensic Science International 261:93-100. Berenson, G S, and G E Burch 1951 Studies of diffusion of water through dead human skin: The effect of different environmental states and of chemical alterations of the epidermis. The American Journal of Tropical Medicine and Hygiene 6: 842-853. Campobasso, Carlo P, et al. 2009 The Mummified Corpse in a Domestic Setting. American Journal of Forensic Medicine and Pathology 30(3):4. Carter, David O, Mark Tibbett 2008 Soil Analysis in Forensic Taphonomy: Chemical and Biological Effects of Buried Human Remains. Boca Raton: CRC Press. de Boer-Dennert, R de Wit, PIM Schmitz, J Djontono, V v Beurden, G Stoter, J Verweij 1997 Patient perceptions of the side-effects of chemotherapy: the influence of 5HT3 antagonists. British Journal of Cancer 76(8): 1055-1061. El-Najjar, Mahmoud Y 1998 Mummies and mummification practices in the southern and southwestern United States. Karl Reinhard Papers/Publications 13. FACTS 2017 Department of Anthropology: Forensic Anthropology Center. http://www.txstate.edu/anthropology/facts/ Finch, W Holmes, Jocelyn E Bolin, Ken Kelley 2014 Multilevel Modeling Using R. Boca Raton: CRC Press. Galloway, Alison 1996 The Process of Decomposition: A Model from the Arizona-Sonoran Desert. In Forensic Taphonomy: The Post-Mortem Fate of Human Remains. W.D. Haglund and M.H. Sorg, eds. Pp. 139-150. Boca Raton: CRC Press. Galloway, Alison, et al. 1989 Decay Rates of Human Remains in an Arid Environment. Journal of Forensic Sciences 34(3):607-616. Hau, Teo Chee, et al. 2014 Decomposition process and post mortem changes: review. Sains Malaysiana 43(12).

Larkin, Thomas J. George W. Bomar.

1983 Climatic Atlas of Texas. Austin: Texas Department of Water Resources. Laurenzi, Paul

2017 How does a pin-type moisture meter work? Delmhorst Instrument Company. http://www.delmhorst.com/blog/bid/274196/How-Does-a-Pin-Type-Moisture-Meter-Work

Megyesi, Mary S, Stephen P Nawrocki, and Neal H Haskell

2005 Using Accumulated Degree-Days to Estimate the Post-Mortem Interval fro Decomposed Human Remains. Journal of Forensic Sciences 50(3):618-626.

Micozzi, Marc S

1991 Postmortem Change in Human and Animal Remains: A Systematic Approach. Springfield: Charles C Thomas.

Parks, Connie L

2011 A Study of the Human Decomposition Sequence in Central Texas. Journal of Forensic Sciences 56(1):19-22.

Parsons, Hillary Renee

2009 The Postmortem Interval: A Systematic Study of Pig Decomposition in West Central Montana, Anthropology, University of Montana.

Pernambuco-Holston, Christina

2013 Caring for your skin during and after cancer treatment. Memorial Sloan Kettering Cancer Center. https://www.mskcc.org/blog/caring-your-skin-during-and-after-treatment

Reinhard Karl J, Richard H Hevly

1991 Dietary and parasitological analysis of coprolites recovered from Mummy 5, Ventana Cave, Arizona. Kiva 45(3): 319-325).

Rollo, Franco, Stefania Luciani, Adriana Canapa, Isolina Marota

2000 Analysis of bacterial DNA in skin and muscle of the Tyrolean Iceman offers new insight into the mummification process. American Journal of Physical Anthropology.

Schmidt, C, S Nawrocki, M Williamson, D Marlin

2000 Obtaining fingerprings from mummified fingers: A method for tissue rehydration adapted from the archaeological literature. *Journal of Forensic Sciences* 45(4): 874-875.

Schotsman, Eline MJ, et al.

2011 The impact of shallow burial on differential decomposition to the body: A temperate case study. Forensic Science International 206:43-48.

Suckling, Joanna

2011 A Longitudinal Study on the Outdoor Human Decomposition Sequence in Central Texas, Anthropology, Texas State University.