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A viability result for second-order differential

inclusions ∗

Vasile Lupulescu

Abstract

We prove a viability result for the second-order differential inclusion

x′′ ∈ F (x, x′), (x(0), x′(0)) = (x0, y0) ∈ Q := K × Ω,

where K is a closed and Ω is an open subsets of Rm, and is an upper
semicontinuous set-valued map with compact values, such that F (x, y) ⊂
∂V (y), for some convex proper lower semicontinuous function V .

1 Introduction

Bressan, Cellina and Colombo [6] proved the existence of local solutions to the
Cauchy problem

x′ ∈ F (x), x(0) = ξ ∈ K,

where F is an upper semicontinuous, cyclically monotone, and compact valued
multifunction. While Rossi [15] proved a viability result for this problem. On
the other hand, for the second order differential inclusion

x′′ ∈ F (x, x′), x(0) = x0, x′(0) = y0,

existence results were obtained by many authors [1, 4, 9, 10, 13, 16]). In [12],
existence results are proven for the case when F (., .) is an upper semicontinuous
set-valued map with compact values, such that F (x, y) ⊂ ∂V (y) for some convex
proper lower semicontinuous function V .

The aim of this paper is to prove a viability result for the second-order
differential inclusion

x′′ ∈ F (x, x′), (x(0), x′(0)) = (x0, y0) ∈ Q := K × Ω,

where K is a closed and Ω is an open subsets of Rm, and F : Q ⊂ R2m →
2R

m

is an upper semicontinuous set-valued map with compact values, such that
F (x, y) ⊂ ∂V (y), for some convex proper lower semicontinuous function V .
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2 Preliminaries and statement of main result

Let Rm be the m-dimensional Euclidean space with scalar product 〈., .〉 and
norm ‖.‖. For x ∈ Rm and ε > 0 let

Bε(x) = {y ∈ Rm : ‖x− y‖ < ε}

be the open ball, centered at x with radius ε, and let Bε(x) be its closure.
Denote by B the open unit ball B = {x ∈ Rm : ‖x‖ < 1}.

For x ∈ Rm and for a closed subsets A ⊂ R
m we denote by d(x,A) the

distance from x to A given by

d(x,A) = inf{‖x− y‖ : y ∈ A}.

Let V : Rm → R be a proper lower semicontinuous convex function. The
multifunction ∂V : Rm → 2R

m

defined by

∂V (x) = {ξ ∈ Rm : V (y)− V (x) > 〈ξ, y − x〉, ∀y ∈ Rm}

is called subdifferential (in the sense of convex analysis) of the function V .
We say that a multifunction F : Rm → 2R

m

is upper semicontinuous if for
every x ∈ Rm and every ε > 0 there exists δ > 0 such that

F (y) ⊂ F (x) +Bε(0), ∀y ∈ Bδ(x).

This definition of the upper semicontinuous multifunction is less restrictive
than the usual (see Definition 1.1.1 in [3] or Definition 1.1 in [11]). Actually such
a property is called (ε, δ)-upper semicontinuity (see Definition 1.2 in [11]) and it
is only equivalent to the upper semicontinuity for compact-valued multifunctions
(see Proposition 1.1 in [11]).

For K ⊂ Rm and x ∈ K denote by TK(x) the Bouligand’s contingent cone
of K at x, defined by

TK(x) =
{
v ∈ Rm : lim inf

h→0+

d(x+ hv,K)
h

= 0
}
.

For K ⊂ Rm and (x, y) ∈ K ×Rm we denote by T (2)
K (x, y) the second-order

contingent set of K at (x, y) introduced by Ben-Tal [5] and defined by

T
(2)
K (x, y) =

{
v ∈ Rm : lim inf

h→0+

d(x+ hy + h2

2 v,K)
h2/2

= 0
}
.

We remark that if T (2)
K (x, y) is non-empty then, necessarily, y ∈ TK(x).

Moreover (see [4], [10], [13]), if F is upper semicontinuous with compact
convex values and if x : [0, T ]→ R

m is a solution of the Cauchy problem

x′′ ∈ F (x, x′), x(0) = x0, x′(0) = y0,
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such that x(t) ∈ K, ∀t ∈ [0, T ], then

(x(t), x′(t)) ∈ graph(TK), ∀t ∈ [0, T ),

hence, in particular, (x0, y0) ∈ graph(TK).
For a multifunction F : Q := K × Ω ⊂ R2m → 2R

m

and for any (x0, y0) ∈
graph(TK) we consider the Cauchy problem

x′′ ∈ F (x, x′), (x(0), x′(0)) = (x0, y0) ∈ Q (2.1)

under the following assumptions:

(H1) K is a closed and Ω and open subset of Rm, such that

Q := K × Ω ⊂ graph(TK)

(H2) F is an upper semicontinuous compact valued multifunction such that

F (x, y) ∩ T (2)
K (x, y) 6= ∅, ∀(x, y) ∈ Q;

(H3) There exists a proper convex and lower semicontinuous function V : Rm →
R such that

F (x, y) ⊂ ∂V (y), ∀(x, y) ∈ Q.

Remark. A convex function V : Rm → R is continuous in the whole space
R
m (Corollary 10.1.1 in [14]) and almost everywhere differentiable (Theorem

25.5 in [14]). Therefore, (H3) strongly restricts the multivaluedness of F .

Definition. By viable solution of the problem (2.1) we mean any absolutely
continuous function x : [0, T ] → R

m with absolutely continuous derivative x′

such that x(0) = x0, x(0) = y0,

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ],
(x(t), x′(t)) ∈ Q ∀t ∈ [0, T ].

Our main result is the following:

Theorem 2.1 If F : Q ⊂ R2m → 2R
m

and V : Rm → R satisfy assumptions
(H1)–(H3), then then for every (x0, y0) ∈ Q there exist T > 0 and x : [0, T ] →
R
m, a viable solution of the problem (2.1).

3 Proof of the main result

We start this section with the following technical result, which will be used to
prove the main result.

Lemma 3.1 Assume Q = K × Ω ⊂ R2m satisfies (H1), F : Q→ 2R
m

satisfies
(H2), Q0 ⊂ Q is a compact subset and (x0, y0) ∈ Q0. Then for every k ∈ N∗
there exist h0

k ∈ (0, 1
k ] and u0

k ∈ Rm such that

x0 + h0
ky0 +

(h0
k)2

2
u0
k ∈ K, (x0, y0, u

0
k) ∈ graph(F ) +

1
k

(B ×B ×B).



4 A viability result EJDE–2002/76

Proof. Let (x, y) ∈ Q be fixed. Since by (H2), F (x, y) ∩ T (2)
K (x, y) 6= ∅, there

exists v = v(x,y) ∈ F (x, y) such that

lim inf
h→0+

d(x+ hy + h2

2 v,K)
h2/2

= 0.

Hence, for every k ∈ N∗ there exists hk = hk(x, y) ∈ (0, 1
k ] such that

d(x+ hky +
h2
k

2
v,K) <

h2
k

4k
. (3.1)

By the continuity of the map (a, b)→ d(a+ hkb+ h2
k

2 v,K) it follows that

N(x, y) =
{

(a, b) : d(a+ hkb+
h2
k

2
v,K) <

h2
k

4k
}

is an open set and, by (3.1), it contains (x, y). Then there exists r := r(x, y) ∈
(0, 1

k ) such that Br(x, y) ⊂ N(x, y). Since Q0 is compact there exists a finite
subset {(xj , yj) ∈ Q : 1 6 j 6 m} such that

Q0 ⊂
m⋃
j=1

Brj (xj , yj).

We set
h0(k) := min{hk(xj , yj) : j ∈ {1, . . . ,m}}.

Since (x0, y0) ∈ Q0, there exists j0 ∈ {1, 2, . . .m} such that

(x0, y0) ∈ Brj0 (xj0 , yj0) ⊂ N(xj0 , yj0). (3.2)

Denote by h0
k := hk(xj0 , yj0) and remark that, by (3.1) and (3.2), one has

h0
k ∈ [h0(k), 1

k ] and there exists z0 ∈ K such that we have that

d(x0 + h0
ky0 + (h0

k)2

2 v0, z0)
(h0
k)2/2

6
d(x0 + hky0 + (h0

k)2

2 v0,K)
(h0
k)2/2

+
1
2k

<
1
k
,

hence

‖z0 − x0 − h0
ky0

(h0
k)2/2

− v0‖ <
1
k
. (3.3)

Let

u0
k :=

z0 − x0 − h0
ky0

(h0
k)2/2

.

Then

x0 + h0
ky0 +

(h0
k)2

2
u0
k ∈ K.

By (3.3) and (3.2) we get successively:

‖uk − v0‖ <
1
k
,

d((x0, y0), (xj0 , yj0)) 6 rj0 <
1
k
,

hence (x0, y0, u
0
k) ∈ graph(F ) + 1

k (B ×B ×B). �
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Proof of Theorem 2.1 Let (x0, y0) ∈ Q ⊂ graph(TK). Since Ω ⊂ Rm is an
open subset, there exist r > 0 such that Br(y0) ⊂ Ω.

We set Q0 := Br(x0, y0) ∩ (K × Br(y0)). Since Q0 is a compact set, by the
upper semicontinuity of F and Proposition 1.1.3 in [3], we have that

F (Q0) :=
⋃

(x,y)∈Q0

F (x, y)

is a compact set, hence there exists M > 0 such that:

sup{‖v‖ : v ∈ F (x, y), (x, y) ∈ Q0} 6M.

Let

T = min
{ r

2(M + 1)
,

√
r

M + 1
,

r

2(‖y0‖+ 1)
}
. (3.4)

We shall prove the existence of a viable solution of the problem (2.1) defined
on the interval [0, T ]. Since (x0, y0) ∈ Q0 then, by Lemma 3.1, there exist
h0
k ∈ [h0(k), 1

k ] and u0
k ∈ Rm such that

x0 + h0
ky0 +

1
2

(h0
k)2u0

k ∈ K

and (x0, y0, u
0
k) ∈ graph(F ) + 1

k (B ×B ×B). Define

x1
k :=x0 + h0

ky0 +
1
2

(h0
k)2u0

k;

y1
k :=y0 + h0

ku
0
k.

(3.5)

We remark that if h0
k < T then

‖x1
k − x0‖ 6 h0

k‖y0‖+
1
2

(h0
k)2‖u0

k‖ < h0
k‖y0‖+

1
2

(h0
k)2(M + 1),

‖y1
k − y0‖ = h0

k‖u0
k‖ < h0

k(M + 1),

and by the choice of T we get

‖x1
k − x0‖ < r, ‖y1

k − y0‖ < r.

Therefore (x1
k, y

1
k) ∈ Q0 and by Lemma 3.1, there exist h1

k ∈ [h0(k), 1
k ] and

u1
k ∈ Rm such that

x1
k + h1

ky
1
k +

1
2

(h1
k)2u1

k ∈ K,

(x1
k, y

1
k, u

1
k) ∈ graph(F ) +

1
k

(B ×B ×B).

We claim that, for each k ∈ N∗, there exist m(k) ∈ N∗ and hpk, xpk, ypk, upk, such
that for every p ∈ {2, . . . ,m(k)− 1}, we have that:
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(i)
∑m(k)−1
j=0 hjk 6 T <

∑m(k)
j=0 hjk

(ii)

xpk =x0
k +

( p−1∑
i=0

hik
)
y0 +

1
2

p−1∑
i=0

(hik)2uik +
p−2∑
i=0

p−1∑
j=i+1

hikh
j
ku

i
k,

ypk =y0
k +

p−1∑
i=0

hiku
i
k;

(iii) (xpk, y
p
k) ∈ Q0

(iv) (xpk, y
p
k, u

p
k) ∈ graph(F ) + 1

k (B ×B ×B).

If h0
k + h1

k ≥ T then we set m(k) = 1. Assume that h0
k + h1

k < T and define

x2
k :=x1

k + h1
ky

1
k +

1
2

(h1
k)2u1

k,

y2
k :=y1

k + h1
ku

1
k.

(3.6)

Then by (3.5) and (3.6) we have that

x2
k :=x0

k + (h0
k + h1

k)y0
k +

1
2

(h0
k)2u1

k + (h1
k)2u1

k + h0
kh

1
ku

0
k,

y2
k :=y0

k + h0
ku

0
k + h1

ku
1
k

and since h0
k + h1

k ≤ T and

‖x2
k − x0‖ 6(h0

k + h1
k)‖y0

k‖+
1
2

(h0
k)2‖u0

k‖+
1
2

(h1
k)2‖u1

k‖+ h0
kh

1
k‖u0

k‖

<(h0
k + h1

k)‖y0
k‖+

1
2

(h0
k + h1

k)2(M + 1),

it follows
‖x2

k − x0‖ < r, ‖y2
k − y0‖ < r,

hence (x2
k, y

2
k) ∈ Q0.

Assume that hqk x
q
k, yqk u

q
k, have been constructed for q 6 p satisfying (ii)–

(iv) and that we construct hp+1
k , xp+1

k , yp+1
k , up+1

k satisfying such properties.
Since (xpk, y

p
k) ∈ Q0, by lemma 2, there exist hpk ∈ [h0(k), 1

k ] and upk ∈ Rm such
that

xpk + hpky
p
k +

1
2

(hpk)2upk ∈ K,

(xpk, y
p
k, u

p
k) ∈ graph(F ) +

1
k

(B ×B ×B).

If h0
k+h1

k+· · ·+hpk > T then we set m(k) = p. Assume that h0
k+h1

k+· · ·+hpk < T
and define

xp+1
k :=xpk + hpky

p
k +

1
2

(hpk)2upk,

yp+1
k :=ypk + hpku

p
k.

(3.7)
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Then, by the above equations and (ii), we obtain that

xp+1
k = xpk + hpky

p
k +

1
2

(hpk)2upk = x0
k +

( p−1∑
i=0

hik
)
y0 +

1
2

p−1∑
i=0

(hik)2uik

+
1
2

p−1∑
i=0

(hik)2uik +
p−2∑
i=0

p−1∑
j=i+1

hikh
j
ku

i
k + hpk

p−1∑
i=0

hiku
i
k +

1
2

(hpk)2upk

= x0
k +

( p∑
i=0

hik
)
y0 +

1
2

p∑
i=0

(hik)2uik +
p−1∑
i=0

p∑
j=i+1

hikh
j
ku

i
k

and

yp+1
k := ypk + hpku

p
k = y0

k +
p−1∑
i=0

hiku
i
k + hpku

p
k = y0

k +
p∑
i=0

hiku
i
k.

Therefore,

‖xp+1
k − x0‖ 6

( p∑
i=0

hik
)
‖y0‖+

1
2

p∑
i=0

(hik)2‖uik‖+
p−1∑
i=0

p∑
j=i+1

hikh
j
k‖u

i
k‖

6
( p∑
i=0

hik
)
‖y0‖+

M + 1
2

( p∑
i=0

hik
)2

and

‖yp+1
k − x0‖ 6

p∑
i=0

hik‖ui0‖ 6 (M + 1)
( p∑
i=0

hik
)
.

Since
∑p
i=0 h

i
k < T one obtains that

‖xp+1
k − x0‖ < r, ‖yp+1

k − x0‖ < r,

hence (xp+1
k , yp+1

k ) ∈ Q0.
We remark that this iterative process is finite because hpk ∈ [h0(k), 1

k ], implies
the existence of an integer m(k) such that

h0
k + h1

k + · · ·+ h
m(k)−1
k 6 T < h0

k + h1
k + · · ·+ h

m(k)−1
k + h

m(k)
k .

By (iv), for every k ∈ N
∗ and every p ∈ {0, 1, . . . ,m(k)} there exists

(apk, b
p
k, v

p
k) ∈ graph(F ) such that

‖xpk − a
p
k‖ <

1
k
, ‖ypk − b

p
k‖ <

1
k
, ‖upk − v

p
k‖ <

1
k

; (3.8)

hence,

‖xpk‖ 6 ‖x
p
k − x0‖+ ‖x0‖ 6

1
k

+ ‖x0‖ 6 1 + ‖x0‖,

‖ypk‖ 6 ‖y
p
k − y0‖+ ‖y0‖ 6

1
k

+ ‖y0‖ 6 1 + ‖y0‖,

‖upk‖ 6 ‖u
p
k − v

p
k‖+ ‖vpk‖ 6

1
k

+M 6 1 +M.

(3.9)
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Let us set
tpk = h0

k + h1
k + · · ·+ hp−1

k , t0k = 0.

We remark that for all k ∈ N∗ and all p ∈ {1, . . . ,m(k)}, we have

tpk − t
p−1
k <

1
k

and t
m(k)−1
k 6 T < t

m(k)
k . (3.10)

For each k > 1 and for p ∈ {1, . . . ,m(k)} we set Ipk = [tp−1
k , tpk] and for t ∈ Ipk

we define
xk(t) = xp−1

k + (t− tp−1
k )yp−1

k +
1
2

(t− tp−1
k )2up−1

k . (3.11)

Then
x′k(t) = yp−1

k + (t− tp−1
k )up−1

k , ∀t ∈ Ipk ,

x′′k(t) = up−1
k , ∀t ∈ Ipk ,

(3.12)

hence, by (3.9), for all t ∈ [0, T ], we obtain

‖x′′k(t)‖ 6‖up−1
k ‖ < M + 1

‖x′k(t)‖ 6‖yp−1
k ‖+ (t− tpk)‖upk‖ < ‖y0‖+M + 2

‖xk(t)‖ 6‖xp−1
k ‖+ (t− tp−1

k )‖yp−1
k ‖+

1
2

(t− tp−1
k )2‖up−1

k ‖

6‖x0‖+ ‖y0‖+M + 3.

(3.13)

Moreover, for all t ∈ [0, T ] we have that

(xk(t), x′k(t), x′′k(t)) ∈ (xpk, y
p
k, u

p
k) +

‖y0‖+M + 2
k

B × M + 1
k

B × {0};

hence, by (iv), we have

(xk(t), x′k(t), x′′k(t)) ∈ graph(F ) + ε(k)(B ×B × {0}), (3.14)

where ε(k)→ 0 when k →∞. Then, by (3.11), (3.12) and (3.13), we obtain that
(x′′k)k is bounded in L2([0, T ],Rm), (x′k)k and (xk)k are bounded in C([0, T ],Rm)
and equi-Lipschitzian, hence, by Theorem 0.3.4 in [3] there exist a subsequence
(again denoted by (xk)k) and an absolutely continuous function x : [0, T ]→ R

m

such that

(a) (xk)k converge uniformly to x

(b) (x′k)k converge uniformly to x′

(c) (x′′k)k converge weakly in L2([0, T ],Rm) to x′′.

By (H3) and Theorem 1.4.1 in [3] we get that

x′′(t) ∈ coF (x(t), x′(t)) ⊂ ∂V (x′(t)), a.e. on [0, T ],
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where co stands for the closed convex hull; hence, by Lemma 3.3 in [7], we
obtain that

d

dt
V (x′(t)) = ‖x′′(t)‖2, a.e. on [0, T ];

hence

V (x′(T ))− V (x′(0)) =
∫ T

0

‖x′′(t)‖2dt. (3.15)

On the other hand, since x′′k(t) = up−1
k , ∀t ∈ Ipk , by (iv), there exist ap−1

k , bp−1
k ,

zp−1
k ∈ 1

kB, such that

up−1
k − zp−1

k ∈ F (xp−1
k −ap−1

k , yp−1
k − bp−1

k ) ⊂ ∂V (yp−1
k − bp−1

k ),∀k ∈ N∗ (3.16)

and so the properties of the subdifferential of a convex function imply that, for
every p < m(k), and for every k ∈ N∗ we have

V (x′k(tpk)− bpk)− V (x′k(tp−1
k )− bp−1

k ) >

>〈up−1
k − zp−1

k , x′k(tpk)− x′k(tp−1
k ) + bp−1

k − bpk〉 =

=〈up−1
k − zp−1

k ,

∫ tpk

tp−1
k

x′′k(t)dt〉+ 〈up−1
k − zp−1

k , bp−1
k − bpk〉 =

=
∫ tpk

tp−1
k

‖x′′k(t)‖2dt− 〈zp−1
k ,

∫ tpk

tp−1
k

x′′k(t)dt〉+ 〈up−1
k − zp−1

k , bp−1
k − bpk〉;

hence

V (x′k(tpk)− bpk)− V (x′k(tp−1
k )− bp−1

k )

>
∫ tpk

tp−1
k

‖x′′k(t)‖2dt− 〈zp−1
k ,

∫ tpk

tp−1
k

x′′k(t)dt〉+ 〈up−1
k − zp−1

k , bp−1
k − bpk〉. (3.17)

Analogously if T ∈ Im(k)
k , then by (3.10) we have

V (x′k(T ))− V (x′k(tm(k)−1
k )− bm(k)−1

k )

>〈um(k)−1
k − zm(k)−1

k ,

∫ T

t
m(k)−1
k

x′′k(t)dt+ b
m(k)−1
k 〉

=
∫ T

t
m(k)−1
k

‖x′′k(t)‖2dt− 〈zm(k)−1
k ,

∫ T

t
m(k)−1
k

x′′k(t)dt〉

+ 〈um(k)−1
k − zm(k)−1

k , b
m(k)−1
k 〉.

(3.18)

By adding the m(k)− 1 inequalities from (3.17) and the inequality from (3.18),
we get

V (x′k(T ))− V (y0 − b0k) >
∫ T

0

‖x′′k(t)‖2dt+ α(k), (3.19)
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where

α(k) =−
m(k)−1∑
p=1

〈zp−1
k ,

∫ tpk

tp−1
k

x′′k(t)dt〉+
m(k)−1∑
p=1

〈up−1
k − zp−1

k , bp−1
k − bpk〉

− 〈zm(k)−1
k ,

∫ T

t
m(k)−1
k

x′′k(t)dt〉+ 〈um(k)−1
k − zm(k)−1

k , b
m(k)−1
k 〉.

Since

|α(k)| 6
m(k)−1∑
p=1

|〈zp−1
k ,

∫ tpk

tp−1
k

x′′k(t)dt〉|+
m(k)−1∑
p=1

|〈up−1
k − zp−1

k , bp−1
k − bpk〉|+

+ |〈zm(k)
k ,

∫ T

t
m(k)−1
k

x′′k(t)dt〉|+ |〈um(k)−1
k − zm(k)−1

k , b
m(k)−1
k 〉|

6
m(k)−1∑
p=1

‖zp−1
k ‖‖

∫ tpk

tp−1
k

x′′k(t)dt‖+
m(k)−1∑
p=1

‖up−1
k − zp−1

k ‖‖bp−1
k − bpk‖

+ ‖zm(k)
k ‖‖

∫ T

t
m(k)−1
k

x′′k(t)dt‖+ ‖um(k)−1
k − zm(k)−1

k ‖‖bm(k)−1
k ‖

6
(M + 2)(3m(k)− 1)

k

it following that α(k) → 0 when k → ∞; hence, by (3.19), we passing to the
limit for k →∞, we obtain

V (x′(T ))− V (y0) > lim sup
k→∞

∫ T

0

‖x′′k(t)‖2dt. (3.20)

Therefore, by (3.15) and (3.20),∫ T

0

‖x′′(t)‖2dt > lim sup
k→∞

∫ T

0

‖x′′k(t)‖2dt

and, since (x′′)k converges weakly in L2([0, T ],Rm) to x′′, by applying Propo-
sition III.30 in [8], we obtain that (x′′)k converge strongly in L2([0, T ],Rm) to
x′′, hence a subsequence again denoted by (x′′)k converge poinwise a.e. to x′′.
Since by (3.14)

lim
k→∞

d((xk(t), x′k(t), x′′k(t)), graph(F )) = 0,

and since by (H2) the graph of F is closed ([3], Proposition 1.1.2), we have that

x′′(t) ∈ F (x(t), x′(t)) a.e. on [0, T ].

It remains to prove that (x(t), x′(t)) ∈ Q, ∀t ∈ [0, T ]. Indeed, by (3.11),
(3.12), and (3.13), we have that

‖xk(t)− xpk‖ <
‖y0‖+M + 2

k
, ‖x′k(t)− ypk‖ <

M + 1
k

,
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hence
lim
k→∞

d((xk(t), x′k(t)), (xpk, y
p
k)) = 0.

Since, (xpk, y
p
k) ∈ Q0,∀k ∈ N∗, by (a) and (b) we have that

lim
k→∞

d((x(t), x′(t)), (xk(t), x′k(t))) = 0.

On the other hand

d((x(t), x′(t)), Q0)
6 d((x(t), x′(t)), (xk(t), x′k(t))) + d((xk(t), x′k(t)), (xpk, y

p
k)) + d((xpk, y

p
k), Q0);

(3.21)

hence, by passing to the limit we obtain that

d((x(t), x′(t)), Q0) = 0, ∀t ∈ [0, T ].

Since Q0 is closed, we obtain that (x(t), x′(t)) ∈ Q0, for all t ∈ [0, T ], which
completes the proof. �
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Bulevardul Republicii, Nr.1
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