

Bacteria fight club: Identifying probiotics for goldfish

Whitney Ortiz (weo8@txstate.edu), Mar Huertas, Camila Carlos-Shanley Biology Department, Aquatic Resources M.S.

Introduction

- Aquaculture supports both the economy and food availability in poor regions (1).
- Elevated nitrite concentrations, common in aquaculture, disrupt fish microbiome, which potentially can induce illnesses.
- Probiotics can be used to stabilize the microbiome.

We identified probiotic candidates with the goal of identifying a bacteria that can prevent pathogen growth while being safe for the fish

Methods

- Bacteria isolated from the tissue microbiomes of healthy goldfish identified using Sanger sequencing.
- Probiotic candidates were tested for antimicrobial ability using an agar plug and competition assay.
- Successful candidates were retested using the same assays with nitrite infused media.
- Top candidates were selected based on the antimicrobial activity and genus characteristics.

Results

Code	Strain Code	Source	Genus	EI	VH	YR	AH
S1	S00367	Skin	Aeromonas	Yes	No	No	No
G1	S00359	Gill	Cellulomonas	Yes	Yes	No	No
G2	S00368	Gill	Aeromonas	Yes	No	No	No
N1	S00553	Nose	Chitinilyticum	Yes	Yes	No	No
N2	S00551	Nose	Aeromonas	Yes	No	Yes	No
N3	S00557	Nose	Pseudoxanthomonas	Yes	Yes	Yes	No
N4	S00541	Nose	Contaminated	Yes	No	No	No
N5	S00544	Nose	Pseudomonas	Yes	No	No	No
N6	S00542	Nose	Pseudomonas	Yes	No	Yes	No

Table 1. Summary of probiotic candidates derived from the skin, gills, and nose of healthy goldfish. A direct competition assay and an agar plug assay were conducted to determine if the candidates had any antimicrobial activity against for pathogens, *E. ictaluri* (EI), *V. harveyi* (VH), *Y. ruckeri* (YR), and *A. hydrophilia* (AH).

Figure 1. Inhibition of plated on $\frac{1}{2}$ BHI by probiotic candidates using an agar plug assay (mean \pm SEM). The zones of inhibition shown are against *E. ictaluri* when with no added nitrite.

Figure 2. Example of direct competition assay plate featuring *E. ictaluri* as the pathogen.

Discussion

- Most bacteria isolated from the goldfish microbiomes possessed some antimicrobial ability.
- Nitrite inhibited the growth of pathogens *in vitro*, despite being more common in farm fish exposed to nitrite (2).
- Candidates N3 and N5 were determined to be the best potential probiotics.
- Species isolated from the microbiome should pose little risk to the fish while stabilizing the microbiome (3).
- Future works should test these candidates *in vivo* to confirm their safety and efficacy in fish exposed to nitrite.

References

- 1. Tacon, A. (2020) Trends in global aquaculture and aquafeed production: 2000-2017. Reviews in Fisheries Science & Aquaculture 28: 43-56.
- 2. Lai, W.W.P., Lin, Y.C., Wang, Y.H., Guo, Y.L., and Lin, A.Y.C. (2018) Occurrence of emerging contaminants in aquaculture waters: Cross-contamination between aquaculture systems and surrounding waters. Water Air and Soil Pollution 229: 1-12.
- 3. Lara-Flores, M. (2011) The use of probiotic in aquaculture: An overview. International Research Journal of Microbiology 2: 471-478.