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ABSTRACT 

The increasing importance of sparse connectivity representing real-world data has 

been exemplified by the recent work in areas of graph analytics, machine language, and 

high-performance. Sparse matrices are the critical component in many scientific 

computing applications, where increasing the sparse matrix operation efficiency can 

contribute significantly to improve overall system efficiency. The primary challenge is 

handling the nonzero values efficiently by storing them using specific storage format and 

performing matrix operations, taking advantage of the sparsity. This thesis proposes an 

optimized algorithm for performing sparse matrix operations concerning storage and 

hardware implementation on FPGAs. The proposed thesis work includes simple 

arithmetic operations to complex decomposition algorithms using Verilog design. 

Operations of the sparse matrix are tested with testbench matrices of different size, 

sparsity percentage, and sparsity pattern. The design was able to achieve low latency, 

high throughput, and minimal resources utilization when compared with the conventional 

matrix algorithm. Our approach enables solving more significant problems than 

previously possible, allowing FPGAs to more interesting issues.  
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1. INTRODUCTION 

We live in a “big data” era where Graph Processing has become increasingly 

important with the amount of data volume generated and collected from many real-world 

applications such as sensors, social networks, portable devices. As you expect, graphs can 

sometimes be very complicated. With the demand for data-analysis continuing to grow, 

large-scale graph processing has become challenging.  

A graph consists of a finite set of vertices and a set of edges composed of distinct, 

unordered pairs of vertices. A dot represents the vertex, and an edge represents a line 

segment connecting the dots associated with the edge. If one vertex is directed to another 

vertex by the edges of a graph, then the graph is called directed graph. If it is undirected, 

then the graph is called undirected graph.  

Graph-based applications are used to represent physical structures from social 

network analyses to anomaly detections. Computing these graphs are entirely determined 

by specifying either its adjacency structure or its incidence structure. As computers are 

more adept at manipulating numbers than at recognizing pictures, it is a standard practice 

to communicate the graph specifications to a computer in matrix form. 

 

Figure 1. Real World Sparse Matrix Applications 

Graphs are used to model many systems which are of interest to engineers and 

scientists today, through which useful information is extracted. Once entered a computer, 
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the data from real-world applications no longer looks like a graph. Often it is in the form 

of a sparsely populated matrix with most non-zeros compared to zeros [1].  When the 

number of zeroes is relatively large, a requirement for more efficient data structures 

arises. We are drifting away from serial computing towards parallel distributed 

computing over a large variety of architectural designs. The generic implementation of 

data structures allows one to reuse the most appealing one, which may not be the fastest.  

In a graph algorithm, to obtain information where there is a small number of 

nonzero entries, but millions of rows and columns of memory could be wasted by storing 

redundant zeros. There are two ways one would exploit the sparsity of a matrix: One, to 

save the non-zero elements of a matrix and second is to process only the non-zero 

elements of a matrix[2]. However, large graphs are hard to deal with as IO limits the 

state-of-art graph processing systems.  

Numerous studies have been addressed to specialize in finding new algorithms for 

the sparsely distributed matrices. Running parallelized programs on GPU gives large 

speedup, however high-performance GPUs consume considerable amount of power. 

Many computations are difficult to parallelize, incurring extra overhead for transferring 

data between CPU and GPU. For the most-part, CPUs and GPUs compute well in 

performance scale. FPGA based designs may avert those problems due to low power 

nature, with efficient customized pipelines. In a comparison of performance of FPGA and 

GPU, it is reported both have similar performance, while FPGAs can be 15 times faster 

and 61 times energy efficient than GPU for uniform random generation [3]. Another 

work shows GPU implementation can be 11 times faster than FPGA, but on the contrary 

FPGA implementation can be up to 15 times better than GPU in terms of performance 
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per watt [4]. It is feasible to get a latency of around or below 1 microsecond using FPGA, 

whereas with CPU a latency of 50 microsecond is already good. Moreover, one of the 

main reasons for low latency is they do not depend on generic operating system and the 

communication do not have to go via generic buses such as USB or PCIe. GPUs multi-

dimensional threading structure or multi core platform is not strongly suitable for highly 

data-dependent transformations for matrix decomposition. The performance improvement 

of GPU and multi-core platform-based decomposition algorithms is limited due to the 

iterative thread sync and irregular memory access [5]. While GPUs shows satisfactory 

compute efficiency on sparse matrix-matrix operations, they have showed that compute 

units are significantly underutilized when the sparsity drops below 0.1% achieving low 

throughput [6]. However, there is a small niche, where FPGA has been an attractive 

platform which can handle the same computation task for acceleration and achieve high 

performance with low power computation for many applications. Previous 

implementation of FPGA based performance improvement for many applications like 

linear algebra, graphic computation was demonstrated. Compared to other parallel 

platforms, FPGAs are a better solution for performance improvement by parallelizing 

decomposition algorithms with flexibility, reconfigurability and low energy consumption.  

The primary focus of this work is divided into four subdivisions: Matrix 

Operations, Storage Format, software implementation and finally hardware platform. 

After carefully reviewing all the previous methods of approaching the sparse matrices, 

the next reliable step for improving the performance no longer involves proposing new 

expensive optimization but applying the optimizations whenever they are useful.  
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The primary goal of this project is to develop an efficient algorithm for various 

sparse matrix operations and compare with the regular matrix operations. By utilizing the 

sparse matrix storage method, the storage requirements for storing were significantly 

reduced to be processed in a single FPGA. Finally, the matrix values are sent as input to 

the FPGA board, performing the necessary matrix operations, and the output values are 

sent back for verification. The performance calculations are carried out and are 

represented as individual graphs for comparison.  

1.1 Problem Statement 

1. Indirect addressing: Indirect addresses must address the non-zero entries of a 

sparse matrix in its index array leading to random accesses that require more 

memory transactions and lower cache hit rate. 

2. Memory Allocation: The distribution of zero and non-zero entries are not known 

in advance. Pre-allocating memory blocks of a specific size may waste memory 

when the intersection of nodes is large. 

3. Low Arithmetic Intensity: This is caused by the lack of temporal locality in the 

access to sparse matrices. If the matrix is not structured or blocked, most of the 

entries in cache line fetched to get an element remain unused causing high 

memory overhead per sparse matrix operation.   

1.2 Research Goals 

1. To determine an algorithm for various sparse matrix operations by minimizing 

gate count, area, computational time, latency, number of multiplication & addition 

hardware and to improve throughput. 
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2. The developed algorithm must be capable of handling matrices of various sizes 

and should be simple to implement and highly scalable. 

The implementation of the algorithm on an FPGA board involves the following 

steps. 

• Design of an arithmetic logic unit in Verilog. This unit should implement the 

Sparse matrix algorithm for arithmetic operations like addition, subtraction, 

multiplication, as well as decomposition methods including LU and QR 

decomposition. 

• Implement the design of sparse matrix algorithms and optimize for the problem 

size concerning area, speed, and latency. 

• Design of a Universal Asynchronous Receiver/Transmitter (UART) 

communication module in Verilog for transferring the data from PC/UART port 

for sparse matrix algorithm computation. Results are verified with MATLAB 

results for error analysis. 

• Comparison of the results and investigate the possible solutions and approaches 

for scaling up the design for larger matrix more efficiently. 

1.3 Goal Measurement Metrics 

The two basic hardware design methodologies include language-based design 

using synthesis tool and schematic-based design. Synthesis tools continue to improve 

more optimized methods in terms of both area and speed when compared with schematic 

implementation. The schematic-based design is no longer feasible for supporting 

architectural complexity for modern FPGAs. Also, this research focuses on reducing the 

number of multipliers and adders to provide improvements in performance.  
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For the computation of two sparse matrix operation, there are a certain number of 

arithmetic operations regardless of the storage of the matrix which include 

multiplications and addition of nonzero values. The primary goal of the thesis is to 

improve efficiency and reduce the resources used for the operation. The performance 

analysis is calculated in terms of improvements in latency, computation time, throughput 

for performing matrix operations and which reduces the number of multiplication and 

additions hardware utilize.  

• Latency 

It is the amount of time for completing an operation. This is defined as the time 

between reading the first element of the input matrices, A and B, and writing the first 

element to the result matrix C. The Latency of an operation is calculated based on the 

number of clocks consumed by the Hardware accelerator to produce an output after the 

application of the input (i.e.) the time from reading the first element of input matrix and 

writing the first element to output matrix.  

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 = 𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛 

where 𝑇𝑜𝑢𝑡 – time taken for the last output to be calculated; 𝑇𝑖𝑛 – time taken for the first 

input to become available 

Total Number of Clock Cycles (𝑇𝑐) = 
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

𝐶𝑙𝑜𝑐𝑘_𝑃𝑒𝑟𝑖𝑜𝑑
 

Clock_Period – timing constraint 

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑇
𝑚
) = 𝑇𝑐  ×  𝑇𝑚𝑖𝑛 

where 𝑇𝑚𝑖𝑛 – Minimum period of the clock for the design during synthesis;  

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑇
𝑛
) = 𝑇𝑚  × n × n 

where n×n – matrix size, with n=10,20,30, …100 
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• Throughput 

Throughput represents the rate at which the design can process inputs. It is the 

number of operations executed or produced per unit of time. Through this thesis, 1sec 

(1000ms) is considered as the unit of time, thus representing the throughput as 

elements/sec. As latency is defined by the time consumed by the design to produce one 

element, the throughput over a time interval of one sec can be derived as follow: 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑠𝑒𝑐) =
1 𝑠𝑒𝑐  

𝑇𝑛
 

where n×n – matrix size, with n = 10,20,30, … 100. 

• Resource Utilization 

The amount of resource available on the FPGA board such as Lookup Tables, 

Memory, logic registers, BRAM, flipflops, nets and logic interconnects are valuable. A 

comparison of resources utilized for the proposed method and the regular method is 

presented for analysis. 

• Power Analysis 

The power utilization report provides the static and dynamic power consumption 

of the implemented design, for which the comparison is provided for data analytics. 

1.4 Tools Used 

The following tools will be used to carry out synthesis, implementation, and 

verification of results: 

1. Digilent Nexys4 DDR FPGA. 

2. Xilinx ISE Design Tool.  

3. Vivado Design Suite.  

4. MATLAB Software  
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2. LITERATURE REVIEW 

The Basic Linear Algebra Subprograms (BLAS) has been used in a wide range of 

software, which provides basic building block routines for vector and matrix operations 

[7]. Some of the optimizations for BLAS library on general-purpose processors includes 

loop unrolling and register blocking. Because many of the optimizations are specific to a 

platform, ATLAS was implemented which automatically optimizes the numerical 

software for processors with pipelined designs. Linear Algebra Library (LAPACK) 

solves system of linear equations, least-square solutions, eigenvalue problems and 

singular value problems.  

The main reason why FPGAs are considered over traditional computer is they can 

be configured as required by the application. The FPGAs can be reprogrammed to given 

hardware acceleration which offers the best of both hardware and software. And most 

importantly they are becoming extremely inexpensive when compared with super-

computers like such as CRAY with millions on logic gates and LUT. 

There have been several works done for the acceleration of sparse matrix 

operations that uses Multicore processor, GPU and FPGA based approaches. The 

implementation using CPU keeps all the data associated with the operation in cache, 

while the GPUs largely focus on the efficient memory bandwidth usage, whereas FPGA 

focus on compressed storage of matrix data to reduce the memory bandwidth 

requirements. Recently, FPGA implementation have been greatly used in data centers 

like in, researchers from Microsoft uses an FPGA-based design for accelerating the 

“Bing” search engine [8].  



 

9 

 

Most of the studies target Sparse Matrix by Vector Multiplication (SpMV), yet 

Sparse Matrix by Matrix multiplication (SpMM) has been rarely addressed in prior 

research. A detailed literature by explains the optimization techniques in sparse matrix 

multiplication. In [9] Zhuo had proposed an FPGA based design, which demonstrated 

significant performance improvement over general-purpose processor for matrices with 

irregular sparsity structures. There was another implementation for FPGA based SpMM 

using a single FPGA node showing how sparsity of a single matrix is affecting the 

performance of the operations [10]. In [11] the authors have proposed separate 

architecture for matrix multiplication, where operation speed is a main issue. The 

pipelining and parallel processing of elements were used to decrease the computation 

time in [12]. The former method has considered area and latency, while the second had 

taken area and maximum running frequency considering the energy dissipation.    

Some of the works on efficient sparse LU Decomposition architecture for sparse 

matrices are either Target Domain-Specific pattern targeting a specific application 

domain or require pre-ordered symmetric matrix. Only a few FPGA-based architectural 

designs for Sparse LU Decomposition have been proposed due to: 

a. These sparse matrices have irregular sparsity structure, and it is difficult to devise 

an efficient and common hardware design for all application domains. 

b. A detailed study on the nonzero structure of the sparse matrix is to be performed 

for designing suitable input parameters for the hardware design.  

Consider the work by [13], where author proposes an efficient LU Decomposition 

hardware Architecture targeting the Power Flow Analysis Application Domain 

implementing right-looking algorithm along with mechanisms for pivoting operations. 



 

10 

 

But the performance of the work is primarily I/O bandwidth limited. Whereas in [14], the 

work is primarily dependent for Circuit Simulation Application domain. The author 

proposed in a matrix factorization graph which is generated to capture the static sparsity 

pattern of the matrices and is exploited for distributing the explicit data flow 

representation of computation across PE’s. In the work on [15], a more general hardware 

design for sparse LU Decomposition was proposed for a wider range of application 

domains. The hardware architecture parallelizes Left-looking Algorithm to efficiently 

decompose position symmetric positive definite or diagonally dominant matrices. This 

design is indeed efficient except for the fact, when the performance of the design arises 

from dynamic data dependency during column-by-column factorization leading their 

processing elements stalling for synchronizing to resolve data dependency. Also, the 

matrices used as benchmarks are either semi-dense or symmetric in topology but none in 

terms of nonzero elements. The hardware utilization of some of the previous 

implementations on reconfigurable architectures including Multicores, GPU and FPGA 

never exceeded 20% mark. The main reason for this poor performance is the irregularity 

of computation and memory access. The hardware resource utilization of sparse 

algorithm is very high, because of large hardware dynamic scheduling which is limited 

by scalability.  

The previous FPGA implementations adopts dynamic dataflow, incurring in large 

overhead and poor hardware resource utilization. The proposed algorithm in this thesis 

introduces a synchronous dataflow FPGA implementation addressing the main problems 

of Sparse Operations. A customized data storage format is employed to organize memory 

access to eliminate time-consuming data address calculations. One of the limiting factors 
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is the time required for pivot search. Reducing the pivot search during LU decomposition 

of eliminating will lead to higher performance gain. In our work, we had improvement by 

overlapping the next pivot search with the current update unit, which although depends 

on reuse of rows from an elimination step.  

The first QR Decomposition was used in weight computation for adaptive 

beamforming application [16]. In [17] a Squared Givens Rotation algorithm was used to 

avoid the square root operation. The was followed up by the work of [18] which used 

SGR algorithm for implementing a linear array on Xilinx Virtex-E FPGA allowing a 

maximum of 9 processors and achieving 150MHz clock rate and throughput of 

20GFLOPS with floating point operation. The first implementation of linear array 

architecture using CORDIC algorithm for rotation computing was developed. There are 

many commercial QR-D IP cores using CORDIC algorithm. An algorithm for Inverse 

QR-based decomposition was proposed by S. Thomas Alexander and Avinash L. 

Ghirnikar [19] which was later applied to adaptive beam forming. A fixed-point QR 

decomposition was developed with modified Gram-Schmidt (MGS) algorithm using LUT 

based approach. Later for polynomial matrices, Polynomial Givens rotation [20] was 

developed.     
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3. BACKGROUND 

3.1. Graph Processing 

Graphs are a collection of nodes and edges. The edge of the graph provides a 

connection between one node to another. By default, an edge is bidirectional. Typically, 

graphs are used to model collection of things along with their relationships. For example, 

Figure 2 shows a graph with cities as nodes and roads connecting them as edges. The 

graph represents several cities in Southern California. Vertices represent the cities in the 

graph while the fact that an edge connecting two vertices show two of the cities 

connected. 

 

Figure 2. Graph Representing Several Cities in Southern California 
 

Since the structure of real-world graphs can vary tremendously, there is a need for 

an efficient algorithm for obtaining high performance [21]. When these graphs are 

processed in a computer, they get stored in the form of an adjacency matrix. For a graph 

with n nodes, an adjacency matrix is represented as an n×n two-dimensional array. For a 

weighted graph, the array elements would give the cost of the edge between them, and for 

an unweighted graph, the array would be Booleans. The following Table 1 is an example 

of an adjacency matrix representation of the graph in the table. The able in Figure 1 
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shows the graph is represented as a sparsely populated matrix. The number of rows and 

columns is equal to the number of vertices in the graph. The edge is represented by 

intersecting rows and columns of two vertices it connects. 

Table 1. Adjacency Matrix Representation of the Graph 
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MALIBU 0 45 20 0 0 0 0 0 

SANTA BARBARA 45 0 30 0 45 0 0 0 

LOS ANGELES 20 30 0 25 0 0 100 0 

RIVERSIDE 0 0 25 0 75 0 0 0 

BARSTOW 0 45 0 75 0 0 0 0 

PALM SPRINGS 0 0 0 75 0 0 0 0 

SAN DIEGO 0 0 100 50 0 0 0 15 

EL CAJON 0 0 0 0 0 0 15 0 

 

The computers are responsible for locating the essential vertices, and once these 

graphs continue to grow large, the algorithms come into play. The matrix representation 

of these type of graphs is commonly large and sparsely populated. From the adjacency 

matrix in table 1, it is evident that there are 64 cells in which only 18 entries contain the 

nonzero value. For a graph with N vertices, the adjacency matrix comprises N2 cells. The 

betweenness centrality(BC) algorithms are used to find the shortest path between 

vertices, which is complicated and outside the scope of this thesis, but still, the 

performance is dominated by sparse matrix multiply performance[22].  When dealing 

with tens or even hundreds of thousands of vertices extracted from graphs, adjacency 

matrix becomes too large to be processed. Since, the number of zeros in the sparse matrix 

is high, multiplying or adding two nonzero values together is low and consumes 

hardware[23]. During sparse matrix performance on a processor, the frequency of non-

zero calculations with computer’s clock cycle is little between the ranges of 0.5% to 0.1% 
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which also directly depends on the size of the matrix. For efficient handling of the sparse 

matrices, various storage formats can be used to store only the nonzero value, thereby 

reducing the size of the matrix in memory on an embedded system [24]. As embedded 

digital systems are limited in both their memory size and their computational power, the 

key is to make the algorithms faster to reduce the requirements. 

“I observed that most of the coefficients in our matrices were zero, i.e., the 

nonzero were ‘sparse’ in the matrix, and that typically the triangular matrices associated 

with the forward and back solution provided by Gaussian elimination would remain 

sparse if pivot elements were chosen with care” - Harry Markowitz. 

3.2 Sparse Matrices 

Sparse matrices are generally considered to be populated with zeros than nonzero. 

There is no rule defining when a matrix is sparse. According to Gilbert, any matrix, 

which allows special techniques to take advantage of many zeros, is a sparse matrix. 

When storing and performing operations on a sparse matrix, it is desirable to modify the 

standard algorithm to take advantage of the sparsity[25]. By nature, sparse data yields 

savings in memory usage. Sparse matrix arises from data communication networks, 

connections in electronic circuits, with constraints in a linear or non-linear programming 

formulation, in the discretization of ordinary or partial differential equations in simulation 

models[26]. Many of the sparse matrices are used in science and engineering today with 

larger dimensional; there is a lot of research carried out only to store and operate on the 

non-zero elements of a matrix. This is true when working on large volumes of data with 

less spatial locality which would do not fit into a CPU’s chip memory cache especially 

for sparse matrix computations and convolution [27]. There are different and specific 
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forms of sparsity patterns, where indices are used so that one can know where the 

nonzero is located within the matrix. To maximize the performance of sparse matrix 

operations, it is especially important to optimize the operations and not just within 

individual operations. In Verilog and VHDL, there will always be more than one way to 

code the same problem. It also provides several alternatives to the designer as to how to 

accomplish the same task. Therefore, a choice of a coding style is needed to achieve 

specific performance goals and to minimize resource utilization on a chip. The 

computational complexity of sparse operations is proportional to the number of nonzero 

elements in the matrix. The storage of a given sparse matrix will be O(nonzeros). The 

time required for particular operation on the sparse matrix is close to O(flops). Figure 

3(a) is a representation of 20% sparsely populated 20×20 matrix with 80 nonzero values, 

and Figure 3(b) is a representation of 30% sparsely populated 100×100 matrix with 3000 

nonzero values. 

 

 

 

 

 

   

    

(a)              (b)   

Figure 3. Sparsity Pattern of Matrices  

 

Sparse matrices are useful for computing large scale applications that dense 

matrices cannot handle. The finite element method is one way of solving partial 
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differential equations where the coefficients are usually sparse. The size of the coefficient 

is large for getting an accurate approximation to solve PDEs and rely on sparse matrix 

operations. 

3.3 Sparse Matrix Storage Formats 

Numerous efforts have been devoted to data storage formats with the aim of 

maximizing performance. To fully optimize the sparse matrix operations, we will have to 

design a compression algorithm which will take the sparse matrices structures into 

account. The section of the thesis briefly describes the most common 

compression/storage formats to date. The primary goal of these different format 

variations relies on either improve the architectures ability to access the nonzero data and 

to perform computations by reducing the total space required to store the matrix[28]. Out 

of all the formats, Compressed Sparse Row (CSR) is the most common format regardless 

of the processor which stores the elements row-wise. Another form is the Compressed 

Sparse Column (CSC) that stores the elements column-wise.  

There are many methods for storing only the nonzero elements of a sparse matrix 

out of which the following have gained a lot of attention due to their computational 

capability and the efficiency in storing the elements. 

1. Compressed Row Storage (CRS) 

2. Compressed Column Storage (CCS) 

3. Block Compressed Row Storage (BCRS) 

4. Compressed Diagonal Storage (CDS) 

5. Coordinate Format (COO) 
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Table 2 gives a summary of the various storage formats used for implementation, 

their storage space computation depending on the number of nonzero values available in 

the sparse matrix, their advantage, and disadvantage. 

Table 2. Comparison of Various Sparse Matrix Storage Formats 

Storage 

Format 
Storage Space Advantage Disadvantage 

Basic Storage Formats 

Coordinate 

Format 

(COO) 

3 × NZV 

It is suitable for 

any random 

sparse matrix. 

It occupies a lot 

of 

space. 

 

Compressed 

Sparse 

Column 

(CSC) 

2 × NZV + n + 1 

This reduces 

storage 

allowing row 

pointers to 

facilitate fast 

multiplication. 

Not suitable for 

GPU due to 

load imbalance, 

reduce 

parallelism and 

irregular 

memory access 

patterns. 

Diagonal 

Format 
Ndia + Nlz × Ndia 

It is very 

effective for 

matrix with 

non-zero 

elements only 

in the diagonal. 

It is applicable 

only for 

matrices whose 

diagonal 

elements are 

non-zeros. 

ELLPACK 
2(Nmnzr × m) 

 

It is well suited 

for semi-

structured and 

unstructured 

meshes. 

 

It requires to 

know the 

maximum 

number of non-

zero elements 

present in the 

matrix. 

Compressed 

Sparse Row 

(CSR) 

2 × NZV + m + 1 

It is effective 

for structured 

and 

unstructured 

sparse matrices 

It uses one-

dimensional 

arrays. 

Block Based Storage Formats 

Blocked CSR 

Format 
(Nnzb × 2r) + Nnzb + m / r +1 

It reduces the 

number of load 

operations. 

It requires an 

extra loop for 

matrix 

operation and 

suffers from 

additional 

overhead. 
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Row-Grouped 

CSR Format 

2X + m + Ng 

X=∑ (𝑁𝑚𝑛𝑧𝑟𝑔(𝑖)) × 𝐺𝑠𝑖𝑧𝑒
𝑁𝑔

𝑖=1
 

Number of 

allocated 

elements per 

row vary from 

one group to 

another group. 

It is time 

consuming 

process and 

requires 4 

arrays 

Quad Tree 

CSR Format 
𝑁𝑞 × 𝐶𝑆𝑅𝑠𝑡𝑜𝑟𝑎𝑔𝑒  

Sparse matrix 

vector 

multiplication is 

faster. 

It requires space 

overhead 

Minimal Quad 

Tree Format 

(MQT) 

𝑀𝑖𝑛(𝑀𝑄𝑇)𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 4 × (𝑁 3⁄ + 𝑙𝑜𝑔4(𝑛
2 𝑁⁄ )) 

 

𝑀𝑎𝑥(𝑀𝑄𝑇)𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 4 × 𝑁(1 3⁄
+ 𝑙𝑜𝑔4(𝑛

2 𝑁⁄ )) 

 

It is efficiently 

used in I/O 

operations 

It requires space 

overhead in 

storing the 

pointers 

Vectorizable Format 

Compressed 

Multi-Row 

Storage 

Format 

(CMRS) 

(3 × 𝑁𝑍𝑉) + 𝑁𝑠 + 1 

It does not 

require any zero 

padding and 

row and column 

reordering. 

It is suitable 

only for GPU 

architecture 

Adaptive CSR 

Format 
2 × 𝑁𝑍𝑉 + 𝑚 + 1 

It is effective 

for GPU 

specific formats 

The 

transformation 

overhead poses 

storage and 

runtime 

overhead 

Streamed Storage Format 

Streamed CSR 

Format 
2(𝑁𝑠 × max(𝑁𝑍𝑆)) + 𝑆𝑟 + 1 

It improves the 

computation 

speed 

It is suitable for 

coprocessor 

SIMD 

architecture 

only 

Streamed 

BCSR Format 
𝑁𝑆 × (𝑁𝑛𝑧𝑏 × 𝑏𝑠𝑖𝑧𝑒) + 2(𝑁𝑛𝑧𝑏) 

It provides 

better speedup 

than BCSR 

 

It is suitable for 

coprocessor 

SIMD 

architecture 

only 

Sliced 

ELLPACK-C-

Sigma Format 
𝑁𝑆 + 1 + 4 × (∑ 𝑁𝑛𝑧𝑣(𝑖))

𝑁𝑆

𝑖=1
 

It reduced the 

number of zero 

padding. 

Sorting globally 

will reduce the 

spatial and 

temporal 

locality 

   

The storage format used to store the nonzero values of the given sparse matrix A 

with size N×N row-size using three one-dimensional arrays. Let nnz denote the number 

of nonzero elements of A. The first array is called ROW and is of length M+1, i.e., one 
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entry per row, plus one which contains the row index of A where the nonzero element is 

located. ROW array of the matrix A extends from the start of one row to the last row of 

size N×N. The last entry of the ROW array will be the last row of the matrix depending 

on the nonzero elements of the matrix. The second array is called COL, which contains 

the column index of matrix A where the nonzero element is located. The COL array 

entries start from the first column until the last column, based on the number of columns 

available. The third array is called VALUE and is of the length of the number of nonzero. 

This array holds the values of all the nonzero elements of matrix A investigating left-to-

right and then top-to-bottom order. A depiction of the sparse matrix A is shown with the 

storage format used in this thesis in the below figure. 

𝑨 =

[
 
 
 
 
 
 
 
 
 

   

0 0 0 0 1 0 3 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

   

]
 
 
 
 
 
 
 
 
 

 

Figure 4(a). Sparse matrix A 

 

𝑅𝑂𝑊 = [ 0 0 1 2 3 4 4 5 7 8 ] 
𝐶𝑂𝐿 = [ 4 6 4 8 1 2 6 2 5 0 ] 
𝑉𝐴𝐿 = [ 1 3 2 1 3 3 1 3 6 0 ] 

Figure 4(b). Sparse matrix A in storage format 

Figure 4. Storage of Input Matrix 

An analysis of five FPGA-based architectures indicates COO format achieves 

higher efficiency at the cost of locally storing a copy of vector in each processing element 

(PE) by eliminating references to the vector.  
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3.4 Finite State Machines (FSMs)  

Finite State Machines (FSMs) are a useful abstraction for sequential circuits with 

“states” of operation. It has a final internal memory, and the operation of FSM begins 

from one state goes through a transition to different states. Due to their simplicity, they 

are quick to implement easy for implementation and fast in execution [29]. At each clock 

edge, combinational logic block computes outputs and next state as a function of inputs 

and present state. One of the critical factors for optimizing an FSM design is the choice 

of state coding, which influences the complexity of the logic functions, the hardware 

costs of the circuits, timing issues, power usage, etc. One of the disadvantages is that it is 

not suitable for all domain problems, but only when all the state transitions and 

conditions need to be known upfront and defined. Some of the FSM encoding styles are 

one-hot, gray code, Johnson code, Compact, Sequential, and Speed1. Each encoding 

technique has their performance improvements. Speed1 encoding style was able to 

achieve higher timing performance for matrix operations on an FPGA board. The state 

transition of speed1 encoding style is shown in Figure 5. 

 

 

 

 

 

 

 

Figure 5. State Diagram of a Simplified Finite State Machine 
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3.5 Field Programmable Gate Arrays (FPGAs) 

3.5.1 FPGA Architecture. FPGAs are digital integrated circuits (ICs) belonging 

to a family of Programmable Logic Devices (PLD). The FPGA chip includes I/O blocks 

and core programming fabric. These I/O blocks are located around the periphery of the 

chip, which provides programmable I/O connections for various I/O standards. It also 

consists of Configurable Logic Blocks (CLB) and programmable routing architectures. 

The appropriate configuration is used in an FPGA for implementing any digital circuit 

considering the available resources on the board. The figure shows a general FPGA 

fabric, which represents a popular architecture in the FPGAs, are based. Many different 

architectures with programming technologies have evolved to provide better results 

making them the economically viable alternative to Application Specific Intergerat4ed 

Circuits (ASIC). FPGA’s offers excellent flexibility than ASIC’s and offers low-level 

optimization opportunities to improve run-time performance. It has been proved they are 

considerably more power efficient than multi-core CPUs and GPUs. These logic chips 

can be reconfigured to implement custom applications. This results in lower time-to-

market than traditional ASIC making them significantly faster than general-purpose 

hardware. It has the necessary resources such as the Look-Up Tables (LUT), Flip-Flops 

(FF), Digital Signal Processors (DSP) and Block Ram (BRAM) available in-built for 

implementing logical functions and arithmetic operations [30].    

Modern FPGAs provide superior logic density, low chip cost, and better 

performance improvements. It can be used to implement systems that need to be operated 

up to 550 MHz in most of the design the entire operation can be performed on a single 

FPGA, and do not require custom hardware. The typical frequency of FPGA design is in 
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low hundreds of MHz, but they have a much finer granularity. Figure 6 shows a rough 

sketch of the FPGA architecture and the design of a logic block. 

 

Figure 6. Sketch of FPGA Architecture and Design of Simple Logic Block 

3.5.2 Design and Programming. 

Figure 7. Vivado Design Suite 

The hardware design is primarily implemented using the EDA Tool Vivado 

Design Suite/Xilinx ISE Design Tool through programming, simulation, synthesis, 

implementation through debugging and the results are analyzed. Figure 7 shows an 

overview of the EDA Design Suite.  



 

23 

 

3.5.2.1 Design Entry. 

 

Figure 8. Vivado Project Manager 

Figure 8 shows the window of the Project Manager used to manage the 

implementation from start to end. This block describes the functionality of the design. 

The design entry can be done by schematic capture or a state transition diagram or by 

constructing an HDL based model using Verilog/VHDL. The model is built by writing 

HDL code using a text editor. Recent synthesis tools like Vivado and Xilinx ISE provide 

facilities for insertion of language templates for easier coding [31]. This step also allows 

analyzing the internal form for syntax and semantics for the HDL source. 

3.5.2.2 Behavioral Simulation. The HDL module designed during design entry if 

then simulated at the Register Transfer Level (RTL) to establish functional correctness. 

This is the primary step involving simulation of the code to determine that it is working 

as per the design and that it will produce the required results. Simulation is essential to 

get as many bugs out from the HDL module[8]. If an error arises, the design entry step is 

investigated, and necessary changes are made for a successful simulation.  
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Figure 9. Vivado Simulation Environment 

3.5.2.3 RTL Analysis. 

 

Figure 10. Vivado RTL Analysis Tool 

Figure 10 provides how an RTL analysis tool on Vivado Design Suite would be 

helpful in overseeing the schematic for potential issues. The RTL Analysis is used for 

analyzing the syntactic and semantic issues, identifying potential implementation issues 
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with latches and nets. This tool helps in realizing the mapping of LUT onto the FPGA 

resources. 

3.5.2.4 Synthesis. 

 

Figure 11. Vivado Synthesis Analysis Tool 

 

Figure 12. Vivado Synthesis Report Analysis 
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Figure 11 depicts the Synthesis Analysis Tool in managing the nets and logics of 

the design. The process where the RTL design is translated to gate-level design is called 

synthesis. Later the design can be mapped to the logic blocks in the FPGA which checks 

whether the design will meet the timing and area constraints. A device netlist format is 

created during this step. Figure 12 shows the Report Analysis where the usage of the 

adders and multipliers are mentioned, for a detailed analysis. 

3.5.2.5 Implementation. 

 

Figure 13. Vivado Implementation Tool 

The implementation step consists of the steps of mapping, placing, routing, and 

generating a BIT file for the HDL design.  

• Mapping 

After creating the gate-level netlist, the design is mapped onto the FPGA. The 

primitives such as function generators, latches or flip-flops used in the target chip are 

accumulated during this process. 
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• Place and Route 

After mapping the design, the primitives are assigned to the Configurable Logic 

Blocks (CLB) during Place and Route step. The primitives are then connected by routing 

the connections through the switch matrix. The process provides accurate information 

about the timing delays between parts of the circuit. The design verification process is 

simulated which is more accurate than the functional simulation.  

• Bitstream Generation 

A bitstream file is created from the physical place and route information. 

3.5.2.6 Timing Analysis. 

 

Figure 14. Vivado Timing Constraints Tool 
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Figure 14 is the Timing Constraints Wizard which is used for employing our used 

desired timing, and analysis. Once the design is mapped, placed, and routed, the delays of 

the signals and the components of the design are used to produce a new, more detailed 

netlist leading to a timing accurate simulation. 

3.5.2.7 Power Usage Analysis. 

 

Figure 15. Vivado Power Analysis Tool 

Once the timing and area constraints are met with the design implementation, the 

Power Analysis tool gives the cost of the design in terms of dynamic and static usage of 

the design.  

This tool also provides improvements on the implementation flow to meet the 

constraints. It automatically identifies the target FPGA board presented and analysis if 

the design meets the power constraints.  
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3.5.2.8 Programming the Board. The bitstream file generated is loaded onto the 

target FPGA. Once the programming of the board is finished, the chip will now be 

configured to implement the design. The EDA tool used for this thesis work is Vivado 

Design Suite and Xilinx ISE (Integrated Synthesis Environment) 14.2 using Verilog. 

3.5.3 NEXYS4 DDR ARTIX-7 FPGA Board. The FPGA board used for 

implementing the final design of this project is Nexys4 DDR Artix-7 development board. 

The Nexys4 DDR board features Artix-7 family processor from Xilinx with the high-

performance logic block, more capacity, higher performance, and more resources. This 

high-capacity FPGA comes with USB, Ethernet, and other ports so hosting designs from 

combinational circuits to powerful embedded processors is possible. For this thesis, we 

used UART terminal to send and receive matrix values to and from computer and FPGA 

board[8]. The board is programmed through JTAG cable, with an E3 pin as Clock port, 

D4 as UART Transmitter (UART TX) and C4 as UART Receiver (UART RX). The 

FPGA board is shown in Figure 16, with all the necessary details of the board. The 

UART connector is marked as number 2 in Figure 15, which also has TX and RX led 

lights. 
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Figure 16. Nexys4 DDR Artix-7 FPGA Board 
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4. HARDWARE DESIGN ARCHITECTURE 

Algorithm for sparse matric arithmetic and decomposition operations are 

designed, and the operations are implemented in hardware with Nexys4 DDR FPGA 

Board and the results are compared with conventional matrix operation algorithm. The 

design approach worked with this thesis is shown in Figure 17. Vivado Design Suite is 

used for the simulation, synthesis, and implementation of the Verilog design and 

MATLAB is used for result comparison and error analysis.  

 

Figure 17. High Level Flow Chart of Work Proposed 
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• Computational Complexity 

Table 3 gives the comparison between the computational complexity of different 

matrix operations.  

Table 3. Computational Complexity  
 

Matrix Operation Input Output Complexity 

Addition/Subtraction  2 n×n- matrix n×n matrix n2 

Multiplication  2 n×n- matrix n×n matrix n3 

Square root  1 n×n- matrix n×n matrix n2-1 

Decomposition  1 n×n- matrix n×n matrix 1/3×n3 

 

Design and Validation have become a significant step involving various steps 

from RTL design, logic synthesis, physical design, and verification at an early stage. This 

makes the testing and verification of a new and complex hardware architecture system a 

time-consuming process as shown in Figure 18. 

 

Figure 18. FPGA Implementation and Verification Flow 

 



 

33 

 

The hardware design for implementation is based on two factors: precision and 

area. 

 

Figure 19. Overview of Hardware and Software Implementation 

 

Figure 19 gives an overview of the module designed and how the communication 

is established between processor and FPGA for implementation and testing. As illustrated 

above the objective of this thesis, one of the purposes is to reduce the resources utilized 

in FPGA [32]. Hence, significant attention was given to the design process implemented, 

as well as to obtain low latency and high throughput compared to the normal matrix 

operation [33]. This describes the methodologies than influenced the design and design 

considerations carried out. The preference of FPGA over traditional CPUs and GPUs is 

because of the advantages offered by FPGAs and CPLDs. After the matrix algorithm for 

sparse matrix was studied carefully, the next most significant step was the design itself. 

The design was done using Verilog because of the ease with which large projects can be 

managed.  

The hardware implementation is split into two major top modules for simplifying 

the design. The first module is designed to implement the necessary sparse matrix 
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operation like addition, subtraction, multiplication, LU decomposition, QR 

decomposition algorithms and the necessary computations. And the second module is 

designed to implement the UART communication and data exchange between the PC to 

the FPGA hardware board with which it will be communicating. Each of the top modules 

is subdivided into smaller modules to carry out specific matrix operations with the other 

modules through internal signals.  The Figure 20 gives the flow of how the architecture is 

designed, along with the flow of memory controllers and transition states.  

 

Figure 20. Block Diagram of TX and RX Module 

In any asynchronous interface, the first thing we need to know when in time the 

data should be sampled. If the data is not sampled at the right time, we might get the 

wrong data. To receive data correctly, the transmitter and receiver must agree on the baud 

rate. The baud rate if the rate at which the data is transmitted. For example, 9600 baud 

mean 9600 bits per second.  

The Verilog code uses a generic or a parameter to determine how many clock 

cycles are there in each bit. This is how the baud rate gets determined.  
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The FPGA is continuously sampling the line. Once it sees the line transition from 

high to low, it knows the UART data is coming. The first transition indicated the start bit. 

Once the beginning of the start bit is found, the FPGA waits for one half of a bit period. 

This ensures that the middle of the data bits gets sampled. From then on, the FPGA just 

needs to wait once bit period (as specified by the baud rate) and sample the rest of the 

data. The following Figure 21 is an example of how the output becomes valid when the 

input clock is high, making the data to be valid for the required operation. 

 

 

 

 

Figure 21. Clock Cycle for TX and RX 

This component is used to transfer data over a UART device. It will serialize a 

byte of data and transmit it over a TXD line. The serialized data has the following 

characteristics: 

o 9600 Baud Rate 

o 8 bits, LSB first 

o 1 stop bit 

o No parity 

 

 

 

Stop 

Look for Falling edge of Start Bit 

Sample middle of Data Bits 
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TX 

• S0_RDY: This signal goes low once a send operation is begun and remains low until it 

has completed, and the module is ready to send another bit. The counter that keeps 

track of the number of clocks cycles the current bit has been held stable over the 

UART. The combinatorial logic that foes high when the counter has counted to the 

proper value to the correct baud rate. 

• S1_LOAD_BIT: The parallel data to be sent. Must be valid the clock cycle when 

SEND has gone high. Contains the index of the next bit that needs to be transferred. A 

register that holds the current data being sent over. 

• S2_SEND_BIT: Used to trigger a send operation. The upper layer logic should set this 

signal high for a single clock cycle to trigger a send. When this signal is set high DATA 

must be valid. Should not be asserted unless READY is high. A register that contains 

the whole data packet to be sent, including start and stop bits. 

Figure 22 captures the FSM diagram of the Transmission bandwidth of the data 

bit with detailed state transitions and their respective conditions.  

 

 

 

 

 

 

 

Figure 22. Fundamental Design: Transmission FSM 
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RX 

The purpose is to double-register the incoming data. This allows it to be used in 

the UART RX Clock Domain. It removes problems created by metastability.  

• S1_RX_START_BIT: Checks the middle of start bit to make sure it is still low. The 

reset counter resets the middle when the middle value is found.  

• S2_RX_DATA_BIT: Waits for CLK_PER_BIT-1 clock cycles to sample serial data. 

Checks if we have sent out all the bits. 

• S3_RX_STOP_BIT: Waits for CLK_PER_BIT-1 clock cycles for Stop bit to finish. 

• S4_CLEANUP: Stays for I clock cycle. 

 

 

 

 

 

 

 

 

Figure 23. Fundamental Design: Receiver FSM 

Figure 23 captures the FSM diagram of the Receiver bandwidth of the data bit 

with detailed state transitions and their respective conditions.  
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4.1 Arithmetic Operations 

4.1.1 Sparse Matrix Addition. The proposed design performs addition operation 

of two sparse matrices where only the nonzero values are stored, and required operation 

is performed. The standard matrix addition stores and performs the operation for all the 

elements inside the matrix regardless of whether the values are zero or not. The design 

follows the steps below. 

a) A symbolic algorithm, which determined the structure of the resulting matrix. 

b) A numerical algorithm which determines the values of the nonzero knowing the 

knowledge of their positions. 

𝒄𝒊,𝒋 = (𝒂𝒊,𝒋) + (𝒃𝒊,𝒋) 

The proposed architectural algorithm performs sparse matrix addition in which 

the number of rows and number of columns of two matrices should be equal. A parallel 

implementation of the addition, with enough fast memory algorithm, is proposed. 

Consider the matrix addition of A+B, where A has a density s percentage with size n×n 

(square matrix is considered, however, the same methodology can be used for rectangular 

size), and matrix B has a density s percentage with size n×n. Density s percentage is 

defined as the number of nonzero elements to the total number of elements in the matrix 

n2.  The matrix addition performs the operation row-wise and column-wise throughout 

the matrix only for the nonzero elements present leaving behind the zeros. An algorithm 

for the sparse matrix addition A+B is presented in Listing 1. When addition operation 

must be performed on both the input matrices, first the number of rows and columns are 

checked if its equal, i.e., both the matrix should be of the same size. Addition operation 
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cannot be performed if the matrices are of different size. Then the elements of the matrix 

are checked row-wise and column-wise from top-to-bottom order for non-zero elements 

as shown in the figure.  Two separate counters A_count and B_count is used to 

increment the row and column for both A and B input matrix. This keeps incrementing 

from n to n+1 for the size of the matrix. The below Listing 1 shows the pseudo code 

algorithm for the respective arithmetic operation carries out. 

Input: A, B 

Output: C 

Input parameter: MAT_SIZE, ELEMENT_SIZE, NZE 

 

for i → 0 to MAT_SIZE do 

if (A[i] ≠ 0) then 

Indexing row and column = i + 1 

A_sv [ i] =A [ i] 

A_index = A_count + 1 

end 

if (B[i] ≠ 0) then 

Index2rc = i + 1  

B_index = B_count + 1 

B_sv [ i] = B [ i] 

end 

if((A_sr[A_index] == B_sr[B_index]) && (A_sc[A_index] == B_sc[B_index])) do 

Row <= A_sr [A_index] 

Col <= A_sc [A_index] 

Sum <= A_sv [A_index] + B_sv [B_index] 

end 

if (A_sv [A_index] ≠ 0) then 

Row <= A_sr [A_index] 

Col <= A_sc [A_index] 

Sum <= A_sv [A_index]  

end 

if (B_sv [B_index] ≠ 0) then 

Row <= B_sr[B_index] 

Col <= B_sc[B_index] 

Sum <= B_sv[B_index]  

end 

end    

Listing 1. Sparse Matrix Addition Algorithm  
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The nonzero elements are located from matrix A, and the values are stored in the 

memory 𝑴𝒓𝒂𝒎_𝑨_𝒔𝒗 for the corresponding row and column index 𝑴𝒓𝒂𝒎_𝑨_𝒔𝒓 and 

𝑴𝒓𝒂𝒎_𝑨_𝒔𝒄 respectively. Similarly, for the second matrix B, the nonzero value gets 

stored in memory 𝑴𝒓𝒂𝒎_𝑩_𝒔𝒗 for the corresponding row and column index 

𝑴𝒓𝒂𝒎_𝑩_𝒔𝒓 and 𝑴𝒓𝒂𝒎_𝑩_𝒔𝒄 respectively. This operation is carried out for the given 

size of the matrix and is shown in Figure 24 in detail. Once the nonzero is located, the 

values are stored in terms of row, col, and the corresponding value for which addition 

operation is to be performed.  

 

Figure 24. Representation of Row and Column Access of Input Matrices 

The most important part of this algorithm is the index comparison which is 

represented as 𝑨_𝒊𝒏𝒅𝒆𝒙 for matrix A and 𝑩_𝒊𝒏𝒅𝒆𝒙 for matrix B. Initially, once the 

values are stored the row value of matrix A are compared with the row value of matrix B. 

If the index of 𝑨_𝒔𝒓 is equal to the index of 𝑩_𝒔𝒓 then the next step of comparing the 

column value of both the matrices. And, if the index of 𝑨_𝒔𝒄 is equal to the index of 

𝑩_𝒔𝒄, then matrix addition is performed. The VAL array of the respective row and 
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column, i.e., 𝑨_𝒔𝒗 and 𝑩_𝒔𝒗 are added with each other as the sum. The assumption is 

made that the nonzero is located anywhere in the matrix and is highly sparse. Finally, if 

the nonzero of the same row and same column of matrix A does not match with the row 

and column of matrix B directly the value is sent to the output matrix. 

To avoid the extra computation imposed by the majority of zero elements found 

in a sparse matrix, the norm to store the nonzero elements employ auxiliary data 

structures proposed. The method of employing a row and column pointer to start the 

index of each row and column with the array of nonzero elements as shown in Figure 23. 

However, the other structures like CSR and CSC introduces load operations, extra traffic 

for memory subsystem and cache interference. Access to the input matrix A and B is 

irregular and totally depends on the sparsity pattern of the inbound matrix. This 

eliminates the possibility of exploiting spatial and temporary reuse. Many sparse matrices 

contain higher number of rows and columns with just zeros resulting in workload 

imbalance. The proposed optimization is designed to address the corresponding 

bottleneck, where the other proposed methodology in literature review wither targets a 

specific bottleneck or a specific sparse structure of matrix. To ensure good performance, 

the starting and ending index is temporary stored in memory to avoid data overload. 

However, if the matrix is larger and sparser, the performance bottleneck could not be 

achieved. Understanding these effects and performance the result analysis is carried out 

which is explained later as a part of this thesis. 
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Figure 25. FSM Transition States for Sparse Matrix Arithmetic Operation 

Figure 25 shows how the state machines are implemented in the Verilog design. 

The first state is Idle which sets the reset to high. Once the elements are obtained, only 

the non-zero values get stored using sparse matrix storage format in the order of ROW, 

COL, and VAL in separate arrays. Once the sparse matrix storage format is generated, 

the design checks the ROW and COL and performs addition if both are equal, else the 

design sends the values directly to output since addition is not required there. With this 

operation, only the non zeros are involved in the required arithmetic operation. 

Consider two matrices A and B of size 10×10 shown in Figure 26. The first matrix 

A has nine nonzero values, and second matrix B has ten nonzero values. But the location 

of the nonzero values in both the matrices are not the same. They are distributed 

randomly and using the algorithm designed sparse matrix addition operation is 

implemented.  
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Figure 26. Sparse Matrix Addition Operation Methodology 
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Figure 27 shows how the nonzero values are stored in separate arrays in terms of a row, col, and value. And explains how the 

addition operation is executed depending on the row and col arrays of the two-input matrix A and B. The operation is illustrated in 

detail in Figure 27 how the output sum is calculated.  

 

 

 

 

Figure 27. Design Simulation: Sparse Matrix Addition Operation 

Output becomes valid 

Input Data A and B (8 Bits) Row Index (8 Bits) Column Index (8 Bits) 

Sum Value (8 Bits) 

Matrix Size (10×10) 
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Figure 27 shows the simulation output of the input matrices A and B which are 

stored in three separate arrays 𝑨_𝒔𝒓, 𝑨_𝒔𝒄, 𝑨_𝒔𝒗 and 𝑩_𝒔𝒓, 𝑩_𝒔𝒄, 𝑩_𝒔𝒗 respectively. 

This represents how the nonzero values are checked from the input matrix and are being 

stored in memory. The second part of the shows the output sum calculated from the 

stored nonzero values accordingly. 

Figure 28 captures the schematic diagram of the System-Level Optimized Design 

of Sparse Matrix Arithmetic Operation Design Engine. The main computation core is 

designed with IO blocks, memory and register for holding the data. Figure 29 shows the 

schematic diagram of Input available Interconnected Design. The diagram highlights the 

clock being reset and made available when the Input bit is ready. The design is capable 

irrespective of the number of bits of input elements (i.e.) either 8bit, 16bit, or 32bit. 

Figure 30 shows the schematic diagram of the Interconnected Design when output 

becomes valid, when the required arithmetic operation is performed for every clock 

cycle, depending upon the input valid in a detailed picture.  
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Figure 28. Implemented Design: Arithmetic Operation Engine 
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Figure 29. Interconnect Design: Input Valid Schematic 

 

Figure 30. Interconnect Design: Output Valid Schematic  
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4.1.2 Sparse Matrix Multiplication. Matrix multiplication is a fundamental 

operation of linear algebra. It is a primitive operation in many data-analytic, graph 

analytic algorithms and algebraic multigrid methods. So far, many algorithms have been 

developed for optimizing the performance depending on the objective[34][35]. But 

achieving high performance for sparse matrix multiplication is quite challenging[36]. 

Compared to standard algorithm, sparse algorithms attempt to handle only the non-zero 

elements available in the matrix to remove multiplications and additions of zeros to 

improve performance. There are many reasons why achieving high performance with this 

operation is challenging because of: 

• Low Arithmetic Intensity 

The arithmetic intensity is the ratio of the number of arithmetic operations to the 

number of data elements accessed for computing the product [37]. 

• Index Matching 

The index-matching problem is because the structure of the sparsity of the 

resultant matrix is unknown, and it is not possible to locate the product of 𝒂𝒊,𝒋 with 𝒃𝒊,𝒋 

for the resultant 𝒄𝒊,𝒋. 

There have been several approaches proposed, but each approach requires 

additional data access and computational problems. 

• Load Balancing 

Usually, sparse matrices that arise in practice exhibit non-uniformity and are 

irregular in their sparsity structure, it can be inferred those different matrices will be 

requiring a different distribution of work.  



 

49 

Consider two matrices A= [𝒂𝒊,𝒋] and B= [𝒃𝒊,𝒋] with size 𝑴 × 𝑵 and 𝑵 × 𝑳 

respectively. The resultant multiplication of matrices A and B will be C= [𝒄𝒊,𝒋], with size 

𝑴 × 𝑳 as given below in equation 

𝒄𝒊,𝒋 = ∑ 𝒂𝒊,𝒌.

𝑵

𝒌=𝟏

𝒃𝒌,𝒋 

where i =1, 2…, M and j=1, 2…, L.   

Sparse matrices are stored in a specific storage format taking advantage of the 

sparsity of the matrices[38][39]. Due to storage of nonzero values, matrix multiplication 

is no longer a straightforward operation. The column address of the current row being 

multiplied must correspond with existing row address of the other matrix. If there is a 

match between the two matrices multiplied, the corresponding values can be multiplied 

together. It operates by multiplying each nonzero element of row A with each nonzero 

element of column B and then repeats the process for every row and column of the 

matrix. Figure 31 shows the hardware architecture of the design component with a 

control unit, multiply and accumulate unit. 

 

Figure 31. Matrix Multiplication Hardware Architecture  
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The proposed architecture in this thesis is based on minimizing the hardware 

resources utilization in the implemented design. The design can accomplish high 

performance with low execution time for large, irregular sparse matrices by reducing the 

number of adders and multipliers significantly. The values are arranged in streams which 

is a group of data like arrays permitting efficient parallelism and it maps well with the 

FPGA logic. This exploits data which benefits the architecture for implementing matrix 

multiplication on hardware device. A larger matrix will contain large number of 

multiplication and addition, so an adequate software for a computation we will have 

limited capacity. However, this proposed architecture minimizes the computation time 

independent of the matrix dimensions. The multiplication computation will be serial, 

indexing the nonzero from the matrix into an input buffer streamed and multiplied by the 

corresponding component of the other matrix. The output values are accumulated and 

sent back for error analysis. Compared to the regular multiplication, this method reduces 

the number of multiplication and addition. Figure 32 shows the overall design flow with 

hardware blocks, describing how the operation is carried out and the temporary results 

are accumulated to the final output. 

 

Figure 32. Overall Design Flow  
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Various design techniques were considered and incorporated to optimize the 

performance of sparse matrix-matrix multiplication. The proposed systolic architecture 

consists of identical processing elements, where the number of PEs for processing 

depends on the size of the matrix. Each necessary multiply-accumulate operation is 

performed by each PE. The hardware utilization is greatly reduced as each PE operates 

independently with corresponding input and output thereby greatly reducing the 

interconnections between each PE. High throughput is achieved in the proposed 

architecture through pipelining and parallel processing technique by computing the 

intermediate product at every clock cycle. This was made possible by inserting necessary 

registers at appropriate places. The whole computation is divided into smaller segments 

which are executed in parallel, accumulating all the partial results to the Result BRAM 

resulting in higher frequency of operation. Every time a row index from matrix A is 

coming inside FIFO, it is compared against col index of matrix B present within the 

BRAM, so it finds a possible match for multiplication. As soon as the first element of A 

is fetched from memory and wrote in FIFO, the FSM starts comparison which makes it 

efficient without waiting for the entire matrix to be written in FIFO.   

for A_index = 0: A_count 

if (A_sr > row_output) 

done_for_current m and n. 

else if (A_sr == row_output)  

//now check if a matching value is in B. 

for B_index = 0: B_count 

if (B_sr > A_sc) //remember sr is always in ascending order. 

B_index <= 0; //exit from this loop. 

else if ((B_sc == n) && (B_sr == A_sc) begin //a match. 

temp = temp + A_sv × B_sv; //do multiply and add operation. 

 

Listing 2. Sparse matrix multiplication algorithm 
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The proposed algorithm for performing matrix multiplication of sparse matrices is 

shown in Listing 2.  

Consider two sparse input matrices A and B which are shown in figure 33. The 

matrix A consists of only nine nonzero and matrix B consists of only ten nonzero when 

the total size of the matrix elements if 100. In these cases, it would not be necessary to 

perform addition and multiplication on all the zero which involves a lot of hardware 

resources. Instead, the nonzero values are stored in sparse matrix storage format and then 

multiplication operation is carried out. Figure 16 illustrates how the matrix multiplication 

is performed based on stored nonzero values. The same procedure for sparse matrix 

addition is used here for sparse matrix storage. Once separate arrays are created as ROW, 

COL, and VAL the sparse matrix multiplication algorithm is performed. First the row of 

first matrix storage is compared with the column of second matrix storage, and the 

intermediate results are stored in a temporary array, and finally, the output product is sent 

back. When the output_valid signal is high, the “row”, “col”, and “val” are streamed into 

PEs which synchronizes the components with data flow. As the partial multiplication 

results are calculated, they are fed into an adder. Continuous computation over time, 

accumulates the partial sum but results are not available on next clock following the input 

due to the pipelined nature of the adder. Therefore, the results are temporary stored in a 

buffer until next result is available to be added with.  
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Figure 33. Sparse Matrix Multiplication Methodology
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Figure 34. Design Simulation: Sparse Matrix Multiplication  

Figure 34 shows the simulation results of the proposed matrix multiplication algorithm in Vivado design suite. The product is 

calculated from the nonzero values stored from the given input matrix after performing the storage of the sparse matrices. The product 

is obtained when the 𝒐𝒖𝒕𝒑𝒖𝒕_𝒗𝒂𝒍𝒊𝒅 signal is high. From the figure, it can be inferred that the results obtained are equal to the result 

from regular matrix multiplication algorithm. The results are also verified with the MATLAB results; to ensure we have achieved the 

correct results.  

Output becomes valid Output Product C (16 Bits) Input Data A and B (8 Bits) Matrix Size (10×10) 
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Figure 35. Elaborated Implemented Design: Sparse Matrix Multiplication 
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Figure 35 captures the Elaborated Implemented Design of Sparse Matrix 

Multiplication Operation from Vivado Design Suite. The diagram highlights the number 

of interconnects which are being used between the processing elements and memory 

controller for calculating and storing the intermediate data which is later processed for 

output.  

 

Figure 36. Interconnect Design: Sparse Matrix Multiplication 

Figure 36 shows the Interconnect Design for Sparse Matrix Multiplication 

Operation which highlights the logic and cells involved in fetching the data when 

input_valid becomes available with high clock and when the required operation is done. 

Number of registers are involved, in storing the intermediate results which are 

accumulated for calculating the output. 

The effectiveness of the algorithm varies depending upon the sparsity of the 

matrix, as the number of nonzero increases, the number of calculations also increases. 

The algorithm involves additional temporary registers to avoid overhead issues, which is 
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negligible as comparatively single clock cycle is employed for each data whereas for a 

floating-point multiplication or addition operation several clock cycles are needed 

depending on the amount of data. Each sub processing elements generates its own matrix 

in a separate area in the local memory to avoid write conflicts.  

 

Figure 37. Interconnect Design: Temporary Registers for Intermediate Output 

Figure 37 shows a part of the schematic for a single PE where the interconnects 

have the necessary register needed. In the proposed design, almost 60% of the total 

computation time are the operators and temporary registers which occur at every step or 

even multiple time per time step, making it hard to optimize. The number of non zeros of 

the matrix usually dominates the memory overhead, hence a precise number of register 

allocation is impossible before real execution. To achieve load balancing, each PE is 

partitioned into multiple sub-PE for extra irregularity to cut down the computational 

overhead throughout every stage.  
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4.2 Matrix Decomposition 

Numerous engineering and machine learning applications rely primarily on matrix 

decomposition due to rapid development in the field of Mathematics and Computation 

[40]. In linear algebra, matrix decomposition is decomposing a matrix into a product of 

two matrices. Matrix decomposition provides an efficient means to compute the matrix 

inverse. Matrix inverse has several valuable applications in engineering practice, which 

also provides a means for evaluating system condition. The computational complexity 

indicated how the number of operations scales with the size of the problem data. 

 

Figure 38. Matrix Decomposition 

Figure 38 shows the different types of decomposition available depending upon 

the property of the matrix.  

 

Symmetric 
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4.2.1 LU Decomposition. LU decomposition is widely used in numerical 

analysis and engineering science [41]. It factors a matrix as a product of lower triangular 

matrix (L) whose diagonal elements are equal to 1, and all the elements above are equal 

to 0; and an upper triangular matrix (U) whose elements below the diagonal are equal to 

0. If A is a square matrix, LU decomposes A with proper row and/or column orderings or 

permutations into two factors.  

𝑨 = 𝑳𝑼 

(
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

) = 𝑷(
𝟏 𝟎 𝟎

𝑳𝟐𝟏 𝟏 𝟎
𝑳𝟑𝟏 𝑳𝟑𝟐 𝟏

) × (
𝑼𝟏𝟏 𝑼𝟏𝟐 𝑼𝟏𝟑

𝟎 𝑼𝟐𝟐 𝑼𝟐𝟑

𝟎 𝟎 𝑼𝟑𝟑

) 

LU decomposition is a direct method that can solve large systems of linear 

equations that arises from many essential application areas like circuit simulation, power 

networks, structural analysis, etc. To ensure stability during LU decomposition, pivoting 

operations are performed to remove zero elements from the diagonal of matrix A. 

Without proper pivoting, the decomposition may fail to materialize. Partial Pivoting 

refers to the proper permutation in rows or columns for LU decomposition. This approach 

is suitable for the square matrix, and it is numerically stable in practice.   

𝑷𝑨 = 𝑳𝑼 

LU decomposition with full pivoting involves both row and column permutations. 

𝑷𝑨𝑸 = 𝑳𝑼 

Where Q is a permutation matrix which reorders the columns of A. 

Another useful method is the LDU decomposition, 

𝑨 = 𝑳𝑫𝑼 

Where D is a diagonal matrix, where all the entries on the diagonals of L and U are one. 
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LU decomposition introduces a permutation matrix P to ensure numerical stability 

leading to 𝑷𝑳𝑼𝒙 = 𝒃. The equation represents LU decomposition of an 𝒏 × 𝒏 matrix 

which has a computation time complexity of 𝑶(
𝟐

𝟑
𝒏𝟑). 

LU decomposition followed by forward reduction and backward substitution 

technique is more stable compared to matrix inverses to solve systems of linear equations 

because every nonsingular matrix possesses an LU decomposition. Also, LU 

decomposition saves space storing either L or U matrix in the space required for input A 

matrix. On the contrast, standard matrix inversion needs much more space. The two most 

common methods employed are Doolittle LU decomposition algorithm and Crout 

decomposition algorithm. However, the optimization and generalization of the sparse 

matrix is required before factorization. For easy realization, all PEs are connected to a 

central PE along with the finite state machine where one PE can access the rows while 

the other PE is performing normalization.  

If a matrix is nonsingular for each L the upper triangular matrix is unique, but the 

LU decomposition is not unique. There can be more than one such LU decomposition for 

a matrix. There is also generalization of LU to non-square and singular matrices, such as 

rank-level LU factorization. Figure 39 represents the matrix spy plot of LU Factorization 

of 20×20 Combinatorial Problem from Suite Sparse Matrix Collection. 
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Figure 39. MATLAB representation of LU Decomposition of 20×20 Combinatorial 

Problem from Suite Sparse Matrix Collection 
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4.2.1.1 Sparse LU Decomposition Architecture. Sparse matrices compared with 

regular matrices can benefit from algorithms that reduce the number of operations which 

is required to calculate L and U. But the disadvantage involves sparse methods suffer 

from irregular computation patters as it is dependent on the nonzero structure of the 

matrix.  

The proposed algorithm implements a row-wise, right-looking form of Gaussian 

elimination with partial row pivoting. The design of the hardware algorithm can be 

broken into partitions. The control system is implemented as a Finite State Machine 

(FSM), which tracks the progress of the units for synchronization. The pivoting and logic 

implement performs the necessary computations required for sparse LU decomposition. 

In addition, the last partition handles the sparse matrix storage and retrieval for the pivot 

search. The approach for sparse LU decomposition consists of the following operation: 

Pivoting strategy when A has nonzero entries, which are at fill-up locations. Symbolic 

decomposition, which estimates the memory requirements for L and U factors. 

Numerical calculation, which is computed using Gaussian elimination.  

 

 

 

 

 

 

 

Figure 40. Control Logic for LU Decomposition Hardware 
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For maximizing the performance, LU hardware is designed to focus on 

maintaining regular computation and memory access pattern. Figure 40 shows a block 

diagram of the proposed hardware algorithm. The control and memory access handle the 

operations performed for decomposing the matrix. The design ensures the memory will 

have enough space to store the values. The performance of LU decomposition of the 

sparse matrix depends heavily on the quality of the placement tool. The initial design 

algorithm is inspired from Doolittle and the right-looking algorithm for sparse LU 

decomposition.  

A. Pivot Operation 

When decomposition is executed in parallel, it often tries to avoid pivoting using 

threshold pivoting or static pivoting beforehand. So right-looking algorithm is 

implemented for sparse LU decomposition including pivoting. This design produces one 

column of L and one row of U simultaneously and is referred by the order of loops[41]. 

The initial step of partial pivoting is performed by choosing a specific element from the 

column of A. To perform pivoting operation, the design includes usage of lookup tables 

and memory pointers to keep track of the memory mapping. It conducts pivot search for 

each matrix elimination step. Index pointers are created for each pivoting to store the row 

and column physical address accordingly. These physical addresses are then used for 

fetching the values from memory. These values as they arrive are sequentially checked 

for the absolute maximum values with index. Using a register, it gets stored as pivot 

element. The minimum amount of memory utilized is proportional to the size of the 

matrix. Once the pivoting is complete, an update is sent back to lookup tables.  
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After choosing the pivot, the specific row is swapped with the current row j and i 

being collected in the permutation matrix. To perform full pivoting, one would choose a 

pivot for the entire matrix[37]. The algorithm yields 𝑳𝑼 = 𝑷𝑨, where the matrix 

overwrites A with 𝑳𝑼 − 𝑰, 𝑰 is an identity matrix. The first half of the algorithm will be 

triangular solving, leaving behind the pivoting and scaling. In the case of sparse, it will be 

inefficient for swapping rows and due to having a single unreduced row or column full 

pivoting is not easily achievable.  

B. Update Pivot & Interchange rows 

The Processing Elements in Update State will be responsible for computing the 

core computation of the right looking algorithm method. This logic performs 

normalization before elimination for the pivot values of row and column requested from 

memory. The necessary data such as pivot index, values and column are inferred from the 

previous state. The updates row and column values and the normalized row and column 

values are then stored in registers.  

C. Update row and column 

The remaining computations required are performed during this transition state. 

First, it indicates if the given row or column should be updated. Secondly, it manages the 

addresses of nonzero that are to be stored. This unit contains the necessary floating-point 

multipliers and adders for performing the required arithmetic operations. This unit 

operates in parallel for maximizing the utilization of all logic units. This will update the 

number of update logic that fits in FPGA chip. There are enough resources available in 

the FPGA which can accommodate all the units. The algorithm for sparse matrix LU 

decomposition is given below.  
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Figure 41. Block Diagram of Proposed LU Decomposition Hardware 

Figure 41 shows the block diagram of the LU decomposition Hardware which consists of the Input, Output and Pivot Lookup 

for swapping the elements.
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U = A      

L = P = In*n 

 

[Perform pivoting operation] 

function pivot (A, P, i)     

 P = choose pivot (Ai: end, i)  

 if (P ≠ k) then     

  SWAP (Ai, *, Ap, *)  

  SWAP (Pi, *, Pp, *)  

 end if      

 return (A, P) 

end function 

[Interchanging rows in matrix] 

If m≠ j 

    U ([m, j], :) = U ([j, m], :) 

    P ([m, j], :) = P ([j, m], :) 

    If j<=2 

        L ([m, j], 1: j-1) = L ([j, m], 1: j-1) 

    end 

end 

[Update row and column entries] 

for i = j+1 to n 

    for j = 1 to n 

        Li, j = Ui, j / Uj, j     

            for k = j+1 to n-1 

     U (i, *) = U (i, *) - L (i, j) × U (j, *) 

 end  

    end  

end 

Listing 3. LU Decomposition Algorithm 

The optimization strategies involve prefetching data when input is available to 

keep the control unit busy while the multiply and accumulate unit performs delayed 

normalization to achieve the required clock cycle to improve throughput of the overall 

system. Both run01 and run02 are similar in terms of data blocking, prefetching, pipeline 

execution units and communication with the finite state machine for computation except 

for the following difference. 

• Each block of data is mapped into single processing element making the 

implementation scalable and can be computed independently in a single block. 
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• BRAM’s are used to support larger matrices which cannot completely fit in the 

registers of the processing elements. 

• To allow prefetching of data the finite state machine loops are restructured in 

subsequent iteration to fully exploit the pipelined units. 

• The multiply and accumulate unit pipelined to achieve low latency and high 

throughput for every clock cycle. 

4.2.1.2 Implementation and Error Analysis. Various arbitrary matrices with 

different sparsity patterns are generated using MATLAB and tested using the hardware 

architecture. A parameter n is included along with the design to get the size of the matrix 

to be decomposed, and the simulated waveform from Xilinx ISE design suite for a 10×10 

matrix A is shown in Figure 42. 
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Figure 42. Design Simulation: LU Decomposition 

In this case of simulation, matrix A is a 10×10 matrix with 10% sparsity. The L_elem is the data after LU decomposition 

which denotes the Lower Triangular part of the matrix, whereas U_elem is the data which denotes the Upper Triangular part of the 

matrix. The input matrix becomes available when the clock becomes high, meaning when input _valid is valid utilizing the maximum 

frequency and the operation is completed when output_valid becomes low. n denotes the size of the matrix, in this case n=10 and this 

is an 8-bit data 

L Matrix (16 Bits) U Matrix (16 Bits) A Matrix (8 Bits) 
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Figure 43. Implemented Design Engine: LU Decomposition 

The overall implemented architecture of the LU decomposition schematic is represented in Figure 43. The proposed and 

implemented design is analyzed for the usage of Slice LUTs, memory, Slice Registers, and IO. The Vivado Design Tool provides the 

nets and logic which is used to check for all design violations, and for a better optimization.
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The error analysis is carried out by comparing the software results from 

MATLAB and the hardware results from Vivado Design Suite. This is the precision of 

error for decomposing an input matrix A into resultant L and U matrices, respectively. 

The Mean Error(ME) is the average of all errors. The formula for calculating the Mean 

Error is: 

𝑴𝒆𝒂𝒏 𝑬𝒓𝒓𝒐𝒓 =  
𝟏

𝒏
 ∑|𝒙𝒊 − 𝒙|

𝒏

𝒊=𝟏

 

Where 𝒏 – the number of errors, |𝒙𝒊 − 𝒙| – the absolute errors. 

Table 4. Error Analysis for LU Decomposition Operation 

 
10 x 10 Matrix 

Sparsity Matrix Min Max 

10% L  0 0.0022 

U  -0.0087 0.0078 

20% L  -0.0049 0.0022 

U  -0.0117 0.0292 

30% L  -0.0114 0.0074 

U  -0.0566 0.0626 

40% L  -0.0144 0.0206 

U  -0.0807 0.0781 

50% L  -0.0229 0.0062 

U  0.0799 0.0643 

Mean Error L  -0.01072 0.00772 

U  -0.01556 0.0484 

Table 4 represents the data for while decomposing a matrix of size 10x10 with 

varying the sparsity of the matrices from 10% to 50%. The Min and Max value of errors 

are calculated which is the difference between the MATLAB software results and the 

Vivado Hardware results. Once these are tabulated, the Mean Error is calculated from the 

above-mentioned formula to investigate the precision loss.  
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4.2.2 QR Decomposition. QR decomposition plays a vital role in computing 

solution of linear systems of equations, computing Eigenvalues and solving least square 

problems. Some of the applications of MIMO technologies and adaptive filtering require 

high-throughput QR decomposition for small size matrix. QR decomposition can be 

employed in machine learning in the automatic removal of an object from an image. To 

crop an image of a car from a video clip, using a single value decomposition make it 

relatively simple. In short by splitting a video into its individual frames, creating a matrix 

of vectors corresponding to each image, the decomposition allows simple separation of 

foreground objects from the background space. Preprocessing of QR decomposition 

makes the decoding in signal processing simple and to implement data detection helps to 

reduce the complexity of spatial multiplexing MIMO-OFDM detection. Many works 

have addressed the parallel hardware implementation of QR decomposition on Field 

Programmable Gate Arrays. It is referred to as Orthogonal matrix triangularization, 

which decomposes a given matrix A of size m×n into an orthogonal matrix (Q) of size 

m×m such that 𝑄𝑇 . 𝑄 = 𝐼 and an upper triangular matrix(R) of size m×n.  

𝑨 = 𝑸𝑹 

There are many methods for performing QR decomposition algorithms such as 

Givens Rotation (GR), Householder Transform (HT), Modified Gram-Schmidt (MGS) 

and Cholesky QR. The computation of eigenvalues is simplified using QR decomposition 

method.  

Figure 44 shows the matrix representation of QR decomposition of 100×100 

Structural Problem from Suite Sparse Matrix Collection. 
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Figure 44. MATLAB representation of QR Decomposition of 100×100 Structural 

Problem from Suite Sparse Matrix Collection 
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For solving linear simultaneous equations, A×x=b using Gaussian elimination, 

elementary row transformations of the matrix A are applied. This is equivalent as pre-

multiplying A by non-singular matrix P to solve the triangular system of equations P×Ax 

= P×b by back substitution. To improve numerical stability, Householder transformation 

which is orthogonal is used for QR decomposition.  

4.2.2.1 Householder Transformation. Householder Transformation is a 

sophisticated algorithm which zeros all the elements required in a column at once. This 

method uses reflection method for performing zeroing operation.  It performs a series of 

orthogonal transformations on any arbitrary matrix to convert into an upper triangular 

matrix. It is a linear process representing a vector through a plane containing the origin. 

The matrix which is transformed has the same norm as original vector.  

Consider a sparse matrix A, with x representing the non-zero elements given as: 

𝑨 = [ 

𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙

 ] 

Considering the A matrix, we computer H1 such that product of H1 and A results 

in first column zero except for the first element as:  

𝑯𝟏𝑨 = [

𝒙 𝒙 𝒙 𝒙
 𝟎 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙  𝒙 
𝟎 𝒙 𝒙 𝒙

]            

Similarly, the same procedure is carried out after multiplying it with the product 

and not disturbing 1st row and 1st column and zeroing all the remaining elements as 

follows:  

𝑯𝟐𝑯𝟏𝑨 = [ 

𝒙 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙 𝒙
𝟎 𝟎 𝒙  𝒙 
𝟎 𝟎 𝒙 𝒙

] 
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𝑯𝟑𝑯𝟐𝑯𝟏A = [

𝒙 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙  𝒙 
 𝟎 𝟎 𝒙 𝒙
𝟎 𝟎 𝟎 𝒙

] 

The process results in an upper triangular matrix R. And for any matrix A of size 

m x n QR decomposition can be written as follows: 

(𝑯𝒏𝑯𝒏−𝟏 ∙∙∙ 𝑯𝟑𝑯𝟐𝑯𝟏)𝑨 = 𝑹 

(𝑯𝟑𝑯𝟐𝑯𝟏)𝑨 = 𝑯𝑻𝑨 = 𝑹 

𝑸 = 𝑯𝟏𝑯𝟐 ∙∙∙ 𝑯𝒏 

The Householder Transformation of a matrix with normal vector v takes the form: 

𝑯 = 𝑰 − 𝟐𝒗𝒗𝑻 

We need to build H from the above-mentioned mathematical calculations so that 

𝑯𝒙 =  𝜶𝒆𝒊for some constant 𝜶 and 𝒆𝟏 = [𝟏 𝟎 𝟎 ]𝑻. 

Since 𝑯 is orthogonal, ||𝑯𝒙||  =  ||𝒙|| and ||𝜶𝒆𝟏||  =  |𝜶|||𝒆𝟏||  =  |𝜶|. So 𝜶 =

 ±||𝒙||, the sign is selected for vector u as: 

𝒖 =  

[
 
 
 
 
𝒙𝟏 + 𝒔𝒊𝒈𝒏(𝒙𝟏)||𝒙𝟏||

𝒙𝟐

..

.
𝒙𝒏 ]

 
 
 
 

 

With his unit vector u defined as 𝒖 =  
𝒗

||𝒗||
. The corresponding Householder 

transformation is: 

𝑯(𝒙) = 𝑰 − 𝟐𝒗𝒗𝑻 = 𝑰 − 𝟐
𝒖𝒖𝑻

𝒖𝑻𝒖
 

The following merits were important for considering Householder transformation 

for the proposed architecture: 

1. Better Numerical stability compared with Gram-Schmidt. 
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2. Using Householder Transformation, we were able to save memory space within 

the original matrix A for Q or R matrix rather than an explicit memory space. 

3. Arithmetic operations are less. 

The above Householder transformation can be realized using hardware 

architectures for calculating performance results. The Householder Transformation is a 

common approach in practice as Gram-Schmidt approach causes inaccuracy in 

computation which may result in non-orthogonal Q matrix. The algorithm for 

computation of proposed design is provided in Listing 4.  

A → n×n sparse matrix 

Q → n×n Orthogonal identity matrix 

R → n×n Upper Triangular matrix 

[m, n] = size(A) 

R = A 

Q = I 

for k=1 to m-1 

for i=1 to i-1 

xij=0 

end 

for i=1 to m 

xij = Rij 

end 

g= sqrt ( ∑ 𝑥𝑖
𝑚
𝑖=0 ) 

xi=xij + g 

s= sqrt ( ∑ 𝑥𝑖
𝑚
𝑖=0 ) 

if s≠0 

 x = 
𝑥

𝑠
 

 u = 2 * R′ * x 

R = R- x * u′ 

Q = Q-2*Q*x*x′ 

end 

Listing 4. QR Decomposition Algorithm 
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4.2.2.2 Design Flow and Optimization. The core of the decomposition process 

which is shown in Figure 45 is optimized in the finite state machine process while 

designing the algorithm. Pipelining overlaps the execution of instructions in parallel 

improving the performance. Pipelining refers to the parallel implementation of the 

proposed algorithm, which increases the throughput. For QR decomposition, multiple 

iterations need to be calculated, so pipelining could be implemented for better 

performance, which could also reduce latency. However, the resources utilized for the 

hardware architecture will be significant, as more resources should run in parallel.  

 

 

 

 

 

Figure 45. QR Decomposition Core 

Several intensive computations are needed to be implemented for calculating QR 

decomposition in parallel as hardware, to avoid bottlenecks. To achieve timing results, 

more hardware is used resulting in a larger design area.  

QR decomposition of an n×n matrix usually requires three times n×n storage 

space in the register, comprising the input matrix, resultant orthogonal matrix, an upper 

triangular matrix. Instead, once the input matrix is read decomposition takes place 

column by column storing the resulting R matrix above input matrix. So, only two times 

n×n matrix storage will be used in the architecture removing the extra storage. The usage 

of storage space for a 2×2 matrix is shown in Figure 46 how matrix elements are stored.  

𝑶𝒖𝒕𝒑𝒖𝒕_𝑽𝒂𝒍𝒊𝒅  

𝑹 

𝑸 

𝑹𝒆𝒔𝒆𝒕 

𝑰𝒏𝒑𝒖𝒕_𝑽𝒂𝒍𝒊𝒅  

𝑪𝒍𝒐𝒄𝒌  

𝑰𝒏𝒑𝒖𝒕 𝑴𝒂𝒕𝒓𝒊𝒙  

Finite State Machine (FSM)  
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Figure 46. Usage of Registers for QR decomposition of 2×2 matrix 

QR decomposition can be summarized in 3 steps: Preprocessing, Decomposition, 

and Matrix update. The preprocessing step is responsible for computation of square root 

norms which utilizes more hardware. The Top module is equipped with n multipliers, 

under which log(n) level of adders are employed. To save the hardware resources, the 

preprocessing is implemented as part of matrix update computation. The next step 

decomposes the matrix in which FSM-based control units are employed to synchronize 

the factorization. Additions are performed in parallel by a pair of adders to calculate the 

coefficient which is first value of the input element. A multiplier is used to multiply, 

which is followed by the subtraction. The last stage of updating the matrix has arithmetic 

calculations, and Householder Transformation process ends with subtractions. The 

number of matrix columns that can be held on the chip is determined as per matrix size 

and on-chip resources. The architectural implementation minimizes the excessive delay 

and processing overhead produced by the norm calculation and sorting operations. This 

led to more regular processing flow which increases the throughput.  
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An important design consideration is the calculation of square root, as it affects 

the precision and timing. Besides the addition, subtraction, multiplication operations for 

QR decomposition square root operation are mandatory for every column. Especially if 

the matrix size is large, the number of operations reduces the timing of the design. 

Considering these limitations, the square root module is designed separately along with 

the top module. Also, performing more iterations for finding the square root will give 

better results. The algorithm for square root for each column is provided in Listing 5. 

Coordinate Rotation Computer (CORDIC) algorithm which depends on the shift-add 

operation is used to calculate the square root operation. To increase the speed of 

execution multipliers are used to obtain low latency and this stage is design to work in 

parallel. 

begin 

for i in 0 to 15 loop 

right (0) := '1' 

right (1) := r(17) 

right (17 down to 2) := q 

left (1 down to 0) := a (31 down to 30) 

left (17 down to 2) :=r (15 down to 0) 

a (31 down to 2) := a (29 down to 0)     --shifting by 2 bit. 

if ( r (17) = '1') then 

r := left + right 

else 

r := left - right 

end if; 

q (15 down to 1) := q (14 down to 0) 

q (0) := not r(17) 

end loop 

return q  

 

Listing 5. Pseudo code for Square Root Algorithm 

For testing the algorithm, fixed-point number representation is used as input 

specification. Randomly generated matrices with different sparsity patterns are used as 
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input and a test bench is developed in MATLAB for verification. The simulation results 

obtained from Xilinx ISE design suite for 10×10 matrix is shown in Figure 48.  

For implementing the design on FPGA, we have set the output data as a 32-bit 

integer. The dec and frac parameters specify the number of bits allotted for decimal and 

fractional part of the input. The input bit is scalable and can be reduced for smaller values 

of n. The input, and output matrix is stored in the Block RAM controllers. The 

architecture is synthesized and implemented to find the timing and power estimates from 

the Vivado design Suite. Figure 47 shows the Block Diagram of QR decomposition.  

 

Figure 47. Block Diagram for QR decomposition using Householder Transformation  
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Figure 48. Simulation Waveform: QR Decomposition 

As different decomposition technique leading to different solutions, the right choice decomposition technique depends on the 

problem and the matrix to be decomposed. This approach is mainly focused on the performance improvement of QR decomposition 

using Householder transformation by implementing on FPGA. This decomposition technique is mostly used to solve linear square 

problems, OFDM-MIMO, adaptive beamforming.

Q Matrix (32 Bits) R Matrix (32 Bits) A Matrix (8 Bits) 

Matrix Size (10×10) 
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Figure 49. Implemented Design: QR Decomposition 
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Figure 49 shows the schematic diagram of the implement QR decomposition from 

Vivado Design Suite. The schematic is analyzed to find if any logic or nets are not 

interconnected. The overall engine is implemented using the finite state control machine 

which consists of the memory unit, and the necessary operators.  

Figure 50 captures the interconnect schematic for the Output engine. Once all the 

normalization is performed the finite state machine transfers the output data when the 

output_valid is available. The registers work is parallel to keep the temporary 

factorization values, which is being used by each row and column shifting with the 

square root module. This eliminates the loss of data, thereby keeping the precision loss to 

a minimum. 

 

Figure 50. Interconnect Schematic: Output FSM 
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Figure 51. Interconnect Schematic: Square Root Module 

 

Figure 51 shows the interconnect schematic of the square root module, which is 

designed as a sperate module, but works in parallel along with the factorization. This 

engine is designed with finite state machine and as a part of the module, shifting with 

CORDIC algorithm is implemented to reduce the multipliers used. This operation is 

performed when the clock high is reset, and an extra parameter is employed to take care 

of the fractional part of the bit. 
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The error analysis is carried out by comparing the software results from 

MATLAB and the hardware results from Vivado Design Suite. This is the precision of 

error for decomposing an input matrix A into resultant Q and R matrices, respectively. 

The Mean Error(ME) is the average of all errors. The formula for calculating the Mean 

Error is: 

𝑴𝒆𝒂𝒏 𝑬𝒓𝒓𝒐𝒓 =  
𝟏

𝒏
 ∑|𝒙𝒊 − 𝒙|

𝒏

𝒊=𝟏

 

Where 𝒏 – the number of errors, |𝒙𝒊 − 𝒙| – the absolute errors. 

Table 5. Error Analysis for QR Decomposition Operation 

 
10 x 10 Matrix 

Sparsity Matrix Min Max 

10% Q -2 0.0015 

R -1 0.0035 

20% Q -0.002 0.0021 

R -0.0037 0.0051 

30% Q -0.0037 0.002 

R -0.005 0.0106 

40% Q -0.0021 0.0028 

R -0.0085 0.0121 

50% Q -0.0033 0.0023 

R -0.0108 0.0121 

Mean Error Q -0.40222 0.00214 

R -0.2056 0.00868 

Table 5 represents the data for while decomposing a matrix of size 10×10 with 

varying the sparsity of the matrices from 10% to 50%. The Min and Max value of errors 

are calculated which is the difference between the MATLAB software results and the 

Vivado Hardware results. Once values these are tabulated, the Mean Error is calculated 

from the above-mentioned formula to investigate the minimum and maximum precision 

loss.  
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5. ALGORITHM PERFORMANCE RESULTS 

Once the optimized sparse matrix operation algorithms had been developed using 

Verilog code, we can compare its efficiency with the conventional matrix operation 

algorithms to confirm our performance estimates and do further optimization. The codes 

are tested for simulation and synthesize using Vivado Design Suite on 64-bit Intel® 

Core™ i-3-5005U CPU processor operating at 2.00GHz. Further the results are checked 

with MATLAB code to ensure we are getting the same output.  

Once the FPGA hardware design is ready to be tested, test runs with various 

matrices with different sparsity structure, and density is used to evaluate the performance. 

These results are plotted in forms of graphs and tables for detailed analysis. The 

performance of sparse matrix operations was determined by the number of the nonzero 

present in the matrices. Each of these test matrices sizes were 10×10, 20×20, 30×30, 

40×40, 50×50, 60×60 and 100×100 with different density ranging between 1% and 10%. 

5.1 Sparse Matrix Addition vs. Regular Matrix Addition 

The designed sparse matrix addition algorithm is simulated and the necessary 

measurements at what time the input matrix is taken (t1) and what time the output matrix 

is produced (t2) are calculated for latency and throughput calculations. These metrics 

calculated for the proposed algorithm are compared with the regular algorithm and the 

comparison is plotted in graphs. It is evident from Figure 52 for matrix dimension of 

10×10 the latency of sparse matrix addition with different sparsity percentage of the 

matrix ranging from 1% to 10% is significantly reduced. As the matrix size keeps 

increasing the latency increases but beyond the regular algorithm.  
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Figure 52. Latency Comparison: Proposed vs Regular for 10×10 Matrix 

 

Figure 53. Latency Comparison: Proposed vs Regular for 20×20 Matrix 

Figure 53 represents the latency comparison of proposed algorithm with the 

regular algorithm for 20×20 matrix with sparsity range varying from 1% to 10%. When 
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we compare the latency performance of different sizes of the matrix with different 

sparsity, we were able to produce improvements in latency for sparse matrix algorithm. 

 

Figure 54. Latency Comparison: Proposed vs Regular for 30×30 Matrix 

 

Figure 55. Latency Comparison: Proposed vs Regular for 40×40 Matrix 
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Figure 54 and 55 represents the latency comparison for 30×30 and 40×40 matrix 

with sparsity range varying from 1% to 5%. 

The data plot shows latency is directly proportional to the size of the matrix. The 

lower the size of the matrix, consumes a smaller number of clock cycles as compared 

with the higher the size of the matrix.  

 

Figure 56. Latency Comparison: Proposed vs Regular for 50×50 Matrix 

Figure 56 shows the latency comparison of a 50×50 matrix size, with different 

sparsity ranging between 1 to 5% between the regular operation and proposed operation. 

From the graph, the decrease in latency for each operation by the proposed method is 

evident and was able to achieve comparatively lower latency leading to improved 

throughput. Each test matrices were imported from the Suite Sparse Matrix Collection 

from Texas A&M University dataset with different varying properties and patters which 

are laten detailed towards the end of the thesis discussion. 
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Figure 57. Latency Comparison: Proposed vs Regular for 100×100 Matrix 

The overall arithmetic operation throughput is calculated from the clock cycle 

latency and the frequency achieved by the proposed design. Numerous varying sizes of 

matrix valves are involved, with differing sparsity percentage and the results are plotted 

in graphs for comparison. 
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Figure 58. Throughput Comparison: Proposed vs Regular for 10×10 Matrix 

Figure 58 shows the increase in throughput for the proposed method, in 

comparison with the regular method in terms of bits/sec. For a 10×10 matrix, the design 

was able to achieve a maximum of 4.2% increase with 10% of the elements being non 

zeros. Figure 59 shows the comparison of throughput calculated for 20×20 matrix size, 

and Figure 60 shows the comparison of throughput calculated for 30×30 matrix size 

where the proposed method can get a maximum of 2.3% increase in throughput. From the 

data analysis, throughput is directly proportional to the size of the matrix. 
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Figure 59. Throughput Comparison: Proposed vs Regular for 20×20 Matrix 

 

Figure 60. Throughput Comparison: Proposed vs Regular for 30×30 Matrix 
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Figure 61 shows the comparison of throughput between the two methods for 

40×40 matrix size, containing 1% to 5% sparsity range. 

 

Figure 61. Throughput Comparison: Proposed vs Regular for 40×40 Matrix 

Figure 62 is plotted to compare the throughput results between the proposed and 

the regular method, which shows the maximum increase in throughput is achieved for a 

matrix size of 50×50 with varying sparsity percentage from 1% to 5%. Figure 63 shows 

the comparison of throughput between the proposed and regular method for 100×100 

matrix with sparsity range varying between 1% to 3%.  
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Figure 62. Throughput Comparison: Proposed vs Regular for 50×50 Matrix 

 

Figure 63. Throughput Comparison: Proposed vs Regular for 100×100 Matrix 
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From figure 63, the throughput obtained from sparse matrix algorithm and regular 

matrix algorithm are plotted as a graph to show the improvements in performance. Figure 

63 illustrates a large increase in throughput from small size matrix with less sparsity 

while it gradually decreases as the size of the matrix dimension increases. This is due to 

the increase in number of operations to be performed when the nonzero value increases 

with the size of the matrix. But however, even for a 100×100 matrix with 10% sparsity 

distribution, a significant increase in throughput is proved from the comparison.   

 

Figure 64. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity 
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Figure 65. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity 

 

Figure 66. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity 
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With the use of Vivado Design Suite, the hardware resources utilized for both 

sparse algorithm and regular algorithm are compared in Figure 67.  

 

Figure 67. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Addition 

Operation 

 

Figure 67 provides the hardware utilization for a 10×10 matrix dimension with 

10% sparsity. We can see the amount of the hardware utilized is significantly reduced in 

the proposed sparse algorithm as the addition operation is performed only for the nonzero 

values saving more hardware resources.  

Table 6 summarizes the best and worst-case operational delays. These values are 

used to compare with software implementation. It shows the best- and worst-case delays 

achievable for fetching the input and calculating the output. The design was able to 

achieve a min of 3.76ns to process input data, and max of 4.34ns for the same. Once the 

necessary operation is performed, the design restricts to a min of 4.82ns for the output to 

be available and a max of 5.96ns. 
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Table 6. Hardware Implementation: Sparse Matrix Arithmetic Operation 

 
Input (ns) Output (ns) 

Best Case Delay (min) 3.76 4.82 

Worst Case Delay (max) 4.34 5.96 

 

The power analysis tool articulates the power consumed by the design. Figure 

68(a) shows the estimated static and dynamic power consumed by the proposed design, 

and Figure 68(b) shows the estimated power consumed by the regular design. This shows 

a comparison of the power, and clearly the proposed design is consuming less power. 

 

 

(a) Proposed Method                                     (b) Regular Method 

Figure 68. Power Analysis: Sparse Matrix Arithmetic Operation 
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5.2 Sparse Matrix Subtraction vs. Regular Matrix Subtraction 

Since subtraction is equivalent to the addition of matrix with signs of its nonzero 

reversed, the same algorithm is used for analyzing the performance of subtraction 

operation. Table 5 presents us the Latency and Throughput calculations of sparse 

matrices of different sizes ranging between 10×10 to 100×100, with different sparsity 

pattern and sparsity percentage ranging from 1% to 10%. 

Table 7 also provides the number of nonzero elements present in each matrix. We 

were able to achieve low latency and high throughput for the proposed sparse algorithm 

when compared with the regular algorithm for subtraction of two matrices. The number 

of nonzero is the determining factor for the number of operations to be performed by the 

algorithm. 

Table 7. Latency and Throughput Comparison from Implemented Design 
 

Matrix 

Size (n*n) 

Number of 

nonzero (nnz) 

Sparsity 

(%) 

Sparse Algorithm Regular Algorithm 

Latency 

(ns) 

Throughput 

(s) 

Latency 

(ns) 

Throughput 

(s) 

10×10 

1 1% 119.7495 8350765.56 

3205.434 311970.284 

2 2% 182.2275 5487645.94 

3 3% 286.3575 3492138.32 

4 4% 338.4225 2954886.27 

5 5% 494.6175 2021764.29 

6 6% 494.6175 2021764.29 

10 10% 1088.1585 918983.769 

 

20×20 

4 1% 378.7845 2640023.55 

19199.6 52084.4279 

8 2% 876.2925 1141171.47 

12 3% 1758.2385 568751.054 

16 4% 2312.2815 432473.295 

20 5% 3284.6835 304443.335 

24 6% 4437.9975 225326.851 

40 10% 11889.311 84109.1668 
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30×30 

9 1% 832.902 1200621.44 

53294.37 18763.7089 

18 2% 2963.318 337459.564 

27 3% 7065.502 141532.76 

36 4% 10487.766 95349.1907 

45 5% 15530.506 64389.4024 

54 6% 19598.694 51023.808 

90 10% 47452.75 21073.5943 

 

40×40 

16 1% 2121.745 471310.172 

38884.05 25717.4857 

32 2% 6841.901 146158.21 

48 3% 14619.695 68400.8798 

64 4% 26222.443 38135.2721 

80 5% 43638.191 22915.707 

96 6% 60647.029 16488.8539 

160 10% 164490.46 6079.37989 

 

50×50 

25 1% 5007.3435 199706.691 

148899.9 6715.92006 

50 2% 17691.746 56523.5352 

75 3% 39908.984 25057.015 

100 4% 52020.374 19223.2376 

125 5% 109712.26 9114.75133 

150 6% 162650.76 6148.14225 

250 10% 436771.89 2289.52465 

 

60×60 

36 1% 9174.7035 108995.348 

214411.5 4663.92837 

72 2% 32160.299 31094.2388 

108 3% 84721.127 11803.4313 

144 4% 126004.04 7936.25369 

180 5% 211929.79 4718.5438 

216 6% 287007.39 3484.2309 

360 10% 850915.66 1175.20461 

       

100×100 

100 1% 70001.865 14285.3337 

589749.8 1695.63423 

200 2% 273098.98 3661.67608 

300 3% 613428.28 1630.18243 

400 4% 1089617.6 917.753182 

500 5% 1701666.9 587.659084 

600 6% 2449576.2 408.233885 

1000 10% 6786227.4 147.357279 
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We were able to reduce the number of resources utilized from the proposed sparse 

algorithm than the regular algorithm for sparse matrix subtraction operation. This is 

represented in Figure 69, which was calculated for a 10×10 matrix size implemented 

from the design proposed. Further optimizations were performed on the design of 

hardware to reduce the Look Up Tables utilized for the operation, and we were able to 

achieve the performance expected. From the implementation report, the amount of slice 

registers used for the proposed algorithm is greatly reduced by 8.19% from the 

conventional algorithm. Similarly, the Look Up Tables utilized were also greatly reduced 

in number from the implemented design. But the number of I/O used for implementation 

is slightly high as parallel computations are running for efficient results. 

 

Figure 69. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Subtraction 

Operation 
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5.3 Element-By-Element Multiplication 

The performance comparison for latency achieved between proposed and regular 

algorithm for element-by-element multiplication is shown in Figure 70. 

The Figure 70 shows how greatly the latency of the proposed algorithm is reduced 

with various graphs of different matrix dimensions. The conclusion of the results is like 

matrix addition operation except with multiplier instead of adder with the same 

algorithm. 

 

Figure 70. Latency Comparison: Proposed vs Regular for Sparse Matrix Element-by-

Element Multiplication Operation 
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Figure 71. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity 

 

Figure 72. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity 
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Figure 73. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity 

 

Figure 71 shows the throughput calculated for the sparse matrix subtraction 

operation using the sparse algorithm and regular algorithm. The values calculated are 

plotted as graphs to compare the throughput efficiency of the sparse based algorithm. It is 

also evident from the Figure 72 that we were able to achieve high throughput. Figure 73 

shows high throughput is produced by the sparse algorithm for 10% sparsity. The graphs 

were plotted for different matrix sizes ranging from 10×10 to 100×100 with sparsity 

percentage ranging from 1% to 10%.  

Further, the primary goal of this thesis is to reduce the storage space for matrix 

operations, thereby hardware utilized will be reduced. Table 8 gives a comparison of the 

resources used for implementing the design. The number of resources used was 

substantially reduced compared with the traditional algorithm for sparse matrix 

subtraction operation.  
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Table 8. Resources Utilization for Sparse Matrix Element by Element Multiplication 
  

Device Utilization Summary 

Sparse Algorithm Regular Algorithm 

Slice Logic 

Utilization 

Used Available Utilization Used Available Utilization 

Number of Slice 

Registers 

96 126,800 1% 825 126,800 1% 

Number of Slice 

LUTs 

246 63,400 1% 1,219 63,400 1% 

Number used as 

Memory 

0 19,000 0% 16 19,000 1% 

Number of 

occupied Slices 

81 15,850 1% 394 15,850 2% 

Number of LUT 

Flip Flop pairs used 

248 
  

1,224   

Number of bonded 

IOBs 

77 210 36% 37 210 17% 

 

5.4 Sparse Matrix Multiplication vs. Regular Matrix Multiplication 

The latency of sparse matrix multiplication operation calculated from test values 

comprising of different matrix sizes from 10×10 to 100×100 with different sparsity 

pattern and the sparsity percentage ranges from 1% to 10% are plotted in the form of 

graph which illustrates, we were able to achieve low latency for the proposed algorithm 

for small and large matrices and low and high sparsity range. As the matrix size grows 

large, the number of operations increases. To correlate these operations, parallel 

processing in implemented in the algorithm along with pipelining with multiple 

processing elements. These optimizations have helped to improve the performance of the 

proposed algorithm.   
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Figure 74. Throughput Comparison: Sparse Matrix Multiplication Operation
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Figure 75. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity 

 

Figure 76. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity 
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Figure 74 gives the increase in throughput for various dimensions of matrices 

when compared with the proposed and regular algorithm. High throughput was able to be 

achieved from the proposed design, which is evident from Figure 75, 76 and 77, even if 

the percentage of sparsity increases. The x-axis represents the increase in throughput 

whereas, the y-axis represents the size of the matrices used as test matrices.  

 

Figure 77. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity 

 
The hardware utilized on the Nexys 4 DDR Artix 7 FPGA board was reduced in 

the proposed sparse algorithm for matrix multiplication, and the comparison with 

traditional algorithm is shown in Figure 78.  
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Figure 78. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Multiplication 

Operation 

Table 9 represents the best- and worst-case delays for the implemented design on 

the desired target FPGA board. The design was able to achieve a min of 3.79ns and a 

max of 15.03ns to fetch the input data, and this is dependent on how sparse the matrix is 

distributed. But once the data is fetched, and the operation is done the best- and worst-

case delays are approx. 5ns. 

Table 9. Hardware Implementation: Sparse Matrix Multiplication 
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Input (ns) Output (ns) 

Best Case Delay (min) 3.79 5.21 

Worst Case Delay (max) 15.03 5.89 
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(a) Proposed Method                                     (b) Regular Method 

Figure 79. Power Analysis: Sparse Matrix Multiplication Operation 

Figure 79 shows a comparison of Power utilized on the FPGA board after 

implementation. Figure 79 (a) shows the approximate power consumption of the 

proposed implementation from the Vivado Power Analysis Tool, and figure 79 (b) shows 

the power consumption of the regular matrix multiplication operation on the same. By 

comparing the signal, logic and I/O power consumed, the proposed method only 

consumes a total of 14.877W whereas the other method consumes 42.43W. Some of the 

low configuration FPGAs do not support high power consumption which may lead to a 

failure.  

 

 

 

 



 

 

1
1
0
 

5.5 Sparse LU Decomposition vs. Regular LU Decomposition 

 

Figure 80. Latency Comparison: Run01 vs Run02 

 

Figure 80 shows a comparison of LU decomposition of the sparse matrix of size ranging from 10×10 to 100×100 with different 

sparsity range of 10% to 100%. The LU decomposition proposed design was able to achieve lower latency than the regular LU 

Decomposition algorithm. The results are also verified with the MATLAB LU Decomposition outputs for precision loss.
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Figure 81. Throughput Comparison: Run01 vs Run02 

A comparison of the throughput calculated from sparse matrix algorithm and regular algorithm are plotted in the form of graph 

and is represented in Figure 81. As the performance needs to be high, we can infer from the graph high throughput was achieved.
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Figure 82. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix LU 

Decomposition 

The Figure 82 represents the matrix storage format proposed in this research work 

was able to achieve the minimum resource utilization than the traditional regular 

algorithm. The resources utilized for LU decomposition was reduced with optimization 

throughout the HDL design programmed for the operation. A difference in about 1/3rd 

was achieved with the proposed algorithm.    
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Figure 83 depicts the power consumption of the proposed and regular design for 

comparison. The Figure 83(a) shows the static and dynamic power consumed by the 

proposed design where the dynamic power is 159.083W and Figure 83(b) shows the same 

for the regular method and the dynamic power is 468.734W. This clearly indicates the 

proposed method can achieve less than the other.  

 

(a) Regular Method                             (b) Proposed Method 

Figure 83. Power Analysis: Sparse Matrix LU Decomposition 

Table 10. Hardware Implementation: LU Decomposition 

 

 

 

Table 10 shows the best- and worst-case delays for the input and output to be 

available before and after LU factorization. These delays are calculated once the design is 

implemented and analyzed with the timing constraints too. Each path, with the logic and 

nets are analyzed from input and output to determine the maximum and minimum delay 

for the design.  

  

 
Input (ns) Output (ns) 

Best Case Delay (min) 7.41 6.54 

Worst Case Delay (max) 19.68 6.71 
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5.6 Sparse QR Decomposition vs. Regular QR Decomposition 

 

Figure 84. Latency Comparison: Run01 vs Run02 

From the performance metrics, latency is calculated for various matrix sizes from 

10×10 to 100×100 with different sparsity percentage of 10% to 50% for both proposed 

algorithm and the regular algorithm, and it is evident from Figure 84 the graph indicates 

low latency has been achieved. In the case of a 10×10 matrix, the design was producing 

at least 8.5 times lower latency and for a 100×100 matrix the latency is improved. These 

calculations might not be the same which the same size of matrix and with different 

sparsity as the results are unique because of the irregular pattern of sparse matrices.  
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Figure 85. Throughput Comparison: Run01 vs Run02 

Figure 85 depicts the throughput comparison of the proposed algorithm and 

regular QR algorithm for matrices of sizes 10×10 to 100×100 with varying sparsity 

pattern and sparsity percentage ranging between 10% and 50%. High throughput was 

achieved, and it is shown in Figure 85. 

Table 11. Hardware Implementation: QR Decomposition 

 

 

Table 11 shows the comparison of minimum and maximum delay produced by the 

design for input and output. These results are calculated by analyzing the shortest and 

longest paths for the implemented design.  

 
Input (ns) Output (ns) 

Best Case Delay (min) 6.46 8.27 

Worst Case Delay (max) 16.4 5.73 
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Figure 86. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix QR 

Decomposition 

 One of the focus of the thesis is to reduce the resources utilized for sparse matrix 

operation when implemented on FPGA board. Figure 86 shows, how much utilization 

was being able to be cut with the proposed algorithm from traditional QR decomposition 

methods. Although, the implementation of matrix operations on FPGA can be done with 

deep pipelining, for such decomposition algorithms like LU and QR which involves a lot 

of computations at each stage is a complicated process. 
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5.7 Execution Time Analysis 

Benchmark matrices were downloaded from the University of Florida sparse 

matrix collection as test matrices for performance evaluation.  

The Figure 87 shows the comparison the execution time of the benchmark 

matrices using MATLAB and FPGA implementation.  

 

Figure 87. Comparison of execution time between MATLAB and FPGA 

The Table 12 below represents the matrices and their properties.  

Table 12. Benchmark matrices, properties, and pattern 
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rgg010 10×10 Counter Example Problem 76 No 

Trefethen_20 20×20 Combinatorial Problem 158 Yes 

Pores1 30×30 Computational Fluid Dynamics Problem 180 No 

GD02_b 80×80 Directed Graph 232 No 

ash85 85×85 Least Square Problem 523 Yes 

tols90 90×90 Computational Fluid Dynamics Problem 1746 No 

rotor1 100×100 Structural Problem 708 No 

olm100 100×100 Computational Fluid Dynamics Problem 396 No 

nos4 100×100 Structural Problem 594 Yes 
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To quantify the efficiency of the architecture proposed, we simulated them using 

large varieties of sparse matrices. According to the simulation results, the execution time 

efficiency of the proposed FPGA Algorithmic is better than software implementation (in 

this case we compared with MATLAB). The efficient implementation of sparse matrix 

operations becomes more critical when applied to larger problems. This thesis work 

investigates the merits of implementing various sparse matrix operations on 

reconfigurable architecture. Each operation has a computational complexity, and as we 

can see the efficiency grows with the number of nonzero. The implementation of sparse 

matrix-matrix operations will benefit with further optimization. The efficiency of the 

proposed architecture combined with the algorithmic optimization greatly reduces the 

BRAM resource utilization achieving high throughput.  

Opportunities for future work includes increasing the simulations for a variety of 

benchmark matrices from all application domains and exploring further optimization.    
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6. CONCLUSION AND FUTURE WORK 

The overall design was successful as the results were demonstrated with data from 

the implementation of various sparse matrix operations. When comparing the 

performance to the regular algorithms and implementation, a significant achievement was 

made in performance and improved upon. The following sections will discuss our future 

work by improving areas where improvements are required for interesting applications to 

be designed. Finally, conclusion will be provided encapsulating the entire work. 

Updating the FPGA might be significant improvement by placing on latest 

computers, performance improvement and speedups would be feasible in several areas. 

With the much available Block RAM, it is even possible for the operations to be 

implemented on large matrices. Adding to this, architectural improvement over the 

design or layout on the FPGA would add capability for allowing multiple designs based 

on the structure of the sparse matrices. Many of the previous designs would require pre-

processing of sparse matrices on the software side and would require more research into 

how to implement efficiently.  

The design has simple and scalable implementation that consists of a small 

number of input and output parameters. The University of Florida Sparse Matrix 

Collection contains over 1800 matrices and the other source is the Matrix Market which 

represents real problems that arise in various application domains such as fluid dynamics, 

finite element analysis, computational problems, least square problem, counter example 

problem, and structural problem. As large sparse matrices arise, it is difficult to find a 

proper and suitable algorithm and implementation for performance improvement. The 

following can be concluded from the thesis results. 
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1. The algorithm effectiveness depends on the sparsity of the matrices. When the 

number of nonzero is more, the number of calculations also increases. 

2. Both input matrices are stored in the storage format illustrated, requiring less 

amount of memory.  

3. For large sparse problems, parallelism is essential to reduce storage 

requirements, number of computations and execution of the program.  

Today’s applications require higher computational throughput and distributed 

memory approach for real-time applications. We have explored the optimizations not 

only for a specific application domain, but to make a generic architecture to be 

implemented irrespective of the application domain. This depends on several factors such 

as the sparsity, dimension of the matrix, irregular patterns of the nonzero elements, 

available resources with better clock frequency and bandwidth. The research work is 

primarily to design an optimized architecture for sparse matrix operations, allowing it to 

be more efficient than regular operations. Research improvement in this area is needed 

for increase in logic resources by comparable increase in I/O bandwidth and on-chip 

memory capacity, especially when the matrix sparsity is unstructured and randomly 

distributed. It would be interesting to seek further optimization to obtain efficient hybrid 

algorithms for different arbitrary matrices.  
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APPENDIX SECTION 

SPARSE MATRIX ADDITION 

`timescale 1ns / 1ps 

module sparse( 

    input Clk, 

    input reset, 

    input input_valid, 

    input [7:0] A_elem,B_elem,  

  input [7:0] A_r,A_c,B_r,B_c, 

    output reg output_valid, 

    output reg [7:0] row,col, 

    output reg [8:0] sum 

    );    

parameter MAT_SIZE = 10;  

parameter ELEMENT_SIZE = 8;  

reg [7:0] A_sr [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] B_sr [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] A_sc [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] B_sc [0:MAT_SIZE*MAT_SIZE-1];  

reg [ELEMENT_SIZE-1:0] A_sv [0:MAT_SIZE*MAT_SIZE-1];  

reg [ELEMENT_SIZE-1:0] B_sv [0:MAT_SIZE*MAT_SIZE-1];  

reg [15:0] A_count, B_count,A_index,B_index;  

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7; 

reg [2:0] state = 0; 

reg [15:0] i; 

reg [7:0] r1,c1,r2,c2,m,n; 

task index2rc(input [15:0] index, output reg [7:0] r, output reg [7:0] 

c); 

 begin 

  r = index/MAT_SIZE; 

  c = index - r*MAT_SIZE; 

 end 

endtask 

 always@(posedge Clk or posedge reset) 

  begin 

   if(reset) begin 

    state <= s0; 

    A_count <= 0; 

    B_count <= 0; 

    i <= 0; 

   end else     

 case (state) 

  s0: begin 

   output_valid <= 0; 

   A_count <= 0; 

   B_count <= 0; 

   if(input_valid == 1) 

    state <= s1; 

   else 

    state <= s0;   

  end  

  s1: begin   

   if(A_elem != 0) begin 

    A_sv[A_count] <= A_elem; 
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    A_sr[A_count] <= A_r; 

    A_sc[A_count] <= A_c; 

    A_count <= A_count + 1; 

   end  

   if(B_elem != 0) begin 

    B_sv[B_count] <= B_elem; 

    B_sr[B_count] <= B_r; 

    B_sc[B_count] <= B_c; 

    B_count <= B_count + 1; 

   end  

   if(input_valid == 0) begin 

    state <= s3; 

   end 

   A_index <= 0; 

   B_index <= 0;  

  end        

  s3: begin 

   if(A_index >= A_count) begin 

     state <= s4;  

     A_index <= 0; 

     B_index <= 0; 

     end else begin 

     if(B_index == B_count-1) begin 

     B_index <= 0; 

     A_index <= A_index + 1; 

    end else 

      B_index <= B_index + 1; 

   end   

   if(B_sv[B_index] != 0) begin  

   if( (A_sr[A_index] < B_sr[B_index]) || ( 

(A_sr[A_index] == B_sr[B_index]) && (A_sc[A_index] < B_sc[B_index]) )) 

begin  

    B_index <= 0; 

    A_index <= A_index + 1; 

   end 

      

    if((A_sr[A_index] == B_sr[B_index]) && 

(A_sc[A_index] == B_sc[B_index])) begin 

    row <= A_sr[A_index]; 

    col <= A_sc[A_index]; 

    sum <= A_sv[A_index] - B_sv[B_index];  

    output_valid <= 1; 

    A_sv[A_index] = 0; 

    B_sv[B_index] = 0; 

    B_index <= 0; 

    A_index <= A_index + 1; 

   end else begin 

    output_valid <= 0; 

   end  

   end else begin 

    output_valid <= 0; 

   end                       

  end      

  s4: begin 

   if(A_index == A_count) begin 

    state <= s5; 

    output_valid <= 0; 
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   end else begin 

    A_index <= A_index + 1; 

    if(A_sv[A_index] != 0) begin 

    row <= A_sr[A_index]; 

    col <= A_sc[A_index]; 

    sum <= A_sv[A_index];   

    output_valid <= 1; 

   end else begin 

    output_valid <= 0; 

   end 

   end               

  end 

   s5: begin 

   if(B_index == B_count) begin 

    state <= s0; 

    output_valid <= 0; 

   end else begin 

    B_index <= B_index + 1; 

   if(B_sv[B_index] != 0) begin 

     row <= B_sr[B_index]; 

    col <= B_sc[B_index]; 

    sum <= B_sv[B_index];  

    output_valid <= 1; 

   end else begin 

    output_valid <= 0; 

   end 

   end               

  end  

 endcase 

end                

endmodule 

 

SPARSE MATRIX MULTIPLICATION 

`timescale 1ns / 1ps 

module sparse( 

    input Clk, 

    input reset, 

    input input_valid, 

    input [7:0] mat_ip,  

    output reg done, 

    output reg output_valid, 

    output reg [15:0] prod 

    );     

parameter MAT_SIZE = 10;  

parameter ELEMENT_SIZE = 8;  

reg [2*ELEMENT_SIZE-1:0] C [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] A_sr [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] B_sr [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] A_sc [0:MAT_SIZE*MAT_SIZE-1];  

reg [7:0] B_sc [0:MAT_SIZE*MAT_SIZE-1];  

reg [ELEMENT_SIZE-1:0] A_sv [0:MAT_SIZE*MAT_SIZE-1];  

reg [ELEMENT_SIZE-1:0] B_sv [0:MAT_SIZE*MAT_SIZE-1];  

reg [15:0] A_count, B_count,A_index,B_index;  

reg [2*ELEMENT_SIZE-1:0] temp;    

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7; 

reg [2:0] state = 0; 
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reg [15:0] i; 

reg [7:0] m,n;  

task index2rc(input [15:0] index, output reg [7:0] r, output reg [7:0] 

c); 

 begin 

  r = index/MAT_SIZE; 

  c = index - r*MAT_SIZE; 

 end 

endtask 

 always@(posedge Clk or posedge reset) 

  begin 

   if(reset) begin 

    state <= s0; 

    done <= 1'b0; 

    A_count <= 0; 

    B_count <= 0; 

    i <= 0; 

   end else     

  case (state) 

   s0: begin 

    done <= 1'b0; 

    output_valid <= 0; 

    B_count <= 0; 

    if(input_valid == 1) begin 

     state <= s1; 

     if(mat_ip != 0) begin 

      index2rc(0,A_sr[0],A_sc[0]); 

      A_sv[0] = mat_ip; 

      A_count <= 1; 

     end else 

     A_count <= 0; 

     i <= 1; 

    end else begin 

    A_count <= 0; 

    state <= s0;  

    i <= 1;   

    end  

    end  

   s1: begin   

    if(input_valid == 1) begin  

     if(i != MAT_SIZE*MAT_SIZE) begin 

      if(mat_ip != 0) begin 

      

 index2rc(i,A_sr[A_count],A_sc[A_count]); 

       A_sv[A_count] = mat_ip; 

       A_count <= A_count + 1; 

      end 

      i <= i +1; 

     end else begin 

     state <= s2; 

     if(input_valid == 1) begin  

      if(mat_ip != 0) begin 

       index2rc(0,B_sr[0],B_sc[0]); 

       B_sv[0] = mat_ip; 

       B_count <= 1; 

       i <= 1; 

      end else begin 
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      i <= 1; 

      B_count <= 0; 

     end  

     end else begin 

     i <= 0; 

     B_count <= 0; 

    end  

    end  

    end 

   end               

   s2: begin 

    if(input_valid == 1) begin  

     if(i != MAT_SIZE*MAT_SIZE-1) begin 

      if(mat_ip != 0) begin 

      

 index2rc(i,B_sr[B_count],B_sc[B_count]); 

       B_sv[B_count] = mat_ip; 

       B_count <= B_count + 1; 

      end 

      i <= i +1; 

      end else begin 

      state <= s3; 

       if(input_valid == 1) begin  

        if(mat_ip != 0) begin 

       

 index2rc(i,B_sr[B_count],B_sc[B_count]); 

        B_sv[B_count] = mat_ip; 

        B_count <= B_count + 1; 

        i <= 1; 

        end 

       end     

    

      end  

      end        

      A_index <= 0; 

      B_index <= 0; 

   end 

    s3: begin   

    A_sr[A_count] = 0; 

    A_sc[A_count] = 0; 

    A_sv[A_count] = 0; 

    B_sr[B_count] = 0; 

    B_sc[B_count] = 0; 

    B_sv[B_count] = 0; 

    m <= 0; //row 

    n <= 0;  //col 

    state <= s4; 

    temp <= 0; 

    A_index <= 0; 

    B_index <= 0; 

   end  

    s4: begin      

    if(A_sr[A_index] > m) begin 

     state <= s5; 

    end else if(A_sr[A_index] == m) begin 

     if(B_index < B_count) 

      B_index <= B_index + 1; 
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     else 

     if(A_index < A_count) 

      A_index <= A_index + 1; 

     else 

     state <= s5; 

     if(B_sr[B_index] > A_sc[A_index]) begin 

      B_index <= 0; 

      if(A_index < A_count) 

      A_index <= A_index + 1; 

     else 

     state <= s5; 

     end else if((B_sc[B_index] == n) && 

(B_sr[B_index] == A_sc[A_index])) begin 

        temp <= temp + 

A_sv[A_index]*B_sv[B_index]; 

        if(A_index < A_count) 

         A_index <= 

A_index + 1; 

        else 

         state <= s5; 

       end 

      end else 

       if(A_index < A_count) 

        A_index <= A_index + 1; 

       else 

        state <= s5;  

   

      end     

      s5: begin 

      //increment row_col indices to output matrix. 

      C[m*MAT_SIZE+n] <= temp; 

      A_index <= 0; 

      B_index <= 0; 

      temp <= 0; 

      if(n == MAT_SIZE-1) begin 

       n <= 0; 

       if(m == MAT_SIZE-1) begin 

        m <= 0; 

        state <= s6; 

        i <= 0; 

       end else begin 

        m <= m+1; 

        state <= s4; 

       end  

      end else begin 

       n <= n+1; 

       state <= s4; 

      end  

      end       

      s6: begin 

      if(i == MAT_SIZE*MAT_SIZE) begin 

        state <= s0; 

        done <= 1'b1; 

        output_valid <= 0; 

      end else begin 

        i <= i + 1; 

        prod <= C[i];  
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        output_valid <= 1; 

      end               

      end  

    endcase 

  end             

      

   

endmodule 

 

LU DECOMPOSITION 

`timescale 1ns / 1ps 

module lu_decomp( 

    input Clk, 

    input reset, 

    input input_valid, 

    input [3:0] A_elem,  

    output reg output_valid, 

    output reg [15:0] L_elem, 

    output reg [15:0] U_elem 

    ); 

parameter n = 10;  

reg signed [15:0] L [0:n*n-1];   

reg signed [15:0] U [0:n*n-1];   

reg signed [15:0] temp_1D [0:n-1]; 

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7, 

s8 = 8, s9 = 9, s10 = 10, s11 = 11, s12 = 12; 

reg [3:0] state = 0; 

reg [7:0] i,j,p,m; 

reg [15:0] L_index,U_index; 

reg [15:0] pivot; 

function [15:0] rc2index; 

input [7:0] row,col; 

begin 

 rc2index = (row-1)*n+(col-1); 

end 

endfunction 

function [15:0] abs; 

input [15:0] num; 

begin 

if(num[15] == 1'b1) 

 abs = -num; 

else 

 abs = num; 

end 

endfunction 

function [15:0] resize; 

input [31:0] num; 

reg [31:0] num2; 

reg [15:0] num3; 

begin 

 if(num[31] == 1'b0)  

  resize = num[23:8]; 

 else begin 

  num2 = -num; 

  num3 = num2[23:8]; 

  resize = -num3; 
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 end  

end 

endfunction 

 

 always@(posedge Clk or posedge reset) 

  begin 

   if(reset) begin  

    state <= s0; 

    i <= 1; 

    j <= 1; 

    m <= 1; 

    p <= 1; 

    pivot <= 0; 

   end else     

    case (state) 

     s0: begin   

      output_valid = 0; 

      i <= 1; 

      j <= 1; 

      m <= 1; 

      p <= 1; 

      pivot <= 0; 

      L_index = 0; 

      if(input_valid == 1) begin 

        state <= s1; 

        U[0] <= A_elem*256; 

        U_index <= 1; 

      end else 

        state <= s0;    

     end  

     s1: begin 

      U[U_index] <= A_elem*256;  

      if(U_index == n*n) begin 

       state <= s2; 

       U_index <= 0; 

      end else 

       U_index <= U_index +1;  

     end       

     s2: begin 

      L_index = rc2index(i,j); 

      if(i == j) 

       L[L_index] <= 1*256;  

      else 

       L[L_index] <= 0; 

      if(j == n) begin 

       j <= 1; 

       if(i == n) begin 

        state <= s3; 

       end else 

        i <=  i+1; 

      end else 

       j <= j+1;  

     end 

     s3: begin 

      pivot<= 0; 

      m <= 1; 

      p <= j; 
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      i <= 1; 

      state <= s4; 

     end  

     s4: begin   

      if(pivot < abs(U[rc2index(p,j)])) 

begin 

       pivot <= 

abs(U[rc2index(p,j)]); 

       m <= p; 

      end  

      if(p == n) begin 

       p <= 1; 

       state <= s6;   

      end else 

       p <= p+1; 

     end   

     s6: begin   

      if(m != j) 

       state <= s7;  

      else begin 

       if(j == n)  

        state <= s11; 

       else begin  

        i <= j+1; 

        state <= s9; 

       end  

      end  

     end 

     s7: begin  

      if(p == n) begin 

       p <= 1;  

       if(j >= 2) 

        state <= s8; 

       else begin 

        state <= s9; 

        i <= j+1; 

       end  

      end else 

       p <= p +1; 

      U[rc2index(m,p)] <= 

U[rc2index(j,p)]; 

      U[rc2index(j,p)] <= 

U[rc2index(m,p)];  

     end 

     s8: begin  

      if(p == j-1) begin 

       p <= 1;  

       if(j < n) begin 

        state <= s9; 

        i <= j+1; 

       end else 

        state <= s11; 

      end else 

       p <= p +1; 

      L[rc2index(m,p)] <= 

L[rc2index(j,p)]; 
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      L[rc2index(j,p)] <= 

L[rc2index(m,p)];  

     end 

     s9: begin     

      L[rc2index(i,j)] = 

(U[rc2index(i,j)]*256) / U[rc2index(j,j)]; 

      state <= s10; 

     end 

     s10: begin   

      if(p == n) begin 

       p <= 1; 

       state <= s12;  

      end else 

       p <= p+1; 

      temp_1D[p-1] = U[rc2index(i,p)] - 

resize(L[rc2index(i,j)]*U[rc2index(j,p)]);  

       

      L_index = 0; 

     end 

     s12: begin 

      if(p == n) begin 

       p <= 1;  

       if(i == n) begin 

        if(j == n) begin  

         state <= s11; 

         j <= 0; 

        end else begin 

         j <= j+1; 

         state <= s3; 

        end 

        i <= 1; 

       end else begin 

        state <= s9; 

        i <= i+1; 

       end     

   

      end else 

       p <= p +1; 

      U[rc2index(i,p)] <= temp_1D[p-1]; 

     end 

     s11: begin 

      L_elem = L[L_index]; 

      U_elem = U[L_index];  

      if(L_index == n*n)  

        state <= s0; 

      else  

        L_index = L_index + 1; 

      output_valid = 1; 

     end 

    endcase 

  end           

   

endmodule 

 

QR DECOMPOSITION 

`timescale 1ns / 1ps 
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module QR_decomp( 

    input Clk, 

    input reset, 

    input input_valid, 

    input [3:0] A_elem, 

    output reg output_valid, 

    output reg [width-1:0] Q_elem, 

    output reg [width-1:0] R_elem 

    ); 

 

parameter n = 10;  

parameter width = 32; 

parameter dec = 20; 

parameter frac = 12; 

 

reg signed [width-1:0] Q [0:n*n-1];   

reg signed [width-1:0] R [0:n*n-1];   

reg signed [width-1:0] x [1:n];  

reg signed [width-1:0] u [1:n];   

reg signed [2*width-1:0] square_sum;   

reg signed [width-1:0] temp1;   

reg signed [width-1:0] temp2 [0:n*n-1];   

reg signed [width-1:0] temp3 [0:n*n-1];   

reg signed [width-1:0] s; 

wire signed [width-1:0] sq_out; 

 

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7, 

s8 = 8, s9 = 9, s10 = 10,  

   s11 = 11, s12 = 12, s13 = 13, s14 = 14, s15 = 15, s16 

= 16, s17= 17, s18 = 18; 

reg [4:0] state = 0; 

reg [7:0] i,j,k,p; 

reg [15:0] Q_index,R_index; 

reg rst_sq,sq_root_en; 

wire sq_out_en; 

function [15:0] rc2index; 

input [7:0] row,col; 

begin 

 rc2index = (row-1)*n+(col-1); 

end 

endfunction 

function signed [width-1:0] resize;  

input signed [2*width-1:0] num;  

reg signed [2*width-1:0] num2; 

reg signed [width-1:0] num3; 

begin 

 resize = num[2*frac+dec-1:frac];  

end 

endfunction 

sq_root #(2*width) 

square1(Clk,rst_sq,sq_root_en,square_sum,sq_out,sq_out_en);  

 always@(posedge Clk or posedge reset) 

  begin 

   if(reset) begin  

    state <= s0; 

    i <= 1; 

    j <= 1; 
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    rst_sq <= 1; 

    output_valid = 0; 

   end else     

    case (state) 

     s0: begin   

      output_valid = 0; 

      i <= 1; 

      j <= 1; 

      p <= 1; 

      rst_sq <= 1; 

      R_index = 0; 

      if(input_valid == 1) begin 

        state <= s1; 

        R[0] = A_elem*(2**frac); 

        R_index = 1; 

      end else 

        state <= s0;    

     end  

     s1: begin 

      R[R_index] = A_elem*(2**frac); 

      if(R_index == n*n) begin 

       state <= s2; 

       R_index = 0; 

      end else 

       R_index = R_index +1;  

     end       

     s2: begin 

      Q_index = rc2index(i,j); 

      if(i == j) 

       Q[Q_index] = 1*(2**frac); 

      else 

       Q[Q_index] = 0; 

      if(j == n) begin 

       j <= 1; 

       if(i == n) begin 

        state <= s3; 

        k <= 0; 

       end else 

        i <=  i+1; 

      end else 

       j <= j+1;  

     end    

     s3: begin   

      i <= 1; 

      j <= 1; 

      if(k == n-1)  

       state <= s18; 

      else begin 

       k <= k+1; 

       state <= s4; 

      end  

      Q_index = 0; 

     end  

     s4: begin     

      if(i == n) begin 

       i <= k;   

       state <= s5;   
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      end else 

       i <= i+1; 

      x[i] = 0;  

     end  

     s5: begin   

      if(i == n) begin 

       i <= 1; 

       square_sum <= 0; 

       state <= s6;   

      end else 

       i <= i+1; 

      x[i] = R[rc2index(i,k)]; 

     end  

     s6: begin   

      if(i == n) begin 

       i <= 1; 

       state <= s7; 

       rst_sq <= 0;   

     

      end else 

       i <= i+1; 

      square_sum <= square_sum + 

x[i]*x[i];  

     end 

     s7: begin  

      if(sq_out_en == 1'b1) begin 

       state <= s9; 

       rst_sq <= 1; 

       sq_root_en <= 1'b0; 

       square_sum <= 0; 

       x[k] = x[k] + sq_out; 

      end else 

       sq_root_en <= 1'b1;  

     end 

     s9: begin  

      if(i == n) begin 

       i <= 1; 

       state <= s10;  

       rst_sq <= 0;   

     

      end else 

       i <= i+1; 

      square_sum <= square_sum + 

x[i]*x[i];  

     end 

     s10: begin  

      if(sq_out_en == 1'b1) begin 

       s = sq_out;  

       rst_sq <= 1; 

       if(s != 0) 

        state <= s12;   

       else 

        state <= s3;  

       sq_root_en <= 1'b0; 

      end else 

       sq_root_en <= 1'b1;  

     end 
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     s12: begin  

      if(i == n) begin 

       i <= 1; 

       state <= s13;   

       temp1 = 0; 

      end else 

       i <= i+1; 

      x[i] = (x[i]*(2**frac))/s;  

     end 

     s13: begin   

      temp1 = temp1 + 

(R[rc2index(j,i)]*x[j])/(2**frac); 

      if(j == n) begin 

       j <= 1; 

       u[i] = 2*temp1; 

       temp1 = 0; 

       if(i == n) begin 

        state <= s14; 

        i <= 1; 

       end else 

        i <= i+1; 

      end else 

       j <= j+1; 

     end 

     s14: begin   

      R[rc2index(i,j)] = R[rc2index(i,j)] 

- (x[i]*u[j])/(2**frac); 

      if(j == n) begin 

       j <= 1; 

       temp1 = 0; 

       if(i == n) begin 

        state <= s15; 

        i <= 1; 

       end else 

        i <= i+1; 

      end else 

       j <= j+1; 

     end 

     s15: begin   

      if(j == n) begin 

       j <= 1; 

       if(i == n) begin 

        state <= s16; 

        temp1 = 0; 

        p <= 1; 

        i <= 1; 

       end else 

        i <= i+1; 

      end else 

       j <= j+1; 

      temp2[rc2index(i,j)] = 

(2*x[j]*x[i])/(2**frac); 

     end   

     s16: begin   

      temp1 = temp1 + 

(Q[rc2index(i,p)]*temp2[rc2index(p,j)])/(2**frac); 

      temp3[rc2index(i,j)] <= temp1; 
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      if(p == n) begin 

       p <= 1; 

       temp1 = 0; 

       if(j == n) begin 

        j <= 1;  

        if(i == n) begin 

         state <= s17; 

         i <= 1; 

        end else 

         i <= i+1; 

       end else 

        j <= j+1; 

      end else 

       p <= p+1; 

     end 

     s17: begin  

      Q[rc2index(i,j)] = Q[rc2index(i,j)] 

- temp3[rc2index(i,j)]; 

      if(j == n) begin 

       j <= 1; 

       if(i == n) begin 

        state <= s3; 

        i <= 1; 

       end else 

        i <= i+1; 

      end else 

       j <= j+1;    

  

     end      

     s18: begin 

      Q_elem = Q[Q_index]; 

      R_elem = R[Q_index];  

      if(Q_index == n*n-1)  

        state <= s0; 

      else  

        Q_index = Q_index + 1; 

      output_valid = 1; 

     end 

    endcase 

  end      

   

endmodule 

 

squareroot.v 

`timescale 1ns / 1ps 

 

module sq_root( 

    input Clk, 

    input reset, 

    input input_valid,  

  input [width-1:0] A, 

  output reg [width/2-1:0] sq_out, 

    output reg output_valid 

    ); 

 

parameter width = 32; 

reg [7:0] i; 
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reg [width/2+1:0] left =0,right=0,r=0; 

reg [width-1:0] a; 

 

 always@(posedge Clk or posedge reset) 

  begin 

   if(reset) begin  

    i <= 0; 

    output_valid <= 0; 

    sq_out = 0; 

    left = 0; 

    right = 0; 

    r = 0; 

   end else 

    if(input_valid == 1'b1) begin 

     if(i == width/2-1)  

      output_valid <= 1'b1; 

     else begin 

      output_valid <= 1'b0; 

      if(i == 0) begin 

       a = A; 

       sq_out = 0; 

      end  

      i <= i+1; 

     end  

     right = {sq_out,r[width/2+1],1'b1}; 

     left = {r[width/2-1:0],a[width-1:width-

2]};   

     a[width-1:2] = a[width-3:0]; 

     if(r[width/2+1] == 1'b1) 

      r = left+right; 

     else 

      r = left-right; 

     sq_out = {sq_out[width/2-

2:0],~r[width/2+1]};  

    end  

  end  

 

 

 

endmodule 

 

INPUT 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.std_logic_unsigned.all; 

 

entity UART_TX_CTRL is 

    Port ( SEND : in  STD_LOGIC; 

           DATA : in  STD_LOGIC_VECTOR (7 downto 0); 

           CLK : in  STD_LOGIC; 

           READY : out  STD_LOGIC; 

           UART_TX : out  STD_LOGIC); 

end UART_TX_CTRL; 

 

architecture Behavioral of UART_TX_CTRL is 
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type TX_STATE_TYPE is (RDY, LOAD_BIT, SEND_BIT); 

 

constant BIT_TMR_MAX : std_logic_vector(13 downto 0) := 

"00100000100010"; --2082 for 20 mhz clock. 10416 = (round(100MHz / 

9600)) - 1 

constant BIT_INDEX_MAX : natural := 10; 

 

--Counter that keeps track of the number of clock cycles the current 

bit has been held stable over the 

--UART TX line. It is used to signal when the ne 

signal bitTmr : std_logic_vector(13 downto 0) := (others => '0'); 

 

--combinatorial logic that goes high when bitTmr has counted to the 

proper value to ensure 

--a 9600 baud rate 

signal bitDone : std_logic; 

 

--Contains the index of the next bit in txData that needs to be 

transferred  

signal bitIndex : natural; 

 

--a register that holds the current data being sent over the UART TX 

line 

signal txBit : std_logic := '1'; 

 

--A register that contains the whole data packet to be sent, including 

start and stop bits.  

signal txData : std_logic_vector(9 downto 0); 

 

signal txState : TX_STATE_TYPE := RDY; 

 

begin 

 

--Next state logic 

next_txState_process : process (CLK) 

begin 

 if (rising_edge(CLK)) then 

  case txState is  

  when RDY => 

   if (SEND = '1') then 

    txState <= LOAD_BIT; 

   end if; 

  when LOAD_BIT => 

   txState <= SEND_BIT; 

  when SEND_BIT => 

   if (bitDone = '1') then 

    if (bitIndex = BIT_INDEX_MAX) then 

     txState <= RDY; 

    else 

     txState <= LOAD_BIT; 

    end if; 

   end if; 

  when others=> --should never be reached 

   txState <= RDY; 

  end case; 

 end if; 

end process; 
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bit_timing_process : process (CLK) 

begin 

 if (rising_edge(CLK)) then 

  if (txState = RDY) then 

   bitTmr <= (others => '0'); 

  else 

   if (bitDone = '1') then 

    bitTmr <= (others => '0'); 

   else 

    bitTmr <= bitTmr + 1; 

   end if; 

  end if; 

 end if; 

end process; 

 

bitDone <= '1' when (bitTmr = BIT_TMR_MAX) else 

    '0'; 

bit_counting_process : process (CLK) 

begin 

 if (rising_edge(CLK)) then 

  if (txState = RDY) then 

   bitIndex <= 0; 

  elsif (txState = LOAD_BIT) then 

   bitIndex <= bitIndex + 1; 

  end if; 

 end if; 

end process; 

 

tx_data_latch_process : process (CLK) 

begin 

 if (rising_edge(CLK)) then 

  if (SEND = '1') then 

   txData <= '1' & DATA & '0'; 

  end if; 

 end if; 

end process; 

 

tx_bit_process : process (CLK) 

begin 

 if (rising_edge(CLK)) then 

  if (txState = RDY) then 

   txBit <= '1'; 

  elsif (txState = LOAD_BIT) then 

   txBit <= txData(bitIndex); 

  end if; 

 end if; 

end process; 

 

UART_TX <= txBit; 

READY <= '1' when (txState = RDY) else '0'; 

 

end Behavioral; 

OUTPUT 

library ieee; 

use ieee.std_logic_1164.ALL; 
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use ieee.numeric_std.all; 

  

entity UART_RX_CTRL is 

  generic ( 

    g_CLKS_PER_BIT : integer := 2082     -- Needs to be set correctly 

    ); 

  port ( 

    i_Clk       : in  std_logic; 

    i_RX_Serial : in  std_logic; 

    o_RX_DV     : out std_logic; 

    o_RX_Byte   : out std_logic_vector(7 downto 0) 

    ); 

end UART_RX_CTRL; 

  

  

architecture rtl of UART_RX_CTRL is 

  

  type t_SM_Main is (s_Idle, s_RX_Start_Bit, s_RX_Data_Bits, 

                     s_RX_Stop_Bit, s_Cleanup); 

  signal r_SM_Main : t_SM_Main := s_Idle; 

  

  signal r_RX_Data_R : std_logic := '0'; 

  signal r_RX_Data   : std_logic := '0'; 

    

  signal r_Clk_Count : integer range 0 to g_CLKS_PER_BIT-1 := 0; 

  signal r_Bit_Index : integer range 0 to 7 := 0;  -- 8 Bits Total 

  signal r_RX_Byte   : std_logic_vector(7 downto 0) := (others => '0'); 

  signal r_RX_DV     : std_logic := '0'; 

    

begin 

  

  -- Purpose: Double-register the incoming data. 

  -- This allows it to be used in the UART RX Clock Domain. 

  -- (It removes problems caused by metastabiliy) 

  p_SAMPLE : process (i_Clk) 

  begin 

    if rising_edge(i_Clk) then 

      r_RX_Data_R <= i_RX_Serial; 

      r_RX_Data   <= r_RX_Data_R; 

    end if; 

  end process p_SAMPLE; 

    

  

  -- Purpose: Control RX state machine 

  p_UART_RX : process (i_Clk) 

  begin 

    if rising_edge(i_Clk) then 

          

      case r_SM_Main is 

  

        when s_Idle => 

          r_RX_DV     <= '0'; 

          r_Clk_Count <= 0; 

          r_Bit_Index <= 0; 

  

          if r_RX_Data = '0' then       -- Start bit detected 

            r_SM_Main <= s_RX_Start_Bit; 



 

140 

 

          else 

            r_SM_Main <= s_Idle; 

          end if; 

  

            

        -- Check middle of start bit to make sure it's still low 

        when s_RX_Start_Bit => 

          if r_Clk_Count = (g_CLKS_PER_BIT-1)/2 then 

            if r_RX_Data = '0' then 

              r_Clk_Count <= 0;  -- reset counter since we found the 

middle 

              r_SM_Main   <= s_RX_Data_Bits; 

            else 

              r_SM_Main   <= s_Idle; 

            end if; 

          else 

            r_Clk_Count <= r_Clk_Count + 1; 

            r_SM_Main   <= s_RX_Start_Bit; 

          end if; 

  

            

        -- Wait g_CLKS_PER_BIT-1 clock cycles to sample serial data 

        when s_RX_Data_Bits => 

          if r_Clk_Count < g_CLKS_PER_BIT-1 then 

            r_Clk_Count <= r_Clk_Count + 1; 

            r_SM_Main   <= s_RX_Data_Bits; 

          else 

            r_Clk_Count            <= 0; 

            r_RX_Byte(r_Bit_Index) <= r_RX_Data; 

              

            -- Check if we have sent out all bits 

            if r_Bit_Index < 7 then 

              r_Bit_Index <= r_Bit_Index + 1; 

              r_SM_Main   <= s_RX_Data_Bits; 

            else 

              r_Bit_Index <= 0; 

              r_SM_Main   <= s_RX_Stop_Bit; 

            end if; 

          end if; 

  

  

        -- Receive Stop bit.  Stop bit = 1 

        when s_RX_Stop_Bit => 

          -- Wait g_CLKS_PER_BIT-1 clock cycles for Stop bit to finish 

          if r_Clk_Count < g_CLKS_PER_BIT-1 then 

            r_Clk_Count <= r_Clk_Count + 1; 

            r_SM_Main   <= s_RX_Stop_Bit; 

          else 

            r_RX_DV     <= '1'; 

            r_Clk_Count <= 0; 

            r_SM_Main   <= s_Cleanup; 

          end if; 

  

                    

        -- Stay here 1 clock 

        when s_Cleanup => 

          r_SM_Main <= s_Idle; 
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         r_RX_DV   <= '0'; 

  

              

        when others => 

          r_SM_Main <= s_Idle; 

  

      end case; 

    end if; 

  end process p_UART_RX; 

  

  o_RX_DV   <= r_RX_DV; 

  o_RX_Byte <= r_RX_Byte; 

    

end rtl; 
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Example for Error Analysis 

LU Decomposition 

A Matrix -10x10 50% Sparsity 

0 7 0 5 0 4 0 0 9 0 

2 3 9 0 6 0 0 4 3 0 

0 0 2 2 0 0 3 0 1 2 

3 0 4 0 3 0 0 0 7 4 

0 9 0 0 3 9 0 7 1 0 

4 0 3 0 0 0 0 3 8 0 

2 4 0 0 7 0 2 0 0 6 

0 0 5 4 8 3 0 0 4 5 

2 3 0 0 0 0 5 3 4 0 

0 0 6 0 0 2 0 5 3 1 

 

L MATLAB 

1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0.5 0.333333 1 0 0 0 0 0 0 0 

0 0.777778 0 1 0 0 0 0 0 0 

0.5 0.444444 -0.2 0 1 0 0 0 0 0 

0 0 0.666667 0.8 0.98 1 0 0 0 0 

0.5 0.333333 -0.2 0 0 -0.30232 1 0 0 0 

0.75 0 0.233333 0 0.275 0.165015 -0.05141 1 0 0 

0 0 0.266667 0.4 -0.06 0.144777 0.772273 0.347572 1 0 

0 0 0.8 0 -0.6 0.137723 0.333511 -0.12799 
-

0.28177 1 
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L Vivado 

1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

0.5 0.332031 1 0 0 0 0 0 0 0 

0 0.777344 0 1 0 0 0 0 0 0 

0.5 0.441406 -0.19922 0 1 0 0 0 0 0 

0 0 0.664063 0.796875 0.976563 1 0 0 0 0 

0.5 0.332031 -0.19922 0 0 -0.30078 1 0 0 0 

0.75 0 0.230469 0 0.273438 0.160156 -0.05078 1 0 0 

0 0 0.265625 0.398438 -0.05859 0.144531 0.769531 0.332031 1 0 

0 0 0.796875 0 -0.59375 0.140625 0.328125 -0.14844 
-

0.30469 1 

 

L Difference 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 -0.0013 0 0 0 0 0 0 0 0 

0 -0.00043 0 0 0 0 0 0 0 0 

0 -0.00304 0.000781 0 0 0 0 0 0 0 

0 0 -0.0026 -0.00313 -0.00344 0 0 0 0 0 

0 -0.0013 0.000781 0 0 0.001537 0 0 0 0 

0 0 -0.00286 0 -0.00156 -0.00486 0.000625 0 0 0 

0 0 -0.00104 -0.00156 0.001406 -0.00025 -0.00274 -0.01554 0 0 

0 0 -0.00313 0 0.00625 0.002902 -0.00539 -0.02045 -0.02292 0 
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U MATLAB 

4 0 3 0 0 0 0 3 8 0 

0 9 0 0 3 9 0 7 1 0 

0 0 7.5 0 5 -3 0 0.166667 -1.33333 0 

0 0 0 5 -2.33333 -3 0 -5.44444 8.222222 0 

0 0 0 0 6.666667 -4.6 2 -4.57778 -4.71111 6 

0 0 0 0 0 11.908 -1.96 8.730667 2.928 -0.88 

0 0 0 0 0 0 4.407457 1.839436 0.285186 -0.26604 

0 0 0 0 0 0 0 -2.37613 2.138163 2.481537 

0 0 0 0 0 0 0 1.11E-16 -3.60331 1.830346 

0 0 0 0 0 
2.22E-

16 0 3.13E-17 0 5.643263 

 

U Vivado 

4 0 3 0 0 0 0 3 8 0 

0 9 0 0 3 9 0 7 1 0 

0 0.011719 7.5 0 5.003906 -2.98828 0 0.175781 -1.33203 0 

0 0.003906 0 5 -2.33203 -2.99609 0 -5.44141 8.222656 0 

0 0.027344 -0.00781 0 6.671875 -4.56641 2 -4.55859 -4.70313 6 

0 -0.02734 0.023438 0.015625 0.023438 11.82813 -1.95313 8.671875 2.921875 -0.85938 

0 0.003906 -0.00391 0.003906 0.003906 -0.02734 4.414063 1.8125 0.28125 -0.25781 

0 0 0.023438 0 0.023438 0.042969 -0.01172 -2.33984 2.136719 2.484375 

0 0.003906 0.003906 0.007813 -0.01563 0.019531 0.003906 -0.01172 -3.53906 1.84375 

0 0.007813 0.019531 0 -0.02734 0.023438 0.015625 0.003906 0.007813 5.6875 

 

 



 

 

 

1
4
5
 

U Difference 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0.011719 0 0 0.003906 0.011719 0 0.009115 0.001302 0 

0 0.003906 0 0 0.001302 0.003906 0 0.003038 0.000434 0 

0 0.027344 -0.00781 0 0.005208 0.033594 0 0.019184 0.007986 0 

0 -0.02734 0.023438 0.015625 0.023438 -0.07988 0.006875 -0.05879 -0.00613 0.020625 

0 0.003906 -0.00391 0.003906 0.003906 -0.02734 0.006605 -0.02694 -0.00394 0.008227 

0 0 0.023438 0 0.023438 0.042969 -0.01172 0.03629 -0.00144 0.002838 

0 0.003906 0.003906 0.007813 -0.01563 0.019531 0.003906 -0.01172 0.06425 0.013404 

0 0.007813 0.019531 0 -0.02734 0.023437 0.015625 0.003906 0.007813 0.044237 

 

Error Analysis 
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