

OPTIMIZED SPARSE MATRIX OPERATIONS AND HARDWARE

IMPLEMENTATION USING FPGA

by

Dinesh Kumar Murthy, B.E.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering

August 2021

Committee Members:

Semih Aslan, Chair

Dan Tamir

Bill Stapleton

Jesus Jimenez

COPYRIGHT

by

Dinesh Kumar Murthy

2021

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work, I, Dinesh Kumar Murthy, authorize duplication of

this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

I would like to dedicate this thesis to my loving dad and mom for all the guidance,

encouragement, and support throughout my life. I also dedicate this thesis to my friends for

their constant help and support in every step of my life.

v

ACKNOWLEDGEMENTS

I would like to express my gratitude to all who helped me during the writing of

this thesis at Texas State.

First, I would like to express my deep gratitude to Dr. Semih Aslan, my

supervisor, for his continuous support and encouragement, for his patience, motivation,

enthusiasm, and immense knowledge. He also provides me with an excellent atmosphere

for conducting this research project. Without his consistent and illuminating instruction,

this thesis could not have reached its present form.

I would also like to express my heartfelt gratitude to my thesis committee

members: Dr. Dan Tamir, Dr. Bill Stapleton and Dr. Jesus Jimenez for their insightful

comments and constructive comments in the early and final version of the work.

I owe a special debt of gratitude to Dr. Vishu Viswanathan, Graduate Advisor of

Engineering, and Dr. Stan McClellan, Former Director of Ingram School of Engineering,

for providing facility support. I would like to thank Ms. Sarah Rivas in Ingram School of

Engineering and Department Engineering Technology for their kind help.

Finally, I express my gratitude to my parents, family, and friends for providing

me with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xiv

ABSTRACT ... xvi

CHAPTER

1. INTRODUCTION ..1

 1.1 Problem Statement ...4

 1.2 Research Goals...4

 1.3 Goal Measurement Metrics ..5

 1.4 Tools Used ...7

2. LITERATURE REVIEW ...8

3. BACKGROUND ..12

 3.1 Graph Processing ...12

 3.2 Sparse Matrices ..14

 3.3 Sparse Matrix Storage Formats ..16

 3.4 Finite State Machines (FSMs) ...20

 3.5 Field Programmable Gate Arrays (FPGAs) ...21

3.5.1 FPGA Architecture ...21

3.5.2 Design and Programming ...22

 3.5.2.1 Design Entry ..23

 3.5.2.2 Behavioral Simulation ...23

 3.5.2.3 RTL Analysis ...24

 3.5.2.4 Synthesis ..25

 3.5.2.5 Implementation ..26

 3.5.2.6 Timing Analysis ..27

 3.5.2.7 Power Usage Analysis ...28

vii

 3.5.2.8 Programming the Board29

3.5.3 NEXYS4 DDR ARTIX-7 FPGA Board29

4. HARDWARE DESIGN ARCHITECTURE ..31

4.1 Arithmetic Operations ..38

 4.1.1 Sparse Matrix Addition ..38

4.1.2 Sparse Matrix Multiplication ..48

 4.2 Matrix Decomposition ...58

 4.2.1 LU Decomposition ..59

 4.2.1.1 Sparse LU Decomposition Architecture62

 4.2.1.2 Implementation and Error Analysis67

 4.2.2 QR Decomposition..71

 4.2.2.1 Householder Transformation73

 4.2.2.2 Design Flow and Optimization76

5. ALGORITHM PERFORMANCE RESULTS ...85

5.1 Sparse Matrix Addition vs. Regular Matrix Addition85

 5.2 Sparse Matrix Subtraction vs. Regular Matrix Subtraction98

 5.3 Element-By-Element Multiplication ...101

 5.4 Sparse Matrix Multiplication vs. Regular Matrix Multiplication104

 5.5 Sparse LU Decomposition vs. Regular LU Decomposition110

 5.6 Sparse QR Decomposition vs. Regular QR Decomposition114

 5.7 Execution Time Analysis ..117

6. CONCLUSION AND FUTURE WORK ..119

APPENDIX SECTION ..121

REFERENCES ..146

viii

LIST OF TABLES

Table Page

1. Adjacency Matrix Representation of the Graph ..13

2. Comparison of Various Sparse Matrix Storage Formats ...17

3. Computational Complexity ...32

4. Error Analysis for LU Decomposition Operation ...70

5. Error Analysis for QR Decomposition Operation ...84

6. Hardware Implementation: Sparse Matrix Arithmetic Operation97

7. Latency and Throughput Comparison from Implemented Design98

8. Resources Utilization for Sparse Matrix Element by Element Multiplication104

9. Hardware Implementation: Sparse Matrix Multiplication ..108

10. Hardware Implementation: LU Decomposition ...113

11. Hardware Implementation: QR Decomposition ..115

12. Benchmark matrices, performance, and pattern ..117

ix

LIST OF FIGURES

Figure Page

1. Real World Sparse Matrix Applications ..1

2. Graph Representing Several Cities in Southern California ...12

3. Sparsity Pattern of Matrices ...15

4. Storage of Input Matrix ..19

5. State Diagram of a Simplified Finite State Machine ...20

6. Sketch of FPGA Architecture and Design of Simple Logic Block................................22

7. Vivado Design Suite ..22

8. Vivado Project Manager ..23

9. Vivado Simulation Environment ...24

10. Vivado RTL Analysis Tool ..24

11. Vivado Synthesis Analysis Tool ..25

12. Vivado Synthesis Report Analysis ...25

13. Vivado Implementation Tool ...26

14. Vivado Timing Constraints Tool ...27

15. Vivado Power Analysis Tool ...28

16. Nexys4 DDR Artix-7 FPGA Board ...30

17. High Level Flow Chart of Work Proposed ..31

18. FPGA Implementation and Verification Flow ...32

19. Overview of Hardware and Software Implementation ..33

x

20. Block Diagram of TX and RX Module ..34

21. Clock Cycle for TX and RX ..35

22. Fundamental Design: Transmission FSM ..36

23. Fundamental Design: Receiver FSM ...37

24. Representation of Row and Column Access of Input Matrices40

25. FSM Transition States for Sparse Matrix Arithmetic Operations42

26. Sparse Matrix Addition Operation Methodology ..43

27. Design Simulation: Sparse Matrix Addition Operation ...44

28. Implemented Design: Arithmetic Operation Engine..46

29. Interconnect Design: Input Valid Schematic ...47

30. Interconnect Design: Output Valid Schematic ...47

31. Matrix Multiplication Hardware Architecture ...49

32. Overall Design Flow ..50

33. Sparse Matrix Multiplication Methodology ...53

34. Design Simulation: Sparse Matrix Multiplication ...54

35. Elaborated Implemented Design: Sparse Matrix Multiplication55

36. Interconnect Design: Sparse Matrix Multiplication ...56

37. Interconnect Design: Temporary Registers for Intermediate Output57

38. Matrix Decomposition ...58

39. MATLAB Representation of LU Decomposition of 20x20 Combinatorial

 Problem from Suite Sparse Matrix Collection ..61

xi

40. Control Logic for LU Decomposition Hardware ...62

41. Block Diagram of Proposed LU Decomposition Hardware ..65

42. Design Simulation: LU Decomposition ...68

43. Implemented Design Engine: LU Decomposition ...69

44. MATLAB Representation of QR Decomposition of 100x100 Structural Problem

 from Suite Sparse Matrix Collection ...72

45. QR Decomposition Core ..76

46. Usage of Registers for QR Decomposition of 2x2 Matrix ...77

47. Block Diagram for QR Decomposition using Householder Transformation79

48.Simulation Waveform: QR Decomposition ..80

49. Implemented Design: QR Decomposition ...81

50. Interconnect Schematic: Output FSM ..82

51. Interconnect Schematic: Square Root Module ...83

52. Latency Comparison: Proposed vs Regular for 10×10 Matrix86

53. Latency Comparison: Proposed vs Regular for 20×20 Matrix86

54. Latency Comparison: Proposed vs Regular for 30×30 Matrix87

55. Latency Comparison: Proposed vs Regular for 40×40 Matrix87

56. Latency Comparison: Proposed vs Regular for 50×50 Matrix88

57. Latency Comparison: Proposed vs Regular for 100×100 Matrix89

58. Throughput Comparison: Proposed vs Regular for 10×10 Matrix90

59. Throughput Comparison: Proposed vs Regular for 20×20 Matrix91

xii

60. Throughput Comparison: Proposed vs Regular for 30×30 Matrix91

61. Throughput Comparison: Proposed vs Regular for 40×40 Matrix92

62. Throughput Comparison: Proposed vs Regular for 50×50 Matrix93

63. Throughput Comparison: Proposed vs Regular for 100×100 Matrix93

64. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity94

65. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity95

66. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity95

67. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Addition Operation ..96

68. Power Analysis: Sparse Matrix Arithmetic Operation ..97

69. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Subtraction

 Operation...100

70. Latency Comparison: Proposed vs Regular for Sparse Matrix

 Element-by-Element Multiplication Operation ..101

71. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity102

72. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity102

73. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity103

74. Throughput Comparison: Sparse Matrix Multiplication Operation105

75. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity106

76. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity106

77. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity107

78. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Multiplication

Operation...108

xiii

79. Power Analysis: Sparse Matrix Multiplication Operation ...109

80. Latency Comparison: Run01 vs Run02 ...110

81. Throughput Comparison: Run01 vs Run02 ...111

82. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix LU

 Decomposition ..112

83. Power Analysis: Sparse Matrix LU Decomposition ..113

84. Latency Comparison: Run01 vs Run02 ...114

85. Throughput Comparison: Run01 vs Run02 ...115

86. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix QR

 Decomposition ...116

87. Comparison of execution time between MATLAB and FPGA117

xiv

LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

FPGA Field Programmable Gate Arrays

𝑁𝑙𝑧 Length of the largest non-zero diagonal

𝑁𝑑𝑖𝑎 Number of non-zero diagonal offsets

𝑁𝑚𝑛𝑧𝑟 Maximum number of non-zero values

NZV Number of non-zero values in the matrix

r Represents block size

𝑁𝑚𝑛𝑧𝑟𝑔(𝑖) Maximum number of non-zero elements per row

𝐺𝑠𝑖𝑧𝑒 Number of rows clumped together to form a group

𝑁𝑔 Number of groups

𝑁𝑞 Number of quadrants

𝐶𝑆𝑅𝑠𝑡𝑜𝑟𝑎𝑔𝑒 Storage space required for CSR

N Order of the matrix

𝑁𝑠 Number of streams

NZS Number of non-zero values per stream

𝑆𝑟 Number of rows per stream

𝑁𝑛𝑧𝑏 Number of non-zero blocks in the matrix

𝑏𝑠𝑖𝑧𝑒 Block size

𝑁𝑆 Number of slices

xv

𝑁𝑛𝑧𝑣 Maximum number of nonzero elements

FSM Finite State Machines

MAT_SIZE Size of the Matrix (n×n)

ELEMENT_SIZE Number of Bit (8-bit, 16-bit, 32-bit)

NZE Maximum Number of non-zeros

𝐴_𝑠𝑟 Row of sparse matrix A

𝐵_𝑠𝑟 Row of sparse matrix B

𝐴_𝑠𝑐 Column of sparse matrix A

𝐵_𝑠𝑐 Column of sparse matrix B

𝐴_𝑠𝑣 Value of sparse matrix A

𝐵_𝑠𝑣 Value of sparse matrix B

𝐴_𝑐𝑜𝑢𝑛𝑡 Counter to increase index values of matrix A

𝐵_𝑐𝑜𝑢𝑛𝑡 Counter to increase index values of matrix B

𝐴_𝑖𝑛𝑑𝑒𝑥 Index of matrix A

𝐵_𝑖𝑛𝑑𝑒𝑥 Index of matrix B

xvi

ABSTRACT

The increasing importance of sparse connectivity representing real-world data has

been exemplified by the recent work in areas of graph analytics, machine language, and

high-performance. Sparse matrices are the critical component in many scientific

computing applications, where increasing the sparse matrix operation efficiency can

contribute significantly to improve overall system efficiency. The primary challenge is

handling the nonzero values efficiently by storing them using specific storage format and

performing matrix operations, taking advantage of the sparsity. This thesis proposes an

optimized algorithm for performing sparse matrix operations concerning storage and

hardware implementation on FPGAs. The proposed thesis work includes simple

arithmetic operations to complex decomposition algorithms using Verilog design.

Operations of the sparse matrix are tested with testbench matrices of different size,

sparsity percentage, and sparsity pattern. The design was able to achieve low latency,

high throughput, and minimal resources utilization when compared with the conventional

matrix algorithm. Our approach enables solving more significant problems than

previously possible, allowing FPGAs to more interesting issues.

1

1. INTRODUCTION

We live in a “big data” era where Graph Processing has become increasingly

important with the amount of data volume generated and collected from many real-world

applications such as sensors, social networks, portable devices. As you expect, graphs can

sometimes be very complicated. With the demand for data-analysis continuing to grow,

large-scale graph processing has become challenging.

A graph consists of a finite set of vertices and a set of edges composed of distinct,

unordered pairs of vertices. A dot represents the vertex, and an edge represents a line

segment connecting the dots associated with the edge. If one vertex is directed to another

vertex by the edges of a graph, then the graph is called directed graph. If it is undirected,

then the graph is called undirected graph.

Graph-based applications are used to represent physical structures from social

network analyses to anomaly detections. Computing these graphs are entirely determined

by specifying either its adjacency structure or its incidence structure. As computers are

more adept at manipulating numbers than at recognizing pictures, it is a standard practice

to communicate the graph specifications to a computer in matrix form.

Figure 1. Real World Sparse Matrix Applications

Graphs are used to model many systems which are of interest to engineers and

scientists today, through which useful information is extracted. Once entered a computer,

2

the data from real-world applications no longer looks like a graph. Often it is in the form

of a sparsely populated matrix with most non-zeros compared to zeros [1]. When the

number of zeroes is relatively large, a requirement for more efficient data structures

arises. We are drifting away from serial computing towards parallel distributed

computing over a large variety of architectural designs. The generic implementation of

data structures allows one to reuse the most appealing one, which may not be the fastest.

In a graph algorithm, to obtain information where there is a small number of

nonzero entries, but millions of rows and columns of memory could be wasted by storing

redundant zeros. There are two ways one would exploit the sparsity of a matrix: One, to

save the non-zero elements of a matrix and second is to process only the non-zero

elements of a matrix[2]. However, large graphs are hard to deal with as IO limits the

state-of-art graph processing systems.

Numerous studies have been addressed to specialize in finding new algorithms for

the sparsely distributed matrices. Running parallelized programs on GPU gives large

speedup, however high-performance GPUs consume considerable amount of power.

Many computations are difficult to parallelize, incurring extra overhead for transferring

data between CPU and GPU. For the most-part, CPUs and GPUs compute well in

performance scale. FPGA based designs may avert those problems due to low power

nature, with efficient customized pipelines. In a comparison of performance of FPGA and

GPU, it is reported both have similar performance, while FPGAs can be 15 times faster

and 61 times energy efficient than GPU for uniform random generation [3]. Another

work shows GPU implementation can be 11 times faster than FPGA, but on the contrary

FPGA implementation can be up to 15 times better than GPU in terms of performance

3

per watt [4]. It is feasible to get a latency of around or below 1 microsecond using FPGA,

whereas with CPU a latency of 50 microsecond is already good. Moreover, one of the

main reasons for low latency is they do not depend on generic operating system and the

communication do not have to go via generic buses such as USB or PCIe. GPUs multi-

dimensional threading structure or multi core platform is not strongly suitable for highly

data-dependent transformations for matrix decomposition. The performance improvement

of GPU and multi-core platform-based decomposition algorithms is limited due to the

iterative thread sync and irregular memory access [5]. While GPUs shows satisfactory

compute efficiency on sparse matrix-matrix operations, they have showed that compute

units are significantly underutilized when the sparsity drops below 0.1% achieving low

throughput [6]. However, there is a small niche, where FPGA has been an attractive

platform which can handle the same computation task for acceleration and achieve high

performance with low power computation for many applications. Previous

implementation of FPGA based performance improvement for many applications like

linear algebra, graphic computation was demonstrated. Compared to other parallel

platforms, FPGAs are a better solution for performance improvement by parallelizing

decomposition algorithms with flexibility, reconfigurability and low energy consumption.

The primary focus of this work is divided into four subdivisions: Matrix

Operations, Storage Format, software implementation and finally hardware platform.

After carefully reviewing all the previous methods of approaching the sparse matrices,

the next reliable step for improving the performance no longer involves proposing new

expensive optimization but applying the optimizations whenever they are useful.

4

The primary goal of this project is to develop an efficient algorithm for various

sparse matrix operations and compare with the regular matrix operations. By utilizing the

sparse matrix storage method, the storage requirements for storing were significantly

reduced to be processed in a single FPGA. Finally, the matrix values are sent as input to

the FPGA board, performing the necessary matrix operations, and the output values are

sent back for verification. The performance calculations are carried out and are

represented as individual graphs for comparison.

1.1 Problem Statement

1. Indirect addressing: Indirect addresses must address the non-zero entries of a

sparse matrix in its index array leading to random accesses that require more

memory transactions and lower cache hit rate.

2. Memory Allocation: The distribution of zero and non-zero entries are not known

in advance. Pre-allocating memory blocks of a specific size may waste memory

when the intersection of nodes is large.

3. Low Arithmetic Intensity: This is caused by the lack of temporal locality in the

access to sparse matrices. If the matrix is not structured or blocked, most of the

entries in cache line fetched to get an element remain unused causing high

memory overhead per sparse matrix operation.

1.2 Research Goals

1. To determine an algorithm for various sparse matrix operations by minimizing

gate count, area, computational time, latency, number of multiplication & addition

hardware and to improve throughput.

5

2. The developed algorithm must be capable of handling matrices of various sizes

and should be simple to implement and highly scalable.

The implementation of the algorithm on an FPGA board involves the following

steps.

• Design of an arithmetic logic unit in Verilog. This unit should implement the

Sparse matrix algorithm for arithmetic operations like addition, subtraction,

multiplication, as well as decomposition methods including LU and QR

decomposition.

• Implement the design of sparse matrix algorithms and optimize for the problem

size concerning area, speed, and latency.

• Design of a Universal Asynchronous Receiver/Transmitter (UART)

communication module in Verilog for transferring the data from PC/UART port

for sparse matrix algorithm computation. Results are verified with MATLAB

results for error analysis.

• Comparison of the results and investigate the possible solutions and approaches

for scaling up the design for larger matrix more efficiently.

1.3 Goal Measurement Metrics

The two basic hardware design methodologies include language-based design

using synthesis tool and schematic-based design. Synthesis tools continue to improve

more optimized methods in terms of both area and speed when compared with schematic

implementation. The schematic-based design is no longer feasible for supporting

architectural complexity for modern FPGAs. Also, this research focuses on reducing the

number of multipliers and adders to provide improvements in performance.

6

For the computation of two sparse matrix operation, there are a certain number of

arithmetic operations regardless of the storage of the matrix which include

multiplications and addition of nonzero values. The primary goal of the thesis is to

improve efficiency and reduce the resources used for the operation. The performance

analysis is calculated in terms of improvements in latency, computation time, throughput

for performing matrix operations and which reduces the number of multiplication and

additions hardware utilize.

• Latency

It is the amount of time for completing an operation. This is defined as the time

between reading the first element of the input matrices, A and B, and writing the first

element to the result matrix C. The Latency of an operation is calculated based on the

number of clocks consumed by the Hardware accelerator to produce an output after the

application of the input (i.e.) the time from reading the first element of input matrix and

writing the first element to output matrix.

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 = 𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛

where 𝑇𝑜𝑢𝑡 – time taken for the last output to be calculated; 𝑇𝑖𝑛 – time taken for the first

input to become available

Total Number of Clock Cycles (𝑇𝑐) =
𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒

𝐶𝑙𝑜𝑐𝑘_𝑃𝑒𝑟𝑖𝑜𝑑

Clock_Period – timing constraint

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑇
𝑚
) = 𝑇𝑐 × 𝑇𝑚𝑖𝑛

where 𝑇𝑚𝑖𝑛 – Minimum period of the clock for the design during synthesis;

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑇
𝑛
) = 𝑇𝑚 × n × n

where n×n – matrix size, with n=10,20,30, …100

7

• Throughput

Throughput represents the rate at which the design can process inputs. It is the

number of operations executed or produced per unit of time. Through this thesis, 1sec

(1000ms) is considered as the unit of time, thus representing the throughput as

elements/sec. As latency is defined by the time consumed by the design to produce one

element, the throughput over a time interval of one sec can be derived as follow:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠/𝑠𝑒𝑐) =
1 𝑠𝑒𝑐

𝑇𝑛

where n×n – matrix size, with n = 10,20,30, … 100.

• Resource Utilization

The amount of resource available on the FPGA board such as Lookup Tables,

Memory, logic registers, BRAM, flipflops, nets and logic interconnects are valuable. A

comparison of resources utilized for the proposed method and the regular method is

presented for analysis.

• Power Analysis

The power utilization report provides the static and dynamic power consumption

of the implemented design, for which the comparison is provided for data analytics.

1.4 Tools Used

The following tools will be used to carry out synthesis, implementation, and

verification of results:

1. Digilent Nexys4 DDR FPGA.

2. Xilinx ISE Design Tool.

3. Vivado Design Suite.

4. MATLAB Software

8

2. LITERATURE REVIEW

The Basic Linear Algebra Subprograms (BLAS) has been used in a wide range of

software, which provides basic building block routines for vector and matrix operations

[7]. Some of the optimizations for BLAS library on general-purpose processors includes

loop unrolling and register blocking. Because many of the optimizations are specific to a

platform, ATLAS was implemented which automatically optimizes the numerical

software for processors with pipelined designs. Linear Algebra Library (LAPACK)

solves system of linear equations, least-square solutions, eigenvalue problems and

singular value problems.

The main reason why FPGAs are considered over traditional computer is they can

be configured as required by the application. The FPGAs can be reprogrammed to given

hardware acceleration which offers the best of both hardware and software. And most

importantly they are becoming extremely inexpensive when compared with super-

computers like such as CRAY with millions on logic gates and LUT.

There have been several works done for the acceleration of sparse matrix

operations that uses Multicore processor, GPU and FPGA based approaches. The

implementation using CPU keeps all the data associated with the operation in cache,

while the GPUs largely focus on the efficient memory bandwidth usage, whereas FPGA

focus on compressed storage of matrix data to reduce the memory bandwidth

requirements. Recently, FPGA implementation have been greatly used in data centers

like in, researchers from Microsoft uses an FPGA-based design for accelerating the

“Bing” search engine [8].

9

Most of the studies target Sparse Matrix by Vector Multiplication (SpMV), yet

Sparse Matrix by Matrix multiplication (SpMM) has been rarely addressed in prior

research. A detailed literature by explains the optimization techniques in sparse matrix

multiplication. In [9] Zhuo had proposed an FPGA based design, which demonstrated

significant performance improvement over general-purpose processor for matrices with

irregular sparsity structures. There was another implementation for FPGA based SpMM

using a single FPGA node showing how sparsity of a single matrix is affecting the

performance of the operations [10]. In [11] the authors have proposed separate

architecture for matrix multiplication, where operation speed is a main issue. The

pipelining and parallel processing of elements were used to decrease the computation

time in [12]. The former method has considered area and latency, while the second had

taken area and maximum running frequency considering the energy dissipation.

Some of the works on efficient sparse LU Decomposition architecture for sparse

matrices are either Target Domain-Specific pattern targeting a specific application

domain or require pre-ordered symmetric matrix. Only a few FPGA-based architectural

designs for Sparse LU Decomposition have been proposed due to:

a. These sparse matrices have irregular sparsity structure, and it is difficult to devise

an efficient and common hardware design for all application domains.

b. A detailed study on the nonzero structure of the sparse matrix is to be performed

for designing suitable input parameters for the hardware design.

Consider the work by [13], where author proposes an efficient LU Decomposition

hardware Architecture targeting the Power Flow Analysis Application Domain

implementing right-looking algorithm along with mechanisms for pivoting operations.

10

But the performance of the work is primarily I/O bandwidth limited. Whereas in [14], the

work is primarily dependent for Circuit Simulation Application domain. The author

proposed in a matrix factorization graph which is generated to capture the static sparsity

pattern of the matrices and is exploited for distributing the explicit data flow

representation of computation across PE’s. In the work on [15], a more general hardware

design for sparse LU Decomposition was proposed for a wider range of application

domains. The hardware architecture parallelizes Left-looking Algorithm to efficiently

decompose position symmetric positive definite or diagonally dominant matrices. This

design is indeed efficient except for the fact, when the performance of the design arises

from dynamic data dependency during column-by-column factorization leading their

processing elements stalling for synchronizing to resolve data dependency. Also, the

matrices used as benchmarks are either semi-dense or symmetric in topology but none in

terms of nonzero elements. The hardware utilization of some of the previous

implementations on reconfigurable architectures including Multicores, GPU and FPGA

never exceeded 20% mark. The main reason for this poor performance is the irregularity

of computation and memory access. The hardware resource utilization of sparse

algorithm is very high, because of large hardware dynamic scheduling which is limited

by scalability.

The previous FPGA implementations adopts dynamic dataflow, incurring in large

overhead and poor hardware resource utilization. The proposed algorithm in this thesis

introduces a synchronous dataflow FPGA implementation addressing the main problems

of Sparse Operations. A customized data storage format is employed to organize memory

access to eliminate time-consuming data address calculations. One of the limiting factors

11

is the time required for pivot search. Reducing the pivot search during LU decomposition

of eliminating will lead to higher performance gain. In our work, we had improvement by

overlapping the next pivot search with the current update unit, which although depends

on reuse of rows from an elimination step.

The first QR Decomposition was used in weight computation for adaptive

beamforming application [16]. In [17] a Squared Givens Rotation algorithm was used to

avoid the square root operation. The was followed up by the work of [18] which used

SGR algorithm for implementing a linear array on Xilinx Virtex-E FPGA allowing a

maximum of 9 processors and achieving 150MHz clock rate and throughput of

20GFLOPS with floating point operation. The first implementation of linear array

architecture using CORDIC algorithm for rotation computing was developed. There are

many commercial QR-D IP cores using CORDIC algorithm. An algorithm for Inverse

QR-based decomposition was proposed by S. Thomas Alexander and Avinash L.

Ghirnikar [19] which was later applied to adaptive beam forming. A fixed-point QR

decomposition was developed with modified Gram-Schmidt (MGS) algorithm using LUT

based approach. Later for polynomial matrices, Polynomial Givens rotation [20] was

developed.

12

3. BACKGROUND

3.1. Graph Processing

Graphs are a collection of nodes and edges. The edge of the graph provides a

connection between one node to another. By default, an edge is bidirectional. Typically,

graphs are used to model collection of things along with their relationships. For example,

Figure 2 shows a graph with cities as nodes and roads connecting them as edges. The

graph represents several cities in Southern California. Vertices represent the cities in the

graph while the fact that an edge connecting two vertices show two of the cities

connected.

Figure 2. Graph Representing Several Cities in Southern California

Since the structure of real-world graphs can vary tremendously, there is a need for

an efficient algorithm for obtaining high performance [21]. When these graphs are

processed in a computer, they get stored in the form of an adjacency matrix. For a graph

with n nodes, an adjacency matrix is represented as an n×n two-dimensional array. For a

weighted graph, the array elements would give the cost of the edge between them, and for

an unweighted graph, the array would be Booleans. The following Table 1 is an example

of an adjacency matrix representation of the graph in the table. The able in Figure 1

13

shows the graph is represented as a sparsely populated matrix. The number of rows and

columns is equal to the number of vertices in the graph. The edge is represented by

intersecting rows and columns of two vertices it connects.

Table 1. Adjacency Matrix Representation of the Graph

M
A

L
IB

U

S
A

N
T

A

B
A

R
B

A
R

A

L
O

S

A
N

G
E

L
E

S

R
IV

E
R

S
ID

E

B
A

R
S

T
O

W

P
A

L
M

S
P

R
IN

G
S

S
A

N
 D

IE
G

O

E
L

 C
A

JO
N

MALIBU 0 45 20 0 0 0 0 0

SANTA BARBARA 45 0 30 0 45 0 0 0

LOS ANGELES 20 30 0 25 0 0 100 0

RIVERSIDE 0 0 25 0 75 0 0 0

BARSTOW 0 45 0 75 0 0 0 0

PALM SPRINGS 0 0 0 75 0 0 0 0

SAN DIEGO 0 0 100 50 0 0 0 15

EL CAJON 0 0 0 0 0 0 15 0

The computers are responsible for locating the essential vertices, and once these

graphs continue to grow large, the algorithms come into play. The matrix representation

of these type of graphs is commonly large and sparsely populated. From the adjacency

matrix in table 1, it is evident that there are 64 cells in which only 18 entries contain the

nonzero value. For a graph with N vertices, the adjacency matrix comprises N2 cells. The

betweenness centrality(BC) algorithms are used to find the shortest path between

vertices, which is complicated and outside the scope of this thesis, but still, the

performance is dominated by sparse matrix multiply performance[22]. When dealing

with tens or even hundreds of thousands of vertices extracted from graphs, adjacency

matrix becomes too large to be processed. Since, the number of zeros in the sparse matrix

is high, multiplying or adding two nonzero values together is low and consumes

hardware[23]. During sparse matrix performance on a processor, the frequency of non-

zero calculations with computer’s clock cycle is little between the ranges of 0.5% to 0.1%

14

which also directly depends on the size of the matrix. For efficient handling of the sparse

matrices, various storage formats can be used to store only the nonzero value, thereby

reducing the size of the matrix in memory on an embedded system [24]. As embedded

digital systems are limited in both their memory size and their computational power, the

key is to make the algorithms faster to reduce the requirements.

“I observed that most of the coefficients in our matrices were zero, i.e., the

nonzero were ‘sparse’ in the matrix, and that typically the triangular matrices associated

with the forward and back solution provided by Gaussian elimination would remain

sparse if pivot elements were chosen with care” - Harry Markowitz.

3.2 Sparse Matrices

Sparse matrices are generally considered to be populated with zeros than nonzero.

There is no rule defining when a matrix is sparse. According to Gilbert, any matrix,

which allows special techniques to take advantage of many zeros, is a sparse matrix.

When storing and performing operations on a sparse matrix, it is desirable to modify the

standard algorithm to take advantage of the sparsity[25]. By nature, sparse data yields

savings in memory usage. Sparse matrix arises from data communication networks,

connections in electronic circuits, with constraints in a linear or non-linear programming

formulation, in the discretization of ordinary or partial differential equations in simulation

models[26]. Many of the sparse matrices are used in science and engineering today with

larger dimensional; there is a lot of research carried out only to store and operate on the

non-zero elements of a matrix. This is true when working on large volumes of data with

less spatial locality which would do not fit into a CPU’s chip memory cache especially

for sparse matrix computations and convolution [27]. There are different and specific

15

forms of sparsity patterns, where indices are used so that one can know where the

nonzero is located within the matrix. To maximize the performance of sparse matrix

operations, it is especially important to optimize the operations and not just within

individual operations. In Verilog and VHDL, there will always be more than one way to

code the same problem. It also provides several alternatives to the designer as to how to

accomplish the same task. Therefore, a choice of a coding style is needed to achieve

specific performance goals and to minimize resource utilization on a chip. The

computational complexity of sparse operations is proportional to the number of nonzero

elements in the matrix. The storage of a given sparse matrix will be O(nonzeros). The

time required for particular operation on the sparse matrix is close to O(flops). Figure

3(a) is a representation of 20% sparsely populated 20×20 matrix with 80 nonzero values,

and Figure 3(b) is a representation of 30% sparsely populated 100×100 matrix with 3000

nonzero values.

(a) (b)

Figure 3. Sparsity Pattern of Matrices

Sparse matrices are useful for computing large scale applications that dense

matrices cannot handle. The finite element method is one way of solving partial

16

differential equations where the coefficients are usually sparse. The size of the coefficient

is large for getting an accurate approximation to solve PDEs and rely on sparse matrix

operations.

3.3 Sparse Matrix Storage Formats

Numerous efforts have been devoted to data storage formats with the aim of

maximizing performance. To fully optimize the sparse matrix operations, we will have to

design a compression algorithm which will take the sparse matrices structures into

account. The section of the thesis briefly describes the most common

compression/storage formats to date. The primary goal of these different format

variations relies on either improve the architectures ability to access the nonzero data and

to perform computations by reducing the total space required to store the matrix[28]. Out

of all the formats, Compressed Sparse Row (CSR) is the most common format regardless

of the processor which stores the elements row-wise. Another form is the Compressed

Sparse Column (CSC) that stores the elements column-wise.

There are many methods for storing only the nonzero elements of a sparse matrix

out of which the following have gained a lot of attention due to their computational

capability and the efficiency in storing the elements.

1. Compressed Row Storage (CRS)

2. Compressed Column Storage (CCS)

3. Block Compressed Row Storage (BCRS)

4. Compressed Diagonal Storage (CDS)

5. Coordinate Format (COO)

17

Table 2 gives a summary of the various storage formats used for implementation,

their storage space computation depending on the number of nonzero values available in

the sparse matrix, their advantage, and disadvantage.

Table 2. Comparison of Various Sparse Matrix Storage Formats

Storage

Format
Storage Space Advantage Disadvantage

Basic Storage Formats

Coordinate

Format

(COO)

3 × NZV

It is suitable for

any random

sparse matrix.

It occupies a lot

of

space.

Compressed

Sparse

Column

(CSC)

2 × NZV + n + 1

This reduces

storage

allowing row

pointers to

facilitate fast

multiplication.

Not suitable for

GPU due to

load imbalance,

reduce

parallelism and

irregular

memory access

patterns.

Diagonal

Format
Ndia + Nlz × Ndia

It is very

effective for

matrix with

non-zero

elements only

in the diagonal.

It is applicable

only for

matrices whose

diagonal

elements are

non-zeros.

ELLPACK
2(Nmnzr × m)

It is well suited

for semi-

structured and

unstructured

meshes.

It requires to

know the

maximum

number of non-

zero elements

present in the

matrix.

Compressed

Sparse Row

(CSR)

2 × NZV + m + 1

It is effective

for structured

and

unstructured

sparse matrices

It uses one-

dimensional

arrays.

Block Based Storage Formats

Blocked CSR

Format
(Nnzb × 2r) + Nnzb + m / r +1

It reduces the

number of load

operations.

It requires an

extra loop for

matrix

operation and

suffers from

additional

overhead.

18

Row-Grouped

CSR Format

2X + m + Ng

X=∑ (𝑁𝑚𝑛𝑧𝑟𝑔(𝑖)) × 𝐺𝑠𝑖𝑧𝑒
𝑁𝑔

𝑖=1

Number of

allocated

elements per

row vary from

one group to

another group.

It is time

consuming

process and

requires 4

arrays

Quad Tree

CSR Format
𝑁𝑞 × 𝐶𝑆𝑅𝑠𝑡𝑜𝑟𝑎𝑔𝑒

Sparse matrix

vector

multiplication is

faster.

It requires space

overhead

Minimal Quad

Tree Format

(MQT)

𝑀𝑖𝑛(𝑀𝑄𝑇)𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 4 × (𝑁 3⁄ + 𝑙𝑜𝑔4(𝑛
2 𝑁⁄))

𝑀𝑎𝑥(𝑀𝑄𝑇)𝑠𝑡𝑜𝑟𝑎𝑔𝑒

= 4 × 𝑁(1 3⁄
+ 𝑙𝑜𝑔4(𝑛

2 𝑁⁄))

It is efficiently

used in I/O

operations

It requires space

overhead in

storing the

pointers

Vectorizable Format

Compressed

Multi-Row

Storage

Format

(CMRS)

(3 × 𝑁𝑍𝑉) + 𝑁𝑠 + 1

It does not

require any zero

padding and

row and column

reordering.

It is suitable

only for GPU

architecture

Adaptive CSR

Format
2 × 𝑁𝑍𝑉 + 𝑚 + 1

It is effective

for GPU

specific formats

The

transformation

overhead poses

storage and

runtime

overhead

Streamed Storage Format

Streamed CSR

Format
2(𝑁𝑠 × max(𝑁𝑍𝑆)) + 𝑆𝑟 + 1

It improves the

computation

speed

It is suitable for

coprocessor

SIMD

architecture

only

Streamed

BCSR Format
𝑁𝑆 × (𝑁𝑛𝑧𝑏 × 𝑏𝑠𝑖𝑧𝑒) + 2(𝑁𝑛𝑧𝑏)

It provides

better speedup

than BCSR

It is suitable for

coprocessor

SIMD

architecture

only

Sliced

ELLPACK-C-

Sigma Format
𝑁𝑆 + 1 + 4 × (∑ 𝑁𝑛𝑧𝑣(𝑖))

𝑁𝑆

𝑖=1

It reduced the

number of zero

padding.

Sorting globally

will reduce the

spatial and

temporal

locality

The storage format used to store the nonzero values of the given sparse matrix A

with size N×N row-size using three one-dimensional arrays. Let nnz denote the number

of nonzero elements of A. The first array is called ROW and is of length M+1, i.e., one

19

entry per row, plus one which contains the row index of A where the nonzero element is

located. ROW array of the matrix A extends from the start of one row to the last row of

size N×N. The last entry of the ROW array will be the last row of the matrix depending

on the nonzero elements of the matrix. The second array is called COL, which contains

the column index of matrix A where the nonzero element is located. The COL array

entries start from the first column until the last column, based on the number of columns

available. The third array is called VALUE and is of the length of the number of nonzero.

This array holds the values of all the nonzero elements of matrix A investigating left-to-

right and then top-to-bottom order. A depiction of the sparse matrix A is shown with the

storage format used in this thesis in the below figure.

𝑨 =

[

0 0 0 0 1 0 3 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

]

Figure 4(a). Sparse matrix A

𝑅𝑂𝑊 = [0 0 1 2 3 4 4 5 7 8]
𝐶𝑂𝐿 = [4 6 4 8 1 2 6 2 5 0]
𝑉𝐴𝐿 = [1 3 2 1 3 3 1 3 6 0]

Figure 4(b). Sparse matrix A in storage format

Figure 4. Storage of Input Matrix

An analysis of five FPGA-based architectures indicates COO format achieves

higher efficiency at the cost of locally storing a copy of vector in each processing element

(PE) by eliminating references to the vector.

20

3.4 Finite State Machines (FSMs)

Finite State Machines (FSMs) are a useful abstraction for sequential circuits with

“states” of operation. It has a final internal memory, and the operation of FSM begins

from one state goes through a transition to different states. Due to their simplicity, they

are quick to implement easy for implementation and fast in execution [29]. At each clock

edge, combinational logic block computes outputs and next state as a function of inputs

and present state. One of the critical factors for optimizing an FSM design is the choice

of state coding, which influences the complexity of the logic functions, the hardware

costs of the circuits, timing issues, power usage, etc. One of the disadvantages is that it is

not suitable for all domain problems, but only when all the state transitions and

conditions need to be known upfront and defined. Some of the FSM encoding styles are

one-hot, gray code, Johnson code, Compact, Sequential, and Speed1. Each encoding

technique has their performance improvements. Speed1 encoding style was able to

achieve higher timing performance for matrix operations on an FPGA board. The state

transition of speed1 encoding style is shown in Figure 5.

Figure 5. State Diagram of a Simplified Finite State Machine

101

110

000

001

010

011 100

21

3.5 Field Programmable Gate Arrays (FPGAs)

3.5.1 FPGA Architecture. FPGAs are digital integrated circuits (ICs) belonging

to a family of Programmable Logic Devices (PLD). The FPGA chip includes I/O blocks

and core programming fabric. These I/O blocks are located around the periphery of the

chip, which provides programmable I/O connections for various I/O standards. It also

consists of Configurable Logic Blocks (CLB) and programmable routing architectures.

The appropriate configuration is used in an FPGA for implementing any digital circuit

considering the available resources on the board. The figure shows a general FPGA

fabric, which represents a popular architecture in the FPGAs, are based. Many different

architectures with programming technologies have evolved to provide better results

making them the economically viable alternative to Application Specific Intergerat4ed

Circuits (ASIC). FPGA’s offers excellent flexibility than ASIC’s and offers low-level

optimization opportunities to improve run-time performance. It has been proved they are

considerably more power efficient than multi-core CPUs and GPUs. These logic chips

can be reconfigured to implement custom applications. This results in lower time-to-

market than traditional ASIC making them significantly faster than general-purpose

hardware. It has the necessary resources such as the Look-Up Tables (LUT), Flip-Flops

(FF), Digital Signal Processors (DSP) and Block Ram (BRAM) available in-built for

implementing logical functions and arithmetic operations [30].

Modern FPGAs provide superior logic density, low chip cost, and better

performance improvements. It can be used to implement systems that need to be operated

up to 550 MHz in most of the design the entire operation can be performed on a single

FPGA, and do not require custom hardware. The typical frequency of FPGA design is in

22

low hundreds of MHz, but they have a much finer granularity. Figure 6 shows a rough

sketch of the FPGA architecture and the design of a logic block.

Figure 6. Sketch of FPGA Architecture and Design of Simple Logic Block

3.5.2 Design and Programming.

Figure 7. Vivado Design Suite

The hardware design is primarily implemented using the EDA Tool Vivado

Design Suite/Xilinx ISE Design Tool through programming, simulation, synthesis,

implementation through debugging and the results are analyzed. Figure 7 shows an

overview of the EDA Design Suite.

23

3.5.2.1 Design Entry.

Figure 8. Vivado Project Manager

Figure 8 shows the window of the Project Manager used to manage the

implementation from start to end. This block describes the functionality of the design.

The design entry can be done by schematic capture or a state transition diagram or by

constructing an HDL based model using Verilog/VHDL. The model is built by writing

HDL code using a text editor. Recent synthesis tools like Vivado and Xilinx ISE provide

facilities for insertion of language templates for easier coding [31]. This step also allows

analyzing the internal form for syntax and semantics for the HDL source.

3.5.2.2 Behavioral Simulation. The HDL module designed during design entry if

then simulated at the Register Transfer Level (RTL) to establish functional correctness.

This is the primary step involving simulation of the code to determine that it is working

as per the design and that it will produce the required results. Simulation is essential to

get as many bugs out from the HDL module[8]. If an error arises, the design entry step is

investigated, and necessary changes are made for a successful simulation.

24

Figure 9. Vivado Simulation Environment

3.5.2.3 RTL Analysis.

Figure 10. Vivado RTL Analysis Tool

Figure 10 provides how an RTL analysis tool on Vivado Design Suite would be

helpful in overseeing the schematic for potential issues. The RTL Analysis is used for

analyzing the syntactic and semantic issues, identifying potential implementation issues

25

with latches and nets. This tool helps in realizing the mapping of LUT onto the FPGA

resources.

3.5.2.4 Synthesis.

Figure 11. Vivado Synthesis Analysis Tool

Figure 12. Vivado Synthesis Report Analysis

26

Figure 11 depicts the Synthesis Analysis Tool in managing the nets and logics of

the design. The process where the RTL design is translated to gate-level design is called

synthesis. Later the design can be mapped to the logic blocks in the FPGA which checks

whether the design will meet the timing and area constraints. A device netlist format is

created during this step. Figure 12 shows the Report Analysis where the usage of the

adders and multipliers are mentioned, for a detailed analysis.

3.5.2.5 Implementation.

Figure 13. Vivado Implementation Tool

The implementation step consists of the steps of mapping, placing, routing, and

generating a BIT file for the HDL design.

• Mapping

After creating the gate-level netlist, the design is mapped onto the FPGA. The

primitives such as function generators, latches or flip-flops used in the target chip are

accumulated during this process.

27

• Place and Route

After mapping the design, the primitives are assigned to the Configurable Logic

Blocks (CLB) during Place and Route step. The primitives are then connected by routing

the connections through the switch matrix. The process provides accurate information

about the timing delays between parts of the circuit. The design verification process is

simulated which is more accurate than the functional simulation.

• Bitstream Generation

A bitstream file is created from the physical place and route information.

3.5.2.6 Timing Analysis.

Figure 14. Vivado Timing Constraints Tool

28

Figure 14 is the Timing Constraints Wizard which is used for employing our used

desired timing, and analysis. Once the design is mapped, placed, and routed, the delays of

the signals and the components of the design are used to produce a new, more detailed

netlist leading to a timing accurate simulation.

3.5.2.7 Power Usage Analysis.

Figure 15. Vivado Power Analysis Tool

Once the timing and area constraints are met with the design implementation, the

Power Analysis tool gives the cost of the design in terms of dynamic and static usage of

the design.

This tool also provides improvements on the implementation flow to meet the

constraints. It automatically identifies the target FPGA board presented and analysis if

the design meets the power constraints.

29

3.5.2.8 Programming the Board. The bitstream file generated is loaded onto the

target FPGA. Once the programming of the board is finished, the chip will now be

configured to implement the design. The EDA tool used for this thesis work is Vivado

Design Suite and Xilinx ISE (Integrated Synthesis Environment) 14.2 using Verilog.

3.5.3 NEXYS4 DDR ARTIX-7 FPGA Board. The FPGA board used for

implementing the final design of this project is Nexys4 DDR Artix-7 development board.

The Nexys4 DDR board features Artix-7 family processor from Xilinx with the high-

performance logic block, more capacity, higher performance, and more resources. This

high-capacity FPGA comes with USB, Ethernet, and other ports so hosting designs from

combinational circuits to powerful embedded processors is possible. For this thesis, we

used UART terminal to send and receive matrix values to and from computer and FPGA

board[8]. The board is programmed through JTAG cable, with an E3 pin as Clock port,

D4 as UART Transmitter (UART TX) and C4 as UART Receiver (UART RX). The

FPGA board is shown in Figure 16, with all the necessary details of the board. The

UART connector is marked as number 2 in Figure 15, which also has TX and RX led

lights.

30

Figure 16. Nexys4 DDR Artix-7 FPGA Board

31

4. HARDWARE DESIGN ARCHITECTURE

Algorithm for sparse matric arithmetic and decomposition operations are

designed, and the operations are implemented in hardware with Nexys4 DDR FPGA

Board and the results are compared with conventional matrix operation algorithm. The

design approach worked with this thesis is shown in Figure 17. Vivado Design Suite is

used for the simulation, synthesis, and implementation of the Verilog design and

MATLAB is used for result comparison and error analysis.

Figure 17. High Level Flow Chart of Work Proposed

32

• Computational Complexity

Table 3 gives the comparison between the computational complexity of different

matrix operations.

Table 3. Computational Complexity

Matrix Operation Input Output Complexity

Addition/Subtraction 2 n×n- matrix n×n matrix n2

Multiplication 2 n×n- matrix n×n matrix n3

Square root 1 n×n- matrix n×n matrix n2-1

Decomposition 1 n×n- matrix n×n matrix 1/3×n3

Design and Validation have become a significant step involving various steps

from RTL design, logic synthesis, physical design, and verification at an early stage. This

makes the testing and verification of a new and complex hardware architecture system a

time-consuming process as shown in Figure 18.

Figure 18. FPGA Implementation and Verification Flow

33

The hardware design for implementation is based on two factors: precision and

area.

Figure 19. Overview of Hardware and Software Implementation

Figure 19 gives an overview of the module designed and how the communication

is established between processor and FPGA for implementation and testing. As illustrated

above the objective of this thesis, one of the purposes is to reduce the resources utilized

in FPGA [32]. Hence, significant attention was given to the design process implemented,

as well as to obtain low latency and high throughput compared to the normal matrix

operation [33]. This describes the methodologies than influenced the design and design

considerations carried out. The preference of FPGA over traditional CPUs and GPUs is

because of the advantages offered by FPGAs and CPLDs. After the matrix algorithm for

sparse matrix was studied carefully, the next most significant step was the design itself.

The design was done using Verilog because of the ease with which large projects can be

managed.

The hardware implementation is split into two major top modules for simplifying

the design. The first module is designed to implement the necessary sparse matrix

34

operation like addition, subtraction, multiplication, LU decomposition, QR

decomposition algorithms and the necessary computations. And the second module is

designed to implement the UART communication and data exchange between the PC to

the FPGA hardware board with which it will be communicating. Each of the top modules

is subdivided into smaller modules to carry out specific matrix operations with the other

modules through internal signals. The Figure 20 gives the flow of how the architecture is

designed, along with the flow of memory controllers and transition states.

Figure 20. Block Diagram of TX and RX Module

In any asynchronous interface, the first thing we need to know when in time the

data should be sampled. If the data is not sampled at the right time, we might get the

wrong data. To receive data correctly, the transmitter and receiver must agree on the baud

rate. The baud rate if the rate at which the data is transmitted. For example, 9600 baud

mean 9600 bits per second.

The Verilog code uses a generic or a parameter to determine how many clock

cycles are there in each bit. This is how the baud rate gets determined.

35

The FPGA is continuously sampling the line. Once it sees the line transition from

high to low, it knows the UART data is coming. The first transition indicated the start bit.

Once the beginning of the start bit is found, the FPGA waits for one half of a bit period.

This ensures that the middle of the data bits gets sampled. From then on, the FPGA just

needs to wait once bit period (as specified by the baud rate) and sample the rest of the

data. The following Figure 21 is an example of how the output becomes valid when the

input clock is high, making the data to be valid for the required operation.

Figure 21. Clock Cycle for TX and RX

This component is used to transfer data over a UART device. It will serialize a

byte of data and transmit it over a TXD line. The serialized data has the following

characteristics:

o 9600 Baud Rate

o 8 bits, LSB first

o 1 stop bit

o No parity

Stop

Look for Falling edge of Start Bit

Sample middle of Data Bits

36

TX

• S0_RDY: This signal goes low once a send operation is begun and remains low until it

has completed, and the module is ready to send another bit. The counter that keeps

track of the number of clocks cycles the current bit has been held stable over the

UART. The combinatorial logic that foes high when the counter has counted to the

proper value to the correct baud rate.

• S1_LOAD_BIT: The parallel data to be sent. Must be valid the clock cycle when

SEND has gone high. Contains the index of the next bit that needs to be transferred. A

register that holds the current data being sent over.

• S2_SEND_BIT: Used to trigger a send operation. The upper layer logic should set this

signal high for a single clock cycle to trigger a send. When this signal is set high DATA

must be valid. Should not be asserted unless READY is high. A register that contains

the whole data packet to be sent, including start and stop bits.

Figure 22 captures the FSM diagram of the Transmission bandwidth of the data

bit with detailed state transitions and their respective conditions.

Figure 22. Fundamental Design: Transmission FSM

37

RX

The purpose is to double-register the incoming data. This allows it to be used in

the UART RX Clock Domain. It removes problems created by metastability.

• S1_RX_START_BIT: Checks the middle of start bit to make sure it is still low. The

reset counter resets the middle when the middle value is found.

• S2_RX_DATA_BIT: Waits for CLK_PER_BIT-1 clock cycles to sample serial data.

Checks if we have sent out all the bits.

• S3_RX_STOP_BIT: Waits for CLK_PER_BIT-1 clock cycles for Stop bit to finish.

• S4_CLEANUP: Stays for I clock cycle.

Figure 23. Fundamental Design: Receiver FSM

Figure 23 captures the FSM diagram of the Receiver bandwidth of the data bit

with detailed state transitions and their respective conditions.

38

4.1 Arithmetic Operations

4.1.1 Sparse Matrix Addition. The proposed design performs addition operation

of two sparse matrices where only the nonzero values are stored, and required operation

is performed. The standard matrix addition stores and performs the operation for all the

elements inside the matrix regardless of whether the values are zero or not. The design

follows the steps below.

a) A symbolic algorithm, which determined the structure of the resulting matrix.

b) A numerical algorithm which determines the values of the nonzero knowing the

knowledge of their positions.

𝒄𝒊,𝒋 = (𝒂𝒊,𝒋) + (𝒃𝒊,𝒋)

The proposed architectural algorithm performs sparse matrix addition in which

the number of rows and number of columns of two matrices should be equal. A parallel

implementation of the addition, with enough fast memory algorithm, is proposed.

Consider the matrix addition of A+B, where A has a density s percentage with size n×n

(square matrix is considered, however, the same methodology can be used for rectangular

size), and matrix B has a density s percentage with size n×n. Density s percentage is

defined as the number of nonzero elements to the total number of elements in the matrix

n2. The matrix addition performs the operation row-wise and column-wise throughout

the matrix only for the nonzero elements present leaving behind the zeros. An algorithm

for the sparse matrix addition A+B is presented in Listing 1. When addition operation

must be performed on both the input matrices, first the number of rows and columns are

checked if its equal, i.e., both the matrix should be of the same size. Addition operation

39

cannot be performed if the matrices are of different size. Then the elements of the matrix

are checked row-wise and column-wise from top-to-bottom order for non-zero elements

as shown in the figure. Two separate counters A_count and B_count is used to

increment the row and column for both A and B input matrix. This keeps incrementing

from n to n+1 for the size of the matrix. The below Listing 1 shows the pseudo code

algorithm for the respective arithmetic operation carries out.

Input: A, B

Output: C

Input parameter: MAT_SIZE, ELEMENT_SIZE, NZE

for i → 0 to MAT_SIZE do

if (A[i] ≠ 0) then

Indexing row and column = i + 1

A_sv [i] =A [i]

A_index = A_count + 1

end

if (B[i] ≠ 0) then

Index2rc = i + 1

B_index = B_count + 1

B_sv [i] = B [i]

end

if((A_sr[A_index] == B_sr[B_index]) && (A_sc[A_index] == B_sc[B_index])) do

Row <= A_sr [A_index]

Col <= A_sc [A_index]

Sum <= A_sv [A_index] + B_sv [B_index]

end

if (A_sv [A_index] ≠ 0) then

Row <= A_sr [A_index]

Col <= A_sc [A_index]

Sum <= A_sv [A_index]

end

if (B_sv [B_index] ≠ 0) then

Row <= B_sr[B_index]

Col <= B_sc[B_index]

Sum <= B_sv[B_index]

end

end

Listing 1. Sparse Matrix Addition Algorithm

40

The nonzero elements are located from matrix A, and the values are stored in the

memory 𝑴𝒓𝒂𝒎_𝑨_𝒔𝒗 for the corresponding row and column index 𝑴𝒓𝒂𝒎_𝑨_𝒔𝒓 and

𝑴𝒓𝒂𝒎_𝑨_𝒔𝒄 respectively. Similarly, for the second matrix B, the nonzero value gets

stored in memory 𝑴𝒓𝒂𝒎_𝑩_𝒔𝒗 for the corresponding row and column index

𝑴𝒓𝒂𝒎_𝑩_𝒔𝒓 and 𝑴𝒓𝒂𝒎_𝑩_𝒔𝒄 respectively. This operation is carried out for the given

size of the matrix and is shown in Figure 24 in detail. Once the nonzero is located, the

values are stored in terms of row, col, and the corresponding value for which addition

operation is to be performed.

Figure 24. Representation of Row and Column Access of Input Matrices

The most important part of this algorithm is the index comparison which is

represented as 𝑨_𝒊𝒏𝒅𝒆𝒙 for matrix A and 𝑩_𝒊𝒏𝒅𝒆𝒙 for matrix B. Initially, once the

values are stored the row value of matrix A are compared with the row value of matrix B.

If the index of 𝑨_𝒔𝒓 is equal to the index of 𝑩_𝒔𝒓 then the next step of comparing the

column value of both the matrices. And, if the index of 𝑨_𝒔𝒄 is equal to the index of

𝑩_𝒔𝒄, then matrix addition is performed. The VAL array of the respective row and

41

column, i.e., 𝑨_𝒔𝒗 and 𝑩_𝒔𝒗 are added with each other as the sum. The assumption is

made that the nonzero is located anywhere in the matrix and is highly sparse. Finally, if

the nonzero of the same row and same column of matrix A does not match with the row

and column of matrix B directly the value is sent to the output matrix.

To avoid the extra computation imposed by the majority of zero elements found

in a sparse matrix, the norm to store the nonzero elements employ auxiliary data

structures proposed. The method of employing a row and column pointer to start the

index of each row and column with the array of nonzero elements as shown in Figure 23.

However, the other structures like CSR and CSC introduces load operations, extra traffic

for memory subsystem and cache interference. Access to the input matrix A and B is

irregular and totally depends on the sparsity pattern of the inbound matrix. This

eliminates the possibility of exploiting spatial and temporary reuse. Many sparse matrices

contain higher number of rows and columns with just zeros resulting in workload

imbalance. The proposed optimization is designed to address the corresponding

bottleneck, where the other proposed methodology in literature review wither targets a

specific bottleneck or a specific sparse structure of matrix. To ensure good performance,

the starting and ending index is temporary stored in memory to avoid data overload.

However, if the matrix is larger and sparser, the performance bottleneck could not be

achieved. Understanding these effects and performance the result analysis is carried out

which is explained later as a part of this thesis.

42

Figure 25. FSM Transition States for Sparse Matrix Arithmetic Operation

Figure 25 shows how the state machines are implemented in the Verilog design.

The first state is Idle which sets the reset to high. Once the elements are obtained, only

the non-zero values get stored using sparse matrix storage format in the order of ROW,

COL, and VAL in separate arrays. Once the sparse matrix storage format is generated,

the design checks the ROW and COL and performs addition if both are equal, else the

design sends the values directly to output since addition is not required there. With this

operation, only the non zeros are involved in the required arithmetic operation.

Consider two matrices A and B of size 10×10 shown in Figure 26. The first matrix

A has nine nonzero values, and second matrix B has ten nonzero values. But the location

of the nonzero values in both the matrices are not the same. They are distributed

randomly and using the algorithm designed sparse matrix addition operation is

implemented.

43

0 0 0 0 1 0 3 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 6 0 0 0 0

1 0 0 0 0 4 0 0 0 0

0 0 0 0 2 0 0 0 0 0

 Matrix A Matrix B

Figure 26. Sparse Matrix Addition Operation Methodology

0 2 0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Row Col Val

0 4 1

0 6 3

1 4 2

2 8 1

3 0 3

4 2 3

4 6 1

5 2 3

7 5 6

8 0 1

8 5 4

9 4 2

Row Col Val

0 1 2

0 4 1

0 6 6

1 4 2

1 5 2

2 1 1

2 8 2

3 0 3

4 2 6

4 6 2

5 2 6

7 5 7

8 0 1

8 5 6

9 4 2

Row Col Val

0 1 2

0 6 3

1 5 2

2 1 1

2 9 1

4 2 3

4 6 1

5 2 3

7 5 1

8 5 2

Row 0 and col 6 are equal,

Sum [0] [6] = A [0] [6] + B [0] [6]

Matrix C

Row 4 and col 6 are equal,

Sum [4] [6] = A [4] [6] + B [4] [6]

Send the values directly to output

if row and col are not matching.

Matrix A

Matrix B

Addition

4
4

Figure 27 shows how the nonzero values are stored in separate arrays in terms of a row, col, and value. And explains how the

addition operation is executed depending on the row and col arrays of the two-input matrix A and B. The operation is illustrated in

detail in Figure 27 how the output sum is calculated.

Figure 27. Design Simulation: Sparse Matrix Addition Operation

Output becomes valid

Input Data A and B (8 Bits) Row Index (8 Bits) Column Index (8 Bits)

Sum Value (8 Bits)

Matrix Size (10×10)

45

Figure 27 shows the simulation output of the input matrices A and B which are

stored in three separate arrays 𝑨_𝒔𝒓, 𝑨_𝒔𝒄, 𝑨_𝒔𝒗 and 𝑩_𝒔𝒓, 𝑩_𝒔𝒄, 𝑩_𝒔𝒗 respectively.

This represents how the nonzero values are checked from the input matrix and are being

stored in memory. The second part of the shows the output sum calculated from the

stored nonzero values accordingly.

Figure 28 captures the schematic diagram of the System-Level Optimized Design

of Sparse Matrix Arithmetic Operation Design Engine. The main computation core is

designed with IO blocks, memory and register for holding the data. Figure 29 shows the

schematic diagram of Input available Interconnected Design. The diagram highlights the

clock being reset and made available when the Input bit is ready. The design is capable

irrespective of the number of bits of input elements (i.e.) either 8bit, 16bit, or 32bit.

Figure 30 shows the schematic diagram of the Interconnected Design when output

becomes valid, when the required arithmetic operation is performed for every clock

cycle, depending upon the input valid in a detailed picture.

4
6

Figure 28. Implemented Design: Arithmetic Operation Engine

47

Figure 29. Interconnect Design: Input Valid Schematic

Figure 30. Interconnect Design: Output Valid Schematic

48

4.1.2 Sparse Matrix Multiplication. Matrix multiplication is a fundamental

operation of linear algebra. It is a primitive operation in many data-analytic, graph

analytic algorithms and algebraic multigrid methods. So far, many algorithms have been

developed for optimizing the performance depending on the objective[34][35]. But

achieving high performance for sparse matrix multiplication is quite challenging[36].

Compared to standard algorithm, sparse algorithms attempt to handle only the non-zero

elements available in the matrix to remove multiplications and additions of zeros to

improve performance. There are many reasons why achieving high performance with this

operation is challenging because of:

• Low Arithmetic Intensity

The arithmetic intensity is the ratio of the number of arithmetic operations to the

number of data elements accessed for computing the product [37].

• Index Matching

The index-matching problem is because the structure of the sparsity of the

resultant matrix is unknown, and it is not possible to locate the product of 𝒂𝒊,𝒋 with 𝒃𝒊,𝒋

for the resultant 𝒄𝒊,𝒋.

There have been several approaches proposed, but each approach requires

additional data access and computational problems.

• Load Balancing

Usually, sparse matrices that arise in practice exhibit non-uniformity and are

irregular in their sparsity structure, it can be inferred those different matrices will be

requiring a different distribution of work.

49

Consider two matrices A= [𝒂𝒊,𝒋] and B= [𝒃𝒊,𝒋] with size 𝑴 × 𝑵 and 𝑵 × 𝑳

respectively. The resultant multiplication of matrices A and B will be C= [𝒄𝒊,𝒋], with size

𝑴 × 𝑳 as given below in equation

𝒄𝒊,𝒋 = ∑ 𝒂𝒊,𝒌.

𝑵

𝒌=𝟏

𝒃𝒌,𝒋

where i =1, 2…, M and j=1, 2…, L.

Sparse matrices are stored in a specific storage format taking advantage of the

sparsity of the matrices[38][39]. Due to storage of nonzero values, matrix multiplication

is no longer a straightforward operation. The column address of the current row being

multiplied must correspond with existing row address of the other matrix. If there is a

match between the two matrices multiplied, the corresponding values can be multiplied

together. It operates by multiplying each nonzero element of row A with each nonzero

element of column B and then repeats the process for every row and column of the

matrix. Figure 31 shows the hardware architecture of the design component with a

control unit, multiply and accumulate unit.

Figure 31. Matrix Multiplication Hardware Architecture

50

The proposed architecture in this thesis is based on minimizing the hardware

resources utilization in the implemented design. The design can accomplish high

performance with low execution time for large, irregular sparse matrices by reducing the

number of adders and multipliers significantly. The values are arranged in streams which

is a group of data like arrays permitting efficient parallelism and it maps well with the

FPGA logic. This exploits data which benefits the architecture for implementing matrix

multiplication on hardware device. A larger matrix will contain large number of

multiplication and addition, so an adequate software for a computation we will have

limited capacity. However, this proposed architecture minimizes the computation time

independent of the matrix dimensions. The multiplication computation will be serial,

indexing the nonzero from the matrix into an input buffer streamed and multiplied by the

corresponding component of the other matrix. The output values are accumulated and

sent back for error analysis. Compared to the regular multiplication, this method reduces

the number of multiplication and addition. Figure 32 shows the overall design flow with

hardware blocks, describing how the operation is carried out and the temporary results

are accumulated to the final output.

Figure 32. Overall Design Flow

51

Various design techniques were considered and incorporated to optimize the

performance of sparse matrix-matrix multiplication. The proposed systolic architecture

consists of identical processing elements, where the number of PEs for processing

depends on the size of the matrix. Each necessary multiply-accumulate operation is

performed by each PE. The hardware utilization is greatly reduced as each PE operates

independently with corresponding input and output thereby greatly reducing the

interconnections between each PE. High throughput is achieved in the proposed

architecture through pipelining and parallel processing technique by computing the

intermediate product at every clock cycle. This was made possible by inserting necessary

registers at appropriate places. The whole computation is divided into smaller segments

which are executed in parallel, accumulating all the partial results to the Result BRAM

resulting in higher frequency of operation. Every time a row index from matrix A is

coming inside FIFO, it is compared against col index of matrix B present within the

BRAM, so it finds a possible match for multiplication. As soon as the first element of A

is fetched from memory and wrote in FIFO, the FSM starts comparison which makes it

efficient without waiting for the entire matrix to be written in FIFO.

for A_index = 0: A_count

if (A_sr > row_output)

done_for_current m and n.

else if (A_sr == row_output)

//now check if a matching value is in B.

for B_index = 0: B_count

if (B_sr > A_sc) //remember sr is always in ascending order.

B_index <= 0; //exit from this loop.

else if ((B_sc == n) && (B_sr == A_sc) begin //a match.

temp = temp + A_sv × B_sv; //do multiply and add operation.

Listing 2. Sparse matrix multiplication algorithm

52

The proposed algorithm for performing matrix multiplication of sparse matrices is

shown in Listing 2.

Consider two sparse input matrices A and B which are shown in figure 33. The

matrix A consists of only nine nonzero and matrix B consists of only ten nonzero when

the total size of the matrix elements if 100. In these cases, it would not be necessary to

perform addition and multiplication on all the zero which involves a lot of hardware

resources. Instead, the nonzero values are stored in sparse matrix storage format and then

multiplication operation is carried out. Figure 16 illustrates how the matrix multiplication

is performed based on stored nonzero values. The same procedure for sparse matrix

addition is used here for sparse matrix storage. Once separate arrays are created as ROW,

COL, and VAL the sparse matrix multiplication algorithm is performed. First the row of

first matrix storage is compared with the column of second matrix storage, and the

intermediate results are stored in a temporary array, and finally, the output product is sent

back. When the output_valid signal is high, the “row”, “col”, and “val” are streamed into

PEs which synchronizes the components with data flow. As the partial multiplication

results are calculated, they are fed into an adder. Continuous computation over time,

accumulates the partial sum but results are not available on next clock following the input

due to the pipelined nature of the adder. Therefore, the results are temporary stored in a

buffer until next result is available to be added with.

53

0 0 0 0 1 0 3 0 0 0

0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 6 0 0 0 0

1 0 0 0 0 4 0 0 0 0

0 0 0 0 2 0 0 0 0 0

 Matrix A Matrix B

Figure 33. Sparse Matrix Multiplication Methodology

0 2 0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 3 0 0 0 1 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Row Col Val

0 4 1

0 6 3

1 4 2

2 8 1

3 0 3

4 2 3

4 6 1

5 2 3

7 5 6

8 0 1

8 5 4

9 4 2

Row Col Val

0 2 3

0 6 1

1 2 6

1 6 2

2 5 2

3 1 6

3 6 9

4 1 3

4 8 3

5 1 3

5 8 3

7 2 18

8 1 2

8 2 12

8 6 3

9 2 6

9 6 2

Row Col Val

0 1 2

0 6 3

1 5 2

2 1 1

2 8 1

4 2 3

4 6 1

5 2 3

7 5 1

8 5 2

row 0 col 4 & row 4 and col 2,

Product = Temp + 𝑨_𝒔𝒗 × 𝑩_𝒔𝒗

Similarly, the row and col are

checked from sparse matrix

storage, addition and

multiplication is executed.

Product

5
4

Figure 34. Design Simulation: Sparse Matrix Multiplication

Figure 34 shows the simulation results of the proposed matrix multiplication algorithm in Vivado design suite. The product is

calculated from the nonzero values stored from the given input matrix after performing the storage of the sparse matrices. The product

is obtained when the 𝒐𝒖𝒕𝒑𝒖𝒕_𝒗𝒂𝒍𝒊𝒅 signal is high. From the figure, it can be inferred that the results obtained are equal to the result

from regular matrix multiplication algorithm. The results are also verified with the MATLAB results; to ensure we have achieved the

correct results.

Output becomes valid Output Product C (16 Bits) Input Data A and B (8 Bits) Matrix Size (10×10)

5
5

Figure 35. Elaborated Implemented Design: Sparse Matrix Multiplication

56

Figure 35 captures the Elaborated Implemented Design of Sparse Matrix

Multiplication Operation from Vivado Design Suite. The diagram highlights the number

of interconnects which are being used between the processing elements and memory

controller for calculating and storing the intermediate data which is later processed for

output.

Figure 36. Interconnect Design: Sparse Matrix Multiplication

Figure 36 shows the Interconnect Design for Sparse Matrix Multiplication

Operation which highlights the logic and cells involved in fetching the data when

input_valid becomes available with high clock and when the required operation is done.

Number of registers are involved, in storing the intermediate results which are

accumulated for calculating the output.

The effectiveness of the algorithm varies depending upon the sparsity of the

matrix, as the number of nonzero increases, the number of calculations also increases.

The algorithm involves additional temporary registers to avoid overhead issues, which is

57

negligible as comparatively single clock cycle is employed for each data whereas for a

floating-point multiplication or addition operation several clock cycles are needed

depending on the amount of data. Each sub processing elements generates its own matrix

in a separate area in the local memory to avoid write conflicts.

Figure 37. Interconnect Design: Temporary Registers for Intermediate Output

Figure 37 shows a part of the schematic for a single PE where the interconnects

have the necessary register needed. In the proposed design, almost 60% of the total

computation time are the operators and temporary registers which occur at every step or

even multiple time per time step, making it hard to optimize. The number of non zeros of

the matrix usually dominates the memory overhead, hence a precise number of register

allocation is impossible before real execution. To achieve load balancing, each PE is

partitioned into multiple sub-PE for extra irregularity to cut down the computational

overhead throughout every stage.

58

4.2 Matrix Decomposition

Numerous engineering and machine learning applications rely primarily on matrix

decomposition due to rapid development in the field of Mathematics and Computation

[40]. In linear algebra, matrix decomposition is decomposing a matrix into a product of

two matrices. Matrix decomposition provides an efficient means to compute the matrix

inverse. Matrix inverse has several valuable applications in engineering practice, which

also provides a means for evaluating system condition. The computational complexity

indicated how the number of operations scales with the size of the problem data.

Figure 38. Matrix Decomposition

Figure 38 shows the different types of decomposition available depending upon

the property of the matrix.

Symmetric

59

4.2.1 LU Decomposition. LU decomposition is widely used in numerical

analysis and engineering science [41]. It factors a matrix as a product of lower triangular

matrix (L) whose diagonal elements are equal to 1, and all the elements above are equal

to 0; and an upper triangular matrix (U) whose elements below the diagonal are equal to

0. If A is a square matrix, LU decomposes A with proper row and/or column orderings or

permutations into two factors.

𝑨 = 𝑳𝑼

(
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

) = 𝑷(
𝟏 𝟎 𝟎

𝑳𝟐𝟏 𝟏 𝟎
𝑳𝟑𝟏 𝑳𝟑𝟐 𝟏

) × (
𝑼𝟏𝟏 𝑼𝟏𝟐 𝑼𝟏𝟑

𝟎 𝑼𝟐𝟐 𝑼𝟐𝟑

𝟎 𝟎 𝑼𝟑𝟑

)

LU decomposition is a direct method that can solve large systems of linear

equations that arises from many essential application areas like circuit simulation, power

networks, structural analysis, etc. To ensure stability during LU decomposition, pivoting

operations are performed to remove zero elements from the diagonal of matrix A.

Without proper pivoting, the decomposition may fail to materialize. Partial Pivoting

refers to the proper permutation in rows or columns for LU decomposition. This approach

is suitable for the square matrix, and it is numerically stable in practice.

𝑷𝑨 = 𝑳𝑼

LU decomposition with full pivoting involves both row and column permutations.

𝑷𝑨𝑸 = 𝑳𝑼

Where Q is a permutation matrix which reorders the columns of A.

Another useful method is the LDU decomposition,

𝑨 = 𝑳𝑫𝑼

Where D is a diagonal matrix, where all the entries on the diagonals of L and U are one.

60

LU decomposition introduces a permutation matrix P to ensure numerical stability

leading to 𝑷𝑳𝑼𝒙 = 𝒃. The equation represents LU decomposition of an 𝒏 × 𝒏 matrix

which has a computation time complexity of 𝑶(
𝟐

𝟑
𝒏𝟑).

LU decomposition followed by forward reduction and backward substitution

technique is more stable compared to matrix inverses to solve systems of linear equations

because every nonsingular matrix possesses an LU decomposition. Also, LU

decomposition saves space storing either L or U matrix in the space required for input A

matrix. On the contrast, standard matrix inversion needs much more space. The two most

common methods employed are Doolittle LU decomposition algorithm and Crout

decomposition algorithm. However, the optimization and generalization of the sparse

matrix is required before factorization. For easy realization, all PEs are connected to a

central PE along with the finite state machine where one PE can access the rows while

the other PE is performing normalization.

If a matrix is nonsingular for each L the upper triangular matrix is unique, but the

LU decomposition is not unique. There can be more than one such LU decomposition for

a matrix. There is also generalization of LU to non-square and singular matrices, such as

rank-level LU factorization. Figure 39 represents the matrix spy plot of LU Factorization

of 20×20 Combinatorial Problem from Suite Sparse Matrix Collection.

61

Figure 39. MATLAB representation of LU Decomposition of 20×20 Combinatorial

Problem from Suite Sparse Matrix Collection

62

4.2.1.1 Sparse LU Decomposition Architecture. Sparse matrices compared with

regular matrices can benefit from algorithms that reduce the number of operations which

is required to calculate L and U. But the disadvantage involves sparse methods suffer

from irregular computation patters as it is dependent on the nonzero structure of the

matrix.

The proposed algorithm implements a row-wise, right-looking form of Gaussian

elimination with partial row pivoting. The design of the hardware algorithm can be

broken into partitions. The control system is implemented as a Finite State Machine

(FSM), which tracks the progress of the units for synchronization. The pivoting and logic

implement performs the necessary computations required for sparse LU decomposition.

In addition, the last partition handles the sparse matrix storage and retrieval for the pivot

search. The approach for sparse LU decomposition consists of the following operation:

Pivoting strategy when A has nonzero entries, which are at fill-up locations. Symbolic

decomposition, which estimates the memory requirements for L and U factors.

Numerical calculation, which is computed using Gaussian elimination.

Figure 40. Control Logic for LU Decomposition Hardware

Memory Interface Logic

Pivot Operation
Update Pivot &

Interchange rows

Update Row and

Column

Loop/Control Logic

FPGA

63

For maximizing the performance, LU hardware is designed to focus on

maintaining regular computation and memory access pattern. Figure 40 shows a block

diagram of the proposed hardware algorithm. The control and memory access handle the

operations performed for decomposing the matrix. The design ensures the memory will

have enough space to store the values. The performance of LU decomposition of the

sparse matrix depends heavily on the quality of the placement tool. The initial design

algorithm is inspired from Doolittle and the right-looking algorithm for sparse LU

decomposition.

A. Pivot Operation

When decomposition is executed in parallel, it often tries to avoid pivoting using

threshold pivoting or static pivoting beforehand. So right-looking algorithm is

implemented for sparse LU decomposition including pivoting. This design produces one

column of L and one row of U simultaneously and is referred by the order of loops[41].

The initial step of partial pivoting is performed by choosing a specific element from the

column of A. To perform pivoting operation, the design includes usage of lookup tables

and memory pointers to keep track of the memory mapping. It conducts pivot search for

each matrix elimination step. Index pointers are created for each pivoting to store the row

and column physical address accordingly. These physical addresses are then used for

fetching the values from memory. These values as they arrive are sequentially checked

for the absolute maximum values with index. Using a register, it gets stored as pivot

element. The minimum amount of memory utilized is proportional to the size of the

matrix. Once the pivoting is complete, an update is sent back to lookup tables.

64

After choosing the pivot, the specific row is swapped with the current row j and i

being collected in the permutation matrix. To perform full pivoting, one would choose a

pivot for the entire matrix[37]. The algorithm yields 𝑳𝑼 = 𝑷𝑨, where the matrix

overwrites A with 𝑳𝑼 − 𝑰, 𝑰 is an identity matrix. The first half of the algorithm will be

triangular solving, leaving behind the pivoting and scaling. In the case of sparse, it will be

inefficient for swapping rows and due to having a single unreduced row or column full

pivoting is not easily achievable.

B. Update Pivot & Interchange rows

The Processing Elements in Update State will be responsible for computing the

core computation of the right looking algorithm method. This logic performs

normalization before elimination for the pivot values of row and column requested from

memory. The necessary data such as pivot index, values and column are inferred from the

previous state. The updates row and column values and the normalized row and column

values are then stored in registers.

C. Update row and column

The remaining computations required are performed during this transition state.

First, it indicates if the given row or column should be updated. Secondly, it manages the

addresses of nonzero that are to be stored. This unit contains the necessary floating-point

multipliers and adders for performing the required arithmetic operations. This unit

operates in parallel for maximizing the utilization of all logic units. This will update the

number of update logic that fits in FPGA chip. There are enough resources available in

the FPGA which can accommodate all the units. The algorithm for sparse matrix LU

decomposition is given below.

6
5

Figure 41. Block Diagram of Proposed LU Decomposition Hardware

Figure 41 shows the block diagram of the LU decomposition Hardware which consists of the Input, Output and Pivot Lookup

for swapping the elements.

66

U = A

L = P = In*n

[Perform pivoting operation]

function pivot (A, P, i)

 P = choose pivot (Ai: end, i)

 if (P ≠ k) then

 SWAP (Ai, *, Ap, *)

 SWAP (Pi, *, Pp, *)

 end if

 return (A, P)

end function

[Interchanging rows in matrix]

If m≠ j

 U ([m, j], :) = U ([j, m], :)

 P ([m, j], :) = P ([j, m], :)

 If j<=2

 L ([m, j], 1: j-1) = L ([j, m], 1: j-1)

 end

end

[Update row and column entries]

for i = j+1 to n

 for j = 1 to n

 Li, j = Ui, j / Uj, j

 for k = j+1 to n-1

 U (i, *) = U (i, *) - L (i, j) × U (j, *)

 end

 end

end

Listing 3. LU Decomposition Algorithm

The optimization strategies involve prefetching data when input is available to

keep the control unit busy while the multiply and accumulate unit performs delayed

normalization to achieve the required clock cycle to improve throughput of the overall

system. Both run01 and run02 are similar in terms of data blocking, prefetching, pipeline

execution units and communication with the finite state machine for computation except

for the following difference.

• Each block of data is mapped into single processing element making the

implementation scalable and can be computed independently in a single block.

67

• BRAM’s are used to support larger matrices which cannot completely fit in the

registers of the processing elements.

• To allow prefetching of data the finite state machine loops are restructured in

subsequent iteration to fully exploit the pipelined units.

• The multiply and accumulate unit pipelined to achieve low latency and high

throughput for every clock cycle.

4.2.1.2 Implementation and Error Analysis. Various arbitrary matrices with

different sparsity patterns are generated using MATLAB and tested using the hardware

architecture. A parameter n is included along with the design to get the size of the matrix

to be decomposed, and the simulated waveform from Xilinx ISE design suite for a 10×10

matrix A is shown in Figure 42.

6
8

Figure 42. Design Simulation: LU Decomposition

In this case of simulation, matrix A is a 10×10 matrix with 10% sparsity. The L_elem is the data after LU decomposition

which denotes the Lower Triangular part of the matrix, whereas U_elem is the data which denotes the Upper Triangular part of the

matrix. The input matrix becomes available when the clock becomes high, meaning when input _valid is valid utilizing the maximum

frequency and the operation is completed when output_valid becomes low. n denotes the size of the matrix, in this case n=10 and this

is an 8-bit data

L Matrix (16 Bits) U Matrix (16 Bits) A Matrix (8 Bits)

6
9

Figure 43. Implemented Design Engine: LU Decomposition

The overall implemented architecture of the LU decomposition schematic is represented in Figure 43. The proposed and

implemented design is analyzed for the usage of Slice LUTs, memory, Slice Registers, and IO. The Vivado Design Tool provides the

nets and logic which is used to check for all design violations, and for a better optimization.

70

The error analysis is carried out by comparing the software results from

MATLAB and the hardware results from Vivado Design Suite. This is the precision of

error for decomposing an input matrix A into resultant L and U matrices, respectively.

The Mean Error(ME) is the average of all errors. The formula for calculating the Mean

Error is:

𝑴𝒆𝒂𝒏 𝑬𝒓𝒓𝒐𝒓 =
𝟏

𝒏
 ∑|𝒙𝒊 − 𝒙|

𝒏

𝒊=𝟏

Where 𝒏 – the number of errors, |𝒙𝒊 − 𝒙| – the absolute errors.

Table 4. Error Analysis for LU Decomposition Operation

10 x 10 Matrix

Sparsity Matrix Min Max

10% L 0 0.0022

U -0.0087 0.0078

20% L -0.0049 0.0022

U -0.0117 0.0292

30% L -0.0114 0.0074

U -0.0566 0.0626

40% L -0.0144 0.0206

U -0.0807 0.0781

50% L -0.0229 0.0062

U 0.0799 0.0643

Mean Error L -0.01072 0.00772

U -0.01556 0.0484

Table 4 represents the data for while decomposing a matrix of size 10x10 with

varying the sparsity of the matrices from 10% to 50%. The Min and Max value of errors

are calculated which is the difference between the MATLAB software results and the

Vivado Hardware results. Once these are tabulated, the Mean Error is calculated from the

above-mentioned formula to investigate the precision loss.

71

4.2.2 QR Decomposition. QR decomposition plays a vital role in computing

solution of linear systems of equations, computing Eigenvalues and solving least square

problems. Some of the applications of MIMO technologies and adaptive filtering require

high-throughput QR decomposition for small size matrix. QR decomposition can be

employed in machine learning in the automatic removal of an object from an image. To

crop an image of a car from a video clip, using a single value decomposition make it

relatively simple. In short by splitting a video into its individual frames, creating a matrix

of vectors corresponding to each image, the decomposition allows simple separation of

foreground objects from the background space. Preprocessing of QR decomposition

makes the decoding in signal processing simple and to implement data detection helps to

reduce the complexity of spatial multiplexing MIMO-OFDM detection. Many works

have addressed the parallel hardware implementation of QR decomposition on Field

Programmable Gate Arrays. It is referred to as Orthogonal matrix triangularization,

which decomposes a given matrix A of size m×n into an orthogonal matrix (Q) of size

m×m such that 𝑄𝑇 . 𝑄 = 𝐼 and an upper triangular matrix(R) of size m×n.

𝑨 = 𝑸𝑹

There are many methods for performing QR decomposition algorithms such as

Givens Rotation (GR), Householder Transform (HT), Modified Gram-Schmidt (MGS)

and Cholesky QR. The computation of eigenvalues is simplified using QR decomposition

method.

Figure 44 shows the matrix representation of QR decomposition of 100×100

Structural Problem from Suite Sparse Matrix Collection.

72

Figure 44. MATLAB representation of QR Decomposition of 100×100 Structural

Problem from Suite Sparse Matrix Collection

73

For solving linear simultaneous equations, A×x=b using Gaussian elimination,

elementary row transformations of the matrix A are applied. This is equivalent as pre-

multiplying A by non-singular matrix P to solve the triangular system of equations P×Ax

= P×b by back substitution. To improve numerical stability, Householder transformation

which is orthogonal is used for QR decomposition.

4.2.2.1 Householder Transformation. Householder Transformation is a

sophisticated algorithm which zeros all the elements required in a column at once. This

method uses reflection method for performing zeroing operation. It performs a series of

orthogonal transformations on any arbitrary matrix to convert into an upper triangular

matrix. It is a linear process representing a vector through a plane containing the origin.

The matrix which is transformed has the same norm as original vector.

Consider a sparse matrix A, with x representing the non-zero elements given as:

𝑨 = [

𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙
𝒙 𝒙 𝒙 𝒙

]

Considering the A matrix, we computer H1 such that product of H1 and A results

in first column zero except for the first element as:

𝑯𝟏𝑨 = [

𝒙 𝒙 𝒙 𝒙
 𝟎 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙 𝒙

]

Similarly, the same procedure is carried out after multiplying it with the product

and not disturbing 1st row and 1st column and zeroing all the remaining elements as

follows:

𝑯𝟐𝑯𝟏𝑨 = [

𝒙 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙 𝒙
𝟎 𝟎 𝒙 𝒙
𝟎 𝟎 𝒙 𝒙

]

74

𝑯𝟑𝑯𝟐𝑯𝟏A = [

𝒙 𝒙 𝒙 𝒙
𝟎 𝒙 𝒙 𝒙
 𝟎 𝟎 𝒙 𝒙
𝟎 𝟎 𝟎 𝒙

]

The process results in an upper triangular matrix R. And for any matrix A of size

m x n QR decomposition can be written as follows:

(𝑯𝒏𝑯𝒏−𝟏 ∙∙∙ 𝑯𝟑𝑯𝟐𝑯𝟏)𝑨 = 𝑹

(𝑯𝟑𝑯𝟐𝑯𝟏)𝑨 = 𝑯𝑻𝑨 = 𝑹

𝑸 = 𝑯𝟏𝑯𝟐 ∙∙∙ 𝑯𝒏

The Householder Transformation of a matrix with normal vector v takes the form:

𝑯 = 𝑰 − 𝟐𝒗𝒗𝑻

We need to build H from the above-mentioned mathematical calculations so that

𝑯𝒙 = 𝜶𝒆𝒊for some constant 𝜶 and 𝒆𝟏 = [𝟏 𝟎 𝟎]𝑻.

Since 𝑯 is orthogonal, ||𝑯𝒙|| = ||𝒙|| and ||𝜶𝒆𝟏|| = |𝜶|||𝒆𝟏|| = |𝜶|. So 𝜶 =

 ±||𝒙||, the sign is selected for vector u as:

𝒖 =

[

𝒙𝟏 + 𝒔𝒊𝒈𝒏(𝒙𝟏)||𝒙𝟏||

𝒙𝟐

..

.
𝒙𝒏]

With his unit vector u defined as 𝒖 =
𝒗

||𝒗||
. The corresponding Householder

transformation is:

𝑯(𝒙) = 𝑰 − 𝟐𝒗𝒗𝑻 = 𝑰 − 𝟐
𝒖𝒖𝑻

𝒖𝑻𝒖

The following merits were important for considering Householder transformation

for the proposed architecture:

1. Better Numerical stability compared with Gram-Schmidt.

75

2. Using Householder Transformation, we were able to save memory space within

the original matrix A for Q or R matrix rather than an explicit memory space.

3. Arithmetic operations are less.

The above Householder transformation can be realized using hardware

architectures for calculating performance results. The Householder Transformation is a

common approach in practice as Gram-Schmidt approach causes inaccuracy in

computation which may result in non-orthogonal Q matrix. The algorithm for

computation of proposed design is provided in Listing 4.

A → n×n sparse matrix

Q → n×n Orthogonal identity matrix

R → n×n Upper Triangular matrix

[m, n] = size(A)

R = A

Q = I

for k=1 to m-1

for i=1 to i-1

xij=0

end

for i=1 to m

xij = Rij

end

g= sqrt (∑ 𝑥𝑖
𝑚
𝑖=0)

xi=xij + g

s= sqrt (∑ 𝑥𝑖
𝑚
𝑖=0)

if s≠0

 x =
𝑥

𝑠

 u = 2 * R′ * x

R = R- x * u′

Q = Q-2*Q*x*x′

end

Listing 4. QR Decomposition Algorithm

76

4.2.2.2 Design Flow and Optimization. The core of the decomposition process

which is shown in Figure 45 is optimized in the finite state machine process while

designing the algorithm. Pipelining overlaps the execution of instructions in parallel

improving the performance. Pipelining refers to the parallel implementation of the

proposed algorithm, which increases the throughput. For QR decomposition, multiple

iterations need to be calculated, so pipelining could be implemented for better

performance, which could also reduce latency. However, the resources utilized for the

hardware architecture will be significant, as more resources should run in parallel.

Figure 45. QR Decomposition Core

Several intensive computations are needed to be implemented for calculating QR

decomposition in parallel as hardware, to avoid bottlenecks. To achieve timing results,

more hardware is used resulting in a larger design area.

QR decomposition of an n×n matrix usually requires three times n×n storage

space in the register, comprising the input matrix, resultant orthogonal matrix, an upper

triangular matrix. Instead, once the input matrix is read decomposition takes place

column by column storing the resulting R matrix above input matrix. So, only two times

n×n matrix storage will be used in the architecture removing the extra storage. The usage

of storage space for a 2×2 matrix is shown in Figure 46 how matrix elements are stored.

𝑶𝒖𝒕𝒑𝒖𝒕_𝑽𝒂𝒍𝒊𝒅

𝑹

𝑸

𝑹𝒆𝒔𝒆𝒕

𝑰𝒏𝒑𝒖𝒕_𝑽𝒂𝒍𝒊𝒅

𝑪𝒍𝒐𝒄𝒌

𝑰𝒏𝒑𝒖𝒕 𝑴𝒂𝒕𝒓𝒊𝒙

Finite State Machine (FSM)

77

Figure 46. Usage of Registers for QR decomposition of 2×2 matrix

QR decomposition can be summarized in 3 steps: Preprocessing, Decomposition,

and Matrix update. The preprocessing step is responsible for computation of square root

norms which utilizes more hardware. The Top module is equipped with n multipliers,

under which log(n) level of adders are employed. To save the hardware resources, the

preprocessing is implemented as part of matrix update computation. The next step

decomposes the matrix in which FSM-based control units are employed to synchronize

the factorization. Additions are performed in parallel by a pair of adders to calculate the

coefficient which is first value of the input element. A multiplier is used to multiply,

which is followed by the subtraction. The last stage of updating the matrix has arithmetic

calculations, and Householder Transformation process ends with subtractions. The

number of matrix columns that can be held on the chip is determined as per matrix size

and on-chip resources. The architectural implementation minimizes the excessive delay

and processing overhead produced by the norm calculation and sorting operations. This

led to more regular processing flow which increases the throughput.

78

An important design consideration is the calculation of square root, as it affects

the precision and timing. Besides the addition, subtraction, multiplication operations for

QR decomposition square root operation are mandatory for every column. Especially if

the matrix size is large, the number of operations reduces the timing of the design.

Considering these limitations, the square root module is designed separately along with

the top module. Also, performing more iterations for finding the square root will give

better results. The algorithm for square root for each column is provided in Listing 5.

Coordinate Rotation Computer (CORDIC) algorithm which depends on the shift-add

operation is used to calculate the square root operation. To increase the speed of

execution multipliers are used to obtain low latency and this stage is design to work in

parallel.

begin

for i in 0 to 15 loop

right (0) := '1'

right (1) := r(17)

right (17 down to 2) := q

left (1 down to 0) := a (31 down to 30)

left (17 down to 2) :=r (15 down to 0)

a (31 down to 2) := a (29 down to 0) --shifting by 2 bit.

if (r (17) = '1') then

r := left + right

else

r := left - right

end if;

q (15 down to 1) := q (14 down to 0)

q (0) := not r(17)

end loop

return q

Listing 5. Pseudo code for Square Root Algorithm

For testing the algorithm, fixed-point number representation is used as input

specification. Randomly generated matrices with different sparsity patterns are used as

79

input and a test bench is developed in MATLAB for verification. The simulation results

obtained from Xilinx ISE design suite for 10×10 matrix is shown in Figure 48.

For implementing the design on FPGA, we have set the output data as a 32-bit

integer. The dec and frac parameters specify the number of bits allotted for decimal and

fractional part of the input. The input bit is scalable and can be reduced for smaller values

of n. The input, and output matrix is stored in the Block RAM controllers. The

architecture is synthesized and implemented to find the timing and power estimates from

the Vivado design Suite. Figure 47 shows the Block Diagram of QR decomposition.

Figure 47. Block Diagram for QR decomposition using Householder Transformation

8
0

Figure 48. Simulation Waveform: QR Decomposition

As different decomposition technique leading to different solutions, the right choice decomposition technique depends on the

problem and the matrix to be decomposed. This approach is mainly focused on the performance improvement of QR decomposition

using Householder transformation by implementing on FPGA. This decomposition technique is mostly used to solve linear square

problems, OFDM-MIMO, adaptive beamforming.

Q Matrix (32 Bits) R Matrix (32 Bits) A Matrix (8 Bits)

Matrix Size (10×10)

81

Figure 49. Implemented Design: QR Decomposition

82

Figure 49 shows the schematic diagram of the implement QR decomposition from

Vivado Design Suite. The schematic is analyzed to find if any logic or nets are not

interconnected. The overall engine is implemented using the finite state control machine

which consists of the memory unit, and the necessary operators.

Figure 50 captures the interconnect schematic for the Output engine. Once all the

normalization is performed the finite state machine transfers the output data when the

output_valid is available. The registers work is parallel to keep the temporary

factorization values, which is being used by each row and column shifting with the

square root module. This eliminates the loss of data, thereby keeping the precision loss to

a minimum.

Figure 50. Interconnect Schematic: Output FSM

83

Figure 51. Interconnect Schematic: Square Root Module

Figure 51 shows the interconnect schematic of the square root module, which is

designed as a sperate module, but works in parallel along with the factorization. This

engine is designed with finite state machine and as a part of the module, shifting with

CORDIC algorithm is implemented to reduce the multipliers used. This operation is

performed when the clock high is reset, and an extra parameter is employed to take care

of the fractional part of the bit.

84

The error analysis is carried out by comparing the software results from

MATLAB and the hardware results from Vivado Design Suite. This is the precision of

error for decomposing an input matrix A into resultant Q and R matrices, respectively.

The Mean Error(ME) is the average of all errors. The formula for calculating the Mean

Error is:

𝑴𝒆𝒂𝒏 𝑬𝒓𝒓𝒐𝒓 =
𝟏

𝒏
 ∑|𝒙𝒊 − 𝒙|

𝒏

𝒊=𝟏

Where 𝒏 – the number of errors, |𝒙𝒊 − 𝒙| – the absolute errors.

Table 5. Error Analysis for QR Decomposition Operation

10 x 10 Matrix

Sparsity Matrix Min Max

10% Q -2 0.0015

R -1 0.0035

20% Q -0.002 0.0021

R -0.0037 0.0051

30% Q -0.0037 0.002

R -0.005 0.0106

40% Q -0.0021 0.0028

R -0.0085 0.0121

50% Q -0.0033 0.0023

R -0.0108 0.0121

Mean Error Q -0.40222 0.00214

R -0.2056 0.00868

Table 5 represents the data for while decomposing a matrix of size 10×10 with

varying the sparsity of the matrices from 10% to 50%. The Min and Max value of errors

are calculated which is the difference between the MATLAB software results and the

Vivado Hardware results. Once values these are tabulated, the Mean Error is calculated

from the above-mentioned formula to investigate the minimum and maximum precision

loss.

85

5. ALGORITHM PERFORMANCE RESULTS

Once the optimized sparse matrix operation algorithms had been developed using

Verilog code, we can compare its efficiency with the conventional matrix operation

algorithms to confirm our performance estimates and do further optimization. The codes

are tested for simulation and synthesize using Vivado Design Suite on 64-bit Intel®

Core™ i-3-5005U CPU processor operating at 2.00GHz. Further the results are checked

with MATLAB code to ensure we are getting the same output.

Once the FPGA hardware design is ready to be tested, test runs with various

matrices with different sparsity structure, and density is used to evaluate the performance.

These results are plotted in forms of graphs and tables for detailed analysis. The

performance of sparse matrix operations was determined by the number of the nonzero

present in the matrices. Each of these test matrices sizes were 10×10, 20×20, 30×30,

40×40, 50×50, 60×60 and 100×100 with different density ranging between 1% and 10%.

5.1 Sparse Matrix Addition vs. Regular Matrix Addition

The designed sparse matrix addition algorithm is simulated and the necessary

measurements at what time the input matrix is taken (t1) and what time the output matrix

is produced (t2) are calculated for latency and throughput calculations. These metrics

calculated for the proposed algorithm are compared with the regular algorithm and the

comparison is plotted in graphs. It is evident from Figure 52 for matrix dimension of

10×10 the latency of sparse matrix addition with different sparsity percentage of the

matrix ranging from 1% to 10% is significantly reduced. As the matrix size keeps

increasing the latency increases but beyond the regular algorithm.

86

Figure 52. Latency Comparison: Proposed vs Regular for 10×10 Matrix

Figure 53. Latency Comparison: Proposed vs Regular for 20×20 Matrix

Figure 53 represents the latency comparison of proposed algorithm with the

regular algorithm for 20×20 matrix with sparsity range varying from 1% to 10%. When

87

we compare the latency performance of different sizes of the matrix with different

sparsity, we were able to produce improvements in latency for sparse matrix algorithm.

Figure 54. Latency Comparison: Proposed vs Regular for 30×30 Matrix

Figure 55. Latency Comparison: Proposed vs Regular for 40×40 Matrix

88

Figure 54 and 55 represents the latency comparison for 30×30 and 40×40 matrix

with sparsity range varying from 1% to 5%.

The data plot shows latency is directly proportional to the size of the matrix. The

lower the size of the matrix, consumes a smaller number of clock cycles as compared

with the higher the size of the matrix.

Figure 56. Latency Comparison: Proposed vs Regular for 50×50 Matrix

Figure 56 shows the latency comparison of a 50×50 matrix size, with different

sparsity ranging between 1 to 5% between the regular operation and proposed operation.

From the graph, the decrease in latency for each operation by the proposed method is

evident and was able to achieve comparatively lower latency leading to improved

throughput. Each test matrices were imported from the Suite Sparse Matrix Collection

from Texas A&M University dataset with different varying properties and patters which

are laten detailed towards the end of the thesis discussion.

89

Figure 57. Latency Comparison: Proposed vs Regular for 100×100 Matrix

The overall arithmetic operation throughput is calculated from the clock cycle

latency and the frequency achieved by the proposed design. Numerous varying sizes of

matrix valves are involved, with differing sparsity percentage and the results are plotted

in graphs for comparison.

90

Figure 58. Throughput Comparison: Proposed vs Regular for 10×10 Matrix

Figure 58 shows the increase in throughput for the proposed method, in

comparison with the regular method in terms of bits/sec. For a 10×10 matrix, the design

was able to achieve a maximum of 4.2% increase with 10% of the elements being non

zeros. Figure 59 shows the comparison of throughput calculated for 20×20 matrix size,

and Figure 60 shows the comparison of throughput calculated for 30×30 matrix size

where the proposed method can get a maximum of 2.3% increase in throughput. From the

data analysis, throughput is directly proportional to the size of the matrix.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

10 x 10 Matrix

Sparse Regular

91

Figure 59. Throughput Comparison: Proposed vs Regular for 20×20 Matrix

Figure 60. Throughput Comparison: Proposed vs Regular for 30×30 Matrix

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

20 x 20 Matrix

Sparse Regular

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

30 x 30 Matrix

Sparse Regular

92

Figure 61 shows the comparison of throughput between the two methods for

40×40 matrix size, containing 1% to 5% sparsity range.

Figure 61. Throughput Comparison: Proposed vs Regular for 40×40 Matrix

Figure 62 is plotted to compare the throughput results between the proposed and

the regular method, which shows the maximum increase in throughput is achieved for a

matrix size of 50×50 with varying sparsity percentage from 1% to 5%. Figure 63 shows

the comparison of throughput between the proposed and regular method for 100×100

matrix with sparsity range varying between 1% to 3%.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

40 x 40 Matrix

Sparse Regular

93

Figure 62. Throughput Comparison: Proposed vs Regular for 50×50 Matrix

Figure 63. Throughput Comparison: Proposed vs Regular for 100×100 Matrix

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 3 4 5

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

50 x 50 Matrix

Sparse Regular

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

1 2 3

Th
ro

u
gh

p
u

t
(e

le
m

en
ts

/s
ec

)

Sparsity of Matrix (%)

100 x 100 Matrix

Sparse Regular

94

From figure 63, the throughput obtained from sparse matrix algorithm and regular

matrix algorithm are plotted as a graph to show the improvements in performance. Figure

63 illustrates a large increase in throughput from small size matrix with less sparsity

while it gradually decreases as the size of the matrix dimension increases. This is due to

the increase in number of operations to be performed when the nonzero value increases

with the size of the matrix. But however, even for a 100×100 matrix with 10% sparsity

distribution, a significant increase in throughput is proved from the comparison.

Figure 64. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t

95

Figure 65. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity

Figure 66. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t
In

cr
e

a
se

 in
 T

h
ro

u
g

h
p

u
t

96

With the use of Vivado Design Suite, the hardware resources utilized for both

sparse algorithm and regular algorithm are compared in Figure 67.

Figure 67. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Addition

Operation

Figure 67 provides the hardware utilization for a 10×10 matrix dimension with

10% sparsity. We can see the amount of the hardware utilized is significantly reduced in

the proposed sparse algorithm as the addition operation is performed only for the nonzero

values saving more hardware resources.

Table 6 summarizes the best and worst-case operational delays. These values are

used to compare with software implementation. It shows the best- and worst-case delays

achievable for fetching the input and calculating the output. The design was able to

achieve a min of 3.76ns to process input data, and max of 4.34ns for the same. Once the

necessary operation is performed, the design restricts to a min of 4.82ns for the output to

be available and a max of 5.96ns.

0 150 300 450 600 750 900 1050 1200

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

143

245

0

83

77

822

1,220

16

459

37

FPGA Resource Utilization Summary

Regular Sparse

97

Table 6. Hardware Implementation: Sparse Matrix Arithmetic Operation

Input (ns) Output (ns)

Best Case Delay (min) 3.76 4.82

Worst Case Delay (max) 4.34 5.96

The power analysis tool articulates the power consumed by the design. Figure

68(a) shows the estimated static and dynamic power consumed by the proposed design,

and Figure 68(b) shows the estimated power consumed by the regular design. This shows

a comparison of the power, and clearly the proposed design is consuming less power.

(a) Proposed Method (b) Regular Method

Figure 68. Power Analysis: Sparse Matrix Arithmetic Operation

98

5.2 Sparse Matrix Subtraction vs. Regular Matrix Subtraction

Since subtraction is equivalent to the addition of matrix with signs of its nonzero

reversed, the same algorithm is used for analyzing the performance of subtraction

operation. Table 5 presents us the Latency and Throughput calculations of sparse

matrices of different sizes ranging between 10×10 to 100×100, with different sparsity

pattern and sparsity percentage ranging from 1% to 10%.

Table 7 also provides the number of nonzero elements present in each matrix. We

were able to achieve low latency and high throughput for the proposed sparse algorithm

when compared with the regular algorithm for subtraction of two matrices. The number

of nonzero is the determining factor for the number of operations to be performed by the

algorithm.

Table 7. Latency and Throughput Comparison from Implemented Design

Matrix

Size (n*n)

Number of

nonzero (nnz)

Sparsity

(%)

Sparse Algorithm Regular Algorithm

Latency

(ns)

Throughput

(s)

Latency

(ns)

Throughput

(s)

10×10

1 1% 119.7495 8350765.56

3205.434 311970.284

2 2% 182.2275 5487645.94

3 3% 286.3575 3492138.32

4 4% 338.4225 2954886.27

5 5% 494.6175 2021764.29

6 6% 494.6175 2021764.29

10 10% 1088.1585 918983.769

20×20

4 1% 378.7845 2640023.55

19199.6 52084.4279

8 2% 876.2925 1141171.47

12 3% 1758.2385 568751.054

16 4% 2312.2815 432473.295

20 5% 3284.6835 304443.335

24 6% 4437.9975 225326.851

40 10% 11889.311 84109.1668

99

30×30

9 1% 832.902 1200621.44

53294.37 18763.7089

18 2% 2963.318 337459.564

27 3% 7065.502 141532.76

36 4% 10487.766 95349.1907

45 5% 15530.506 64389.4024

54 6% 19598.694 51023.808

90 10% 47452.75 21073.5943

40×40

16 1% 2121.745 471310.172

38884.05 25717.4857

32 2% 6841.901 146158.21

48 3% 14619.695 68400.8798

64 4% 26222.443 38135.2721

80 5% 43638.191 22915.707

96 6% 60647.029 16488.8539

160 10% 164490.46 6079.37989

50×50

25 1% 5007.3435 199706.691

148899.9 6715.92006

50 2% 17691.746 56523.5352

75 3% 39908.984 25057.015

100 4% 52020.374 19223.2376

125 5% 109712.26 9114.75133

150 6% 162650.76 6148.14225

250 10% 436771.89 2289.52465

60×60

36 1% 9174.7035 108995.348

214411.5 4663.92837

72 2% 32160.299 31094.2388

108 3% 84721.127 11803.4313

144 4% 126004.04 7936.25369

180 5% 211929.79 4718.5438

216 6% 287007.39 3484.2309

360 10% 850915.66 1175.20461

100×100

100 1% 70001.865 14285.3337

589749.8 1695.63423

200 2% 273098.98 3661.67608

300 3% 613428.28 1630.18243

400 4% 1089617.6 917.753182

500 5% 1701666.9 587.659084

600 6% 2449576.2 408.233885

1000 10% 6786227.4 147.357279

100

We were able to reduce the number of resources utilized from the proposed sparse

algorithm than the regular algorithm for sparse matrix subtraction operation. This is

represented in Figure 69, which was calculated for a 10×10 matrix size implemented

from the design proposed. Further optimizations were performed on the design of

hardware to reduce the Look Up Tables utilized for the operation, and we were able to

achieve the performance expected. From the implementation report, the amount of slice

registers used for the proposed algorithm is greatly reduced by 8.19% from the

conventional algorithm. Similarly, the Look Up Tables utilized were also greatly reduced

in number from the implemented design. But the number of I/O used for implementation

is slightly high as parallel computations are running for efficient results.

Figure 69. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Subtraction

Operation

0 150 300 450 600 750 900 1050 1200

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

68

210

0

72

77

830

1,222

16

402

37

FPGA Resource Utilization Summary

Regular Sparse

101

5.3 Element-By-Element Multiplication

The performance comparison for latency achieved between proposed and regular

algorithm for element-by-element multiplication is shown in Figure 70.

The Figure 70 shows how greatly the latency of the proposed algorithm is reduced

with various graphs of different matrix dimensions. The conclusion of the results is like

matrix addition operation except with multiplier instead of adder with the same

algorithm.

Figure 70. Latency Comparison: Proposed vs Regular for Sparse Matrix Element-by-

Element Multiplication Operation

102

Figure 71. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity

Figure 72. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t
In

cr
e

a
se

 in
 T

h
ro

u
g

h
p

u
t

103

Figure 73. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity

Figure 71 shows the throughput calculated for the sparse matrix subtraction

operation using the sparse algorithm and regular algorithm. The values calculated are

plotted as graphs to compare the throughput efficiency of the sparse based algorithm. It is

also evident from the Figure 72 that we were able to achieve high throughput. Figure 73

shows high throughput is produced by the sparse algorithm for 10% sparsity. The graphs

were plotted for different matrix sizes ranging from 10×10 to 100×100 with sparsity

percentage ranging from 1% to 10%.

Further, the primary goal of this thesis is to reduce the storage space for matrix

operations, thereby hardware utilized will be reduced. Table 8 gives a comparison of the

resources used for implementing the design. The number of resources used was

substantially reduced compared with the traditional algorithm for sparse matrix

subtraction operation.

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t

104

Table 8. Resources Utilization for Sparse Matrix Element by Element Multiplication

Device Utilization Summary

Sparse Algorithm Regular Algorithm

Slice Logic

Utilization

Used Available Utilization Used Available Utilization

Number of Slice

Registers

96 126,800 1% 825 126,800 1%

Number of Slice

LUTs

246 63,400 1% 1,219 63,400 1%

Number used as

Memory

0 19,000 0% 16 19,000 1%

Number of

occupied Slices

81 15,850 1% 394 15,850 2%

Number of LUT

Flip Flop pairs used

248

1,224

Number of bonded

IOBs

77 210 36% 37 210 17%

5.4 Sparse Matrix Multiplication vs. Regular Matrix Multiplication

The latency of sparse matrix multiplication operation calculated from test values

comprising of different matrix sizes from 10×10 to 100×100 with different sparsity

pattern and the sparsity percentage ranges from 1% to 10% are plotted in the form of

graph which illustrates, we were able to achieve low latency for the proposed algorithm

for small and large matrices and low and high sparsity range. As the matrix size grows

large, the number of operations increases. To correlate these operations, parallel

processing in implemented in the algorithm along with pipelining with multiple

processing elements. These optimizations have helped to improve the performance of the

proposed algorithm.

1
0
5

Figure 74. Throughput Comparison: Sparse Matrix Multiplication Operation

T
h

ro
u

g
h

p
u

t
(e

le
m

e
n

ts
/s

e
c

)

106

Figure 75. Increase in Throughput for Different Matrix Dimensions with 1% Sparsity

Figure 76. Increase in Throughput for Different Matrix Dimensions with 5% Sparsity

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t
In

cr
e

a
se

 in
 T

h
ro

u
g

h
p

u
t

107

Figure 74 gives the increase in throughput for various dimensions of matrices

when compared with the proposed and regular algorithm. High throughput was able to be

achieved from the proposed design, which is evident from Figure 75, 76 and 77, even if

the percentage of sparsity increases. The x-axis represents the increase in throughput

whereas, the y-axis represents the size of the matrices used as test matrices.

Figure 77. Increase in Throughput for Different Matrix Dimensions with 10% Sparsity

The hardware utilized on the Nexys 4 DDR Artix 7 FPGA board was reduced in

the proposed sparse algorithm for matrix multiplication, and the comparison with

traditional algorithm is shown in Figure 78.

In
cr

e
a

se
 in

 T
h

ro
u

g
h

p
u

t

108

Figure 78. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix Multiplication

Operation

Table 9 represents the best- and worst-case delays for the implemented design on

the desired target FPGA board. The design was able to achieve a min of 3.79ns and a

max of 15.03ns to fetch the input data, and this is dependent on how sparse the matrix is

distributed. But once the data is fetched, and the operation is done the best- and worst-

case delays are approx. 5ns.

Table 9. Hardware Implementation: Sparse Matrix Multiplication

0 150 300 450 600 750 900 1050 1200

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

588

478

0

264

77

825

1,219

16

394

37

FPGA Resource Utilization Summary

Regular Sparse

Input (ns) Output (ns)

Best Case Delay (min) 3.79 5.21

Worst Case Delay (max) 15.03 5.89

109

(a) Proposed Method (b) Regular Method

Figure 79. Power Analysis: Sparse Matrix Multiplication Operation

Figure 79 shows a comparison of Power utilized on the FPGA board after

implementation. Figure 79 (a) shows the approximate power consumption of the

proposed implementation from the Vivado Power Analysis Tool, and figure 79 (b) shows

the power consumption of the regular matrix multiplication operation on the same. By

comparing the signal, logic and I/O power consumed, the proposed method only

consumes a total of 14.877W whereas the other method consumes 42.43W. Some of the

low configuration FPGAs do not support high power consumption which may lead to a

failure.

1
1
0

5.5 Sparse LU Decomposition vs. Regular LU Decomposition

Figure 80. Latency Comparison: Run01 vs Run02

Figure 80 shows a comparison of LU decomposition of the sparse matrix of size ranging from 10×10 to 100×100 with different

sparsity range of 10% to 100%. The LU decomposition proposed design was able to achieve lower latency than the regular LU

Decomposition algorithm. The results are also verified with the MATLAB LU Decomposition outputs for precision loss.

10x10 20x20 30x30 100x100

Run01 1.14 33.81 251.50 3461.55

Run02 0.03 0.19 0.61 20.60

0

500

1000

1500

2000

2500

3000

3500

La
te

n
cy

 (
m

s)

Matrix Dimension

LU Decomposition Latency: Run01 vs Run02

1
1
1

Figure 81. Throughput Comparison: Run01 vs Run02

A comparison of the throughput calculated from sparse matrix algorithm and regular algorithm are plotted in the form of graph

and is represented in Figure 81. As the performance needs to be high, we can infer from the graph high throughput was achieved.

10x10 20x20 30x30 100x100

Run01 0.87813 0.02957 0.00398 0.00029

Run02 36.87 5.36 1.64 0.05

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Th
ro

u
gh

p
u

t
(e

le
m

e
n

ts
/s

e
c)

Matrix Dimension

LU Decomposition Throughput: Run01 vs Run02

112

Figure 82. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix LU

Decomposition

The Figure 82 represents the matrix storage format proposed in this research work

was able to achieve the minimum resource utilization than the traditional regular

algorithm. The resources utilized for LU decomposition was reduced with optimization

throughout the HDL design programmed for the operation. A difference in about 1/3rd

was achieved with the proposed algorithm.

0 2000 4000 6000 8000 10000 12000 14000 16000

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

3420

11211

42

3504

40

10863

16,807

64

5455

40

FPGA Resource Utilization Summary

Regular Sparse

113

Figure 83 depicts the power consumption of the proposed and regular design for

comparison. The Figure 83(a) shows the static and dynamic power consumed by the

proposed design where the dynamic power is 159.083W and Figure 83(b) shows the same

for the regular method and the dynamic power is 468.734W. This clearly indicates the

proposed method can achieve less than the other.

(a) Regular Method (b) Proposed Method

Figure 83. Power Analysis: Sparse Matrix LU Decomposition

Table 10. Hardware Implementation: LU Decomposition

Table 10 shows the best- and worst-case delays for the input and output to be

available before and after LU factorization. These delays are calculated once the design is

implemented and analyzed with the timing constraints too. Each path, with the logic and

nets are analyzed from input and output to determine the maximum and minimum delay

for the design.

Input (ns) Output (ns)

Best Case Delay (min) 7.41 6.54

Worst Case Delay (max) 19.68 6.71

114

5.6 Sparse QR Decomposition vs. Regular QR Decomposition

Figure 84. Latency Comparison: Run01 vs Run02

From the performance metrics, latency is calculated for various matrix sizes from

10×10 to 100×100 with different sparsity percentage of 10% to 50% for both proposed

algorithm and the regular algorithm, and it is evident from Figure 84 the graph indicates

low latency has been achieved. In the case of a 10×10 matrix, the design was producing

at least 8.5 times lower latency and for a 100×100 matrix the latency is improved. These

calculations might not be the same which the same size of matrix and with different

sparsity as the results are unique because of the irregular pattern of sparse matrices.

115

Figure 85. Throughput Comparison: Run01 vs Run02

Figure 85 depicts the throughput comparison of the proposed algorithm and

regular QR algorithm for matrices of sizes 10×10 to 100×100 with varying sparsity

pattern and sparsity percentage ranging between 10% and 50%. High throughput was

achieved, and it is shown in Figure 85.

Table 11. Hardware Implementation: QR Decomposition

Table 11 shows the comparison of minimum and maximum delay produced by the

design for input and output. These results are calculated by analyzing the shortest and

longest paths for the implemented design.

Input (ns) Output (ns)

Best Case Delay (min) 6.46 8.27

Worst Case Delay (max) 16.4 5.73

116

Figure 86. FPGA Resource Utilization: Regular vs Sparse-Sparse Matrix QR

Decomposition

 One of the focus of the thesis is to reduce the resources utilized for sparse matrix

operation when implemented on FPGA board. Figure 86 shows, how much utilization

was being able to be cut with the proposed algorithm from traditional QR decomposition

methods. Although, the implementation of matrix operations on FPGA can be done with

deep pipelining, for such decomposition algorithms like LU and QR which involves a lot

of computations at each stage is a complicated process.

0 3000 6000 9000 12000 15000 18000 21000

Slice Registers

Slice LUTs

Memory

Occupied Slices

IO

3962

11326

38

4121

72

11842

19,784

64

5455

72

FPGA Resource Utilization Summary

Regular Sparse

117

5.7 Execution Time Analysis

Benchmark matrices were downloaded from the University of Florida sparse

matrix collection as test matrices for performance evaluation.

The Figure 87 shows the comparison the execution time of the benchmark

matrices using MATLAB and FPGA implementation.

Figure 87. Comparison of execution time between MATLAB and FPGA

The Table 12 below represents the matrices and their properties.

Table 12. Benchmark matrices, properties, and pattern

0

0.5

1

1.5

2

2.5

3

Ti
m

e
(s

)

Matrices

Execution Time

MATLAB(s) FPGA(s)

Name Dimensions Application Domain Nonzero Symmetric

rgg010 10×10 Counter Example Problem 76 No

Trefethen_20 20×20 Combinatorial Problem 158 Yes

Pores1 30×30 Computational Fluid Dynamics Problem 180 No

GD02_b 80×80 Directed Graph 232 No

ash85 85×85 Least Square Problem 523 Yes

tols90 90×90 Computational Fluid Dynamics Problem 1746 No

rotor1 100×100 Structural Problem 708 No

olm100 100×100 Computational Fluid Dynamics Problem 396 No

nos4 100×100 Structural Problem 594 Yes

118

To quantify the efficiency of the architecture proposed, we simulated them using

large varieties of sparse matrices. According to the simulation results, the execution time

efficiency of the proposed FPGA Algorithmic is better than software implementation (in

this case we compared with MATLAB). The efficient implementation of sparse matrix

operations becomes more critical when applied to larger problems. This thesis work

investigates the merits of implementing various sparse matrix operations on

reconfigurable architecture. Each operation has a computational complexity, and as we

can see the efficiency grows with the number of nonzero. The implementation of sparse

matrix-matrix operations will benefit with further optimization. The efficiency of the

proposed architecture combined with the algorithmic optimization greatly reduces the

BRAM resource utilization achieving high throughput.

Opportunities for future work includes increasing the simulations for a variety of

benchmark matrices from all application domains and exploring further optimization.

119

6. CONCLUSION AND FUTURE WORK

The overall design was successful as the results were demonstrated with data from

the implementation of various sparse matrix operations. When comparing the

performance to the regular algorithms and implementation, a significant achievement was

made in performance and improved upon. The following sections will discuss our future

work by improving areas where improvements are required for interesting applications to

be designed. Finally, conclusion will be provided encapsulating the entire work.

Updating the FPGA might be significant improvement by placing on latest

computers, performance improvement and speedups would be feasible in several areas.

With the much available Block RAM, it is even possible for the operations to be

implemented on large matrices. Adding to this, architectural improvement over the

design or layout on the FPGA would add capability for allowing multiple designs based

on the structure of the sparse matrices. Many of the previous designs would require pre-

processing of sparse matrices on the software side and would require more research into

how to implement efficiently.

The design has simple and scalable implementation that consists of a small

number of input and output parameters. The University of Florida Sparse Matrix

Collection contains over 1800 matrices and the other source is the Matrix Market which

represents real problems that arise in various application domains such as fluid dynamics,

finite element analysis, computational problems, least square problem, counter example

problem, and structural problem. As large sparse matrices arise, it is difficult to find a

proper and suitable algorithm and implementation for performance improvement. The

following can be concluded from the thesis results.

120

1. The algorithm effectiveness depends on the sparsity of the matrices. When the

number of nonzero is more, the number of calculations also increases.

2. Both input matrices are stored in the storage format illustrated, requiring less

amount of memory.

3. For large sparse problems, parallelism is essential to reduce storage

requirements, number of computations and execution of the program.

Today’s applications require higher computational throughput and distributed

memory approach for real-time applications. We have explored the optimizations not

only for a specific application domain, but to make a generic architecture to be

implemented irrespective of the application domain. This depends on several factors such

as the sparsity, dimension of the matrix, irregular patterns of the nonzero elements,

available resources with better clock frequency and bandwidth. The research work is

primarily to design an optimized architecture for sparse matrix operations, allowing it to

be more efficient than regular operations. Research improvement in this area is needed

for increase in logic resources by comparable increase in I/O bandwidth and on-chip

memory capacity, especially when the matrix sparsity is unstructured and randomly

distributed. It would be interesting to seek further optimization to obtain efficient hybrid

algorithms for different arbitrary matrices.

121

APPENDIX SECTION

SPARSE MATRIX ADDITION

`timescale 1ns / 1ps

module sparse(

 input Clk,

 input reset,

 input input_valid,

 input [7:0] A_elem,B_elem,

 input [7:0] A_r,A_c,B_r,B_c,

 output reg output_valid,

 output reg [7:0] row,col,

 output reg [8:0] sum

);

parameter MAT_SIZE = 10;

parameter ELEMENT_SIZE = 8;

reg [7:0] A_sr [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] B_sr [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] A_sc [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] B_sc [0:MAT_SIZE*MAT_SIZE-1];

reg [ELEMENT_SIZE-1:0] A_sv [0:MAT_SIZE*MAT_SIZE-1];

reg [ELEMENT_SIZE-1:0] B_sv [0:MAT_SIZE*MAT_SIZE-1];

reg [15:0] A_count, B_count,A_index,B_index;

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7;

reg [2:0] state = 0;

reg [15:0] i;

reg [7:0] r1,c1,r2,c2,m,n;

task index2rc(input [15:0] index, output reg [7:0] r, output reg [7:0]

c);

 begin

 r = index/MAT_SIZE;

 c = index - r*MAT_SIZE;

 end

endtask

 always@(posedge Clk or posedge reset)

 begin

 if(reset) begin

 state <= s0;

 A_count <= 0;

 B_count <= 0;

 i <= 0;

 end else

 case (state)

 s0: begin

 output_valid <= 0;

 A_count <= 0;

 B_count <= 0;

 if(input_valid == 1)

 state <= s1;

 else

 state <= s0;

 end

 s1: begin

 if(A_elem != 0) begin

 A_sv[A_count] <= A_elem;

122

 A_sr[A_count] <= A_r;

 A_sc[A_count] <= A_c;

 A_count <= A_count + 1;

 end

 if(B_elem != 0) begin

 B_sv[B_count] <= B_elem;

 B_sr[B_count] <= B_r;

 B_sc[B_count] <= B_c;

 B_count <= B_count + 1;

 end

 if(input_valid == 0) begin

 state <= s3;

 end

 A_index <= 0;

 B_index <= 0;

 end

 s3: begin

 if(A_index >= A_count) begin

 state <= s4;

 A_index <= 0;

 B_index <= 0;

 end else begin

 if(B_index == B_count-1) begin

 B_index <= 0;

 A_index <= A_index + 1;

 end else

 B_index <= B_index + 1;

 end

 if(B_sv[B_index] != 0) begin

 if((A_sr[A_index] < B_sr[B_index]) || (

(A_sr[A_index] == B_sr[B_index]) && (A_sc[A_index] < B_sc[B_index])))

begin

 B_index <= 0;

 A_index <= A_index + 1;

 end

 if((A_sr[A_index] == B_sr[B_index]) &&

(A_sc[A_index] == B_sc[B_index])) begin

 row <= A_sr[A_index];

 col <= A_sc[A_index];

 sum <= A_sv[A_index] - B_sv[B_index];

 output_valid <= 1;

 A_sv[A_index] = 0;

 B_sv[B_index] = 0;

 B_index <= 0;

 A_index <= A_index + 1;

 end else begin

 output_valid <= 0;

 end

 end else begin

 output_valid <= 0;

 end

 end

 s4: begin

 if(A_index == A_count) begin

 state <= s5;

 output_valid <= 0;

123

 end else begin

 A_index <= A_index + 1;

 if(A_sv[A_index] != 0) begin

 row <= A_sr[A_index];

 col <= A_sc[A_index];

 sum <= A_sv[A_index];

 output_valid <= 1;

 end else begin

 output_valid <= 0;

 end

 end

 end

 s5: begin

 if(B_index == B_count) begin

 state <= s0;

 output_valid <= 0;

 end else begin

 B_index <= B_index + 1;

 if(B_sv[B_index] != 0) begin

 row <= B_sr[B_index];

 col <= B_sc[B_index];

 sum <= B_sv[B_index];

 output_valid <= 1;

 end else begin

 output_valid <= 0;

 end

 end

 end

 endcase

end

endmodule

SPARSE MATRIX MULTIPLICATION

`timescale 1ns / 1ps

module sparse(

 input Clk,

 input reset,

 input input_valid,

 input [7:0] mat_ip,

 output reg done,

 output reg output_valid,

 output reg [15:0] prod

);

parameter MAT_SIZE = 10;

parameter ELEMENT_SIZE = 8;

reg [2*ELEMENT_SIZE-1:0] C [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] A_sr [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] B_sr [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] A_sc [0:MAT_SIZE*MAT_SIZE-1];

reg [7:0] B_sc [0:MAT_SIZE*MAT_SIZE-1];

reg [ELEMENT_SIZE-1:0] A_sv [0:MAT_SIZE*MAT_SIZE-1];

reg [ELEMENT_SIZE-1:0] B_sv [0:MAT_SIZE*MAT_SIZE-1];

reg [15:0] A_count, B_count,A_index,B_index;

reg [2*ELEMENT_SIZE-1:0] temp;

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7;

reg [2:0] state = 0;

124

reg [15:0] i;

reg [7:0] m,n;

task index2rc(input [15:0] index, output reg [7:0] r, output reg [7:0]

c);

 begin

 r = index/MAT_SIZE;

 c = index - r*MAT_SIZE;

 end

endtask

 always@(posedge Clk or posedge reset)

 begin

 if(reset) begin

 state <= s0;

 done <= 1'b0;

 A_count <= 0;

 B_count <= 0;

 i <= 0;

 end else

 case (state)

 s0: begin

 done <= 1'b0;

 output_valid <= 0;

 B_count <= 0;

 if(input_valid == 1) begin

 state <= s1;

 if(mat_ip != 0) begin

 index2rc(0,A_sr[0],A_sc[0]);

 A_sv[0] = mat_ip;

 A_count <= 1;

 end else

 A_count <= 0;

 i <= 1;

 end else begin

 A_count <= 0;

 state <= s0;

 i <= 1;

 end

 end

 s1: begin

 if(input_valid == 1) begin

 if(i != MAT_SIZE*MAT_SIZE) begin

 if(mat_ip != 0) begin

 index2rc(i,A_sr[A_count],A_sc[A_count]);

 A_sv[A_count] = mat_ip;

 A_count <= A_count + 1;

 end

 i <= i +1;

 end else begin

 state <= s2;

 if(input_valid == 1) begin

 if(mat_ip != 0) begin

 index2rc(0,B_sr[0],B_sc[0]);

 B_sv[0] = mat_ip;

 B_count <= 1;

 i <= 1;

 end else begin

125

 i <= 1;

 B_count <= 0;

 end

 end else begin

 i <= 0;

 B_count <= 0;

 end

 end

 end

 end

 s2: begin

 if(input_valid == 1) begin

 if(i != MAT_SIZE*MAT_SIZE-1) begin

 if(mat_ip != 0) begin

 index2rc(i,B_sr[B_count],B_sc[B_count]);

 B_sv[B_count] = mat_ip;

 B_count <= B_count + 1;

 end

 i <= i +1;

 end else begin

 state <= s3;

 if(input_valid == 1) begin

 if(mat_ip != 0) begin

 index2rc(i,B_sr[B_count],B_sc[B_count]);

 B_sv[B_count] = mat_ip;

 B_count <= B_count + 1;

 i <= 1;

 end

 end

 end

 end

 A_index <= 0;

 B_index <= 0;

 end

 s3: begin

 A_sr[A_count] = 0;

 A_sc[A_count] = 0;

 A_sv[A_count] = 0;

 B_sr[B_count] = 0;

 B_sc[B_count] = 0;

 B_sv[B_count] = 0;

 m <= 0; //row

 n <= 0; //col

 state <= s4;

 temp <= 0;

 A_index <= 0;

 B_index <= 0;

 end

 s4: begin

 if(A_sr[A_index] > m) begin

 state <= s5;

 end else if(A_sr[A_index] == m) begin

 if(B_index < B_count)

 B_index <= B_index + 1;

126

 else

 if(A_index < A_count)

 A_index <= A_index + 1;

 else

 state <= s5;

 if(B_sr[B_index] > A_sc[A_index]) begin

 B_index <= 0;

 if(A_index < A_count)

 A_index <= A_index + 1;

 else

 state <= s5;

 end else if((B_sc[B_index] == n) &&

(B_sr[B_index] == A_sc[A_index])) begin

 temp <= temp +

A_sv[A_index]*B_sv[B_index];

 if(A_index < A_count)

 A_index <=

A_index + 1;

 else

 state <= s5;

 end

 end else

 if(A_index < A_count)

 A_index <= A_index + 1;

 else

 state <= s5;

 end

 s5: begin

 //increment row_col indices to output matrix.

 C[m*MAT_SIZE+n] <= temp;

 A_index <= 0;

 B_index <= 0;

 temp <= 0;

 if(n == MAT_SIZE-1) begin

 n <= 0;

 if(m == MAT_SIZE-1) begin

 m <= 0;

 state <= s6;

 i <= 0;

 end else begin

 m <= m+1;

 state <= s4;

 end

 end else begin

 n <= n+1;

 state <= s4;

 end

 end

 s6: begin

 if(i == MAT_SIZE*MAT_SIZE) begin

 state <= s0;

 done <= 1'b1;

 output_valid <= 0;

 end else begin

 i <= i + 1;

 prod <= C[i];

127

 output_valid <= 1;

 end

 end

 endcase

 end

endmodule

LU DECOMPOSITION

`timescale 1ns / 1ps

module lu_decomp(

 input Clk,

 input reset,

 input input_valid,

 input [3:0] A_elem,

 output reg output_valid,

 output reg [15:0] L_elem,

 output reg [15:0] U_elem

);

parameter n = 10;

reg signed [15:0] L [0:n*n-1];

reg signed [15:0] U [0:n*n-1];

reg signed [15:0] temp_1D [0:n-1];

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7,

s8 = 8, s9 = 9, s10 = 10, s11 = 11, s12 = 12;

reg [3:0] state = 0;

reg [7:0] i,j,p,m;

reg [15:0] L_index,U_index;

reg [15:0] pivot;

function [15:0] rc2index;

input [7:0] row,col;

begin

 rc2index = (row-1)*n+(col-1);

end

endfunction

function [15:0] abs;

input [15:0] num;

begin

if(num[15] == 1'b1)

 abs = -num;

else

 abs = num;

end

endfunction

function [15:0] resize;

input [31:0] num;

reg [31:0] num2;

reg [15:0] num3;

begin

 if(num[31] == 1'b0)

 resize = num[23:8];

 else begin

 num2 = -num;

 num3 = num2[23:8];

 resize = -num3;

128

 end

end

endfunction

 always@(posedge Clk or posedge reset)

 begin

 if(reset) begin

 state <= s0;

 i <= 1;

 j <= 1;

 m <= 1;

 p <= 1;

 pivot <= 0;

 end else

 case (state)

 s0: begin

 output_valid = 0;

 i <= 1;

 j <= 1;

 m <= 1;

 p <= 1;

 pivot <= 0;

 L_index = 0;

 if(input_valid == 1) begin

 state <= s1;

 U[0] <= A_elem*256;

 U_index <= 1;

 end else

 state <= s0;

 end

 s1: begin

 U[U_index] <= A_elem*256;

 if(U_index == n*n) begin

 state <= s2;

 U_index <= 0;

 end else

 U_index <= U_index +1;

 end

 s2: begin

 L_index = rc2index(i,j);

 if(i == j)

 L[L_index] <= 1*256;

 else

 L[L_index] <= 0;

 if(j == n) begin

 j <= 1;

 if(i == n) begin

 state <= s3;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end

 s3: begin

 pivot<= 0;

 m <= 1;

 p <= j;

129

 i <= 1;

 state <= s4;

 end

 s4: begin

 if(pivot < abs(U[rc2index(p,j)]))

begin

 pivot <=

abs(U[rc2index(p,j)]);

 m <= p;

 end

 if(p == n) begin

 p <= 1;

 state <= s6;

 end else

 p <= p+1;

 end

 s6: begin

 if(m != j)

 state <= s7;

 else begin

 if(j == n)

 state <= s11;

 else begin

 i <= j+1;

 state <= s9;

 end

 end

 end

 s7: begin

 if(p == n) begin

 p <= 1;

 if(j >= 2)

 state <= s8;

 else begin

 state <= s9;

 i <= j+1;

 end

 end else

 p <= p +1;

 U[rc2index(m,p)] <=

U[rc2index(j,p)];

 U[rc2index(j,p)] <=

U[rc2index(m,p)];

 end

 s8: begin

 if(p == j-1) begin

 p <= 1;

 if(j < n) begin

 state <= s9;

 i <= j+1;

 end else

 state <= s11;

 end else

 p <= p +1;

 L[rc2index(m,p)] <=

L[rc2index(j,p)];

130

 L[rc2index(j,p)] <=

L[rc2index(m,p)];

 end

 s9: begin

 L[rc2index(i,j)] =

(U[rc2index(i,j)]*256) / U[rc2index(j,j)];

 state <= s10;

 end

 s10: begin

 if(p == n) begin

 p <= 1;

 state <= s12;

 end else

 p <= p+1;

 temp_1D[p-1] = U[rc2index(i,p)] -

resize(L[rc2index(i,j)]*U[rc2index(j,p)]);

 L_index = 0;

 end

 s12: begin

 if(p == n) begin

 p <= 1;

 if(i == n) begin

 if(j == n) begin

 state <= s11;

 j <= 0;

 end else begin

 j <= j+1;

 state <= s3;

 end

 i <= 1;

 end else begin

 state <= s9;

 i <= i+1;

 end

 end else

 p <= p +1;

 U[rc2index(i,p)] <= temp_1D[p-1];

 end

 s11: begin

 L_elem = L[L_index];

 U_elem = U[L_index];

 if(L_index == n*n)

 state <= s0;

 else

 L_index = L_index + 1;

 output_valid = 1;

 end

 endcase

 end

endmodule

QR DECOMPOSITION

`timescale 1ns / 1ps

131

module QR_decomp(

 input Clk,

 input reset,

 input input_valid,

 input [3:0] A_elem,

 output reg output_valid,

 output reg [width-1:0] Q_elem,

 output reg [width-1:0] R_elem

);

parameter n = 10;

parameter width = 32;

parameter dec = 20;

parameter frac = 12;

reg signed [width-1:0] Q [0:n*n-1];

reg signed [width-1:0] R [0:n*n-1];

reg signed [width-1:0] x [1:n];

reg signed [width-1:0] u [1:n];

reg signed [2*width-1:0] square_sum;

reg signed [width-1:0] temp1;

reg signed [width-1:0] temp2 [0:n*n-1];

reg signed [width-1:0] temp3 [0:n*n-1];

reg signed [width-1:0] s;

wire signed [width-1:0] sq_out;

parameter s0 = 0,s1 = 1,s2 = 2,s3 = 3, s4 = 4, s5 = 5,s6 = 6, s7 = 7,

s8 = 8, s9 = 9, s10 = 10,

 s11 = 11, s12 = 12, s13 = 13, s14 = 14, s15 = 15, s16

= 16, s17= 17, s18 = 18;

reg [4:0] state = 0;

reg [7:0] i,j,k,p;

reg [15:0] Q_index,R_index;

reg rst_sq,sq_root_en;

wire sq_out_en;

function [15:0] rc2index;

input [7:0] row,col;

begin

 rc2index = (row-1)*n+(col-1);

end

endfunction

function signed [width-1:0] resize;

input signed [2*width-1:0] num;

reg signed [2*width-1:0] num2;

reg signed [width-1:0] num3;

begin

 resize = num[2*frac+dec-1:frac];

end

endfunction

sq_root #(2*width)

square1(Clk,rst_sq,sq_root_en,square_sum,sq_out,sq_out_en);

 always@(posedge Clk or posedge reset)

 begin

 if(reset) begin

 state <= s0;

 i <= 1;

 j <= 1;

132

 rst_sq <= 1;

 output_valid = 0;

 end else

 case (state)

 s0: begin

 output_valid = 0;

 i <= 1;

 j <= 1;

 p <= 1;

 rst_sq <= 1;

 R_index = 0;

 if(input_valid == 1) begin

 state <= s1;

 R[0] = A_elem*(2**frac);

 R_index = 1;

 end else

 state <= s0;

 end

 s1: begin

 R[R_index] = A_elem*(2**frac);

 if(R_index == n*n) begin

 state <= s2;

 R_index = 0;

 end else

 R_index = R_index +1;

 end

 s2: begin

 Q_index = rc2index(i,j);

 if(i == j)

 Q[Q_index] = 1*(2**frac);

 else

 Q[Q_index] = 0;

 if(j == n) begin

 j <= 1;

 if(i == n) begin

 state <= s3;

 k <= 0;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end

 s3: begin

 i <= 1;

 j <= 1;

 if(k == n-1)

 state <= s18;

 else begin

 k <= k+1;

 state <= s4;

 end

 Q_index = 0;

 end

 s4: begin

 if(i == n) begin

 i <= k;

 state <= s5;

133

 end else

 i <= i+1;

 x[i] = 0;

 end

 s5: begin

 if(i == n) begin

 i <= 1;

 square_sum <= 0;

 state <= s6;

 end else

 i <= i+1;

 x[i] = R[rc2index(i,k)];

 end

 s6: begin

 if(i == n) begin

 i <= 1;

 state <= s7;

 rst_sq <= 0;

 end else

 i <= i+1;

 square_sum <= square_sum +

x[i]*x[i];

 end

 s7: begin

 if(sq_out_en == 1'b1) begin

 state <= s9;

 rst_sq <= 1;

 sq_root_en <= 1'b0;

 square_sum <= 0;

 x[k] = x[k] + sq_out;

 end else

 sq_root_en <= 1'b1;

 end

 s9: begin

 if(i == n) begin

 i <= 1;

 state <= s10;

 rst_sq <= 0;

 end else

 i <= i+1;

 square_sum <= square_sum +

x[i]*x[i];

 end

 s10: begin

 if(sq_out_en == 1'b1) begin

 s = sq_out;

 rst_sq <= 1;

 if(s != 0)

 state <= s12;

 else

 state <= s3;

 sq_root_en <= 1'b0;

 end else

 sq_root_en <= 1'b1;

 end

134

 s12: begin

 if(i == n) begin

 i <= 1;

 state <= s13;

 temp1 = 0;

 end else

 i <= i+1;

 x[i] = (x[i]*(2**frac))/s;

 end

 s13: begin

 temp1 = temp1 +

(R[rc2index(j,i)]*x[j])/(2**frac);

 if(j == n) begin

 j <= 1;

 u[i] = 2*temp1;

 temp1 = 0;

 if(i == n) begin

 state <= s14;

 i <= 1;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end

 s14: begin

 R[rc2index(i,j)] = R[rc2index(i,j)]

- (x[i]*u[j])/(2**frac);

 if(j == n) begin

 j <= 1;

 temp1 = 0;

 if(i == n) begin

 state <= s15;

 i <= 1;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end

 s15: begin

 if(j == n) begin

 j <= 1;

 if(i == n) begin

 state <= s16;

 temp1 = 0;

 p <= 1;

 i <= 1;

 end else

 i <= i+1;

 end else

 j <= j+1;

 temp2[rc2index(i,j)] =

(2*x[j]*x[i])/(2**frac);

 end

 s16: begin

 temp1 = temp1 +

(Q[rc2index(i,p)]*temp2[rc2index(p,j)])/(2**frac);

 temp3[rc2index(i,j)] <= temp1;

135

 if(p == n) begin

 p <= 1;

 temp1 = 0;

 if(j == n) begin

 j <= 1;

 if(i == n) begin

 state <= s17;

 i <= 1;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end else

 p <= p+1;

 end

 s17: begin

 Q[rc2index(i,j)] = Q[rc2index(i,j)]

- temp3[rc2index(i,j)];

 if(j == n) begin

 j <= 1;

 if(i == n) begin

 state <= s3;

 i <= 1;

 end else

 i <= i+1;

 end else

 j <= j+1;

 end

 s18: begin

 Q_elem = Q[Q_index];

 R_elem = R[Q_index];

 if(Q_index == n*n-1)

 state <= s0;

 else

 Q_index = Q_index + 1;

 output_valid = 1;

 end

 endcase

 end

endmodule

squareroot.v

`timescale 1ns / 1ps

module sq_root(

 input Clk,

 input reset,

 input input_valid,

 input [width-1:0] A,

 output reg [width/2-1:0] sq_out,

 output reg output_valid

);

parameter width = 32;

reg [7:0] i;

136

reg [width/2+1:0] left =0,right=0,r=0;

reg [width-1:0] a;

 always@(posedge Clk or posedge reset)

 begin

 if(reset) begin

 i <= 0;

 output_valid <= 0;

 sq_out = 0;

 left = 0;

 right = 0;

 r = 0;

 end else

 if(input_valid == 1'b1) begin

 if(i == width/2-1)

 output_valid <= 1'b1;

 else begin

 output_valid <= 1'b0;

 if(i == 0) begin

 a = A;

 sq_out = 0;

 end

 i <= i+1;

 end

 right = {sq_out,r[width/2+1],1'b1};

 left = {r[width/2-1:0],a[width-1:width-

2]};

 a[width-1:2] = a[width-3:0];

 if(r[width/2+1] == 1'b1)

 r = left+right;

 else

 r = left-right;

 sq_out = {sq_out[width/2-

2:0],~r[width/2+1]};

 end

 end

endmodule

INPUT

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.std_logic_unsigned.all;

entity UART_TX_CTRL is

 Port (SEND : in STD_LOGIC;

 DATA : in STD_LOGIC_VECTOR (7 downto 0);

 CLK : in STD_LOGIC;

 READY : out STD_LOGIC;

 UART_TX : out STD_LOGIC);

end UART_TX_CTRL;

architecture Behavioral of UART_TX_CTRL is

137

type TX_STATE_TYPE is (RDY, LOAD_BIT, SEND_BIT);

constant BIT_TMR_MAX : std_logic_vector(13 downto 0) :=

"00100000100010"; --2082 for 20 mhz clock. 10416 = (round(100MHz /

9600)) - 1

constant BIT_INDEX_MAX : natural := 10;

--Counter that keeps track of the number of clock cycles the current

bit has been held stable over the

--UART TX line. It is used to signal when the ne

signal bitTmr : std_logic_vector(13 downto 0) := (others => '0');

--combinatorial logic that goes high when bitTmr has counted to the

proper value to ensure

--a 9600 baud rate

signal bitDone : std_logic;

--Contains the index of the next bit in txData that needs to be

transferred

signal bitIndex : natural;

--a register that holds the current data being sent over the UART TX

line

signal txBit : std_logic := '1';

--A register that contains the whole data packet to be sent, including

start and stop bits.

signal txData : std_logic_vector(9 downto 0);

signal txState : TX_STATE_TYPE := RDY;

begin

--Next state logic

next_txState_process : process (CLK)

begin

 if (rising_edge(CLK)) then

 case txState is

 when RDY =>

 if (SEND = '1') then

 txState <= LOAD_BIT;

 end if;

 when LOAD_BIT =>

 txState <= SEND_BIT;

 when SEND_BIT =>

 if (bitDone = '1') then

 if (bitIndex = BIT_INDEX_MAX) then

 txState <= RDY;

 else

 txState <= LOAD_BIT;

 end if;

 end if;

 when others=> --should never be reached

 txState <= RDY;

 end case;

 end if;

end process;

138

bit_timing_process : process (CLK)

begin

 if (rising_edge(CLK)) then

 if (txState = RDY) then

 bitTmr <= (others => '0');

 else

 if (bitDone = '1') then

 bitTmr <= (others => '0');

 else

 bitTmr <= bitTmr + 1;

 end if;

 end if;

 end if;

end process;

bitDone <= '1' when (bitTmr = BIT_TMR_MAX) else

 '0';

bit_counting_process : process (CLK)

begin

 if (rising_edge(CLK)) then

 if (txState = RDY) then

 bitIndex <= 0;

 elsif (txState = LOAD_BIT) then

 bitIndex <= bitIndex + 1;

 end if;

 end if;

end process;

tx_data_latch_process : process (CLK)

begin

 if (rising_edge(CLK)) then

 if (SEND = '1') then

 txData <= '1' & DATA & '0';

 end if;

 end if;

end process;

tx_bit_process : process (CLK)

begin

 if (rising_edge(CLK)) then

 if (txState = RDY) then

 txBit <= '1';

 elsif (txState = LOAD_BIT) then

 txBit <= txData(bitIndex);

 end if;

 end if;

end process;

UART_TX <= txBit;

READY <= '1' when (txState = RDY) else '0';

end Behavioral;

OUTPUT

library ieee;

use ieee.std_logic_1164.ALL;

139

use ieee.numeric_std.all;

entity UART_RX_CTRL is

 generic (

 g_CLKS_PER_BIT : integer := 2082 -- Needs to be set correctly

);

 port (

 i_Clk : in std_logic;

 i_RX_Serial : in std_logic;

 o_RX_DV : out std_logic;

 o_RX_Byte : out std_logic_vector(7 downto 0)

);

end UART_RX_CTRL;

architecture rtl of UART_RX_CTRL is

 type t_SM_Main is (s_Idle, s_RX_Start_Bit, s_RX_Data_Bits,

 s_RX_Stop_Bit, s_Cleanup);

 signal r_SM_Main : t_SM_Main := s_Idle;

 signal r_RX_Data_R : std_logic := '0';

 signal r_RX_Data : std_logic := '0';

 signal r_Clk_Count : integer range 0 to g_CLKS_PER_BIT-1 := 0;

 signal r_Bit_Index : integer range 0 to 7 := 0; -- 8 Bits Total

 signal r_RX_Byte : std_logic_vector(7 downto 0) := (others => '0');

 signal r_RX_DV : std_logic := '0';

begin

 -- Purpose: Double-register the incoming data.

 -- This allows it to be used in the UART RX Clock Domain.

 -- (It removes problems caused by metastabiliy)

 p_SAMPLE : process (i_Clk)

 begin

 if rising_edge(i_Clk) then

 r_RX_Data_R <= i_RX_Serial;

 r_RX_Data <= r_RX_Data_R;

 end if;

 end process p_SAMPLE;

 -- Purpose: Control RX state machine

 p_UART_RX : process (i_Clk)

 begin

 if rising_edge(i_Clk) then

 case r_SM_Main is

 when s_Idle =>

 r_RX_DV <= '0';

 r_Clk_Count <= 0;

 r_Bit_Index <= 0;

 if r_RX_Data = '0' then -- Start bit detected

 r_SM_Main <= s_RX_Start_Bit;

140

 else

 r_SM_Main <= s_Idle;

 end if;

 -- Check middle of start bit to make sure it's still low

 when s_RX_Start_Bit =>

 if r_Clk_Count = (g_CLKS_PER_BIT-1)/2 then

 if r_RX_Data = '0' then

 r_Clk_Count <= 0; -- reset counter since we found the

middle

 r_SM_Main <= s_RX_Data_Bits;

 else

 r_SM_Main <= s_Idle;

 end if;

 else

 r_Clk_Count <= r_Clk_Count + 1;

 r_SM_Main <= s_RX_Start_Bit;

 end if;

 -- Wait g_CLKS_PER_BIT-1 clock cycles to sample serial data

 when s_RX_Data_Bits =>

 if r_Clk_Count < g_CLKS_PER_BIT-1 then

 r_Clk_Count <= r_Clk_Count + 1;

 r_SM_Main <= s_RX_Data_Bits;

 else

 r_Clk_Count <= 0;

 r_RX_Byte(r_Bit_Index) <= r_RX_Data;

 -- Check if we have sent out all bits

 if r_Bit_Index < 7 then

 r_Bit_Index <= r_Bit_Index + 1;

 r_SM_Main <= s_RX_Data_Bits;

 else

 r_Bit_Index <= 0;

 r_SM_Main <= s_RX_Stop_Bit;

 end if;

 end if;

 -- Receive Stop bit. Stop bit = 1

 when s_RX_Stop_Bit =>

 -- Wait g_CLKS_PER_BIT-1 clock cycles for Stop bit to finish

 if r_Clk_Count < g_CLKS_PER_BIT-1 then

 r_Clk_Count <= r_Clk_Count + 1;

 r_SM_Main <= s_RX_Stop_Bit;

 else

 r_RX_DV <= '1';

 r_Clk_Count <= 0;

 r_SM_Main <= s_Cleanup;

 end if;

 -- Stay here 1 clock

 when s_Cleanup =>

 r_SM_Main <= s_Idle;

141

 r_RX_DV <= '0';

 when others =>

 r_SM_Main <= s_Idle;

 end case;

 end if;

 end process p_UART_RX;

 o_RX_DV <= r_RX_DV;

 o_RX_Byte <= r_RX_Byte;

end rtl;

1
4
2

Example for Error Analysis

LU Decomposition

A Matrix -10x10 50% Sparsity

0 7 0 5 0 4 0 0 9 0

2 3 9 0 6 0 0 4 3 0

0 0 2 2 0 0 3 0 1 2

3 0 4 0 3 0 0 0 7 4

0 9 0 0 3 9 0 7 1 0

4 0 3 0 0 0 0 3 8 0

2 4 0 0 7 0 2 0 0 6

0 0 5 4 8 3 0 0 4 5

2 3 0 0 0 0 5 3 4 0

0 0 6 0 0 2 0 5 3 1

L MATLAB

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0.5 0.333333 1 0 0 0 0 0 0 0

0 0.777778 0 1 0 0 0 0 0 0

0.5 0.444444 -0.2 0 1 0 0 0 0 0

0 0 0.666667 0.8 0.98 1 0 0 0 0

0.5 0.333333 -0.2 0 0 -0.30232 1 0 0 0

0.75 0 0.233333 0 0.275 0.165015 -0.05141 1 0 0

0 0 0.266667 0.4 -0.06 0.144777 0.772273 0.347572 1 0

0 0 0.8 0 -0.6 0.137723 0.333511 -0.12799
-

0.28177 1

1
4
3

L Vivado

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0.5 0.332031 1 0 0 0 0 0 0 0

0 0.777344 0 1 0 0 0 0 0 0

0.5 0.441406 -0.19922 0 1 0 0 0 0 0

0 0 0.664063 0.796875 0.976563 1 0 0 0 0

0.5 0.332031 -0.19922 0 0 -0.30078 1 0 0 0

0.75 0 0.230469 0 0.273438 0.160156 -0.05078 1 0 0

0 0 0.265625 0.398438 -0.05859 0.144531 0.769531 0.332031 1 0

0 0 0.796875 0 -0.59375 0.140625 0.328125 -0.14844
-

0.30469 1

L Difference

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 -0.0013 0 0 0 0 0 0 0 0

0 -0.00043 0 0 0 0 0 0 0 0

0 -0.00304 0.000781 0 0 0 0 0 0 0

0 0 -0.0026 -0.00313 -0.00344 0 0 0 0 0

0 -0.0013 0.000781 0 0 0.001537 0 0 0 0

0 0 -0.00286 0 -0.00156 -0.00486 0.000625 0 0 0

0 0 -0.00104 -0.00156 0.001406 -0.00025 -0.00274 -0.01554 0 0

0 0 -0.00313 0 0.00625 0.002902 -0.00539 -0.02045 -0.02292 0

1
4
4

U MATLAB

4 0 3 0 0 0 0 3 8 0

0 9 0 0 3 9 0 7 1 0

0 0 7.5 0 5 -3 0 0.166667 -1.33333 0

0 0 0 5 -2.33333 -3 0 -5.44444 8.222222 0

0 0 0 0 6.666667 -4.6 2 -4.57778 -4.71111 6

0 0 0 0 0 11.908 -1.96 8.730667 2.928 -0.88

0 0 0 0 0 0 4.407457 1.839436 0.285186 -0.26604

0 0 0 0 0 0 0 -2.37613 2.138163 2.481537

0 0 0 0 0 0 0 1.11E-16 -3.60331 1.830346

0 0 0 0 0
2.22E-

16 0 3.13E-17 0 5.643263

U Vivado

4 0 3 0 0 0 0 3 8 0

0 9 0 0 3 9 0 7 1 0

0 0.011719 7.5 0 5.003906 -2.98828 0 0.175781 -1.33203 0

0 0.003906 0 5 -2.33203 -2.99609 0 -5.44141 8.222656 0

0 0.027344 -0.00781 0 6.671875 -4.56641 2 -4.55859 -4.70313 6

0 -0.02734 0.023438 0.015625 0.023438 11.82813 -1.95313 8.671875 2.921875 -0.85938

0 0.003906 -0.00391 0.003906 0.003906 -0.02734 4.414063 1.8125 0.28125 -0.25781

0 0 0.023438 0 0.023438 0.042969 -0.01172 -2.33984 2.136719 2.484375

0 0.003906 0.003906 0.007813 -0.01563 0.019531 0.003906 -0.01172 -3.53906 1.84375

0 0.007813 0.019531 0 -0.02734 0.023438 0.015625 0.003906 0.007813 5.6875

1
4
5

U Difference

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0.011719 0 0 0.003906 0.011719 0 0.009115 0.001302 0

0 0.003906 0 0 0.001302 0.003906 0 0.003038 0.000434 0

0 0.027344 -0.00781 0 0.005208 0.033594 0 0.019184 0.007986 0

0 -0.02734 0.023438 0.015625 0.023438 -0.07988 0.006875 -0.05879 -0.00613 0.020625

0 0.003906 -0.00391 0.003906 0.003906 -0.02734 0.006605 -0.02694 -0.00394 0.008227

0 0 0.023438 0 0.023438 0.042969 -0.01172 0.03629 -0.00144 0.002838

0 0.003906 0.003906 0.007813 -0.01563 0.019531 0.003906 -0.01172 0.06425 0.013404

0 0.007813 0.019531 0 -0.02734 0.023437 0.015625 0.003906 0.007813 0.044237

Error Analysis

146

REFERENCES

[1] X. Lin and J. Xu, “Special Issue on Graph Processing : Techniques and

Applications,” Data Sci. Eng., vol. 2, no. 1, p. 1, 2017.

[2] A. Ching, H. Lane, M. Park, H. Lane, M. Park, H. Lane, M. Park, H. Lane, M. Park,

H. Lane, and M. Park, “One Trillion Edges : Graph Processing at Facebook-Scale,”

vol. 8, no. 12, pp. 1804–1815, 2015.

 [3] D. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs, FPGAs, and

massively parallel processor arrays for random number generation,” in Proceeding of

the ACM/SIGDA international symposium on field programmable gate arrays. ACM,

2009, pp. 63–72.

[4] T. Hamada, K. Benkrid, K. Nitadori, and M. Taiji, “A comparative study on ASIC,

FPGAs, GPUs and general-purpose processors in the O(N2) gravitational N-body

simulation,” NASA/ESA Conference on Adaptive Hardware and Systems, vol. 0, pp.

447–452, 2009.

[5] Tan, Guangming & Sun, Ninghui & R. Gao, Guang. (2007). A parallel dynamic

programming algorithm on a multi-core architecture. Annual ACM Symposium on

Parallelism in Algorithms and Architectures. 135-144. 10.1145/1248377.1248399.

[6] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication on CUDA,”

NVIDIA Corporation, NVIDIA Technical Report NVR-2008-004, Dec. 2008.

[7] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. 1990. A set of

level 3 basic linear algebra subprograms. ACM Trans. Math. Softw.16, 1 (March

1990), 1-17. DOI: https://doi.org/10.1145/77626.79170

[8] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,

Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim, et

al. 2016. A cloud-scale acceleration architecture. In MICRO 2016. IEEE, 1–13.

[9] L. Zhuo and V. K. Prasanna, “Sparse Matrix-Vector Multiplication on FPGAs,” pp.

1–13.

[10] S. Jain-Mendon and R. Sass, "Performance evaluation of Sparse Matrix-Matrix

Multiplication," 2013 23rd International Conference on Field programmable Logic

and Applications, Porto, 2013, pp. 1-4.

[11] S. M. Qasim, A. Ahmed, Telba, Y. Abdulhameed, and AlMazroo, "FPGA design

and implementation of matrix multiplier architectures for image and signal processing

applications," International Journal of Computer Science and Network Security

(IJCSNS), vol. 10, no. 2, pp: 169-176, Feb. 2010.

147

[12] M. Vucha, and A. Rajawat, "Design and FPGA Implementation of Systolic Array

Architecture for Matrix Multiplication," International Journal of Computer

Aplications, vol. 26, no. 3, pp: 18-22, Jul. 2011.

[13] Petya Vachranukunkiet. 2007. Power Flow Computation Using Field Programmable

Gate Arrays. Ph.D. Dissertation. Drexel University, Philadelphia, PA, USA.

Advisor(s) Prawat Nagvajara and Jeremy Johnson. AAI3261754.

[14] Siddhartha and N. Kapre, "Breaking Sequential Dependencies in FPGA-Based

Sparse LU Factorization," 2014 IEEE 22nd Annual International Symposium on

Field-Programmable Custom Computing Machines, Boston, MA, 2014, pp. 60-63.

doi: 10.1109/FCCM.2014.26.

[15] T. Nechma and M. Zwolinski, "Parallel Sparse Matrix Solution for Circuit

Simulation on FPGAs," in IEEE Transactions on Computers, vol. 64, no. 4, pp.

1090-1103, April 2015. doi: 10.1109/TC.2014.2308202.

[16] Liu, Zhaohui & Mccanny, J.V.. (2003). Implementation of adaptive beamforming

based on QR decomposition for CDMA. ICASSP, IEEE International Conference on

Acoustics, Speech and Signal Processing - Proceedings. 2. II - 609.

10.1109/ICASSP.2003.1202440.

[17] L. Ma, K. Dickson, J. McAllister and J. McCanny, "Modified givens rotations and

their application to matrix inversion," 2008 IEEE International Conference on

Acoustics, Speech and Signal Processing, Las Vegas, NV, 2008, pp. 1437-1440.

doi: 10.1109/ICASSP.2008.4517890.

[18] Walke, Rajpal & W. M. Smith, Robert & Lightbody, G. (2000). 20 GFLOPS QR

processor on a xilinx Virtex-E FPGA. Proc SPIE. 10.1117/12.406508.

[19] S. T. Alexander and A. L. Ghimikar, "A Method for Recursive Least Squares

Filtering Based Upon an Inverse QR Decomposition," in IEEE Transactions on

Signal Processing, vol. 41, no. 1, pp. 20-, January 1993.

doi: 10.1109/TSP.1993.193124.

[20] K. X. Zhou and S. I. Roumeliotis, “A Sparsity-aware QR Decomposition Algorithm

for Efficient Cooperative Localization,” 2012.

 [21] A. Milinković, S. Milinković, and L. Lazić, “FPGA based dataflow accelerator for

large matrix multiplication,” pp. 288–293.

[22] Joao Pinhao, “FPGA Multi-Processor for Sparse Matrix Applications,” pp. 1–9.

[23] A. Pınar and M. T. Heath, “Improving Performance of Sparse Matrix-Vector

Multiplication.”

148

[24] K. Townsend and J. Zambreno, “Reduce , Reuse , Recycle (R3): a Design

Methodology for Sparse Matrix Vector Multiplication on Reconfigurable

Platforms,” pp. 185–191, 2013.

[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G.

Czajkowski, “Pregel : A System for Large-Scale Graph Processing,” pp. 135–145,

2010.

[26] M. V Ryan and M. V Ryan, “FPGA Hardware Accelerators - Case Study on Design

Methodologies and Trade-Offs FPGA Hardware Accelerators - Case Study on

Design Methodologies and Trade-Offs by,” 2013.

[27] M. T. Shriyashi Jain, Jaikaran Singh, Neeraj Kumar, “FPGA Implementation of

Latency , Computational time Improvements in Matrix Multiplication FPGA

Implementation of Latency , Computational Time Improvements in Matrix

Multiplication,” no. March, 2016.

[28] M. High and P. Computer, “Sparse Matrix Storage Formats 2.1,” no. 2012, pp. 20–

36, 2008.

[29] P. Russek and K. Wiatr, “THE ALGORITHMS FOR FPGA IMPLEMENTATION

OF SPARSE MATRICES MULTIPLICATION Ernest Jamro , Tomasz Pabi ´,” vol.

33, pp. 667–684, 2014.

[30] “7 Series FPGAs Data Sheet : Overview Summary of 7 Series FPGA Features Table

1 : 7 Series Families Comparison Spartan-7 FPGA Feature Summary,” vol. 180, pp.

1–18, 2017.

[31] S. Skalicky, C. Wood, Ł. Marcin, and M. Ryan, “High Level Synthesis : Where Are

We ? A Case Study on Matrix Multiplication.”

[32] P. Grigoras, P. Burovskiy, E. Hung, and W. Luk, “Improving SpMV Performance on

FPGAs through Lossless Nonzero Compression.”

[33] S. Aslan and J. Saniie, “Matrix Operations Design Tool for FPGA and VLSI

Systems,” no. February, pp. 43–50, 2016.

[34] L. Zhuo and V. K. Prasanna, “Sparse Matrix-Vector Multiplication on FPGAs,” pp.

1–13.

[35] A. Azad and A. Buluc, “A work-efficient parallel sparse matrix-sparse vector

multiplication algorithm.”

[36] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Optimization

of sparse matrix – vector multiplication on emerging multicore platforms,” Parallel

Comput., vol. 35, no. 3, pp. 178–194, 2009.

149

[37] T. Mattson, I. Corporation, D. Bader, J. Berry, and S. National, “Standards for Graph

Algorithm Primitives,” pp. 1–2.

[38] P. P. Letters, W. Scientific, P. Company, A. Lumsdaine, B. Hendrickson, J. Berry, S.

National, L. Albuquerque, R. January, and B. Tourancheau, “Challenges in parallel

graph processing,” 2007.

[39] S. Zhou, C. Chelmis, V. K. Prasanna, and A. E. G. Processing, “Graph Processing on

FPGA.”

[40] X. Wang and S. G. Ziavras, “Parallel LU Factorization of Sparse Matrices on FPGA-

Based Configurable Computing Engines *,” vol. 16, no. April, pp. 319–343, 2004.

[41] P. Greisen, M. Runo, P. Guillet, S. Heinzle, A. Smolic, H. Kaeslin, and M. Gross,

“Evaluation and FPGA Implementation of Sparse Linear Solvers for Video

Processing Applications,” no. 1, pp. 1–5.

[42] L. Polok and P. Smrz, “PIVOTING STRATEGY FOR FAST LU

DECOMPOSITION OF SPARSE BLOCK MATRICES,” 2017.

