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ESTIMATES FOR SMOOTH ABSOLUTELY MINIMIZING

LIPSCHITZ EXTENSIONS

LAWRENCE C. EVANS

Abstract. I present some elementary maximum principle arguments, estab-
lishing interior gradient bounds and Harnack inequalities for both u and |Du|,
where u is a smooth solution of the degenerate elliptic PDE ∆∞u = 0. These
calculations in particular extend to higher dimensions G. Aronsson’s assertion
[2] that a nonconstant, smooth solution can have no interior critical point.

1. Introduction

G. Aronsson initiated in [1], [2] investigation of highly degenerate elliptic bound-
ary value problem:

uxiuxjuxixj = 0 in U (1)

u = g on ∂U, (2)

where U is a bounded, connected, open subset of Rn, g : ∂U → R is a given
Lipschitz function, and u : Ū → R is the unknown.

The PDE (1) arises naturally if we consider “optimal” Lipschitz extensions of g
into U .

A function g defined on ∂U has in general many extensions into Ū which pre-
serve its Lipschitz constant. Aronsson proposed trying to find a “best” Lipschitz
extension u, characterized by the property that for each subdomain V ⊂ U , the
Lipschitz constant of u within V equals the Lipschitz constant of u restricted to ∂V .
More precisely, and following Jensen [6], let us say u ∈ W 1,∞(U) is an absolutely
minimizing Lipschitz extension of g into U provided (2) holds and also

‖Du‖L∞(V ) ≤ ‖Dũ‖L∞(V ) (3)

for each open set V ⊂ U and each ũ ∈W 1,∞(V ) such that

u− ũ ∈W 1,∞
0 (V ). (4)
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See Jensen [6] for more discussion, in particular concerning the equality

‖Du‖L∞(V ) = sup
x,y∈V̄
x 6=y

{
|u(x)− u(y)|

dV (x, y)

}
,

dV (x, y) denoting the distance from x to y within V .
As noted by Aronsson, any smooth absolutely minimizing Lipschitz extension

solves the PDE (1) within U , and Jensen provides a somewhat different proof.
The best insight for this equation is had by considering instead of (1), (2) the
corresponding boundary-value problem for the p-Laplacian:

div(|Dup|
p−2Dup) = 0 in U, (5)

up = g on ∂U, (6)

when n < p <∞. This is the Euler–Lagrange equation for the variational problem
of minimizing the energy ‖Dũ‖Lp(U) among all ũ ∈W 1,p(U) with ũ = g on ∂U . In
particular

‖Dup‖Lp(V ) ≤ ‖Dũ‖Lp(V ) (7)

for each open V ⊂ U and each ũ such that u − ũ ∈ W 1,p
0 (V ). Assuming up is

smooth and |Dup| 6= 0, we may rewrite (5) to read

1

(p− 2)
∆up +

up,xiup,xj
|Dup|2

up,xixj = 0. (8)

Suppose also we knew that as p→∞, the function up converge in some sufficiently
strong sense to a limit u. Formally passing to limits in (7), we would expect u to
be an absolutely miminizing Lipschitz extension, and passing to limits in (8) we
expect as well u to solve the PDE (1).

R. Jensen in his important paper [6] has made these insights rigorous. In ad-
dition, he has proved that (a) any absolutely minimizing Lipschitz extension is a
weak solution of (1), and (b) any weak solution is unique. (Here “weak solution”
means a solution in the so-called viscosity sense, cf. Crandall–Ishii–Lions [4]).

In view of the construction of absolutely minimizing Lipschitz extensions as limits
of solution of the p-Laplacian, it seems reasonable to define, at least at points where
|Du| 6= 0,

the nonlinear operator

∆∞u =
uxiuxj
|Du|2

uxixj (9)

as the “∞-Laplacian”.
This paper is a small contribution to the further study of smooth solutions of the

highly degenerate elliptic PDE ∆∞u = 0, and, equivalently, of smooth absolutely
minimizing Lipschitz extensions. I provide some elementary maximum principle
arguments establishing interior sup-norm bounds on both |D(log u)| (if u > 0) and
|D(log |Du|)|. These imply in particular Harnack inequalities for u and |Du|. One
consequence is that if u is not constant, then |Du| can never vanish. This is an
extension to dimensions n ≥ 3 of a corresponding assertion of Aronsson in n = 2;
cf. also Fuglede [5].

I should point out explicitly however that in general the ∆∞u = 0 does not
admit smooth solutions, and consequently the calculations presented here, although
I think interesting, have limited applicability in practice. For instance, Aronsson in
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[3] has constructed a C1 nonconstant weak solution, which does indeed possess an
interior critical point. This example shows that it is not merely a question of finding
some reasonable approximation structure to which to modify the computation from
§3.

My calculations estimating |D(log |Du|)| are somewhat reminiscent of standard
computations for minimal surfaces. This suggests comparison of the PDE ∆∞u = 0
with the “dual” equation ∆1u = 0, where

∆1u =

(
δij −

uxiuxj
|Du|2

)
uxixj = |Du| div

(
Du

|Du|

)
.

Note that the operator ∆1 is degenerate, but only in the one direction normal to
each level set. By contrast, the operator ∆∞ is nondegenerate only in this direction.
Observe also

∆1u = 0 is a “geometric” equation, since it says that the level sets of u have zero
mean curvature (at least in regions where u is smooth and |Du| > 0). This fact
suggests that the PDE ∆∞u = 0 is somehow strongly “nongeometric”, or rather
that all its geometric information concerns not the level sets of u, but rather the
curves normal to level sets. The concluding remark in §3 makes this comment a bit
more precise.

2. Interior gradient bounds, Harnack inequality for u

In this section we present a very simple proof of interior gradient bounds and a
Harnack inequality for u.

Theorem 2.1. Let u be a C2 solution of

∆∞u = 0 in U. (10)

(i) There exists a constant C such that

|Du(x0)| ≤ C‖u‖L∞(U)dist (x0, ∂U)−1 (11)

for each point x0 ∈ U .
(ii) Suppose also u ≥ 0. Then for each connected open set
V ⊂⊂ U , there exists a constant C = C(V ) such that

sup
V
u ≤ C inf

V
u . (12)

(iii) In particular, if U is connected and u > 0 at some point in U , then u > 0
everywhere in U . In this case, we have the estimate

sup
V

(
|Du|

u

)
≤ C ,

C depending only on n and dist (V, ∂U).

Proof. 1. Write v = |Du| and suppose for the moment we know v 6= 0 in U . Then
(10) implies

uxivxi = 0 in U. (13)

Define

w = ζΦ(u, v),
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where ζ ∈ C∞c (U) and Φ ∈ C2(R2) are smooth nonnegative functions, to be selected
below. If w attains its maximum over Ū at a point x1 ∈ U , we have

ζΦuuxi + ζΦvvxi = −ζxiΦ (1 ≤ i ≤ n)

at x1. Multiply by

νi = uxi/|Du| = uxi/v (1 ≤ i ≤ n)

and sum on i, recalling (13) to deduce

ζΦuv = −(Dζ · ν)Φ

at x1. Consequently,

ζ|Φu|v ≤ |Dζ|Φ (14)

at x1.
2. Now take

Φ(u, v) = eluv (l > 0).

Then (14) reads

lζ(x1)v(x1) ≤ |Dζ(x1)|. (15)

Fix x0 ∈ U and take ζ ∈ C∞c (U) such that ζ(x0) = 1, |Dζ| ≤ 2 dist (x0, ∂U)−1.
As w = ζΦ attains its maximum at x1, we see that

|Du(x0)| = v(x0)

≤
2

λ
e2λ‖u‖L∞dist (x0, ∂U)−1.

Set

l = ‖u‖−1
L∞

to prove estimate (11).
3. Next, assume u ≥ 0, fix δ > 0, and take

Φ(u, v) =
v

u+ δ
.

Then (14) implies

ζ
v2

(u+ δ)2
≤ |Dζ|

v

u+ δ

at x1. Consequently

w(x1) =
ζ(x1)v(x1)

u(x1) + δ
≤ |Dζ(x1)| . (16)

Given any ball B ⊂⊂ U , select ζ so that ζ ≡ 1 on B, |Dζ| ≤ C dist (B, ∂U)−1.
As w = ζΦ attains its maximum at x1, we conclude from (16) that

sup
B

(
v

u+ δ

)
≤ C,

in constant C depending only on dist (B, ∂U). But v = |Du|, and so

‖D(log(u+ δ))‖L∞(B) ≤ C. (17)

Now take any pair of points x1, x2 ∈ B. Let P denote the path

{tx2 + (1− t)x1 | 0 ≤ t ≤ 1}.
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Then

log(u(x2) + δ)− log(u(x1) + δ) =

∫ 1

0

d

dt
[log(u(tx2 + (1− t)x1) + δ)] dt

=

∫ 1

0

D(log(u(·) + δ)) · (x2 − x1) dt

≤ C diam(B),

according to (17). Consequently

u(x2) + δ ≤ (u(x1) + δ)eC diam (B).

Letting δ → 0, we deduce
u(x2) ≤ Cu(x1)

for some constant C and each x1, x2 ∈ B. If V ⊂⊂ U is connected, we cover V
with balls and iteratively apply the foregoing result to each B, finally to deduce

u(x2) ≤ Cu(x1)

for each pair of points x1, x2 ∈ V , the constant C depending only on V .
4. Finally, we remove the restriction v = |Du| > 0. For this define

ũ(x̃) = u(x) + εxn+1,

where x̃ = (x1, . . . , xn+1) = (x, xn+1), ε > 0. Then ũ is a C2 solution of

ũxi ũxj ũxixj = 0 in Ũ ,

Ũ = U × R, and |Dũ| ≥ ε > 0. Apply the calculations in steps 1-3 to ũ in place of
u.

Remark. It is somewhat surprising in light of the extremely strong degeneracy
of the nonlinear operator ∆∞ that (smooth) solutions verify the interior gradient
bound (11) and the Harnack inequality (12). Such estimates are usually the hall-
marks of averaging effects resulting from uniform ellipticity. It is therefore perhaps
worth noting that solutions do not in general satisfy the strong maximum principle.
For example, let u(x) = |x| and ũ(x) = xn, and take U to be the open ball of radius
one, centered at the point (0, . . . , 2). Then u, ũ are C∞ solutions in U , u ≥ ũ in
∂U , but u = ũ in U along the line x′ = 0, x′ = (x1, . . . , xn−1). This example shows
also the Harnack inequality (12) is false if we “tilt” coordinates: it is not true that

sup
V

(u− L) ≤ C inf
V

(u− L)

for each linear function L.

3. Harnack inequality for |Du|

Our goal next is to establish a Harnack inequality for v = |Du|, and in particular
to show a smooth, nonconstant u cannot have any critical point.

Theorem 3.1. Let u be a C4 solution of

∆∞u = 0 in U. (18)

(i) Then for each smooth, connected V ⊂⊂ U there exists a constant C = C(V )
such that

sup
V
|Du| ≤ C inf

V
|Du|. (19)



6 LAWRENCE C. EVANS EJDE–1993/03

(ii) In particular, if U is connected and |Du| > 0 at some point in U , then |Du| > 0
everywhere in U . In this case

sup
V

(
|D|Du||

|Du|

)
≤ C,

C depending only on n and dist (V, ∂U).

Proof. 1. Assume first v = |Du| > 0 everywhere in U . As above we write

νi = uxi/|Du| = uxi/v (1 ≤ i ≤ n), (20)

and also write

hij = νiνj , gij = δij − ν
iνj (1 ≤ i, j ≤ n). (21)

Notice

νixj =
1

v
gikuxkxj (1 ≤ i, j ≤ n), (22)

vxi = νjuxjxi (1 ≤ i ≤ n). (23)

Observe further that the PDE (18) says

νivxi = 0. (24)

2. We derive a PDE v satisfies. We first differentiate (24) with respect to xj and
then utilize (22) to find

νivxixj = −
1

v
gikuxkxjvxi .

Consequently

hijvxixj = −
νj

v
gikuxkxjvxi

= −
gik

v
vxkvxj by (23)

= −
|Du|2

v
by (24).

Therefore

− hijvxixj = |A|2v, (25)

where we have written

|A|2 =
|Dv|2

v2
. (26)

3. Next we compute a differential inequality satisfied by z = |A|2. For this, first
write w = log v. Then equation (25) becomes, in light of (24),

− hijwxixj = |A|2 = z. (27)

Now z = |Dw|2, and so

zxixj = 2wxkxiwxkxj + 2wxkwxkxixj (1 ≤ i, j ≤ n).

Hence

− hijzxixj = −2νiνjwxkxiwxkxj + 2wxk(−hijwxkxixj ). (28)

We differentiate (27) with respect to xk and substitute above, thereby deducing

− hijzxixj = −2νiνjwxkxiwxkxj + 2wxkzxk4wxkν
jνixkwxixj . (29)
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Now (24) implies

νjwxj = 0, (30)

and so
νjwxixj = −νjxiwxj (1 ≤ i ≤ n).

We can therefore rewrite the last term in (29) as

4wxkν
jνixkwxixj = −4wxkwxjν

j
xi
νixk . (31)

Next, we return to (22) and compute

νjxiν
i
xk

=
1

v2
gjmuxmxigiluxlxk

=
1

v
gjmν

l
xmuxlxk

=
1

v
gjmν

l
xm
gljuxjxk

= gjmν
l
xm
νlxk ,

the penultimate equality holding since νlνlxm = 0. Inserting this computation into
(31) yields

4wxkν
jνixkwxixj = −4wxkwxjgjmν

l
xm
νlxk

= −4wxkwxmν
l
xm
νlxk by (30)

≤ 0.

Consequently, (29) implies

− hijzxixj ≤ −2νiνjwxkxiwxkxj + 2wxkzxk . (32)

But (27) tells us

z2 = (νiνjwxixj )
2

≤ νiwxkxiν
jwxkxj .

Thus from (32) we discover the differential inequality

− hijzxixj ≤ −2z2 + 2wxkzxk . (33)

4. We intend next to deduce from (33) an interior estimate on z. This is possible
owing to the z2 term in (33). Indeed, let ζ ∈ C∞c (U), 0 ≤ ζ ≤ 1, and write r = ζ4z.
Then

rxi = ζ4zxi + 4ζ3ζxiz (1 ≤ i ≤ n), (34)

rxixj = ζ4zxixj + 4ζ3(ζxjzxi + ζxizxj) + (4ζ3ζxi)xjz. (35)

Assume r attains its positive maximum over Ū at a point x0 ∈ U . Then

Dr = 0, D2r ≤ 0 at x0.

Thus at the point x0,

0 ≤ −hijrxixj = ζ4(−hijzxixj )− 8ζ3hijζxizxj + Cζ2z

≤ −2ζ4z2 + 2ζ4wxizxi − 8ζ3hijζxizxj + Cζ2z ,

according to (33). Now, since Dr = 0 at x0, we deduce from (34) that

ζzxi = −4ζxiz (1 ≤ i ≤ n).
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Substituting above, we compute

2ζ4z2 ≤ −8ζ3ζxiwxiz + 32ζ2hijζxiζxjz + Cζ2z

≤ Cζ3|Dw|z + Cζ2z

= Cζ3z3/2 + Cζ2z.

Finally we employ Young’s inequality in the form

ab ≤ εap + C(ε)bq (a, b > 0,
1

p
+

1

q
= 1),

with p = q = 2 and p = 4
3 , q = 4, to deduce

2ζ4z2 ≤ Cεζ4z2 + C(ε).

Fix ε > 0 small enough to conclude

ζ4z2(x0) ≤ C.

Since r = ζ4z attains its maximum over Ū at x0, we deduce that

max
Ū

ζ4z ≤ C,

the constant C depending only on n and ζ. Given any region V ⊂⊂ U , we may
select ζ ≡ 1 on V , thereby concluding

max
V

z ≤ C(V ). (36)

As z = |Dw|2 = |D(log v)|2, we deduce the Harnack inequality from (36) as in
the proof of Theorem 2.1.

5. If it is not true that v = |Du| > 0 everywhere in U , apply the above reasoning
to ũ(x) = u(x) + εxn+1, and send ε→ 0 to deduce |Du| = 0 everywhere in U .

Remark. The expression z = |A|2 has the following geometric interpretation (cf.
Aronsson [2]). Given a smooth solution u of ∆∞u = 0, with |Du| > 0, set as above
ν = Du/|Du| to denote the field of normals to the level sets of u. Consider then
the ODE

ẋ(s) = ν(x(s)) (s ∈ R), (37)

whose trajectories are curves in U normal to the level sets. Then v = |Du| is
constant along each such curve, according to (13). The curvature is

κ =

∣∣∣∣ ddsν(x(s))
∣∣∣∣ = |Dν · ν|.

But

νixjν
j =

1

v
gikuxkxjν

j =
1

v
gikvxk =

vxi
v

= wxi .

Thus κ = |A|. Theorem 3.1 in particular asserts that the curvatures of each normal
curve are bounded in each region V ⊂⊂ U .
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Addenda

March 9, 1994. I should have referenced as well the interesting paper
T. Bhattacharya, E. DiBenedetto, and J. Manfredi, Limits as p→∞ of ∆pup = f
and related external problems, Rend. Sem. Mat. Univers. Politecn. Torino,
Fascicolo Speciale (1989), Nonlinear PDE’s, pages 15-68.


