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CONSTRUCTING UNIVERSAL PATTERN FORMATION
PROCESSES GOVERNED BY REACTION-DIFFUSION SYSTEMS

SEN-ZHONG HUANG

Abstract. For a given connected compact subset K in Rn we construct a

smooth map F on R1+n in such a way that the corresponding reaction-diffusion
system ut = D∆u + F (u) of n + 1 components u = (u0, u1, . . . , un), accom-

panying with the homogeneous Neumann boundary condition, has an attrac-
tor which is isomorphic to K. This implies the following universality: The

make-up of a pattern with arbitrary complexity (e.g., a fractal pattern) can

be realized by a reaction-diffusion system once the vector supply term F has
been previously properly constructed.

1. Introduction

Reaction-diffusion systems of the form

ut = D∆u+ F (u), x ∈ Ω, t > 0,

model the diffusion through a domain Ω ⊂ Rk of m interacting species or chemicals,
where the i-th component ui of u = (u1, . . . , um) represents the density or concen-
tration of the i-th reactants and D = (d1, . . . , dm) is the matrix of the diffusion
constants di > 0 (cf. [7, 10, 1, 12, 13]). One hard mathematical task for the practi-
cal use of these models is to find appropriate vector supply terms F in such a way
that the pattern formation process governed by the corresponding reaction-diffusion
system coincides with the phenomenon observed in the laboratory experiments or
in nature. Famous examples in this direction include the Kolmogorov-Fischer equa-
tions modeling the two-species interactions, the Field-Noyes equations modeling the
Belousov-Zhabotinsky reactions in chemical kinetics, the Hodgkin-Huxley equations
or the FitzHugh-Nagumo equations modeling the nerve impulse transmission (cf.
[7, 10, 1, 12, 13]), and the Murray equations ([8], [9]) modeling the mammalian coat
markings. However, as commented by J.D. Murray [10, p.238], “for most practical
models of real world situations it is premature, to say the least, to spend too much
time on sophistical generalisations before the simpler versions have been shown to
be inadequate when compared with experiments,” and, “the generalisations seem
endless.”
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Murray’s comment raises implicitly a very crucial theoretical problem, namely,
the following universality problem: Can the reaction-diffusion systems model each
phenomenon of arbitrary complexity?

Because the pattern formation process is the main subject in question, we can
pose the above universality problem in a more restrictive way, i.e., we ask if the
complexity of patterns modeled by the reaction-diffusion systems can be allowed to
be arbitrary.

A pattern is the eventual result of a time evolution of a biological or chemical or
physical process and thus has the following two main features: a) Long-time effect
– it describes the long-time behavior of that process, and b) Great randomness of
the initial conditions – the initial conditions which lead to the same pattern have
a great randomness due to the circumstance fluctuation.

Based on this observation, we see that a pattern is a kind of attractor. Here,
by an attractor for a reaction-diffusion system we mean the mathematical object
which attracts an open set of initial data in such a way that the trajectories starting
from this initial data set eventually end up on the attractor in question (this is
just the long-time effect of an attractor). The openness of the set of initial data
guarantees the required great randomness of initial data which lead to the same
pattern (attractor). Moreover, this openness corresponds to the practical need (e.g.,
for the computer simulation) that there is a positive probability that computed
trajectories will tend to the attractor. Using the concept of attractors, the above
universality problem can be mathematically more exactly reformulated as follows:

Can the complexity of attractors for the reaction-diffusion systems be allowed to
be arbitrary?

In this article we will tackle the “universality problem” mathematically posed in
this way. What we will do is to give a method of constructing the vector supply
term F for the purpose that the corresponding reaction-diffusion system has an
attractor whose complexity is allowed to be arbitrary in some sense.

In the following statement, Ω is any given smooth bounded domain in Rk. More-
over, for every fixed n ∈ N we identify the Euclidean space Rn as a subspace of the
product Banach space C(Ω̄)n by identifying a point (a1, . . . , an) ∈ Rn with the vec-
tor of constant functions (a11, . . . , an1) ∈ C(Ω̄)n. We recall the notion ω-limit set
ω(ψ,E) which is used to describe the asymptotic behavior of a map ψ : [0,∞)→ E
in a Banach space E and is defined as the set of all points p ∈ E for which there
exists a sequence (tk)k∈N (probably depending on the points p) such that tk →∞
and ‖ψ(tk) − p‖ → 0 as k → ∞. For our present situation, the notion ω(u,C)
for a map u : [0,∞) → C(Ω̄)1+n is used to denote the ω−limit set of u which is
calculated in the Banach space C(Ω̄)1+n. Our main result reads as follows.

Theorem 1.1. Let n ∈ N and K ⊂ R
n a given connected compact subset of

arbitrary complexity. Then there exists a vector supply term FK of the form

FK(φ, v) = (A(φ), A′(φ)v + f(φ)) for φ ∈ R, v ∈ Rn, (1.1a)

where A is a smooth function on R and f a smooth map on Rn, such that the
corresponding reaction-diffusion system

ut = D∆u+ FK(u), x ∈ Ω, t > 0,
du

dn
= 0 on ∂Ω

(1.1b)



EJDE–2002/84 CONSTRUCTING UNIVERSAL PATTERN FORMATION PROCESSES 3

of n + 1 components u = (φ, v), accompanying with the zero flux boundary condi-
tion, generates a dynamical system in the state space C(Ω̄)1+n with the following
properties (i)-(ii):
(i) For each initial value u0 ∈ C(Ω̄)1+n the reaction-diffusion system (1.1a-b) has a
global unique solution u, u(0) = u0, such that u is continuous in Ω̄× [0,∞), ut,∆u
as well as all partial derivatives ∂u

∂xi
are continuous in Ω̄× (0,∞).

(ii) Each solution u of the reaction-diffusion system (1.1a-b) starting from an initial
value u0 = (φ0, v0) ∈ C(Ω̄)1+n such that either φ0 > 0 or φ0 < 0 is asymptotically
stable and converges to the set K̃ := {0} ×K in the sense that ω(u,C) = K̃. As
result, the connected compact set K̃ is an attractor for the reaction-diffusion system
(1.1a-b) settled in the state space C(Ω̄)1+n.

Here we choose the zero flux boundary condition (i.e., the homogeneous Neu-
mann boundary condition) and the positive initial condition, since they are proba-
bly the most interested boundary and initial conditions in the biological or chemical
situation. Namely, the zero flux boundary condition reflects the self-organization
mechanism of pattern while the positive initial condition restricts the pattern for-
mation process to such a beginning circumstance that each of the reactants has a
positive distribution all over the reaction domain. Thus, our Theorem 1.1 should
be considered as a partial but affirmative answer to the universality problem stated
above and implies that any pattern (here K̃) which is isomorphic to a connected
compact subset (here K) of the Euclidean space Rn can be seen as the final result
of the pattern formation process governed by some appropriate reaction-diffusion
system of n + 1 components. Moreover, it implies the following universality: The
make-up of a pattern K̃ ∼= K ⊂ Rn with arbitrary complexity (e.g., a fractal pat-
tern [6]) can be realized by a reaction-diffusion system of the form (1.1a-b) once
the vector supply term FK has been previously properly constructed.

Although the above construction is the product of theoretic thoughts, we are
also interested in whether it is possible to derive such reaction-diffusion systems
from any sequence of reasonable biochemical or physical situations. To have a
close look of the mechanism of the system (1.1a-b), we write D = diag(d0, D̃) and
then decompose the reaction-diffusion system (1.1a-b) into the reaction-diffusion
equation for the first component φ

φt = d0∆φ+A(φ), x ∈ Ω, t > 0,
dφ

dn
= 0 on ∂Ω

(1.2a)

and the linear inhomogeneous reaction-diffusion system for the rest n components
v

vt = D̃∆v +A′(φ)v + f(φ), x ∈ Ω, t > 0,
dv

dn
= 0 on ∂Ω.

(1.2b)

In this way, it becomes clear that the first component φ of the vector u = (φ, v)
works as the activator and the rest components v as the inhibitor of the reaction-
diffusion system (1.1a-b). It is worthy noting that the activator system (1.2a) is
self-contained and the inhibitor system (1.2b) is an inhomogeneous nonautonomous
linear system with an external force f(φ) and an internal friction force A′(φ)v
supplied by the activator. This mechanism simplicity throws light on the possibility
of deriving reaction-diffusion systems of the form (1.1a-b) from real world situations.
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To close this introduction, we give a remark echoing with the referee’s comments
on the previous version of the present article. Starting from the pioneering work of
A.M. Turing [15], there is a continuous interest in the mathematical modelings by
the so-called “parameter space method”, i.e., one looks for a vector supply term F of
the form F (u) = G(u, α) which depends on a set of parameters α, and the choice of
the form of such vector supply terms is in general based on the following philosophy:
the form should be as simple as possible. Therefore, the usual candidate for such
forms is the class of elementary functions like polynomials or rational functions. It
is just very surprising that with such simple choice one has had a very deep look at
the secrets of the developmental ground plan of the nature. A lot of such examples
are prepared in the book [10] of J.D. Murray and in the article [1] of M.C. Cross and
P.C. Hohenberg. One of them is the very fascinating ones posed by J.D. Murray [9]
for modeling the mammalian coat markings. Murray’s model is a reaction-diffusion
system of the form

vt = ∆v + γ[a− v − g(v, w)], wt = β∆w + γ[α(b− w)− g(v, w)],

with g(v, w) = ρvw/(1 + v + κv2) and seven parameters a, b, α, β, γ, ρ and κ. Mur-
ray’s work is based on a previous model experimentally posed by D. Thomas [14].
However, the fascinating aspects of Thomas’ model, as shown by Murray, is cer-
tainly unexpected. In connecting to our work presented in this article, one would
like to know if the elementary functions choice of the vector supply terms F in the
reaction-diffusion systems is adequate for the common purposes.

The author is very indebted to the anonymous referee for her/his valuable dis-
cussions.

2. Constructive proof of Theorem 1.1

This is divided into two main steps: the construction of the smooth function A
as well as the smooth map f in the nonlinearity FK(φ, v) = (A(φ), A′(φ)v + f(φ))
and the analysis of the resulted reaction-diffusion system (1.1b).

2A. Tools First we recall two construction results from [4]. Starting with a
Banach space E, we define the ω−limit set ω(ψ,E) (resp., α−limit set α(ψ,E))
of a continuous path ψ : (a, b) → E to be the set consisting of each point p ∈ E
for which there exists a sequence (sk)k≥1 ⊂ (a, b) such that ‖ψ(sk) − p‖ → 0 as
k → ∞ and sk → b as k → ∞ (resp., sk → a as k → ∞). Equivalently, we have
the following more compact representations

ω(ψ,E) =
∞⋂
k=2

ψ([b− (b− a)/k, b)), α(ψ,E) =
∞⋂
k=2

ψ(a, a+ (b− a)/k]

Here the closure is taken in E. These two limit sets describe the behavior of the
path ψ near the endpoints a and b. In general, we do not assume that ψ(s) has a
limit as s approaching to endpoints; namely, a path ψ which serves to satisfy our
following requirements should be very irregular near endpoints.

It is not difficult to establish the following two useful properties of limit sets:
Each ω−limit (resp., α−limit) set is closed and connected once it is not empty.
Recall that a closed subset in a Banach space is said connected if this set can not
be decomposed into the union of two disjoint closed subsets. Thus, connectedness
is sometimes refered to as “indecomposibility”.
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Lemma 2.1. Let (E, ‖ · ‖) be a given Banach space.
(i) For each connected compact subset K in E there exists a path ψ : (0, 1]→ E of
class C∞ such that α(ψ,E) = K.
(ii) For every C∞ path ϕ : (0, 1] → E there exists a C∞ function A : R → R

satisfying the conditions (c1)-(c2) below:
(c1) A is an odd function which is strictly negative and concave in the interval
(0,∞), i.e., there holds −A(−s) = A(s) < 0 and A′′(s) < 0 for all s > 0. Moreover,
A(m)(0) = 0 for all m ∈ {0} ∪ N.
(c2) The function A smooths the given path ϕ in such a way that

lim
s→0
|A(s)(m)| · ‖ϕ(s)(l)‖ = 0 ∀m, l ∈ {0} ∪ N.

The topological assertion in (i) has just been proved in [4, Lemma 1] (a sketch
proof can be also found in the Appendix of [5]). It is worthy noting that this
assertion implies the following fact: A compact subset K of a Banach space E
is connected if and only if it is the α−limit set of some smooth path in E. The
assertion in Lemma 2.1-(ii) is very similar to the ones in [4, Lemma 2]. However,
the concavity and the convexity of the function A here is new. For the sake of
completeness, below we give a sketch of its proof.
Sketch proof of Lemma 2.1-(ii): We begin with k ∈ {0} ∪ N and put

ρk(s) := max
s≤r≤1

‖ϕ(k)(r)‖ (s ∈ (0, 1]).

Each ρk is nonincreasing and continuous. Note that for each s ∈ (0, 1] there are at
most finitely many k ∈ {0} ∪ N such that k < 1/s. Therefore, the following

ρ̃(s) :=
∑

{k<1/s}

ρk(s) (0 < s ≤ 1)

well defines a function on (0, 1], which is again nonincreasing and continuous. Set-
ting ρ(s) := s/(1 + ρ̃(s)) (0 < s ≤ 1), ρ(0) := 0 and ρ(s) := ρ(1) for all s > 1, we
obtain a nondecreasing continuous function ρ. Define

g(s) :=
∫ s

0

β(s− r)ρ(r) dr (s ≥ 0)

where the function β : [0,∞) → R is given by β(r) := r exp(−1/r) for r > 0 and
β(0) := 0. An elementary computation yields that β(m)(0) = 0 for all m ∈ N,
β′′(r) = r−4β(r) for all r > 0. This implies that the function g is an increasing and
convex function of class C∞ and

g(m)(s) =
∫ s

0

β(m)(s− r)ρ(r) dr (2.1)

for all m ≥ 1 and all s ≥ 0. Finally, the odd function A is defined by A(s) := −g(s)
for s ≤ 0 and A(s) := −g(−s) for s < 0. The desired properties in (c1) follow
directly from the related ones of the function g. To see the smoothing property in
(c2), we fix l,m ∈ N ∪ {0} and consider s ∈ (0, 1) such that s < 1/(1 + l). On one
hand, we have by definition that ρ̃(s) ≥ ρl(s) ≥ ‖ϕ(l)(s)‖ and thus

ρ(s) = s/(1 + ρ̃(s)) ≤ s/(1 + ‖ϕ(l)(s)‖). (2.2a)

On the other hand, we use (2.1) combining with the monotonicity of the function
ρ to find that

|A(m)(s)| = |g(m)(s)| ≤ cm · ρ(s) (2.2b)
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with cm :=
∫ 1

0
|β(m)(r)| dr. Taking into account the estimates in (2.2a-b), we see

that
|A(m)(s)| · ‖ϕ(l)(s)‖ ≤ cm · s

for all s ∈ (0, 1) being such that s < 1/(1 + l); yielding the convergence |A(m)(s)| ·
‖ϕ(l)(s)‖ → 0 as s→ 0.
2B. Construction of the vector supply term From now on K ⊂ R

n is a
given connected compact subset of arbitrary complexity.

As the first step of the construction we will apply Lemma 2.1 under the choice
E = R

n ⊂ C(Ω̄)n to find the function A and the map f . Here, as before, we have
identified Rn with the subspace of constant functions in the product Banach space
C(Ω̄)n. Starting with the set K we first apply Lemma 2.1-(i) to obtain a C∞ path
ψ̃ : (0, 1]→ R

n such that α(ψ̃,Rn) = K. We then apply Lemma 2.1-(ii) under the
choice of the path ϕ = ψ̃ to obtain an odd C∞ function A : R → R satisfying the
conditions (c1)-(c2) there.

To construct the smooth map f , we need extend the path ψ̃ to a smooth path ψ
defined on (0,∞). To this end, we choose a C∞ function γ on R such that γ(s) = 1
for all s < 1/4 and γ(s) = 0 for all s > 1/2. The method of constructing such
functions is well-known, see e.g. [3, p.42]. We set ψ(s) := γ(s)ψ̃(s) for s ∈ (0, 1]
and ψ(s) = 0 for all s > 1. Then ψ : (0,∞)→ R

n is a smooth path such that

α(ψ,Rn) = α(ψ̃,Rn) = K. (2.3a)

We define the map f : R→ R
n by

f(φ) :=


A(φ)ψ′(φ)−A′(φ)ψ(φ) for φ > 0,
0 for φ = 0,
A(−φ)ψ′(−φ)−A′(−φ)ψ(−φ) for φ < 0.

(2.3b)

Clearly, f vanishes outside the compact interval [−1/4, 1/4]. Moreover, f is an even
map, i.e., f(−φ) = f(φ) for all φ ∈ R. With A, f constructed as above, we take the
smooth map

FK(u) := (A(φ), A′(φ)v + f(φ)) for u = (φ, v) ∈ R× Rn (2.4a)

as the vector supply term, and thus have a reaction-diffusion system
ut = D∆u+ FK(u) x ∈ Ω, t > 0

du

dn
= 0 on ∂Ω

(2.4b)

accompanying with the zero flux boundary condition. As observed in the Introduc-
tion, with D = diag(d0, D̃) the reaction-diffusion system (2.4a-b) decomposes into
the reaction-diffusion equation for the activator consisting of the first component
φ :

φt = d0∆φ+A(φ), x ∈ Ω, t > 0,
dφ

dn
= 0 on ∂Ω

(2.5a)

and the linear inhomogeneous reaction-diffusion system for the inhibitor consisting
of the rest n components v :

vt = D̃∆v +A′(φ)v + f(φ), x ∈ Ω, t > 0,
dv

dn
= 0 on ∂Ω.

(2.5b)



EJDE–2002/84 CONSTRUCTING UNIVERSAL PATTERN FORMATION PROCESSES 7

Since the function A is odd so that A′ is even and the map f is even, it follows from
the equivalent form (2.5) that u = (φ, v) solves (2.4) if and only if ũ := (−φ, v)
solves (2.4).
2C. Analysis of the activator system (2.5a) We study first its kinetic re-
duction ξ′ = A(ξ). Since the smooth function A is negative in the interval (0,∞)
(cf. condition (c1)), the following initial value problem

ξ′(t) = A(ξ(t)), t ≥ 0; ξ(0) = s ∈ R. (2.6a)

admits a unique smooth solution ξ(t, s) which exists for all t ≥ 0. As a consequence
of the oddness of A and the uniqueness of the solutions, there holds ξ(t,−s) =
−ξ(t, s) for all (t, s) and ξ(t, s) > 0 if s > 0. Moreover, the negativity A(s) < 0
(s > 0) implies that

lim
t→∞

ξ(t, s) = 0 = lim
t→∞

ξ(t,−s) for all s ≥ 0. (2.6b)

Let σ, τ , σ > τ > 0, be fixed. Set ξ1(t) := ξ(t, σ), ξ2(t) := ξ(t, τ) and η(t) :=
ξ1(t) − ξ2(t) for t ≥ 0. Since σ > τ , an elementary comparison result yields that
ξ1(t) > ξ2(t) and thus η(t) > 0 for all t ≥ 0. Using the concavity of the function
A(s) for s > 0, we have

A(ξ1(t))−A(ξ2(t)) ≤ A′(ξ2(t))(ξ1(t)− ξ2(t)).

Therefore,
η′(t) = A(ξ1(t))−A(ξ2(t)) ≤ A′(ξ2(t))η(t).

Integrating this inequality yields

η(t) ≤ η(0) · exp(
∫ t

0

A′(ξ2(s)) ds).

To compute the integral, we differentiate the equation ξ′2(t) = A(ξ2(t)) and obtain

A′(ξ2(t)) = ξ′′2 (t)/ξ′2(t) =
d

dt
ln(−ξ′2(t)).

It follows that∫ t

0

A′(ξ2(s)) ds = ln(ξ′2(t)/ξ′2(0)) = ln(A(ξ2(t))/A(τ))

and thus η(t) ≤ η(0)A(ξ2(t))/A(τ). In terms of the solutions ξ(·, σ) and ξ(·, τ), this
implies that

0 < ξ(t, σ)− ξ(t, τ) ≤ σ · A(ξ(t, τ))
A(τ)

(t ≥ 0); σ > τ > 0. (2.6c)

Next we turn to the study of solutions for the activator system (2.5a). Consider an
initial value φ0 ∈ C(Ω̄) and set

τ0 := min
x∈Ω̄

φ0(x), σ0 := max
x∈Ω̄

φ0(x). (2.7a)

By the classical existence and uniqueness theorem (cf. e.g. [12]) there exists a
T > 0 such that the equation (2.5a) has a unique solution φ in the time interval
[0, T ), φ(0) = φ0, with the property that φ is continuous in Ω̄×[0, T ), φt,∆φ as well
as all partial derivatives ∂φ

∂xi
are continuous in Ω̄×(0, T ). Moreover, if T <∞, then

there should hold limt→T ‖φ(t)‖∞ =∞. We claim that T =∞, i.e., the solution φ
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to (2.5a) with initial value φ(0) = φ0 ∈ C(Ω̄) exists for all times t ≥ 0. To see this,
we note that both ξ(·, σ0) and ξ(·, τ0) are also solutions of (2.5a) such that

ξ(0, τ0) = τ0 ≤ φ0(x) ≤ σ0 = ξ(0, σ0) ∀x ∈ Ω̄.

Hence, the classical comparison theorem (see e.g. [12, Theorem 10.1, p.94]) yields
that

ξ(t, τ0) ≤ φ(x, t) ≤ ξ(t, σ0) ∀x ∈ Ω̄, t ∈ [0, T ). (2.7b)

This implies in particular the uniform boundedness of the solution φ(t) in the time
interval [0, T ) and thus we have T =∞. Moreover, since both solutions ξ(t, τ0) and
ξ(t, σ0) converge to 0 as t → ∞, we have that ‖φ(t)‖∞ → 0 as t → ∞. To find
one more result, we assume φ0 > 0. It follows that τ0 > 0. Hence, we are in the
position to apply (2.6c) under the choice of the positive constants τ, σ such that
τ ≤ τ0 and σ ≥ σ0 = ‖φ0‖∞, and obtain that

‖φ(t)− ξ(t, τ)‖∞ ≤ σ ·
A(ξ(t, τ))
A(τ)

(t ≥ 0);

∀τ, σ : 0 < τ ≤ τ0 ≤ σ0 ≤ σ.
(2.7c)

2D. Final step of the proof of Theorem 1.1 We prove first the assertion in
(i). For this purpose, we consider an initial value u0 = (φ0, v0) ∈ C(Ω̄) × C(Ω̄)n.
By the result in 2C, the equation (2.5a) has a unique global solution φ, φ(0) = φ0,
with the property that φ is continuous in Ω̄ × [0,∞), φt,∆φ as well as all partial
derivatives ∂φ

∂xi
are continuous in Ω̄ × (0,∞). Moreover, there holds the estimate

in (2.7b) for the general case and the estimate in (2.7c) for the particular case
φ0 > 0. Substituting this global solution φ into (2.5b), we have a linear system.
It follows from the basic linear theory (see e.g., [11], [2]) that the corresponding
linear system (2.5b) has a unique global solution v, v(0) = v0, with the property
that v is continuous in Ω̄ × [0,∞), vt,∆v as well as all partial derivatives ∂v

∂xi

are continuous in Ω̄ × (0,∞). Thus, we have established the global existence and
uniqueness assertion in (i).

To prove the convergence assertion in (ii), we note that if u(t) = (φ(t), v(t)) ∈
C(Ω̄)1+n is a global solution of (2.5a-b) then ũ(t) := (−φ(t), v(t)) is also a solution
of (2.5a-b). Hence, it suffices to prove the assertion in (ii) for the case φ0 > 0. To
this end, we fix two positive constants σ, τ , τ < σ. We consider a global solution
u = (φ, v) with initial value u0 = (φ0, v0) such that φ0 ∈ C(Ω̄) satisfies

τ ≤ φ0(x) ≤ σ ∀x ∈ Ω̄. (2.8a)

Then, we have, using (2.7b-c), that

‖φ(t)− ζ(t)‖∞ ≤ c1 · (−A(ζ(t)))

ζ(t) ≤ φ(x, t) (∀x ∈ Ω̄)
(t ≥ 0) (2.8b)

with the positive constant c1 := σ/(−A(τ)) > 0 and positive function ζ(t) := ξ(t, τ)
(t ≥ 0). Since A is strictly concave in the interval (0,∞), the function A′ is
decreasing there and thus

A′(φ(x, t)) ≤ A′(ζ(t)) ∀x ∈ Ω̄, t ≥ 0. (2.8c)
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We want to show that there exist positive constants c2, c3, depending only on the
given constants σ, τ , such that

‖w(t)‖∞ ≤ c2 · ‖w(0)‖∞ · (−A(ζ(t))) + c3 · ζ(t/2)

with w(t) := v(t)− ψ(ξ(t))
(∀t ≥ 0). (2.9)

Once (2.9) was proved, we derive the asymptotic stability of the solution u and the
equality ω(u,C) = K̃ as follows. On the one hand, we use (2.9) combining with the
fact that ζ(t) → 0 and A(ζ(t)) → 0 as t → ∞ (see (2.6b)) as well as the equality
α(ψ,Rn) = K (see (2.3a)) to find that

ω(v, C) = α(ψ,C) = α(ψ,Rn) = K,

giving the desired equality ω(u,C) = {0} × K = K̃. On the other hand, we let
û = (v̂, φ̂) be another global solution of (2.5a-b) with an initial value û0 = (v̂0, φ̂0)
such that

τ ≤ φ̂0(x) ≤ σ ∀x ∈ Ω̄.

Then we can apply (2.9) to the new solution û and obtain that

‖ŵ(t)‖∞ ≤ c2 · ‖ŵ(0)‖∞ · (−A(ζ(t))) + c3 · ζ(t/2) ∀t ≥ 0

with ŵ(t) := v̂(t)− ψ(ξ(t)) (t ≥ 0). It yields that

‖v(t)− v̂(t)‖∞ ≤ c2(‖w(0)‖∞ + ‖ŵ(0)‖∞) · (−A(ζ(t))) + 2c3 · ζ(t/2)

for all t ≥ 0. Obviously, this implies the asymptotic stability of the solution u. Now
we prove (2.9). To this end, we note that

wt = vt − ζ ′ψ′(ζ) = vt −A(ζ)ψ′(ζ)

= D̃∆(w + ψ(ζ)) +A′(φ)(w + ψ(ζ)) + f(φ)−A(ζ)ψ′(ζ)

= D̃∆w +A′(φ)w + [A′(φ)−A′(ζ)]ψ(ζ) + [f(φ)− f(ζ)]
+[f(ζ) +A′(ζ)ψ(ζ)−A(ζ)ψ′(ζ)].

By the definition of the map f (see (2.3b)), the term in the last bracket vanishes.
Therefore,

wt = D̃∆w +A′(φ)w + g(t) (2.10a)

with

g(t) := [A′(φ(t))−A′(ζ(t))]ψ(ζ(t)) + [f(φ(t))− f(ζ(t))] (t ≥ 0). (2.10b)

To estimate the term g(t), we note that the spatially uniform solution ζ is bounded
in time, and (2.8a) implies that the solution φ is uniformly bounded in space-time.
Moreover, the smooth map f has a compact support, and the smooth path ψ is
bounded by the compactness of the given set K. Hence, there exists a positive
constant c4 (essentially depending only on the given constants σ, τ as well as on the
map ψ) such that

‖g(t)‖∞ ≤ c4 · ‖φ(t)− ζ(t)‖∞
for all t ≥ 0. This implies by (2.8b) that

‖g(t)‖∞ ≤ c5 · (−A(ζ(t))) (t ≥ 0) (2.10c)
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with c5 := c4σ/(−A(τ)) > 0. To treat the solution w of the inhomogeneous linear
evolution equation (2.10a), we recall from the basic linear theory (see e.g., [11], [2])
the following representation

w(t) = U(t, 0)w(0) +
∫ t

0

U(t, s)g(s) ds (t ≥ 0), (2.11)

where {U(t, s) : t ≥ s ≥ 0} is the evolution family associated with the nonau-
tonomous linear system

Wt = D̃∆W +A′(φ)W, x ∈ Ω, t > 0,
dW

dn
= 0 on ∂Ω

(2.12a)

settled in the state space C(Ω̄)n. Since solutions to (2.12a) with positive initial
data keep positive, each operator U(t, s) is positive, i.e.,

U(t, s)h ≥ 0 whenever h ≥ 0. (2.12b)

We compare the linear system (2.12a) with the following nonautonomous linear
system

W̃t = D̃∆W̃ +A′(ζ(t))W̃ , x ∈ Ω, t > 0,

dW̃

dn
= 0 on ∂Ω

(2.13a)

settled in the same state space C(Ω̄)n. It is easily verified, using the equality
ζ ′ = A(ζ), that the evolution family {V (t, s) : t ≥ s ≥ 0} associated with (2.13a) is
given by

V (t, s) =
A(ζ(t))
A(ζ(s))

T (t− s) (t ≥ s ≥ 0), (2.13b)

where {T (t) : t ≥ 0} is the semigroup generated by the operator D̃∆ for which each
operator T (t) is a positive contraction on the state space C(Ω̄)n. We claim that

U(t, s) ≤ V (t, s) ∀t ≥ s ≥ 0. (2.14a)

To see this, we fix some s ≥ 0 and consider a solution W of (2.12a) in the interval
[s,∞) with a positive initial value W (s) = h ≥ 0. It follows from the definition of
evolution families that this solution W is given by W (t) = U(t, s)h for all t ≥ s.
We have W (t) ≥ 0 for all t ≥ s. Hence, by (2.8c) we find that

Wt = D̃∆W +A′(φ)W ≤ D̃∆W +A′(ζ)W.

Applying the classical comparison theorem (see e.g., [12, Theorem 10.1, p.94]) to
each component of W , we conclude that W (t) ≤ W̃ (t) (∀t ≥ s), where W̃ is the
positive solution of (2.13a) with the same initial value W̃ (s) = h and thus is given
by W̃ (t) = V (t, s)h for all t ≥ s, again by the definition of evolution families. This
establishes (2.14a). As consequence of (2.14a), we find particularly that

‖U(t, s)‖∞ ≤ ‖V (t, s)‖∞ ≤
A(ζ(t))
A(ζ(s))

(t ≥ s ≥ 0). (2.14b)
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We are now in the position to finish the proof of (2.9). Using the representation
(2.11) of w, we have

‖w(t)‖∞ ≤ ‖U(t, 0)‖∞ · ‖w(0)‖∞ +
∫ t

0

‖U(t, s)‖∞ · ‖g(s)‖∞ ds

≤ A(ζ(t))
A(τ)

· ‖w(0)‖∞ +
∫ t

0

A(ζ(t))
A(ζ(s))

· ‖g(s)‖∞ ds (by (2.14b))

≤ A(ζ(t))
A(τ)

· ‖w(0)‖∞ +
∫ t

0

A(ζ(t))
A(ζ(s))

· c5 · (−A(ζ(s)) ds (by (2.10c)).

Consequently,

‖w(t)‖∞ ≤
A(ζ(t))
A(τ)

· ‖w(0)‖∞ + c5 · (−tA(ζ(t)) ∀t ≥ 0. (2.15a)

To estimate the term (−tA(ζ(t)), we note that the relation ζ ′ = A(ζ) < 0 combining
with the monotonicity of the function A implies that the function t 7→ A(ζ(t)) is
increasing. Hence,

t

2
A(ζ(t)) ≥

∫ t

t/2

A(ζ(s)) ds =
∫ t

t/2

ζ ′(s) ds = ζ(t)− ζ(t/2) ≥ −ζ(t/2)

and thus
(−tA(ζ(t)) ≤ 2ζ(t/2) ∀t ≥ 0. (2.15b)

Taking (2.15a-b) together, we find finally that

‖w(t)‖∞ ≤
A(ζ(t))
A(τ)

· ‖w(0)‖∞ + 2c5 · ζ(t/2) for all t ≥ 0. (2.16)

Therefore, the estimate (2.9) holds true under the choice of the positive constants
c2 := 1/(−A(τ)) and c3 := 2c5. �
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