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BLOW-UP OF SOLUTIONS FOR AN INTEGRO-DIFFERENTIAL
EQUATION WITH A NONLINEAR SOURCE

SHUN-TANG WU

Abstract. We study the nonlinear viscoelastic wave equation

utt −∆u +

Z t

0
g(t− s)∆u(s)ds = |u|pu,

in a bounded domain, with the initial and Dirichlet boundary conditions. By

modifying the method in [15], we prove that there are solutions, under some

conditions on the initial data, which blow up in finite time with nonpositive
initial energy as well as positive initial energy. Estimates of the lifespan of

solutions are also given.

1. Introduction

In this paper we consider the initial boundary value problem for the nonlinear
integro-differential equation

utt −∆u +
∫ t

0

g(t− s)∆u(s)ds = |u|pu, (1.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.3)

where ∆ =
∑N

j=1
∂2

∂x2
j

and Ω is a bounded domain in RN , N ≥ 1, with a smooth
boundary ∂Ω so that the Divergence theorem can be applied. Here, g is a positive
function satisfying some conditions to be specified later and p > 0.

When g ≡ 0, the equation (1.1) becomes a nonlinear wave equation. There is a
large body of literature on nonexistence of global solutions and blowup for solutions
with negative initial energy [1, 8, 9]. Levine [10, 11, 12] considered the interaction
between linear or strong damping and the source terms and showed that solutions
with negative initial energy blow up in finite time. Georgiev and Todorova [7]
extended Levine’s result to wave equations with nonlinear damping terms. Under
some conditions, they proved that the solutions blow up in finite time provided they
have sufficiently negative initial energy. This result was generalized by Levine and
Serrin [13], and then by Levine and Park [14]. Vitillaro [18] combined the arguments
in [7] and [13] to extend these results to the case of positive initial energy.
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On the contrary, when g is not trivial on R, (1.1) becomes a semilinear viscoelas-
tic equation. Cavalcanti et al. [4] treated (1.1) with a localized damping mechanism
acting on a part of the domain. By assuming the kernel g in the memory term de-
cays exponentially, they obtained an exponential decay rate of the energy function.
Later, Cavcalanti [6] and Berrimi and Messaoudi [2] improved this work by using
different methods. Also, Cavcalcanti et al. [5] established an existence result and a
decay result for problem (1.1) with nonlinear boundary damping. Regarding nonex-
istence, Messaoudi [17] studied problem (1.1) with an internal nonlinear damping
term and showed under some restrictions on the initial energy the solutions blow up
in finite time. Recently, Berrimi and Messaoudi [3] considered problem (1.1) and
proved, for suitable initial data, that the solution is bounded and global and the
damping caused by the integral term is enough to obtain uniform decay of solutions.
However, no blow up result is discussed for this problem (1.1).

In this paper we shall deal with the blow up behavior of solutions for problem
(1.1)-(1.3). We derive the blow-up properties of solutions of problem (1.1)-(1.3)
with nonpositive and positive initial energy by modifying the method in [15]. The
content of this paper is organized as follows. In section 2, we give some lemmas
and the local existence theorem 2.4. In section 3, we define an energy function E(t)
and show that it is a non-increasing function of t. Then, we obtain theorem 3.5,
which gives the blow-up phenomena of solutions even for positive initial energy.
Estimates for the blow-up time T ∗ are also given.

2. Preliminary results

In this section, we shall give some lemmas which will be used throughout this
work.

Lemma 2.1 (Sobolev-Poincaré inequality [16]). If 2 ≤ p ≤ 2N
N−2 , then

‖u‖p ≤ B‖∇u‖2,

for u ∈ H1
0 (Ω) holds with some constant B, where ‖ ·‖p denotes the norm of Lp(Ω).

Lemma 2.2 ([15]). Let δ > 0 and B(t) ∈ C2(0,∞) be a nonnegative function
satisfying

B′′(t)− 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0. (2.1)

If
B′(0) > r2B(0), (2.2)

then B′(t) > 0 for t > 0, where r2 = 2(δ + 1)− 2
√

(δ + 1)δ is the smallest root of
the equation

r2 − 4(δ + 1)r + 4(δ + 1) = 0.

Lemma 2.3 ([15]). If J(t) is a non-increasing function on [t0,∞), t0 ≥ 0 and
satisfies the differential inequality

J ′(t)2 ≥ a + bJ(t)2+
1
δ for t0 ≥ 0, (2.3)

where a > 0, δ > 0 and b ∈ R, then there exists a finite time T ∗ such that

lim
t→T∗−

J(t) = 0

and the upper bound of T ∗ is estimated respectively by the following cases:
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(i) If b < 0 and J(t0) < min{1,
√

a
−b}, then

T ∗ ≤ t0 +
1√
−b

ln

√
a
−b√

a
−b − J(t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
J(t0)√

a
.

(iii) If b > 0, then

T ∗ ≤ J(t0)√
a

,

or

T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a
{1− [1 + cJ(t0)]

−1
2δ },

where c = ( b
a )

δ
2+δ .

Now, we state the local existence theorem which is proved in [17].

Theorem 2.4 (Local existence). Let u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω) and 0 < p < p∗,

here p∗ = 2
N−2 , if N ≥ 3(∞, if N ≤ 2). Let g be a bounded C1 function satisfying

g(0) > 0, g′(s) ≤ 0, 1−
∫ ∞

0

g(s)ds = l > 0. (2.4)

Then problem (1.1)-(1.3) has a unique weak solution u in C([0, T ],H1
0 (Ω)) with ut

in C([0, T ], L2(Ω)), for some T > 0.

3. Blow-up property

In this section, we shall discuss the blow up phenomena of problem (1.1)-(1.3).
For this purpose, we make the following assumption on g:∫ ∞

0

g(s)ds <
4δ

1 + 4δ
, (3.1)

here δ = p/4. First, we define the energy function for the solution u of (1.1)-(1.3)
by

E(t) =
1
2
‖ut‖22 +

1
2
(1−

∫ t

0

g(s)ds)‖∇u(t)‖22 +
1
2
(g � ∇u)(t)

− 1
p + 2

‖u‖p+2
p+2,

(3.2)

for t ≥ 0, where (g � ∇u)(t) =
∫ t

0
g(s)‖∇u(t)−∇u(s)‖22ds

Remark. From (3.2), (2.4) and Lemma 2.1, we have

E(t) ≥ 1
2

(
1−

∫ t

0

g(s)ds
)
‖∇u(t)‖22 +

1
2
(g � ∇u)(t)− 1

p + 2
‖u‖p+2

p+2

≥ 1
2
(
l‖∇u(t)‖22 + (g � ∇u)(t)

)
− Bp+2

1 l
p+2
2

p + 2
‖∇u‖p+2

2

≥ G
[(

l‖∇u(t)‖22 + (g � ∇u)(t)
)1/2]

, t ≥ 0,

(3.3)
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where

G(λ) =
1
2
λ2 − Bp+2

1

p + 2
λp+2, B1 =

B√
l
.

It is easy to verify that G(λ) has a maximum at λ1 = B
− p+2

p

1 and the maximum
value is

E1 =
p

2(p + 2)
B
− p+2

p

1 .

Before proving our main result, we need the following lemmas.

Lemma 3.1 ([17]). Assume that the conditions of theorem 2.4 hold and let u be a
solution of (1.1)-(1.3). Then E(t) is a non-increasing function on [0, T ] and

E′(t) =
1
2
(g′ � ∇u)(t)− 1

2
g(t)‖∇u(t)‖22, (3.4)

for almost every t ∈ [0, T ].

Proof. Multiplying (1.1) by ut and integrating it over Ω, and integrating by parts,
we obtain (3.4) for any regular solution. Then by density arguments, we have the
result. �

Lemma 3.2. Suppose that the conditions of theorem 2.4 hold. Let u be a solution
of (1.1)-(1.3) with initial data satisfying E(0) < E1 and l

1
2 ‖∇u0‖2 > λ1, then there

exists λ2 > λ1 such that

l‖∇u(t)‖22 + (g � ∇u)(t) ≥ λ2
2, for t > 0. (3.5)

Proof. From the definition of G(λ), we see that G(λ) is increasing in (0, λ1) and
decreasing in (λ1,∞), and G(λ) → −∞, as λ → ∞. Since E(0) < E1, there
exist λ′2 and λ2 such that λ′2 < λ1 < λ2 and G(λ′2) = G(λ2) = E(0). When
l1/2‖∇u0‖2 > λ1, by (3.3), we have

G(l1/2‖∇u0‖2) ≤ E(0) = G(λ2).

This implies l1/2‖∇u0‖2 > λ2. To establish (3.5), we suppose by contradiction that

l‖∇u(t)‖22 + (g � ∇u)(t) < λ2
2,

for some t0 > 0.
Case 1: If λ′2 < (l‖∇u(t0)‖22 + (g � ∇u)(t0))

1
2 < λ2, then

G((l‖∇u(t0)‖22 + (g � ∇u)(t0))1/2) > E(0) ≥ E(t0),

which contradicts (3.3).
Case 2: If (l‖∇u(t0)‖22+(g�∇u)(t0))1/2 < λ′2, then by the continuity of (l‖∇u(t)‖22+
(g � ∇u)(t))1/2, there exists 0 < t1 < t0 such that

λ′2 < (l‖∇u(t1)‖22 + (g � ∇u)(t1))1/2 < λ2.

Then
G((l‖∇u(t1)‖22 + (g � ∇u)(t1))1/2) > E(0) ≥ E(t1).

This is a contradiction. �
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Definition. A solution u of (1.1)-(1.3) is said to blowup if there exists a finite time
T ∗ such that

lim
t→T∗−

( ∫
Ω

u2dx
)−1

= 0. (3.6)

For short notation, we define

a(t) =
∫

Ω

u2dx, t ≥ 0. (3.7)

Lemma 3.3. Assume that the conditions of theorems 2.4 and (3.1) hold and let u
be a solution of (1.1)-(1.3), then we have

a′′(t)− 4(δ + 1)
∫

Ω

u2
t dx ≥ Q1(t), (3.8)

where Q1(t) = (−4− 8δ)E(0) + m(l‖∇u‖22 + (g � ∇u)(t)), m = (1 + 4δ)− 1/l > 0.

Proof. Form (3.7), we have

a′(t) = 2
∫

Ω

uutdx (3.9)

and by (1.1) and the Divergence theorem, we get

a′′(t) = 2‖ut‖22 − 2‖∇u‖22 + 2‖u‖p+2
p+2 + 2

∫ t

0

∫
Ω

g(t− s)∇u(s) · ∇u(t)dxds. (3.10)

Then, using (3.4), we obtain

a′′(t)− 4(δ + 1)‖ut‖22

≥ (−4− 8δ)E(0) + 2
[
1− 2 + 4δ

p + 2
]
‖u‖p+2

p+2 + 4δ‖∇u(t)‖22

− (2 + 4δ)
∫ t

0

g(s)ds‖∇u(t)‖22 + 2
∫ t

0

∫
Ω

g(t− s)∇u(s) · ∇u(t)dxds

− (2 + 4δ)
∫ t

0

(g′ � ∇u)(t)dt + (2 + 4δ)(g � ∇u)(t).

(3.11)

It follows from Hölder’s inequality and Young’s inequality that∫
Ω

∫ t

0

g(t− s)∇u(s) · ∇u(t)dsdx

=
∫

Ω

∫ t

0

g(t− s)∇u(t) · (∇u(s)−∇u(t))dsdx +
∫ t

0

g(t− s)ds‖∇u(t)‖22

≥ −[
1
2
(g � ∇u)(t) +

1
2

∫ t

0

g(s)ds‖∇u(t)‖22] +
∫ t

0

g(s)ds‖∇u(t)‖22.

Hence, (3.11) becomes

a′′(t)− 4(δ + 1)‖ut‖22

≥ (−4− 8δ)E(0) +
(
4δ − (1 + 4δ)

∫ t

0

g(s)ds
)
‖∇u(t)‖22

+ (1 + 4δ)(g � ∇u)(t)− (2 + 4δ)
∫ t

0

(g′ � ∇u)(t)dt.
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Therefore, by (2.4) and (3.1), we obtain

a′′(t)− 4(δ + 1)‖ut‖22
≥ (−4− 8δ)E(0) + (4δ − (1 + 4δ)(1− l))‖∇u(t)‖22 + (1 + 4δ)(g � ∇u)(t)

≥ (−4− 8δ)E(0) + m(l‖∇u(t)‖22 + (g � ∇u)(t)),

where m = (1 + 4δ)− 1
l > 0.

Now, we consider different cases on the sign of the initial energy E(0).
Case 1: If E(0) < 0, then from (3.8), we have

a′(t) ≥ a′(0)− 4(1 + 2δ)E(0)t, t ≥ 0.

Thus we get a′(t) > 0 for t > t∗, where

t∗ = max
{ a′(0)

4(1 + 2δ)E(0)
, 0

}
. (3.12)

Case 2: If E(0) = 0, then a′′(t) ≥ 0 for t ≥ 0. Furthermore, if a′(0) > 0, then
a′(t) > 0, t ≥ 0.
Case 3: If 0 < E(0) < m

p E1 and l1/2‖∇u0‖2 > λ1, then using lemma 3.2, we see
that

Q1(t) = (−4− 8δ)E(0) + m(l‖∇u‖22 + (g � ∇u)(t))

≥ (−4− 8δ)E(0) + mλ2
2

> (−4− 8δ)E(0) + m
2(p + 2)

p
E1

= (4 + 8δ)(−E(0) +
m

4 + 8δ

2(p + 2)
p

E1)

= (4 + 8δ)(−E(0) +
m

p
E1).

Thus, from (3.8), we have

a′′(t) ≥ Q1(t) > C1 > 0, t > 0, (3.13)

where C1 = (4 + 8δ)(−E(0) + m
p E1). Hence, we get a′(t) > 0 for t > t∗1, where

t∗1 = max{−a′(0)
C1

, 0}. (3.14)

Case 4: If E(0) ≥ m
p E1, using Hölder’s inequality and Young’s inequality, we get

a′(t) ≤ ‖u‖22 + ‖ut‖22.
Hence, from (3.8), we have

a′′(t)− 4(δ + 1)a′(t) + 4(δ + 1)a(t) + (4 + 8δ)E(0) ≥ 0.

Let

b(t) = a(t) +
(1 + 2δ)E(0)

1 + δ
, t > 0.

Then b(t) satisfies (2.1). By (2.2), we see that if

a′(0) > r2

[
a(0) +

(1 + 2δ)E(0)
1 + δ

]
, (3.15)

then a′(t) > 0, t > 0. �

Consequently, we have the following result.
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Lemma 3.4. Assume that the conditions of theorem 2.4 and (3.1) hold, and that
either one of the following four conditions is satisfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > 0,
(iii) 0 < E(0) < m

p E1 and l1/2‖∇u0‖2 > λ1

(iv) m
p E1 ≤ E(0) and (3.15) holds.

Then a′(t) > 0 for t > t0, where t0 = t∗ is given by (3.12) in case 1, t0 = 0 in cases
2 and 4, and t0 = t∗1 is given by (3.14) in case 3.

Hereafter, we will find an estimate for the life span of a(t). Let

J(t) = a(t)−δ, for t ≥ 0. (3.16)

Then we have
J ′(t) = −δJ(t)1+

1
δ a′(t),

J ′′(t) = −δJ(t)1+
2
δ V (t),

(3.17)

where
V (t) = a′′(t)a(t)− (1 + δ)(a′(t))2. (3.18)

Using (3.8) and exploiting Hölder’s inequality on a(t), we deduce that

V (t) ≥ [Q1(t) + 4(1 + δ)‖ut‖22]a(t)− 4(1 + δ)‖u‖22‖ut‖22
= Q1(t)J(t)−

1
δ .

Therefore, (3.17) yields

J ′′(t) ≤ −δQ1(t)J(t)1+
1
δ , t ≥ t0. (3.19)

Theorem 3.5. Assume the conditions of theorem 2.4 and (3.1) hold, and that
either one of the following four conditions is satisfied:

(i) E(0) < 0,
(ii) E(0) = 0 and a′(0) > 0,
(iii) 0 < E(0) < m

p E1 and l
1
2 ‖∇u0‖2 > λ1,

(iv) m
p E1 ≤ E(0) < a′(t0)

2

8a(t0)
and (3.15) holds.

Then the solution u blows up at finite time T ∗ in the sense of (3.6). Moreover, the
upper bounds for T ∗ can be estimated according to the sign of E(0): In case (1),

T ∗ ≤ t0 −
J(t0)
J ′(t0)

.

Furthermore, if J(t0) < min{1,
√

α
−β }, then

T ∗ ≤ t0 +
1√
−β

ln

√
α
−β√

α
−β − J(t0)

.

In case (2),

T ∗ ≤ t0 −
J(t0)
J ′(t0)

or T ∗ ≤ t0 +
J(t0)√

α
.

In case (3),

T ∗ ≤ t0 −
J(t0)
J ′(t0)

.
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Furthermore, if J(t0) < min{1,
√

α1
−β1

}, then

T ∗ ≤ t0 +
1√
−β1

ln

√
α1
−β1√

α1
−β1

− J(t0)
.

In case (4),

T ∗ ≤ J(t0)√
α

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
α
{1− [1 + cJ(t0)]

−1
2δ },

where c = (β
α )

δ
2+δ . Here α, β, α1 and β1 are given in (3.21)-(3.24), respectively.

Note that in case 1, t0 = t∗ is given in (3.12) and t0 = 0 in cases 2 and 4, and in
case 3, t0 = t∗1 is given in (3.14).

Proof. (1) For E(0) ≤ 0, from (3.19),

J ′′(t) ≤ δ(4 + 8δ)E(0)J(t)1+
1
δ . (3.20)

Note that by lemma 3.4, J ′(t) < 0 for t > t0. Multiplying (3.20) by J ′(t) and
integrating it from t0 to t, we have

J ′(t)2 ≥ α + βJ(t)2+
1
δ for t ≥ t0,

where
α = δ2J(t0)2+

2
δ

[
a′(t0)2 − 8E(0)J(t0)

−1
δ

]
> 0. (3.21)

and
β = 8δ2E(0). (3.22)

Then by lemma 2.3, there exists a finite time T ∗ such that limt→T∗− J(t) = 0 and
this will imply that limt→T∗−(

∫
Ω

u2dx)−1 = 0.
(2) For the case 0 < E(0) < m

p E1, from (3.19) and (3.13), we have

J ′′(t) ≤ −δC1J(t)1+
1
δ for t ≥ t0.

Then using the same arguments as in (1), we have

J ′(t)2 ≥ α1 + β1J(t)2+
1
δ for t ≥ t0,

where

α1 = δ2J(t0)2+
2
δ [a′(t0)2 +

2C1

1 + 2δ
J(t0)

−1
δ ] > 0. (3.23)

and

β1 = − 2C1δ
2

1 + 2δ
. (3.24)

Thus, by lemma 2.3, there exists a finite time T ∗ such that limt→T∗−(
∫
Ω

u2dx)−1 =
0.
(3) For the case m

p E1 ≤ E(0). Applying the same discussion as in part (1), we also
have the equalities (3.21) and (3.22). In this way, we observe that

α > 0 if and only if E(0) <
a′(t0)2

8a(t0)
.

Hence, by lemma 2.3, there exists a finite time T ∗ such that limt→T∗−(
∫
Ω

u2dx)−1 =
0. �
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