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A three-point boundary-value problem for a
hyperbolic equation with a non-local condition *

Said Mesloub & Salim A. Messaoudi

Abstract

We use an energy method to solve a three-point boundary-value prob-
lem for a hyperbolic equation with a Bessel operator and an integral con-
dition. The proof is based on an energy inequality and on the fact that
the range of the operator generated is dense.

1 Introduction

In this paper, we investigate a boundary-value problem for a one-dimensional
hyperbolic equation with a weighted nonlocal boundary integral condition of
the form

l
u(,)dE = E(t), 0<t<T,
I

where [y is a real number in (0,7) and E(-) is a given function.

Evolution problems dealing with nonlocal conditions were first studied a long
time ago by Samarskii [12] and Cannon [2]. The latter author considered the
problem

U — Uz =0, x>0, >0,
u(z,0) = p(x), x>0,

u(0,t) = g(t), (1.1)

z(t)
/0 u(é,t)dz = f(1),

for z(t) and f(t) given functions. Introducing g = u(0,t) as the unknown, it
is proved in [2] that (1.1) is equivalent to a Volterra integral equation of the
second kind for the function g. The author proved the existence and uniqueness
of the solution with the aid of the integral equation. Shi [11] considered weak
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solutions of the problem
Ut — Ugge = f+gar:a ($,t) € (Oa 1) X (OaT)v
u(z,0) =p(x), 0<z<l,
uy(1,6) =0, 0<t<T, (1.2)

b
/ W, )dz = E(t), 0<t<T
0

and discussed the well-posedness of (1.2) in a weighted fractional Sobolev space.
Along a different line, (1.2) was also considered by Ionkin [5], Makarov and
Kulyev [8], and Yurchuk [13].

In this work, we are concerned with the mixed evolution problem

= F(z,t), (x,t)€Q,
liu=u(z,0) =pi(x), z€(0,1),

lyu = u(z,0) = @o(x), x€(0,0), (1.3)
u(l,t) = By (t), te(0,T),

1
Lu = Uy — - (zug),

1
/ zu(z,t)dx = Eq(t), 0<1l3 <, te(0,T),
1

where @ = (0,1) x (0,T), with 0 <l < 00, 0 < T < 00, F(z,t), p1(z), p2(x),
Eq(t), and Es(t) are known functions satisfying, for compatibility,

(1) = B (0),
l
/l r1 (2)dx = B (0),
(1) = E,(0),

l
/ zpa(z)dr = E5(0).
Iy

Problem (1.3), for I; = 0, has been studied by Mesloub and Bouziani [9].
We also refer the reader to Denche and Marhoune [3] for a similar result in the
parabolic case and to Yurchuk [13], Kartynik [6] and Bouziani [1] for related
results in both parabolic and hyperbolic cases, where the Bessel operator was
replaced by (a(z,t)uy),. It should be noted that the used method was devel-
oped first by Ladyzhenskaya [7]. Our interest lies in proving the existence and
uniqueness of a strong solution of problem (1.3). In point of view of the used
method, it is preferable to transform inhomogeneous boundary conditions to
homogeneous ones by introducing a new unknown function v defined as follows:

v(x,t) = u(z,t) — P(x,t), (1.5)
where
4(x —1)?

P(x,t) =z(x — ;i

VE1(t) + TEQ(t). (1.6)
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Then problem (1.3) becomes

Lv=F(x,t) — LD = f(x,1),
v =1 — 0D = p(z),
lov = Qg — la® = (x)

vg(1,t) =0,

!
/ zv(z,t)dz = 0.

l1

The solution to (1.3) is then given by u(x,t) = v(x,t) + ®(z,t).
We now introduce appropriate function spaces. First let

14172 if 0 <1
0(z) = + 1:333, 1 <z <l
T+ x°, ifh<z<l

and )

1 1
%IU:/ v(&, t)dg, %iv:/ . v(n, t)dndg.

Let L?(Q) be the space of square integrable functions with the norm

1ol20) = /QUQ do dt

and L3(Q) be the weighted L*-space with the norm
2
Hv||L§(Q) = /Q@(x)v2 dzx dt.
We then define W(}”QO(Q) to be the subspace of L?(Q)) with the norm

2 2 2
HUHW;;Z?(Q) = ||”||L§(Q) + HUmHLg(Q)

and Welz1 (Q) to be the subspace of Wel)’20 (Q) whose elements satisfy 1/60(x)v; €
L?(Q). In general, a function in the space W3 (Q), with g,p nonnegative
integers, possesses z-derivatives up to gth order in L2(Q) and t-derivatives up
to pth order in LZ(Q). We use also weighted subspaces on the interval (0,1)
such as Wy ,((0,1)) = Hg((0,1)), whose definition is analogous to the space on
Q. For example, H}((0,1)) is the subspace of L?(0,1) with the norm

2 2 2
||<P||H;((o,z)) = ||<PHL3((071)) + ||<PacHLg((o,z)) :

We associate with problem (1.7) the operator L = (L, ¢1, 2) whose domain of
definition is D(L), the set of functions v € L?(Q) for which vy, vy, Vst, Vat, Uz €
L?(Q) and satisfying conditions in (1.7). The operator L maps E into F; E is
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the Banach space of functions v € L?(Q) satisfying conditions in (1.7), with the
norm
2 2
ol = s, o7 a2 oy

o 2 2 2
—g@{hh%@mmHM@ﬂ@@m+Mwﬁhmmﬁ

and F is the Hilbert space L2(Q) x H((0,1)) x L2((0,1)), which consists of
elements F = (f, ¢, 1) with the norm

1F 15 = 111720y + Il o) + 12032 0y - (1.9)
Then, we establish an energy inequality:
lole < K| Lvllz. Vo€ DL), (1.10)
and show that the operator L has a closure L.
Definition 1.1 A solution of the operator equation
Lv = (f,¢,9),
is called a strong solution of the problem (1.7).

Since the points of the graph of the operator L are limits of sequences of
points of the graph of L, we can extend the a priori estimate (1.9) to be applied
to strong solutions by taking limits, that is we have the inequality

vl < K HZUHF, Vv € D(L). (1.11)

From this inequality, We deduce the uniqueness of a strong solution, if it exists,
and that the range of the operator L coincides with the closure of the range of
L.

Proposition 1.2 The operator L admits a closure.

The proof of this proposition is similar to that in [9]; therefore we omit it.

2 A priori bound
This section is devoted to the proof of the uniqueness and continuous depen-

dence of the solution on the given data.

Theorem 2.1 For any function v € D(L), we have the inequality
ol g < cllLoll g, (2.1)

where the positive constant c is independent of the function v.
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Proof We define

Mo — (1 +12)v, ifo<az<iy
) @+ 2P — 232 (Evy) + 28, (E20y) il <z <.

Then we perform the scalar product in L?(Q7) of equation (1.7) and Mwv to get

1
9( Jvgvy da dt — / / (12 + 1) (2v,) v da dt

/ / x? + 1) (2vy) vtdxdt—/ /xvtt\s (Evy) dx dt
ll ll
—|—/ /(wi)gci‘si(fvt)dxdt—k/ /xvttgx(f%t)dacdt
0 Iy 0 Iy
T l
—/ /(wi)gci‘sx(f%t)dxdt
o Jiu

T l T l
- G(x)vtﬁvdxdt—/ /xﬁv%i({vt)dxdt—&—/ /xﬁvi‘sw(ézvt)da@dt.
QT 0 I 0 11
(2.2)

Integrating by parts each term of (2.2) and using conditions (1.7), we obtain
the following equations:

! l
0(z)vivy dedt = %/0 0(x)v? (x, 7)dx — %/o 0(x)y*(z, 7)dx (2.3)

Iy
// 12 V(xvg)Lve da dt

I
= —/ (13 + V) wvi(z, 7)dr — —/ (13 + 1) zpide (2.4)
2.Jo 2 Jo

Q‘r

—/ (13 + Dlve (I, t)vg (11, t)dt
0

//x + 1)(avy) v da dt
5

l 1
= 5/ (23 + x)v2(x, T)dl’*%/ (2% + z)p2da (2.5)

l1 l1

T l T
+2/ /xzvxvt dde/ (12 + D) lvy (1, t)vg (1y, t)dt
0 ll

0

_ /0 / va® (o) dode = | / (Sa(en (e, ) Pdo - L / (u(ew)) e,

I3 l1 5
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/oT /ll(mf”)w\’ (&vt) da dt

T l T l
= —l1/ /x%w(ll,t)vtd:ndt—i—/ /mvzgw(fvt)dxdt, (2.7)
0 ll 0 ll
T l
//zvttﬁx(gvt)dzdt
o Ju

- 1/1(%(5%(5, D) dx+;/l<sx(w dx+/ /x vpvy du dt

/ / 20, Sy (Evy) dxdtJr/ / 223, (&vy) Lo dx dt (2.8)
l1 ll

T l
—/ /(:wz)w%m(ﬁ%t)dmdt
0 I
T l T l
= ll/ /m%m(h,t)vtdxdt—/ /x%wvtda@dt. (2.9)
0 ll 0 ll
Substituting (2.3)-(2.9) in (2.2) yields
1/ 1/
—/ H(x)v?(xm)dx—ﬁ——/ 0(x)v2(x, )dx
2 Jo 2 /o
—/ H(x)dem—&——/ 9(m)<pidw—2/ /x%mvtdxdt
2 Jo 2 /o o Ju
T l T l
+/ /xﬁv%x(é“Qvt)dxdt—/ /x2£v%x(§vt)dxdt
0 l1 0 ll

T rl
+ 0(z)ve Lo dex dt — / / rLoS? (vy) da dt. (2.10)
QT 0 Jiy

Using Young’s inequality and

l (l _ 11)2 l
/ (320)2%dx < T/ (S,v)2de,
ll ll

to estimate the last five terms on the right-hand side of (2.10), we obtain the
following inequalities:

—2/ /wivtdxdt</ /xv dxdt+/ /mvt dx dt, (2.11)
I A I
T pl
/ / T Lo, (E2v;) da dt
0o Ju
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_ r 1 _ 5 T l
< U=h) ll)/ x(cv)Qd:cdHM/ /;wfdxdt (2.12)
2 0 11 4 0 Iy

T l
_/ /xzﬁv%z(gvt)dxdt
0 ll
_ 3 T pl _ 3 L
< (=h) ll)/ :c(ﬁv)Qdﬂcdt—i—M/ /xv?dwdt, (2.13)
2 0 1 4 0 I

/ G(x)vtﬁvdxdtgé/ 0($)U?d.’£dt+%/ 0(z)(Lv)? dx dt, (2.14)

—/OT /l rLoS2 (Evy) da dt

(1—1)% [ ! ) =1 [T [ )
< —/ /(%‘x(ﬁvt)) dxdt + / 2(Lv)? dz dt (2.15)
4 0 Iy 2 0 A

(- ll)5 T 2 I =1 2
< — xv; dx dt + 0(x)(Lv)” dx dt.
8 0 ll 2 QT

We also have

1 l
1/ 0(z)v?(z,7)dx < 1/ 9(z)gp2dx+1/ H(x)vzd:vdtJr}/ 6(x)v? dx dt.
2 Jo 2 Jo 2 Jor 2 Jo
(2.16)
Indeed, we have
ou? 9
ot

multiplying both sides by 6(z) then integrating with respect to ¢ from 0 to 7,
and using Young’s inequality, we obtain

0(x)v?(x,7) — 0(z —2/ 0(x vvtdt</ 0(x 2dt—|—/ O(x)vidt.

Multiplying by (1/2) and integration of both sides of this last inequality with
respect to  from 0 to [ yields (2.16). Substituting (2.11)-(2.15) in (2.10) and
adding the resulting inequality with (2.16), each side, gives

/9 Vi (z, 7)dr + = /9 2(x, )dx + = /9 dx

1
/9 1/)2dz+ 9( Yp2dx + = 9(x)<p2dx
2 Jo 2 Jo

31—1)°  (1—0)> [T [
/ /zvidxdt+( ( ) + ) )/ /xvfd:z:dt
0 Ju 8 4 0o Ju
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0(x)v; d:cdt—i—/ /x v? dxdt+ 5 O(x)v? dedt  (2.17)
I QT

QT
+(1 + M) 0(x)(Lv)? da dt
2" 2 o
—11)3 _
+((l 2l1) + ( 211)) / x(Lv)? dx dt.
When we add the term [ fl dPoldedt+ [ ['(1+13)zvi dadt to the right-

hand side of (2.17) and use the definition of 0(x ) (2.17) takes the form

/9 vtxrdx—k/ﬁ xrda:—l—/ﬁ

< K(/O 0(x )1/)2dx+/ 0(x )%dx+/0 0(z) o dz (2.18)
+/ 0(z)(Lv)? d:z:dtJr/ 0(z)v? dx dt
. o

0(x)v? dx dt + 0(z)v? da dt) )
Q7 Q7
where K = max {c1,c2}, ¢; = max {3+ @ 4l1) M 5} and ¢y = 142(1—
1) + (I —11)3. By [4, Lemma 7.1], we obtain, from mequahty (2.18),
2 - 2 2 2
o@D < KX {leliqom + 10500 + 1£01350n }

2 2 2
KX ol o + 102 0u) + 1£011320) } -

By taking the supremum with respect to 7, over [0,T], the energy inequality
(2.1) follows with ¢ = vVEKeX7/2,
The a priori bound (1.10) leads to the following results.

IN

Corollary 2.2 If a strong solution of the problem (1.7) exists, it is unique and
depends continuously on the data F = (f,p,¢) € F.

Corollary 2.3 The range R(L) of the operator L is closed and coincides with

the set R(L) and I F =L LF where L1 is the continuous extension of L71
from R(L) to R(L).

3 Existence of a solution

The main result in this paper reads as follows.

Theorem 3.1 For each f € L(Q), ¢ € Hi((0,1)), ¢ € L3((0,1)), there exists
a unique strong solution v = I 'F=T171F of problem (1.7) satisfying the
estimate

2 2 2 2
max (7)) < ¢ (||f||Lg(Q) + el o, + ||¢|\Lg((o,z))) (3.1)

0<t<T
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where ¢ is a positive constant independent of v.

Remark 3.2 According to corollary 2.3, to prove the existence of the solution
in the sense of Definition 1.1, for any (f,p,¥) € F, it is sufficient to prove that
R(L)* = {0}. For this purpose we need the following statement.

Proposition 3.3 Let Do(L) = {v &€ D(L): b1v = lyv =0}. If for all w in
L?(Q) and all v in Do(L),

/ wlvdzxdt =0, (3.2)
Q
then w vanishes almost everywhere in Q.

Proof Assume that relation (3.2) holds for any function v € Dg(L). Using
this fact, (3.2) can be expressed in a special form. First define the function 3
by the formula

T
Bz, t) = /t (@, 7)dr | (3.3)

Let v4 be a solution of

Tl ifo<z<ly
3 Do + 285 (8vy), il <o <
and let
0, Hfo<t<s (3.5)
v = )
JIt = T)verdr, ifs<t<T.
It follows that
= —xl1 Vgt fo<z<ly (3.6)
—%(xz + aly)ogr — 28 (§vy), il <z <l '

By [10, Lemma 4.2], the function v defined by the relations (3.4) and (3.5)
has derivatives with respect to ¢t up to the third order belonging to the space
L?(Qs), where Q, = (0,1) x (s,T). By replacing the function w, given by its
representation (3.6), in (3.2) we get

T 1
—/ 112V (vtt — —(xvx)x) dx dt
s Jo T
1T 1
*5 / / (111: + x2)vttt (’Utt — E(:CUI)I) dx dt (37)
s 11

T rl 1
f/ [ x%z(fvtt)(vtt — E(:wz)x) dedt = 0.
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In light of conditions (1.7) and the special form of v given by relations (3.4),
(3.5), we integrate by parts each term of (3.7) to obtain the following equations:

T l1 1
7/ / llxvm (Utt — ;(IIT’Uz)z) dx dt (38)
s 0
1 1

1 l T
1 1
= 5/ llxvft(x,s)dm—l—i/ llxvfz(%T)dx—/ B (I, t)vg (11, t)dt,
0 0 s

1 (T 1
D) / / (hz+ xQ)Uttt(Utt - E(le;p)z) dx dt
s 51

1 /! 1 /!
— Z/(l1x+x2)v§t(aﬁ,s)dw+i/(llx—i—xz)vfw(x,T)dx (3.9)

l1 ll
T 1 T l
+ Z%U,m (ll, t)’Utt (ll, t)dt + 5 / / TVt Ut dx dt,
s s 51

T T
1
f/ / x%x(ﬁvtt)(vtt - E(Ivm)ﬂ) dx dt = / / 22,0y do dt. (3.10)
s lq s I
Substituting (3.8)-(3.10) in (3.7) yields

I, (4

Lo
avd (z,s)de + — / xv? (x, T)dx
2 Jo 2 Jo

I I
+Z/l (l1m+x2)vft(x,s)dm+1/ (hz + 2*)vi, (z, T)dz (3.11)

1 bl
1 /T T
= ——/ /xvttvmdajdt—/ /$2Uttvxd$dt-
2 S 11 S Iy

Using Young’s and Poincare’s inequalities, we estimate the right-hand side of
(3.11) as follows

1 /T 1 /T 1 /T
—= / / TV da dt < f/ / xvfx dx dt + 7/ / :wft dxdt, (3.12)
2 s I8 4 s 1 4 S 1
T 1 /T 1 [T
— / / 200, do dt 3 / / w20l dx dt + > / / 2} da dt
s Iy s I s l

d [T 1 (T
< 3 / / 20, dx dt + 3 / / 2?2, dx dB.13)
S 11 S 5

Combining (3.11)-(3.13), we arrive at

IA

l1 ll
/xvft(x,s)dx—F/ xvf (z, T)dx

0 0
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! 1
+/ (z + 2?0} (z,8)dx + / (x + 2®)v? (x, T)dx (3.14)
l1 ll

T T
< 6(/ / (z + 2?)v? dxdt+/ / (z + 2?02, dxdt),
s I S 5t

where 0 = 2max{d,1} /min{l;,1}. When we add to the right-hand side of
(3.14) the quantity

T l1 T ll
5/ / xv? da dt + 5/ / xv?, dr dt,
s 0 s 0

and define the function

px) =

T fo<ax<ly
r+x2 ifli<z<l

we deduce, from (3.14), that
! !
| ot + [ oy o7
< 5{/ x)vZ, dr dt +/ p(z)vy, dzdt}. (3.15)

s

This inequality is basic in our proof. To use it, we introduce the new function

T
n(x,t)z/ VrrdT.
t

Then
Ut(xat) :77(%5) 777(x7t), 'Ut(l‘,T) :77(3335)
Thus inequality (3.15) becomes

l l
/pw@m@m+u—%< »/pum@@m
0

T
< 25{/ / p(x)v?, dxdt—i—/ / )02 (z,t) da:dt} (3.16)
s 0

Hence, when so > 0 satisfies T'— sg = 1/44, (3.16) implies

l l
| oo+ [ oy,

< 44 / / vttdxdt—i—/ / z)n2(z,t) dxdt} (3.17)

for all s € [T — so,T]. If, in (3.17) we put

T
z/ / oz vttdmdt—k/ / x)n2(z,t) dx dt,
s Jo 0
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then we have % < 46g(s), from which it follows that

=5 (9(s) exp(4ds)) < 0.

Integrating this equation over (s,T") and taking in account that g(T") = 0, we
obtain
g(s) exp(4ds) < 0.

This inequality guarantees that g(s) = 0 for all s € [T — sg,T], which implies
that vy = 0 on Qs where s € [T — s9,T]. Hence it follows, from (3.6), that
w = 0 almost everywhere on Qr_s,. Proceeding this way step by step along
the rectangle with side sg, we prove that w = 0 almost everywhere on . This
completes the proof of the Proposition 3.3.

Proof of Theorem 3.1 Suppose that for some W = (w, w1, wq) € R(L)*,
(Lv,w)rz2@) + (rv,w1) (o, + (C2v, w2) £2((0,0)) = 0. (3.18)
Then we must prove that W = 0. Putting v € Do(L) into (3.18), we have
(Lv,w)rzq) = 0.
Hence Proposition 3.3 implies that w = 0. Thus (3.18) takes the form
(lrv,w1) g0,y + (b2v,w2) 20,0y =0, Vv € D(L). (3.19)

Since the quantities f;v and fov can vanish independently and the ranges of
the trace operators ¢1 and /5 are dense in the spaces H}((0,1)) and LZ((0,1))
respectively, the equation (3.19) implies that w3 = 0, wy = 0. Hence W = 0.
The proof of Theorem 3.1 is established.
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