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 Abstract. Errors-in-variables is a long-standing, difficult issue in 

linear regression; and progress depends in part on new identifying 

assumptions. I characterize measurement error as bad-leverage points and 

assume that fewer than half the sample observations are heavily 

contaminated, in which case a high-breakdown robust estimator may be 

able to isolate and downweight or discard the problematic data. In 

simulations of simple and multiple regression where eiv affected 25% of the 

data and R2 was mediocre, one high-breakdown estimator had small bias, 

very good coverage, and precision that improved when the sample size 

increased.  
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       Errors in Variables or Bad Leverage at Some Observations ?  

Introduction 

 A venerable issue in linear-regression analysis is errors in variables 

(eiv, also called measurement error), when a regressor is not directly 

observable. Instead, a proxy is available that differs from the regressor 

because of random contamination. In ordinary least squares (ols) 

estimation, eiv produces a bias that does not vanish asymptotically. Many 

researchers attest that this is a pervasive and challenging problem. Theil 

(1971, p. 607-613) reviews some procedures for dealing with eiv, “none of 

which is really simple in application.” According to Malinvaud (1980, p. 

416), “If in many cases structural parameters can be identified, consistent 

estimators appropriate to such cases are virtually useless in econometrics, 

since there are too few data.” Friedman (1992, p. 2131) comments that “the 

common practice is to regress a variable Y on a vector of variables X and 

then accept the regression coefficients as supposedly unbiased estimates 

of structural parameters, without recognizing that all variables are only 

proxies for the variables of real interest, if only because of measurement 

error, though generally also because of transitory factors that are peripheral 

to the subject under consideration. I suspect that the regression fallacy is 

the most common fallacy in the statistical analysis of economic data, 

alleviated only occasionally by consideration of the bias introduced when 

‘all variables are subject to error.’ " Dagenais and Dagenais (1997, p. 195) 

note that, for ols, “intended 95% confidence intervals may in practice turn 

out to be almost 0% intervals, even when the errors of measurement are 

not exceedingly large….Similarly, Student t-tests using the critical values 

corresponding normally to 5% type I errors may in fact correspond to tests 

with type I errors of size equal to almost 100%! This may have dramatic 

consequences since one may be induced to reject a null hypothesis when 

this hypothesis is true, with a probability close to 100%!” Greene (2003, p. 

84) remarks that the “general assessment of the problem is not particularly 

optimistic. The biases introduced by measurement error can be rather 

severe.” And Hausman (2001, p. 58) speaks of “ the ‘Iron Law of 



Econometrics’ –the magnitude of the estimate is usually smaller than 

expected.”  

 Eiv models assume that all the observations are potentially 

contaminated by measurement error in one or several regressors. Since in 

many situations this assumption will be unduly pessimistic, I explore eiv 

estimation when egregious measurement errors affect only a minority of 

observations –a subset that can be characterized as bad-leverage points. A 

robust high-breakdown estimator can then locate and downweight these 

bad-leverage observations. My simulations emulate data which are noisy 

due to eiv and also because R2 for the correctly-measured variables is not 

very high. In this challenging framework, which may be fairly typical of 

cross-section data, the initial estimate of the minimum-covariance-

determinant procedure seems to perform well whereas a robust estimator 

designed specifically for linear regression is less successful in terms of bias 

control and accurate coverage of a confidence interval.  

 Eiv has generated a vast literature, and a comprehensive review is 

beyond this essay’s scope. In addition to the papers and monographs cited 

below, some important surveys are Klepper and Leamer (1984), Fuller 

(1987), Hausman (2001), Söderström (2007), and the papers edited by Van 

Huffel (2007). The next section is a concise review of the basic eiv model 

and several of the estimators proposed for it. Then follows a section in 

which measurement errors are interpreted as bad-leverage observations; 

and, subject to an identifying assumption, high-breakdown estimators are 

proposed to cope with eiv. Six simulations are presented and discussed, 

followed by a brief examination of two actual data sets and some 

concluding remarks.    

 

A canonical eiv model 

 

Although researchers have explored many variations of the 

measurement-error problem in linear regression, I focus on a canonical eiv 

model:  

  yi = α + βxi + uyi  ,       (1) 



where α and β are unknown parameters, yi is an observation on the 

dependent variable, and uyi is an unobservable normal random variable, 

independently and identically distributed (iid) with zero expectation and 

standard deviation σy. The regressor xi is also unobservable; instead a 

researcher observes xi + uxi, where uxi is an iid normal error with zero 

expectation and standard deviation σx. It is assumed that xi, uxi and uyi are 

stochastically independent of one another. The object is to obtain good 

estimates of α, β, and σy from a random sample of yi and xi + uxi. The eiv 

problem is that xi and uxi  are never observed separately but always as 

xi + uxi , a mismeasured regressor that is correlated with the regression 

disturbance uyi - βuxi . Consequently, the ols estimate of β is inconsistent: it 

converges to β/(1 + σx
2 / plim(Σxi

2/n)), so the bias is toward 0  –the 

notorious “least-squares attenuation.” In multiple linear regression, which 

will also be examined in simulations and actual data, the eiv bias may skew 

all the estimated coefficients. In addition, it can happen that several 

regressors are mismeasured. In either case, the direction of ols bias 

becomes problematic in general (Greene 2003, p. 85-86).  

Moreover, if the correctly-measured but unobservable regressor xi is 

also normal iid, the parameters of interest are not even identifiable, hence 

the non-uniqueness of the maximum-likelihood estimator in the absence of 

additional information or assumptions. In model (1), identification is 

achieved if one knows (or is willing to guess) the value of σx
2 or plim(Σxi

2/n) 

or their ratio. It is argued that, in some contexts, there could be extra-

sample information about the size of the measurement error. In particular, if 

the researcher believes that σx
2 / σy

2  ~ 1, then the maximum-likelihood 

estimator is the orthogonal regression (org), the eigenvector corresponding 

to the smallest eigenvalue of the covariance matrix of yi and xi + uxi. Org is 

perhaps the most widely-used eiv technique (but see Carroll and Ruppert 

1996). In principle it can be extended to multiple linear regression with 

several mismeasured regressors although it does not seem very plausible 

that the required extra-sample information would often be available. Latent-

variable models and factor analysis have also been used extensively to 

model measurement error. In that methodology, identification is of course 

dependent on rather subjective decisions about the number of factors to be 



included and the choice of a “rotation” criterion (varimax, quartimax, and so 

on).  

 The eiv literature explores several other strategies for the 

identification and consistent estimation of linear models, all of which can be 

interpreted as instrumental variables and therefore reflect the strengths and 

weaknesses of that procedure. For example, it is suggested that in model 

(1) the sample data be split into groups according to some a priori criterion 

(the instrument) and that the regression be performed on the group means 

in the belief that the uxi will average to zero within each group, at least 

asymptotically. As Malinvaud (1980, p. 416-419) explains, consistent 

estimation makes “two demands which are often contradictory. For it is 

necessary that” the groups be chosen independently of the uxi but also in a 

way that the group means of the dependent variable do not all converge to 

E(yi) since there would then be little or no variation in the dependent 

variable. As an alternative to grouping, it is suggested that the instrument 

be formed from the ranking of xi + uxi in the hope that the ranks will be 

independent of the uxi but strongly correlated with the xi. 

 Another instrumental-variable approach achieves identifiability by 

assuming that, while the uxi are normally distributed, the xi are not; then 

instruments can be generated from the higher-order moments of the 

observations xi +uxi. Important contributions to this literature include 

Dagenais and Dagenais (1997) and Erickson and Whited (2002). For 

model (1), the method-of-moments (mom) estimator of β is  

 

Σ(xi + uxi)(yi)
2/ Σ(xi + uxi)

2yi       (2) 

 

if the sample values are measured as deviations from their respective 

means. Unless the xi are distinctly non-normal, exhibiting for example 

significant kurtosis or skewness, the instrumental variables will be weak, 

leading to a large standard error for the estimate of β.  

Moreover, like every other eiv procedure discussed in this paper, the 

mom estimator raises the issue of “the whimsical character of inference, 

how adequately to base inferences on opinions when facts are unavailable” 

(Leamer 1983, p. 38).  For estimator (2), the key assumption that the 

unobservable xi are definitely non-normal may appear whimsical since 



econometricians instinctively assume normality in many other contexts. 

While this brief discussion has merely skimmed the rich variety of eiv 

models found in the literature, I have alluded to the whimsicality or fragility 

of the identifying assumptions for several leading eiv estimators. Although it 

is futile to expect a universally acceptable strategy for identification in 

situations involving measurement error, progress on the eiv problem 

depends on the formulation of new identifying assumptions that are 

credible for a well-defined but reasonably wide range of real data sets.   

In the sequel I offer an identifying strategy that has not, as far as I 

know, been proposed before. It will strike some researchers as whimsical,  

but I believe that it has considerable intuitive appeal. Moreover, the 

strategy utilizes statistical procedures that have proved effective for 

detecting anomalous observations in data sets from business, economics 

and finance (Haezendonck et al. 2001, Knox et al. 2001, Zaman et al. 

2001, Boudt et al. 2008); in other social sciences (Maes et al. 1998); in 

technology (Mili et al. 1991, Rousseeuw and Van Aelst 1999, Rousseeuw 

and Van Driessen 1999, Prieto et al. 2009); and in the natural sciences, 

including chemistry and astronomy (Hubert et al. 2002, Rousseeuw and 

Van Driessen 1999).   

 

Bad leverage and high-breakdown estimators 

 

 As previously mentioned, ols is a biased estimator of model (1) 

because xi and uxi are never observed separately; all the observations are 

potentially contaminated. While this premise is no doubt realistic in some 

contexts, it seems unduly pessimistic for many actual data sets, where 

egregious measurement error may well be limited to a minority of the 

observations. The high-breakdown estimators used in the sequel can in 

principle cope with contamination in as much as 50% of the data. The 

rationale for this upper bound is that, when it comes to avoiding very large 

biases (“breakdown”), no affine-equivariant estimator for linear regression 

can distinguish between valid and invalid observations if the latter are in the 

majority (Rousseeuw and Leroy 1987, chapters 1 and 3; Maronna et al. 

2006, chapters 3, 5 and 6). One leading researcher recommends a “default 

coverage” of 75%, meaning that anomalous observations are assumed to 



affect at most 25% of the sample (Rousseeuw, Van Aelest, Hubert 1999, p. 

425). I adopt this viewpoint in order to generate the simulations in the next 

section, acknowledging (per Leamer) that the choice is based on a mixture 

of opinion and experience. More generally, the new identifying assumption 

is that eiv affects less than half of the sample; in a majority of observations, 

uxi is negligible. The estimation strategy is simply to use high-breakdown 

methods that can detect and downweight or eliminate the mismeasured 

observations, those for which uxi is not negligible.     

Now Rousseeuw and Van Driessen (2006, p. 29) offer a taxonomy of 

outliers: a point for which yi diverges from the linear pattern of the majority 

of the data but whose regressors are not outlying is called a vertical outlier. 

A point with one or more outlying regressors is a leverage point. A good 

leverage point lies far from the majority of observations but near to the 

regression plane implied by the majority. A bad leverage point lies far from 

the majority of observations and their implied regression plane. 

“Summarizing, a data set can contain four types of points: regular 

observations, vertical outliers, good leverage points, and bad leverage 

points. Of course, most data sets do not have all four types.”  

In model (1), a bad-leverage observation occurs when variation in a 

regressor is not matched by a corresponding variation in the dependent 

variable. Measurement error produces bad-leverage points because uxi is 

uncorrelated with yi. Figure 1 displays a pseudo sample of 2000 bivariate 

observations, 25% of which is contaminated with eiv. (It is in fact a 

simulation summarized in Table 2 and discussed in the next section.) The 

correctly-measured data are concentrated in the central ellipse whose 

principal axis has a slope of 1 approximately. The mismeasured 

observations mostly protrude horizontally to the left and right of the central 

ellipse; they are the bad-leverage points whose excess variation (the uxi ) 

flattens out or attenuates the ols slope estimate. Accordingly, I interpret eiv 

as a type of bad-leverage observation. If the proportion of mismeasured 

observations is not excessive, an appropriate high-breakdown estimator 

will focus on the data clustered in the central ellipse of Figure 1 and will 

therefore produce a good estimate the regression line.  

The statistical properties of leading high-breakdown estimators 

(including the requirements for consistency and asymptotic normality) have 



been detailed elsewhere, as have the algorithms for their computation 

(Maronna et al. 2006, chapters 5, 6 and 9; Rousseeuw and Leroy 1987, 

chapters 3 and 5; Rousseeuw and Van Driessen 1999, 2006). It is only 

necessary to remark that high-breakdown estimation proceeds in two 

stages. The first step is to compute an initial, very robust estimate that has 

low statistical efficiency; i.e., this estimate often downweights some regular 

observations and good-leverage points along with the vertical outliers and 

bad-leverage points. Starting from the initial estimate, the second stage 

performs one or more iterations by robustly-weighted least squares to 

reinstate the valid data and thereby boost the efficiency of the final 

estimate.  

However, my simulations focus primarily on the initial estimates. This 

is because all the simulations except Table 1 are designed to generate 

challenging and realistic samples in which the “true” linear relationship 

between xi and yi is mediocre, with R-squared in the range of 0.30-0.35. 

Cross-section data in economics and other fields are frequently quite noisy 

(σy  is relatively large), and preliminary work indicated that the second-

stage (efficient) high-breakdown estimators tend to retain unacceptably 

large eiv biases in these difficult environments. After all, a high breakdown 

point guarantees that the estimator’s bias is finite but not that it is small. 

Nowadays, moreover, data sets often have a great many observations, in 

which case an estimator’s efficiency is less important than its ability to 

control bias.  

Among high-breakdown estimators, it seems obvious to choose one 

that is designed for linear regression. I use the Robust MM method 

(Maronna et al. 2006, chapter 5), hereafter denoted mmr; however, the 

least-trimmed-squares method (Rousseeuw and Leroy 1987, Rousseeuw 

and Van Driessen 2006) would be equally appropriate. Nevertheless, the 

simulations suggest that even an initial robust estimate from a regression-

based method may fail to cope with eiv when R2 is mediocre. Accordingly, I 

also use the initial (“raw”) estimate from the Minimum Covariance 

Determinant algorithm (Rousseeuw and Leroy 1987, chapter 7; Rousseeuw 

and Van Driessen 1999), denoted mcd. For a data set containing one or 

more continuous-valued regressors and a continuous-valued dependent 

variable, the mcd searches for the subsample containing 75% of the 



observations whose covariance matrix has the smallest determinant 

(volume). From that subsample --hopefully uncontaminated by eiv-- the 

covariance matrix and its corresponding mean vector are used to compute 

a robustified ols regression. (In several simulations, the Mahalanobis 

distances from the initial mcd estimate are employed to create robust 

weights for one round of weighted least squares. The efficiency 

improvement is denoted mcdw in Tables 1, 2 and 3.)    

This paper is by no means the first to juxtapose eiv and high-

breakdown estimation. Previous work includes Fekri and Ruiz-Gazen 2004, 

2006; Jung 2007; Maronna 2005; Rousseeuw and Leroy 1987, p. 284-285; 

and Zamar (1989). However, all these authors make a distinction between 

bad-leverage points and measurement error, whereas I see no difference in 

practice. These authors proceed in two stages: first they apply a high-

breakdown estimator to deal with a limited number of vertical outliers and 

bad-leverage points; then they use some version of orthogonal regression 

to handle eiv, which is assumed to affect the entire sample. On the other 

hand, I assume that eiv seriously affects less than half the sample, where it 

shows up as bad-leverage points. Therefore only the first stage is required, 

and it also deals with vertical outliers if they are not too numerous. There is 

no need for the often-problematic identifying assumptions of orthogonal 

regression.       

 Some statistical software environments that currently implement high-

breakdown estimators are MATLAB (Verboven and Hubert 2005), R (Konis 

2011, Maechler 2011, Todorov 2011), SAS (Chen 2002), and STATA 

(Verardi and Croux 2009). To compute mmr, I use lmRob from Konis 

(2011); for mcd, I use covMcd from Maechler (2011).     

 

Simulations 

 

This section reports six simulations of the eiv model. Each simulation 

has these characteristics: 0 is the value of the intercept α; 1 is the value of 

the true slope coefficient(s) β; the sample is replicated 1000 times; and for 

each sample, the regressor(s) are contaminated with measurement error in 

25 percent of the observations unless stated otherwise. For the slope 

coefficient(s), Tables 1 through 6 report the bias, the root mean squared 



error (rmse), and the actual coverage for a nominal 90-percent confidence 

interval. (The interval is computed as the average value of the coefficient in 

the simulation ± 1.65 times the coefficient’s standard deviation in the 

simulation. Coverage is the proportion of samples for which the computed 

interval contains 1, the value of β.) In the text and tables, z ~ N(µ,σ) 

denotes a normally-distributed random variable z with expectation µ and 

standard deviation σ; and n denotes the sample size. The estimators to be 

simulated are ols, mmr, mcd, mcdw, org, and mom. 

 For example, Table 1 reports the simulation of a bivariate eiv 

regression in which the correlation between yi and xi is rather high: R2 = 

0.800: specifically, uxi ~ N(0,4), uyi ~ N(0,1) and xi  ~ N(0,2). For 200 

observations, ols has a downward bias of about 50 percent with negligible 

sampling error; in other words, ols is efficient but has a large bias and 

correspondingly poor coverage. On the other hand, the downward biases of 

mmr and mcd are less than 5 percent; and their coverages are close to the 

nominal level. For mcdw, the bias is slightly larger in magnitude and the 

coverage is a little worse. When n = 2000, the ols results are unchanged. 

The biases of mmr, mcd and mcdw remain numerically small, but only mcd 

still has coverage near the nominal level.  

For the bivariate regression in Table 2, the correlation between yi and 

xi is mediocre: R2 = 0.310, which may be more typical of cross-section data 

sets. Again ols has a large bias and no coverage, but now mmr also 

performs poorly for both sample sizes whereas mcd and mcdw have rather 

small biases. When n = 200, the trade-off between mcd and mcdw is 

apparent: the former has less bias, the latter has less sampling variation 

and hence a smaller rmse; both have very good coverage. When n = 2000, 

the coverage of mcd remains near the nominal level but that of mcdw 

deteriorates notably.   

 The canonical eiv model (1) assumes that the expected value of uxi is 

0; but as Malinvaud (1980, p. 384-385) suggests, this may be unrealistic: 

measurement error could also change the level of the observed regressor. 

Table 3 repeats the simulation in Table 2 except that the mean of uxi  is now 

10 instead of 0. The biases of ols and mmr balloon to more than 80 

percent, but mcd has negligible bias and excellent coverage; also its rmse 

shrinks dramatically when n is 2000 instead of 200.  



 Table 4 summarizes a multiple regression for which R2 would be 

about 0.35 in the absence of eiv. However, both regressors (x and z) are 

affected by eiv. Specifically, n = 1000 and each regressor has 125 

measurement errors at non-overlapping observations, so total 

contamination is again 25 percent. Unlike ols and mmr, mcd has negligible 

bias and excellent coverage. When n = 200, the three estimators have 

similar rmse; but mcd has the largest rmse when n = 2000. This simulation 

indicates that, as long as total contamination is not too large, mcd can be 

applied in situations where it is suspected that eiv affects more than one 

regressor.  

 Table 5 reverts to bivariate regression and compares ols and mcd to 

org and mom. Here uxi and uyi have the same standard deviation, which 

should favor org; but uxi and xi are both normally distributed, so mom has 

useless instruments. When the eiv contamination is 25 percent, mcd 

performs best in terms of bias, rmse and coverage. The bias of org is 

actually positive and large while mom has a huge bias and rmse. However, 

org performs very well when eiv is present in all observations (100 percent 

contamination), while mcd is no better than ols and mom is very bad. 

These latter results reflect a situation that is ideal for org but fatal for mcd, 

which is vulnerable to breakdown whenever contamination approaches or 

exceeds 50 percent.  

 Table 6 compares the same four estimators when uxi and uyi have 

different standard deviations and xi is a chi-squared variable with 2 degrees 

of freedom. This case is expected to be less favorable to org and more 

favorable for mom, whose instruments should be strong since xi does not 

resemble a normal random variable. When eiv contamination is 25 percent, 

mom has the smallest bias and rmse together with excellent coverage 

while mcd is in second place; ols and org perform poorly. When eiv 

contamination is 100 percent, only mom performs well.  

 The preceding simulations can be extended in several directions. For 

example, one could explore correlations between uxi  and uyi or between uxi  

and xi. Levels of eiv contamination below 25 percent and nearer to 50 

percent could be examined, as could the effect of a single mismeasured 

regressor on the estimated coefficients of correctly-measured regressors. 

In addition, one could test alternative calibrations and implementations of 



algorithms for the high-breakdown estimators mmr, mcd and mcdw. Of 

course, no set of simulations will be dispositive for the relative merits of the 

various eiv estimators. With this caveat in mind, I tentatively conclude that 

the simulations make a good case for trying mcd in situations where 

measurement error is suspected, especially in cross-section data sets 

where n is “large” and it is reasonable to assume that serious eiv 

contamination affects a minority of the observations. 

 

Actual data sets 

 

 I now turn to a brief presentation of two cross-section samples for 

which the linear-regression estimates may be affected by eiv. In Table 7, 

food expenditure is regressed on income for 235 Belgian households 

(Koenker 2011). The slope coefficients for mmr and mcd are similar, and 

both are significantly larger than the ols estimate. If, as is often conjectured, 

income reported by households is subject to measurement error and 

transitory effects, then the low ols estimate probably reflects attenuation. 

The mmr and mcd estimates may be similar because R2 is high.  

 In Table 7, the ols standard error is calculated as usual for the iid 

model, and Maronna et al. (2006, chapter 5) derive the asymptotic standard 

error for mmr. The mcd standard error is estimated using the “wild” 

bootstrap (Flachaire 2005). Salibian-Barrera and Zamar (2002) address the 

statistical and computational issues of bootstrapping high-breakdown 

estimators.  

 A simple hedonic housing-demand model is displayed in Table 8 

(Bivand 2011). In a log-linear regression, the average sale price of a house 

is explained by the house’s age, lot size, and number of rooms. The table 

does not show standard errors, but the statistical significance of each 

regression coefficient is high, in part because of the large sample size. The 

eiv problem might arise because age is only a crude proxy for the house’s 

condition and need of repairs (indeed some older homes are per se more 

valuable), and the lot size is also a proxy that does not take into account 

the shape of the lot and its surface features. For these and other reasons, 

researchers often try to include additional regressors, especially spatially-

weighted variables that capture the characteristics of neighboring houses 



(LeSage and Pace 2009). In any case, Table 8 shows that the mmr 

estimates are closer to ols than to mcd. Does this reflect a situation like 

Tables 2, 3 and 4, where mmr performs poorly because R2 is not very 

high?   

 

Conclusion 

 

 Eiv is a long-standing, difficult issue in linear regression; and 

progress depends in part on new identifying assumptions. In this spirit, I 

characterize measurement error as bad-leverage points and assume that 

fewer than half the sample observations are heavily contaminated, in which 

case a high-breakdown estimator may be able to isolate and downweight or 

discard the problematic data. In simulations of simple and multiple 

regression where eiv affected 25% of the data and R2 was mediocre, the 

initial (raw) mcd estimates had small bias, very good coverage of the 90% 

confidence interval, and precision that improved when the sample size 

increased (as evidenced by smaller rmse together with virtually unchanged 

bias). When the mcd is applied to actual data sets, the bootstrap or other 

resampling methods could provide standard errors and confidence 

intervals.  

This paper has not addressed the eiv problem in non-linear and 

nonparametric regression (e. g., Schennach 2004a, 2004b), nor has it 

considered the complications that arise when the uxi or the uyi exhibit 

temporal or spatial dependence. Moreover, the presence of several dummy 

variables in a linear regression may raise computational and statistical 

issues for mmr and mcd (Blankmeyer 2006; Maronna et al. 2006, p. 361-

362).   

Researchers who are already making routine use of high-breakdown 

estimators might conclude that this paper offers them little new information, 

and they would be substantially correct since I am simply associating eiv 

with bad-leverage points. However, those researchers may want to note 

the poor performance of mmr when R2 is mediocre. In Figure 1 the valid 

observations lie inside a compact ellipse, which suggests why mcd is 

preferable to mmr in this situation (compare Rousseeuw and Leroy 1987, 

Figure 13 on p. 70).   



 In view of its canonical status and pedagogical value, I have 

emphasized the bivariate eiv model (1). However, Tables 4 and 8 make the 

point that high-breakdown estimation is especially advantageous for 

multiple linear regression, where scatter plots are less effective in detecting  

bad-leverage observations and where conventional outlier diagnostics can 

be quite misleading (Rousseeuw and Leroy 1987, chapter 3 and 6).      
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         Table 1. Bivariate regression with “true” R2 = 0.800 

                               uxi ~ N(0,4)   uyi ~ N(0,1)   xi ~ N(0,2) 

          n = 200                         n = 2000 

         bias     rmse    coverage        bias     rmse     coverage 

               ols             -0.497   0.501      0.000         -0.500    0.501       0.000 

               mmr          -0.039   0.088      0.876         -0.034    0.041       0.571 

               mcd           -0.029   0.146       0.887        -0.018    0.054       0.886 

               mcdw        -0.060   0.119       0.845        -0.046    0.056       0.597 

 

 

Table 2. Bivariate regression with “true” R2 = 0.310 

                                      uxi ~ N(0,4)    uyi ~ N(0,3)    xi ~ N(0,2) 

       n = 200                         n = 2000 

     bias     rmse    coverage          bias     rmse     coverage 

               ols         -0.496   0.505      0.000           -0.498   0.499        0.000  

               mmr      -0.363   0.442      0.574           -0.374   0.385        0.006 

               mcd      -0.088   0.469      0.896            -0.087   0.182        0.846      

               mcdw    -0.146   0.345      0.861           -0.146   0.176        0.545 

            

 

 

 

 

 



 

 

Table 3. Bivariate regression with “true” R2 = 0.310 

                                   uxi ~ N(10,4)   uyi ~ N(0,3)   xi ~ N(0,2) 

     n = 200                     n = 2000 

   bias     rmse    coverage         bias      rmse     coverage 

               ols      -0.851   0.852     0.000           -0.850    0.850       0.000  

               mmr   -0.839    0.846    0.000           -0.847    0.847       0.000     

               mcd   -0.011    0.384     0.902           -0.015    0.058       0.885      

               mcdw  0.151    0.294     0.835           -0.142    0.165       0.490 

                

 

 

Table 4. Multiple regression with “true” R2 = 0.352, n = 1000 

             uxi ~ N(0,4)   uzi ~ N(0,3)   uyi ~ N(0,4)   xi,zi  ~ N(0,2)    rxz =  0.393    

 

           x coefficient                              z coefficient 

   bias     rmse    coverage         bias      rmse     coverage 

               ols      -0.249   0.258      0.021          -0.187     0.206        0.280 

               mmr   -0.146    0.220     0.758           -0.162    0.256        0.795    

               mcd   -0.023    0.248      0.896          -0.018     0.324        0.893    

 

 

 



 

       Table 5. Bivariate regression with “true” R2 = 0.310, n = 1000 

                                     uxi, uyi  ~ N(0,3)    xi  ~ N(0,2)     

x contamination = 25%                x contamination = 100%             

       bias      rmse      coverage           bias        rmse     coverage 

           ols      -0.359    0.362         0.000            -0.691     0.692        0.000    

           org       1.159     1.168        0.000             0.005     0.099        0.897 

     mom   -4.353  135.143        0.996          -29.682 948.786        0.999         

          mcd    -0.107      0.251        0.869            -0.688     0.708         0.008                 

 

 

Table 6. Bivariate regression with “true” R2 = 0.310,  n = 1000 

                                   uxi ~ N(0,4)   uyi ~ N(0,3)    xi  ~ Χ2(2 df)     

x contamination = 25%                 x contamination = 100%             

               bias       rmse      coverage           bias        rmse     coverage 

      ols      -0.499     0.501         0.000            -0.800     0.801        0.000    

      org       0.821      0.837        0.000             -0.548     0.551        0.000 

    mom    0.010      0.155        0.907              0.056     0.361        0.959         

       mcd    -0.078      0.324        0.881             -0.877     0.886        0.000                 

  

 

 

  

 



  

 Table 7. Food Expenditures 

 n = 235 Belgian households 

 dep var = food expenditure 

 regressor = income 

 

      ols      mmr      mcd 

 income         0.48      0.65     0.69 

         std err           0.01      0.02     0.03 

 

         R2                   0.83      0.88     0.83 

 

 Table 8. Hedonic Housing Demand 

 n = 25,357 houses sold in Lucas  Co. 

                 Ohio, 1993-98 

           dep var = log of house price 

           regressors = logs of house’s age, lot 

                           size and number of rooms 

    

      ols       mmr    mcd 

 

         ln age  -0.36      -0.34      -0.51 

         ln lot size      0.34       0.24       0.48 

         ln rooms       0.71       0.87       0.63 

 

 R2                  0.49       0.65       0.59 
 


