
 

INTEGRATING MACHINE LEARNING AND WEATHER ANALYTICS 

FOR SIZING VARIABLE GENERATION WITH 

UTILITY-SCALE ENERGY STORAGE 

 

by 

 

Fei Sun, M.S 

 

A dissertation submitted to the Graduate Council of 

Texas State University in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

with a Major in Materials Science, Engineering, and Commercialization 

May 2021 

 

 

 

 

 

Committee Members: 

 Tongdan Jin, Chair 

 Zhijie Sasha Dong  

 Tahir Ekin  

 Byron J Gao 

 Yijuan Lu  

 Byoung Hee You



 

 

COPYRIGHT 

by 

Fei Sun 

2021 



 

 

 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

 

 

Fair Use 

 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgement. Use of this material for 

financial gain without the author’s express written permission is not allowed.  

 

 

 

Duplication Permission 

 

As the copyright holder of this work I, Fei Sun, refuse permission to copy in excess of the 

“Fair Use” exemption without my written permission.



 

iv 

ACKNOWLEDGEMENTS 

 

Foremost, I would like to express my deepest appreciation to my advisor Dr. 

Tongdan Jin in the Ingram School of Engineering at Texas State University, for giving 

me the opportunity to work with him. He also provides me with an excellent research 

atmosphere for me. His support, supervision, and inspiration encourage me to accomplish 

course work and the dissertation throughout my graduate study at Texas State University. 

Besides my advisor, I would like to thank the rest of the committee members: Dr. 

Zhijie Sasha Dong, Dr. Tahir Ekin, Dr. Byron J Gao, Dr. Yijuan Lu, and Dr. Byoung Hee 

You for their encouragement, insightful comments,  providing me valuable suggestions to 

improve research. My sincere thanks also go to Dr. Clara Novoa in the Ingram School of 

Engineering at Texas State University who is always there to provide insightful help and 

support me in all the time of research. I am extremely grateful to Dr. Irvin in the 

Materials Science, Engineering, and Commercialization at Texas State University 

creating great opportunities throughout my school years. I wish to express my 

appreciation to Ms. Karla M Pizana, Ms. Kelsie L Crumpton, Ms. Sarah D Rivas, and 

Ms. Carla J Batey for their great assistance in the past years. I would express my 

appreciation to the National Science Foundation for supporting me under the NSF CBET 

Grant (No. 1704933). 

Last but not least, I would like to thank my husband Dong and my son Zongyan. 

They are supporting me throughout my life and encouraging me with their best wishes. 



 

v 

TABLE OF CONTENTS 

 

Page 

 

ACKNOWLEDGEMENTS  .............................................................................................. iv 

 

LIST OF TABLES  ............................................................................................................ ix 

 

LIST OF FIGURES  ........................................................................................................ xiii 

 

LIST OF ABBREVIATIONS  ........................................................................................ xvii 

 

ABSTRACT  .................................................................................................................... xix 

 

CHAPTER 

 

1. INTRODUCTION AND LITERATURE REVIEW ...........................................1 

 

1.1. Introduction ...........................................................................................1 

1.2. Literature Review..................................................................................4 

1.2.1. Energy Storage Devices and Materials ........................................4 

1.2.2. Hybrid Energy Storage System ....................................................9 

1.2.3. Wind and Solar Generation Forecast Models ............................12 

1.2.4. Distributed Renewable Generation System ...............................19 

1.3. System Configuration and Research Methodology ............................22 

1.3.1. System Configuration ................................................................22 

1.3.2. Research Methodology ..............................................................24 

1.3.3. Outline of Dissertation ...............................................................25 

 

2. CLIMATE DATA ANALYSIS .........................................................................27 

 

2.1. Raw Data and Clean Methodology .....................................................28 

2.1.1. Classify Data Structure ..............................................................29 

2.1.2. Remove Redundant Data ...........................................................30 

2.1.3. Locate Missing Observations .....................................................30 

2.1.4. Impute Missing Value ................................................................31 

2.2. Climate Data Information ...................................................................33 

2.2.1. Wind Speed ................................................................................35 

2.2.2. Weather Features .......................................................................43 

2.3. Data Transformation ...........................................................................45 

2.4. Extreme Climate Event .......................................................................46 



 

vi 

3. FORECASTING MODEL .................................................................................47 

 

3.1. Research Methodology  ......................................................................47 

3.2. Artificial Neural Network Forecasting Model ....................................50 

3.2.1. Topology of FNN .......................................................................51 

3.2.2. Backpropagation Algorithm.......................................................53 

3.2.3. Activation Function ...................................................................54 

3.3. Performance Evaluation Approaches ..................................................56 

3.4. Wind Speed Forecasting Models and Results .....................................58 

3.4.1. Persistence Forecasting Model ..................................................59 

3.4.2. ARIMA Forecasting Model .......................................................59 

3.4.3. Hybrid Short-term Forecasting Model .......................................64 

3.4.4. Short-term Wind Speed Forecasting Result and Comparison ...65 

3.4.5. Deep Learning Long-term Wind Speed Prediction Model ........74 

3.5. Weather Features Forecasting Models and Results ............................76 

3.5.1. Markov Model ...........................................................................77 

3.5.2. Hidden Markov Model ...............................................................79 

3.5.3. Recurrent Neural Network Model .............................................82 

3.5.4. Weather Features Forecasting Results and Comparisons ..........84 

 

4. MATHEMATICAL FUNCTIONS IN MODELS .............................................90 

 

4.1. Modeling Wind Turbine Generation  ..................................................91 

4.1.1. Wind Source Property ................................................................92 

4.1.2. Mathematics Model of Wind Turbine Generation .....................94 

4.1.3. Simulate Generation of Wind Turbine .......................................96 

4.2. Modeling Solar Panel Generation .......................................................97 

4.2.1. Mathematics Model of Solar Panel Generation .........................97 

4.2.2. Simulate Generation of Solar PV .............................................104 

4.3. Modeling Hybrid Energy Storage System ........................................106 

4.3.1. Mathematics Model of Lithium-ion Battery ............................108 

4.3.2. Mathematics Model of Graphene-based SC ............................109 

4.4. Modeling Charging and Discharging Process of HESS ...................110 

4.4.1. Mathematical Function in Charging Process ...........................111 

4.4.2. Mathematical Function in Discharging Process ......................112 

4.4.3. State of Charge .........................................................................112 

4.4.4. Modeling Cycle Life of Battery  ..............................................113 

4.5. Modeling Load Demand ...................................................................113 

 

 

 



 

vii 

5. LCOE PROSUMER MODEL .........................................................................116 

  

5.1. Cost Analysis ....................................................................................118 

5.1.1. Installation Cost .......................................................................118 

5.1.2. Operation and Maintenance (O&M) Cost ................................119 

      5.1.3. Electricity Bill ..........................................................................119 

5.2. Income Analysis................................................................................120 

5.2.1. Carbon Credit Incentive ...........................................................120 

5.2.2. Net Metering Income ...............................................................120 

5.3. System Reliability Criterion .............................................................121 

5.4. MLCOE Model .................................................................................122 

5.5. Numerical Experiment Results .........................................................124 

 

6. VPP-BASED MULTI-TIER PRODUCTION INVENTORY MODEL..........128 

 

6.1. Problem Statement ............................................................................130 

6.2. Dispatch Strategy ..............................................................................134 

6.3. PSC-VPP Optimization Model .........................................................135 

6.3.1. Objective Function ...................................................................135 

6.3.2. Production-inventory Constraints ............................................136 

6.3.3. Energy Demand Constraints ....................................................137 

6.3.4. CHP Constraints.......................................................................139 

6.3.5. Capacity Constraints ................................................................140 

6.3.6. Chance Constraint ....................................................................141 

6.4. Capacity Factor of WT and PV in Testing Cities .............................141 

6.5. Numerical Experiments ....................................................................142 

6.5.1. Model Parameters ....................................................................142 

6.5.2. Numerical Experiment Result for 2F-1W-2S Network ...........144 

6.5.3. Result for Production Planning ................................................145 

6.5.4. Result for Microgrid Allocation and Scheduling .....................147 

6.6. Sensitivity Analysis ..........................................................................149 

6.6.1. Sensitivity Analysis on Production Planning ...........................150 

6.6.2. Sensitivity Analysis on Microgrid Allocation .........................151 

6.6.3. Sensitivity Analysis on CHP Operation ...................................154 

6.7. Conclusions of Analysis ...................................................................155 

 

7. BATTERY TECHNOLOGY DEVELOPMENT AND SIMULATION .........157 

 

7.1. Lithium-ion Electrochemical Energy Storage Device ......................157 

7.2. Supercapacitor Energy Storage Device ............................................158 

7.3. Nanomaterial for SC Electrode .........................................................160 



 

viii 

7.3.1. Graphene and graphene oxide ..................................................161 

7.3.2. Graphene and Metal Oxide Nanocomposite Electrode ............162 

7.3.3. Graphene and CNT Flexible Electrode ....................................164 

7.4. Simulate Performance of Lithium-ion Battery .................................166 

7.5. Commercialization ............................................................................174 

7.5.1. Supercapacitor Penetration Rate Forecast ...............................174 

7.5.2. Li-ion Battery Financial  Forecast ...........................................176 

 

8. CONCLUSIONS AND FUTURE WORK ......................................................179 

 

8.1. Conclusions .......................................................................................179 

8.2. Future Studies ...................................................................................183 

8.2.1. Multi-Objective Optimization  Model .....................................183 

8.2.2. Joint Long- and Short-Term Forecasting Model .....................184 

8.2.3. Energy Storage Technology .....................................................184 

 

APPENDIX SECTION ....................................................................................................186 

REFERENCES  ...............................................................................................................201 

 



 

ix 

LIST OF TABLES 

 

Table Page 

  

1.1 Mechanical Energy Storage Characteristics and Cost ...................................................6 

 

1.2 Commercial LIBs Performance .....................................................................................7 

 

1.3 Parameters of Various Energy Storage Technologies .................................................11 

 

2.1 Summary of Cities Geographic Information................................................................27 

 

2.2 Raw Dataset Sample ....................................................................................................28 

 

2.3 Classes Description in Forecasting Model ...................................................................30 

 

2.4 Cleaning Dataset Sample .............................................................................................33 

 

2.5 Summary of Climate Condition on Testing Cities .......................................................34 

 

2.6 Two-Parameter Weibull Distribution Expression of Wind Speed ...............................37 

 

2.7 Statistics for Wind Speed (m/s), Temperature (°C), and Dew Point (°C) ...................42 

 

2.8 Proportion of Weather Features in Testing Cities (%) .................................................44 

 

2.9 Cloud Fraction in Five States .......................................................................................45 

 

2.10 Number of Observations in Training, Validation, and Testing Datasets ...................46 

 

3.1 ARIMA Model Structure for Testing Cities ................................................................64 

 

3.2 Forecasting Results of ARIMA Model with Five Forecasting Horizons ....................66 

 

3.3 Models with Various Input Features for Wellington ...................................................68 

 

3.4  Comparisons with Persistence Model in 1-hour Ahead Forecasting ..........................70 

 

3.5  Comparisons between Hybrid Model and FNN Model ..............................................71 

 

3.6  Input Variables for Long-term Deep Learning Prediction Model ..............................75 



 

x 

3.7  Performance of Deep Learning Model with Different Layers and Neurons ..............75 

 

3.8  Weather States Summary of Phoenix and New York .................................................77 

 

3.9  Random 48-hour of Weather States  in Phoenix and New York ................................77 

 

3.10  Comparisons of Different Predictors for Weather States Forecasting Model ..........83 

 

3.11 Confusion Matrix with Threshold Value in Phoenix. ................................................85 

 

3.12 Confusion Matrix without Threshold Value in Phoenix ............................................85 

 

3.13  Forecasting Accuracy over Five Forecasting Horizations ........................................86 

 

3.14  Comparisons between 5- and 7-state Model with Seasonal Data. ............................87 

 

3.15  Ten-state Weather Features Prediction Result in New York ....................................88 

 

3.16  Comparisons among MC,HMM, and ANN Model in Phoenix ................................88 

 

3.17  Comparisons of One-hour Ahead Forecasting Accuracy .........................................89 

 

4.1  Parameters of Current Wind Turbine Technologies ...................................................92 

 

4.2  Wind Speed at Different Height Levels in Wellington ...............................................94 

 

4.3  2MW GE Wind Turbines Platform .............................................................................96 

 

4.4  Summary of Key Factors that Impact PV Output Power ..........................................103 

 

4.5  Weather Coefficients under Different States ............................................................103 

 

4.6  Specifications of PV Module ....................................................................................104 

 

4.7  Cost and performance of Energy Storage Devices based on Materials ....................107 

 

4.8  Mean and Standard Deviation of Monthly Load ......................................................115 

 

5.1  Summary of Climate Conditions ..............................................................................116 

 

5.2  Operation Modes of Manufacturer ............................................................................117 



 

xi 

5.3  Notation of Parameters .............................................................................................117 

 

5.4  Notation of Decision Variables .................................................................................118 

 

5.5  Experimental Results for Case I ...............................................................................124 

 

5.6  Experimental Results: Cases I vs. Cases II ...............................................................125 

 

5.7  DoD Impact on Installation Capacity of Devices in Boston .....................................126 

 

6.1 Notation of Sets in PSC-VPP Model .........................................................................131 

 

6.2  Notation of Parameters in PSC-VPP Model .............................................................132 

 

6.3  Notation of Variables in PSC-VPP Model ...............................................................134 

 

6.4  Capacity Factors of WT and PV in Five Cities.........................................................142 

 

6.5  Weekly Product Demands from Stores .....................................................................142 

 

6.6  Parameters for Production Planning in Model ..........................................................143 

 

6.7  Parameter value in  PSC-VPP ...................................................................................144 

 

6.8  Production-inventory Cost ........................................................................................145 

 

6.9  Size of WT, PV and ESS for the 2F-1W-2S Network ..............................................147 

 

6.10  Sensitivity Analysis on Production Planning ..........................................................150 

 

6.11  Comparisons of Annual Cost among Cases ............................................................151 

 

6.12  Size of WT, PV, and ESS from Case 1 to Case 7 ...................................................152 

 

6.13  Size of WT, PV, and ESS  from Case 8 to Case 14 ................................................153 

 

7.1  Comparisons of Specific Surface Area with EDLC Capacitance .............................161 

 

7.2  Electrode Materials of SCs .......................................................................................166 

 

7.3  Notation of Parameters .............................................................................................167 



 

xii 

7.4  Factors and Levels of Parameters in Model. .............................................................171 

 

7.5  Simulation Result Based on Various Levels of Three Factors .................................173 

 

7.6  Five Year Cash Flows Statement ..............................................................................178 

 

  



 

xiii 

LIST OF FIGURES 

 

Figure Page 

 

1.1 Graphene Band Structure ...............................................................................................8 

 

1.2 Rolling of Graphene Sheet into CNT.............................................................................9 

 

1.3 24-h Residential Load Profile and PV Output Power ....................................................9 

 

1.4 Comparisons of Energy and Power Density of Energy Storage Techniques ...............10 

 

1.5 A Grid-connected Distributed onsite Power Generation System with HESS..............23 

 

1.6 Operation Strategy of HESS ........................................................................................24 

 

2.1 Probability of Bi Given A .............................................................................................32 

 

2.2 Weather Climate in Wellington, Phoenix, and San Francisco .....................................34 

 

2.3 Wind Portfolios of Testing Cities in 2014 ...................................................................35 

 

2.4 Hourly Wind Speed Density Distribution ....................................................................36 

 

2.5 Monthly Average Wind Speed .....................................................................................38 

 

2.6 Diurnal Wind Speed variation .....................................................................................39 

 

2.7 Wind Rose of Testing Cities ........................................................................................40 

 

2.8 Correlation between Variables .....................................................................................41 

 

2.9 Histogram Graph of Weather States in Phoenix and New York .................................43 

 

2.10 Weather States in Four Seasons in Phoenix and New York ......................................44 

 

3.1. Scheme of Methodology .............................................................................................48 

 

3.2 Multiple Forecasting Horizons ....................................................................................49 

 

3.3 Structure of FNN..........................................................................................................51 



 

xiv 

3.4 Model Development and Training Process ..................................................................53 

 

3.5 Output Characteristic Curve of Sigmoid Function ......................................................55 

 

3.6 Output Characteristic Curve of Softmax Function ......................................................56 

 

3.7 Confusion Matrix for a Two-class Model ....................................................................58 

 

3.8 Real and Differenced Wind Speed Data in a Month of Wellington ............................61 

 

3.9 ACF and PACF of Wind Data in Wellington ..............................................................63 

 

3.10 Flowchart for Construct Proposed Model ..................................................................65 

 

3.11 ARIMA Model Forecasting Result in Wellington .....................................................67 

 

3.12 Comparisons of Forecasting Models under Different Predictors ..............................68 

 

3.13 Structure of Hybrid Wind Speed Forecasting Model ................................................70 

 

3.14 Comparisons of 1-hour Ahead Forecasting Models in Wellington ...........................71 

 

3.15 Comparisons of RMSE and MAE among Five Models for Three Cities ..................72 

 

3.16 Prediction Intervals in Day-ahead Prediction Models ...............................................73 

 

3.17 Markov Chain with Two States .................................................................................78 

 

3.18 5×5 States Transition Matrix .....................................................................................79 

 

3.19 HMM Model with Two States and Three Observations ............................................81 

 

3.20 Emission Matrix with Five States and Ten Observations ..........................................81 

 

3.21 Comparison of Accuracy among Eight Models .........................................................83 

 

3.22 Structure of Multi-classification Model .....................................................................84 

 

3.23 Visualization of Forecasting Accuracy ......................................................................86 

 

4.1 Microgrid Power System with HESS ..........................................................................91 



 

xv 

4.2 Wind Resource Distribution across World ..................................................................93 

 

4.3 Wind Speed Variety with Different Height and Roughness ........................................93 

 

4.4 Schematic of Wind Energy Conversion System ..........................................................95 

 

4.5 Wind Turbine Power Curve .........................................................................................95 

 

4.6 Hourly Generation of Wind Turbine through 2015 in Boston .....................................96 

 

4.7 Surface Downward Solar Irradiance across World ......................................................97 

 

4.8 Equivalent Circuit of Photovoltaic Cell .......................................................................98 

 

4.9 Solar Irradiance on Solar PV in a Day .......................................................................100 

 

4.10 Solar Irradiance on Jan 1st, 2015 at Phoenix ............................................................102 

 

4.11 I-U and P-U Curve of the PV Cell under Different Temperatures ..........................104 

  

4.12 I-U and P-U Curve of PV Cell under Different Solar Irradiance ............................105 

 

4.13 Hourly Generation of Solar PV through 2015 in Phoenix .......................................106 

 

4.14 Wafer Fab Load Profile ...........................................................................................114 

 

4.15 Simulate Load Demand in a Day .............................................................................115 

 

5.1 Experimental Results: Cases I, III, and IV ................................................................126 

 

6.1 Block Diagram of VPP ..............................................................................................131 

 

6.2 Energy, Product, and Transportation Flow across Facilities .....................................143 

 

6.3 Production and Inventory Decision of the 2F-1W-2S Network ................................146 

 

6.4 Transportation between Warehouse and Stores of the 2F-1W-2S Network ..............147 

 

6.5 Hourly Energy Transactions in 1st and 3rd Quarter in Factories ................................149 

 

6.6 Status of ES in 24 hours .............................................................................................154 



 

xvi 

6.7 Scheduling CHP Operation Hours in One-year at Facilities. ....................................155 

 

7.1 Charging and Discharging Process of Li-ion Battery ................................................158 

 

7.2 Schematic of an EDLC ..............................................................................................158 

 

7.3 Schematic of Two Devices with Different Spacer Thickness ...................................162 

 

7.4 Graphitized MWCNT with Varying Foliate Density.................................................165 

 

7.5 Discharge Curve Comparison  under Various Cycle Numbers .................................170 

 

7.6 Specific Capacity under Various Conditions .............................................................170 

 

7.7 Voltage Behavior for Various Designs .......................................................................172 

 

7.8 Energy Efficiency under Various Conditions ............................................................172 

 

7.9 SC Penetration Rate vs. Capacity Cost ......................................................................175 

 

7.10 Cost Ratio (%)..........................................................................................................177 

 

7.11 24-Month Cash Flow ...............................................................................................177  

  



 

xvii 

LIST OF ABBREVIATIONS 

 

Abbreviation Description 

 

AI Artificial Intelligence 

 

ANN Artificial Neural Network 

 

CAES Compressed Air Energy Storage 

 

LCOE                                Levelized Cost of Energy 

 

CDF                                   Cumulative Distribution Function 

 

CHP                                        Combine Heat and Power 

 

CRF                                 Capital Recovery Factor 

 

DG                   Distributed Generation 

 

DOD               Depth of Discharging  

 

EDLC  Electrical Double Layer Capacitors 

 

ES                 Energy Storage  

 

HESS                Hybrid Energy Storage System 

 

LIB                                          Lithium-ion Battery  

 

MIP               Mixed Integer Programming 

 

O&M               Operation & Maintenance 

 

PDF                 Probability Density Function 

 

PPA                Power Purchase Agreement 

 

PV                   Solar Photovoltaic Panel 

 

PSC                                          Product Supply Chain  



 

xviii 

RNN                                        Recurrent Neural Network 

 

SC Supercapacitor 

 

TS                                            Thermal Storage 

 

VPP                                          Virtual Power Plant 

 

WT                  Wind Turbine    

 

 

 



 

xix 

ABSTRACT 

To reverse climate change, both manufacturing and power sectors are undergoing 

a paradigm change by integrating renewable energy for sustainability operations. The 

goal of this study is to model and design a cost-effective, eco-friendly microgrid system 

to meet the uncertain load of large industrial and commercial users. The microgrid 

consists of wind turbines, solar photovoltaics, utility-scale hybrid energy storage system 

(HESS), and feed-in tariff program. HESS comprises the battery and supercapacitor made 

by lithium-ion and graphene materials, respectively.  

First, hybrid forecasting models combining multi-layer neural network and 

statistical inference are developed to predict the wind speed and weather states. The 

proposed models are implemented in six US cities with diverse climate profiles. The 

results show that proposed models outperform time series models in 3-to-24 hours ahead 

of wind speed forecasting by reducing 20 percent error. The weather state model shows 

yearly forecasting outperforms season-based prediction. A stochastic optimization 

program is further proposed to minimize the levelized cost of energy based on estimated 

power capacity factor. Finally, a virtual power plant system accommodating both 

electricity and thermal generation is proposed to minimize the operation cost of a three-

tier supply chain network. Various uncertainties are considered, including random power 

demand, time-of-use rate, government incentives, and the loss of load probability. 

Through sensitivity analysis, it is found the optimal sizing of renewable generators and 

lithium-ion battery is not only correlated with the climate conditions, but also depends on 



 

xx 

time-of-use rate and reliability criteria. 

Design of experiments is applied to investigate the capacity fade degree with three 

levels of factors: state of charge, the porosity of  positive electrode, and the particle 

radius size of positive active electrode material. Simulation results show lithium-ion 

battery yields a better performance when the positive active electrode material has a 

smaller size, while the porosity of positive electrode and state of charge are at a high 

level. In conclusion, Lithium-ion battery and graphene-based supercapacitor are the 

promising technology due to their declining cost and improving performance. The study 

shows that the distributed generation with utility-scale HESS is cost-effective in the long 

term and enhances power resilience against extreme weather. 

 

 

 

 

 

Keywords: Lithium-ion Battery, Graphene-based Supercapacitor, Hybrid Energy Storage 

System, Multi-layer Neural Network, Levelized Cost of Energy, Virtual Power Plant. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

To attain a sustainable future for the world, many manufacturing firms have 

adopted renewable energy in their daily business operations, including production, 

warehousing, transportation, and logistics. With heavy power demand and environmental 

effects, energy-intensive industries are striving to reduce energy costs by embracing 

renewable power through onsite or distributed generation. Hence, designing sustainable 

products and providing eco-friendly services become the goal for worldwide enterprises.  

For the reasons stated above, one promising solution is to power manufacturing 

facilities with onsite renewable energy. Due to technological advancement, solar and 

wind generation have become economically viable technologies as onsite power 

generators. The renewable energy used by the industrial facilities can be generated by 

rooftop solar photovoltaic (PV) arrays, backyard wind turbines (WT), biogas fuel cells, or 

other distributed renewable resources. According to IEA (2020), the major large industry 

worldwide will be powered by 20 - 40% renewable energy by 2030. At present there are 

two renewable energy solutions adopted by manufacturing sectors: 1) onsite renewable 

generators; and 2) power purchase agreement contract. 

The research solves the problem of minimizing the levelized cost of energy 

(LCOE) as well as maximizing the reliability of power systems. The scheme is focused 

on discussing the system planning method and the implementation procedure. Three 

phrases are designed to assist in achieving the goals: 1) analyzing big data; 2) 

constructing forecasting models; and 3) applying forecasting value in the models to 

minimize the LCOE by integrated hybrid energy storage system and operation cost in 
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three-tires production supply chain. 

The capacity of WT, solar PV, and hybrid energy storage devices are the decision 

variables in the model, and their values are influenced by the facility size, load demand, 

geographical location, and local climate conditions. Accurate forecasting of wind speed 

and weather features is important for optimizing the capital investment and the reliability 

of the distributed power system. The historic weather data information retrieved from the 

database over one decade is used to predict the wind speed and weather features, then the 

forecasting result is used to estimate capacity factor of renewable generators. The hybrid 

model, combined with the feedforward artificial neural network (FNN) and time series 

model of autoregressive integrated moving average (ARIMA),  is employed to forecast 

the wind speed and weather features. The forecasting result has a significant economic 

impact on operating an integrated renewable generation system. It also can substantially 

reduce the lifecycle costs of the energy storage system. 

To enhance power resilience against extreme weather events, a HESS comprised 

of supercapacitor (SC) and lithium-ion battery (LIB) is integrated into the microgrid 

power system. SC is designed to meet the fast charging-discharging power requirement 

due to its high-power density and excellent cycling stability. LIB is adopted to meet the 

large-scale capacity requirement due to its high energy density. A hybrid energy storage 

method plays an important role in balancing the gap of power response and energy 

duration. It also helps to create a more flexible and reliable power system. The capacity 

of the SC and LIB will be optimized based on the output of renewable generation,  power 

demand, and loss of power supply probability criterion (LPSP).  

Multiple factors need to be considered in the future, such as building a multi-stage 
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recourse stochastic model by considering the operation pattern of the manufacturing and 

load demand. Reducing missing data effect and deploying advanced prediction models is 

to enhance the forecasting accuracy of wind speed and weather features. In this study, the 

input attributes for the proposed model are also investigated in terms of the root of mean 

squared error (RMSE) and mean absolute error (MAE). 

The system costs include the capacity installation, maintenance and operation, and 

the utility bills. Meanwhile, green energy incentives such as carbon credit and feed-in-

tariff programs will be subtracted from the system cost. A large linear mixed-integer 

mathematical programming model is formulated to minimize system cost. The simulation 

programs are developed to mimic intermittent power output of WT and PV generation in 

representative cities according to the forecast value of wind speed and weather states, 

respectively. In addition, the LCOE will be computed in each testing city with diverse 

climate profiles, which gives additional information about renewable energy costs for 

manufacturers in those corresponding areas. It is anticipated that the results of weights 

and biases configuration post the training process leading to the minimum output error. 

The proposed forecast model will be tested by evaluating the performance using various 

input features, number of hidden layers, and neurons in each hidden layer. The 

performance of the proposed method will also be compared with existing forecasting 

strategies.  

The study will provide the solutions for the following questions: 

1). Minimizing the LCOE and annual operation cost of  renewable DG system,   

      respectively. 

2). Optimizing size of WT, solar PV, and HESS in each location under power 
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supply reliability criteria. 

3). Constructing appropriate wind speed and weather feature forecast models 

based on big data analysis and machine learning algorithm. 

1.2 Literature Review 

Renewable energy resources include solar, wind, tides, biomass, and geothermal 

heat.  All of these are considered as alternatives to replacing conventional coal, gas, and 

oil. Both wind power and solar energy are the two main alternative energy resources 

among them. The main challenge to harness renewable energy as the power supply is its 

intermittent and uncertain generation. The output is impacted by climate conditions, such 

as wind speed, wind speed direction, weather features, or temperature. Thus, forecasting 

models with higher accuracy of wind speed and weather features can assist the 

integration of renewable power systems in both public and private sectors. The literature 

review is divided into four parts to survey the current research. The first part reviews the 

material and structure of the current energy storage devices. The second subsection 

explores a retrospective analysis of the current electrical storage system in a renewable 

power system. The third subsection reviews the prediction methodologies for the time 

series climate data. The fourth part focuses on constructing mathematical models and 

optimization algorithm for an onsite renewable power system.   

1.2.1 Energy Storage Devices and Materials 

The electrical energy storage device converts electrical energy into another form 

that can be stored and releases the stored energy when it is desired. In brief, global 

storage power capacity was 4.67 TWh in 2017. The capacity will reach approximately 

11.89-15.72 TWh in 2030 (Ralon et al., 2017). The energy storage device demonstrates 
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multiple functions through mitigating intermittency of the renewable generation system, 

improving the quality and reliability of power supply, meeting peak demands, and 

supporting smart grid operation. This research will focus on the application of the energy 

storage devices in microgrid, i.e., the onsite renewable power system. Available large-

scale applications of energy storage technologies can be divided into four categories: 

kinetic energy (flywheels or compressed air), chemical energy (batteries), gravitational 

potential energy (pumped hydroelectric), and energy in the form of electrical (capacitors) 

and magnetic fields. 

According to the US Energy Information Administration (EIA, 2020), existing 

grid-scale energy storage is dominated by pumped hydroelectric, around 99% in capacity. 

The rest of the installed storage capacity worldwide is nearly 127 GW composed by 

compressed air (440 MW), sodium-sulfur (304 MW), lithium-ion (100 MW), lead-acid 

(70 MW), nickel-cadmium (27 MW), and flywheel (25 MW). However, pumped hydro 

has very low energy density, and the amount of delivered energy is limited by 

constructing volume. In addition, pumped hydro is not a cost-effective technology due to 

requiring both a huge area and the proper terrain to store water. The capital cost is 

$5,595/kW and the fixed operations and maintenance (O&M) cost is $13.03/kW for a 

250 MW pumped hydroelectric plant. 

Compressed air energy storage (CAES) is a relatively mature technology. The 

first CAES facility was installed in Huntorf, Germany in 1978 (DOE, 2017). It is used to 

store off-peak baseload energy from a nuclear power plant. Currently, this facility has 

been used to level variable power from integrated wind energy. The second CAES 

facility was built in 1991 and located in McIntosh, Alabama. Flywheel has large up-front 
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costs, which is in the range of $7,800 to 8,800/kWh for a 5 MWh capacity facility. Table 

1.1 summarizes the technology parameters and cost of three main mechanical energy 

storage devices. 

Table 1.1: Mechanical Energy Storage Characteristics and Cost (EIA, 2016). 

Metric Unit Pumped Hydro Compress Air Flywheel 

Specific Energy Wh/kg 0.30~1.33 3.2~60 100~200 

Energy Density kWh/m3 0.5~1.33 2~6 20~80 

Specific Power kW/kg 10~120 2.2~24 ~1.2 

Power Density kW/m3 0.01~0.12 0.04~10 ~ 

Energy Capacity cost $/kWh 250~430 390~430 7,800~8,800 

Power Capacity cost $/kW 1,500~2,700 1,900~2,350 1950~2,200 

Life Cycle Cycles >10,000 >10,000 >100,000 

Lithium-based battery technology was commercially introduced by Sony in the 

early 1990s based on the use of lithium intercalation compounds. According to the 

Lithium-Ion Battery Market report, the global market will be worth $152.3 billion for the 

rechargeable Lithium-ion battery (LIB) by 2025 and will continue to grow by 16.4% 

every year. LIB is commonly used as the power supply device for consumer electronics. 

Moving forward, the market expansion shifts from consumer electronics applications to 

electric vehicle and industrial applications for storing renewable energy. Since 2000, LIB 

has become a popular choice, however, it is still considered a less mature technology 

compared with lead-acid batteries which are cost-competitive. Based on the research 

from National Renewable Energy Laboratory, the price of LIB is projected to drop below 

$100/kWh by 2030, as opposed to the current cost of $200-300/kWh. 

LIB is applied for the areas that have high requirements in the response time, 
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weight, and cycle efficiencies (e.g., milliseconds response time, 1500-10,000 W/L, 75-

200Wh/kg, 150-2000W/kg, up to 97%) (Chen et al., 2009). LIB needs a computer to 

manage the operation process due to the depth of discharging impacting the battery 

lifetime, hence increasing the overall cost of LIB. 

Table 1.2: Commercial LIBs Performance (Hesse et al., 2017). 

Parameter    Unit LIB Cell Data Sheet Values 

Cell Identification - SDI94Ah NCR18650B US26650FTC1 
SCiB 

Titanate 

Manufacturer - Samsung Panasonic Murata Toshiba 

Cell Chemistry - NMC:C NCA:C LFP:C MOX:LTO 

Cell Format - Prismatic Cylindrical Cylindrical Prismatic 

Cell Capacity Ah 94.0 3.2 3.0 20 

Vol. Energy Density Wh/L 355 676 278 177 

Cont. Power Cap.(DCH/CH) C-rate 3C/1C 2C/0.5C 6C/1C 8C/>3C 

Cycle Life(80% SOH) FEC >5.000 320 >6.000 10.0 

Voltage Range V 2.70-4.15 2.50-4.20 2.0-3.6 1.5-2.7 

Normal Voltage V 3.7 3.6 3.2 2.3 

Some researchers focus on increasing power capacity and specific energy by 

developing nanoscale electrode materials and electrolyte solutions. The relationship 

between materials and LIB performance is listed as follows: 1) the difference between the 

oxidation reduction potential of the positive and negative electrode becomes the 

operating voltage, which means the operating voltage of LIB is determined by the 

materials of cathode and anode; 2) power density and energy density are also determined 

by the materials of electrodes; 3) safety is impacted by the material of electrolytes; and 4) 

the battery life span is correlated with the type of cathode material in term of 

performance degradation. Table 1.2 lists LIB performance based on the cell material 

composite and manufacturers.  

The supercapacitor (SC) is a novel energy storage device that can be applied in 

many fields due to its long-life cycle (over 105 times charging-discharging cycles), high 
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specific power density, and fast charging-discharging process (Zhang et al., 2010). 

Graphene (GR) becomes the most promising material for energy storage due to the high 

surface area and electrical conductance. GR is a single, tightly packed layer of carbon 

atoms that are bonded together in a hexagonal honeycomb lattice. In 2004, GR was first 

prepared by micromechanical cleavage from graphite flakes. Its specific area is 2,630 

m2/g. It is a zero-overlap semimetal with very high electrical conductivity as shown in 

Figure 1.1.  

 
Figure 1.1: Graphene Band Structure (Rao and Sood, 2013) 

GR/CNT (carbon nanotube) film shows unique electrical and mechanical 

properties as well as high stability in electrolyte due to the properties of GR. In fact, CNT 

can be made by rolling up a sheet of GR into a cylinder as shown in Figure 1.2. The 

hollow tubes have a diameter in the nanometer range and the length usually at the micro-

scale. Based on the number of tube walls, CNT can be classified into single-walled CNT 

and multi-walled CNT.  
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Figure 1.2: Rolling of Graphene Sheet into  CNT (Hanaei et al., 2016). 

1.2.2 Hybrid Energy Storage System 

Due to the intermittent generation of renewable technologies, the uncertain load, 

and the dynamic energy pricing, energy storage devices (battery, supercapacitor, pump 

hydro, etc.) are usually installed to overcome these challenges. The energy storage device 

acts as a load when energy is stored (e.g., in charging process), while acts as an electrical 

resource when the energy is returned to the consumer (e.g., in discharging process). 

Renewable power generation and the load profile are important factors to determine the 

capacity and type of the energy storage components. Figure 1.3, originally from Zhou et 

al. (2011), depicts the load profile curve and the variation of output curve. 

 
Figure 1.3: 24-h Residential Load Profile and PV Output Power. 
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The power fluctuation is decomposed into a high-frequency component and a 

low-frequency component. The hybrid energy storage devices are adopted to smooth the 

power fluctuation according to its own response characteristics and storage property. 

There are a few related discussions on how to select appropriate energy storage 

technologies for utility-scale applications.  

Hadjipaschalis et al. (2009) present a review article concentrating on several 

energy storage technologies and provide an insightful analysis of advanced materials for 

several devices, i.e., battery, supercapacitor, superconducting magnetic energy storage, 

and flywheel. Chen et al. (2009) provide a well-organized, comprehensive, and critical 

review on progress in energy storage systems, which covers various types of storage 

technologies with their applications and deployment status. Figure 1.4 plots multiple 

storage devices in the current market. 

 

Figure 1.4: Comparisons of Energy and Power Density of Energy Storage Techniques. 

Table 1.3 lists the characteristics and performance of both energy type and power 

type storage devices, including energy density, power density, investment cost, cycle 

time, and response speed. 
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Table 1.3: Parameters of Various Energy Storage Technologies. 

Energy Storage 

Device Type 

Energy 

Density 

(kWh/m3) 

Power 

Density 

(kW/m3) 

Investment Cost 

($/kWh) 

Cycle 

Times 

Response 

Speed 

Energy 

type 

Li-ion battery 94~500 56~800 100~4,000 103 medium 

Lead-acid battery 25~90 10~400 50~1,200 103 medium 

Alkaline battery 360~400 12~100 100~1,000 200 medium 

Power 

type 

Supercapacitor 3~50 0~10,000 1,000~10,000 105 milliseconds 

Flywheel 0.25~424 40~2,000 200~150,000 106 Fast 

 It is obvious that these two types of energy storage devices are complementary to 

each other. A hybrid storage system can provide enhanced power supply capability. 

Hence, a hybrid energy storage system is chosen to be proposed in this study. Glavin et 

al. (2008) show that hybrid energy storage performs better than battery storage alone for 

a stand-alone PV system. Dougal et al. (2002) analytically demonstrate hybrid energy 

storage can extend battery life. Based on these studies, a conclusion can be drawn that the 

capacity of energy type devices must be oversized in order to meet the peak load demand, 

if the storage system only has a battery unit; on the other side, the capacity of power type 

device also has to be oversized for storing a sufficient amount of energy if the system 

only adopts the supercapacitor.   

Currently, the study on the optimal capacity of the hybrid energy storage system 

(HESS) under wind and solar generation is inadequate. Navaeefard et al. (2010) obtain 

the global optimal solution for capacity cost. The uncertainty of wind energy and 

reliability index are considered as system constraints in their work. Mohammadi et al. 

(2012) optimize the microgrid cost, which includes electricity bill, operation and 

maintenance cost, and production cost for microgrid units. 
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1.2.3 Wind and Solar Generation Forecast Models  

The WT or solar PV generation forecast model is normally based on two 

approaches, i.e., the direct method and the indirect method (Gao et.al., 2019). The 

historical power output data is used as input variables of the model that directly forecast 

power output, called a direct method. In the indirect method, the output of the model is 

meteorological variables, such as wind speed and weather condition, which impact the 

generation of the renewable system. The renewable generation is estimated through the 

forecasted value of meteorological variables. Currently, researchers have been studying 

on forecasting wind speed or sunshine intensity for a long period, which have been 

widely applied in agricultural production, construction, and estimating the generation of 

WT and solar PV. 

The forecasting model can be classified into two types based on the data type of 

output: the regression model and classification model. The dependent variables are the 

numerical or categorical, respectively. The wind forecasting model belongs to the former 

because the output is a continuous value. The weather feature forecasting model belongs 

to the classification problem and the output is a discrete value or called categorical data. 

Based on the forecasting strategy, the weather forecasting techniques can be 

classified into four types: 1) physical method, 2) statistical model, 3) artificial 

intelligence model, and 4) hybrid forecasting method (Lei et al., 2009; Costa et al., 2008). 

A physical method is usually used to establish a rigorous mathematical model based on 

the principles of geophysical fluid dynamics and thermodynamics. The numerical 

weather prediction (NWP) model is one type of physical model that can generate 

satisfactory results for a relatively long prediction horizon up to several days. Carvalho et 
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al. (2012) point out NWP requires a considerable amount of computational time due to 

the complex mathematical formula that typically needs topography information. Hence, 

NWP is often used by meteorologists for long-term weather prediction in a large-scale 

area. However, the model does not guarantee the accuracy in short-term prediction.  

The physical model for wind prediction is usually built upon meteorological 

features (e.g., temperature, pressure, and humidity) and geographical information (e.g., 

surface roughness and latitude). Both Ren et al. (2014) and Zhang et al. (2016) utilize 

sophisticated meteorological data for wind speed and wind generation prediction. Due to 

the complexity in mathematical formulas, a considerable amount of computational time is 

often required.  

Weather Research and Forecast Model (WRF) is one of the most popular NWP 

approaches. It has been used to forecast air chemistry, hydrology, wildland fires, 

hurricanes, and regional climate (Powers et al., 2017). For instance, Carvalho et al. 

(2012) apply the WRF model in an area of Portugal under different numerical and 

physical options. The area contains complex terrain and is characterized by significant 

wind energy resources. However, WRF usually requires large and detailed terrain 

information in order to achieve better performance. As pointed by Wu and Hong (2007), 

NWP models including WRF have two drawbacks. First, they do not update the 

predictions very frequently. Second, they require a large amount of computing resources. 

Statistical models can explicitly reveal the linear relation between the input and 

output variables. The simplest time series forecasting model, called persistence forecast, 

predicts the future weather as the same as the present conditions, which would quickly 

forecast weather events for short-term prediction. Time series models, including the 
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autoregressive integrated moving average (ARIMA) family, are widely used in 

forecasting time series data (Ziel et al., 2016).  

Studies show that the performance of statistical models often exceeds NWP in 

short-term prediction. For instance, Kavasseri and Seetharaman (2009) propose a 

fractional-ARIMA model to predict the wind speed in one- or two-day ahead horizon, 

respectively. The expected wind energy throughput is further derived from the predicted 

wind speed along with the power curve of the wind turbine. Fang and Chiang (2016) 

derive a multivariate wind power prediction model that accommodates multiple weather 

features. The forecasting accuracy is further improved by considering the 

interdependency of different features.  

In general, time series models, such as ARIMA, perform well for the short-term 

prediction due to the use of Box-Jenkins methodology for model construction. The 

limitation is that the model structure is linear, hence the accuracy is not guaranteed in the 

long-term prediction (Barbounis et al., 2006 and Senjyu et al., 2006). In addition, the 

trend and seasonal factors in the time series data need to be decomposed before the model 

is applied. Since the model structure is limited to the linear form, statistical models 

become less effective in handling data with large variations.  

Most of the statistical models also assume the data follows certain predefine 

distributions, such as normal or the Weibull. Considering the existence of nonlinearity in 

time series data, research interests are shifting towards artificial intelligence (AI) and 

machine learning algorithms. AI techniques such as artificial neural network (ANN) and 

support vector machine are also adopted to forecast time series data, like wind speed. 

ANN has been considered as a powerful tool to solve non-linear problems and 
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differs from physical and statistical methods, because it can learn the input-output 

relation from historical data, recognize hidden patterns based on past observations, and 

use them to forecast future values. ANN (Mohandes et al., 2004) model can also tolerate 

data errors and ease in adaptability to online measurements. Therefore, AI-based 

prediction methods turn out to be more capable of handling the non-linear relation with 

no assumptions on the statistical distribution of underlying data. However, ANN could 

become computationally intensive as the number of neurons or hidden layers increase. 

Another limitation of an ANN model is that it needs to be trained by a large data set to 

achieve the minimum forecasting error. Otherwise, the performance goal or accuracy 

becomes difficult to achieve if no sufficient training data are available.  

ANN can easily accommodate different meteorological features, such as air 

pressure, temperature, and dew point to improve the wind forecast accuracy. For instance, 

Li et al. (2001) utilize a three-layer model with 4-, 8-, and 1-neuron for input, hidden, and 

output layers to estimate wind power. The four inputs are the wind speed and wind 

directions from two meteorological towers records, respectively. Mabel and Fernandez 

(2008) use wind speed, relative humidity, and hourly generation as input variables to 

construct an ANN wind speed model. They claim that better performance is obtained by 

incorporating additional climate conditions. Peng et al. (2013) propose prediction method 

for short-term wind power generation forecasting by considering temperature, wind 

speed, and wind direction features. The study concludes that the model yields more 

accurate result than the ANN model with a single feature.   

Feedforward neural network (FNN) is a classical multi-layer perceptron (MLP) 

neural network consisted of an input layer, an output layer, and one or more hidden 
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layers. Each node in hidden layers is fully connected to the input layer connections and 

output layer connections. The neurons in the same layer are mutually independent, and 

each neuron has a transfer function. Based on multi-layer perceptron and nonlinear 

autoregressive exogenous model with multivariable features, Amellas et al. (2020) 

predict the short-term wind speed. The model aims to assist wind farms and utilities in 

maximizing the economic benefits. The studies by Khashei et al. (2010) indicate that 

FNN is more effective than the statistical prediction techniques, especially for input data 

with non-linearity relation. Wang et al. (2017) utilize deep learning-based ensemble 

approach for probabilistic wind power forecasting. Convolutional neural network is 

designed for probabilistic wind power forecasting. 

Hybrid approach combines any two methodologies from the physical method, 

statistical, or AI method in the predicted procedure to obtain a better forecasting 

performance with reduced error. To combine the advantages of AI-based algorithm and 

statistical method, Cadenas and Rivera (2010) propose a hybrid forecasting approach that 

consists of a time series model and FNN model. The former characterizes the linear 

component and the latter captures the nonlinear relation between the input and the output 

data. However, most hybrid models ignore the impact from the other climate features, 

such as air pressure, humidity, and temperature. They are often suitable to one-step ahead 

forecasting.  

Liu et al. (2012) design hybrid ARIMA-ANN and ARIMA-Kalman methods for 

hourly wind speed forecasting. Both methods result in good prediction and can 

effectively handle the dynamics of the wind profile. Damousis et al. (2004) dominate a 

genetic algorithm-based learning scheme to predict the wind speed and power generation 
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at a wind park. Their model focuses on short-term forecasting in a range from 0.5-hour to 

2-hour ahead. Comparative studies are also carried out between ANN and time series 

model. Zhou et al. (2019) propose a hybrid wind forecasting method comprised of four 

modules: data analysis, model selection, multi-criteria forecasting, and performance 

evaluation. Their approach allows for selecting an optimal forecasting model given a set 

of wind speed data without prior knowledge. 

For a solar PV system, the solar irradiance received by the PV array is generally 

impacted by many other meteorological impact factors, such as temperature, latitude of 

location, and weather features. The climate data, such as temperature, dew point, 

humidity, visibility, wind speed, and weather features, are available from most of the 

weather forecast portals, while the irradiance forecasting data are often unavailable. In 

the current research, a variety of models have been proposed to forecast the generation of 

solar PV based on the predicted value of the solar irradiance (Dong et.al., 2020; 

Kamadinata et al., 2019). However, for a known location, the amount of solar irradiation 

is a known value when the title angle of the solar PV panel, the time of day, and the 

latitude of location are given (Pham et al., 2019).  

The weather feature is the main factor to affect the generation of a solar system. 

Weather feature causes the various cloud coverage, such as "clear" or "cloudy". The 

weather feature forecasting model is the typical classification model. Currently, there are 

multiples Algorithms, such as statistic model, support vector machine, and machine 

learning model that are working on the classification problem. Based on the level of 

outputs, the classification can be classified into the binary model and multinomial model. 

The dependent variable only has two levels in the former model. The outputs have more 
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than two levels in the latter model. Each level would be assigned a probability between 0 

and 1, with the sum equals to one.  

The logistic regression model, Markov chain model (MC), and hidden Markov 

model (HMM) are the statistic models. Sanjari and Gooi (2016) design a higher-order 

MC that describes a stochastic process that may characterize a system at any horizon. 

HMM provides a probabilistic framework with a fixed number of states for multivariate 

observations. In recent years researchers proposed HMM as a classifier or predictor for 

speech recognition (Palaz et al., 2019), DNA sequence analysis (Huang et al., 2017), 

handwritten character recognition (Wang et al., 2020), etc. Analysis of HMM seeks to 

recover the sequence of states from the observed data. This model hinges on the 

estimation of transition and emission probabilities. 

AI-based techniques have been applied for the classification forecasting model, 

such as fuzzy logic method, support vector machine, ANN, and hybrid method (Notton et 

al., 2019). Shi et al. (2012) apply a support vector machine (SVM) method to build a 

forecasting model based on the four types of weather features (clear sky, cloudy day, 

foggy day, and rainy day). Yang et al. (2014) present an alternative approach combining 

a self-organizing map, a learning vector quantization network, and fuzzy inference 

approach to make 1-day ahead hourly forecasting of PV power generation based on three 

types of weather features (sunny, cloudy, and rainy), but three types of weather states 

cannot represent all the possible cases for the weather features. 

The multi-output forecasting strategy involves the development of the multi-step 

forecasting model that can predict a sequence of outputs in a one-shot manner. Kline et 

al. (2004) construct a multi-output neural network where each output node corresponds to 
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one prediction horizon. This approach can prevent the accumulation of prediction errors 

and avoid performance degradation as the forecasting horizon increases. Zhang (1998) 

deploys an ANN model for multi-period time series forecasting and concludes that the 

direct method produces better results than the recursive strategy. In their paper, the 

proposed model can perform multi-output forecasting, hence capturing the dynamic 

behavior of future wind speed and weather state. This is crucial for improving the 

security and economic benefit of renewable generation system.  

1.2.4 Distributed Renewable Generation System 

 The distributed generation (DG) system produces alternative and environmentally 

benign electricity onsite where the generated energy is consumed by the local users. 

Distributed renewable power systems can take many forms, including WT, solar PV, 

energy storage devices, combined heat and power, and micro-hydroelectric, fuel cells, 

and geothermal systems. To alleviate factors affecting global climate change, a growing 

number of firms and manufacturers are installing renewable DG systems. For instance, 

Honda in Russell Point, Ohio installs two units of WT that contribute 10% of electric 

power to its auto transmission plant. Budweiser facility in Fairfield, California installs 

two units of WT with the total capacity of 3 MW and 1.2 MW solar PV arrays (6,500 

panels), together providing 40% of the green electricity to meet the demand. Laurel 

Mountain project of AES in Elkins, West Virginia (Hart and Sarkissian, 2016) has 

installed a 32 MW Li-ion battery storage array that is sited with a 98 MW wind farm. 

The cost-benefit analysis for renewable DG system is made subject to generation 

and demand variation when HESS is applied (Ruangpattana et al., 2011). Jin et al. (2017) 

propose the assessment based on the return on investment (ROI) analysis. To estimate a 
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project’s ROI, all relevant factors shall be taken into account on the cost and the benefit 

side, including installation, operation and maintenance, equipment depreciation for a 

technology lifetime, and government incentives or subsidies.  

Taboada et al. (2012) and Zhang et al. (2017) propose a single objective 

optimization function. They take an early step to design an onsite, grid-tied PV system to 

power a 15 MW wafer fab in conjunction with a substation. The numerical experiments 

show that up to 10,000 tons of carbon could be avoided when the PV capacity reaches 

one-third of the mean load. Villarreal et al. (2013) and González et al. (2015) expand the 

renewable generation portfolio by incorporating WT and solar PV into local DG systems. 

The model is applied to minimize the DG lifecycle cost. Moon and Park (2014) solve a 

multi-machine, multi-process manufacturing scheduling problem by considering the 

onsite renewable power and with a single type of energy storage technology.  

Based on these approaches, a mixed-integer programming (MIP) model is  

formulated for the DG planning problem. Vafaei and Kazerani (2011) construct a MIP 

model to select and size different power generation technologies and storage devices for a 

microgrid power system to minimize operational costs. Bahramirad et al. (2012) and 

Chen et al. (2012) adopt the MIP approach to minimize the investment in storage devices 

and microgrid operational costs by optimizing the capacity of the energy storage system, 

in which the problem is analyzed from an economical point of view.  

Due to the changing load pattern, the time of use (TOU) rate was introduced in 

early 1997. Under the TOU policy, the utility price would be either higher during the 

peak period or lower during the off-peak. It also becomes a factor to impact the sizing of 

WT, solar PV, and energy storage devices. Li et al. (2016) and Li et al. (2017) propose an 
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optimal model for onsite PV and battery systems to minimize energy costs. Electricity 

cost savings potentially are influenced by the capacity of solar PV and the size of the 

battery. The capacity of the ESS affected by TOU rate has been addressed in Lee and 

Chen (1995). Datta (2017) analyzes a production-inventory model involving a cycle of 

product under a carbon tax system. This model provides the optimal policy in an 

inventory system under carbon tax levied by the emission regulatory authority. 

With the growing penetration of wind and solar energy in the utility market, it is 

imperative to incorporate the energy supply variability and the carbon constraints into the 

production-inventory planning model to lower the manufacturing cost with superior 

environmental performance. Integrating renewable energy sources to power production-

inventory systems is a significant approach to achieve a low carbon emission for 

manufacturing. Jin et al. (2017) design a linear optimization model to integrate onsite 

wind and solar power for a multi-site manufacturing supply chain. The model is 

developed at the strategic level to identify the sizing and siting of WT and PV units with 

minimum cost.  

A case study of supply chain planning in a multi-site pulp company is analyzed by 

Waldemarsson et al. (2013). Authors extend the model from monthly period over a one-

year planning horizon, including decisions about the supply of materials, production, and 

distribution. Golari et al. (2017) integrate onsite WT, solar PV, hydro, and conventional 

energy in a multi-facility, production-inventory system to meet the green energy 

coefficient target. Intermittent power, optimal production plan, and energy supplies are 

jointly coordinated in each period such that the total expected cost is minimized over the 

whole planning horizon. Fattahi et al. (2018) and Hasani et al. (2020) present a novel 
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cost-efficient multi-stage stochastic program in which operational and tactical planning 

decisions are made for mining industry. The model consists of multi-manufacturing, 

warehouses, and demand sites. Lin et al. (2019) study carbon emission policies with 

emissions reduction technology investment in a two-stage supply chain inventory policy. 

Virtual power plant (VPP) has recently emerged as one of the most promising 

solutions for coordinating intermittent renewable energy resources in different regions to 

achieve coordinated optimization control of distributed generation. Kuznia et al. (2013) 

have proposed a stochastic mixed integer programming model for a comprehensive 

hybrid power system design, including wind turbines, storage device, transmission 

network, and thermal generators in remote areas. Wang et al. (2015) construct an 

interactive dispatch model for the bidding strategy and consider the demand response 

based on time-of-use pricing mechanism and interruptible load to the maximum profit of 

the VPP system. A maximum VPP operation income model is designed by Ju et al. 

(2016) and Duarte et al. (2020), which is optimized the scheduling with the day-ahead 

prediction output of wind turbine and solar PV generation. Naval et al. (2020) design a 

mixed-integer model for Large-scale distributed renewable generation. The research 

proves that the VPP power system reduces grid dependence and final electricity costs.  

1.3 System Configuration and Research Methodology 

1.3.1 System Configuration 

The onsite renewable DG system consists of the WT, solar PV panels, HESS, 

substation, and a feed-in tariff (FIT) program in this study. The configuration of the 

system is shown in Figure 1.5. The DG system exchanges electric power with the 

substation when the output generation of WT and solar PV plus the stored energy drop 
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below the load. The short-term energy gap can be filled by importing electricity from the 

main grid. On the other hand, the surplus energy can be stored in the storage system or 

feed into the main grid via feed-in tariff program. The HESS plays a dual role that works 

as the energy consumer or producer depending on the output of wind and PV generation. 

The system can reduce the carbon footprint, mitigate the electricity transmission losses, 

and environmental risks of forest fires caused by downed power lines.  

 

Figure 1.5: A Grid-connected Distributed onsite Power Generation System with HESS. 

In case study, the hybrid energy storage system operates as the following strategy 

shown in Figure 1.6: 

1) If Pgen = Dt, the aggregate renewable generation (Pgen) equals the load (Dt). It 

means that the generation meets the demand. There are no energy exchanges with gird 

and storage system. 

2) If Pgen > Dt, it has surplus power which would inject into main grid via FIT 

scheme or recharging HESS depends on whether  the devices are in fully charged status 

or not. 

 3) If Pgen < Dt, the shortage of demand will be supplemented by discharging 

HESS or importing energy from the main grid. During peak hours, the system will draw 
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the energy from HESS first, then import shortage energy from the main grid. The 

opposite operation process occurs during off-peak hour. 

 
Figure 1.6: Operation Strategy of HESS. 

1.3.2 Research Methodology 

In this research, the mathematical model of a DG planning problem is formulated 

as a mixed-integer linear program (MILP) and mixed-integer non- linear program 

(MINLP) to optimize system cost and LCOE, respectively. The binary variables are the 

charging or discharging status of the HESS units. The model will be not only considering 

the degradation of HESS energy capacity but also accounting dynamic output, load 

profile, and various utility price constraints.  

The proposed models are tested in cities with different climate conditions. Even 

though the model parameters, such as the capacity cost and maintenance cost, remain 

unchanged, the optimal decision on the capacity of WT, solar PV, Li-ion battery and SC 

are various in testing cities. The system cost will be reduced as the cost of WT, PV 
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modules, and energy storage device goes down. The energy stored in the HESS should 

not be dropped below 20% of initial capacity at any time, which can extend or maintain a 

good lifespan of battery.  

The entire study can be divided into five modules and the research goals of each 

module are given below: 

 1) Data collection, evaluation, and statistical analysis. 

 2) Development, evaluation, and implementation of hybrid forecasting model.  

 3) Modeling and simulation of the wind turbine and solar PV power system. 

 4) Constructing prosumer model to minimize the LCOE for single location . 

           5) Design production-inventory model for the three-echelon network supply chain    

                 system.  

1.3.3 Outline of Dissertation 

The dissertation consists of eight chapters and the main content of each chapter is 

described as follows:  

Chapter 1 is the introduction and discusses the research background, motivation, 

and significance of this research. This section also conducts the literature review, 

including the overview of existing research methodology.  

Chapter 2 analyzes the weather data, which includes wind speed and weather 

features. The statistical approach is applied to interpret the time series data.  

Chapter 3 proposes hybrid forecast models. Both wind speed and weather feature 

forecasting models are constructed to predict the short-term and long-term, respectively. 

The renewable generation will be simulated based on the long-term forecasting results of 

wind speed and weather features. 
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Chapter 4 presents a mathematical model for onsite renewable generation and 

hybrid energy storage technologies by considering their different working principle and 

application conditions. The hybrid storage devices focus on LIB and SC. It also explains 

the charging-discharging principle of LIB, and the key factors that affect the battery 

service life.  

Chapter 5 displays numerical experiment results for each testing city under four 

operation modes to minimize LCOE. It also compares the optimization results based on 

the city and operation mode.  

Chapter 6 formulates a multi-product, multi-period production model for a multi-

echelon supply chain network under energy supply and product demand uncertainty to 

minimize the annual operation cost. It also performs a comprehensive sensitivity analysis 

in terms of model scalability and applicability.  

Chapter 7 deploys the battery technology and analyzes the performance of the 

battery made by lithium-ion material through the computer simulation experiment.  

Chapter 8 makes a summary of the research and projects the future research. It 

embarks upon the current energy storage technology, market analysis, and cutting-edge 

research in the field of energy storage technology. 
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2. CLIMATE DATA ANALYSIS 

 The hourly climate data in a particular location is retrieved from the Weather 

Underground Database (2017), which archives the weather records of cities across the 

world. The data attributes comprise wind speed, wind direction, air pressure, humidity, 

and temperature as the hourly interval. The timeframe spans from 2004 to 2014 with 

approximately 96,360 records for each city. Six cities around the world are selected to 

represent the diverse profiles of wind speed and weather patterns by comparing their 

weather information. Koeler (2013) states that weather is the original big data problem 

and weather forecasting is an initial value problem. As the size of initial data increases, 

the accuracy of forecasting increases.  

Table 2.1 lists the geographic information such as elevation, longitude, and 

latitude of testing cities under investigation. These cities cover the majority of areas 

where the human being lives across the Northern and Southern hemispheres. Wellington 

is the capital city of New Zealand and it is in the Southern hemisphere. The rest of cities 

are in the Northern hemisphere.  

Table 2.1: Summary of Cities Geographic Information. 

*negative latitude means South of the Equator; A negative longitude means West of the Prime Meridian 

Continent Country City 
Elevation 

(meter) 

Longitude 

(degree) 

Latitude 

(degree) 

Asian China Sanya 729 109.51 18.25 

Australia 
New 

Zealand 
Wellington 18 174.78 -41.29 

North 

American 
USA 

New York 10 -74.01 40.71 

San Francisco 67 -122.43 37.78 

Phoenix 332 -112.07 33.44 

Boston 43 -71.06 42.36 
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2.1 Raw Data and Clean Methodology 

Table 2.2 shows a sample record, containing attributes of the climate data range 

from temperature, wind speed to humidity, and weather features. The sample record has 

two types of data. One is the numerical data type, like wind speed and temperature that 

belong to continuous value. The other type is called the categorical variable or discrete 

variable, such as weather feature, describing as "raining" or "overcast". The 

meteorological data (e.g., wind, wind direction, and humidity) is the most widely 

recognized as time series data. The dataset needs to be transformed to obtain the 

uniformity granularities on every hour interval in this study.  

Table 2.2: Raw Dataset Sample. 

date 
temp 

(F) 

dew 

point 
hum 

wind 

speed 

wind 

gust 

wind 

direction 
vis pressure 

wind 

chill 
precip state 

12/18/2014 12:51 59 45 60 0 NA North 10 30.08 NA NA MC 

12/18/2014 13:51 59 43 55 0 NA North 10 30.06 NA NA MC 

12/18/2014 14:51 61 42.1 50 6.9 NA Variable 10 30.06 NA NA MC 

12/18/2014 15:51 61 42.1 50 5.8 NA WNW 10 30.06 NA NA SC  

12/18/2014 16:51 60.1 41 49 8.1 NA WNW 10 30.07 NA NA SC 

12/18/2014 17:51 59 42.1 53 8.1 NA West 10 30.08 NA NA PC 

12/18/2014 18:51 57 43 59 6.9 NA West 10 30.11 NA NA Clear 

12/18/2014 19:51 54 44.1 69 5.8 NA WSW 10 30.13 NA NA Clear 

12/18/2014 20:51 54 43 66 3.5 NA SW 10 30.14 NA NA Clear 

12/18/2014 21:51 55 42.1 62 4.6 NA NW 10 30.15 NA NA Clear 

12/18/2014 22:51 52 43 71 0 NA North 10 30.17 NA NA Clear 

12/18/2014 23:51 51.1 43 74 4.6 NA East 10 30.16 NA NA Clear 

12/19/2014 0:51 48.9 44.1 83 3.5 NA East 10 30.16 NA NA Clear 

*Data source: Weather Underground  https://www.wunderground.com/ 

*Note: MC=mostly cloudy, SC= scattered cloudy, PC=partly cloudy.  

 

Some records from the original data resource are not completed with missing 

values, which are represented by “NA” or “Unknown”. It also has multiple records within 

https://www.wunderground.com/
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an hour period. For example,  the climate data has three duplicated records within one 

hour, but only one observation is needed for that hour. In other cases, there are quite a 

few observation points not being recorded. For example, the worst situation in 

Wellington appears from 12/16/2012 to 12/17/2012. More than ten records are missing 

across two days. The total number of missing observations is 313, and 2,758 observations 

have incomplete records. Together, incomplete values and missing observations make up 

around 3.4% of the entire observations. Before the climate data are applied to the 

forecasting model, the raw data needs to be cleaned or pre-processed by imputing the 

missing value and deleting the redundant records. 

2.1.1 Classify Data Structure 

The weather feature belongs to categorical variable. There are more than thirty 

different states in over one decade climate data, which are described as "clear day", 

"drizzle", "fog", "funnel cloud", "hail", "haze", "heavy drizzle", "heavy rain", "heavy rain 

showers", "heavy thunderstorms and rain", "light drizzle", etc. Since some of them 

represent rare situations and extreme events compare with other states, the type of 

weather states can be compressed by combining similar features. For instance, 

thunderstorms and light thunderstorms are both referred to as the thunderstorms state. In 

this study, three classification models are posted to predict weather features with five 

states, seven states, and ten states output, respectively. Table 2.3 below lists three 

situations with detailed information in the model. The number of states in one model can 

be set as N. These states are ranked from 0 to N-1 in the forecasting model based on the 

amount of cloud in the sky. 
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Table 2.3: Classes Description in Forecasting Model. 

Levels                                          Description 

5 classes 
"clear", "scattered cloudy" (SC), "partly cloudy" (PC), "most cloudy" 

(MC), " overcast" 

7 classes 
"clear", "scattered cloudy" (SC), "partly cloudy" (PC), "most cloudy" 

(MC), " overcast", "rain", "snow" 

10 classes 

"clear", "scattered cloudy" (SC), "partly cloudy" (PC), "most cloudy" 

(MC), " overcast", "rain", "light rain", "Thunderstorm", "fog/haze", 

"snow" 

2.1.2 Remove Redundant Data 

Before splitting the raw data into the train, test, and validation dataset,  the data 

needs to be cleaned and standardized. The input data of the model needs to be as an 

hourly interval. Table 2.2 shows the dataset before cleaning process. The redundant or 

unnecessary data need to be removed. The date column is the timestamp, which contains 

the "year", "month", "day", "hour", and "minute" information. This column is split into 

five columns, represented by "year", " month", " day", "hour", and "minute", respectively. 

If there are multiple rows having the same value of "year", "month", "day" and " hour", 

only the first appearance is kept. Hence the task becomes to filter out duplicate 

timestamps and form a new data table. 

2.1.3 Locate Missing Observations  

In addition to redundant data, the sample data set also contains quite a few 

missing observations, which means an entire row is missing in the sample data. It is 

imperative to identify where these missing observations are located. A new data frame 

needs to be created with the hourly time step. The table created by the previous step in 

(2.1.2) joins the new table, then the missing row is located and a completed timestamp in 
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the dataset is constructed. 

2.1.4 Impute Missing Value  

In this study, the missing data could be an empty cell or recorded as "N/A" or  

"unknown". Two situations are considered to deal with these missing data. In the first 

situation, the missing record is associated with a totally lost observation in a specific 

hour, called the missing row. For a single row, the value in each column equals the value 

of its previous row, regardless of the data type. The second situation is the incomplete 

records for a given row. For the missing numerical value, like wind speed, the missing 

data is filled by averaging the nearest two rows of data prior to and post the missing data. 

For categorical data like weather states, the missing state information for that row is 

taken as the worst-case scenario between the previous and following hours. For instance, 

if the weather state is sunny and overcast at 1 pm. and 3 pm., respectively, then the 

missing weather state is assumed to be overcast at 2 pm.. This makes the weather 

forecasting model more conservative when estimating the generation of solar PV.   

In this research, Bayes’ theorem is used to infer the missing weather conditions. 

This theorem describes the probability of an event occurrence based on the prior 

knowledge that might be related to the event. By replacing the missing values with 

simulated values, it creates complete data. For example, A and B are two events, Bayes’ 

theorem allows us to calculate the probability of A given B, if known the probability of B 

given A and the probabilities of each event. Denoted P(A|B) as the probability of A given 

B；P(B |A) as the probability of B given A; and P(A∩B) as the joint probability of A and 

B. The conditional probability of A given B is, 

( )
( )

( )
  |P

P A B

B
A

P
B =                                                            (2.1)                                                  
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Figure 2.1: Probability of Bi Given A. 

As in Figure 2.1, the total probability of formula A is： 

                                       ( )  ( | ) ( )i iP A P A B P B=                                                       (2.2) 

The probability of Bi given A can be obtained by Bayes’ theorem formula: 

i i i i
i

i

( | ) ( ) ( | ) ( )
( | )
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P B A

P A P A B P B
= =

                                      (2.3) 

where  

P(A) = prior probability of A. 

P(B) = prior probability of B.  

P(A|Bi) = likelihood of A if Bi occurs.  

P(Bi |A) = posterior probability of Bi given A. 

The missing value like weather condition at t-hour can be predicted by probability 

of weather features in previous hours. For the continuous distribution of wind speed, the 

approach can be made based on the Bayesian model of the density functions, that is 
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Table 2.4 is the dataset after cleaning process of Phoenix. The original 

measurement unit of wind speed is mile per hour and temperature is Fahrenheit. All of 
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them are converted into meter per second and Celsius, respectively.  

Table 2.4: Cleaning Dataset Sample. 

Date States WD Pressure Humidity DP WS (m/s) Temp (oC) 

12/18/2014 12:51 MC North 30.08 60 45 0 15 

12/18/2014 13:51 MC North 30.06 55 43 0 15 

12/18/2014 14:51 MC Variable 30.06 50 42.1 3.08 16.11 

12/18/2014 15:51 SC WNW 30.06 50 42.1 2.59 16.11 

12/18/2014 16:51 SC WNW 30.07 49 41 3.62 15.61 

12/18/2014 17:51 PC West 30.08 53 42.1 3.62 15 

12/18/2014 18:51 Clear West 30.11 59 43 3.08 13.89 

12/18/2014 19:51 Clear WSW 30.13 69 44.1 2.59 12.22 

12/18/2014 20:51 Clear SW 30.14 66 43 1.56 12.22 

12/18/2014 21:51 Clear NW 30.15 62 42.1 2.06 12.78 

12/18/2014 22:51 Clear North 30.17 71 43 0.00 11.11 

12/18/2014 23:51 Clear East 30.16 74 43 2.06 10.61 

12/19/2014 0:51 Clear East 30.16 83 44.1 1.56 9.39 

*Note: MC=mostly cloudy, SC= scattered cloudy, PC=partly cloudy, WD=wind direction, DP=dew point, 

             WS=wind speed. 

2.2 Climate Data Information  

The selected testing cities represent the diverse profiles of wind speed and 

weather patterns. The detailed information about wind speed and weather features in each 

city are in Table 2.5. These cities have the unique meteorological profile and diverse 

climate conditions. Among these cities, Wellington has a very strong wind profile. It is 

the windiest city in the world, but the weather state is mostly cloudy throughout the year. 

Phoenix has plentiful solar energy resources and the hottest climate, but a low wind 

profile over the year, while San Francisco has both abundant wind resource that varies 

from medium to high, and strong solar irradiance due to large amounts of sunny days.   
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Table 2.5: Summary of Climate Condition on Testing Cities. 

 

 

 

 

Figure 2.2: Weather Climate in Wellington, Phoenix, and San Francisco. 
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For further illustration, Figure 2.2 plots the climate conditions such as the average 

temperature in a month, the length of day, and the rainy days in a month in Wellington, 

Phoenix, and San Francisco. The average temperature and average length of daytime 

follow the same curve, but the curves of temperature and length of day are opposite 

between Wellington and the remaining cities, because they are in opposite hemispheres.  

2.2.1 Wind Speed   

Wind speed is the most important parameter in the integration and operations of 

wind energy generation system. The average wind speed, recorded at a height of 10 

meters above the ground, is over 6.8 m/s in Wellington and it is only 2.8 m/s in Phoenix. 

The wind speeds at other four cities fall between these two values. The wind profiles and 

average monthly wind speed of the testing cities in 2014 are shown in Figure 2.3 (a) and 

Figure 2.3 (b), respectively. 

 

(a). Hourly Wind Speed. 

        
(b). Average Monthly Wind Speed. 

Figure 2.3: Wind Portfolios of Testing Cities in 2014. 
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In practice, it is very important to describe the variation of wind speed during the 

design and optimization of renewable generation systems, resulting in the low upfront 

investment and future maintenance costs. The random behavior of wind speed is usually 

characterized by the normal distribution (Justus et al., 1978) or Weibull distribution 

(Justus et al., 1978; Seguro and Lambert, 2000). Figure 2.4 (a) plots the hourly wind 

speed histogram in 2014 with 8,760 data points per city. The corresponding Weibull 

distributions of wind speed for testing cities are depicted in Figure  2.4 (b). All 

distribution curves have a bell shape with an extended right tail, but the curve of Sanya’s 

distribution is more trended to a normal distribution shape. 

 

Figure 2.4: Hourly Wind Speed Density Distribution. 

Table 2.6 presents the Weibull wind speed distribution parameters of testing 

cities. Note that c and k are the scale and shape parameters of Weibull distribution, 

respectively. For a given c, a larger k makes the distribution curve more concentrated 

around the mean value. For a given k, a larger c pushes the distribution curve to the right 

side. 
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The seasonality of wind speed varies in different cities. The average monthly 

wind speed of San Francisco is plotted in Figure 2.5 based on 11-year data. The wind 

speed exhibits a strong seasonality with the fastest speed occurring in the second quarter 

and the lowest speed in the fourth quarter. In other words, the wind profile in each year 

swings from spring to winter. The windy season spans from April to August, and May is 

the peak wind period. A similar pattern also appears in Phoenix where the windy season 

is from April to August, yet the average wind speed in Phoenix is much slower than in 

San Francisco. Wellington does not show a strong seasonality, rather the wind speed 

patterns remain homogeneous across 12 months.  

Table 2.6: Two-Parameter Weibull Distribution Expression of Wind Speed. 

cities c (m/s) k 

Sanya, China 8.87 4.303 

Wellington, New Zealand 7.685 2.022 

New York, USA 5.63 1.964 

San Francisco, USA 5.067 1.434 

Phoenix, USA 3.152 1.836 

Boston, USA 5.206 1.079 

 

The wind profiles of testing cities also have a strong diurnal variation.  Figure 2.6 

plots the hourly wind records in a day in Wellington and San Francisco. In Wellington, 

the peak speed appears around 2 am. The wind speed decreases and reaches the valley at 

1 pm. The curve and trend of wind speed in San Francisco and Phoenix are opposite to 

Wellington. In San Francisco, the windiest time is around 4 pm. and the speed declines to 

the lowest level in a day around 5 to 7 am. The wind speed tends to increase after sunrise 

and decrease after sunset in San Francisco. Figures 2.5 and 2.6 show that wind speed 

exhibits both seasonal and diurnal variations.       
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Figure 2.5: Monthly Average Wind Speed. 

Obviously, the wind speed dataset exhibits two types of variations: diurnal (i.e., 

24 hours) and seasonal variations (i.e., 365 days). Although a neural network can handle 

seasonal time series data quite well in theory, the model is expected to be more accurate 

if the seasonal factor could be removed from the data.            

(a).Boston 

(b).San Francisco 
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Figure 2.6: Diurnal Wind Speed Variation. 

A wind rose is a graphic tool that gives a succinct view of how wind speed, wind 

direction, and frequency are typically distributed in one location. The length of the bars 

indicates the frequency in percentage unit. Figure 2.7 depicts the wind rose for the testing 

cities, where 0◦, 90◦, 180◦, and 270◦ denote north, east, south, and west directions, 

respectively. In Wellington and Phoenix, the dominant wind direction is from the north 

(N). For example, the wind blows from the north about 19.1% of the time at speeds 

between 6.1 and 11.6 m/s in Wellington. In Phoenix, the average wind speed blows from 

the northeast at over 3.9 m/s. In San Francisco, the dominant wind direction is from the 

southwest–northwest (SW–NW), in the range between 260◦ and 300◦. The wind rose of 

these cities shows that the wind speed is highly correlated with the wind direction. 

(a).Wellington 

(b).San Francisco 
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Figure 2.7: Wind Rose of Testing Cities. 
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The raw dataset includes the temperature, weather condition, dew point, air 

pressure, humidity, wind speed, and wind direction variables. Their correlation between 

meteorological data would impact the output of renewable generation. To do that, the 

correlations are analysed to determine the input neuron number for the forecasting model. 

Understanding the correlation among meteorological data is important and beneficial to 

predict wind speed and weather features. One of the tasks of our study is to determine the 

number of input neurons for the proposed model because these neurons represent 

different meteorological data. 

Figure 2.8 graphically depicts the correlation matrix between any two features. 

The sign and magnitude of the correlation coefficient are represented by two colors and 

the intensity of color. It shows that the wind speed has a positive correlation with wind 

direction and a negative correlation with humidity. The temperature has a strong positive 

correlation with the dewpoint.  

 
Figure 2.8: Correlation between Variables. 
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Table 2.7 below summarizes the basic statistics of meteorological features for 

testing cities. In Wellington, about 50% of wind direction is observed between the north 

and the northwest. In San Francisco, about 40% of wind direction is observed between 

the west and the northwest. The wind direction is a circular function resulting in a 

discontinuity at 0◦ and 360◦. The wind direction feature is transferred into two input series 

in the forecasting model by using trigonometric functions of sine and cosine. One value 

of wind direct becomes two values in a range from 0 to1. 

Table 2.7: Statistics for Wind Speed (m/s), Temperature (°C), and Dew Point (°C). 

 *Note: Dir= wind direction, Temp=temperature, Std=standard deviation, DP= dew point. 

 

  

Category 

Sanya Wellington New York 

Dir Speed Temp DP Dir Speed Temp DP Dir Speed Temp DP 

Median 110 2.9 15.6 22.1 180 7.9 14 10 220 4.7 6.7 6.8 

Mean 132 3.1 16.4 21.2 191 6.8 13.6 9.4 211 4.7 7.3 5.6 

Max 350 35.0 34.0 29.1 360 28.3 29 19 350 20.1 36.1 29.0 

25% 40 2.0 15.6 19.1 40 4.1 11 7 150 4.6 6.7 -2.2 

50% 110 3 15.6 22.1 180 7.1 14 10 220 4.6 6.7 6.8 

75% 220 3.9 15.6 24.1 340 9.7 16 12 310 4.6 6.7 14.5 

Std 115 2.2 3.1 4.0 128 3.7 3.4 3.6 105 0.7 3.2 10.8 

Category 

San Francisco Phoenix Boston 

Dir Speed Temp DP Dir Speed Temp DP Dir Speed Temp DP 

Median 280 4.1 13.3 8 200 2.5 25 2.2 220 6.2 3.9 4.4 

Mean 253 4.6 24.5 8.6 188 2.8 24.8 3.2 211 6.1 4.5 3.3 

Max 360 20.6 50 19.4 360 17.4 47.2 23 350 14.4 34.4 25.7 

25% 260 2.1 10.6 5.6 80 2.1 17.8 
-

3.2 
130 6.2 3.9 -5.6 

50% 280 4.1 13.2 8 200 2.6 25 2.2 220 6.2 3.9 4.4 

75% 300 6.7 16.7 10.6 300 4.1 32.2 10 290 6.2 3.9 13.3 

Std 84 3.3 4.2 4 117 1.6 9.2 8.9 104 0.8 3.6 12.2 
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2.2.2 Weather Features 

More than thirty weather states are described in the dataset for each testing city. 

Figure 2.9 plots weather states in Phoenix (a) and New York (b) from 2012 to 2014. The 

number of hours in "clear," "scattered cloudy," and "partly cloudy" state represents over 

50% in Phoenix. It means this city has plentiful solar energy. Comparing Figure 2.9 (a) 

and Figure 2.9 (b), the weather features in New York are more diverse than in Phoenix. 

This situation may impact the forecasting accuracy of the model of New York and make 

the forecasting result having big variation between them. 

 
Figure 2.9: Histogram Graph of Weather States in Phoenix and New York. 
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Table 2.8 summarizes the proportion of the top seven feature states for the testing 

city by counting the frequency of weather state from 2004 to 2014. For instance, the 

highest frequency weather state in Wellington is "mostly cloudy, " which is the same as 

New York. Meanwhile, almost a half ration with "clear" and "scattered cloudy" states 

appear in Phoenix and Sanya.  

Table 2.8: Proportion of Weather Features in Testing Cities (%). 

Cities clear SC PC MC overcast rain snow 

Wellington 6.5 19.2 27.2 28.9 4.24 13.54 .. 

San Francisco 20.7 14.6 23.4 20.6 13.9 0.06 .. 

Phoenix 27.2 14.8. 26.4 25.4 4.3 0.2 .. 

New York 6.2 18.1 17.1 33.1 16.1 6.7. 1.6 

Boston 15.5 15.6 14.2 19.8 22.7 0.8 0.6 

Sanya 21.5 24.1 17.5 25.8 4.2 6.9 .. 

 

Figure 2.10 plots ten weather states in four seasons. The weather in New York is 

more complicated and changeable than in Phoenix. Some weather states only appear in 

specific seasons. For instance, the event of snow and thunderstorms likely occur in winter 

and summer, respectively. Both have a limited frequency.  

 

Figure 2.10: Weather States in Four Seasons in Phoenix and New York. 
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Table 2.9 declares the cloud cover fraction for "clear", "mostly cloudy", 

"overcast", "partly cloudy", and "scattered cloudy" states. "Clear"  state means there is 

only 0~25% amount of cloud in the sky. 

Table 2.9: Cloud Fraction in Five States. 

States Cloud fraction 

clear 0.00~0.25 

SC 0.26~0.50 

PC 0.51~0.75 

MC 0.76~0.99 

overcast 1.00 

2.3 Data Transformation 

The input data are normalized because different meteorological features have a 

different range. For example, the value of temperature is less than 50oC and wind 

direction is in the range from 0 to 360o. They cannot be compared meaningfully. 

Therefore, the normalization method is used to adjust for the scale variations. Min-Max 

scaling is applied to transform the original data and retains the original distribution. The 

original data are converted into a common range between [0, 1]. The input value Xi is 

mapped to the new value as follows, 

' min

max min

  i
i

X X
X

X X

−
=

−
                                                       (2.5) 

where  

Xmax = the maximum value of a feature.  

Xmin = the minimum value of a feature. 

The influence of prediction accuracy from other atmospheric variables besides 

wind speed is investigated. Each dataset is divided into three parts: training, validation, 
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and testing. Table 2.10 shows the detailed breakdown of the dataset for training, 

validation, and testing in each testing city.  

Table 2.10: Number of Observations in Training, Validation, and Testing Datasets. 

 

2.4 Extreme Climate Event 

In Wellington, the wind speed over 25m/s only appears twice on 6/20/2013 from 

ten years historical data record. The average wind speed is 6.8 m/s with the 3.7 m/s 

standard deviation (σ). Six σ covers roughly 99.7% of the data population below the 17.8 

m/s. Therefore, the wind speed data fall outside of the six σ range is filtered out in this 

study. 

Some types of weather states, such as fog, thunderstorms, and haze only represent 

a very limited portion, like the snowstorm in Texas in 2021. Thus, they are treated as 

extreme weather states or climate events. These states will not be considered as the input 

states in the model because their occurrence rate is too low. To be conservative in PV 

generation, these weather states are classified as "overcast". The generation of solar PV is 

zero under these events. 

 

  

Cities 
No. of Training 

Data 

No. of Validation 

Data 

No. of Testing 

Data 
Total 

Wellington 70,124 8,760 8,760 87,644 

San Francisco 96,457 8760 8760 113,976 

Phoenix 78,910 8760 8760 96,432 

Boston 78,910 8760 8760 96,432 

New York 70,124 8,760 8,760 87,644 

Sanya 70,124 8,760 8,760 87,644 
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3. FORECASTING MODEL  

The accurate prediction of the WT and PV power generation is an efficient way to 

mitigate power supply risk, facilitate real-time grid operation, and optimize asset usage. 

Therefore, a prediction method with the best possible accuracy over multiple time periods 

is critical for maintaining and operating a variable generation system. The climate 

behavior of future year could be conjectured and forecasted based on current and 

historical meteorological data. The prediction models for hourly weather features and 

wind resources will be presented. The principles of artificial neural network (ANN) 

model and statistical model will be explained in this chapter. Hybrid forecasting models 

are constructed by combining the advantages of the ANN-based algorithm and statistical 

method.  

Recently, artificial intelligence (AI) techniques, such as feedforward neural 

network (FNN), attract more attentions. FNN is a multi-layer perceptron (MLP) neural 

network, which differs from physical and statistical methods in that it can learn the input-

output relation from historical data, recognize hidden patterns based on past observations, 

and use them to forecast future values. FNN also can tolerate data errors and ease in 

adaptability to online measurements. Therefore, AI-based prediction methods are more 

capable of handling non-linear relationship.  

3.1 Research Methodology 

The motivation of this research is to develop weather forecasting models for 

estimating the wind speed and weather features, respectively, implementing advanced 

computer algorithms. In this study, the meteorological and geographical information of 

each location is considered as variables in the forecasting model. In this chapter, the 
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performance of the proposed models is compared with several existing methods, such as 

ARIMA, persistence model, and univariate neural network model in 1- to 24-hour ahead 

prediction. The root mean square error (RMSE) and mean absolute error (MAE) are used 

as comparison criteria. The proposed model is applied to various testing cities with a 

broad scope of climate conditions. The preliminary study shows that the proposed 

forecasting model exceeds the existing models and reduces the prediction error by 20% 

compared with univariate neural networks.  

Weather information is a typical example of time series data which require a 

special approach in data mining. In multi-step forecasting, a univariate time series {y1, ..., 

yn} is comprised of N observations. The model will then forecast for one, three, or 

twenty-four hours ahead of the last observations {yn+1, ..., yn+h}, where h is 1, 3, or 24, 

respectively. Namely, the forecasting horizon is in a range between 1 and 24 hours.  

 

Figure 3.1: Scheme of Methodology. 

It is known that forecasting the climate is a challenging task because of the 

involvement of large uncertainties. A desired FNN model should generate a small 

prediction error not only within the training dataset but also in the testing dataset 

(Kamruzzaman, 2006). Due to this reason, it becomes critical to obtain the optimal 

prediction output by appropriately choosing the input feature, the number of hidden 
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layers, the size of each hidden layer, activation function, and the initial values of weight 

and bias. Figure 3.1 depicts the flowchart and the framework of the proposed hybrid 

models.  

To compare the performance of forecasting models, direct multiple forecasting 

horizons are adopted in this study. As indicated by Figure 3.2, five different forecasting 

horizons are assumed. These are 1-, 3-, 8-, 12-, and 24-hour. The 24-hour is also known 

as day-ahead forecasting. An out-of-sample forecast method is adopted, meaning the 

prediction data outside the dataset is used to develop and train the model. Croonenbroeck 

and Stadtmann (2019) emphasize that the out-of-sample forecasting strategy is essential 

in constructing wind forecasting model. The sliding-window-technique is used as 

prediction strategy. The input data are normalized because different meteorological 

features have a different range. For example, wind speed varies between 0 and 30 m/s, 

and the temperature changes from -20oC to 40oC. Min-max scaling is applied to 

transform the original data into a common range between [0, 1]. The proposed hybrid 

model allows us to obtain multiple outputs over different horizons at the same time. This 

can be easily realized through the implementation of multiple neurons in the output layer. 

For instance, in the 1-hour ahead prediction model, the output layer only has one neuron. 

However, in the 12-hour ahead forecasting model, the output layer contains 12 neurons, 

each representing the individual wind speed of the upcoming twelve hours. 

 

Figure 3.2: Multiple Forecasting Horizons. 
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First, we need to identify the desired output in this study, then decide which type 

of model and activity function can be applied. In the wind speed forecasting model, the 

output is associated with the changes in numerical value. This can be defined as a 

regression problem with numerical or continuous values.  

In the weather state forecasting model, the model is dealing with predefined 

weather features. The model can be considered as a classification problem and the 

prediction output of the model is classified as "clear", "scattered cloudy", "partly cloudy",  

"most cloudy", "overcast" and so on. Both types of outputs are computed hourly in this 

research. 

3.2 Artificial Neural Network Forecasting Model 

Since the mid-1980s, ANN methods have received much attention and are treated 

as a powerful computational tool to solve the weather forecasting problem. ANN is the 

computing mechanism with studying and learning capability, inspired by biological brain, 

and widely applied for time series data forecasting. The feed-forward ANN (FNN) model 

consists of at least three layers. For instance, the architecture of a three-layer FNN model 

with a supervised learning technique can be graphically described in Figure 3.3. The 

three layers are namely an input layer, an output layer, and a hidden layer.   

Unlike other statistical techniques, FNN does not make any prior assumptions on 

the statistical distribution of the input data. The number of units at the input and output 

layers is defined by the problem as mentioned in previous part. The input neuron is 

related to each input vector, while the output provides the forecasted value for the desired 

structure. The input vector fed to the model is normalized between [0, 1]. 
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Input vector: X= [x1, x2, …, xn]; Output vector: Ŷ = [Ŷ1, Ŷ2,…, Ŷi] 

Figure 3.3: Structure of FNN. 

3.2.1 Topology of FNN 

The neural network model uses parallel processing of the information from the 

data to approximate a large class of functions with a high degree of accuracy. In this 

study, the validation dataset contains one-year hourly meteorological data to evaluate the 

model performance and the testing dataset consists of one-year of hourly data to make 

forecasting. The remaining data are used to train and tune the parameters in the model. 

During the training process, the model is repeatedly applied with the training data. The 

weight w and bias b are adjusted automatically until the desired output mapping occurs. 

The parameters in the model are captured based on a gradient descent optimization 

algorithm by using the Python compiler. 

In the dataset, each observation has multiple independent variables, therefore 

various features need to be identified before being chosen as the input vector. Feature 

evaluation and integration are very important for the forecasting problem under study. 

The number of input neurons helps reveal the relations between observations, hence 

influencing the performance of the model. The neurons in the hidden layer establish the 

computational relation between the neurons in the input layer and output layer.  
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Note that X is the input vector of the model, and Ŷ is the output vector or the 

forecast values. An appropriate transfer function is stored in the hidden layer and used for 

processing the data from the input nodes. Each neuron in the hidden layer receives 

weighted inputs plus bias from each neuron in the previous layer, and is defined as, 

               
1

1, ,1
=

jN

i j k k i ik
z x w b

−

−=
+                                           (3.1) 

where 

wk,i = the weighted connection between node kth and all the nodes in the previous  

           layers. 

xj-1, k  = input value form  kth node in the jth layer. 

bi = the bias to the node. 

Nl-1 = the number of nodes in the layer l-1. 

This sum is passed along to an activation function, g() is activation function to 

capture the nonlinear behaviors and produce the output of the node. It is calculated as:  

                                                             ( )ˆ =k iY g z                                                           (3.2) 

The task of the backpropagation algorithm is to minimize the cost function Jw that 

is often expressed as mean square error as follows, 

2

1

1 ˆ( )
N

w n n

n

J Y Y
N =

= −                                                 (3.3) 

where N represents the number of observations used in the training set. However, 

the determination of the number of input and hidden layer nodes is vitally important, yet 

cumbersome. Architectures with different numbers of hidden layers and the size of a 

hidden layer need to be compared to identify the model with the best performance. To 

avoid the overfitting issue, the available data set should be divided into three parts: 
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training dataset, validation dataset, and testing dataset. The validation dataset is used to 

monitor and handle the model whether it is overfitting or not. The key-process of 

constructing the model is illustrated in Figure 3.4. 

 

Figure 3.4: Model Development and Training Process. 

3.2.2 Backpropagation Algorithm  

The ability to self-improving performance through the training process is the 

neural network’s fundamental capability. Backpropagation (BP) is the most popular 

algorithm to train the FNN model. The BP algorithm is widely used in solving 

classification and regression forecasting problems. The learning mechanism involves two 

phases: Phase 1 is a feed-forward process in which the information at the input nodes is 

propagated to compute the output at the output neurons; Phase 2 is called a backward 

process in which the connection weights and biases are adjusted through gradient descent 

optimization. The BP algorithm calculates the error gradients and distributes them 

backward to update the weights in the next iteration.  
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Suppose, Y is the observation vector. In the first phase (i.e., forward-pass), xi is 

fed into the input layer, and the output value is generated based on the current weights w. 

The goal is to find a well-trained mathematical model and adjust the weights by 

minimizing the mean square error (MSE) as follows, 

Min: 
21

( )MSE Y Y
n

= −                                                      (3.4) 

In the second phase, a gradient descent in the weights, w, is used to locate the 

optimal solution under the delta rule. The weight adjustment can be done via stochastic 

gradient descent using the following equation, 

( )new oldw w E w= −   ,                                                      (3.5) 

where   is the learning rate between 0 and 1. The learning rate governs the 

change amount of the weight as per the effect of the weight on the total error.  is 

gradient operator, and  E is the gradients of error function. 

3.2.3 Activation Function  

The activation function, also called the transfer function, translates the input 

signals into output signals, such that the output is between certain values. In this study, 

two activation functions are adopted in the computation of Softmax for logistic regression 

problem and linear function for regression problem. 

A sigmoid function is a mathematical function having an S-shaped curve. It 

belongs to the non-linearity function family. Quite often sigmoid function refers to the 

standard logistic function.  A sigmoid function, denoted by g(), with logistic function is 

given as 

                                            
1
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                                                         (3.6) 
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Sigmoid function produces a curve with an S-shape in Figure 3.5. It can be used 

in the binary classification model. Sigmoid function maps input data into a value in the 

range between [0,1]. 

 
Figure 3.5: Output Characteristic Curve of Sigmoid Function. 

Softmax is an activation function frequently used in multi-classification tasks. It is 

an exponential function as shown in Equation (3.7), which can enlarge differences, i.e., 

pushing the biggest value of Zi closer to one while the smallest closer to zero. It turns 

scores logits into probability values that sum to one. The essential goal of Softmax is to 

turn a number into a probability value. That is, 

i

1

( )
iZ

i M
Z

j

e
f Z

e
=

=


,          i=1, 2, …, k.                                        (3.7) 

In Equation (3.7),  Zi is the score for neuron i in hidden layer. Figure 3.6 shows 

the fundamental property of Softmax function. A higher input value results in a larger 

probability. 
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Figure 3.6: Output Characteristic Curve of Softmax Function. 

3.3 Performance Evaluation Approaches  

This study adopts the two popular performance measures to test the efficiency of 

the proposed model: the mean absolute error (MAE), and the root mean square error 

(RMSE). The performance measures of MAE and RMSE are utilized to quantify the 

errors of forecasting values. Both RMSE and MAE have the same unit as the observation 

data. MAE is a measure of the average of the absolute error, and the advantage is that the 

metric is relatively easy for non-specialists to understand. MAE is defined as follows 

                      
1 1

1
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ˆ
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= =

= −                                                     (3.8) 

RMSE is a quadratic scoring rule that also measures the average magnitude of the 

error, which is more frequently used in error evaluation. RMSE differs from MAE in that 

it can amplify and punish large errors terms. RMSE is defined as 

      ( )
2
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1
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= =

= −                                                (3.9) 

 where 

n = the number of observations. 

h = the forecasting horizons. 

  Ŷn,h,  Yn,h = represented the forecast and observed values, respectively.  
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Cross entropy is the cost function for the classification model, which is used to 

measure the error between the predicted value and observation. In binary classification 

task, the cost can be estimated by 

1

( , )= ( log( ) (1 ) log(1 ))
N

i i i i

i

H y p y p y p
=

− + − −                             (3.10) 

In the multi-classification task model, a separate loss for each class label per 

observation is added first, then the loss function is listed below: 

1 1

( , ) log( )
N M

c c c c

i i i i

i c

H y p y P
= =

= −                                                   (3.11) 

where 

M = the number of classes. 

N = the number of observations. 

Yi
c = binary indicator. If class label c is the correct classification for observation i, 

Yi
c equals one. 

Pi
c = predicted probability observation i is of class c. 

The performance of weather classification models is assessed using confusion 

matrix (Provost and Kohavi, 1998) and percentage of correct classification. The 

confusion matrix is a standard tool for evaluating model performances for classification 

problems and widely employed in the machine learning field. It contains information 

about actual and predicted classifications done by a classification system. The 

performance of such systems is commonly evaluated using the data in the n-by-n matrix, 

where n is the number of classes.  Figure 3.7 shows a confusion matrix for a two-class 

classifier. 

https://www.sciencedirect.com/science/article/pii/S002216942030264X?casa_token=qinF9DWK990AAAAA:dW6vDsRcJ-kQ8Lpr06KBPHd6kTIKwRHjyRTSiTh2yZ6bH5TY8TpcZaTg-SONU7b3Py0K6oMgmA#b0225
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Figure 3.7: Confusion Matrix for a Two-class Model. 

 

Accuracy is a criterion how to evaluate the ability of a classifier. The accuracy of 

the predictor indicates how well a given predictor can guess the value of the predicted 

attribute for new data. Accuracy (ACC, %) for two classes can be calculated and given in 

Figure 3.7. The following accuracy assessment approach is used to estimate the 

performance of the model with multi-classes. 

+TP TN
ACC

TP TN FP FN
=

+ + +
                                              (3.12) 

 

The accuracy is simplified as follows,  

1( )

1
1

ˆ
i i

N

i
ACC

Y NY =−
=                 when  Ŷi = Yi                    (3.13) 

3.4 Wind Speed Forecasting Models and Results 

The climate behavior of future years can be conjectured and forecasted based on 

current and historical climate data. The prediction models for short-term and long-term 

wind speed forecasting are presented in this subsection. The existing forecasting methods 

including the persistence model, ARIMA model, and univariate FNN are briefly 

reviewed as they are used for comparison with the proposed model. 
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3.4.1 Persistence Forecasting Model 

The persistence method is adopted as the benchmark to compare the forecasting 

performances with ARIMA, FNN, and the proposed hybrid model. Persistence method is 

a simple way to forecast the wind speed and is often used as a reference to evaluate the 

performance of other prediction methods. This method assumes that the wind speed at 

time t+Δt is the same as it was at time t where Δt is the time increment or step size. The 

ideal is derived from the fact that a high correlation exists between the present and the 

future wind speed. Let Yt and ˆ
t t

Y
+

 be the observed wind speed at t and the predicted speed 

at t+t, respectively. The persistence model is given as follows,  

ˆ
t t t

Y Y
+

= ,       for t=1, 2, …,T.                           (3.14) 

3.4.2 ARIMA Forecasting Model  

ARIMA model is built upon the Box-Jenkins methodology, which best fits the 

time series data with non-seasonal behavior. A time series model reproduces future value 

based on the prior pattern of variables. The univariate method employs ARIMA model 

with only one type of data information as the variable. A standard notation is used for 

ARIMA (p, d, q), where the integers represent the parameters of  a  ARIMA model. Let yt 

be the prediction value at time t. The ARIMA model with d = 0, p > 0 and q > 0 is 

expressed as, 

1 1

1 1 2 2 1 1 2 2+ ,..., ...,

p q

t i t i j t j t
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t t p t p t t t q t q

y y

y y y

    

          

− −
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= + + +

= + + + + + + + +

 

，

   (3.15) 

where 

p = the number of lag observations in the model, also called the lag order. 
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d = the number of times that the raw observations are different, also called the  

       degree of differencing. 

q = the size of the moving average window, called order of moving average. 

φi = the ith autoregressive coefficient.  

j = the jth moving average coefficient. 

t = error term at time t. 

εt-j = the random error of a prior points at time t-j. 

  = constant term. 

An autoregression (AR) model involves the regressing on its own logged value, a 

moving average (MA) model uses past errors as the explanatory variables. Discussed by 

Cochrane (2005), Box et al. (2015), and Hipel and McLeod (1944), the AR (p) is a linear 

model that predicts the present value of a time series using the immediately prior value in 

time as follows, 

                        1
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t j t j t

j

t t p t p t

y c y

c y y y
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− − −
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                             (3.16) 

Here, c is a constant, φj  for j =1, 2, ..., p are the model parameters, and p is the 

order of the model. Similarly, the MA (q) model given by Box et al. (2015), takes the 

following form, 

1

1 1 2 2 .......

q

t j t j t

j

t t q t q t

y    

       

−

=

− − −

= + +

= + + + + +

                                    (3.17) 

Here, µ is the mean of series, ϕj for j =1, 2, ..., q are the model parameters, and q is 

the order of the model.  
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Real-world time series data is often diverse and may change seasonally, such as 

energy consumption, temperature change, and wind speed. Since wind speed possesses 

seasonality, the measured data exhibit non-stationary behavior. A stationary time series 

means its statistical properties, like the mean and variance, are constant over time. If the 

time series data is not stationary, it should be differentiated to become stationary.  

Many statistical forecasting methods assume that the time series data can be 

rendered stationary through the transformation. The data is prepared by a degree of 

differencing to make it stationary, i.e., to remove the trend and seasonal structures that 

negatively affect the regression model. Data should be differenced and converted into a 

stationary dataset prior to fitting model. Figure 3.8 shows one-month wind speed data of 

Wellington after differencing. The differenced data possess a good stationarity behavior 

compared with the original data. Once the prediction is made on the stationary data, it 

must be converted back to the original series using the same transformation that made it 

stationary.  

 

Figure 3.8: Real and Differenced Wind Speed Data in a Month of Wellington. 

Three steps are involved in building an ARIMA model: 1) model identification, 2) 

parameter estimation, and 3) diagnostic checking (Box and Jenkins, 1970). These steps 

are elaborated next. 
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Step 1. Model Identification. Autocorrelation function (ACF) and partial 

autocorrelation function (PACF) can be applied to obtain the preliminary orders of the 

ARIMA model. This can be done after the original data is transformed with stabilized 

mean and variance. Graphing the original and the differenced data series, along with 

autocorrelation and partial autocorrelation functions, are the useful tools. Figure 9 shows 

the ACF and PACF graphs presented for wind speed time series data of Wellington. If 

both ACF and PACF show exponential decay and damped sinusoid, other techniques 

such as Akaike’s information criterion, Bayesian information criterion, and grid search 

could be used to optimize the model structure (Kuha., 2004; Pho et al., 2019). 

Step 2. Parameter Estimation. After the model structure is determined, the 

parameters resulting in the lowest residual need to be estimated. Yule–Walker estimation 

or maximum likelihood estimation can be applied to estimate the parameter values, and 

uncorrelated residuals can be identified using non-significant P-values.  

Step 3. Diagnostic Checking. After the model structure and parameters are 

determined, diagnostic checks  are used to examine the model adequacy and make further 

improvements. If the model is a good fit to the data, the residuals would be white noise 

with little or no autocorrelation. 
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Figure 3.9: ACF and PACF of Wind Data in Wellington. 

The ARIMA model is used to detect the existing relation between the current 

observation and the previous observations. It further determines the optimal input neuron 

that is associated with the autocorrelation between wind speeds. To ensure the best 

performance of ARIMA model, its most effective structure in terms of model parameters 

(p, d, q) should be established.  

In this study, let the order of the model vary within p ∈{1, 2, .., 8}, q ∈ {1, 2, …, 

8}, and d ∈{0, 1}. Five days of learning interval is used to select the best performance of 

ARIMA model based on minimum RMSE or MAE. By running the combinations of each 

parameter, the ARIMA model with the best preference for each city is selected and 

summarized in Table 3.1. The sign and the coefficient indicate the relation and strength 

between wind speed data. For instance, the current wind speed yt has the positive 

correlation with yt-1, yt-3, yt-4 and negative correlation with yt-2 in Wellington. The ARIMA 

model with (4, 0, 2) appears to be the best fit for the wind speed forecasting in 
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Wellington and Phoenix. Similarly, ARIMA (2, 0, 1) becomes the best structure for San 

Francisco, and ARIMA (3, 0, 1) is the best for Boston, etc. 

Table 3.1: ARIMA Model Structure for Testing Cities. 

Cites ARIMA (p, d, q) Model 

Wellington (4, 0, 2) 
1 2 3 4

1 2

2.12 1.59 0.36 0.02

1.3 0.56

t t t t t

t t t

y y y y y

  

− − − −

− −

= − + +

+ − +
 

San Francisco (2, 0, 1) 1 2 -17.4  + 2.3t t t t ty y y  − −= − −  

Phoenix (4, 0, 2) 
1 2 3 4

1 2

0.5 0.12 0.76 0.08

1.1 0.99

t t t t t

t t t

y y y y y

  

− − − −

− −

= − − + +

+ + +
 

Boston (3, 0, 1) 1 2 3 10.2 0.32 0.43 0.91t t t t t ty y y y  − − − −= − + + −  

New York (4, 0, 1) 1 2 3 4 11.4 0.81 0.76 0.48 0.1t t t t t t ty y y y y  − − − − −= − + + + +  

Sanya (3, 0, 2) 1 2 3 1 21.25 +0.82 0.54 2.1 -0.89t t t t t t ty y y y   − − − − −= − + + +  

3.4.3 Hybrid Short-term Forecasting Model  

The hybrid approach combines at least two different methods among physical 

methods, statistical methods, or AI approaches, to construct the prediction function and 

obtain the optimal forecasting results with reduced error. The proposed hybrid model in 

this study integrates meteorological features, time series techniques, and BP algorithm for 

short-term wind speed prediction. Compared with traditional approach, the hybrid model 

not only considers the wind speed attribute but also incorporates other meteorological 

features.  

It is well documented in the literature that ARIMA and neural network models 

have their own advantages, and none of them can exceed the other in terms of forecasting 

accuracy. ARIMA (p, d, q) model can capture linearity information and decide the 

number of input neurons correlated with wind speed. Compared with FNN, ARIMA has a 

deficiency in handling nonlinear characteristics of data series, such as wind speed. Hence, 

the performance of both forecasting methods largely depends on the data characteristics. 
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The proposed methodology is expected to capture both linear and nonlinear 

characteristics between the inputs and outputs. Since, the future climate condition 

involves large amounts of uncertain factors, choosing the input features of the model 

becomes a critical issue to obtain the optimal prediction result. In this study, the 

meteorological information of each location is considered as variables in the model. 

Based on above materials, the development of the hybrid forecasting model 

consists of four steps shown in Figure 3.10: 1) using ARIMA model to capture wind 

speed autocorrelation; 2) obtaining the correlation between different feature pairs; 3) 

training various input features model and identifying the one with minimum error; and 4) 

generating the forecasting data based on the selected model. 

 

Figure 3.10: Flowchart for Construct Proposed Model. 

3.4.4 Short-term Wind Speed Forecasting Result and Comparison 

According to Table 3.2, the prediction accuracy decreases with the increase of the 

forecasting horizon, but the degradation of accuracy is non-linear in terms of RMSE and 
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MAE. For example, the MAE value for 1-hour ahead forecasting based on ARIMA is 

0.82 m/s, while the values for 3-, 8-, 12-, and 24-hour ahead forecasting is 1.2 m/s, 1.68 

m/s, 1.75 m/s, and 2.3 m/s in Wellington, respectively. Similar trends can be observed in 

other testing cities. 

To see the gap between the ARIMA prediction values and the actual wind speed 

observations, Figure 3.10 shows 1-hour and 24-hour ahead predictions along with the 

measured wind speeds over a 24-hour period in Wellington. The solid line is the actual 

observation curve, the dot dash curve is the 1-hour ahead forecasting and the dashed 

curve is the day-ahead forecasting. The 1-hour ahead forecasting is quite close to the 

actual observation, whereas the day ahead forecasting becomes more flattened out and 

smoother. For instance, the lowest wind speed in a day happens at 11am. and the 

occurrence time based on 1-hour ahead forecasting is at 12 noon time.    

Table 3.2: Forecasting Results of ARIMA  Model with Five Forecasting Horizons. 

 

Location  

Error 

(m/s)  

  ARIMA 

  1-hr 3-hr 8-hr 12-hr 24-hr  

Wellington 
RMSE   0.93 1.8 1.92 2.1 3.0   

MAE  0.82 1.2 1.68 1.75 2.3   

San Francisco 
RMSE   0.91 1.39 1.41 1.48 1.5   

MAE  0.96 1.22 1.22 1.26 1.28  

Phoenix 
RMAE  0.4 0.836 0.85 0.87 0.96  

MAE  0.409 0.73 0.736 0.75 0.84  

Boston 
RMSE  0.78 1.41 1.51 1.81 2.63  

MAE   0.67 1.28 1.33 1.2 1.58  

New York 
RMSE  0.81 1.39 1.39 1.41 1.98  

MAE  0.76 1.22 1.22 1.2 1.77  

Sanya 
RMAE  0.88 0.99 1.59 1.92 2.32  

MAE  0.82 0.88 1.42 1.71 2.05   
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Figure 3.11: ARIMA Model Forecasting Result in Wellington. 

In this section, the meteorological information of each city is considered as 

multivariable in the hybrid short-term forecasting models. Table 3.1 shows the parameter 

value of ARIMA model of the wind speed. Figure 2.8 depicts the correlation between 

wind speed and other critical variables. The grey boxes represent some insignificant 

correlations. For instance, wind speed and wind direction are correlated because they are 

influenced by the Earth’s rotation. Thus, the approach may consider wind direction, air 

pressure, temperature, and dew point as predictors or input variables. 

 Table 3.3 presents five multivariate forecast models for Wellington wind data 

with the aim of selecting the optimal input features. Similar models can also be 

constructed for other cities.  
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Table 3.3: Models with Various Input Features for Wellington. 

Models Predictors 

Model 1 
'WindSpd(t-4), 'WindSpd(t-3)', 'WindSpd(t-2)', 'WindSpd(t-1)', 

'WindDir_sin(t-1)', 'WindDir_cos(t-1)' 

Model 2 
'WindSpd(t-4), 'WindSpd(t-3)', 'WindSpd(t-2)', 'WindSpd(t-1)', 

'WindDir_sin(t-1)', 'WindDir_cos(t-1)', "AirPressure(t-1)" 

Model 3 
'WindSpd(t-4), 'WindSpd(t-3)', 'WindSpd(t-2)', 'WindSpd(t-1)', 

'WindDir_sin(t-1)', 'WindDir_cos(t-1)', "AirPressure(t-1)", "Humidity(t-1)" 

Model 4 

'WindSpd(t-4), 'WindSpd(t-3)', 'WindSpd(t-2)', 'WindSpd(t-1)', 

'WindDir_sin(t-1)', 'WindDir_cos(t-1)', "AirPressure(t-1)", "Humidity(t-1)", 

'Temperature(t-1)' 

Model 5 

'WindSpd(t-4), 'WindSpd(t-3)', 'WindSpd(t-2)', 'WindSpd(t-1)', 

'WindDir_sin(t-1)', 'WindDir_cos(t-1)', "AirPressure(t-1)", "Humidity(t-1)", 

'Temperature(t-1)', 'Dewpoint(t-1)' 

Since the wind direction is a circular variable, it is decomposed into sine and 

cosine parts. Among these models, Model 4 has the best performance because RMSE and 

MAE are the smallest as shown in Figure 3.12. If more features are incorporated in the 

input set, the model may not always improve the prediction accuracy compared with 

Model 4. Therefore,  it can be concluded that wind direction, humidity, air pressure, and 

temperature are among the most important data for wind speed forecasting model in 

Wellington because they lead to the minimum RMSE and MAE errors.  

 
Figure 3.12: Comparisons of Forecasting Models under Different Predictors. 
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Based on the comparison results, the neurons at the input and output layers are 

shown in Figure 3.13(a) for Wellington, Phoenix, and New York. Figure 3.13(b) is for 

Boston and Sanya, and Figure 3.13(c) represents San Francisco. There are nine input 

neurons for Wellington, Phoenix, and New York. However, only seven input neurons are 

needed for San Francisco.  

 

(a). Wellington, Phoenix and New York. 

 

(b). Boston and Sanya. 
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(c). San Francisco. 

Figure 3.13: Structure of Hybrid Wind Speed Forecasting Model. 

The comparison in Table 3.4 shows that the performance of ARIMA is still better 

than the proposed model and persistence model in 1-hour ahead forecasting. RMSE is 

reduced by 6.1% compared to ARIMA with persistence model. The proposed hybrid 

model only improves 5.6% of RMSE compared with the persistence model. 

Table 3.4: Comparisons with Persistence Model in 1-hour Ahead Forecasting. 

Improvement ARIMA model Proposed model 

RMSE 6.1% 5.6% 

MAE 3.4% 1.3% 

Figure 3.14 displays the 1-hour ahead forecasting results obtained with the 

ARIMA, FNN, and proposed models with the actual data in Wellington. The proposed 

model and ARIMA model follow the actual data quite well, meanwhile, a delay exists in 

the prediction obtained from the ANN model. It is observed that MAE and RMSE for the 

ARIMA model are considerably lower than the other two models. 
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Figure 3.14: Comparisons of 1-hour Ahead Forecasting Models in Wellington. 

Table 3.5 shows the measured errors of various forecasting horizons based on 

ANN and the proposed forecasting model of testing cities. The performance of FNN 

model becomes worse than the proposed model when the forecasting horizons extended.  

Table 3.5: Comparisons between Hybrid Model and FNN Model. 

Cities 

  FNN  Proposed 

Indexes 1- 3- 8- 12- 24- 
 

1- 3- 8- 12- 24- 

(m/s) hr hr hr hr hr hr hr hr hr hr 

Wellington 
RMSE 1.5 1.8  1.9 2.1 2.4  1.07 1.57 1.8 1.98 2.24 

MAE 1.2 1.3  1.8 2.0 2.2  0.8 1.17  1.43 1.82 1.87 

San 

Francisco 

RMSE 1.5 2.0 2.2 2.3 2.5  1.23 1.31 1.32 1.38 1.41 

MAE 1.1 1.6  1.8 2.0 2.1  1.0 1.1  1.14 1.18 1.2 

Phoenix 
RMSE 0.8 0.9 0.9 0.9 1.1  0.71 0.74 0.76 0.79 0.93 

MAE 0.7 0.7 0.7 0.8 0.9  0.68 0.7 0.70 0.71  0.75 

Boston 
RMSE 0.9 1.2 1.5 1.7 2.4  0.89 0.98 1.31 1.68 2.03 

MAE 0.8 1.1 1.3 1.4 2.2  0.76 0.86 1.11 1.24 1.89 

New York 
RMSE 1.1 1.2 1.4 1.8 2.4  1.03 1.17 1.39 1.65 2.28 

MAE 0.9 1.1 1.2 1.6 2.1  0.94 1.08 1.18 1.47 2.04 

Sanya 
RMSE 0.9 1.2 1.2 1.6 2.2  0.91 1.02 1.23 1.59 1.93 

MAE 0.9 0.9 1.1 1.4 1.9  0.87 0.89 1.11 1.42 1.85 
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RMSE 

            (a). Wellington                       (b). San Francisco                     (c). Phoenix 

 

MAE 

 (a). Wellington                     (b). San Francisco                     (c). Phoenix 

 

Figure 3.15: Comparisons of RMSE and MAE among Five Models for Three Cities. 

It is observed that the MAE and RMSE of the proposed model are considerably 

lower than other models. Tables 3.2, 3.4, 3.5, and Figure 3.15 indicate that: 1) the larger 

number of forecasting horizon, the lower the accuracy; 2) the proposed model yields 

better performance in multi-hour forecasting. The most significant drop in performance 

occurs when the forecasting horizon increases from 3-hour to 8-hour. The degradation of 

performance tends to be flat as the forecasting horizon increases from 8-hour to 24-hour. 

The 8-hour and 12-hour ahead forecasting result are quite acceptable. The 24-hour ahead 
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forecasts appeared to be too rough estimates. Therefore, the additional techniques should 

be added to ARIMA model,  FNN, and RNN model to improve the performance on one 

day ahead forecasting model; 3) by combining the physical features and statistical 

prediction techniques, the hybrid model exhibits high accuracy which is up to 45% than 

the FNN method in the day ahead forecasting. On the other hand, the proposed method 

does not outperform the ARIMA model for 1-hour ahead forecasting.  

The black solid line and dashed line represent the actual observation and the 

forecasting value, respectively. The shaded areas display 95% prediction interval (PI) for 

various models in Figure 3.16. The smallest width of PI is obtained by the proposed 

model. 

 
Figure 3.16: Prediction Intervals in Day-ahead Prediction Models. 

To assess the performance of the hybrid model, several findings are obtained from 

the numerical comparisons. First, wind direction is found to be the most significant 

feature in the multivariate hybrid model, and it improves the prediction performance and 

leads to much better forecasting. Second, the proposed hybrid model outperforms the 
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benchmark results of four existing models in 3- to 24-hour ahead prediction. Third, 

ARIMA model generally outperforms neural network models in 1-hour ahead 

forecasting. Hence, it is concluded that the proposed methods cannot always improve the 

prediction result, especially in 1-hour ahead prediction. Fourth, all models result in a 

good prediction if wind speed involves smaller variations between consecutive hours. 

The prediction error exhibits a certain relation with wind speed, and a small prediction 

error can be achieved for the wind speed with a small-scale standard deviation. The 

forecasting result in Phoenix is better than all other cities owning to the lowest standard 

deviation of wind speed. 

There are two interesting directions worth further investigation. First, wind and 

solar are complementary in terms of renewable power generation. Utility companies often 

purchase both wind and solar from the day-ahead market, hence it is desirable to develop 

an integrated model that jointly forecasts wind speed and weather conditions. Second, 

with the advance of senor technology and Internet of Things, it is foreseeable that in-situ 

measurement of topography parameters can be realized cost-effectively. Hence more 

accurate and reliable wind speed prediction will be anticipated by combining physical 

and data-driven methods. The proposed approach provides a new and viable option for 

wind forecasting applications in that they outperform the single forecasting models on 

many occasions by incorporating both physical and data-driven methods. 

3.4.5 Deep Learning Long-term Wind Speed Prediction Model 

Long-term forecasting of wind speed has attracted much attention in many 

different areas, such as restructured electricity markets, wind farm optimal design, 

especially in the renewable power system with the energy storage device, wind turbine, 
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and solar PV generator. Table 3.6 describes the input variables for the long-term wind 

speed forecast model.  

Table 3.6: Input Variables for Long-term Deep Learning Prediction Model. 

Input Variable                 Explanation 

Input 1 The monthly trend variable. 

Input 2 The daily trend variable. 

Input 3 Previous year’ hourly record variable. 

Input 4 Geography impact factors latitude. 

Input 5 Geography impact factors longitude. 

Input 6 Geography impact factors evaluation. 

Input 7 Meteorology impact factors wind speed. 

To determine the best model architecture, the experiment is conducted with the 

basic validation method. In this study, the number of hidden layers in testing models 

increases from one,  two, and four. The nodes number in each  hidden layer varies from 5, 

10, and 20, respectively. The performance of each model is recorded in Table 3.7.  

Table 3.7: Performance of Deep Learning Model with Different Layers and Neurons. 

Number of 

hidden layers 

Size of neurons in each 

hidden layer 

Performance 

RMSE MAE 

    One layer 5 2.122 1.691 

 

 
Hidden_layer_1=5 

Hidden_layer_2=5 
2.1168 1.677 

Two layers Hidden_layer_1=10 

Hidden_layer_2=10 
2.1165 1.664 

 Hidden_layer_1=20 

Hidden_layer_2=20 
2.106 1.662 

Four layers 

Hidden_layers =5 

Hidden_layers =10 

Hidden_layers =20 

2.034 

2.013 

1.994 

1.636 

1.613 

1.591 
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Based on the forecasting result, the accuracy of the model obviously improves 

when adding one more hidden layer. However, the improvement of accuracy is not 

significant when increasing the number of hidden layers and neurons in each hidden 

layer. Hence, a model with a complex structure cannot guarantee the significant 

enhancement of performance. 

3.5 Weather Features Forecasting Models and Results 

The objective of this subsection is to predict the weather states based on historical 

data information. The model will be designed as logistic regression due to the categorical 

nature of the weather state. Generation of solar PV is depended on the solar irradiation 

and its own manufactured materials. Logistic regression can be classified into two types: 

binary classification or multi-classification. Binary logistic regression handles two classes 

problem when the observed outcome for a dependent variable can only have two possible 

values (e.g., "clear", "non-clear"). In binary logistic regression, the outcome is usually 

coded as "0" or "1". Multi-classification strategy works on the model that the outcome of 

the model has more than two possible values for a dependent variable (e.g., "clear", 

"partly cloudy", or "overcast"). For this research, a multi-classification model is designed 

to predict weather state with either continuous or categorical data as the predictor 

variables.  

Some weather states, such as fog, thunderstorms, and haze, account for a very 

small portion in Phoenix. Hence, they are treated as extreme weather or climate events. 

These states will not be considered as the input states due to a very tiny portion over the 

decades. To be conservative in PV generation, these weather states can be grouped as 

"overcast". Table 3.8 summarizes the proportion of weather states in Phoenix and New 



 

77 

York. In Phoenix, the number of "clear" days accounts for the largest portion, on the 

contrary, the "MC" has the largest portion in New York. 

Table 3.8: Weather States Summary of Phoenix and New York. 

        States 
Proportion 

(New York) 

Proportion 

(Phoenix) 

Cloud 

fraction (%) 
 

Clear 6.2 27.2 0~25  

SC 18.1 14.8 26~50  

PC 17.1 26.4 51~75  

MC 33.1 25.4 76~99  

OC 16.1 4.3 1  

Sum 90.6 98.1 1  

Rain 6.7 1.5 1  

Snow 1.6 0 1  

*Note:  Scattered Cloudy = SC, Partly Cloudy = PC, Mostly Cloudy = MC, Overcast = OC. 

Table 3.9 displays the consecutive 24 records from two cities in one day that are 

randomly selected in January and May, respectively. The daily weather profile exhibits 

various feature events.  

Table 3.9: Random 48-hour of Weather States in Phoenix and New York. 

 

3.5.1 Markov Model 

Berger (2012) defines that a Markov chain (MC) describes a stochastic process 

that may characterize a system at any time step. It has a wide range of applications in the 

last decade due to its strong mathematical structure and theoretical basis. S ={S1, S2, …, 

Sn} is a finite set representing a sequence of random variables. This random process is 

called Markov chain with the following probability, 



 

78 

1 1 1 2 2 1Pr( = | , ,..., ) Pr( | )t t t t t tS s S s S s S s S s S s+ += = = = = =                          (3.18) 

Equation (3.18) is referred to as the memoryless property. The Markovian 

property implies that given the present state, the future probabilistic behavior depends 

only on the current process state, and independent of its history.  

N = the number of the state. 

P={pij }representing the conditional probabilities, called transition matrix with 

N×N size. The sum of the transition probability from state i to state j for all j must be 

satisfied.  

1

1
N

ij

j

p
=

= ,              pij ≥ 0  for j and i                      (3.19) 
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π = {πi} the initial state distribution, where πi represents the probability of being 

in state i at the beginning of the experiment. 

1

1
N

i

i


=

= ,         πi ≥ 0 ,  for i                                         (3.20) 

A conditional probability transition matrix governs the probabilities of remaining 

in the same state or changing to other states. The parameter is obtained by calculating the 

state occurrence probabilities. Figure 3.17 sets as an example to illustrate the transition 

matrix with two states.  

 

Figure 3.17: Markov Chain with Two States. 
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First, a 5×5 transition matrix is obtained from categorizing groups of similar 

states as individual states as in Figure 3.18. P is the transition matrix for the weather state 

of Phoenix (a) and New York (b) by five states.    

 

(a). Phoenix 

 

 
                                            

(b). New York 

Figure 3.18: 5×5 States Transition Matrix. 

3.5.2 Hidden Markov Model 

Hidden Markov model (HMM) is a statistical model that was first introduced in 

the 1970s as a tool in speech recognition. It has been extensively used for pattern 

recognition or character classification problem. HMM is a finite state machine that has a 

fixed number of states. It provides a probabilistic framework for modeling a time series 

of multivariate observations. In this research, instead of analyzing the weather state data 

as a stand-alone time series, it is assigned to be a hidden process of an observation 

process of atmospheric pressure. Consequently, the aim of this study is to establish the 
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time transition properties of weather states, given the atmospheric pressure observations. 

Weather state is treated as a hidden state, whereas air pressure data is treated as the 

observation in this model. 

Except for the number of states in the model, transition matrix and initial state 

distribution, the following notations will be used in the HMM: 

M = the number of distinct observation symbols per state (observation symbols   

        correspond to the physical output of the system being modelled). 

T = the length of observation sequence. 

O = (O1, O2, O3, …, OT) observation sequence. 

B = {bj(ot)} observation emission matrix, where bj(ot)  represents the probability 

of observing Ot at state j. 

A = {aij} transition matrix, where aij represents the transition probability from 

state i to state j. 

1

( ) 1
M

j m

m

b o
=

=                                                       (3.21)   

                                             with 

                         aij ≥ 0,   bj(ot) ≥ 0,           for j and t                      (3.22)                 

The atmospheric pressure is selected as the observation of the hidden process of 

weather state due to the well-known meteorological relation between these two 

parameters (Khiatani and Ghose, 2017). The weather states are discrete data as mentioned 

above. The simple structure with two weather states under three air pressure observations 

is plotted in Figure 3.19. The observations have been selected as the numerically rounded 

air pressure values in a fixed interval and air pressure are classified into 10 levels in this 

study. The transition matrix of this study is displayed in Figure 3.20. 



 

81 

 

Figure 3.19: HMM Model with Two States and Three Observations. 

B = 

0.009 0.056 0.12 0.26 0.193 0.118 0.121 0.071 0.03 0.031

0.08 0.0051 0.117 0.307 0.268 0.134 0.075 0.029 0.008 0.003

0.017 0.073 0.145 0.255 0.209 0.111 0.088 0.067 0.027 0.007

0.006 0.103 0.181 0.25 0.213 0.134 0.063 0.035 0.013 0.003

0.0 0.034 0.065 0.279 0.32 0.128 0.086 0.076 0.013 0.0

 
 
 
 
 
 
  

 

Figure 3.20: Emission Matrix with Five States and Ten Observations. 

Overall, λ = (A, B, π) is the definition of HMM model. As mentioned above, the 

HMM model is characterized by five parameters: N, M, A, B and π. After the HMM 

structure is determined, the following issues are of interest: 

1). Given the observation sequence O and the model λ = (P, B, π), make an 

efficient computation of the probability of occurrence for that observation. 

2). Given the observation sequence O and the model λ = (P, B, π), find the 

optimal state sequence which contributes the maximum probability. 

3). Given the observation sequence O and the dimensions N and M, adjust model 

λ = (P, B, π) to maximize the probability of occurrence of the observation. 

The proposed problem in this research can be treated as the second issue. The 

solution to this problem is to obtain the maximum likelihood (ML) and estimate of the 
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state sequence at t time, given the transition observations (of size t-1) in Equation (3.23):  

1( ) arg max ( / )t tt P s o −= ,                                                   (3.23) 

where 

O = the observations.  

Ot-1 = the observation sequence until the instance (t-1).  

The Viterbi algorithm aims to find the most likely state sequence by searching for 

the maximum of 
1( / )t tP s o −

over all possible transitions. It works by calculating the 

maximum probability of observing a state after each transition step. In the last step, the 

state with the maximum probability is selected and traced back to recover the most likely 

transition sequence (Viterbi, 1967).  

3.5.3 Recurrent Neural Network Model 

In this research, the weather condition data set includes more than ten attributes. 

Only the most useful or the most relevant features can be taken as the inputs of the 

model. Guyon and Elisseeff (2003) state that the objective of variable selection is three-

fold. First, improving the prediction performance of the predictors. Second, providing 

faster and more cost-effective predictors. Third, providing a better understanding of the 

underlying process that generated the data. Eight weather state forecasting models are 

constructed in order to select the input variables with the best performance.  

Table 3.10 shows that a sensible model for the weather state includes Yt−1. By 

comparing Models 1 with 2, Yt−1 is clearly a significant predictor. In addition, Models 3-7 

do not substantially enhance the fitted model, leading to the conclusion that higher order 

lagged values of the response are not significant predictors. Model 8 shows the accuracy 

can be improved when different factors are added in the model. All these models are 
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trained under the same hyper-parameters’ value using the learning rate 0.01 and 20 

epochs training process.  

Table 3.10: Comparisons of Different Predictors for Weather States Forecasting Model. 

Model Predictors Accuracy 

Model 1 X1,t-1, X2,t-1, X3,t-1, X4,t-1, X5,t-1 0.39 

Model 2  X1,t-1, X2,t-1, X3,t-1, X4,t-1, X5,t-1, Yt-1 0.816 

Model 3 X1,t-1, X2,t-1, X3,t-1, X4,t-1, X5,t-1, Yt-1, Yt-2 0.8157 

Model 4 X1,t-1, X2,t-1, X3,t-1, X4,t-1, X5,t-1, Yt-1, Yt-2, Yt-3 0.819 

Model 5  X1,t-1, X1,t-2, X2,t-1, X3,t-1, X3,t-2, X4,t-1, X5,t-1, Yt-1 0.8167 

Model 6 X1,t-1, X1,t-2, X2,t-2, X3,t-1, X3,t-2, X4,t-1, X4,t-2, X5,t-1, X5,t-2, Yt-1 0.8153 

Model 7 X1,t-1, X1,t-2, X1,t-3, X2,t-2, X2,t-3, X3,t-1, X3,t-2, X4,t-1, X4,t-2, X4,t-3, 

X5,t-1, X5,t-2, X5,t-3,Yt-1 , Yt-2, Yt-3 

0.8149 

Model 8 X1,t-1, X2,t-1, X3,t-1, X4,t-1, X5,t-1, X6,t, X7,t, Yt-1 0.8209 

* X1,t : air pressure at t; X2,t: humidity at t; X3,t: dew point at t;  X4,t: wind speed(m/s) at t;  X5,t: temperature at 

t; X6,t:hour sin at t;  X7,t :hour cos at t; Yt :weather states at t; 

 

Figure 3.21 (a) displays the comparison of forecasting accuracy from Models 2 to 

8.  Figure 3.21 (b) plots the comparison of forecasting accuracy between Models 1 and 8, 

respectively. All denote that the one hour ahead weather condition is a significant 

estimator in the forecasting process. 

 

                                (a)                                                                         (b)  

 

Figure 3.21: Comparison of Accuracy among Eight Models. 
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Based on the comparison of these eight models, the input features are determined. 

Figure 3.22 shows the model’s structure to predict five weather states. The number of 

neurons in output layer represents the class levels. Each node represents the one state. 

The output is the state having the maximum likelihood compared to the other states. For 

example, if the output is 'Clear', the value signed to each node is {1, 0, 0, 0, 0}.   

 

Figure 3.22: Structure of Multi-classification Model. 

 

3.5.4 Weather Features Forecasting Results and Comparisons   

The confusion matrix is applied in evaluating the quality of the output of a 

classifier on the weather state dataset, also known as the error matrix. It has a specific 

table layout that allows visualization of the performance of an algorithm. The diagonal 

elements represent the instances that the predicted state is equal to the observed state, 

while off-diagonal elements are those that are mislabeled by the classifier. 

The prediction result in Table 3.11 sets the threshold for the "clear" state with 

88.36% accuracy. Only the probability of "clear" state is greater than 50%, the outcomes 
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for the dependent variable is "clear" state. Otherwise, the state with second larger 

probability in output is adopted.  

Table 3.11: Confusion Matrix with Threshold Value in Phoenix. 

Table 3.12 is the same model without setting the threshold with accuracy of 

89.9%. It indicates the model works very well for predicating "clear" state. When 

adopting the threshold, the forecasting result becomes conservative to estimate the solar 

PV generation at the expense of the accuracy. The model shows a quite good 

performance, when classifying the states between "clear" and "overcast". The state of 

"overcast" is never predicted as "clear" state.  The state with the highest proportion shows 

more accuracy, like “clear” state in Phoenix and "overcast" in New York, than other 

weather states.  

Table 3.12: Confusion Matrix without Threshold Value in Phoenix. 
 

Clear MC Overcast PC SC 

Clear 5715 16 0 596 57 

MC 24 4584 262 87 611 

Overcast 0 299 793 3 11 

PC 527 91 2 3716 577 

SC 82 625 19 483 3122 

Figure 3.23 plots the accuracy of one-step ahead forecasting result. The model has 

 

Clear MC Overcast PC SC 

Clear 5691 16 0 620 57 

MC 24 4584 262 87 611 

Overcast 0 299 793 3 11 

PC 510 91 2 3733 577 

SC 75 626 19 489 3122 

Observed 

Predicated 

Observed 

Predicated 
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better performance in Phoenix with 89.9% accuracy and New York with 80.36% 

accuracy. The darkest blue color square represents the highest accuracy for that state. 

 
Figure 3.23: Visualization of Forecasting Accuracy. 

Table 3.13 lists the multi-step ahead forecasting accuracy with the five-state 

output in Phoenix. The forecasting accuracy decreases with extended forecasting horizon, 

droping from 89.9% in 1-hour ahead to 56.9% in 24-hour ahead.  

Table 3.13: Forecasting Accuracy over Five Forecasting Horizations. 

Model Accuracy (%) 

1-hour 89.9 

3-hour 75.45 

8-hour 71.74 

12-hour 62.8 

24-hour 56.9 

 The model is constructed with five different weather states and the results are 

compared with seven weather states. To better gauge the model performance, different 

weather profiles of two cities are compared. In addition, the proposed models are also 
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constructed by season and year to make the models more granular and gain insight as to 

whether the seasonal and yearly models yield better predictions for the corresponding 

period.  

The results in Table 3.14 show the comparisons between the seasonal and yearly 

forecasting models with five and seven weather states. Their performances are drastically 

different. Interestingly, the five-state forecasting model yields higher accuracy than ten-

state model. The model with yearly data has better performance than the seasonal one,  

because some states behave more randomly, such as snow or thunderstorms with zero 

occurrence frequency in summer or winter, which coincide with the real data record. 

Table 3.14:  Comparisons between 5- and 7-state Model with Seasonal Data. 

Performance 
Accuracy (%) 

spring summer fall winter 

5 New York 74.3 74.7 74.6 73.9 

States Phoenix 87.8 81 79.2 89.9 

7 New York 63.3 65.3 65.1 67.1 

States Phoenix 76.3 70.8 70.4 79.4 

 

Table 3.15 presents the normalized confusion matrix of the forecasting accuracy 

of the entire year with ten states. The average accuracy is 68.8% in New York. The 

proposed model cannot achieve high prediction accuracy for states such as rain and 

thunderstorm, light rain, and fog/haze. The model also does not differ from fog/haze 

between overcast and partly cloudy and mixes the state of rain and light rain. This is 

because rain, light rain, thunderstorm, and fog/haze have a limited number of 

observations. 
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Table 3.15: Ten-state Weather Features Prediction Result in New York. 

 True  

Clear 
Fog 

/Haze 

Light 

Rain 
MC OC PC Rain SC Snow 

Thunder 

storm 

Clear 0.78 0.00 0.00 0.00 0.00 0.19 0.00 0.03 0.00 0.00 

Fog/Haze 0.00 0.44 0.00 0.22 0.33 0.00 0.00 0.00 0.00 0.00 

Light Rain 0.00 0.00 0.76 0.13 0.00 0.00 0.10 0.01 0.00 0.00 

MC 0.00 0.00 0.00 0.87 0.11 0.02 0.00 0.10 0.00 0.00 

OC 0.00 0.01 0.06 0.17 0.73 0.00 0.02 0.00 0.01 0.00 

PC 0.06 0.00 0.00 0.03 0.00 0.73 0.00 0.18 0.00 0.00 

Rain 0.00 0.01 0.40 0.01 0.26 0.00 0.29 0.01 0.03 0.01 

SC 0.00 0.00 0.00 0.23 0.01 0.17 0.00 0.58 0.00 0.00 

Snow 0.00 0.00 0.00 0.04 0.15 0.00 0.00 0.02 0.80 0.00 

Thunderstorm 0.00 0.00 0.05 0.42 0.32 0.00 0.00 0.11 0.00 0.11 

 

Table 3.16 shows that the proposed model forecasting accuracy is 35.7% and 32% 

higher than the Markov model and the hidden Markov model (HMM), respectively. 

Table 3.16: Comparisons among MC, HMM, and ANN Model in Phoenix. 

Type         
Amount Clear MC PC SC OC  Total 

Measured 2462 2247 2344 1324 383 8760 

MC 2946 1620 2086 2031 77 8760 

HMM 3236 2323 315 2745 141 8760 

RNN 2463 2248 2344 1324 381 8760 

 

Table 3.17 shows the comparison result between the proposed model and the 

statistical models under five states. The accuracy in Phoenix shows the best performance 

compared to other cities due to the top five states accounting for over 98%, while less 

than 90% in other cities. Furthermore, the model prediction accuracy decreases when the 

number of states involved in the model increases.   

Predicted 
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Table 3.17: Comparisons of One-hour Ahead Forecasting Accuracy. 

Cities 
Accuracy (%) 

MC HMM RNN 

Wellington 65 77.6 81.4 

San Francisco 71 80.6 87.9 

Phoenix 74 83.6 89.9 

Boston 66 75.6 84.4 

New York 63 79.4 80.3 

Sanya 68 82.4 86.7 
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4. MATHEMATICAL FUNCTIONS IN MODELS 

In this chapter, the working principle of renewable generators and energy storage 

devices is illustrated. The output of renewable generation, charging and discharging 

process, and the lifetime of battery are converted into mathematic functions, respectively. 

The challenge with the integration of the distributed energy resources (DER), such as 

wind turbine and solar photovoltaic (PV), is the uncertain nature of such electricity 

resources. DER and energy storage devices improve the security of supply and mitigate 

the impact to the grid power system.  

A microgrid power system can operate either in connection with the main grid or 

in isolation mode. In this study, the grid-connected operation mode is adopted, 

meanwhile, the onsite renewable generation system has two ways of energy flow. The 

utility-scale hybrid energy storage system (HESS) manufactured by advanced materials is 

installed in the grid-connected microgrid distribution system as shown in Figure 4.1. The 

power in the microgrid system keeps the balance as below, 

HRE s LoadP P P= +                                                               (4.1) 

HRE PV WT HESSP P P P= + +                                                   (4.2) 

bat=HESS scP P P+                                                                  (4.3) 

where  

PHRE = power output of HESS and renewable generations.  

Ps = exchange power between grid and micropower system. 

When Ps > 0 means system imports energy from grid; Ps < 0 means onsite 

generation system exports energy to grid; Ps = 0 means there is exchange between 

microgrid and main grid.   
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Figure 4.1: Microgrid Power System with HESS. 

4.1 Modeling Wind Turbine Generation 

Wind energy is at the forefront of renewable energy sources. According to Global 

wind statistics (2019), the worldwide cumulative installed wind capacity reached nearly 

591gigawatt (GW) at the end of 2018, with an annual growth rate of 9.6%. Most 

countries make efforts to help wind power development from technology, policy, and 

budget aspects. The installed capacity of the United States has increased more than 

twentyfold in the past 16 years, from 4.2 GW in 2001 to 82 GW in 2017 surpassing 

hydropower capacity and becoming the largest installed generator (EIA,2017). China has 

been the largest wind energy provider worldwide since 2010 and installed capacity 

reaches 149 GW in 2016 (Sullivan and Liu-Sullivan, 2019). 

In 2016, wind turbines accounted for 8% of the operating electric generating 

capacity in the United States. The wind energy policy is a strong incentive to increase 

wind power generation as well as stimulate the energy industry. The largest onshore 
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turbines are in Texas, with capacity of 4 Megawatts (MW) each. According to EIA 

(2017), one of the largest wind farms in the world has installed 420 wind turbines spread 

over 47,000 acres at Horse Hollow Wind Energy Center in Texas. The project has 735 

MW of combined generation capacity. 

According to collected data from EIA (2016), utility-scale wind turbines typically 

exceed 2 MW and the diameter of the rotor is more than 76 meters. Table 4.1 summarizes 

the current wind turbine technologies based on the hub height, rotor, and rated power 

output. 

Table 4.1: Parameters of Current Wind Turbine Technologies. 

Category Hub Height (m) Swept area (m2) Rated Capacity (kW)   

Small  

0~8 0~50 0~10 

8.1~11 50.1~100 10~25 

11.1~16 100.1~200 30~60 

Medium  

16.1~22 200.1~400 70~130 

22.1~32 400.1~800 150~330 

32.1~45 800.1~1600 300~750 

Utility 

Scale 

45.1~64 1600.1~3200 600~1500 

64.1~90 3200.1~6400 1500~3100 

90.1~128 6400.1~12800 3100~6400 

4.1.1 Wind Source Property 

Wind generation utilizes airflow through the blades of wind turbine by 

mechanically rotating the generator to produce electricity. In general, wind resources 

vary with height above the terrain and the wind speed increases from the ground surface 

to the upper level. The wind program (energy.gov) estimates that the land-based wind 

energy potential is 10,500 GW at 80 meters height and 12,000 GW capacity at 100 

meters height across the United States. Figure 4.2 is the heat map of wind speed 

worldwide over 100 meters height above ground. 
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Figure 4.2: Wind Resource Distribution across World (Alkholidi, 2013). 

The wind speed is also impacted by the surface roughness of terrain in a certain 

area shown in Figure 4.3. The wind speed at height H can be estimated by following 

equation (Ilinka et al., 2003), 

 

Figure 4.3: Wind Speed Variety with Different Height and Roughness. 
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where 

vref = known wind speed at reference height (m/s, usually 10 m as reference). 

Z0  = surface roughness length of terrain. 

H = height above ground level for v (m). 
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Href  = reference height (m). 

The wind data source from the weather underground is measured at 10 meters 

above the ground surface, Href  = 10 and hub height of wind turbine is 89 meters applied 

in this study, H = 89. Suppose the roughness length, Z0 = 0.4, at the urban and farmland 

area.  The wind speed equals 5.5 m/s, vref = 5.5, the wind speed, v,  can be calculated: 

   

( )

( )

5.5x( ln 89 ln(0.4))
 

ln 10 ln(0.4)

= 14.14m/s

v
−

=
−   

 Table 4.2 lists the wind speed under different height levels at the first hour in each 

year from 2006 to 2015 in Wellington, New Zealand given that the value of surface 

roughness length (Z0) is 0.4. 

Table 4.2: Wind Speed at Different Height Levels in Wellington. 

Category 
200

6 
2007 2008 2009 2010 2011 2012 2013 2014 2015 

measured 

value (10 m) 
7.32 6.50 6.66 6.97 6.87 6.65 6.59 6.89 7.09 7.41 

80 m above 

ground 
18.3 16.25 16.65 17.42 17.17 16.62 16.47 17.22 17.72 18.52 

100 m above 

ground 
19.5 17.29 17.71 18.54 18.27 17.68 17.52 18.32 18.85 19.71 

4.1.2 Mathematics Model of Wind Turbine Generation 

The aerodynamics are converted into mechanical energy through blades and a 

gearbox. The energy is further converted into electricity via a generator that is rotated by 

the torques from the gearbox. A wind energy conversion system is a combination of a 

wind turbine, generator, and power electronics converters for AC-DC-AC conversion as 

shown in Figure 4.4. 
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Figure 4.4: Schematic of Wind Energy Conversion System. 

Depending on the wind speed, the operation of a WT can be broken into four 

phases: standby, non-linear production, constant production, and shutdown. Figure 4.5 

plots the wind power curve, where vc is called cut-in wind speed, vr is called rated wind 

speed, and vs is the cut-off wind speed.  

 

Figure 4.5: Wind Turbine Power Curve. 

The relationship of the output power and the wind speed is regarded as a non-

linear function when the turbine operates between vc and vr. Cubic power curve model is 

developed based on the kinetic theory of the airflow dynamics (Jangamshetti and Rau, 

2001). Let Y be the random wind speed, and y is its realization. The output power of wind 

turbine in four phases can be modeled as, 
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where 

ρ = air density (1.225 kg/m3). 

A = the covered area of blades. 

y3 = the cube of wind speed across a wind turbine. 

ηmax = the maximum conversion rate as 59.26%. 

Pr = related power or the capacity of the WT. 

4.1.3 Simulate Generation of Wind Turbine  

In this study, a 2 MW wind turbine with hub height of 89 m and 124 m diameter 

of blade is chosen for simulation. The characteristic of the wind turbine made by glass 

fiber reinforced plastic material is given in Table 4.3. 

Table 4.3: 2MW GE Wind Turbine Platform. 

Category Cut-in (m/s) Rated (m/s) Cut-out (m/s) 

Wind Speed 3 10 25 

The forecasting results of wind speed across a year from Chapter 3 are plugged 

into Equation (4.5). Assuming the WT is installed in Boston, MA, the hourly generation 

of a 2 MW wind turbine is plotted in Figure 4.6. The maximum output power is 2 MW 

when the wind speed falls in 10 m/s and 25 m/s. 

 

Figure 4.6: Hourly Generation of Wind Turbine through 2015 in Boston. 
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4.2 Modeling Solar Panel Generation  

Solar is one of the most important sources of sustainable renewable energy. The 

sun provides energy for the earth through radiant light and heat. All living creatures on 

earth depend on the energy from the sun to survive. The amount of energy that the earth 

obtains from the sun per hour is more than the amount of energy that humans consume 

across an entire year. Solar PV is a technology that harnesses solar radiation and converts 

it into electric power. However, the solar PV generator has some limitations. It heavily 

depends on the weather features and is only available in the daytime. Figure 4.7 plots 

solar radiation resources across the world.  

  

Figure 4.7: Surface Downward Solar Irradiance across World (Alkholidi, 2013). 

4.2.1 Mathematics Model of Solar Panel Generation  

A PV system typically includes a charge regulator, DC-AC power inverter, and a 

transformer. The maximum lifespan of a PV module is estimated at around 25 years. A 

typical PV module consists of about 36 or 72 solar cells connected in a series or parallel. 

The two principal classifications in the renewable power system are grid-connected 

(utility-interactive systems) and stand-alone systems. Photovoltaic systems can be 

operated as interconnected with or island to the utility grid. It also can be connected with 

other energy sources or storage systems, such as integrated with battery storage devices 
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to prevent the power shortage in night. 

A solar cell is configured as a large area p-n junction made from silicon, which 

absorbs light to generate electron-hole pairs. The configuration of the simulated ideal 

solar cell with a single diode is shown in Figure 4.8.  

 

Figure 4.8:  Equivalent Circuit of Photovoltaic Cell. 

The output current IL of solar panel is calculated by the following equation 

(Azzouzi, 2016), 

( )
[exp( ) 1]

L ph d sh

L sL
ph s

sh

I I I I

U I Rq U I R
I I

nKT R

= − −

++
= − − −

                                   (4.6) 

where  

Iph = current generated by the incident light (A). 

Id = diode current (A).  

q = electron charge (1.60217646×10-19C). 

 Ish = shunt current (A).  
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K = Boltzmann's constant (1.38×10−23 J/K).  

T =  temperature of p-n junction (K).  

Rs = series resistance (Ω).  

Rsh = shunt resistance (Ω). 

1 2(1 (exp( / ) 1))L sc OCI I C U C U= − −                                           (4.7) 

with 

1

2

(1 )exp( )m m

SC OC

I U
C

I C U
= − −  

1

2 ( 1) (1 )m m

OC SC

U I
C In

U I

−= − −  

It is difficult to directly use Equations (4.6) and (4.7) to estimate the generation of 

solar cells. In this study,  ISC, UOC, Um, and Im  are used to deduce the output current of the 

solar cells under the standard solar radiation and temperature. For any temperature and 

solar radiation levels, the corresponding values of I’
SC, U’

OC, U’
m, and I’

m can be obtained 

as follows, 

' (1 )sc sc

ref

S
I I T

S
=  +                                                             (4.8) 

 
' ((1 )) ( )oc ocU U c T In e b S=  −  +                                             (4.9) 

' ((1 )) ( )m mU U c T In e b S=  −  +                                            (4.10) 

' (1 )m m

ref

S
I I T

S
=  +                                                            (4.11) 

where 

α = 0.0025/Co 

b = 0.5 

c = 0.00288/Co 
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ΔT=T-Tref 

ΔS=S-Sref 

The output power of the solar PV at a specific temperature and solar radiation 

level can be calculated as, 

' '

PV m mP I U=                                                                  (4.12) 

In this part, a simulation program is designed to emulate the whole year output 

power of a solar PV panel at the testing cities. In this model, the amount of solar 

irradiance can be calculated based on the latitude of the location, the date in a year, and 

the hour in a day. The weather features are also considered when simulate the power 

generation of solar PV. A three-step procedure is applied in modeling and simulation the 

solar PV generation for this study. Figure 4.9 displays the relation between tilt angle, 

latitude, and the amount of solar irradiance hit on a solar PV during a course of a day. 

 

Figure 4.9: Solar Irradiance on Solar PV in a Day. 

Step 1: compute the sunrise and sunset time for date d{1, 2, …, 365} 
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with 

   






 +
=

365

)284(2
sin40928.0

d
      (4.14) 

Sun

Equator

North Pole

South Pole

Zenith





+

N

S

E

W



Sun

Normal 

to PV

Normal to 

ground

Ground



Ground

surface




 

101 

where 

 = The declination angles. 

rise = The sunrise angles in day d perceived from the solar panel. 

set =  The sunset angles in day d perceived from the solar panel. 

Step 2: provides the detailed model to compute St at t =1, 2, …, 24 hours in date d for d 

=1, 2, …, 365. This model is applicable in any geographical region of the world. Table 

4.4 summarizes the key parameters related to the computation of solar PV generation. 

Computing the total amount of solar irradiance incident on the PV surface at time t in day 

d that is following, 

 
( )

0.678(cos ) 2 ( 4)
1370 0.7 1 0.034cos cos 0.1 1

365
t

d
S   




−  −      
= +  + −      

           
(4.15) 

with 

cos cos cos cos sin sin     = +                                       (4.16) 







sinsinsincoscoscossinsincos

coscoscoscos

cossincossincossinsincos

++

+

−=

            (4.17) 

Where, st is the solar irradiance (W/m2) received by the PV at time t in date d, and 

 is the solar zenith angle which is given by Equation (4.16).  is the solar hour angle 

determined by the local time. For instance,  = -/2 represents 6 am., and it increases 15o 

every hour until reaching  = /2 at 6 pm. 

To maximize the solar power yield, the solar PV panel shall be oriented towards 

the south (i.e.,  = 0), then Equations (4.16) and (4.17) can be simplified as follows, 

                    cos)cos(cos)sin(sincos −+−=                     (4.18) 
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Based on Equation (4.15), the hourly solar irradiance is calculated on the first day 

in 2015 at Phoenix and the result is plotted in Figure 4.10.   

 

Figure 4.10: Solar Irradiance on January 1st, 2015 at Phoenix. 

Step 3: the actual power output of a PV system considering the weather features now can 

be expressed by 

( )( ) 1 0.005( )
t

t
W t o ref ref

ref

S
P W T T P

S
= − −                                           (4.19) 

where  

( )tWP = output power of the PV system. 

St = solar irradiance incident on the PV surface at time t (t = 1, 2, …., 24 hours)     

on day d for d =1, 2, …, 365. 

Pref  = rated output generated by the module under test conditions in watts. 

A = PV area (m2). 

To = PV operating temperature (Co). 

Tref  =  temperature of the module under standard test condition. 

Sref  = solar irradiance under standard test condition(W/m2). 
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Note that there is no power output when  < rise or  > set, i.e., before sunrise 

and after sunset. The generation of PV system is dependent on multiple factors, including 

the panel size, the operating temperature, the PV orientation, the panel tilt angle, the 

weather condition, and the solar irradiance incident on the PV (Taboada et al., 2012).  

Table 4.4: Summary of Key Factors that Impact PV Output Power. 

Factor Symbol Explanations 

Weather coefficient Wt random variable 

PV size (m2) A PV module area 

PV efficiency  Between 10-25% for conventional PV.  

Date d d{1, 2, …, 365} 

Solar hour (rad)  related to the local time 

PV temperature (oC) To operating temperature 

latitude (rad)  depends on geographical location 

PV azimuth angle (rad)  if facing south, =0 

PV tilt angle (rad)  between PV and ground 

Local hours t t = 1, 2, …, 24 

To address the random amount of clouds, the weather coefficient Wt is used to 

adjust the actual Pt(st). For instance, if it is “Clear”, Wt = 1, meaning 100% of St incident 

on the PV. If it is “PC,” then only 50 percent of St reaches the PV surface. On a snowy 

day, Wt = 0 because the PV surface is likely to be covered by snow. The values 

of Wt under different weather states are listed in Table 4.5. 

Table 4.5: Weather Coefficients under Different States. 

No. 1 2 3 4 5 6 7 8 9 10 

state Clear SC PC MC OC 
Light 

Rain 
Rain Fog Storm Snow 

Wt 1 0.8 0.5 0.3 0.2 0.1 0.1 0.1 0.1 0 
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4.2.2 Simulate Generation of Solar PV  

Solar cells are primarily made from semiconductors which are manufactured 

using different processes and materials. The photovoltaic effect is a capability of 

semiconductor converting the sunlight energy directly into electricity. One type of m-Si 

PV module is selected in this study. The detail of electrical parameters for this type of 

solar cell is provided in Table 4.6. 

Table 4.6: Specifications of PV Module. 

Category Notation Value Unit 

Rated maximum power Pmax 250 W 

Rated voltage Umax 29.9 V 

Rated circuit Imax 8.36 A 

Short-circuit current Isc 8.79 A 

Open-circuit voltage Uoc 37.8 V 

 

Based on the electrical property of the solar cell, Figures 4.11 and 4.12 plot I-U 

and P-U curves under different levels of solar irradiance and temperature, respectively. 

Both factors simply impact the output voltage (V) and current (I).  

 

Figure 4.11: I-U and P-U Curve of PV Cell under Different Temperatures. 
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Figure 4.12: I-U and P-U Curve of PV Cell under Different Solar Irradiance. 

Through analyzing Figures 4.11 and 4.12, the solar cell working principle can be 

summarized as: 

1). The amount and intensity of solar irradiance control the amount of output 

current. 

2). The operating temperature affects the output voltage of the solar cell.  

3).  The output voltage is more sensitive than the output current when the 

temperature changes.  

During the operation, the generation of a solar PV module is uncertain due to the 

changes in temperature and solar irradiance throughout the year. These two factors 

should be considered when designing a PV power system. Therefore, the predicted results 

of solar PV generation will be closer to the actual operation condition and improve 

accuracy. In summary, the optimal generation for a solar panel performs best in a sunny 

and cold environment. 

Based on Equation (4.19), the hourly power generation of solar PV is simulated. 

The generations of solar PV in one year are shown in Figure 4.13. 
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Figure 4.13: Hourly Generation of Solar PV through 2015 in Phoenix. 

4.3 Modeling Hybrid Energy Storage System 

 

Energy storage systems (ESS) will be integrated with WT and solar PV in a 

generation system to mitigate the power fluctuation and improve the power quality. ESS 

can continuously maintain energy supply for a long duration or quickly provide the 

power to fill the gap between the power generation and the demand. Schmidt et al. (2017) 

point out that an average annual cost prominently declining by 30% on the cell level can 

lead to 12% cutting on the system level in the ESS. Energy storage technologies available 

for large-scale applications can be divided into four types: mechanical, electrical, 

chemical, and electrochemical (Dunn et al., 2011). Some grid-scale storage technologies 

have already matured and been used for many years. For instance, pumped hydroelectric 

storage and compressed air energy storage (CAES) are excellent for storing large 

amounts of energy over a long duration. Table 4.7 lists the cost of utility-scale energy 

storage technologies.  
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Table 4.7: Cost and performance of Energy Storage Devices based on Materials. 

(Yamchi et al., 2019). 

Technology 

option 

Capacity cost 

($/kWh) 

Replacement  

cost ($/kWh) 

O&M cost 

($/kWh) 

Overall 

efficiency (%) 

Na-S 298 180 4.4 82 

Ni-Cd 780 525 11 66 

Zn-Br 195 195 4.3 65 

ZEBRA 509 182 5.5 87 

Li-ion 170 110 4 85 

In general, electrochemical energy storage device possesses several desirable 

features, including pollution-free operation, high round-trip efficiency, long cycle life, 

low maintenance, and flexible power and energy characteristics to meet different grid 

requirements. The utility-scale storage needs long service life to reduce the replacement 

cost. The SC can be cycled millions of times or virtually unlimited cycle life. It responds 

faster to discharge when demand increases. Hajiaghasi et al. (2019) make a summary that 

hybrid energy storage performs better than battery-alone energy storage for a stand-alone 

PV system. Jing et al. (2016) testify that hybrid storage has the virtues of both high 

energy and power density, and such systems increase battery lifespan. They analytically 

demonstrate that hybrid can extend the power output and life of battery. Hence, a hybrid 

energy storage system (HESS) is adopted in this study. HESS consists of lithium-ion 

battery (LIB) and supercapacitor (SC), which combines the advantages of both storage 

technologies. The main function of HESS can temporarily store surplus energy from WT 

and PV generation if empty capacity is available. On the other hand, if the aggregate 

generation from WT and PV is less than the demand, HESS is in discharge mode to 

complement the electricity gap.  
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4.3.1 Mathematics Model of  Lithium-ion Battery 

The specific energy, specific power, and energy density are the important 

parameters of battery which decide their performance. In this research, the constant 

power discharging is required to meet the load demand. Based on this condition, the 

capacity of a battery can be calculated by the following, 

2 2

0 1

2 P t
C

U U

 
=

−
                                                                  (4.20) 

where 

t = discharge time (s). 

C = capacity (Ah). 

U0 = charging voltage (V). 

 U1 = discharging voltage (V). 

P = power (W). 

Suppose the cut-off voltage, nominal capacity, and current discharging rate of 

each battery cell is Ub (V), Cb (A.h), and Ib (I), respectively. The battery subsystem 

consists of one array battery unit with m units, and the total storage energy Eb (Wh) and 

Pb (W) are generally calculated according to following equation,  

          
b b b

b b b

E m C U

P m I U

=  

=  
                                                          (4.21)  

The batteries are more prone to failure if they are discharged below a certain 

threshold, approximately the depth of discharge (DoD), around 80% in this study. Under 

this criterion, the minimum residual electric energy is always greater than 20% of the 

initial battery capacity during the discharging process at any time for the protecting 

purpose. If the cells are discharged below this threshold, their capacity can be 

permanently reduced, it is important to avoid fully discharging a battery. 
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4.3.2 Mathematics Model of Graphene-based SC 

Graphene-based SC can deliver high power and achieve nearly 100% cycle 

efficiency (Zhang et al., 2014) and exhibit negligible aging effects. Unfortunately, SC 

suffers from severe self-discharge with 20% per day (Zhang et al., 2014), low energy 

density, and high capital cost. In 2013, SC system was installed in La Palma power 

system with a 4 MW maximum power and a 5.5 kWh content energy to meet peak 

demand. The SC system provides power until a backup generator is started and the 

switch-over is stabilized during the power outage. 

It is generally known that the use of SC needs to be expanded through series or 

parallel connection because single SC only stores limited energy and cannot bear high 

voltage (Zhang et al., 2014). Suppose SC are connected in series with l and in parallel 

with n groups, the equivalent capacitance of SC group can be calculated as, 

                f

n
C C

l
=                                                                  (4.22) 

Suppose Uc max and Uc min are the maximum and minimum voltages of SC groups, 

respectively. The storage energy Ec (Wh) is expressed as follows,  

2 2

max min

3

2 2

max min

3

0.5 ( )

3.6 10
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3.6 10
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f c c

C U U
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n C U U

l

  −
=



   −

 

                                        (4.23)                                           

where  

Cf  = capacitance of single SC. 

Uc max = maximum voltage of SC. 

Uc min = minimum voltage of SC. 
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Ic max = maximum current of SC.  

It is shown that the stored energy of SC group is related to the number of single 

SC in series and parallel arrangement. The maximum power of an SC array can be 

provided as follows,  

2

max max max= c c c

n
P U I

l
                                                    (4.24) 

4.4 Modeling Charging and Discharging Process of HESS  

Suppose Ej is capacity of energy storage system. Ej,t is the stored energy at tth hour 

in HESS is formulated by following, 

min

min

,

=  j j

j j t j

E DoD E

E E E



 
                                                        (4.25) 

In Equation (4.25), the lower bound thresholds for stored energy Ej,t in HESS at 

each hour, j ∈{LIB, SC}. When the Ej,t reaches Ej, the HESS stops charging, while Ej,t 

reaches Ej
min, the HESS stops discharging to protect the lifetime of HESS. The gap between 

Ej
  and Ej

min represents the maximum amount of energy taken out from system. Lithium-

ion batteries can be continually discharged at 100% DoD level with expected 3,000 cycles. 

The optimal energy storage system control problem is treated as a discrete-time 

problem with the time step of one hour. Then, the power is equal to the value of energy.   

E(Wh) = P(W) × 1(h)                                                      (4.26) 

Hence, for any time t hour, Pj,t obtained by the following equation : 
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               (4.27)         

Where Ej,0 is the initial stored energy in HESS at the beginning of operational 

epoch.  Equation (4.27) can be rewritten as 

min

,0 , ,

1

T

j j j t j j t

t

E E P E E
=

−   −                                             (4.28) 

t = 0,1, …, T.  

The stored energy at the end time T should be equal to the initial energy in the 

HESS for each operation cycle. Ej,0 = Ej,T, in which the energy drawn from HESS during 

the discharging process equals energy recharged to HESS after a completed operational 

epoch. 

4.4.1 Mathematical Function in Charging Process  

Let Ej,t be  the energy stored in battery at time t. After charging in time t, the 

residual electric energy as 

,( ) , ,

c c

j t t j t j t jE E P t+ = +                                              (4.29) 

where  

 t = operation hour, for t 

t = the charging duration (hour). 

Pj,t = charging power at t. 

ƞj
c= charging power rate. 
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4.4.2 Mathematical Function in Discharging Process  

Let Ej,t be the battery energy state at time t, then after discharging over t, the 

residual electric energy as 

,( ) , ,

d

j t t j t j t jE E P t+ = −                                                      (4.30) 

where  

 t = operation hour,  for t 

t = the discharging duration (hour). 

 Pj,t = discharging power at t. 

ƞj
d = discharging power rate. 

4.4.3 State of Charge 

State of charge (SoC) is used to describe the energy storage in a battery and is 

defined as: 

,
SoC 100%

j t

j

E

E
=                                                            (4.31) 

Where Ej,t  is the residual energy at time t and Ej
 
 is the storage capacity of the 

device. The SoC at t+1 can be obtained as follows, 

        

,

,( 1) ,

,

,( 1) ,

SoC SoC (1 ) 100%

SoC oC (1 ) 100%

j t

j t j t j

j

j t

j t j t j

j

P

E

P
S

E





+

+

= − − 

= − − 

                                      (4.32) 

 

with 

                                               , , , ,j t L t pv t wt tP P P P= − −  

 

In this study, σj is equal to 0.3% for LIB and 2% for supercapacitor. The SC 

performs the full discharging procedure without any impact on capacity unlike LIB. 

Hence, the DoD of SC can reach to 100%.  
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4.4.4 Modeling Cycle Life of Battery 

After significant amounts of charge-discharge cycles, the battery may fail to meet 

a specific performance criterion. Lithium-based batteries delivers between 300 and 500 

full charge-discharge cycling before the capacity drops below 80 percent. The actual 

operating life of the battery is affected by DoD and other conditions, such as temperature 

and humidity. A higher DoD accelerates the shrinking of battery lifespan. For example, a 

battery may have 15,000 cycles at the 10 % of DoD, but only 3,000 cycles at the 80% of 

DoD. The amount of charge-discharge cycle of battery at a specific DoD level can be 

calculated as, 

, ( 1) 1

, ( 1) ( 1)

( )

( )

bat ch t t t t

t

bat dis t t t t

t

N SoC SoC SoC SoC

N SoC SoC SoC SoC

+ +

+ +

 = − 



= − 





                    (4.33) 

where 

 Nbat,ch = value of charging percentage in one operation period.  

Nbat,dis = value of discharging percentage in one operation period. 

 Based on Nbat,ch or Nbat,dis  to calculate the lifetime loss of a battery, when Nbat,ch  

or  Nbat,dis reaches the maximum number of charge-discharge cycles, the battery will be 

considered to replace. 

4.5 Modeling Load Demand 

The electricity demand of a wafer fab is used as a case study to characterize the 

power use in an energy-intensive manufacturing facility. The results can be extended to 

other business sectors such as automobile assemblies, chemical and refinery industry, 

cloud computing, and data centers, because they usually operate in 24/7 mode. The load 

demand data, comprised of 12 months, is obtained from a local industry partner in 
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Austin, Texas. Figure 4.15 shows the load profile possesses strong seasonal patterns 

coupled with short-term demand variations and the probability of load demand. The 

power demand between late January and early April is among the lowest around 8.8 MW. 

It increases from April and reaches the peak of 10.4 MW in September, and then declines 

to 9.3 MW in later November. 

 

Figure 4.15: Wafer Fab Load Profile. 

To capture the load seasonality as well as the short-term variation, the monthly 

mean load and standard deviation are estimated. The results of monthly mean load and 

standard deviation are presented in Table 4.8.  
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Table 4.8: Mean and Standard Deviation of Monthly Load. 

 
           *Note: StDev = standard deviation. 

Figure 4.16 plots the hourly demand in one day on September 1st. Due to the 

factory reduced the production during the night shift, the energy demand during the 

daytime is higher than in the night. 

 

Figure 4.16: Simulate Load Demand in a Day. 
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5. LCOE PROSUMER MODEL 

Levelized cost of energy (LCOE) is defined as the net present value of the unit 

cost of electricity over the lifetime of a generation asset. It is a critical criterion to 

evaluate the cost of energy based on the generation technology. In this study, the LCOE 

is the ratio between annualized operation cost of a power system divided by total 

delivered energy through a year. A quantitative approach is proposed to minimize the 

LCOE of each individual manufacturing facility by considering the power supply 

reliability criterion and time of use (TOU) rate. The manufacturer, as the prosumer, can 

export surplus energy or import energy to complement the shortage from the main grid. 

The model is tested and implemented in six testing cities with a variety of climate 

conditions. Table 5.1 summarizes the climate conditions of testing cities.    

Table 5.1: Summary of Climate Conditions. 

City Wind Speed Clear Sky 

Wellington H L 

San Francisco M M 

Phoenix L H 

Boston M L 

New York M M 

Sanya L H 

 In this chapter, optimization model will be designed based on the four operation 

modes shown in Table 5.2 for testing cities. In Case I, the goal is to minimize the LCOE 

within a one-year period under certain variables, such as manufacturer operated 24/7, 

carbon credit only applied for the solar PV generator, and $70/MWh flat utility rate 

policy implement. Case I serves as the benchmark in this study. The one variable has 

been modified from Case II to Case IV. In case II, the manufacture is operated 12/7 

during the daytime. In Case III, there are no incentive policies for stimulating investment 
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in renewable energy. TOU policy is applied for case IV. 

Table 5.2: Operation Modes of Manufacturer. 

Case 
Operating 

mode 

Carbon credit of 

PV ($/MWh) 

Pricing 

policy 
Utility rate ($/MWh) 

1 24/7 10 Flat 70 

2 12/7 10 Flat 70 

3 24/7 0 Flat 70 

4 24/7 10 TOU 
$140/MWh from 9 am. to 9 pm. 

$70/MWh  from 10 pm. to 8 am.  

 The mission of this chapter is to size the capacity of renewable generations and 

the capacity of energy storage devices in testing cities under four operation modes. Wind 

turbine is made by glass fiber reinforced plastic material and solar PV is m-Si module. 

Lithium-ion battery and graphene-based SC are adopted in the model. Table 5.3 states the 

value and unit of parameters in the mathematical function and Table 5.4 lists the 

variables in the model. 

Table 5.3: Notation of Parameters (IEA, 2020). 

Notation Value Unit Comment 

a1 1.5×106 $/MW Capacity cost of WT 

a2 2×106 $/MW Capacity cost of PV 

a3 0.6×106 $/MWh Capacity cost of LIB 

a4 1.2×106 $/MWh Capacity cost of SC 

b1 12 $/MWh O&M cost of WT 

b2 4 $/MWh O&M cost of solar PV  

b3 3 $/MWh O&M cost of LIB  

b4 0 $/MWh O&M cost of SC  

c1 0  $/MWh Carbon credits of WT 

c2 0 or 10 $/MWh Carbon credits of PV 

  70 $/MWh Electricity rate 

q 35 $/MWh Feed-in-tariff rate 
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Table 5.4: Notation of Decision Variables. 

Notation Unit Variable Type Comment 
 

MW Continuous Capacity of WT 

 

MW Continuous Capacity of PV 

 

MWh Continuous Capacity of Lithium-ion battery   

 

MWh Continuous Capacity of supercapacitor 

5.1. Cost Analysis 

The costs of system include the capital investment, operation and maintenance 

cost, and the utility bill (Sanders et al., 2012).  

5.1.1 Installation Cost  

( )1 1 2 2( , )
1 1

( , ) ,c c
g j

G E
c c

i g j jIn p B
g j

n r a P n r a Bc  
= =

= +                               (5.1) 

                 with   

                                             (1 )
( , )

(1 ) 1

n

n

r r
n r

r


+
=

+ −
 

where 

Pg
c = capacity of renewable energy technology (MW), G{WT, solar PV}. 

Bj
c = capacity of HESS (MWh), J {Battery, Supercapacitor}. 

ag = capacity cost of renewable energy technology WT ($/MW). 

aj = capacity cost of HESS ($/MWh). 

n1 = payment periods (Year) of renewable generators. 

n2 = payment periods (Year) of energy storage devices.. 

r = interest rate (such as 5-6%). 

φ= capital recovery factor. 

Note Pg
c and Bj

c are decision variables, they are unknown to be optimized in the 

model. The φ converts a present value into a stream of equal annual payments over a 

wt

cP
c

pvP

c

BSB

c

SCB
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specified time, at a specified discount interest rate. 

5.1.2 Operation and Maintenance (O&M) Cost 

Though wind and solar energy resources are free, the operation and maintenance 

cost have to do with two aspects: 1) leasing the land to install and place WT, PV units, 

and HESS systems; 2) repair and maintenance of WT, PV, and Li-battery due to 

component aging and wear-out. 

                 
( , )

1 1 1 1

c c
g j

T G T E
c c

g g gt j jOM P B
t g t i

b P b Bc 
= = = =

= +                                         (5.2) 

where 

λgt = the capacity factor of  renewable generator at time t ,for G{WT, PV} 

bg = annual O&M cost of renewable generation ($/MWh). 

bj = annual O&M cost of battery units ($/MWh), O&M cost of supercapacitor is  

        zero. 

T = number of hours in a year (i.e., T=8,760 hours). 

5.1.3 Electricity Bill 

When wind and solar generation are unavailable to meet the load, the 

manufacturer needs to purchase electricity from a utility company. 
B

tp  is the imported 

power from the substation. In this study, two pricing schemes are considered for the 

utility electricity: flat rate or time-of-use (TOU) pricing policy. ρt is the dynamic price 

expression at time t. For instance, the program contains two scenarios stage: first the 

price is $140/MWh between 9:00 am. to 9:00 pm. on-peak period; and second, utility rate 

is down 50% during the off-peak period, $70/MWh. The variation of the market price of 

electricity significantly affects the operation of the energy storage. The energy cost will 

be calculated  based on the two scenarios.   
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( , )c c
i j

B B

t t tEbill P P
t T

C p y


=                                       (5.3) 

where 

ρt = real-time utility price ($/MWh), range from $70/MW to $140/MW.   

B

ty = status of purchasing 
B

ty {0, 1} at t  for t T  . 

B

tp = the amount of energy purchasing at time t for t T  . 

5.2. Income Analysis 

The system income consists of the carbon credit by generating renewable energy 

and the payment from the utility because of exporting the extra energy to the grid via 

feed-in-tariff program. 

5.2.1 Carbon Credit Incentive    

The carbon credit is the compensation due to the adoption of renewable energy 

technology. It is given to the manufacturer based on the amount of renewable energy 

produced. That is,  

       
( )

1 1

c
g

T G
c

g g gtcr P
t g

C c P 
= =

=                                                     (5.4) 

where 

cg = carbon credits received by using renewable generation ($/MWh). 

Note carbon credit is only applied for WT generation technique as they actively 

produce the green electricity.  

5.2.2 Net Metering Income 

Net metering occurs when the output from onsite WT and PV units exceeds the 

power demand plus available storage of HESS. In this case, the surplus energy is stored 

in the HESS first, if they are not in the fully charged state, then fed to the main grid 

through feed-in-tariff program to create profit. Financially, the income by selling surplus 
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energy to the utility company can be calculated as, 

               ( )

1

c
g

T
s s

nm P t t t

t

p q yC
=

=                                                    (5.5) 

                                                 

where 

qt = the price by selling surplus electricity to the main grid, σt = 0.5ρt at time t.  

s

ty = binary variable, status of selling energy
s

ty {0, 1} at t  for t T  . 

s

tp = the amounts of energy purchasing at time t for t T  . 

5.3 System Reliability Criterion 

The loss of power supply probability (LPSP) is the criterion to measure and 

evaluate the reliability of the power supply system. LPSP is defined as the probability 

that an insufficient power supply results when the hybrid system (PV module, wind 

turbine, and hybrid energy storage system) is unable to satisfy the load demand (Yang et 

al., 2003). If the value of LPSP equals zero then the load will always be satisfied or the 

value of LPSP equals one then the load will never be satisfied. Let α be the loss of power 

supply probability criterion, and typically α<0.001. Under this assumption,  there is at 

most one outage event that occurred in one hour out of 1,000 hours. For one-year 

operation,  power outage event is less than 9 times. In this study, LPSP of the microgrid 

power system can be formulated as below,  

1Pr

T

t

powerfailuretime

LPSP
T

=

 
  

=  
 
  


                                        (5.6) 

Where T equals 8,736 operation hours in one year. The definition of power failure 

is the load cannot be satisfied when the power generated by both the wind turbine and PV 

array plus depleted HESS. Equation (5.6) also can be rewritten as follows: 



 

122 

 

B

t

t T

y

LPSP
T

=


                                                           (5.7) 

Where 
B

ty  is the binary variable and represents the purchasing status of  the power 

system. If the system purchases energy from grid, 
B

ty is one, otherwise, 
B

ty  equals zero.  

5.4 MLCOE Model 

This section constructs a grid-connected micro-power system consisting of WT, 

PV, and hybrid energy storage devices by considering the system reliability. Here is the 

aggregate annualized cost model incorporating all the terms discussed previously. Note 

that carbon credits and net metering income as the revenue are negative with respect to 

the installation, operation, and maintenance costs, and so on in the system. Below is the 

annualized cost of system, 

( )1 1 2 2

1 1 1 1 1 1 1 1

Aggregate Annulized Cost =

     ( , ) ,
G E T G T E T G

c c c c c

g g j j g g gt j j g g gt

g j t g t i t g

n r a P n r a B b P b B c P   
= = = = = = = =

 
+ + + − 

 
    

                            

                                                                                                                         (5.8) 

The objective function is to minimize the levelized cost of energy for prosumer 

model, which is defined as annualized energy cost divided by the total renewable energy 

generation in one year. The LCOE can be formulated as,  
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Model 5.1: minimize the levelized cost of energy (MLCOE) 

( )1 1 2 2

1 1 1 1 1 1 1
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1 1 1
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 Subject to: 
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P p p B B p−

= =
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j j jt j jB S B B S   for t T  .    (5.12) 
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0 = = c

j jT j jB B B S  T=8768.  (5.13) 

*B

t

t T

y T 


  for t T  ;   
 

(5.14) 

*B B

t tp M y  for t T  . (5.15) 

        , 0 1       B S

t ty y  ，  for t T  . (5.16) 

1 B S

t ty y+   for t T  . (5.17) 

, , , , 0 Ch Dh s B

jt jt jt t tB B B p p   for t T  . (5.18) 

1 2 1 2, , , 0c c c cP P B B       (5.19)     

Constraint (5.10) deploys the energy balance equation for any of the periods t in 

1, …, 8760; Constraint (5.11) states the energy conservation in the energy storage system 

at each operation period; Constraint (5.12) formulates the lower and upper bound on the 

storage level in HESS; Constraint (5.13) point out that the energy storage level at the end 

of operation period t = 8760 equals initial stored energy level at t = 0 in the HESS; 

Constraint (5.14) stipulates the service reliability in terms of loss-of-power supply 

probability; Constraint (5.15) ensures the purchasing energy is less than the biggest 
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demand in the whole operation process; Constraint (5.16) states the purchasing status and 

selling status and they are the binary variables; Constraint (5.17) ensures the purchasing 

status and selling status, and it ensures only one status or none of them occurs at the same 

period; Constraint (5.18) sets the sign of variable in the model; Constraint (5.19) is the 

sign constraint for the decision variables. 

5.5 Numerical Experiment Results 

All  cases are compiled by the AMPL program, solved by the KNITRO solver. 

Each case has around 70K constraints, and computation time for each city of each 

operation mode is approximately 15min with Intel i7 8G memory. 

 Case I is the benchmark for this study and the experimental results are shown in 

Table 5.5. LCOE in Wellington and San Francisco is below $70/MWh of referenced 

utility rate. The LCOE in the rest of the cities is still higher than the referenced utility 

rate. Suppose the utility price is increasing with 3% annual rate, the LCOE in all cities is 

less than $126/MWh after 20 years. In the long-term, the renewable power system is cost-

effective compared with the traditional power system. 

Table 5.5: Experimental Results for Case I. 
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In Case II, the manufacturer is only operating 12 hours from 7:00 am. to 7:00 pm. 

in the daytime. The LCOE in Wellington reduces with limited scale. However, the LCOE 

in the rest of the cities reduces sharply, especially in the cities Phoenix and Sanya, 

because they have plenty of solar energy resources in a year compared with other cities. 

The installation of  WT capacity in Phoenix and Sanya reduces due to more solar PV 

generator adopted. Another reason for decreasing LCOE is caused by cutting down the 

installation capacity of the li-ion battery and no SC demanded at all for all testing cities, 

because the manufacturer is only operating during the daytime and there is no energy 

needed during night. 

Figure 5.1 plots the experimental results of Case I, Case III, and Case IV. In Case 

III, the carbon credit is not applied for both wind power and solar power generation. The 

TOU policy is implemented in Case IV. Under Case III, the LCOE rises for all the testing 

cities. The grid-connect onsite power system more prefers to install the onsite renewable 

generators to meet the manufacture demand, because TOU rate is more expensive. The 

LCOE trends down in Case IV compared with Case I. 

Table 5.6: Experimental results: Cases I vs. Cases II. 
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                   Figure 5.1: Experimental results: Cases I, III, and IV.  

Table 5.7 illustrates the comparison of the installation capacity of renewable 

generation and HESS under two assumptions in Boston. The experiment results show the 

depth of discharging (DoD) impact on the system cost, capacity cost, and the lifetime of 

the battery. Increasing the depth of discharging is a double-edged sword, which can 

decrease the installation capacity of renewable generation meanwhile can shrink the 

lifetime of the li-based battery. 

Table 5.7: DoD Impact on Installation Capacity of Devices in Boston. 

Categories 
DoD Rate 

DoD 

(85%) 

DoD 

(75%) 

DoD 

(65%) 

DoD 

(55%) 

DoD 

(45%) 

Without Consider 

DoD Impact 

PV capacity 23 33.5 33.4 32.9 33.5 

WT capacity 27 33.5 36.4 42.9 46.5 

BS capacity 132 148 168 175.8 191.8 

SC capacity 12.4 19.4 29 39 52.4 

Consider DoD 

Impact 

PV capacity 26 37.5 39.4 43.9 45.5 

WT capacity 29 37 39 44.9 49.5 

BS capacity 144 156.1 188.2 193 196.8 

SC capacity 17.4 30 34 42 58 

Lifetime of battery 13.3 23 33.5 33.4 32.9 
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The objective is to minimize the LCOE of the grid-connected onsite power system 

to size the installation capacity of renewable generation and energy storage devices. The 

hybrid energy storage system secures the reliability of the power supply. Some 

conclusions  are deduced based on the numerical experiment results through all the cases 

in six testing cities: 1) WT is cost-effective if the local wind speed is above 6 m/s; 2) The 

local wind speed and weather features ultimately determine the mix of renewable 

generation portfolios; 3) The mix of installation capacity of HESS is the majority 

impacted by the operation mode of the manufacturer, not necessarily the carbon credit or 

TOU rate policy.  
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6. VPP-BASED MULTI-TIER PRODUCTION INVENTORY MODEL  

With the growing penetration of wind and solar energy in the utility market, it is 

also imperative to incorporate the energy supply variability and the carbon constraints 

into the production-inventory management program to lower the manufacturing cost with 

superior environmental performance. Integrating renewable energy sources to power 

production-inventory systems is a viable approach to achieving low carbon industrial 

operations.  Supply chain dive (2019) states Nike opens new distribution center running 

on 100% renewable energy. 

This study is derived from the mechanism by installing renewable and combined 

heat and power (CHP) generators as the onsite power units for facilities in multi-tier 

production network model (Bhandari et al., 2019). Zidan et al. (2015) propose an optimal 

model to size capacity and select types of distributed generation for CHP systems within 

the microgrid. The objective of the model is to minimize the total net present cost of the 

microgrid system. The study proves the deployment of PV, electricity storage, and CHP 

hybrid systems can reduce consumer costs and carbon emissions. Shah et al. (2015) 

deploy a hybrid power system with PV, battery, and CHP at three regions in the U.S. 

which represent cold, warm, and hot areas. The sensitivity analysis has been carried out 

on the power generated of PV via varying the capacity factor of PV to maximize the 

environmental and financial benefits. 

Two critical questions are addressed. First, how to design and optimize the virtual 

power plant (VPP) system for a multi-echelon, multi-period, production-distribution 

network under demand uncertainty and power intermittency. The network encompasses 

factories, warehouses, retail stores, and electrified logistics. Second, how to dispatch 
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renewable energy and schedule manufacturing operations in hourly biases with the 

participation of the transaction energy market to maximize the social-economic benefit. 

The cost of the system includes 1) production-inventory; 2) one-time investment of 

capacity renewable generators and ES units; and 3) operation and maintenance expense 

of renewable generators, CHP, and ES. Under the VPP scheme, the revenue of the system 

comprises renewable incentives and electricity sales to the transactive energy market. The 

selling price is time-varying and fluctuates in the trading market. The objective is to 

formulate a mixed integer programming model for minimizing the annual supply chain 

operation cost.  

Energy consumed during production logistics network depends on the production 

plan and transportation between facilities. The contribution of this chapter can be 

summarized as follow: 

1) A mixed integer linear (MIL) program is constructed to minimize the annual 

operation cost of the VPP system for multi-facility network over a one-year 

planning horizon. The goal is to size WT, PV, and ES units, which also provide 

an optimal energy production schedule under uncertain demand and energy 

supply.  

2) Onsite power generators and energy storage are incorporated into the planning 

model to obtain low-carbon and cost-effective operations.  

3) The strategic and tactical planning decisions are integrated, such as generation 

capacity decisions at each facility, inventory level at warehouses, production and 

backorder decisions, and shipment decisions.  

4) Perform sensitivity analysis on the production plan and energy supply.  
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6.1 Problem Statement 

Figure 6.1 exhibits the architecture of the VPP system. Typically, the VPP can be 

classified into source side VPP and load side VPP based on the operation condition. In 

this study, the source side VPP system consists of wind turbine (WT), solar photovoltaic 

(PV), combined heat and power (CHP), electricity storage (ES) unit, and thermal storage 

(TS) unit, providing both power and thermal to the local facilities. Wind turbine is made 

by glass fiber reinforced plastic material and solar PV is m-Si module. Lithium-ion 

battery is adopted in the model. Load side VPP consists of dynamic energy load due to 

the unpredicted product demand from stores. There is a single point of connection to the 

utility called the point of common coupling. The natural gas as the fuel input is needed 

only for the CHP, and the wind and sun as the energy input for the WT and solar PV. To 

meet the power demand, electricity can be produced directly by WT, PV, and CHP, 

meanwhile thermal load demand is also fulfilled by the CHP and thermal storage unit. 

CHP technology has a lower cost with higher efficiency. The system can export the 

surplus energy to the main grid in the day-ahead market. 

In this study, the thermal energy is used locally within the facility and all 

microgrids are inter-connected with the main grid. This enables individual facilities to 

participate in energy trading market when excess electricity is generated. Since CHP and 

the thermal storage units are pre-installed in the facilities, the capacity cost of both units 

is not considered in the model. There are two levels of CHP operation in one year 1) 

unlimited operation, and 2) limited operation. A mixed integer linear programming model 

is proposed to allocate the microgrid capacity, sequentially schedule the production lot 

and the electric energy traded between the main grid and the microgrid.  
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Figure 6.1: Block Diagram of VPP. 

Assume the production supply chain VPP (PSV-VPP) network consists of K 

factories, N warehouses, and S stores. Each factory can produce I products to meet the 

aggregate demand of the stores. The goal is to optimize the production, inventory, 

backorders and capacity of WT, PV, and ES such that the annual operating cost is 

minimized. Tables 6.1 to 6.3 list the model sets, parameters, and the decision variables, 

respectively.  

Table 6.1: Notation of Sets in PSC-VPP Model. 

Indices        Definition 

I number of product type, for I =1, 2, .., I. 

J number of production period, for j =1, 2, .., J. 

G type of renewable energy generator, for g =1, 2, .., G. 

K number of factories in multi-location, for k =1, 2, .., K. 

N number of warehouses in multi-location, for n =1, 2, .., N. 

S number of stores in multi-location, for s =1, 2, .., S. 

R number of required production resources, for r =1, 2, .., R. 

T number of hours in a year, for t =1, 2, .., T.   
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Table 6.2: Notation of Parameters in PSC-VPP Model. 

Notation Definition 

g capital recovery factor of renewable energy generator g. 

BS  capital recovery factor of battery system. 

ag capacity cost for renewable generator g (unit: $/MW). 

aBS capacity cost for battery system (unit: $/MWh). 

bg 
operation and maintenance cost of renewable generator g (unit: 

$/MWh). 

bBS operation and maintenance cost of battery system (unit: $/MWh/year). 

bijn 
an intermediate or dependent variable for product i in period j at 

warehouse n (unit: item). 

cCHP, k operating cost of CHP in factory k (unit: $/MWh). 

cCHP, n operating cost of CHP in warehouse n (unit: $/MWh). 

cCHP, s operating cost of CHP in store s (unit: $/MWh). 

cg carbon credits of renewable generator g in the facility (unit: $/MWh). 

gkt capacity factor of renewable generator g in factory k at time t. 

gnt capacity factor of renewable generator g in warehouse n at time t. 

gst capacity factor of renewable generator g in store s at time t. 

DA,kt price of day-ahead energy traded by factory k at time t (unit: $/MWh). 

DA,nt 
price of day-ahead energy traded by warehouse n at time t (unit: 

$/MWh). 

DA,kt price of day-ahead energy traded by store s at time t(unit: $/MWh). 

LE,nt electric power demand in warehouse n at time t (unit: MW). 

LE,st electric power demand in store s at time t (unit: MW). 

LTH,kt thermal power demand in factory k at time t (unit: MW). 

LTH,nt thermal power demand in warehouse n at time t (unit: MW). 

LTH,st thermal power demand in store s at time t (unit: MW). 

cP,ijk 
cost of making one unit of product i in period j at factory k (unit: 

$/item) 

cH,ijn 
holding cost of product i in period j at warehouse n (unit: 

$/item/period). 
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cB,ijn backorder cost of product i in period j at warehouse n (unit: $/item). 

cNGI,kt natural gas price in factory and warehouse (unit: $/MWh). 

cNGC,nt natural gas price in warehouse (unit: $/MWh). 

cNGC,st natural gas price in store (unit: $/MWh). 

ikn 
shipping cost of product i from factory k to warehouse n (unit: 

$/item/km). 

ins  
shipping cost of product i from warehouse n to store s (unit: 

$/item/km). 

vikr resource r consumed for making one unit of product i at factory k. 

wjkr available production resource r in period j at factory k. 

Dijs random demand for product i in period j from store s per period. 

ijs , ijs mean and standard deviation of Dijs. 

 probability of meeting the product demand. 

mi unit weight of product type I (unit: kg/item). 

eik 
energy use for making one unit of product i at factory k (unit: 

MWh/item). 

qv e-truck electricity intensity rate (unit: MWh/kg/km). 

wv e-truck self-weight (unit: kg). 

dkn distance between factory k and warehouse n (unit: km). 

nsd  distance between warehouse n and store s (unit: km). 

ntkn number of trips between factory k and warehouse n at time t. 

tnsn  number of trips between warehouse n and store k at time t. 

gk operating time of generation g at factory k in a production period. 

gn operating time of generation g at warehouse n in a production period. 

gs operating time of generation g at store s in a production period. 

P time step size of a production period. 

k Electrical efficiency of CHP in factory k (typically 30-40%). 

n Electrical efficiency of CHP in warehouse n (typically 30-40%). 

s Electrical efficiency of CHP in store s (typically 30-40%). 

CHP Thermal to electric power ratio of a CHP (typical range is 2 to 10). 
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Table 6.3: Notation of Variables in PSC-VPP Model. 

Variables Definition 

xijkn 
number of product i in period j made by factory k shipped to warehouse n (unit: 

item). 

ijnsx  number of product i in period j shipped from warehouse n to store s (unit: item). 

yijn inventory of product i in period j at warehouse n (unit: item). 

zijn backorder of product i in period j at warehouse n (unit: item). 

Pc
k power capacity of renewable generator g in factory k (unit: MW). 

Pc
n power capacity of renewable generator g in warehouse n (unit: MW). 

Pc
s power capacity of renewable generation g in store s (unit: MW). 

Bc
k capacity of electricity storage (ES) in factory k (unit: MWh). 

Bc
n capacity of ES in warehouse n (unit: MWh). 

Bc
s capacity of ES in store s (unit: MWh). 

BE,kt state of power energy level of ES at factory k at time t (unit: MWh). 

BE,nt state of power energy level of ES at warehouse n at time t (unit: MWh). 

BE,st state of power energy level of ES at store s at time t (unit: MWh).  

PDA, kt electricity sold by factory k at time t (unit: MWh).  

PDA, nt electricity sold by warehouse n at time t (unit: MWh).  

PDA, st electricity sold by store s at time t (unit: MWh).  

BTH, kt state of thermal energy level in TS at factory k at time t (unit: MWh). 

BTH, nt state of thermal energy level in TS at warehouse n at time t (unit: MWh). 

BTH, st state of thermal energy level in TS at store s at time t (unit: MWh). 

PCHP,E,kt electricity power output of CHP in factory at time t (unit: MW).  

PCHP,E,nt electricity power output of CHP in warehouse at time t (unit: MW).  

PCHP,E,st electricity power output of CHP in store at time t (unit: MW). 

PCHP,TH,kt thermal power output of CHP in factory at time t (unit: MW). 

 PCHP,TH,nt thermal Power output of CHP in warehouse at time t (unit: MW). 

PCHP,TH,st thermal Power output of CHP in store at time t (unit: MWh). 

6.2 Dispatch Strategy 

The energy control and dispatch strategy for the VPP system is as follows. First, 

the PV and WT are prioritized, then energy storage, and finally the CHP unit to meet the 

demand.  

1) If the energy generated by PV and WT is greater than the load, it will match the 

electrical demand. The surplus energy may be exported to the main grid or store in 
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ES units. The energy stored in the ES will be used during times when there is 

insufficient energy. 

2) If the energy generated by PV and WT is less than the demand, the energy storage 

units are in discharge mode to complement the electricity gap. 

3) If the energy gap still exists before ES depleted, the CHP unit is activated. 

6.3 PSC-VPP Optimization Model 

The annualized cost of production supply chain integrated VPP system (PSC-

VPP) is to minimize from three aspects. First, determining the production planning, 

namely x, y, and z are the decision variables representing the production, inventory, and 

backorders in each production period. Second, sizing the capacity of renewable 

generation and the energy storage units, namely Pc and Bc are the decision variables for 

renewable generators and ES capacity in each facility, respectively. Third, determine the 

amount of electric energy traded per facility PDA under the VPP scheme. Below are the 

mathematical formulations of the optimization model, including the objective function 

and constraints.  

6.3.1 Objective Function 

The objective function is to minimize the annualized operation cost of PSC-VPP 

system. The cost of PSC consists of production, inventory holding, backorder and 

transportation. The cost of VPP includes capacity investment, operation and maintenance 

(O&M), and revenue generated from selling electricity to main grid through day-ahead 

market as below, 
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Model 6.1 PSC-VPP: 
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    (6.1) 

In the first line of objective function or Equation (6.1), the first term is the production 

cost in factory and shipping cost from factories to warehouses; second term is the holding 

cost in warehouses, the third term is the backorder cost, and last term is the shipping cost 

between warehouses and stores. 

From the second to the fourth line, the first term is the installation cost of the 

renewable generation. The second term is the installation and operation cost of the ES 

units. The third term captures the annual O&M cost of the renewable generation and the 

reward of carbon credit. The fourth term is the operations cost of the CHP and the total 

revenue obtained through electricity sales in the day-ahead energy market. 

6.3.2 Production-inventory Constraints 

 1 0 1 1

1 1

K S

i kn i n i n i ns

k s

x y y x
= =

+ − =  ,                   for j=1, i, and n (6.2) 
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1 1

K S
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k s
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( 1)

1 1 1
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+ −   

 
   ,   for i, j, and s (6.5) 

1 1

I N

irk ijkn jkr
i n

v x w
= =

 ,            for j, k, and r   (6.6) 

0 0i ny = ,                                 for j = 0, i and n (6.7) 

0iJny = ,                                 for j = J, i and n (6.8) 

0 0i nsz = ,                               for j = J, i and n (6.9) 

0iJnsz = ,                                for j = J, i and n (6.10) 

p itkn ijknx x = ,                     for i, j, k, and n     (6.11) 

p itns ijnsx x = ,                       for i, j, k, and n   (6.12) 

 Constraints (6.2) to (6.4) are the production-inventory balance equations between 

factories and warehouses for each product. Constraint (6.5) is the chance constraint and 

states that for given product i in period j, the demand of stores s must be satisfied with 

100×% confidence. Constraint (6.6) represents the production resources constraint, such 

as available labor and machine hours in each period. Constraints (6.7) to (6.10) assume 

that amount of inventory and backorder are zero in the initial and end of operation period. 

Constraints (6.11) and (6.12) convert the strategic production decision into hourly 

production rate, and p is the length of a production period.  

6.3.3 Energy Demand Constraints 

For each production hour, the electricity demand, and the charging and 

discharging of ES energy at a particular facility must match the sum of the power output 

of CHP and onsite renewable generation.  
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(6.15) 

Particularly, Constraints (6.13) to (6.15) represent the hourly electricity balance 

equation at the factories, warehouses, and stores, respectively. In constraint (6.13), the 

forward electric transportation is included for factories k where the battery of e-trucks is 

fully charged prior to departure. Constraint (6.14) defines the electricity balance of 

warehouses n including the forward electric transportation to stores and backward electric 

transportation to factories. Constraint (6.15) states electricity balance of stores s including 

the backward electric transportation to warehouses. Similarly, the thermal energy at each 

facility must be balanced by considering the demand, the charging and discharging of TS 

units, and the heat output of CHP unit.  

, , , ( 1) , ,CHP TH kt TH k t TH kt k TH kP B B L−+ −  ,        for t and k (6.16) 

, , , ( 1) , ,CHP TH nt TH n t TH nt n TH nP B B L−+ −  ,        for t and n (6.17) 

, , , ( 1) , ,CHP TH st TH s t TH st s TH sP B B L−+ −  ,         for t and s (6.18) 

  Constraints (6.16) to (6.18) represent the thermal balance conditions for factories, 

warehouses, and stores, respectively.  
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6.3.4 CHP Constraints 

For CHP generator, the annual operation hours are limited based on their lifetime.  

Once CHP is in running status, then the operation hour is counted for that period. 
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0
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CHP k t CHP k
t

O O
=

  ,    for k                                       (6.19)                              
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O O
=
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In Constraints (6.19) to (6.21), OCHP, k, t  is binary variable, if CHP generator is 

operated at time period t, then OCHP, k, t  equals 1, otherwise 0.  

,
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= ,  for t and k (6.22) 

,

,
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CHP nt

n

c
c


= ,  for t and n (6.23) 

,

,

NGC st

CHP st

s

c
c


= ,   for t and s (6.24) 

Constraints (6.22) to (6.24) describe the relation of CHP operation cost with the 

natural gas price. For instance, if cNGC,kt = $7/MWh, and k = 50%, the operating cost of 

CHP for electricity generation at factories k would be $14/MWh.  

               , , , ,CHP TH kt CHP CHP E ktP P= ,    for t and k (6.25) 

               , , , ,CHP TH nt CHP CHP E ntP P= ,    for t and n (6.26) 

             , , , ,CHP TH st CHP CHP E stP P= ,    for t and s (6.27) 

The heat generated from CHP generators is calculated by multiplying the 

electricity output with the heat-to-power ratio γCHP of CHP generator in Constraints 

(6.25) to (6.27). 
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6.3.5 Capacity Constraints 

The electricity and heat produced by the CHP generators over any period t at each 

facility cannot exceed their installed capacity as follows, 

 
max

, , , ,0 CHP TH kt CHP TH kP P  ,   for t and k (6.28) 

 
max

, , , ,0 CHP TH nt CHP TH nP P  ,   for t and n (6.29) 

 
max

, , , ,0 CHP TH st CHP TH sP P  ,   for t and s (6.30) 

max

, , , ,0 CHP E kt CHP E kP P  ,     for t and k (6.31) 

 
max

, , , ,0 CHP E nt CHP E nP P  ,     for t and n (6.32) 

max

, , , ,0 CHP E st CHP E sP P  ,     for t and s (6.33) 

For the renewable generator, installation capacity constraints are given as follows, 

                     
max0 c

gk gkP P  ,                for t and k 
(6.34) 

                     
max0  c

gn gnP P  ,              for t and n 
(6.35) 

                     
max0 c

gs gsP P  ,                 for t and s (6.36) 

Both electricity and thermal energy storage constraints are considered at each 

facility.  

                     ,
0 c

E kt k
B B  ,             for t and k (6.37) 

                     ,0 c

E nt nB B  ,           for t and n (6.38) 

                     ,0 c

E st sB B  ,            for t and s (6.39) 

Constraints (6.37) to (6.39) stipulate that the electricity stored in an ES unit 

should not exceed its capacity at time t as below.  

                      
max

, ,
0

TH kt TH k
B B  ,          for t and k (6.40) 

                      
max

, ,
0

TH nt TH n
B B  ,         for t and n (6.41) 

                      
max

, ,
0

TH st TH s
B B  ,        for t and s (6.42) 

Similarly, Constraints (6.40) to (6.42) below stipulate that the thermal energy 

stored in a TS unit should not exceed its capacity at time t.  



 

141 

6.3.6 Chance Constraint 

Normality assumption on product demands is often used in literature (Mula et al., 

2006; Kok et al., 2018). Let ijs and ijs be the mean and standard deviation of product 

demand Dijs, the chance Constraint (6.5) can be converted into deterministic counterpart 

as follows,  

( 1)

1 1 1

N N N

ijns ijns i j ns ijs ijs

n n n

x z z z −

= = =

+ −  +    ,   for i, j, and s             (6.43) 

where z is the z-value of the standard normal distribution with probability . For 

instance, z =1.28 given  = 90% in this study. 

6.4 Capacity Factor of WT and PV in Testing Cities 

The total energy required to operate the facilities comes from the renewable 

energy sources and CHP. However, the generation of renewables is uncertain due to 

unpredictable climate conditions. The capacity factor (CF) is defined as the ratio between 

the actual output power of a WT or PV unit versus its capacity for a given period. Let 

tgk, tgn, and tgs represent the CF value between 0 and 1 depending on wind speed and 

sunshine conditions at time t. Ten cities are chosen because they represent a wide range 

of climate conditions. The hourly wind speed and weather states of each city from 2006 

to 2016 are retrieved from the web portal of Weather Underground with total of 192,192 

records (Weather Underground, 2017). The aggregate climate data of ten cities reaches 

1.92 million. In this study, the value of CF is less than 0.2 called the low state. The 

medium state of CF covers the range between 0.2-0.4 and the remainder interval is called 

the high state. This allows for estimating the hourly CF values accurately. The CF of WT 

and PV for each city is summarized in Table 6.4.  
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Table 6.4: Capacity Factors of WT and PV in Five Cities. 

No City and State 

Wind Turbine Solar PV 

Average Std Dev Category Average Std Dev Category 

1 Phoenix, AZ 0.12 0.051 Low 0.32 0.192 Medium 

2 Reno, NV 0.17 0.214 Low 0.35 0.208 Medium 

3 Las Vegas, NV 0.24 0.298 Medium 0.43 0.257 High 

4 
Salt Lake City, 

UT 
0.26 0.277 Medium 0.22 0.140 Medium 

5 San Jose, CA 0.14 0.148 Low 0.31 0.188 Medium 

6.5. Numerical Experiments  

6.5.1. Model Parameters 

The network layout including the mileage between two adjacent cities is shown in 

Figure 6.2. Electric trucks (e-trucks) are employed to move the finished goods from the 

factories to the warehouses and further down to the stores. Factories 1 and 2 are placed in 

Phoenix and Reno, respectively. Las Vegas is the location for the warehouse. Stores 1 

and 2 are sited in Salt Lake City and San Jose, respectively. Each factory is capable of 

manufacturing two Products, A and B. The production planning is scheduled on a weekly 

basis over one year, or 52 weeks. Assume the weekly product demands of stores 1 and 2 

are normally distributed with the mean and standard deviation given in Table 6.5. The 

demand in each store should be met with  = 90% confidence.  

Table 6.5: Weekly Product Demands from Stores. 

 

 

 

 

Store 

Product A Product B 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Salt Lake City 600 55 500 70 

San Jose 400 60 350 50 
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Figure 6.2: Energy, Product, and Transportation Flow across Facilities. 

The distances between factories and warehouses, and warehouses and stores are 

recorded in kilometers. The homogeneous fleet of E-trucks have been applied to freight 

transportation in this study. Parameters for resources consumption to make and transport 

each item of Products A and B, such as energy use, labor and machine hour, inventory 

overhead, production, and transportation cost per item are given in Table 6.6.  

Table 6.6: Parameters for Production Planning in Model. 

Comments Notation 
Product A 

(i=1)  

Product B 

(i=2) 
Unit 

Energy use ei 0.9 1.2 MWh/item 

Production cost pi 400 600 $/item 

Holding cost hi 16 24 $/item/week 

Backorder cost bi 75 100 $/item 

Shipping cost i 0.05 0.08 $/item/km 

Labor hour vi1 16 24 hour/item 

Machine hour vi2 100 200 hour/item 

Product weight mi 3 4 kg/item 

Table 6.7 presents parameters of WT, PV, ES, e-trucks and bidding utility pricing. 

Though variations may exist, these values are adopted or estimated based on the reports 

from National Renewable Energy Laboratory (Stehly et al., 2018; Fu et al., 2018a; Fu et 

al., 2018b). The capital recovery factor of WT and PV, g, is estimated assuming 20 years 
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lifetime with the 5% interest rate. For ES, ES is estimated assuming 10 years lifetime 

with the 5% interest rate. The self-weight of an e-truck wv = 5,000 kg, and the electricity 

intensity rate qv=1.19×10-7 MWh/kg/km at 100 km/hour (Pham et al., 2019). The number 

of round trips between a factory and the warehouse is one trip per week, and the number 

of round trips between the warehouse and a store is also one trip per week. Both factories 

operate 24 hours a day and 7 days a week (i.e., 24/7 mode), and the electric load of a 

factory depends on the weekly production rate of Products, A and B.  

Table 6.7: Parameter value in  PSC-VPP. 

DG Notation Value Unit Notation Value Unit 

WT ag 1.5 $M/MW T 8736 hour 

WT bg 8 $/MWh ntkn, tnsn  1 trip/week 

WT cg 0 $/MWh w,
s , gk, gn, gs 1 hour 

WT g 0.0802 n/a p 168 hour 

PV ag 2 $M/MW DA 35 $/MWh 

PV bg 4 $/MWh LE,kt, LE,nt, LE,st 2, 3 ,5 MW 

PV cg 10 $MWh LTH,kt, LTH,nt, LTH,st 5, 5, 2 MW 

PV g 0.0802 n/a k, n, s 2, 2, 2  

ESS aBS 0.3 $M/MWh cNGI,kt 10 $/MWh 

ESS bBS 0.0075 $M/year cNGI,nt 20 $/MWh 

ESS ES 0.12 n/a cNGC,st 20 $/MWh 

E-Truck wv 5000 kg CHP 2  

E-Truck qv 1.19×10-7 MWh/kg/km bat 1  

6.5.2 Numerical Experiment Result for 2F-1W-2S Network 

The network consists of two factories, one warehouse, and two stores, denoted as 

2F-1W-2S. All the facilities participate in the VPP initiative, which the facilities realize 

energy self-sufficiency and bid in the day-ahead energy market to create profit by selling 

surplus energy. Assumed, CHP is already installed in the facilities and the capital cost is 

not considered in this study. The capacity of CHP is 25 MW, 10 MW, and 10 MW in the 

factory, warehouse, and store, respectively.  
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The total annualized cost in 2F-1W-2S network can be broken into two parts: 1) 

production-inventory, and 2) VPP system cost. The model contains 930 integer variables, 

218,420 continuous variables, over 795,000 constraints. The model is coded in AMPL 

language. CPLEX solver is used to search for the optimal x, y, z, Pc, Bc, and PDA. A 

personal computer with Intel Core i7 CPU (2.8 GHz), with 8.00 GB of RAM, is used for 

all implementations in this section. The running time ranges from 4 to 5 minutes for each 

case. 

6.5.3 Result for Production Planning 

The total cost in 2F-1W-2S network is $ 81,831,023. The cost in production-

inventory part is $ 64,620,678, which represents around 78.9% of total cost of PSC-VPP 

model. Table 6.8 lists the experiment result and percentage of each category in 

production-inventory cost for Case 1.  

Table 6.8: Production-inventory Cost. 

Type Amount Proportion (%) 

Production cost $54,683,200 84 

Shipping cost $9,586,980 14 

Inventory cost $191,323 0.29 

Backorder cost $159,175 0.24 

Figure 6.3 depicts the weekly production, inventory, and backorders of Products A and 

B, respectively. The energy consumption of Product B is higher than Product A. Product B has a 

more expensive shipping cost than A and a farther shipping distance from Factory 2 (Reno 

factory) to warehouse than Factory 1 (Phoenix). Most of Product B is still made from Factory 2, 

because Factory 2 has the stronger wind and solar resources compared with Factory 1. The 

backorder cost and holding cost are relatively high for both products. The model returns a 

solution with small amounts of backorders and inventory. 
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Figure 6.3 Production and Inventory Decision of the 2F-1W-2S Network. 

Figure 6.4 plots the shipping amount of Products A and B from the warehouse to 

the stores. The shipping quantity of goods cannot always meet the demand of the store in 

each period, especially at the beginning of the year. The limited available energy triggers 

this phenomenon. The backorder in the beginning and end of the operation period is 

always zero.  
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Figure 6.4: Transportation between Warehouse and Stores of the 2F-1W-2S Network. 

6.5.4 Result for Microgrid Allocation and Scheduling 

This section presents the optimumal solution of WT, PV, ESS capacity, and the 

hourly selling energy amount in each facility. The capacity of WT, PV, ESS and energy 

sales of each facility is summarized in Table 6.9. The VPP system cost f(Pc, Bc, PDA) is 

$17,210,345 and selling income is $4,676,490. 

Table 6.9: Size of WT, PV and ESS for the 2F-1W-2S Network. 

Type 
Phoenix Reno Las Vegas Salt Lake City San Jose 

(Factory 1) (Factory 2) (Warehouse) (Store 1) (Store 2) 

WT (MW) 13.322 21.359 10 15 9.899 

PV (MW) 3.173 4.26 0.765 0 5.554 

ESS (MWh) 1.58 5.054 0 0 0.01 

Sell 

(MWh/Year) 
2,070 35,460 41,364 41,295 13,425 

 The excess energy can be sold to the main grid via the day-ahead market. Figures 

6.5 to 6.8 show the selling energy and the energy generation from the renewable  and 

CHP units. Factories 1 and 2 sell about 2,035 MWh and 35,823 MWh in one year, 

respectively. There is a huge difference between these two cities because Reno has higher 
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renewable capacity factors. Reno sells more electricity during the 2nd quarter as shown 

Figure 6.6, meanwhile Reno has strong seasonal wind speed. 

 

(a). 1st Quarter in Reno. 

 

(b). 1st Quarter in Phoenix. 
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(c). 3rd Quarter in Reno. 

 

 
(d). 3rd Quarter in Phoenix. 

Figure 6.5: Hourly Energy Transactions in 1st and 3rd Quarter in Factories. 

 

6.6 Sensitivity Analysis 

The sensitivity analysis aims to quantify the importance of uncertain 

parameters regarding their contribution to model output variability, which investigates 

parameter importance by varying one parameter at a time, while keeping other 

parameters fixed. The sensitivity analysis is performed to investigate how: 1) the holding 

cost and backorder cost influence production and inventory decision; and 2) bidding 

electricity price, natural gas price, battery capacity cost, and PV capacity cost impact 
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VPP cost. 

6.6.1 Sensitivity Analysis of Production Planning 

The holding cost and the backorder costs vary by 50%, while energy consumption 

varies by 10% of Products A and B with respect to the benchmark. Model PSC-VPP is 

resolved and the new results are summarized in Table 6.10 along with the benchmark 

cost. It is found that the relative cost difference is quite small and between -7.56% and 

7.6%. Hence the production decision is robust regardless of relatively large variations in 

holding cost, backorder cost and energy consumption of product.  

Table 6.10:  Sensitivity Analysis on Production Planning. 

Scenario 
f(x, y, z, 

Pc, Bc, PDA) ($) 

Cost 

Difference($) 

Relative 

Difference (%) 

Benchmark 81,988,282 0 0 

Increase hi by 50% 82,075,909 87,627 0.107 

Decrease hi by 50% 81,888,786 -99,496 -0.121 

Increase bi by 50% 82,061,053 72,771 0.089 

Decrease bi by 50% 81,881,975 -106,307 -0.13 

Increase product energy 

consumption by 10% 
82,990,392 1,002,110 1.222 

Decrease product energy 

consumption by 10% 
81,032,590 -955,692 -1.16 

Increase capacitor factory 

by 20% 
79,798,707 -2,189,575 -2.76 

Increase capacitor factory 

by 50% 
75,817,468 -6,170,814 -7.56 

Decrease capacitor factory 

by 20% 
84,281,156 2,292,874 2.80 

Decrease capacitor factory 

by 50% 
88,243,784 6,255,502 7.60 
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6.6.2 Sensitivity Analysis on Microgrid Allocation 

Sensitivity analysis is performed by varying the microgrid parameters, including 

natural gas price, energy selling price, capacity cost of battery, and capacity cost of solar 

PV. The cost of 14 variants is compared with the benchmark study (i.e., Case 1), and the 

results are summarized in Tables 6.11,  6.12, and 6.13.  

Table 6.11: Comparisons of Annual Cost among Cases.  

Case 
f(x, y, z, 

Pc, Bc, PDA) 

Cost 

Difference ($) 
Relative 

Difference(%) 
Comments 

1 81,988,282 0 0 Benchmark 

2 86,846,889 4,858,607 5.9 Natural gas price increasing 50% 

3 76,002,465 -5,985,817 -7.9 Natural gas price decreasing 50% 

4 84,002,381 2,014,099 2.4 Natural gas price increasing 20% 

5 79,820,509 -2,167,773 -2.9 Natural gas price decreasing 20% 

6 70,694,424 -11,293,858 -13.8 Selling price increasing 100% 

7 74,378,554 -7,609,728 -9.9 
$70/MWh (9am-9pm), $35/MWh 

other time 

8 46,485,620 -35,502,662 -49.9 
140/MWh (9am-9pm), $70/MWh 

other time 

9 81,513,437 -474,845 -0.6 $0.05M/MWh for battery cost 

10 81,727,544 -260,738 -0.3 $0.1M/MWh for battery cost 

11 81,618,883 -369,399 -0.5 
$1.8M/MW for PV (decreasing 

10%) 

12 80,623,336 -1,364,946 -1.7 
$1.5M/MW for PV(decreasing 

25%) 

13 77,360,401 -4,627,881 -5.6 $1M/MW for PV(decreasing 50%) 

14 82,205,092 216,810 0.3 
CHP operation hour less than 

6000hours/Y 

Five observations are found. First, the bidding price has more impact on the 

supply chain cost by comparing all cases. When the selling price increases by 100% form 

$35/MWh to $70/MWh, the system cost decreeases by 13.8% in Case 6. When the rates 

for selling electricity to the grid vary from $70/MWh during peak hour from 10 am - 9 

pm to $35/MWh during off-peak hour from 10 pm to next day 9 am, the system cost 

reduces by 9.3% in Case 7. The installation capacity of generations reaches the upper 
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limit and the amount of selling energy increases more than twice in Table 5.3. Second, 

Cases 9 and 10 show that reducing capacity cost of ES unit has little impact on the total 

operation cost. This observation is counterintuitive because ES is often treated as a good 

solution to mitigate the intermittency of wind and PV generation. Third, natural gas price 

not only influences the operation cost of CHP, but also affects the size of renewable 

generators as in Table 6.13. Fourth, the facility prefers to install more solar PV when the 

price of PV is down to $0.5M/MW. Finally, it shows PSC-VPP is more efficient when 

multi-generator is selected through compared with Case 1 and Case 14. Without 

restricted operation, CHP unit cuts down cost. 

Table 6.12: Size of WT, PV, and ESS  form  Case 1 to Case 7. 

Cases Type 

Phoenix Reno Las Vegas 
Salt Lake 

City 
San Jose 

(Factory 1) (Factory 2) (Warehouse) (Store 1) 
(Store 

2) 

Bench 

mark 

WT (MW) 13.322 21.359 10 15 9.899 

PV (MW) 3.173 4.26 0.765 0 5.554 

ESS (MWh) 1.58 5.054 0 0 0.01 

2 

WT (MW) 17.559 22.456 10 12 14.253 

PV (MW) 5.213 6.279 0.833 4.343 6.332 

ESS (MWh) 1.154 3.589 0.053 4.251 2.568 

5 

WT (MW) 10.662 16.632 10 15 3.745 

PV (MW) 0.738 3.225 0.354 1.295 4.57 

ESS (MWh) 2.059 8.878 0.053 4.251 4.721 

3 

WT (MW) 14.898 22.091 10 15 11.867 

PV (MW) 4.243 5.398 0.816 2.351 6.068 

ESS (MWh) 1.233 4.246 0.053 4.251 2.977 

4 

WT (MW) 11.753 20.078 10 15 8.06 

PV (MW) 0.856 2.569 0.683 1.295 5.739 

ESS (MWh) 2.258 6.213 0.053 4.251 3.787 

6 

WT (MW) 15.071 25 10 15 15 

PV (MW) 25 25 10 3.36 15 

ESS (MWh) 1.189 3.374 0.053 4.251 2.465 

7 

WT (MW) 19.835 25 10 15 15 

PV (MW) 25 25 10 7.005 15 

ESS (MWh) 1.298 3.454 0.053 4.251 2.465 
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Table 6.13: Size of WT, PV, and ESS  from Case 8 to Case 14 .   

Cases Type 
Phoenix Reno Las Vegas 

Salt Lake 

City 
San Jose 

(Factory 1) (Factory 2) (Warehouse) (Store 1) (Store 2) 

8 

WT (MW) 25 25 10 15 15 

PV (MW) 25 25 10 15 15 

ESS 

(MWh) 
0.761 3.652 0.053 4.251 2.465 

9 

WT (MW) 2.796 9.248 0.758 15 5.311 

PV (MW) 8.816 7.44 10 1.295 9.003 

ESS 

(MWh) 
17.404 14.63 0.053 4.251 20 

10 

WT (MW) 9.973 13.711 10 15 8.843 

PV (MW) 4.437 6.7 0.758 1.295 6.082 

ESS 

(MWh) 
3.649 13.796 0.053 4.251 3.617 

11 

WT (MW) 12.361 19.391 10 15 9.16 

PV (MW) 5.251 6.538 10 2.093 6.907 

ESS 

(MWh) 
1.857 6.425 0.053 4.251 3.548 

12 

WT (MW) 11.702 25 10 15 8.292 

PV (MW) 10.292 15.229 10 4.816 10.706 

ESS 

(MWh) 
2.767 9.47 0.053 4.251 3.736 

13 

WT (MW) 9.996 15.442 10 15 7.977 

PV (MW) 25 25 10 15 15 

ESS 

(MWh) 
2.663 9.622 0.053 4.251 3.805 

14 

WT (MW) 14.899 20.291 10 15 10.629 

PV (MW) 5.639 5.279 2.351 4.93 6.79 

ESS 

(MWh) 
9.084 5.385 3.9 1.23 2.9 

 

Normally, ES unit absorbs surplus energy at the highest output and releases stored 

energy when power is in shortage. After introducing the TOU rate or simply adjusting 

selling price, the status of ES has changed accordingly, such as in Cases 6 and 7. ES 

releases all the stored energy to generate profit in the peak hour and keeps a high storage 
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level in off-peak hours in Case 7. In Case 6, the status of ES is always at zero level in 

each operation step, even if solar PV has a high-power output between 10 am to 4 pm. 

The surplus energy directly exports to the main grid instead of storing it in ES units as 

shown in  Figure 6.9.  

 

Figure 6.6: Status of ES in 24 hours. 

6.6.3 Sensitivity Analysis on CHP Operation 

CHP operation shedule is considered in Case 14 in oder to ensure the service life 

of unit. In this case, the operation hour of CHP in each facility has limitation, the total 

operation hour is assumed to be less than 6000 hrs/year considering the necessary 

downtime for maintenace. The experiment results show the operation hour of CHP in the 

first and the fouth quarter of a year is longer than the rest of a year. Limitation of CHP 

operation hour also affects the sizing of ES unit in the factories compared with Case 1 

and Case 14.  
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Figure 6.7: Scheduling CHP Operation Hours in One-year at Facilities. 

6.7 Conclusions of Analysis 

With a large number of the VPP implemented in the manufacturing plants, this 

study presents a mix-integer, production and energy planning model for the supply chain 

operations. The proposed model supports VPP economics and power management, which 

is essential for integration large-scale, on-site renewable generation, and CHP unit with 

thermal load. The main conclusions are as follows: 

1) The sensitivity analysis of the electricity market price is performed in Cases 6-8. 

Higher electricity market prices yield higher profits and incentivize the facilities 

to install more renewable generators. The annual cost of VPP reduces due to more 

revenue income of energy sales. The electricity market price also impacts the 

behvior of ES, and surplus energy is more likely to be exported to main grid 

directly. 

2) The sensitivity analysis of capacity cost of solar PV and battery in Cases 9 to 13 

illustrates that changes in capacity cost only slightly impact the total system cost.  
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3) The available wind and solar resources of the factory affect the production plan. 

High energy consumption products will be made in factories with abundant 

natural resources, even if the shipping distance is longer and a higher shipping 

cost incurrs between factory and warehouse. 

4)    The expense of the supply cahin system inceases when CHP has restricted 

operating hours. The result indicates that the VPP system works more efficiently 

when multiple generators are selected. It means that the PSC-VPP model works in 

a more efficient way when multiple generations are selected. CHP technique has a 

lower cost with higher economic savings. 
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7. BATTERY TECHNOLOGY DEVELOPMENT AND SIMULATION 

7.1 Lithium-ion Electrochemical Energy Storage Device 

Lithium-ion battery (LIB) technology was commercially introduced by Sony in 

the early 1990s based on the use of lithium intercalation compounds. As a main 

advantage, LIB can be recharged hundreds of times and more stable with a lower self-

discharge rate than other rechargeable batteries. It has zero to minimal memory effect, 

unlike lead-acid battery. LIB has successfully applied in portable electronics and 

electrical vehicles. With the continued technical advances of LIB batteries, it has the 

capability to be utilized as the utility-scale energy storage for the intermittent renewable 

power system, i.e., wind and solar. Though the cost of LIB battery is constantly falling, it 

is still higher than that of Nickel-cadmium or lead-acid batteries. 

The primary functional components of LIB include a carbon negative electrode 

(or cathode), a metal-oxide positive electrode (anode), an organic electrolyte with 

dissolved lithium ions, and a micro-porous polymer separator with high energy density 

and high dynamics. The electrochemistry process can be expressed by a formula below: 

                                                    (7.1) 

The electrons flow from the negative electrode to the positive electrode during the 

charging process inside of a battery, on the contrary, the discharging process is a reverse 

process. The charging and discharging process is shown in Figure 7.1. 

Li
charg ing

discharging

¾ ®¾¾¾¬ ¾¾¾¾ Li+ + e
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Figure 7.1: Charging and Discharging Process of Li-ion Battery. 

7.2 Supercapacitor Energy Storage Device 

Supercapacitor (SC) is a novel energy storage device that can be applied in many 

fields. The electrochemical performance of SC is governed by the electrode material. 

Therefore, more efforts have been paid to exploit electrode materials aimed at increasing 

specific capacitance as well as energy density. Graphene (GR) becomes the most 

promising material of energy storage devices due to the high surface area and electrical 

conductance.  

 

Figure 7.2: Schematic of an EDLC. 
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Based on the energy storage mechanism, SC can be classified into three types: 

electric double layer capacitor (EDLC), pseudocapacitor, and hybrid supercapacitor 

formed by a combination of EDLC and pseudocapacitor. The structure of EDLC is shown 

in Figure 7.2 with ions adsorption process. SC may be applied in consumer electronics, 

electric transportation systems (e.g., electric vehicle), and electric utility industry (e.g., 

improving grid system stability, quickly responding to the peak demands). The following 

equations (Luo er al.,  2015) are used to estimate capacitance and energy of a capacitor, 

respectively. 

d

A
C ro=                                                                     (7.2) 

   2

2

1
CVE =                                                                                (7.3) 

where,   

C = Capacitance (F). 

A = Area of plate overlap (m2). 

D = Distance between plates in meters (m). 

ε0 = Electric constant (F/m). 

εr = Dielectric constant. 

V = Voltage across capacitor (V). 

SC are polarized by design with either symmetric or asymmetric electrodes. 

Compared with symmetrical SC, the asymmetrical SC, consisting of two dissimilar 

electrodes, have the following advantages: higher specific capacitance, higher rated 

voltage, and corresponding to higher specific energy. In recent years, GR has significant 

characteristics such as large specific area, good flexibility, excellent electrical 

conductivity, good chemical and thermal stability, wide potential window, and abundant 



 

160 

surface functional groups (Zhu et al., 2010). 

GR is a single, tightly packed layer of carbon atoms that are bonded together in a 

hexagonal honeycomb lattice. Researchers have proved that microchemical cleaved 

graphene has high mobility (15,000 cm2/v/s) with 1,013/cm2 electrons and holes 

concentration at room temperature (Warner et al., 2012, Neto et al., 2009, Charlier et al., 

2007, Reina et al., 2008). Graphene can also form composites with other kinds of carbon 

such as graphene oxide, multi-walled carbon nanotubes, or electrochemically active 

materials such as polypyrrole and metal oxide.  

From Bae et al. (2010), three major approaches have been used for GR synthesis: 

1) Reduction of graphene oxide generated by the graphite oxide; 2) Exfoliation of 

graphite; and 3) Chemical-vapor deposition (CVD). At present, CVD method is most 

successful in synthesizing higher quality and large-scale graphene film or sheet up to 

meter scale. Typically, the CVD synthesis approach is involved in reactions between 

hydrocarbon gases, such as methane and metal substrate, by applying high temperature 

and low pressure. Graphene layer can be synthesized on a sheet of copper and transferred 

onto a flexible substrate. Besides the three major synthesis methods, there are several 

alternative methods available for graphene synthesis, such as graphene growth on SiC 

wafers, mechanical exfoliation of graphite to give graphene (Scotch-tape method), 

thermal annealing, flash reduction for graphene oxide. Details can be found in studies by 

Geim (2011), McAllister et al. (2007), and Cote et al. (2009).  

7.3 Nanomaterial for SC Electrode 

SC can offer high power density, long cycle life, high charging-discharging rate, 

and low-cost properties. The working performance of SC is primarily decided by two 
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factors that are the electrode material and its structure. The surface area of electrode 

material is one of the most important variables to affect the value of capacitance. Table 

7.1 illustrates the test results that the specific surface area that shows the significant 

influences on the capacitance. The high proportion of over 20
ο

Α  micro-pores result in 

carbon materials having large specific areas. The surface area of nano-sample is 

measured by Brunauer-Emmett-Teller (BET) technique.  

Table 7.1: Comparisons of Specific Surface Area with EDLC Capacitance 

(Chen et al., 2015). 

  

Property of Activated Carbon Cloth 
Characteristics of Electric 

Double Layer Capacitor 

Specific Surface 

Area by BET 
Strength 

Proportion of micro-pores 

of diameter over 20
o

A  
Capacitance 

Internal 

Resistance 

 P
ro

d
u

ct
 o

f 

 t
h

e 
in

v
en

ti
o
n
 300 m2/g Strong 50% 8 F 1 Ω 

300 m2/g Strong 50% 8 F 1 Ω 

300 m2/g Strong 80% 10 F 1 Ω 

7.3.1 Graphene and graphene oxide  

The GR-based SC have significantly increased both energy and power density. 

Theoretically, a single layer GR has the specific capacitance 21 uF/cm2. Xia et al. (2009) 

design a series of experiments to measure GR specific capacitance. Its practical value 

reaches 550 F/g when the entire surface area is fully utilized. Reduced graphene oxide 

(rGO) sheets have insulator property, with differential conductivity values of (1-5)×103  

S/cm depending on the oxidation degree and highest specific capacitance of 175 F/g with 

aqueous electrolyte. rGO has been used as an electrode and solid separator material for 

SCs (Xia et.al., 2009).  
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Figure 7.3: Schematic of Two Devices with Different Spacer Thickness (Liu et al., 2013). 

The GR and rGO are deployed to make electrode and dielectric spacer 

components of SC, respectively. Liu et al. (2013) make two devices (D1 and D2) to 

investigate the GR electrode material to enhance the capacitance and the dielectric 

constant of rGO. The structure of D1 is shown in Figure 7.3(a), which is made of 

GR/GO/GR stacked films in which each graphene layer is 25 nm thickness and the 

thickness rGO spacer is 350 nm. D2 shown in Figure 7.3(b) is made from a 400 nm rGO 

film. The capacitance can be calculated by the cyclic voltammetry. Both have excellent 

working performance, however, capacitance of D1 is more than two times of D2.  

The results indicated that GR could be a good electrode material for SC and rGO 

because of its high dielectric constant that can be applied as a spacer in thin-film SC. 

Besides, rGO as the dielectric spacer can be used to fabricate all-solid-state SC device 

with no electrolyte leaks. 

7.3.2 Graphene and Metal Oxide Nanocomposite Electrode 

GR composites with Ni, Co, Mn, Ru, etc. oxide called transition metal are 

explored for SC electrode. The metal oxide uniform distributed on GR sheets can 

eliminate restacking of the sheets during the synthesis that stabilizes the volume change 
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in metal/metal oxide during charge-discharge cycles. An asymmetric SC is assembled by 

using nanocomposites as a positive electrode and GR as a negative electrode, which are 

constructed from carbon-based material with incorporated or deposited pseudocapacitive 

active materials like metal oxides and conducting polymers.  

RuO2 is considered as the most promising metal oxide material for SC electrode, 

due to its high conductivity, high reversible redox reaction, excellent electrochemical 

stability, and high specific capacity. However, RuO2 applications are limited because it is 

too expensive. Improving the utilization rate of RuO2 would help to reduce the cost of 

SC. 

In Lee et al. (2010), RuO2 grown on GR sheets (GSs) composites has 570 F/g 

specific capacitance at 38.3 wt% Ru loading, 20.1 Wh/kg energy density at low charge-

discharge current rate (100 mA/g) and retains 97.9% electrochemical stability after 1,000 

cycles.  

NiO and MnO2 have attracted more attention as SC material due to their high 

energy density, low cost, environment compatibility. Nevertheless, the high charging-

discharging rate becomes a main limit because of the poor electrical conductivity and low 

accessible surface area of NiO. Chen et al. (2016) conduct a test in which NiO is 

electrochemically deposited into the highly porous GR aerogel (GA) to form NiO/GA 

composites. NiO/GA electrodes own excellent electrochemical performance with the 

specific capacitance of 489.9 F/g at the charge-discharge current density of 1 A/g in 2M 

KOH electrolyte.  

Theoretically, specific capacitance value of MnO2 is about 1,370F/g (Liu et al., 

2014), however the poor reversibility of the electrochemical oxidation-reduction and the 
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low conductivity restrict its application. Many researchers have shown that MnO2 would 

have a good performance in neutral aqueous electrolyte solution within a wide potential 

window when it is doped with carbon material. MnO2 composited with GR is able to test 

the effects of electrochemical performance. Nanocomposite material has the larger 

reinforcement surface than conventional composite material. Zhang et al. (2014) conducts 

the experiment that GR–MnO2 nanocomposite as positive electrode and GR as negative 

electrode reacted with a KMnO4 solution of 1.45 mol/L. It gives a high energy density of 

23.9 Wh/kg and a good cycling performance of around 96% of the initial capacitance 

after 1,000 cycles. The results demonstrate that these composites nanomaterial have 

excellent electrochemical properties with eliminated restacking, and they are distinctly 

suitable for SC materials. 

7.3.3 Graphene and CNT Flexible Electrode 

At present, stainless steel and Indium tin oxide are most commonly used as 

materials for preparing SC electrodes. There are several drawbacks to using them, which 

include a lack of flexibility due to easily caused cracks under strain. Using flexible 

substrates as support for active materials is attracting great attention due to their low cost, 

high flexibility, and smooth surfaces. The large-scale fabrication of solid SC is not only 

limited by the fragility of electrode material, but also restricted by their cycling stability 

and electrochemical performance. GR/CNTs film shows unique electrical and mechanical 

properties as well as high stability in electrolyte due to combinations of properties of GR 

and CNTs. GR/CNT film would be directly used as the electrode without any blinders 

and current collectors. 

A CNT can carry current with the density of 103 mA/cm2, and the electrical 
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resistivity of an individual CNT has 1 μΩ. A hybrid structure of GR foliates aligned 

along the multi-walled CNT (MWCNT) increases surface area for capacitors shown in 

Figure 7.4. CNT gives a backbone for a homogeneous distribution of metal oxide or 

electrically conducting polymers.  

 

Figure 7.4: Graphitized MWCNT with Varying Foliate Density (Cui et al., 2000). 

MWCNT in the composite films enhance transportation of electrolyte ions and 

electrons into the inner region of the electrode, in which CNT flexible film has a high 

specific capacitance of 256 F/g at the current density of 0.1A/g and after 2000 charge-

discharge cycles, the specific capacitance still retains 97%. Dürkop et al. (2004) prove 

these electrodes with composite nanomaterial achieve higher capacitances than any other 

pure nanomaterials-based electrodes.  

In most SC devices, binders must be used in order to hold the electrodes together. 

Due to without electrochemical activity and with the low specific capacitance, binders 

impact on the physical contact and charge transfer. GR/MnO2/CNT nanocomposites as 

the flexible electrodes allow high active material loading (71wt% MnO2), area density 
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(8.80 mg/cm2), and high specific capacitance 372 F/g without the current collectors and 

binders (Ubnoske et al., 2015).   

In the experiment by Li et al. (2012), the results demonstrated GR/CNT film has 

an excellent electrochemical performance with the specific capacitance of (70-110) F/g at 

the low scan rate 1mV/s. The mass ratios of GR and CNT is defined in Table 7.2. 

Table 7.2: Electrode Materials of SCs (Li et al., 2012). 

Sample 
Mass Ratios 

(GO to CNTs) 

Samples after 

Annealing 

BET-SSA 

(m2/g) 

Cg 

(F/g) 

GO 1:0 Gr 1.9 119 

GO2/CNT1 2:1 Gr2/CNT1 86.5 105 

GO2/CNT1 1:1 Gr1/CNT1 91 111 

GO2/CNT1 1:2 Gr1/CNT2 95.6 74 

The test results indicate that the ratios between them affect the film resistance and 

specific capacitance because the CNT is used to improve film conductivity while 

providing bridge and compact effects. The Gr1/CNT1 film with an appropriate ratio is the 

best choice. The scanning electron microscope image of the GR/CNT is presented on film 

around 30-40 μm thick. Hence, the large portion of GR should be adopted as prepared for 

GR/CNT film with high compactness. On the other hand, the increase of CNT content 

could reduce the stacking of GR. 

7.4 Simulate Performance of Lithium-ion Battery 

The performance of a battery over its lifetime is affected not only by thermal and 

electrochemistry, but also by the battery management control system. To gain better 

control over the performance and life cycle of a battery, accurate modeling of battery 

characterization is essential. The numerical model is faster, safer, and less costly than 

building physical prototypes, and has been adopted to obtain a more detailed 
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understanding of the electrochemical system. Table 7.3 lists the parameters for this 

section. 

Table 7.3: Notation of Parameters. 

Notation Description Unit 

Ds Diffusion coefficient m2/s 

εs,i Volume fraction of the active particles  

ri Radius of particle size m 

i  Specific surface area of particles m2/g 

K_pos Reaction rate coefficient positive electrode m/s 

K_neg Reaction rate coefficient negative electrode m/s 

l  Potential of electrode V 

N Cycle number cycle 

,s eff  Conductivity S/m 

R Universal gas constant J/(mol·K) 

cs,i Li-ion concentration mol/m³ 

ρ Density of active material g/m3 

Qo Initial capacity C/m² 

cl Initial electrolyte salt concentration mol/m³ 

F Faraday’s constant C/mol 

cs,max Saturation concentration of Li ion in the solid phase mol/m³ 

The cell’s output performance of specific capacity and energy efficiency is tested 

through the numerical model because the internal resistance of the cell changes with the  

cycling number. In the model, the variation of lithium concentration in the liquid phase 

along the current path can be neglected. The variation in the solid phase potential at the 

anode or at the cathode is also negligible because of the good conductivity of the 

electrode materials. It is also assumed that the active electrode materials are made from 

uniform spherical particles with a radius of rp and that the diffusion is the only 

mechanism of lithium transport inside the particles. The total surface film resistance (Rf ) 

consists of initial film resistance (Rc) and the resistance of the film formed due to the 
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parasitic reaction occurring at the anode surface as the new resistance Rs. That is, 

f

c sR R R= +                                                        (7.4) 

The thickness of the film at the negative electrode changes with the times of 

charge-discharge cycle. Hence the resistance of the film grows as the cycle number 

increases. The film thickness function f  under charge-discharge cycle number N in 

given below, 

f | | *

*

Li

N s NJ M

t F






=


                                                (7.5) 

where  

ρ = density of active material.  

M = molecular weight.  

F = Faraday’s constant, 96,487 C/mol. 

  The specific surface area i  and  Si superficial surface area of electrode are given 

by following equations, 

                                           
i3

=i

ir


                i  = positive, negative                       (7.6) 

  i=i iS V                 i  = positive, negative                        (7.7) 

where  

  ri = radius of  particles. 

   εi = volume fraction of a solid phase of electrode.  

  Vi = volume of electrode. 

The equation that describes the diffusion of lithium in the solid phase is given by 

Fick’s 2nd law as follows, 
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, , , ,

2
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  Butler-Volmer (BV) kinetics is used to describe lithium 

intercalation/deintercalation in the cell. Since the concentration variation in liquid phase is 

neglected, the current density of the parasitic reaction is given by the Tafel equation and ƞs 

as the overpotential is given by  
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F
J J

RT
=                                                  (7.9) 

sq

f

s l n nU J S R = − −                                                   (7.10) 

  In the following discharging process, the dimensionless lithium concentration at 

the beginning is used as the initial condition for the diffusion equation in the solid phase. 

The surface film resistance (Rf )  is modified due to the parasitic reaction in the previous 

cycle. The loss of the capacity of the cell is estimated by the following equation,                                                                                    

Li

s s n

T

Q J S dt=                                                           (7.11) 

Capacity fade degree is an important way to test battery performance, which 

occurs under various conditions. The conditions are classified into two categories: 

electrode materials and status of use. Simulation approach is applied to analyze the effect 

of the conductivity of the newly formed surface film on charging and discharging 

performance of the battery. The simulations are carried out by charging the battery to 4.2 

V. Figure 7.5 compares the capacity fade and the discharging performance under 

different cycles. 
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Figure 7.5: Discharge Curve Comparison  under Various Cycle Numbers. 

  Depending on the status of usage, the number of charge-discharge cycles and the 

temperature influence the capacity loss as shown in  Figure 7.6. The capacity loss is due to 

expansion/contraction of the active materials, and the rate of expansion/contraction is 

proportional to the local rate of expansion of the intercalation material. 

 

Figure 7.6: Specific Capacity under Various Conditions. 
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  The results indicate that capacity fade is affected by at least two major processes: 

1) loss of active lithium, and 2) impedance growth at the positive and negative electrodes. 

The rate capability is studied in terms of polarization (voltage loss) or the internal 

resistance growth. A battery cell with high-rate capability can generate a considerable 

amount of power, that is, it suffers from little voltage loss even at high current loads. In 

contrast, a low rate-capability cell has the opposite behavior. The porosity of electrodes, 

active material particle size, and state of charge (SOC) are considered as the factors in the 

model to simulate the internal resistance of cell under effect. Three parameters are 

explored: SOC, porosity of the positive electrode (εs), and the particle radius size of the 

positive active electrode material (rp).  Each factor has three levels as in Table 7.4.  

  The energy efficiency is defined as the ratio between the power output (Wdisc) and 

input (Wch) as follows, 

 
( * )

=
( * )

eq

disc t out
e

ch eq

t in

I U dt
W

W I U dt
 =

=

=




                                                  (7.12) 

Table 7.4: Factors and Levels of Parameters in Model. 

        Level 

Factor 
Low Medium High 

εs 0.1 0.4 0.6 

rp 5×10-7 1×10-6 2×10-6 

SOC 0.4 0.6 0.8 

 

  The internal resistance decreases when the positive active material particle size is 

decreased and the porosity in the positive electrode is increased as shown in Figure 7.7.     
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Figure 7.7: Voltage Behavior for Various Designs. 

 The simulation result of  energy efficiency ( e ) under 27 cases are compared in 

Table 7.5. The battery has the best performance when using the values from Case 21. 

Figure 7.8 also depicts the energy efficiency of Cases 1, 10, 9, and 21 in the temperature 

(oC) range of [0, 60]. Case 21 still has the best performance. 

 

Figure 7.8: Energy Efficiency under Various Conditions. 
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Table 7.5: Simulation Result Based on Various Levels of Three Factors. 

Case SOC rp (m) εs e  

1 0.4 5.00E-07 0.1 0.878 

2 0.4 5.00E-07 0.4 0.915 

3 0.4 5.00E-07 0.6 0.919 

4 0.4 1.00E-06 0.1 0.863 

5 0.4 1.00E-06 0.4 0.903 

6 0.4 1.00E-06 0.6 0.907 

7 0.4 2.00E-06 0.1 0.843 

8 0.4 2.00E-06 0.4 0.885 

9 0.4 2.00E-06 0.6 0.889 

10 0.6 5.00E-07 0.1 0.883 

11 0.6 5.00E-07 0.4 0.920 

12 0.6 5.00E-07 0.6 0.924 

13 0.6 1.00E-06 0.1 0.868 

14 0.6 1.00E-06 0.4 0.909 

15 0.6 1.00E-06 0.6 0.913 

16 0.6 2.00E-06 0.1 0.849 

17 0.6 2.00E-06 0.4 0.894 

18 0.6 2.00E-06 0.6 0.898 

19 0.8 5.00E-07 0.1 0.886 

20 0.8 5.00E-07 0.4 0.921 

21 0.8 5.00E-07 0.6 0.925 

22 0.8 1.00E-06 0.1 0.873 

23 0.8 1.00E-06 0.4 0.910 

24 0.8 1.00E-06 0.6 0.914 

25 0.8 2.00E-06 0.1 0.857 

26 0.8 2.00E-06 0.4 0.897 

27 0.8 2.00E-06 0.6 0.901 

Design of experiments is applied to investigate the capacity fade degree with three 

factors in this section. Three factors are SOC, the porosity of the positive electrode (εs), 

and the particle radius size of the positive active electrode material (rp) and each factor 

has three levels. Through analysis of the simulation results, the battery will have better 

performance when the positive active electrode has a smaller size, while the porosity of 

the positive electrode and the SOC is at a high level.  
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7.5 Commercialization  

The distributed generation (DG) systems with hybrid energy storage devices 

create new opportunities for large industrial consumers to save energy costs and achieve 

the environmental sustainability. The onsite generation can be applied in real life 

depending on the capacity cost of the device and local weather profile. However, the 

energy storage device plays a critical role in the communalization of such DG system. 

Schmidt et al. (2017) point out that an average annual cost prominently declining by 30% 

on the cell level can lead to 12% cutting on the system level in the energy storage system. 

Hajiaghasi et al. (2019) make a summary that hybrid energy storage performs better than 

battery-alone energy storage for a stand-alone PV system. Jing et al. (2016) testify that 

hybrid storage has the virtues of both high energy and power density, and such systems 

increase battery lifespan. They analytically demonstrate that the hybrid configuration 

extends power output and battery lifetime. 

With the utility price increase, the onsite power system will be more competitive 

than the traditional power system. The cost of the onsite power system is also decreasing 

with the novel material applicated and innovative technology developed. This section will 

illustrate the financial analysis of the products of supercapacitor and new generation of 

Li-ion battery.  

7.5.1 Supercapacitor Penetration Rate Forecast 

Supercapacitors (SC) are novel energy storage devices that can be applied in 

many fields due to their long-life cycle, high power density, and fast charge-discharge 

rate. The major applications of SC include consumer, public and industrial sectors, utility 

grid, and transportation. SC market is valued $3.27 billion in 2019 and is expected to 
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reach $16.95 billion by 2027, growing at a CAGR of 23.3% from 2020 to 2027.  

The main gap between the SC with currently existing technologies is caused by 

the high cost of raw materials for both carbon and mixed metal oxide-based SC. 

Currently, the cost of graphene ranges between $50-200/kg, depending on quality and 

volume of purchase.  

The capacity cost of SC is 1.2×106/MWh in this study. Suppose cuts the price to 

0.2×106/MWh due to the decreasing of row material cost and manufacturing process 

improvement. The ratio of installation capacity between SC and battery dramatic changes 

when the capacity cost of SC trends down 0.8×106/MWh. The system is more preferred 

to install SC instead of battery, even the capacity cost of Li-ion battery (0.6×106/MWh) is 

lower than SC. The reason is that there is no maintenance cost of SC and the impact of 

depth of discharging of SC technique is also ignored. Figure 7.9 plots the SC penetration 

rate. When the capacity cost of SC reaches 0.2×106/MWh, the penetration rate of SC is 

almost reaching 100%. 

 

Figure 7.9: SC Penetration Rate vs. Capacity Cost. 
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7.5.2 Li-ion Battery Financial  Forecast 

The energy density and power density of lithium-ion battery has significantly 

increased in past decade. It is an important type of energy storage device covering a wide 

range of applications from consumer products to industrial applications, such as 

portable/wearable electrics, uninterruptible power supply system. It is the biggest 

potential profits. A new generation of lithium-ion battery with advanced graphene-based 

nanostructure material takes advantage of the opportunity for energy storage product, 

which has the biggest potential to dominate the battery market. At the inception, the new 

generation lithium-ion expects to have a 1% share of the U.S. market, which is worth 

$20B around 80,000MWh volume. It is projected that the annual increase rate of market 

share will be 0.5% and the price of the new battery is $180/kWh, which is reasonable and 

competitive.  

The new generation Li-ion battery product adopts advanced fabrication processes 

and novel material. The battery will significantly cost less due to enhancement of existing 

processes, and adoption of new materials, reduction of waste, and optimization 

manufacturing process. It has the following specifications: 

1). Competitive Price: customers would rather save 30% cost by opting.  

2). More Safety: avoid the liquid leak toxic material out due to all solid components 

of battery and Graphene is environment-friendly materials in manufacturing. 

3). Multiple Applications: it can be sealed with any shape to suit any application due 

to flexible electrodes. 

The cost to manufacture battery consists of raw materials, operations, salaries, 

operation, product development, and depreciation. All of these can be divided into two 
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categories: fixed costs and variable costs. The variable costs of manufacture scale with 

the output volume of production. Figure 7.10 shows the percentage of the cost for one 

unit battery.  

 

Figure 7.10: Cost Ratio (%). 

Cash flow is the net amount of money and cash-equivalents being transferred into 

and out of a business, which show the capacity of the product to create value for 

shareholders. A cash flow is analyzed at the first 24 months and 5 years. Financial 

forecasts will allow the investor to see how costs, order amounts, and growth rate affect 

profitability. A 24-month cash flow as shown in Figure 7.11. The breakeven point turns 

up at the monthly product sale volume at 12,554 kWh and all expenses will be recovered 

by the sales.  

 

Figure 7.11: 24-Month Cash Flow. 
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The final finance forecasts that the break-even point will appear at the 13th month 

after initial product manufacturing. According to conservative estimates, the investment 

will have at least 100% return within 5th year of the financing period, and net income will 

be $895,000 at the end of the 6th year.   

Table 7.6 shows the 5-year cash flows statement with net present value (NPV) 

and the internal rate return (IRR) value. Both give the same evaluation for this product, 

which will bring profits for the investors. NPV is $443,749 with an interest rate of 10% 

for 5 years. It is expected that the product can add value to the firm and therefore increase 

the wealth of the shareholders. The investment will be recovered after 4.02 years and the 

investors start to get the business’s money back. The IRR is 25% when the NPV is equal 

to zero. 

Table 7.6: Five Year Cash Flows Statement. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions  

This research work addresses how to design an onsite grid-connect renewable 

power system, which provides reliable energy supply for manufacturing facilities under 

uncertain weather conditions. The optimization objective is to minimize the investment 

cost of the system, as well as the microgrid operating cost by considering the power 

reliability criterion and time of use (TOU) rate. The numerical experiment results 

demonstrate that a renewable power system integrating hybrid energy storage devices is 

cost-effective from a long-term perspective. Manufacturing facilities can be powered by 

wind turbine and solar PV so as to meet energy demand under required loss of loss 

probability criteria while lowering environmental impact. Sizing renewable generation 

comprised of hybrid energy storage system is also proposed in this study. Below the 

research activities and findings of each chapter are summarized. 

 In chapter 2, the historical weather data of multi-cities is retrieved from the 

weather underground web portal by open-source API. Python programming language is 

used to manipulate tons and tons of data and extract effective statistical information from 

the historical weather data. The wind speed and weather features are analyzed and 

interpreted by applying a statistical approach. Through processed and organized data, six 

testing cities are selected, which present diverse weather portfolios across the north and 

south hemispheres. For example, Wellington is the windiest city, but the weather is 

mostly cloudy; on the contrary,  Phoenix has a low wind profile but mostly sunny. San 

Francisco has medium to large wind plus plenty of sunshine. On average, there are less 

than 3.33% incomplete and missing observations. In Wellington, about 75% of wind 
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direction is observed between the north and northwest. In San Francisco, around 50% of 

wind blows from the west and northwest. Wind speed distribution curve in Sanya can be 

described as the normal distribution. However, the distribution curve in the remaining 

cities follows the Weibull distribution.  

 Chapter 3 proposes the hybrid forecast models with multivariate input and multi-

step output capability for the wind speed and weather feature, respectively. Several 

findings are obtained from the numerical experiment comparisons. First, wind direction is 

found to be the most significant feature in the multivariate model. It improves the 

prediction performance and leads to a much better forecast result. Second, the proposed 

model outperforms the benchmark results of ARIMA, persistence model, and univariate 

FNN model in 3-to-24 hours ahead prediction. Third, the proposed wind speed 

forecasting model does not show an obvious advantage in 1-hour ahead prediction. The 

prediction error of the hybrid model is typically 8% smaller than ARIMA and persistence 

models. All models result in good prediction if hourly wind speed does not have 

significant standard deviation, such as in Phoenix.  

 The weather condition prediction results show the seasonal prediction models and 

yearly forecasting models are drastically different. The forecasting result indicates the 

yearly models generates better performance across multiple cities than the seasonal 

models for their corresponding period due to the random distribution of states. The five-

state forecasting model yields higher accuracy than the seven-state model. Furthermore, 

the model’s prediction accuracy decreases when the feature retains more classes. The 

forecasting results show that the proposed model forecasting accuracy is 35.7% and 32% 

higher than the MM and HMM, respectively.  
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 In chapter 4, the working principle of renewable generators and energy storage 

devices is illustrated. The renewable generation process, charging and discharging 

procedure, and capacity degradation of energy storage devices are converted into 

mathematic functions. The capacity factor is defined as the division of actual power 

output in one hour divided by the rated power capacity of generation. The generation of 

wind turbine and solar PV will be simulated based on the hourly capacity factors. The 

value of a capacity factor is between zero and one. 

In chapter 5, the mixed-integer nonlinear programming is established to optimize 

the levelized cost of energy (LCOE). The objective function is solved by the AMPL 

compiler. To tackle the complex optimization problem, wind and solar generations are 

simulated hour-by-hour across a year first. Through running four operation modes in each 

of the testing cities, the experiment results demonstrate the renewable energy is cost-

effective when the local wind resource is abundant or the capacity cost of solar PV is 

continuously reduced. LCOE is $54.7/MWh below the utility price in Willington. The 

local wind speed and weather features ultimately determine the mix of renewable 

generation portfolios. The capacity of HESS is primarily  impacted by the facility’s 

operation mode, not necessarily the carbon credit and TOU policy. When a facility is 

operating during the night, the facility needs to install more energy storage devices to 

meet the power demand.  

This model sets an example and provides a solution to design and operate a 

microgrid power system with onsite renewable technique, which is competitive, feasible, 

and has a minimum impact on the main grid. This model can be expanded to multi-nodes 

from manufacturing into commercial businesses, data centers, warehouses, and 
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distribution centers, which are energy-intensive industries.  

In chapter 6, it provides a state-of-the-art decision model that integrates onsite 

generation into supply chain logistic planning with multi-echelon facilities. The supply 

chain model is proposed based on weekly production-inventory and hourly generation to 

size the renewable generation and energy storage unit. A long-term optimization decision 

problem can be formulated as mixed-integer linear programming model to minimize 

annual operation costs. The numerical example and sensitivity analysis reveal the effect 

of energy pricing policies, natural gas price, and product-inventory cost on the production 

processes and the sizing of renewable generators.  

The sensitivity analysis of changes in the electricity market price are performed. 

The study finds higher electricity market prices yield higher profits and incentivize the 

supply chain system to install more renewable generators. The annual cost of supply 

chain system reduces due to revenue income of energy sales. The electricity market price 

also impacts the behavior of ES, surplus energy is more likely to export to the mind grid. 

The experiment results also reveal the available wind and solar resources of the factory 

affect the production plan. High energy consumption products will be made in factories 

with abundant natural resources, even if the shipping distance is longer and higher 

shipping cost incurrs between factory and warehouse. The expense of the the supply 

chain system goes up when the combined power and heat unit has limited operating 

hours. The numerical experiment result indicates that the supply chain system will work 

more cost effectivly when multiple generators are selected. 

Chapter 7 investigates the capacity fade of the battery under various conditions. 

The simulation is carried out by charging the battery to the required voltage level with 
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COSMOS software. The model is designed to simulate the capacity fade and the charging 

and discharging performance of a battery up to 2,000 cycles. The results indicate that 

capacity fade is caused by the loss of active lithium at the negative. The porosity of 

electrodes, active material particle size, and state of charge are considered as three 

controllable factors in the model to simulate the internal resistance of the cell. The 

simulation results show the internal resistance decreases when the particle size of positive 

active material is decreased and the porosity in the positive electrode is increased. 

8.2 Future Studies 

 The future research could be explored from three directions: 1) constructing 

multi-objective optimization for virtual power plant (VPP) planning; 2) designing 

forecasting models to meet both long- and short-term prediction performance 

simultaneously; and 3) optimizing energy flow in the storage devices.  

8.2.1 Multi-Objective Optimization Model 

Wind and solar are complementary in terms of renewable power generation. The 

wind speed and the weather feature are the key parameters that determine the output of 

local WT and PV equipment. The smart grid will be achieved by offering differential 

pricing electricity to encourage energy consumers to be switched from traditional energy 

resources. In the future study, multi-objective optimization models are formulated to 

minimize operation system cost and maximize environment benefit under power supply 

reliability criteria, when applied combined heat and power unit in the power system. 

Various design constraints from real life industry should be considered, including zero 

carbon footprint and the maximum amount of energy loss allowed in a one-year 

operation.  
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8.2.2 Joint Long- and Short-Term Foresting Model 

 The production and capacity of renewable generation have been increasing in 

recent years. The manufacturers often purchase electricity from the day-ahead market. 

Hence, it is desirable to develop an integrated model that jointly forecasts long-term and 

short-term wind speed and weather features. The forecasting model with high accuracy is 

important to ensure the power supply and reduce manufacturing cost, which ensures the 

maximum profit in bidding on energy in the day-ahead market.  

 The fundamental prediction engine is the artificial neural network in this study. 

The particle swarm optimization algorithm or genetic algorithm technique can be 

efficient in tuning model parameters for a given neural network structure. The 

hyperparameters in the model also need to be optimized through an efficient way in the 

future study. However, there are limited studies focusing on the optimal selection of 

network structures, the number of hidden layers, and the number of neurons associated 

with a hidden layer. In the future, the study will focus on finding an effective way to 

determine the values of these hyperparameters of the model.     

 The forecasting model is still facing the challenges of which features can be 

selected as the input of model and what is the best way for imputing missing data or 

value. These would be the future tasks to design a high-performance model. 

8.2.3 Energy Storage Technology 

 Hybrid energy storage system (HESS) is characterized by a beneficial coupling of 

two or more energy storage technologies with supplementary operating characteristics, 

such as energy and power density, self-discharge rate, efficiency, and lifetime. This study 

has discussed typical HESS applications, the energy storage coupling architectures, basic 
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energy management concepts, and a principal approach for the power flow 

decomposition.  

 The microgrid could be expanded to incorporate other energy forms such as small 

hydro, geothermal, and ocean wave energy. In future studies, HESS configurations will 

be adopted into four types: 1) fuel cell/battery, 2) hydrogen/battery, 3) compressed air 

energy storage/battery, and 4) flywheel/battery. These four types of HESS will be 

investigated in the power system management as well as "beyond Li-ion" technologies, 

such as lithium-sulfur and lithium-air chemistries. The "beyond Li-ion" technologies are 

potentially investing in, 1). Improving electrolyte/separator combinations so that they 

result in less dendrite growth when using Lithium metal anodes. 2). Developing advanced 

material coatings. 3). Developing new ceramic, polymer, and hybrid structures with high 

ionic conductivity, low electronic impedance, and high structural stability, 

The new commercialization model of renewable energy is peer-to-peer energy 

(P2P) trading. Under the P2P business model, the buying and selling of energy takes 

place between two or more grid-connected parties instead of through a central market. 

Roy et al. (2016) state that peer-to-peer solar energy trading has considerable promise to 

generate benefits for both producers and consumers without intermediary at the agreed 

price. That means any excess energy can be transferred and sold to other users via a smart 

meter. This model encourages more manufacturers, commercial users, or homeowners to 

install renewable generation or empowers their right to choose suitable energy source or 

destination by themselves.  
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APPENDIX SECTION 

Appendix A.  Wind Speed Forecast Model in Chapter 3 

The following Python code is for wind speed forecast model. 

df=read_csv("Boston_Wind_Dataset.csv") 

data1=df["Label_year_data"] 

data1 = pd.DataFrame(data1) 

data1=data1.replace(to_replace=0,value=1) 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

 n_vars = 1 if type(data) is list else data.shape[1] 

 df = pd.DataFrame(data) 

 cols, names = list(), list() 

 # input sequence (t-n, ... t-1) 

 for i in range(n_in, 0, -1): 

  cols.append(df.shift(i)) 

  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 

 # forecast sequence (t, t+1, ... t+n) 

 for i in range(0, n_out): 

  cols.append(df.shift(-i)) 

  if i == 0: 

   names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 

  else: 

   names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 

 agg = concat(cols, axis=1) 

 agg.columns = names 

 # drop rows with NaN values 

 if dropnan: 

  agg.dropna(inplace=True) 

 return agg 

data2=series_to_supervised(data1,n_lag,n_seq) 

#Feature scaling 

scaler_1 = MinMaxScaler(feature_range=(0, 1)) 

scale_X =data2.iloc[:,0:n_lag] 

scale_Y =data2.iloc[:,n_lag:(n_seq+n_lag+1)] 

scalerX = scaler_1.fit(scale_X) 

scalery = scaler_2.fit(scale_Y) 

scaled_X = scalerX.transform(scale_X) 

scaled_Y = scalery.transform(scale_Y) 

scaled_Y = scaled_Y.astype('float32') 

scaled_X = scaled_X.astype('float32') 

X_train, X_test ,X_val= scaled_X[:(len(scaled_X)-n_val-n_test)], scaled_X[-n_test:], 

scaled_X[-(n_val+n_test):-n_test] 

y_train, y_test,y_val = scaled_Y[:(len(scaled_X)-n_val-n_test)], scaled_Y[-

n_test:],scaled_Y[-(n_val+n_test):-n_test] 
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X_train=X_train.reshape((X_train.shape[0],time_step, X_train.shape[1])) 

X_test = X_test.reshape((X_test.shape[0], time_step, X_test.shape[1])) 

X_val = X_val.reshape((X_val.shape[0], time_step, X_val.shape[1])) 

# two hidden layers model 

model = Sequential() 

model.add(LSTM(n_hidden_1,return_sequences=True,activation='linear',stateful=True, 

               activity_regularizer=l1(0.001), 

               batch_input_shape=(n_batch, time_step, X_train.shape[2]))) 

model.add(Activation('relu')) 

model.add(LSTM(n_hidden_2,batch_input_shape=(n_batch, time_step, 

X_train.shape[2]), activation='relu',stateful=True)) 

model.add(Dense(y_train.shape[1])) 

adam=optimizers.Adam(lr=0.0005) 

model.compile(loss=losses.mean_squared_error, optimizer="adam") 

checkpoint = ModelCheckpoint(filepath="best_weights_mod5.hdf5", monitor='val_acc', 

verbose=1, save_best_only=True, mode='max') 

callbacks_list = [checkpoint] 

history = model.fit(X_train, y_train, 

validation_data=(X_val,y_val),callbacks=callbacks_list, epochs=10, batch_size=n_batch, 

verbose=2,shuffle=False) 

 

# plot train and validation loss 

plt.plot(history.history['loss'][30:]) 

plt.plot(history.history['val_loss'][30:]) 

plt.title('model train vs validation loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'validation'], loc='upper right') 

plt.show() 

 

verbose=1 

losses = [] 

val_losses = [] 

min_val_loss = (99999,999999) 

for i in range(training_epochs): 

    if verbose!=0: 

        print(i) 

    history = model.fit(X_train, y_train, validation_data=(X_val,y_val), epochs=2, 

batch_size=n_batch, verbose=2, shuffle=False) 

    losses.append(history.history['loss']) 

    val_losses.append(history.history['val_loss'][0]) 

    if val_losses[-1] < min_val_loss[0]: 

        min_val_loss = (val_losses[-1], i) 

#    model.reset_states() 

print('best val_loss and epoch:',min_val_loss) 

plt.title('loss') 
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plt.plot(losses,color="blue") 

plt.plot(val_losses, color='red') 

plt.show() 

 

# forecasting 

pred_y = model.predict(X_test,batch_size=n_batch) 

inv_yhat = scalery.inverse_transform(pred_y) 

real_test=scale_Y[-n_test:] 

 

# calculate MSE with scaled  

mse = 0 

rmse = 0 

for i in range(n_seq): 

    RMSE = sqrt(mean_squared_error(y_test, pred_y))    

    MAE=mean_absolute_error(y_test, pred_y) 

    print('t+%d RMSE: %f' % ((i+1), rmse))  

    print('t+%d MAE: %f' % ((i+1), MAE))  
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Appendix B.  Weather Feature Forecast Model in Chapter 3 

The following Python code is for weather feature forecast model. 

df=read_csv("Phoneix_Finalclean.csv",index_col='new_UTC') 

scaler = MinMaxScaler(feature_range=(0, 1)) 

 

def encode(data, col, max_val): 

    data[col + '_sin'] = np.sin(2 * np.pi * data[col]/max_val) 

    data[col + '_cos'] = np.cos(2 * np.pi * data[col]/max_val) 

    return data 

x = encode(x, 'Hour', 23) 

x=x.drop(["Hour"],axis=1) 

ax = x.plot.scatter('Hour_sin', 'Hour_cos').set_aspect('equal') 

 

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): 

 n_vars = 1 if type(data) is list else data.shape[1] 

 df = DataFrame(data) 

 cols, names = list(), list() 

 # input sequence (t-n, ... t-1) 

 for i in range(n_in, 0, -1): 

  cols.append(df.shift(i)) 

  names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] 

 # forecast sequence (t, t+1, ... t+n) 

 for i in range(0, n_out): 

  cols.append(df.shift(-i)) 

  if i == 0: 

   names += [('var%d(t)' % (j+1)) for j in range(n_vars)] 

  else: 

   names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] 

 agg = concat(cols, axis=1) 

 agg.columns = names 

 if dropnan: 

  agg.dropna(inplace=True) 

 return agg  

 

rnn_data=series_to_supervised(x,3,1) 

rnn_data=rnn_data.drop(["var7(t-1)","var8(t-1)", 

     "var7(t-2)","var8(t-2)","var7(t-3)","var8(t-3)"],axis=1) 

 

rnn_data.rename(columns={'var1(t)': 'Sea_Level_PressureIn_N(t)', 'var2(t)': 

"Humidity_N(t)", 

  'var3(t)': 'Dew_PointF_N(t)', 'var4(t)':"Wind_Speed_mps(t)",'var5(t)': 

"Temperature_C_N(t)",  

  'var6(t)':"Conditions_Name(t)", 

  'var1(t-1)': 'Sea_Level_PressureIn_N(t-1)', 'var2(t-1)': "Humidity_N(t-1)", 
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  'var3(t-1)':'Dew_PointF_N(t-1)', 'var4(t-1)':"Wind_Speed_mps(t-1)",'var5(t-1)': 

"Temperature_C_N(t-1)",  

  'var6(t-1)':'Conditions_Name(t-1)', 

  'var1(t-2)': 'Sea_Level_PressureIn_N(t-2)', 'var2(t-2)': "Humidity_N(t-2)", 

  'var3(t-2)': 'Dew_PointF_N(t-2)', 'var4(t-2)':"Wind_Speed_mps(t-2)",'var5(t-2)': 

"Temperature_C_N(t-2)",  

  'var6(t-2)':"Conditions_Name(t-2)", 

  'var1(t-3)': 'Sea_Level_PressureIn_N(t-3)', "var2(t-3)":"Humidity_N(t-3)", 

  'var3(t-3)': 'Dew_PointF_N(t-3)', 'var4(t-3)':"Wind_Speed_mps(t-3)",'var5(t-3)': 

"Temperature_C_N(t-3)",  

  'var6(t-3)':"Conditions_Name(t-3)", 

   "var7(t)":'Hour_sin', "var8(t)":'Hour_cos'}, inplace=True) 

 

encoder = LabelEncoder() 

rnn_data["Conditions_Name(t-

1)"]=encoder.fit_transform(rnn_data["Conditions_Name(t-1)"].astype("str")) 

rnn_data["Conditions_Name(t-

2)"]=encoder.fit_transform(rnn_data["Conditions_Name(t-2)"].astype("str")) 

rnn_data["Conditions_Name(t-

3)"]=encoder.fit_transform(rnn_data["Conditions_Name(t-3)"].astype("str")) 

 

rnn_data[["Conditions_Name(t-1)", "Conditions_Name(t-2)","Conditions_Name(t-3)"]] 

= scaler.fit_transform(rnn_data[["Conditions_Name(t-1)", "Conditions_Name(t-

2)","Conditions_Name(t-3)"]])    

 

def encode_text_index(df, name): 

    le = LabelEncoder() 

    df[name] = le.fit_transform(df[name]) 

    return le.classes_ 

def to_xy(df, target): 

    result = [] 

    for x in df.columns: 

        if x != target: 

            result.append(x) 

    target_type = df[target].dtypes 

    target_type = target_type[0] if hasattr( 

        target_type, '__iter__') else target_type 

    if target_type in (np.int64, np.int32): 

        # Classification 

        dummies = pd.get_dummies(df[target]) 

        return df[result].values.astype(np.float32), dummies.values.astype(np.float32) 

 

dataset1=rnn_data.loc[:,['Sea_Level_PressureIn_N(t-3)', 

       'Dew_PointF_N(t-3)', 'Wind_Speed_mps(t-3)', 'Temperature_C_N(t-

3)',"Conditions_Name(t-3)", 

       'Sea_Level_PressureIn_N(t-2)','Humidity_N(t-2)', 'Dew_PointF_N(t-2)',  
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       'Wind_Speed_mps(t-2)',"Conditions_Name(t-2)", 

       'Sea_Level_PressureIn_N(t-1)', 'Humidity_N(t-1)', 

       'Dew_PointF_N(t-1)', 'Wind_Speed_mps(t-1)', "Conditions_Name(t-1)" 

       'Sea_Level_PressureIn_N(t)', 

       'Humidity_N(t)', 'Dew_PointF_N(t)','Wind_Speed_mps(t)', 

       'Temperature_C_N(t)', 'Hour_sin', 'Hour_cos',"Conditions_Name(t)"]].values 

 

# PCA 

X = 

x.loc[100000:,["Month","Day","Hour","Sea_Level_PressureIn_N","Humidity_N","Dew_

PointF_N","Wind_Speed_mps","Temperature_C_N"]] 

Y= x.loc[100000:,["Conditions_Name"]] 

Y=pd.Categorical(Y) 

my_color=Y.cat.codes 

my_color=['r', 'g', 'm'] 

 

X = scaler.fit_transform(X) 

from sklearn.decomposition import PCA 

pca = PCA(n_components=3) 

 

principalComponents = pca.fit_transform(X) 

result = DataFrame(data = principalComponents 

             , columns = ['PCA%i' % i for i in range(3)], index=X.index) 

from mpl_toolkits.mplot3d import Axes3D 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.scatter(result['PCA0'], result['PCA1'], result['PCA2'], c=my_color, 

cmap="Conditions_Name", s=60) 

 

# create the model with the best params  

dataset1=rnn_data.loc[:,[ 

       'Sea_Level_PressureIn_N(t-1)', 

       'Humidity_N(t-1)', 

       'Dew_PointF_N(t-1)', 

       'Wind_Speed_mps(t-1)', 

       'Temperature_C_N(t-1)', 

       "Hour_sin","Hour_cos", 

       "Conditions_Name(t-1)", 

       "Conditions_Name(t)"]] 

 

Conditions_Name= encode_text_index(dataset1,"Conditions_Name(t)") 

X,Y = to_xy(dataset1,"Conditions_Name(t)") 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) 

n_epochs=20 

n_batch =1 

model = Sequential() 
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model.add(Dense(100, input_dim=X_train.shape[1], activation='relu')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(100, kernel_regularizer=regularizers.l2(0.01), 

                  activity_regularizer=regularizers.l1(0.01), 

                  activation='relu')) 

 

# Compile model 

adam=keras.optimizers.Adam(lr=0.01, beta_1=0.99, beta_2=0.99, epsilon=None, 

decay=0.0) 

model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy']) 

checkpoint = ModelCheckpoint(filepath="best_weights_mod5.hdf5", monitor='val_acc', 

verbose=1, save_best_only=True, mode='max') 

callbacks_list = [checkpoint] 

history = 

model.fit(X_train,Y_train,validation_data=(X_test,Y_test),callbacks=callbacks_list,verbo

se=1,epochs=n_epochs,batch_size=n_batch) 

 

#predicted 

loss, acc = model.evaluate(X_test,Y_test) 

pred = model.predict(X_test) 

 

from sklearn import metrics 

pred_y = np.argmax(pred,axis=1) 

real_y = np.argmax(Y_test,axis=1) 

score=metrics.accuracy_score(real_y,pred_y) 

score=metrics.accuracy_score(real_y,index) 

print("accuracy score:{}".format(score)) 
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Appendix C.  Model 5.1: MLCOE in Chapter 5 

The following AMPL code is for Model 5.1: MLCOE. 

set prods:={"WT", "PV"};        

set HESS:={"BS", "SC"};        

param T;                        

set periods:= 0..T by 24; 

set index; 

param Y;                               

param r;                               

param Q=(r*(1+r)^Y)/((1+r)^Y-1);       

param Alpha;                          

param Delta;                          

param mean;                           

param sigma;                          

param a1_G{n in prods};                

param a1_HESS{j in HESS};            

param a2_G{n in prods};                

param a2_HESS;                         

param a3_G;                            

param D{t in 1..T};                    

param Coff{t in 1..T,n in prods}; 

param E{t in 1..T};  

param W{t in 1..T};  

param c_buy;  

param c_sale;  

param SOC_min; 

param SOC_max{j in HESS}; 

param SOC_ini{j in HESS}; 

param HESS_capacity{j in HESS}; 

param DoD; 

var P_G{n in prods}>=0;                 

var P_HESS{j in HESS}>=0;               

var E_jt{j in HESS,t in 0..T}; 

var E_Ch_jt{j in HESS,t in 1..T}>=0;              

var E_Disch_jt{j in HESS,t in 1..T}>=0;           

var P_buy{t in 1..T}>=0;                          

var P_sale{t in 1..T}>=0; 

var P_buy_pos{t in 1..T}binary;                      

var cost_cap_G=sum{n in prods}Q*a1_G[n]*P_G[n]; 

var cost_cap_HESS=sum{j in HESS}Q*a1_HESS[j]*P_HESS[j]; 

var OM_cost_G=sum{n in prods,t in 1..T}a2_G[n]*P_G[n]*Coff[t,n]; 

var OM_cost_HESS=sum{t in 1..T}E_Disch_jt["BS",t]*a2_HESS; 

var carbontax_reward=sum{n in prods, t in 1..T}P_G["WT"]*Coff[t,"WT"]*a3_G; 

var Cost_buy=sum{t in 1..T}P_buy[t]*c_buy; 
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var generation=sum{n in prods,t in 1..T}P_G[n]*Coff[t,n]; 

 

minimize LCOE_cost: 

(cost_cap_G+cost_cap_HESS+OM_cost_G+OM_cost_HESS-

carbontax_rewardIncome_sale) /generation; 

 

subject to initial_state{j in HESS}: 

     E_jt[j,0]= P_HESS[j]*SOC_ini[j]; 

subject to initial_end{j in HESS, t in 1..T}: 

     E_jt[j,T]= P_HESS[j]*SOC_ini[j]; 

subject to SOC_MAX {j in HESS,t in 1..T}: 

     E_jt[j,t]-SOC_max[j]* P_HESS[j]<=0; 

subject to SOC_MIM {j in HESS,t in 1..T}: 

    E_jt[j,t]-SOC_min* P_HESS[j]>=0; 

subject to SOC_Process{j in HESS,t in 1..T}:#: ord(t)>1 

    E_jt[j,t]=E_jt[j,t-1]+E_Ch_jt[j,t]-E_Disch_jt[j,t]; 

subject to energy_conservation: 

   sum{n in prods, t in 1..T}P_G[n]*Coff[t,n]+sum{t in 1..T}P_buy[t]-sum{t in 

1..T}P_sale[t]=sum{t in 1..T}D[t]; 

subject to anytimeEnery_onservation{t in 1..T}: 

   sum{n in prods}(P_G[n]*Coff[t,n])+P_buy[t]-P_sale[t]+sum{j in 

HESS}(E_Disch_jt[j,t]-E_Ch_jt[j,t])=D[t]; 

 

subject to P_buy_pos_defn{t in 1..T}:  

P_buy[t] <= 37*P_buy_pos[t]; 

 

subject to buy_times: 

sum{t in 1..T}P_buy_pos[t]<=T*Alpha; 

 

subject to buy_amount: 

  sum{t in 1..T}P_buy[t]<=0.01*sum{t in 1..T}D[t]; 
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Appendix D. Model 6.1: PSC-VPP in Chapter 6 

The following AMPL code is for Model 6.1: PSC-VPP. 

set Gens:={"WT", "PV"};        

set Factory:={"Pho", "Reno"}; 

set Warehouse:={"LasV"}; 

set Store:={"SaltLake","SanJose" }; 

set Prod_typ:={"p1","p2"}; 

set Prod_res:={"Labor","MachHour"}; 

set LINKS_FW  within  {Factory,Warehouse}; 

set LINKS_WS = {Warehouse,Store}; 

set periods:= 1..T by 1 ordered; 

set steps:=0..T by 1 ordered;  

set prod_period0 := 0..J by 1; 

set prod_period1 := 1..J by 1; 

param T:=8736; 

param J:=52; 

param Q_GEN; 

param Q_ESS; 

param a1_G{n in Gens};       

param a1_ESS;                

param a2_G{n in Gens};       

param a2_ESS;                

param a3_G{n in Gens};       

param CHP_eff;        

param gas_price;      

param gas_price_I;         

param gas_price_C;         

param a2_CHP_I=gas_price_I/CHP_eff;     

param a2_CHP_C=gas_price_C/CHP_eff;     

param CF_F{t in periods,f in Factory,n in Gens};     

param CF_W{t in periods,w in Warehouse,n in Gens}; 

param CF_S{t in periods,s in Store,n in Gens};       

param Price_DA_F{t in periods,f in Factory}; 

param Price_DA_W{t in periods,w in Warehouse}; 

param Price_DA_S{t in periods,s in Store};           

param Weight_item{p in Prod_typ};         

param E_use_item {p in Prod_typ};         

param Making_cost_item{p in Prod_typ};    

param dist_FW{f in Factory, w in Warehouse};  

param dist_WS{w in Warehouse, s in Store};  

param shipping_cost{p in Prod_typ};    

param holding_cost{p in Prod_typ}; 

param backorder_cost{p in Prod_typ}; 

param Truck_intensity;    
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param Truck_wight;        

param trips_FW 

param trips_WS;           

param operate_hour_W{w in Warehouse};     

param operate_hour_S{s in Store};         

param E_demand_F{f in Factory}; 

param E_demand_W{w in Warehouse};       

param E_demand_S{s in Store};           

param T_demand_F{f in Factory};         

param T_demand_W{w in Warehouse}; 

param T_demand_S{s in Store};  

param Prod_demand_S{j in 1..J, s in Store, p in Prod_typ};  

param Prod_demand_mean{p in Prod_typ, s in Store};          

param Prod_demand_Std{p in Prod_typ, s in Store};           

param Prod_demand_probility{p in Prod_typ};                 

param Available_res{t in prod_period1,f in Factory, r in Prod_res} ;    

param Prod_need_res{p in Prod_typ, r in Prod_res} ;         

param Prod_MAX {p in Prod_typ,s in Store}; 

param CHP_TtoE_F;   

param CHP_TtoE_W;   

param CHP_TtoE_S;   

param ESS_E_F_max{f in Factory 

param ESS_E_W_max{w in Warehouse};       

param ESS_E_S_max{s in Store};  

param ESS_T_F_max{f in Factory};          

param ESS_T_F_min{f in Factory};          

param ESS_T_W_max{w in Warehouse 

param ESS_T_W_min{w in Warehouse};        

param ESS_T_S_max{s in Store};            

param ESS_T_S_min{s in Store};            

param transport_E_SW {t in prod_period1,s in Store} 

    = sum{w in Warehouse}Truck_intensity*dist_WS[w,s]*Truck_wight*trips_WS; 

param transport_E_SW_hourly{t in 1..T,s in Store}=transport_E_SW[ceil(t/(T/J)),s];          

var G_F{g in Gens,f in Factory}>=0,<=25;          

var G_W{g in Gens,w in Warehouse}>=0,<=10;     

var G_S{g in Gens,s in Store}>=0,<=15;               

var Prod_shipped_FW{t in prod_period1, p in Prod_typ, f in Factory,w in Warehouse} 

integer >=0; 

var Prod_shipped_WS{t in prod_period1, p in Prod_typ, w in Warehouse, s in Store}  

integer >=0; 

var backorder_W{t in prod_period0, p in Prod_typ, w in Warehouse, s in Store} integer 

>=0; 

var inventory_W{t in prod_period0, p in Prod_typ, w in Warehouse} integer >=0; 

var shipped{t in prod_period1, p in Prod_typ,w in Warehouse, s in Store}integer >=0; 

var CHP_trade_F{t in periods,f in Factory}>=0;    

var CHP_trade_W{t in periods,w in Warehouse}>=0;   
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var CHP_trade_S{t in periods,s in Store}>=0;  

var ESS_F{f in Factory}>=0;        

var ESS_W{w in Warehouse}>=0;     

var ESS_S{s in Store}>=0;         

var ESS_E_F{t in steps,f in Factory}>=0;       

var ESS_E_W{t in steps,w in Warehouse}>=0;     

var ESS_E_S{t in steps,s in Store}>=0;         

var ESS_T_F{t in steps,f in Factory}>=0;      

var ESS_T_W{t in steps,w in Warehouse}>=0;    

var ESS_T_S{t in steps,s in Store}>=0;      

var CHP_T_F{t in periods,f in Factory}>=0; 

var CHP_T_W{t in periods,w in Warehouse}>=0;    

var CHP_T_S{t in periods,s in Store}>=0;         

 

var Prod_transport_FW{t in prod_period1,f in Factory}  

    = sum{p in Prod_typ,w in Warehouse}E_use_item[p]*Prod_shipped_FW[t,p,f,w] 

    + sum{w in Warehouse, p in Prod_typ}Truck_intensity*dist_FW[f,w]*trips_FW*      

       Weight_item[p]*Prod_shipped_FW[t,p,f,w] + sum{w in Warehouse}  

       Truck_intensity *dist_FW[f,w] * Truck_wight*trips_FW; 

var transport_E_WF{t in prod_period1,w in Warehouse} 

    =sum{f in Factory}Truck_intensity*dist_FW[f,w]*Truck_wight*trips_FW 

          +sum{s in Store,p in Prod_typ}Truck_intensity * dist_WS[w,s] *    

          trips_WS*Weight_item[p]*Prod_shipped_WS[t,p,w,s]+ sum{s in  

          Store}Truck_intensity*dist_WS[w,s]*Truck_wight*trips_WS; 

                                                                           

var Prod_transport_FW_hourly{t in 1..T,f in Factory} =  

Prod_transport_FW[ceil(t/(T/J)),f]; 

var transport_E_WF_hourly{t in 1..T,w in  Warehouse}=  

transport_E_WF[ceil(t/(T/J)),w]; 

var cap_cost_Gens =sum{n in Gens,f in Factory}Q_GEN*a1_G[n]*G_F[n,f]  

                  +sum{n in Gens,w in Warehouse}Q_GEN*a1_G[n]*G_W[n,w] 

                  +sum{n in Gens,s in Store}Q_GEN*a1_G[n]*G_S[n,s]; 

var cap_cost_ESS=sum{f in Factory}Q_ESS*a1_ESS*ESS_F[f] 

                  +sum{w in Warehouse}Q_ESS*a1_ESS*ESS_W[w] 

                  +sum{s in Store}Q_ESS*a1_ESS*ESS_S[s];                                       

var OM_cost_G = sum{t in 1..T,f in Factory}(a2_G["WT"] * G_F["WT",f] *  

                CF_F[t,f,"WT"] + a2_G["PV"] *G_F["PV",f] *CF_F[t,f,"PV"]) +   

                 sum{t in 1..T,w in Warehouse}(a2_G["WT"]*G_W["WT",w] 

                *CF_W[t,w,"WT"]+a2_G["PV"]*G_W["PV",w]* CF_W[t,w,"PV"]) 

               +sum{t in 1..T,s in Store}(a2_G["WT"]*G_S["WT",s]* 

                CF_S[t,s,"WT"]+ a2_G["PV"]*G_S["PV",s] *CF_S[t,s,"PV"]) ;                 

 

var OM_cost_ESS = sum{f in Factory}a2_ESS*ESS_F[f] +sum{w in 

Warehouse}a2_ESS*ESS_W[w]                                

                                   +sum{s in Store}a2_ESS*ESS_S[s]; 
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var OM_cost_CHP = (sum{f in Factory,t in 1..T}CHP_T_F[t,f]*a2_CHP_I 

                 +sum{w in Warehouse,t in 1..T}CHP_T_W[t,w]*a2_CHP_C 

                 +sum{s in Store,t in 1..T}CHP_T_S[t,s]*a2_CHP_C); 

 

var CC_income = sum{t in 1..T,f in Factory}(a3_G["WT"]*G_F["WT",f] 

*CF_F[t,f,"WT"]+a3_G["PV"]*G_F["PV",f]*CF_F[t,f,"PV"]) 

                  +sum{t in 1..T,w in Warehouse}(a3_G["WT"]*G_W["WT",w]  

              *CF_W[t,w,"WT"]+a3_G["PV"]*G_W["PV",w]*CF_W[t,w,"PV"])  

                   +sum{t in 1..T,s in Store}(a3_G["WT"]*G_S["WT",s]* 

                   CF_S[t,s,"WT"]+a3_G["PV"]*G_S["PV",s]*CF_S[t,s,"PV"]);                  

var selling_income = sum{f in Factory,t in 1..T}CHP_trade_F[t,f]*Price_DA_F[t,f] 

         + sum{w in Warehouse,t in 1..T}CHP_trade_W[t,w] *Price_DA_W[t,w]+    

          sum{s in Store,t in 1..T}CHP_trade_S[t,s]*Price_DA_S[t,s]; 

 

var cost_proding_F = sum{t in prod_period1, p in Prod_typ, f in Factory,w in    

                 Warehouse}Prod_shipped_FW[t,p,f,w]*Making_cost_item[p]; 

var cost_shipping_FW = sum{t in prod_period1, p in Prod_typ, f in Factory,w in  

             Warehouse}Prod_shipped_FW[t,p,f,w]*shipping_cost[p]*dist_FW[f,w]; 

var cost_holding_W = sum{t in prod_period1, p in Prod_typ,w in  

                      Warehouse}holding_cost[p]*inventory_W[t,p,w]; 

var cost_backorder_W =sum{t in prod_period1, p in Prod_typ,w in Warehouse, s in  

                      Store} backorder_cost[p]*backorder_W[t,p,w,s]; 

var cost_shipping_WS = sum{t in prod_period1, p in Prod_typ,w in Warehouse, s in  

                   Store}Prod_shipped_WS[t,p,w,s]*shipping_cost[p]*dist_WS[w,s]; 

minimize PSC-VPP cost: 

cap_cost_Gens+cap_cost_ESS+(OM_cost_G+OM_cost_ESS+OM_cost_CHP)-

CC_income - selling_income + cost_proding_F + cost_shipping_FW + cost_holding_W 

+cost_backorder_W +cost_shipping_WS ; 

                 

subject to 1_inventory_balance{ p in Prod_typ,w in Warehouse, j in 1..J }: 

  sum{f in Factory}Prod_shipped_FW[j,p,f,w] + inventory_W[j-1,p,w] – 

inventory_W[j,p,w] +sum{s in Store}(backorder_W[j,p,w,s]-backorder_W[j-1,p,w,s]) = 

sum{s in Store}shipped[j,p,w,s]; 

 

subject to 2_product_demand{j in 1..J, p in Prod_typ,s in Store}: 

               sum{w in Warehouse}shipped[j,p,w,s] 

                             >=Prod_demand_mean[p,s]+1.2*Prod_demand_Std[p,s]; 

subject to 3_product_demand{j in 1..J, p in Prod_typ,s in Store}: 

 sum{w in Warehouse}shipped[j,p,w,s]- sum{w in Warehouse}backorder_W[j,p,w,s]  

      + sum{w in Warehouse}backorder_W[j-1,p,w,s] = sum{w in 

Warehouse}Prod_shipped_WS[j,p,w,s]; 

 

subject to 3_resource{r in Prod_res, j in 1..J, f in Factory}: 

 sum{w in Warehouse,p in Prod_typ}Prod_shipped_FW[j,p,f,w]*Prod_need_res[p,r] 

                          <= Available_res[j,f,r]; 

subject to 4_inv_inventory{p in Prod_typ,w in Warehouse}: 
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                    inventory_W[0, p ,w] = 0; 

subject to 4_end_inventory{p in Prod_typ,w in Warehouse}: 

                    inventory_W[J, p ,w] = 0;  

subject to 5_inv_backorder{p in Prod_typ,w in Warehouse,s in Store}: 

                     backorder_W[0, p, w, s] = 0;                   

subject to 5_end_backorder{p in Prod_typ,w in Warehouse,s in Store}: 

                     backorder_W[J, p,w, s] = 0; 

subject to 6_energy_balance_factory{f in Factory, t in 1..T}: 

sum{g in Gens}(G_F["WT",f]*CF_F[t,f,"WT"]+G_F["PV",f]* CF_F[t,f,"PV"]) 

       +ESS_E_F[t,f]-ESS_E_F[t-1,f]+CHP_T_F[t,f]/2 

    = 0.0058* Prod_transport_FW_hourly[t,f]+ E_demand_F[f]+ CHP_trade_F[t,f];          

subject to 7_energy_balance_warehouse{w in Warehouse, t in 1..T}: 

     sum{g in Gens}(G_W["WT",w]*CF_W[t,w,"WT"]+G_W["PV",w]*     

     CF_W[t,w,"PV"])+ESS_E_W[t,w]-ESS_E_W[t-1,w]+CHP_T_W[t,w]/2 

   = 0.0058* transport_E_WF_hourly[t,w] + E_demand_W[w]+CHP_trade_W[t,w]; 

subject to 8_energy_balance_Store{s in Store, t in 1..T}: 

   sum{g in Gens}(G_S["WT",s]*CF_S[t,s,"WT"]+G_S["PV",s]*CF_S[t,s,"PV"]) 

    +ESS_E_S[t,s]-ESS_E_S[t-1,s] +CHP_T_S[t,s]/2 

    =0.0058*transport_E_SW_hourly[t,s]+ E_demand_S[s]+ CHP_trade_S[t,s]; 

subject to 9_thermal_balance_factory{f in Factory, t in 1..T}: 

      ESS_T_F[t,f]-ESS_T_F[t-1,f]+CHP_T_F[t,f]>=T_demand_F[f]; 

subject to 10_thermal_balance_warehouse{w in Warehouse, t in 1..T}: 

       ESS_T_W[t,w]-ESS_T_W[t-1,w]+CHP_T_W[t,w]>=T_demand_W[w]; 

subject to 11_thermal_balance_Store{s in Store, t in 1..T}: 

       ESS_T_S[t,s]-ESS_T_S[t-1,s]+CHP_T_S[t,s]>=T_demand_S[s];      

subject to ESS_Max_electricity_Factory{t in steps, f in Factory}:              

             ESS_E_F[t,f]<=ESS_F[f];                                   

subject to ESS_Max_electricity_Warehouse{t in steps, w in Warehouse}: 

              ESS_E_W[t,w]<=ESS_W[w];                         

subject to ESS_Max_electricity_store{t in steps, s in Store}: 

              ESS_E_S[t,s]<=ESS_S[s];                                                                                                                     

subject to initial_state_f{f in Factory}: 

               ESS_E_F[0,f]=0;      

subject to initial_state_w{w in Warehouse}: 

               ESS_E_W[0,w]=0;               

subject to initial_state_s{s in Store}: 

               ESS_E_S[0,s]=0;    

subject to initial_state_T_f{f in Factory}:           

               ESS_T_F[0,f]=0;      

subject to initial_state_T_w{w in Warehouse}:         

               ESS_T_W[0,w]=0;               

subject to initial_state_T_F{s in Store}: 

               ESS_T_S[0,s]=0;    
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Appendix E. Available Labor and Machine Hours for 2F-1W-2S Network for Chapter 6 

Table E: Resource Data for 2F-1W-2S Network (Note: F1=Factory 1, F2=Factory 2) 

  Labor Machine   Labor Machine 

Week F1 F2 F1 F2 Week F1 F2 F1 F2 

1 17871 19412 122693 150577 27 17567 19081 122998 150953 

2 23963 26028 161238 197883 28 27251 29599 185471 227623 

3 15531 16870 105179 129084 29 15008 16302 104506 128257 

4 23810 25862 164141 201447 30 24055 26129 164533 201928 

5 17020 18487 115050 141198 31 17082 18554 116094 142480 

6 25516 27715 178157 218648 32 24361 26462 166074 203818 

7 15806 17167 109757 134701 33 14922 16208 105226 129142 

8 24907 27054 172894 212188 34 25848 28076 177572 217930 

9 16817 18266 115034 141178 35 17068 18539 117494 144198 

10 25744 27963 177118 217372 36 21218 23047 147419 180923 

11 15654 17004 105661 129674 37 14681 15946 99626 122268 

12 24750 26883 173807 213307 38 19834 21544 137372 168593 

13 17130 18607 115341 141554 39 15590 16934 106354 130525 

14 26236 28498 177504 217847 40 23474 25497 164676 202102 

15 15336 16657 105793 129836 41 16581 18011 114349 140338 

16 26527 28814 182681 224199 42 22794 24759 157022 192708 

17 15736 17093 106150 130276 43 16545 17971 113408 139182 

18 23364 25378 160770 197309 44 22714 24673 158422 194427 

19 17637 15964 120826 148288 45 15986 17364 109791 134743 

20 26231 28492 178312 218837 46 23443 25465 161554 198270 

21 18956 20590 128436 157626 47 17212 18696 117720 144474 

22 27107 29443 187268 229829 48 21403 23247 149436 183400 

23 13394 14549 94626 116132 49 17975 19524 119144 146222 

24 24284 26377 163848 201087 50 23839 25895 165547 203171 

25 14600 15859 101396 124441 51 18728 16952 128554 157771 

26 21334 23173 144616 177482 52 22326 24251 151885 186404 
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