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Abstract

Background: Hospital-based back surgery in the United States increased by 60% from January 2012 to December 2017, yet
the supply of neurosurgeons remained relatively constant. During this time, adult obesity grew by 5%.

Objective: This study aimed to evaluate the demand and associated costs for hospital-based back surgery by geolocation over
time to evaluate provider practice variation. The study then leveraged hierarchical time seriesto generate tight demand forecasts
on an unobserved test set. Finally, explanatory financial, technical, workload, geographical, and temporal factors as well as
state-level obesity rates were investigated as predictors for the demand for hospital-based back surgery.

Methods: Hospital datafrom January 2012 to December 2017 were used to generate geospatial-temporal maps and a video of
the Current Procedural Terminology codes beginning with the digit 63 claims. Hierarchical time series modeling provided forecasts
for each state, the census regions, and the nation for an unobserved test set and then again for the out-years of 2018 and 2019.
Stepwise regression, lasso regression, ridge regression, elastic net, and gradient-boosted random forests were built on atraining
set and evaluated on atest set to evaluate variables important to explaining the demand for hospital-based back surgery.

Results: Widespread, unexplained practice variation over timewas seen using geographical information systems (GIS) multimedia
mapping. Hierarchical time series provided accurate forecasts on ablind dataset and suggested a6.52% (from 497,325 procedures
in 2017 to 529,777 in 2018) growth of hospital-based back surgery in 2018 (529,777 and up to 13.00% by 2019 [from 497,325
procedures in 2017 to 563,023 procedures in 2019]). The increase in payments by 2019 are estimated to be US $323.9 million.
Extreme gradient-boosted random forests beat constrained and unconstrained regression models on a 20% unobserved test set
and suggested that obesity is one of the most important factors in explaining the increase in demand for hospital-based back
surgery.

Conclusions. Practice variation and obesity are factors to consider when estimating demand for hospital-based back surgery.
Federal, state, and local planners should evaluate demand-side and supply-side interventions for this emerging problem.

(J Med Internet Res 2019;21(10):€14609) doi: 10.2196/14609
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unchanged in 2016 [2]. During these years, demand for back
surgery (Current Procedural Terminology [CPT] codes
beginning with the digit 63) increased by 49% from 311,028 to
464,391, and by the end of 2017, that increase was 60% [3].

In 2012, there were 3689 practicing board-certified  cpr 63 medical codesareaseriesof spinal proceduresindluding
neurosurgeonsin the United States[1]. That number waslargely laminectomies,  laminotomies,  decompressions,  and

Introduction

Background

http://www.jmir.org/2019/10/e14609/ JMed Internet Res 2019 | vol. 21 | iss. 10 | 14609 | p. 1
(page number not for citation purposes)


mailto:lf25@txstate.edu
http://dx.doi.org/10.2196/14609
http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

corpectomies. These procedures do not include needle
decompression, catheter implantation, and, as of 2019,
endoscopic decompression [4]. Given the stable supply and
increasing demand, it isnot surprising that the average payment
procedure increased from US $4166 to US $4859 from 2012 to
2016 and to US $5452 by the middle of 2018, an effective 4.5%
inflation rate [3]. Forecasting models that address increasing
demand are necessary to evaluate potentia supply and
demand-side interventions.

Unsurprisingly, there is a marked variation in the treatment of
back disorders such as spondylolisthesis [5]. This variation
affects costs [6] as well as outcomes [5] associated with back
surgery. Theimplication of this variation isincreased demand.
By evaluating the current geographic demand, policy makers
can prioritize efforts for cost and variation reduction by
evaluating those states and counties that exhibit high practice
area variation, implementing evidence-based best practice
policies and guidelines, educating populations about obesity
risks, and implementing interventionsfor those at risk of obesity
(eg, those living in food deserts).

During the same time that back surgeries have increased, adult
obesity rates in the United States have also increased. The rate
of thisincrease was 5% from 2012 to 2016 (34.9%-39.6%) [7].
Obesity has been linked to increased costs of medical care [8].
Although obese patients benefit from at least some back
surgeries, they do not fare as well as nonobese patients [9].
Although obesity has been linked to back pain [10], no studies
were found that directly link obesity to back surgery
requirements. This study evaluated that relationship as well.

Objectives

This study addressed 3 specific aspects of hospital-based CPT
63 surgery. First, a geospatial-temporal analysis by zip codeis
conducted to describe the previous and current demand for CPT
63 surgery. The significance of this geospatial-temporal analysis
isthat practice variation ishighlighted for evaluation by federal,
state, and local policy makers. Second, forecasting models
estimate the demand and payments overall, by census region
and by state. These models are also designed for state policy
makersto assess potential supply- and demand-sideintervention
requirements. Third, explanatory models are developed to
correlate obesity rates and financial, technical, workload,
temporal, and geospatial variables with demand for CPT 63
procedures. This analysis does not appear to be previously
investigated and is an important but overlooked correlational
analysis. The study focused specifically on hospital-based knee
surgery with CPT 63 codes (some of which reflect inpatient
procedures) and was delimited to knee surgery only.

Methods

Data

Definitive Healthcare provided the hospital, zip code, and
state-level procedure and cost data from January 2012 to June
2018 through the hospital revenue center analytics query, which
includes queries by CPT code. Data in Definitive Healthcare
are derived from the Standard Analytical Files by the Centers
for Medicare and Medicaid Services (CMS)]. From these data,
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the organization uses undisclosed algorithms to estimate
al-payor claims. Columns with fewer than 11 claims or
procedures are not shown because of privacy requirements[3].
For thisanalysis, only complete annual datafrom 2012 to 2017
were used, asthe CM S datafile and thus the associated estimates
from January 2018 through June 2018 were approximately only
93% complete [3].

The Centers for Disease Control and Prevention’s Behavioral
Risk Factor Surveillance System (BRFSS) prevalence data
provided the information for state-level adult obesity rates by
year, from 2012 to 2017 [11]. Guam, Puerto Rico, and the US
Virgin Idlands were excluded from the analysis because of small
sample sizes in both datasets.

Geospatial Analysis

Heat maps are used to plot the zip code unit of analysis
procedure data by year. Heat maps provide the intensity of the
number of claims by time and geographic region. These types
of maps have been used for improving minority health
surveillance[12], examining birth outcomes[13], and evaluating
a variety of other applications in health care. The value in
geospatial-temporal anaysisisthe graphical depiction of change
in demand over time. A video display from 2012 to 2017 with
standardized heat intensities provides an animated view of the
changein demand by location. An analysis of cost and demand
centersisthen provided.

Forecasting Analysis

The data in the Definitive Healthcare dataset are nonseasonal
as they provide annual-level observations by the hospital unit
of analysis. Even so, generating nonseasonal forecasting models
that have predictive capability on a blind withhold set at the
proper level of aggregation can provide decision support for
supply- and demand-side interventions. These types of models
have found support in many areas of health care such as
radiology [14] and Alzheimer disease [15].

To this end, hierarchical time series (HTS) [16] using R
statistical software [17] evaluated the number of claims as a
function of time series components. An HTS recognizes that
data are aggregated at variouslevels. In this case, the hierarchy
evaluated include the states, the census regions, and the nation.
The modelsarebuilt on atraining set of datafor the years 2012
to 2015 and forecast on a blind test set, years 2016 and 2017.
Although Bayesian hierarchical models have been used for
spatially correlated health outcomes and utilization rates [18],
there is no readily found use of HTS for prediction in health
care.

To understand HTS, one needsto only consider asingle medical
system that operates in 2 separate states with 3 hospitals per
state. There are then 4 basic ways using which one might
forecast annual visits as an example:

1. A forecast might be generated for each hospital, aggregated
at the state level and then further aggregated at the system
level. A variety of different forecast methods might be used
to generate the forecasts. The term for this method is
bottoms up.
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2. Forecasts might be generated at the state level and then
disaggregated (eg, viahistorical proportions) to the hospitals
and aggregated to the system level. Again, the forecasts
might be generated in multiple ways. The term for this
method is middle out.

3. Forecasts might be generated at the system level (via
multiple methods) and then disaggregated to all levels below
(eg, proportions). The term for thisis top down.

4. Onemight take some combination of the previous methods
to minimizeforecast error. Thisisan ensemble method that
might be termed the optimal reconciliation approach, which
isoptimal if the forecasts are unbiased [19].

To avoid selection bias, all methods were evaluated for
performance on the test set. Furthermore, the method for
forecasting at these levels of hierarchy was using autoregressive
integrated moving average (ARIMA) components and as well
as smoothed error and trend components (exponential, trend,
seasonality [ETS] without seasonality).

ARIMA models focus on autocorrelation of components for
stationary time series data. The AR components are
autoregressive terms, offset by time. For example, the number
of claims at time t might be forecast by using the number of
claims at time t-1. This would be an AR1 model, as thereis 1
offset. ASARIMA models assume stationarity of thetime series
for forecasting, 2 other components are necessary. The first is
differencing or integration, the | in ARIMA, which helps
stabilize the mean (whereas transformations help stabilize the
variance). Although seasonality and trend might make an
ARIMA nonstationary, differencing often corrects this.
Sometimes, morethan 1 differenceisrequired to makethetime
series stationary, for example, Vi.Vi1-(Yi1-Yi2) 1S @ 2d order
differencing. The last component, the MA or moving average,
corrects for autocorrelated errors as well. This component
averages previous observation(s) with the previous forecast(s)
[19].

Figure 1. Argmin equations for the regression models.

Linear regression (OLS):

Lasso regression (L1-norm):

Ridge regression (L2-norm):

Elastic net (L1 and L2 norm):

Random forests, amachine learning technique, use an ensemble
of decorrelated tree models and average the estimates of those
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ETS models have 3 components: error, trend, and seasonality.
As the data in this study are not seasonal, only the error
smoothing (identical to a moving average) and the trend
component (a Holt model [20]) are evaluated.

With HTS bottom-up models, a separate ARIMA/ETS is built
for each bottom-level component. For middle-out models, all
middle-level components have separate forecasts. For top-down
models, a single forecast is generated and proportioned down
to the lower levels.

Explanatory Analysis

Stepwise linear regression (both forward and backward), lasso
regression, robust regression, el astic net regression, and extreme
gradient-boosted random forests are built on unaggregated data
aswell as state-level aggregated data to estimate the number of
claims. These models are built on a random 80% training set
(10,771 unaggregated, 245 aggregated observations) and
evaluated on a 20% withhold set (2693 unaggregated, 61
aggregated) as well. The total humber of valid observations
were 13,464 unaggregated and 306 aggregated. The primary
hypothesisisthat theinclusion of obesity rates as an independent
variablewill yield better explanatory modelsfor both the number
of claims and the payment per claim.

Stepwise linear regression based on minimum Akaike
Information Criterion was selected over best subset because of
the computational complexity. By using forward and backward
simultaneously, variables are added in sequence but might be
removed if they no longer contribute to the model [21].

Lasso regression is a form of constrained regression that
penalizes a model that selects too many variables by using an
L 1-norm formulation (absol ute value), whereasridge regression
issimilar but penalizes using an L 2-norm formulation (squared
coefficient estimates). Elastic net uses a weighted L1 and L2
norm penalty function to reduce the number of coefficientsin
the model. Formulae for estimating the parameters of the linear
model, thelasso regression, theridge regression, and the elastic
net are shown in Figure 1.

B= Z(y. o - Zxﬁ)

B= Z(y Bo - Zx..wHDm

j=1

B= Z(y Bo - le.ﬁ)“rﬂzjb’i

g = Z(y By - Zx..ﬁ)“rAZ(aﬂ“r(l—a)lﬁ\)

trees to build forecasts. A tree model itself classifies counts of
observations by splitting variables at points based on some
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decision criteria. An example of a tree with a depth of 3 (3
branches) is given in Figure 2, which splits observations by
obesity rate less than 31.63 and then again by obesity rate less
than 25.75 and number of discharges less than 10,558.78 and
then finally by net income less than US $35,018,392, cash less
than US $25,522,424, and cash less than US $8,122,498 [21].
The graph was produced by the xgboost package of R [22].
Gradient-boosted random forests optimize a cost function based

Fulton & Kruse

on the (pseudo-)residuals of a function using nonlinear
optimization techniques. Essentially, the residuals of each tree
intheforest arerefitted with the possible independent variables
in another tree model to estimate a better fit of the original
function. Often, a learning rate (shrinkage) is applied to the
residuals to alow for better generalization. A discussion of
gradient boosting is available in Chapter 10 of Elements of
Satistical Learning [21].

Figure 2. An example of asingle tree model with 3 branches. The graph was produced by the xgboost package of R. (NumDischarges indicates the

number of discharges).
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Variables

All the considered variables from the Definitive Healthcare
dataset are shown in Table 1 with reasons for
exclusion/inclusion. Most variables were, by default, included
during analysis, however, those variables that were linear
combinations of each other or were necessarily unknowable
when forecasting CPT 63 codes were omitted.

There is 1 primary dependent variable of interest: number of
claims for CPT 63 codes. This variable is measured at the
hospital level over time and is also aggregated by zip code/year
for geospatial mapping and by state/year for forecasting and
additional modeling analysis. The number of claims include
third-party invoices provided by the hospital, regardless of the
payer. The number of claims provides a measure of the met
demand for services.

For the geospatial and temporal analyses, the variablesyear and
Zip code (aggregated hospital-level data) are used to describe
the intensity of both the number of claims and the payment per
claim. Zip code providesahigh resolution for geographic claims
data. For the HTS forecasting analysis, time components are
used without external regressors.

Explanatory stepwise regression, lasso regression, ridge
regression, elastic net, and gradient-boosted random forest
models investigate financial variables, technical variables,

http://www.jmir.org/2019/10/e14609/

workload variables, geospatial variables, a tempora variable
(year), and obesity rates (defined asthe proportion of individuals
with a body mass index greater than or equal to 30%). A
discussion of each of the variable groups and variablesfollows.

Thefinancial variablesinvestigated include net patient revenue,
net income, cash on hand, total assets, total liabilities, and
proportion of Medicare/Medicaid reimbursement. Thefinancial
variables were carefully selected from the set of available
financials such that they are not a linear combination of other
variablesor nearly alinear combination (see Table 1). Although
available, total paymentsand chargesfor CPT 63 were not used
in the models, as they (1) would not be known in advance and
(2) would necessarily be direct functions of the number of
claims.

Quantitative workload variables include the number of staffed
beds, discharges, emergency room visits, surgeries, affiliated
physicians, and employees. Categorical technical variables
include ownership type, medical school affiliation, and hospital
type. These variables are investigated because of their
availability and possible confounding effects. Geographic
variablesinclude urban/rural |ocation, state, and zip code. These
variablesareimportant in eval uating practice areavariation and
associated effects.
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Obesity ratesare of interest to the study. Theserates are assigned
based on the state, as county and zip code level data are not

Table 1. Variablesin the study.

Fulton & Kruse

available. This independent variable is of importance to the
study.

Variable Type Definition Scale of measurement
Number of claims Dependent  Filed third-party claims {0,1,2, ..k}
Obesity rate Obesity Percentage obese by state [0%, 40%]
CPT2 63 payments Financial Total CPT 63 payments uss
CPT 63 charges Financial Total CPT 63 charges uUss
Net patient revenue Financial Total revenue from patients Uss
Total revenues Financial A!I revenue, patient-related or other- US $
wise
Net income Financial Revenues less expenses uUss
Total expenses Financial Total dollars attributed to expenses US $
Cash on hand Financial Fundsimmediately available uUss
Total assets Financial Current and noncurrent assets uss
Tota liabilities Financial Current and long-term debt uUss
Percentage Medicare/Medicaid Financial Percentage claims from either %
source
State Geospatia Hospital's state (address) AK,AL, ...
Zip code Geospatia 5-digit hospital zip code 78666, ...
Geographic classification Technical Rural or urban location Rural, urban
Ownership Technical Hospital ownership Nonprofit, profit, government
Medical school affiliation Technical Level of affiliation if any Graduate, mgjor, limited, none
Hospita type Technical Type of hospital Short-term acute, children’s, etc
Year Temporal Year of report 2012, 2018
Number of staffed beds Workload Per Medicare report {0, 1, ...n}
Number of discharges Workload Total number of inpatient discharges {0, 1, ...n}
Number of Medicare discharges Workload Number of Medicare discharges {0, 1, ...n}
Estimated number of emergency room visits Workload Number of emergency roomvisits {0, 1, ...n}
Total surgeries Workload Number of surgeries {0, 1, ...n}
Total acute days Workload Number of acute bed days {0, 1, ...n}
Number of affiliated physicians Workload Number of affiliated physicians {0, 1, ...n}
Number of employees Workload Number of employees {0, 1, ...n}

8CPT: Current Procedural Terminology.

Results

Descriptive Statistics: Missing Data

Missing datawere present in the Definitive Healthcare dataset.
As the percentage of missing data was small, the data were
imputed via regression trees (simple imputation). The total
number of valid observations at the hospital unit of analysis
from January 2012 to December 2017 was 13,769. There were
2244 unique zip codes with dataresulting in 13,464 observations
from 2012 to 2017, although many of these were true zeros.
Aggregated at the state level, there were 306 observations of
the 50 states plusthe District of Columbiaover the 6-year span.

http://www.jmir.org/2019/10/e14609/
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Descriptive Statistics: Quantitative Data

Important descriptive statistics for the Definitive Healthcare
dataare shown (Table 2). The average number of CPT 63 claims
by hospital by year was 182, and the average payment was over
US $4045.99, about 50.37% of mean charges (US $8,032.13).
On average, hospitals performing these claims were large (227
bedswith 1629 employees and 299 ffiliated physicians). These
hospitals had on average positive net income (US $22 million)
and assets exceeding liabilities. Overal, 45% of their patients
used Medicare or Medicaid reimbursement.
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Table 2. Descriptive statistics for all years and all hospitals (N=13,769). The “K” suffix indicates dollars in thousands, while the “M” suffix indicates

dollarsin millions.

Variable Mean (SD) Median Minimum Maximum
Claims, n 182 (244) 89 11 3592
Payments/claim, US$ 4045.99 (2448.96) 3659.12 0 34,975.76
Payments, US $ 767.9K (1097.8K) 366.2K 0 18,966.3K
Charges, US $ 1517.6K (2467.4K) 616.4K 0 35,317.2K
Charges/claim, US $ 8032.13 (6993.90) 6370.08 0 137,058.80
Net patient revenue, US $ 343.8M (430.4M) 217.5M -98.6M 5340.9M
Net income, US $ 22.8M (102.8M) 11.3M -1648M 1316.0M
Cash, US$ 30.3M (145.3M) 2.8M -1992.7M 3597.8M
Total assets, US $ 443.0M (820.1M) 203.5M -231.7M 9969.4M
Total liabilities, US $ 178.2M (465.7M) 69.2M —-2583.8M 6372.4M
Staffed beds, n 227.45 (201.36) 177.00 1.00 2626
Discharges, n 11,822.61 (11,395.52) 8899.00 1.00 127,600
Emergency room visits, n 47,439.59 (39,580.09) 39,209.00 0 543,457
Surgeries, n 9643.21 (9666.56) 7019.00 0 134,638
Affiliated physicians, n 298.57 (333.43) 198.00 1.00 3483
Employees, n 1629.46 (2044.45) 1027.00 7.00 24,673
Percentage of Medicare/Medicaid, % 0.45 (0.14) 0.44 0 1

Obesity rate, n 29.44 (3.42) 29.92 20.20 38

The number of hospitals reporting CPT 63 claimsincreased by
91 from 2012 to 2017. Charges increased from US $2.115
million to US $4.75 million, whereas paymentsincreased from
US $1.233 million to US $2.467 million. The proportion of
charges paid fluctuated between 45% and 58%. The number of
claims increased from 320K to 504K, a 60% increase (Table
3).

Variation across states from 2012 to 2017 for CPT 63 is
impressive. The maximum average payment per claim was in
Delaware (US $5190.62); however, the number of actual claims
was small (5569). New York had the second highest payment
per claim (US $5043.79) with 72,186 claims. Texas had the

largest number of claims (260,208), yet the average payment
per claim was only US $4223.22. On average, 60% of charges
were paid (Table 4).

Obesity rates by state have increased from 2012 to 2017 (Table
5). In 2012, the mean obesity rate per state was 27.95%. By
2017, this rate was 30.59%; however, this increase is not
weighted by population size. As discussed previoudy, the
aggregateincrease for the United Statesfrom 2012 to 2017 was
5% (34.9% to 39.6%) [7]. The state datainclude the District of
Columbia (51 observations per year) but are not population
weighted.

Table 3. Average statistics by year show the growth in both claims and payments.

Year Hospitals, n Total payments, inmil-  Total charges, in mil-  Total claims, n Payments/claim,in  Charges/claim, in
lionsof US$ lionsof US$ uss uss

2012 2248 1232.61 2114.56 320,371 3847 6600

2013 2293 1460.80 2698.34 372,155 3925 7251

2014 2306 1517.88 3396.62 410,317 3699 8278

2015 2290 1747.68 3688.72 428,813 4076 8602

2016 2336 2147.48 4247.37 472,004 4550 8999

2017 2339 2466.92 4750.68 504,626 4889 9414
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Table 4. Payments, charges, number of claims, payment per claim, charge per claim, and percentage of charges paid by state.

State Payments, in mil- Charges, in millions  Number of claims, Payment/claim, in  Charge/claim, in  Percentagepaid, %
lionsof US$ of US$ n uUss uss
Alaska 21.17 37.94 4387 4826.27 8649.31 55.80
Alabama 232.76 419.16 75,486 3083.47 5552.77 55.50
Arkansas 124.27 200.21 33,087 3755.85 6051.07 62.10
Arizona 175.60 526.67 41,274 4254.39 12,760.42 33.30
California 563.57 1748.02 113,410 4969.31 15,413.29 32.20
Colorado 147.28 440.24 41,537 3545.72 10,598.65 33.50
Connecticut 72.96 139.43 17,179 4247.17 8116.50 52.30
District of 26.31 53.90 5655 4651.78 9531.16 48.80
Columbia
Delaware 28.91 25.94 5569 5190.62 4657.34 111.50
Florida 546.44 1543.23 131,442 4157.29 11,740.79 35.40
Georgia 318.64 654.84 79,401 4013.02 8247.29 48.70
Hawaii 12.02 22.03 2802 4291.08 7861.44 54.60
lowa 131.47 277.09 34,419 3819.62 8050.58 47.40
Idaho 93.02 163.59 23,514 3956.12 6957.22 56.90
Ilinois 361.17 706.39 81,960 4406.60 8618.73 51.10
Indiana 361.28 800.98 87,204 4142.93 9185.09 45.10
Kansas 193.40 310.85 39,992 4836.07 7772.78 62.20
Kentucky 21553 306.93 50,147 4298.00 6120.69 70.20
Louisiana 204.21 423.83 55,726 3664.61 7605.54 48.20
M assachusetts 21091 267.24 42,609 4950.01 6272.03 78.90
Maryland 83.04 96.72 34,732 2390.89 2784.66 85.90
Maine 69.88 78.25 21,468 3255.23 3645.18 89.30
Michigan 311.32 389.73 70,173 4436.41 5553.81 79.90
Minnesota 191.90 279.98 47,410 4047.73 5905.41 68.50
Missouri 362.53 487.40 83,085 4363.33 5866.30 74.40
Mississippi 159.04 400.04 39,059 4071.72 10,241.97 39.80
Montana 54.19 86.78 14,106 3841.66 6151.89 62.40
North Carolina 503.97 886.27 126,344 3988.87 7014.74 56.90
North Dakota 36.87 43.36 9081 4060.13 4774.58 85.00
Nebraska 94.49 184.44 24,310 3,886.98 7586.98 51.20
New Hampshire 74.81 120.38 19,091 3918.49 6305.40 62.10
New Jersey 169.55 328.00 35,479 4778.93 9244.90 51.70
New Mexico 31.17 68.52 8583 3631.59 7983.19 45.50
Nevada 97.33 190.03 24,617 3953.67 7719.64 51.20
New York 364.09 395.74 72,186 5043.79 5482.21 92.00
Ohio 396.47 743.30 87,427 4534.88 8501.92 53.30
Oklahoma 239.62 494.62 51,639 4640.38 9578.46 48.40
Oregon 180.39 280.10 38,328 4706.54 7307.94 64.40
Pennsylvania 383.17 736.78 85,334 4490.29 8634.05 52.00
Rhode Island 15.94 16.37 3772 4225.09 4339.10 97.40
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State Payments, in mil- Charges, in millions  Number of claims, Payment/claim, in  Charge/claim, in  Percentagepaid, %
lionsof US$ of US$ n uUss uss

South Carolina 293.49 492.03 60,977 4813.14 8069.03 59.60
South Dakota 70.42 204.78 17,870 3940.84 11,459.54 34.40
Tennessee 289.03 619.13 79,948 3615.26 7744.18 46.70
Texas 1,098.91 2,450.47 260,208 4223.22 9417.34 44.80
Utah 143.63 138.51 31,168 4608.37 4443.86 103.70
Virginia 231.88 466.58 56,436 4108.69 8267.36 49.70
Vermont 12.44 24.56 3578 3476.00 6864.49 50.60
Washington 264.29 669.87 66,457 3976.84 10,079.74 39.50
Wisconsin 161.13 283.08 39,182 4112.30 7224.71 56.90
West Virginia 117.51 131.28 23,852 4926.48 5504.07 89.50
Wyoming 29.94 40.79 6149 4868.89 6633.27 73.40

Table5. State statistics for the proportion of the population identified as obese by the Behaviora Risk Factor Surveillance System by year.

Statistic Year

2012 2013 2014 2015 2016 2017
Mean (SD) proportions 27.95 (3.38) 28.65 (3.44) 29.23 (3.42) 29.28 (3.87) 29.78 (3.74) 30.59 (3.86)
Median proportions 27.60 29.40 29.60 29.83 29.92 31.30
Range 14.2 13.8 14.6 16.0 15.39 1542
Minimum 20.5 21.3 213 20.2 22.27 22.64
Maximum 34.7 35.1 35.9 36.2 37.66 38.06
Count 51 51 51 51 51 51

Descriptive Statistics: Categorical Data

Of the 13,769 hospital observations, 3153 were rural and the
remaining 10,616 were urban. Most hospital observationswere
classified as voluntary nonprofits (8866, 64%), whereas
proprietary corporations and government entities constituted
3426 (25%) and 1466 (11%), respectively, (11 hospital
observations had no ownership specification). Most of the
hospital observations (8311, 60%) had no affiliation with
medical schools. The vast majority of the observations were
from short-term acute care hospitals (13,040, 95%) with nearly
all of the remainder (678, 5%) associated with critical access
hospitals.
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Descriptive Statistics: Correlational Analysis

Hierarchical clustered correlational analysis revealed strong
relationships among many of the quantitative variables.
Payments and claims are (as to be expected) highly correlated
(r=0.9). Most financial and workload metrics are highly
correlated as well (eg, net patient revenue and the number of
employees; r=0.95). Owing to the large sample size, nearly all
correlations are statistically significant at the alpha=.05 level
(see Figure 3). The matrix was produced using ggcorrplot [23].

The inclusion of obesity in this study is because of a
correlational finding that the number of CPT 63 procedures
appears to be influenced by state obesity rates at the aggregate
level (Figure 4 [24]). The question, though, is whether this
apparent correlation inthelogsis sustained when other financial,
geographic, technical, and temporal variables are considered.
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Figure 3. The correlation matrix depicts the variable relationships. The X’sindicate no statistically significant correlation. Owing to the large sample
size, nearly al correlations are statistically significant at the alpha=.05 level. The matrix was produced using ggcorrplot.
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Figure4. Correlation between the natural logarithm of obesity rates and the natural logarithm of the number of CPT 63 surgeries performed by hospitals.
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Exploratory Data Analysis. Feature Engineering and
Transformations

Although random forest regression models are scale invariant,
traditional regression techniques such as stepwise, lasso, ridge,
and elastic net are not [21]. Investigating transformations to
achieve multivariate normality (assuming random-effects
regression) is important to meet model assumptions.
Furthermore, time series forecasting often benefits from these
same techniques [16]. In addition, investigating additional
featuresthat might be generated from the existing onesthrough
linear combinations and other methods often results in
disentangling collinear variables and finding interesting
relationships that might otherwise remain undiscovered.

A multivariate Box-Cox transformation was run using the car
package in R [25] for all modeled quantitative variables
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simultaneously after these variables had been location adjusted
to make the variables dtrictly positive, definite, and scale
adjusted by dividing by the standard deviation. Multivariate
Box-Cox seeks to find power transformations (values of A for
each variable) that make the data multivariate normal enough
for useintraditional linear models[26]. These transformations
help adleviate the problem of collinearity and address
multivariate normal assumptions of random-effects regression.
The null hypothesis is that the proposed transformation
generated through the transformation is a good fit. The
dternative is that it is not a good fit. The proposed
transformation was a vector of primarily natural logarithms
(values near zero) with some exceptions. The likelihood ratio
test resulted in a P value >.99, indicating that the assumption
of multivariate normality cannot be rejected. The actual vector
of transformationsfollows: A={0.1, 0.3, 0.33, 0.38, 0.21, -0.07,
1.66, 0.76, —0.03, 0.55, 0.28, 0.17, 1.03, 1.04} for x={ number
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of claims, number of staffed beds, number of discharges, ER
visits, total surgeries, net patient revenue, net income, cash,
total assets, total liabilities, affiliated physicians, employees,
percent Medicare/Medicaid, obesity rate}, respectively.

Univariate histogramsfor the number of claimsand obesity pre-
and posttransformation arein Figure 5. The transformed graph

Fulton & Kruse

of the number of claims shows some dight skew but is otherwise
unremarkable. However, the graph of obesity rates is telling.
Although the transformation fails to reject the assumption of
multivariate normality, the obesity graph is bimodal. It is
possible that linear-in-parameter models will not be able to
correctly fit the importance of thisvariable, whereas tree-based
models will find patterns.

Figure5. The untransformed and transformed histograms of the number of claims and the obesity rate variables.
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Geospatial AnalysisResults: Zip Code Unit of Analysis

Geospatial heat map analysis of CPT 63 number of claims by
year and parsed by zip code is shown in panels (Figure 6). The
maximum scaleis approximately 7000 claimsfor each diagram
to allow for comparison across years. Multimedia Appendix 1
shows this analysisin video format.

In 2012, there was very little high-intensity activity (Houston
and Dadllas, Texas, primarily, with some activity in the
Cardlinas). The Eastern seaboard has activity, but it is not
intense, and the Western seaboard has minimal activity, except
near Seattle.

By 2013, the Eastern seaboard (particularly New Jersey) has
increased in intensity, and the areas around Chicago and Salem,
Oregon, are emerging as well. Houston and Dallas remain the
most intense regions for the number of claims.

http://www.jmir.org/2019/10/e14609/
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In 2014, the number of claims in Seattle and San Antonio,
Texas, shifted these cities to high-intensity areas (some red
visible). It must be noted that 3 of the 4 cities with visible red
tint are in Texas (San Antonio, Dallas, and Houston).

The year 2015 saw increasing intensity in both the New Jersey
areaand Chicago, lllinois. These 2 areasjoined Houston, Dallas,
San Antonio, and Seattle as high-intensity claims areas. Despite
their populations, neither California nor Florida experienced
the claimsintensity of Texas.

Houston, Dallas, San Antonio, Seattle, Longview (Texas),
Oklahoma City, the New Jersey area, and St. Louis were the
notable areas of high intensity in 2016. The California coast
became more intense along with Salt Lake City.

By 2017, the Eastern seaboard intensified (New Jersey,
Delaware, Pennsylvania, Virginia, and District of Columbia)
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along with Phoenix, Arizona, and Atlanta, Georgia areas. The
most intense areas remained Houston and Dallas.

Overall, the maps may suggest small areavariationsin practice
patterns [27]. Although California and Florida have large

Figure 6. Geospatial analysis of all CPT 63 claims from 2012 through 2017.
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populations, none of their major popul ation centers reached the
high-intensity scale of major cities in Texas. Furthermore, the
Eastern seaboard’ sincreasing intensity suggeststhat something
has changed. The questions then become are these changesin
demand forecastable and how might they be explained.
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Forecasting Results

Number of Claims

Being ableto forecast demand is necessary for decision makers
to investigate both supply- and demand-side interventions. To
that end, HTS for state, census bureau region, and the nation
using both ETS and ARIMA components were built on
2012-2015 training dataset and compared with the 2016-2017
test set using the hts package in R [16]. Bottom-up, top-down,
middle-out, and combination approaches to this forecasting
were analyzed.
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The ETS models performed better on the test set in terms of
both variance and bias as shown (Table 6), and the middle-out
model performed better on all bias (mean error and mean
percentage error) aswell as variance (root mean squared error,
mean absolute error, and mean absolute percentage error)
metrics. The overall forecast from the ETS middle-out model
for the unobserved years {2016, 2017} was {454,720.3,
482,049.9}, whereas the actua overall claims were {464,323,
497,325}, resulting in mean absol ute percent error (MAPE) of
{2.0%, 3.1%} . Table 7 illustrates the forecast and actual number
of claims at the region-level hierarchy for the best performing
model, whereas Table 8 provides the state-by-state forecasts.
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Table 6. The performance metrics of the various hierarchical models show that the exponential, trend, seasonality middle-out model performed best

on the test set.

Model Mean error  Root mean squared error  Mean absolute error  Mean percent error (%)  Mean absol ute percent error (%)
ETS%bottom up 860.42 2905.64 1371.81 3.16 10.71

ETS-top down 688.26 2423.58 1266.13 3.03 10.54

ETS-middle out 611.75 2256.70 1219.59 2.70 10.50

ETS-combination 682.27 2404.41 1235.04 2.25 9.56

ARIMAP-bottomup ~ 5732.63 16496.72 5762.20 24.93 26.65

ARIMA-top down 5214.61 14953.59 5312.37 23.26 25.66

ARIMA-middleout  4606.38 13420.78 4799.88 20.70 24.20

ARIMA-combination 5159.04 14782.37 5259.67 20.65 25.92

¥ETS: exponential, trend, seasonality.
BARIMA: autoregressive integrated moving average.

Table 7. Region-level forecasts demonstrate small error. The average mean absolute percent error (MAPE) for {2016, 2017} was {3.4%, 6.2%},

respectively.
Region 2016 forecast 2016 actual 2017 forecast 2017 actual MAPE 2016 (%) MAPE 2017 (%)
East North Central 67,019 67,672 70,630 72,720 1.0 29
East South Central 42,765 42,747 44477 47,107 0.0 56
MiddleAtlantic 35,044 37,532 38,309 42,860 6.6 10.6
Mountain 35,840 35,254 38,211 38,341 17 0.3
New England 17,763 19,476 17,763 20,733 8.8 14.3
Pacific 45,015 43,647 49,122 43,865 31 12.0
South Atlantic 94,650 96,093 100,266 103,546 15 3.2
West North Central 45,653 46,550 48,075 48,600 19 11
West South Central 70,972 75,352 75,197 79,553 5.8 55
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Table8. Forecasts produced by the exponential, trend, seasonality middle-out model by state for 2016 and 2017 have an average mean absol ute percent
error (MAPE) of 10.1% and 13.2%, respectively.

State 2016 forecast 2016 actual 2017 forecast 2017 actual Mean absolute error 2016 ~ Mean absol ute error
(%) 2017 (%)
Alaska 773 1,132 825 784 317 52
Alabama 13,709 14,029 14,658 15,697 23 6.6
Arkansas 6550 6193 7077 6150 58 151
Arizona 8450 7585 9438 9624 114 1.9
California 22,060 21,402 24,242 21,859 31 109
Colorado 7089 6736 7081 6512 52 8.7
Connecticut 2539 3103 2446 3289 18.2 25.6
Dist. of Columbia 1052 1015 1070 1041 3.6 28
Delaware 702 1129 683 1286 378 46.9
Florida 24,991 23,611 26,870 25417 58 5.7
Georgia 15,324 14,293 16,372 14,093 7.2 16.2
Hawaii 369 451 370 527 18.2 29.8
lowa 5613 5698 5624 6069 15 7.3
Idaho 3775 4755 3920 4793 20.6 18.2
Ilinois 15,590 15,793 16,474 15,168 13 8.6
Indiana 14,839 14,839 14,850 14,648 0.0 14
Kansas 6943 7792 7382 7969 109 74
Kentucky 8061 7805 8044 9239 33 129
Louisiana 10,682 9817 11,519 11,044 8.8 4.3
Massachusetts 7251 8424 7533 9556 139 21.2
Maryland 6196 6458 6475 6785 41 4.6
Maine 3532 3707 3402 3345 4.7 17
Michigan 13,843 12,998 15,005 14,914 6.5 0.6
Minnesota 10,768 9,499 12,317 9507 134 29.6
Missouri 13,157 14,155 13,181 15,378 7.1 14.3
Mississippi 6943 7562 7252 7301 8.2 0.7
Montana 2954 2638 3116 2108 12.0 47.8
North Carolina 21,173 22,429 21,527 24,314 5.6 115
North Dakota 1839 1672 2017 2013 10.0 0.2
Nebraska 4437 4036 4576 4210 9.9 8.7
New Hampshire 3000 3073 2890 3382 24 145
New Jersey 6643 7067 7102 6659 6.0 6.7
New Mexico 1351 1570 1350 1755 139 231
Nevada 5067 4497 5606 5320 12.7 54
New York 12,876 14,206 14,014 15,442 9.4 9.2
Ohio 15,944 16,977 17,075 19,643 6.1 131
Oklahoma 9613 10,214 10,421 10,386 59 0.3
Oregon 7875 7,111 8454 7574 10.7 11.6
Pennsylvania 15,524 16,259 17,193 20,759 45 17.2
Rhode Island 841 695 914 750 21.0 21.9
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State 2016 forecast 2016 actual 2017 forecast 2017 actual Mean absolute error 2016 ~ Mean absol ute error
(%) 2017 (%)

South Carolina 11,050 10,921 11,858 13,494 12 121
South Dakota 2896 3698 2977 3454 217 138
Tennessee 14,052 13,351 14,523 14,870 53 2.3
Texas 44,127 49,128 46,181 51,973 10.2 111
Utah 6220 6077 6765 6811 24 0.7
Virginia 10,543 12,143 11,731 12,020 13.2 24
Vermont 600 474 578 411 26.6 40.6
Washington 13,937 13,551 15,231 13,121 28 16.1
Wisconsin 6803 7065 7227 8347 3.7 13.

West Virginia 3619 4094 3680 5096 116 27.8
Wyoming 935 1396 934 1418 33.0 34.1

HTS with the middle-out approach and ETS methods was refit
on the entire dataset to generate forecasts. Figure 7 shows the
regional forecasts for 2018 and 2019. The East North Central
region of the country islikely to experience the largest growth
in claims. The overall demand for 2018 and 2019 is forecasted
to be {529,777, 562,023}, which represents growth of 6.52%
growth in the first year (from 497,325 procedures in 2017 to

529,777 in2018) and 13.00% by 2019 (from 497,325 procedures
in 2017 to 562,023 in 2019). At US $5000 average per claim
(a simple linear model would suggest US $4910 in 2018 and
US $5123in 2019), the net increase in cost for 2018 would be
US $162.2 million for 2018 and US $323.9 million for 2019.
The next question becomes what explains the predicted growth
of these claims other than possibly practice variation.

Figure 7. Regiona forecasts generated by the hierarchical time series middle-out model with exponential, trend, seasonality components.
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Explanatory Modeling Results

To investigate explanatory variables, several models were
explored. Stepwise regression for the number of claims at the
hospital level using the transformed variables and an 80%
training set was successfully ableto predict the number of claims

on the withheld test set with some accuracy (adjusted R?=0.39

on the training set and adjusted R°=0.38 on the test set). This
indicates that the sum of squared regression accounted for 38%
of the variance of the sum of squared total on the test set.
Payments and charges were excluded from the analysis as they
are necessarily functions of claims. The variables evaluated
were the number of staffed beds, discharges, surgeries, net
patient revenue, net income, total assets, total liabilities,
affiliated physicians, employees, percentage Medicare/Medicaid,
state, year, urban/rural status, ownership, medical school status,
and hospital type. Table 9 provides the remaining variables
generated from the stepwise regression at the hospital unit of
analysis. It should be noted that obesity did not remain in the
final model.

Stepwise regression for the number of claims with data
aggregated (mean) by state and by year (N=306 observations,

Fulton & Kruse

51 states/territories x 6 years) resulted in an impressive model
using an 80% training set to predict a 20% withhold set. The

adjusted R? was 0.87 on the training set and 0.77 on the test set
after dropping insignificant variables from the analysis. The
variables in this model included state, year, number of
discharges, and total liabilities (a parsimonious model; Table
10). Again, thereis no evidence that obesity rates are predictive
of CPT 63 surgery in this model.

Lasso, ridge, and elastic net regression models were able to

predict the unaggregated test set with some accuracy (R°=0.38,
0.37, 0.38, respectively.) None of these penalty-weighted models
improved upon the stepwise analysis significantly, although
elastic net tied. Obesity was not retained in these models. For
the aggregated set (state and year), the associated R? were 0.78,
0.75, and 0.78, respectively. The lasso and elastic net models
were dightly superior to the stepwise regression model (Figure
5). The top 10 variables by effect size in the state-aggregated
elastic net model are shown in Table 11. The effect size of
obesity was near zero (0.0098). If onewereto make aconclusion
using traditional and constrained linear models, obesity would
not be a factor for explaining the number of claims; however,
random forests would prove otherwise.

Table 9. Variables below from the stepwise regression predicted awithhold set with adjusted R?=0.38.

Variable Sum of squares Mean squared error F value (df) P value
Staffed beds 95.78 95.78 2423.29 (1) <.001
Discharges 21.93 21.93 554.77 (1) <.001
ER visits 17.50 17.50 442.68 (1) <.001
Surgeries 41.15 41.15 1041.03 (1) <.001
Net patient revenue 5.57 5.57 140.99 (1) <.001
Net income 2.53 2.53 63.97 (1) <.001
Totd liabilities 4.45 4.45 112.70 (1) <.001
Affiliated physicians 0.24 0.24 6.08 (1) <.01
Employees 6.28 6.28 158.78 (1) <.001
Percentage Medicare/Medicaid 116 116 29.34 (1) <.001
State 52.35 1.05 26.49 (50) <.001
Year 8.09 1.62 40.91 (5) <.001
Urban rura status 1.99 1.99 50.43 (1) <.001
Ownership 10.76 0.90 22.68 (12) <.001
Medical school affiliation 2.16 0.54 13.63 (4) <.001
Hospital type 0.64 0.13 3.24(5) <.01
Table 10. Variablesin the analysis by state and by year.
Variable Sum of squares Mean sguared error F value (df) P value
State 1.16 0.02 26.40 (50) <.01
Year 0.17 0.03 39.16 (5) <01
Discharges 0.06 0.06 63.19 (1) <01
Net income 0.004 0.004 445 (1) .04
Totdl liabilities 0.004 0.004 4.65 (1) .03
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Table 11. Top 10 coefficients by effect size of the elastic net.

Fulton & Kruse

Variable Coefficient
Total assets -1.539
Net patient revenue -1.044
Number of staffed beds 0.212
Number of discharges 0.186
New Jersey -0.178
Total surgeries 0.162
New York -0.159
California -0.145
Delaware -0.143
Employees -0.136

Gradient-boosted random forests with hyperparameter tuning
outperformed all models: stepwise, lasso, ridge, elastic net
regression. On the unaggregated withhold set, a well-pruned
model (depth 4) with 2000 epoch runs and a slow learning rate
of 0.1 accounted for more than 78.5% of the variability

(R?=0.79) on the unobserved test set. Comparing thisvauewith
the approximately 38% variability accounted for in the other

Figure 8. Gain plot for the top 5 variables, unaggregated model.

models suggeststhat the random forest model is superior. Figure
8isaplot of thegain (the average improvement when thefeature
isused in atree) for the top 5 items in the importance matrix,
whereas Figure 9 is aplot of the cover (the average proportion
of samples affected by splitting using this feature) for the top
5 items of the unaggregated model. Thesefiguresillustrate that
obesity is one of the prominent features in both gain and cover
of the unaggregated model.
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Figure 9. Cover plot for the top 5 variables, unaggregated model.
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Despite the exceptional gains of the extreme gradient-boosted
random forests on the unaggregated, hospital-level data, the
application of hyperparameter-tuned models to the aggregated
data (by state and year) yielded only nominal improvement over
the constrained regression methods, possibly because of the
smaller sample due to aggregation. A well-pruned model
(depth=3) after 3000 epochs with a slow learning rate (0.1)

achieved an R? of 0.80. The gain and cover graphs are shown

Figure 10. Gain plot for the top 5 variables, aggregated model.

0.09

Cover

in Figures 10 and 11, and obesity rate is the most important
feature at the state-aggregated level.

Most importantly, the gradient-boosted random forestsidentified
obesity as the second most important factor for gain at the
hospital level and as the most important factor for both gain
and cover a the state level of analysis. Furthermore, the
gradient-boosted random forests performed better than any other
model considered on ablinded test set.

Gain chart

100%

0%

80%

70%

60%

50%

40%

Contribution relative to top 5 variables

30%

20%

10%

0%

http://www.jmir.org/2019/10/e14609/

XSL-FO

RenderX

Discharges,
0.06

Net income,

0.07

Cash on
hand, 0.12

Obesity rate,
0.29

Gain

JMed Internet Res 2019 | vol. 21 | iss. 10 | 14609 | p. 17
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Fulton & Kruse

Figure 11. Cover plot for the top 5 variables, aggregated model.
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Discussion

Principal Findings

In this analysis, we evaluated the location, magnitude, and
reasons for the growth of CPT 63 back surgeries in the United
States. The GIS heat map analysis shows large-scale growth,
particularly inthe Northeastern region of the United States, and
sustained activity in Texas. The entirety of the Eastern seaboard
has seen growth in these procedures, and the associated
increased cost is estimated to be US $323.9 million by the end
of 2019.

The principal findings of this study are described here. Each of
the following results includes a discussion of significance and

(if appropriate) policy:

1. TheNortheastern seaboard islikely to see continued growth
in CPT 63 procedures. The implication for states in this
region is that they may see more unplanned expenditures
on health care, affecting their budgets. Furthermore, cost
controls and reduction of practice variation based on
evidence will become more important.

2. The cost associated with these procedures is outstripping
inflation and will likely result in national expendituresin
the triple-digit billions. The federal government may need
to evaluate its own evidence-based, best practice policies
associated with funding of procedures that link selected
interventions with outcomes and that reasonably limit
reimbursement.

3. Interstate practice variation appears to be extreme. For
example, large population centersin California have fewer
claimsthan large population centersin Texas. States should
also investigate intrastate variation.
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4. Hierarchical forecasts suggest an increasein the number of
claims of 6.5% for 2018 and 13% in 2019. The initial
models were built on a blind test set and performed well.
Thesetypes of forecasts are reasonably effectivefor claims
analysis.

5. Explanatory regression modelsfor nation-level claimsdata
had only some successininternal predictions. These models
excluded obesity as a predictor. Regression models were
more successful at predicting aggregated state/year models,
though. These traditional models should be abandoned in
favor of random forests.

6. Extremegradient-boosted random forest modelswere highly
successful in predicting both hospital-level unit of analysis
number of claims and aggregate-level clams on an
unobserved test set. These models identified obesity as an
important factor in estimating the number of claims.
Furthermore, the use of these models underscoresthat even
after multivariate transformations, nonlinear functions may
exist in modeled data. Random forests unearthed patterns
not visibleto regression and constrained regression models.

Limitations

There are many limitations in this work. First, the algorithms
used by Definitive Healthcare to extrapolate CMS data to
all-payor data are not divulged. This omission is problematic
for verification but understandable because of parochia
concerns. Second, only ETS and ARIMA models were
considered for the HT Sfitting asthese model s areimplemented
in the R HTS package. There are an infinite number of models
for forecasting, including random forest time series that might
have performed better. Third, the explanatory variables are
limited to those tracked by CM S and the BRFSS.
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Conclusions

Hospital-based back surgeriesarelikely to increase dramatically
over the next several years, yet the supply of neurosurgeonsis
constant. With that increase, the cost of the procedures (mostly
borne by third-party payers) will increase as well. Practice
variation appears to be prevalent across the country; however,
obesity itself isafactor that must be considered as asignificant
influence. Policy interventions must be considered at many
levels.

Clinical practice variation is something that may require
intervention at the federal level. For example, a study in
Scandinavia found significant differences among Norway,
Sweden, and Denmark in the use of concomitant arthrodesis
without any differencein treatment efficacy, increasing the cost
without improving outcomes [28]. Controlling costs across
states may require federal (and state) reimbursement
interventions and incentives.

States should continue educational and financia interventions
targeting obesity in adultsand children. Asthe obesity epidemic
continues to grow, the medical intervention costs are likely to
grow accordingly. Furthermore, states should evaluate
county-to-county practice variation as these variations often
increase cost without improving quality [27].

Fulton & Kruse

Local interventions should consider the targeting of food deserts
(urban areas where fresh, quality food is difficult to find) for
eradication aswell as educational interventions. Several studies
have shown that the food environment is directly linked to
obesity [29-31]. Eliminating or at least reducing the number of
food deserts requires incentivizing grocery stores to populate
areas where it may not be as lucrative because of poverty or
demand.

Insurance companies themselves have a vested interest in both
reducing obesity and controlling practice variation. Obesity is
linked to numerous health disorders such as heart disease, type
2 diabetes, and bone and joint disease [32], any of which may
result in additional costs to the health care system and insurer.
Funding prevention efforts and establishing policies to reduce
practice area variation are likely to benefit them as well asthe
population health over time.

Federal, state, and local policy makers need to address the
increasing obesity epidemic and the likely associated increase
in demand for back surgeries. The implications of not doing so
are increased cost, questionable quality/cost trade-offs, and
reduced access because of the small and steady number of
available neurosurgeons. Thefattening of America and the costs
associated with it are likely to continue increasing otherwise.
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This video depicts heat maps for the number of claims from 2012 through 2017.
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