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SEMI-CLASSICAL STATES FOR SCHRÖDINGER-POISSON
SYSTEMS ON R3

HONGBO ZHU

Abstract. In this article, we study the nonlinear Schrödinger-Poisson equa-

tion

−ε2∆u+ V (x)u+ φ(x)u = f(u), x ∈ R3,

−ε2∆φ = u2, lim
|x|→∞

φ(x) = 0 .

Under suitable assumptions on V (x) and f(s), we prove the existence of ground

state solution around local minima of the potential V (x) as ε → 0. Also, we

show the exponential decay of ground state solution.

1. Introduction

Consider the nonlinear Schrödinger equation:

iε
∂ψ

∂t
= −ε2∆ψ + Ṽ ψ − f(ψ) (1.1)

coupled with the Poisson equation

− ε2∆φ = |ψ|2, (1.2)

where ε is the planck constant, i is the imaginary unit and Ṽ , ψ are real func-
tions on R3 and represent the effective potential and electric potential respectively.
ψ(x, t)→ C and f is supposed to satisfy f(αeiθ) = f(α)eiθ for all θ, α ∈ R. Problem
(1.1), (1.2) arose from semiconductor theory; see e.g, [4, 10, 25] and the references
therein for more physical background.

We are interested in standing wave solutions, namely solutions of form ψ(x, t) =
u(x) exp(iωt/ε) with u(x) > 0 in R3 and ω > 0 (the frequency), then it is not
difficult to see that u(x) must satisfy

−ε2∆u+ V (x)u+ φ(x)u = f(u), x ∈ R3,

−ε2∆φ = u2, lim
|x|→∞

φ(x) = 0. (1.3)

An interesting class of solutions of (1.3), sometimes called semi-classical states,
are families solutions uε(x) which concentrate and develop a spike shape around
one, or more, special points in R3, which vanishing elsewhere as ε→ 0.
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Similar equations have been studied extensively by many authors concerning
existence, non-existence, multiplicity when the nonlinearity f(u) = up, 1 < p < 5
and we cite a couple of them. In [16, 17], the authors proved the existence of
radially symmetric solutions concentrating on the spheres, and in [18], there is a
positive bound state solution concentrating on the local minimum of the potential
V . The existence of radial solution was obtained in [5] for the case 3 ≤ p < 5.
In [7], the authors constructed positive radially symmetric bound states of (1.3)
with 1 < p < 11/7. In [6], a related Pohozǎev identity was established and the
authors showed that (1.3) has nontrivial solutions in the case 0 ≤ p < 1 or p ≥ 5.
In [2, 13, 23], the authors proved the existence of infinity many radially symmetric
solutions. Ruiz and Vaira [24] proved the existence of multi-bump solutions whose
bumps concentrating around a local minimum of the potential. Also, there are a lot
of results on Schrödinger-Poisson systems with general classes of nonlinear terms. In
[26], existence and nonexistence nontrivial solutions of Schrödinger-Poisson system
with sign-changing potential were obtained by using variational methods. Sun,
Wu and Feng [27] studied the multiplicity of positive solutions for a nonlinear
Schrödinger-Poisson system when the nonlinearity f(x, u) = Q(x)|u|p−2u, 2 < p <
6; furthermore, they showed that the number of positive solutions was dependent
of the profile of Q(x). In [28], the authors proved the existence and nonexistence
solutions of Schrödinger-Poisson system with an asymptotically linear nonlinearity.
In [29], existence and multiplicity results were established. We refer to [1, 2, 3, 8,
9, 11, 13, 14, 20, 22] for some more results on this subject.

Recently, semi-classical states for Schrödinger-Poisson systems with much more
general nonlinear term have been object of interest for many authors. Bonheure,
Di Cosmo and Mercuric [11] proved the existence the solutions for the weighted
nonlinear Schrödinger-Poisson systems whose bumps concentrating around a cir-
cle. He and Zou [20] showed the existence and concentration of ground states for
Schrödinger-Poisson equations with critical growth.

But, in most of the above papers, the potential V (x) either has a limit at infinity,
or is required to be radial symmetry respect to x. Motivated by some related works,
the aim of this paper is to study the existence of solution of (1.3) concentrating on
a given set of local minima of V (x). We take the penalization arguments going back
to del Pino and Felmer [21] to a wider class of the potentials V (x) and nonlinearity
f(s) ∈ C1(R,R).

In this article, we use the following assumptions:
(A1) V (x) ≥ V0 > 0 for all x ∈ R3.
(A2) f(s) = o(s3) as s→ 0.
(A3) There exists q ∈ (3, 5) such that lims→+∞ f(s)/sq = 0.
(A4) There exists some 4 < θ < q + 1 such that

0 < θF (s) = θ

∫ s

0

f(t)dt ≤ f(s)s for all s > 0.

(A5) For all x ∈ R3, f(x, s)/s is nondecreasing in s ≥ 0.
The main result of this paper reads as follows.

Theorem 1.1. Assume that (A1)–(A5) hold, and that there is a bounded and com-
pact domain Λ in R3 such that

inf
x∈Λ

V (x) < min
x∈∂Λ

V (x).
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Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), problem (1.3) has a positive
solution uε. Moreover, uε has at most one local (hence global) maximum xε ∈ Λ
such that

lim
ε→0

V (xε) = V0.

Also, there are constants C, c > 0 such that

uε(x) ≤ C exp(−cx− xε
ε

). (1.4)

Remark 1.2. (i) We point out that no restriction on the global behavior of V (x)
is required other than condition (A1). This is an improvement on some previous
works, see, e.g.,[11] [20] and references therein.

(ii) Condition (A5) holds if f(s)/s3 is an increasing function of s > 0. In fact,
that f(s)/s3 is increasing is required in [20].

This article is organized as follows: In section2, influenced by the work of del
Pino and Felmer [21], we introduce a modified functional for any ε > 0 and show it
has a ground state solution uε(x). In Section3, we give the uniform boundedness of
maxx∈∂Λ uε(x) and the critical value cε when ε goes to zero. In section4, we show the
critical point of the modified functional which satisfies the original problem (1.3),
and investigate its concentration and exponential decay behavior, which completes
the proof Theorem 1.1.

Hereafter we use the following notation:
• H1(R3) is usual Sobolev space endowed with the standard scalar product and
norm

(u, v) =
∫

R3
(∇u∇v + uv)dx; ‖u‖2 =

∫
R3

(|∇u|2 + u2)dx.

• D1,2(R3) is the completion of C∞0 (R3) with respect to the norm

‖u‖2D1,2(R3) =
∫

R3
|∇u|2dx.

• H−1 denotes the dual space of H1(R3).
• Lq(Ω), 1 ≤ q ≤ +∞,Ω ⊆ R3, denotes a Lebesgue space, the norm in Lq(Ω) is
denoted by |u|q,Ω.
• For any R > 0 and for any y ∈ R3, BR(y) denotes the ball of radius R centered
at y.
• C, c are various positive constants.
• o(1) denotes the quantity which tends to zero as n→∞.

It is well known that for every u ∈ H1(R3), the Lax-Milgram theorem implies
that there exists a unique φu ∈ D1,2(R3) such that∫

R3
∇φu∇vdx =

∫
R3
u2dx, ∀v ∈ D1,2(R3),

where φu is a weak solution of −∆φ = u2 with

φu(x) =
∫

R3

u2(y)
|x− y|

dy.

Substituting φu in (1.3), we can rewrite (1.3) as the equivalent equation

− ε2u+ V (x)u+ ε−2φuu = f(u). (1.5)
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Let

H = {u ∈ H1(R3) :
∫

R3
V (x)u2dx < +∞}

be the Sobolev space endowed with the norm

‖u‖2ε =
∫

R3
(ε2|∇u|2 + V (x)u2)dx.

We see that (1.5) is variational and its solutions are the critical points of the func-
tional

Iε(u) =
1
2

∫
R3

(ε2|∇u|2 + V (x)u2)dx+
1

4ε2

∫
R3
φu(x)u2dx−

∫
R3
F (u)dx. (1.6)

Clearly, under the hypotheses (A2)–(A5), we see that Iε is well-defined C1 func-
tional. In the following proposition, we summarize some properties of φu, which
are useful to study our problem.

Proposition 1.3 ([12]). For any u ∈ H1(R3), we have
(i) φu : H1(R3)→ D1,2(R3) is continuous, and maps bounded sets into bounded

sets;
(ii) if un ⇀ u in H1(R3), then φun ⇀ φu in D1,2(R3);
(iii) φu ≥ 0, ‖φu‖D1,2(R3), and

∫
R3 φuu

2dx ≤ C‖u‖4;
(iv) φtu(x) = t2φu for all t ∈ R.

2. Solution of the modified equation

In this section, we find a solution uε of problem (1.3) concentrating on a given
set Λ, we modify the nonlinearity f(s). Here we follow an approach used by del
Pino and Felmer [21].

Let k > θ
θ−4 , a > 0 be such that f(a)

a = V0
k , and set

f̃(s) =

{
f(s), if s ≤ a,
V0
k s, if s > a,

(2.1)

and define
g(., s) = χΛf(s) + (1− χΛ)f̃(s), (2.2)

where Λ is the bounded domain as in the assumptions of Theorem1.1, and χΛ

denotes its characteristic function. It is easy to check that g(x, s) satisfies the
following assumptions:

(A6) g(x, s) = o(s3) as s→ 0.
(A7) There exists q ∈ (3, 5) such that lims→+∞

g(x,s)
sq = 0.

(A8) There exists a bounded subset K of R3, int(K) 6= ∅ such that

0 < θG(x, s) ≤ g(x, s)s for all x ∈ K, s > 0,

0 ≤ 2G(x, s) ≤ g(x, s)s ≤ 1
k
V (x)s2 for all s > 0, x ∈ Kc.

(A9) The function g(x,s)
s is increasing for s > 0.

Now, we consider the modified equation

−ε2∆u+ V (x)u+ φ(x)u = g(x, s), x ∈ R3,

−ε2∆φ = u2,
(2.3)
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where V satisfies condition (A1), and g satisfies (A6)–(A9). Here we have set ε = 1
for notational simplicity.

The functional associated with (2.3) is

J(u) =
1
2

∫
R3

(|∇u|2 + V (x)u2)dx+
1
4

∫
R3
φu(x)u2dx−

∫
R3
G(x, u)dx, (2.4)

which is of class C1 in H with associated norm ‖ · ‖H .
In the rest of this section, we show some lemmas related to the functional J .

First, we show the functional J satisfying the mountain pass geometry.

Lemma 2.1. The functional J satisfies the following conditions:
(i) There exist α, ρ > 0 such that J(u) ≥ α for all ‖u‖H = ρ.
(ii) There exists e ∈ Bcρ(0) with J(e) < 0.

Proof. (i) For any u ∈ H\{0} and ε > 0, by (A2) and (A3) there exists C(ε) > 0
such that

|f(s)| ≤ ε|s|+ Cε|s|q, ∀s ∈ R.
By the Sobolev embedding H ↪→ Lp(R3), with p ∈ [2, 6], we have

J(u) ≥ 1
2
‖u‖2H −

∫
R3

[χΛ(x)F (u) + (1− χΛ(x))F̃ (u)]dx

≥ 1
2
‖u‖2H −

∫
R3
F (u)dx

≥ 1
2
‖u‖2H −

ε

2

∫
R3
|u|2dx− Cε

q + 1
|u|p+1dx

≥ 1
2
‖u‖2H − C1ε‖u‖2H − C2Cε‖u‖p+1

H .

Since ε is arbitrarily small, we can choose constants α, ρ such that J(u) ≥ ρ > 0
for all ‖u‖H = ρ.

(ii) By (A4), we have F (s) ≥ Csθ − C for all t > 0, Choosing u ∈ H\{0} not
negative, with its support contained in the set K, we see that

J(tu) =
t2

2
‖u‖2H +

t4

4

∫
R3
φuu

2dx−
∫

R3
G(x, tu)dx

≤ t2

2
‖u‖2H +

t4

4

∫
R3
φuu

2dx− Ctθ
∫
K

uθdx+ C|K| < 0

for some t > large enough. So, we can choose e = t∗u for some t∗ > 0, and (ii)
follows.

By lemma 2.1 and the mountain pass theorem, there is a (PS)c sequence {un} ⊂
H such that J(un)→ c in H−1 with the minmax value

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)), (2.5)

where
Γ := {γ ∈ C([0, 1], H) : γ(0) = 0, J(γ(1)) < 0}.

�

Lemma 2.2. Let {un} ⊂ H be a (PS)c sequence for c > 0. Then un has a
convergent subsequence.
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Proof. First, we show that {un} is bounded in H. In fact, using (A8) we easily see
that∫

R3
(|∇un|2 + V (x)u2

n)dx+
∫

R3
φunu

2
ndx ≥

∫
K

g(x, un)undx+ o(‖un‖H). (2.6)

1
2

∫
R3

(|∇un|2 + V (x)u2
n)dx+

1
4

∫
R3
φunu

2
ndx

=
∫

R3
G(x, un)dx+O(1)

≤
∫
K

G(x, un)dx+
1
2k

∫
Kc

V (x)u2
ndx+O(1)

(2.7)

Thus, from (2.6) (2.7) and (A8) we find
2
k

∫
Kc

V (x)u2
ndx+ o(‖un‖H) +O(1) ≥ (1− 2

k
)
∫

R3
(|∇un|2 + V (x)u2

n)dx. (2.8)

Then, it follows from the choice of k in (A8) that {un} is bounded in H.
Then there is a subsequence, still denoted by {un} such that un ⇀ u weakly in

H. We now prove this convergence is actually strong. In deed, it suffices to show
that, given δ > 0, there is an R > 0 such that

lim sup
n→∞

∫
BcR

(|∇un|2 + V (x)u2
n)dx ≤ δ. (2.9)

Let ξR(x) ∈ C∞(R3,R) be a cut-off function such that 0 ≤ ξR ≤ 1 and

ξR(x) =

{
0 for |x| ≤ R

2 ,

1, for |x| ≥ R

and |∇ξR(x)| ≤ C
R for all x ∈ R3. Moreover we may assume that R is chosen so

that K ⊂ BR
2

. Since {un} is a bounded (PS)c sequence, we have that

〈J ′(un), ξRun〉 = o(1), (2.10)

so that∫
R3

(|∇un|2 + V (x)u2
n)dx+

∫
R3
un∇un∇ξRdx+

∫
R3
φununξRdx

=
∫

R3
g(x, un)unξRdx+ o(1) ≤ 1

k

∫
R3
V (x)u2

nξRdx+ o(1).
(2.11)

We conclude that ∫
BcR

V (x)u2
ndx ≤

C

R
‖un‖L2(R3)‖∇un‖L2(R3), (2.12)

from where (2.9) follows. �

Lemma 2.1 implies that c defined in (2.5) is a critical value of J .

Remark 2.3. Similar to the proof of lemma 2.2, it is not difficult to see that c can
be characterized as

c = inf
u∈H\{0}

sup
t≥0

J(tu).

Since the modified function g satisfies assumptions (A6)–(A9), the results of the
above yield the following lemma.
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Lemma 2.4. For any ε > 0, there exists a critical point for Jε at level

Jε(uε) = cε = inf
γε∈Γ

max
0≤t≤1

Jε(γ(t)), (2.13)

where
Γε := {γ ∈ C([0, 1], H) : γ(0) = 0, Jε(γ(1)) < 0},

Jε(u) =
1
2

∫
R3

(ε2|∇u|2 + V (x)u2)dx+
1

4ε2

∫
R3
φuu

2dx−
∫

R3
G(x, u)dx.

(2.14)

3. Some estimates

To show that the solution uε found in lemma 2.4 satisfies the original problem
and concentrates at some point in Λ, we need to study the behavior of uε as ε→ 0.
We begin with an energy estimate.

Proposition 3.1 (Upper estimate of the critical value). For ε small enough, the
critical value cε defined (2.13) satisfies

cε = Jε(uε) ≤ ε3(c0 + o(1)) as ε→ 0. (3.1)

Moreover, there exists C > 0 such that∫
R3

(ε2|∇uε|2 + V (x)u2
ε)dx ≤ Cε3. (3.2)

Proof. Set V0 = minΛ V = V (x0), and let

c0 := inf
γ∈Γ

max
0≤t≤1

I0(γ(t)), (3.3)

where

I0(u) =
1
2

∫
R3

(|∇u|2 + V0u
2)dx+

1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx,

Γ := {γ ∈ C([0, 1], H1(R3)) : γ(0) = 0, I0(γ(1)) < 0}.

From (3.3), for any δ > 0, there exists a continuous path γδ : [0, 1]→ H1(R3) such
that γδ(0) = 0, I0(γδ(1)) < 0 and

c0 ≤ max
0≤t≤1

I0(γδ(t)) ≤ c0 + δ.

Let η be a smooth cut-off function with support in Λ such that 0 ≤ η ≤ 1, η = 1 in
a neighborhood of x0 and |∇η| ≤ C. We consider the path

γ̄δ(t)(x) = η(x)γδ(t)(
x− x0

ε
).

Setting

γ̄δ(t)(x) := vt(
x− x0

ε
),

we compute, by a charge of variable
1
2

∫
R3

[ε2|∇γ̄δ(t)|2 + V (x)γ̄δ(t)2]dx−
∫

R3
G(x, γ̄δ(t))dx

= ε3
1
2

[|∇vt(x)|2 + V (x0 + εx)v2
t (x)]dx− ε3

∫
R3
G(x0 + εx, vt(x))dx.

(3.4)

The Hardy-Littlewood Sobolev inequality leads to∫
R3
φγ̄δ(t)(x)γ̄δ(t)(x)2dx =

∫
R3

[ ∫
R3

γ̄δ(t)(y)2

|x− y|
γ̄δ(t)dy

]
dx
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= ε5
∫

R3

∫
R3

v2
t (x)v2

t (y)
|x− y|

dx dy

= ε5
∫

R3
φvtv

2
t dx.

For ε small enough, we obtain

ε−3Jε(γ̄δ(t))→ I0(γδ(t)) + o(1).

It follows that ε small enough, γ̄δ belongs to the class of paths Γε defined by (2.14).
We deduce that

ε−3cε ≤ ε−3 max
0≤t≤1

Jε(γ̄δ(t))→ max
0≤t≤1

I0(γ̄δ(t)) + o(1) ≤ (c0 + δ) + o(1).

Since δ > 0 is arbitrary, (3.1) is proved.

Jε(uε) =
1
2

∫
R3

(ε2|∇uε|2 + V (x)u2
ε)dx+

1
4ε2

∫
R3
φuεu

2
εdx−

∫
R3
G(x, uε)dx

=
1
2

∫
R3

(ε2|∇uε|2 + V (x)u2
ε)dx+

1
4ε2

∫
R3
φuεu

2
εdx−

∫
K

G(x, uε)dx

−
∫

R3\{K}
G(x, uε)dx

≥ 1
4

∫
R3

(ε2|∇uε|2 + V (x)u2
ε)dx−

1
2k

∫
R3
V (x)u2

εdx

≥ (
1
4
− 1

2k
)
∫

R3
(ε2|∇uε|2 + V (x)u2

ε)dx,

(3.5)

where C = 1
4 −

1
2k > 0 thanks to the choice of k. Combining (3.1) and (3.5), it is

easy to obtain (3.2). �

Next, we give a proposition that is the crucial step in the proof of Theorem 1.1.

Proposition 3.2.
lim
ε→0

max
∂Λ

uε(x) = 0. (3.6)

Moreover, for all ε sufficiently small enough, uε possesses one local maximum xε ∈ Λ
and we must have

lim
ε→0

V (xε) = V0 = min
x∈Λ

V (x). (3.7)

Proof. To prove this proposition we establish that If εn → 0 and xn ∈ Λ are such
that uεn ≥ b > 0, then

lim
n→∞

V (xn) = V0. (3.8)

We take three steps to prove this claim.
Step1: We argue by contradiction. Thus we assume, passing to a subsequence,
that xn → x∗ ∈ Λ̄ and

V (x∗) > V0. (3.9)
We consider the sequence vn(x) = uεn(xn + εnx). A simple computation shows

ε2φvn(x) = φuεn (xn + εnx).

The function vn satisfies the equation

−∆vn + V (xn + εnx)vn + φvnvn = g(xn + εnx, vn), x ∈ Ωn, (3.10)
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where Ωn = ε−1
n {H − xn}. As a consequence of (3.2), we see that vn is bounded in

H1(R3), and from elliptic estimates, we deduce that there exists v ∈ H1(R3) such
that

vn → v in C2
loc(R3).

Let χn(x) = χΛ(xn + εnx), then χn(x) ⇀ χ in any Lp(R3) over compacts with
0 ≤ χ ≤ 1. Now, we claim that∫

R3
φvnvnϕdx→

∫
R3
φvvϕdx for any ϕ ∈ C∞0 (R3).

In fact, we can assume supportϕ ⊂ Ω, where Ω is a bounded domain. Then

|
∫

R3
φvnvnϕdx−

∫
R3
φvvϕdx|

= |
∫

R3
φvn(vn − v)ϕdx+

∫
R3

(φvn − φv)vϕdx|

≤ |
∫

R3
φvn(vn − v)ϕdx|+ |

∫
R3

(φvn − φv)vϕdx|

≤ |φvn |L6(Ω)|vn − v|L2(Ω)|ϕ|L3(Ω) + o(1)→ o(1).

Therefore, v satisfies the limiting equation

−∆v + V (x∗)v + φvv = ḡ(x, v), (3.11)

where
ḡ(x, s) = χ(x)f(s) + (1− χ(x))f̃(s).

Associated with (3.11) we have functional J̄ : H1(R3)→ R defined as

J̄(u) =
1
2

∫
R3

[|∇u|2 + V (x∗)u2]dx+
1
4

∫
R3
φuu

2dx

−
∫

R3
Ḡ(x, u)dx, u ∈ H1(R3),

(3.12)

where Ḡ(x, s) =
∫ s

0
ḡ(x, t)dt. Then v is a critical point of J̄ . Set

Jn(u) =
1
2

∫
Ωn

[|∇u|2 + V (xn + εnx)u2]dx+
1
4

∫
Ωn

φuu
2dx

−
∫

Ωn

G(xn + εnx, u)dx, u ∈ H1
0 (Ωn).

Then Jn(vn) = ε−3
n Jεn(uεn). So the key step in the proof of proposition is the

following step.
Step2: lim infn→∞ Jn(vn) ≥ J̄(v). In particular, J̄(v) ≤ c0, where c0 is given by
(3.3).

Proof: Write

hn =
1
2

[|∇vn|2 + V (xn + εnx)v2
n] +

1
4
φvnv

2
n − Ḡ(xn + εnx, u).

Then, choose R > 0, since vn converges in the C1 sense over compacts to v, we
have

lim
n→∞

∫
BR

hndx =
1
2

∫
BR

[|∇v|2 + V (x∗)v2]dx+
1
4

∫
BR

φvv
2dx−

∫
BR

Ḡ(x, v)dx.
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Since v ∈ H1(R3), for each δ > 0, we have

lim
n→∞

∫
BR

hndx ≥ J̄(v)− δ, (3.13)

provided that R was chosen sufficiently large. Then it only suffices to check that
for large enough R

lim
n→∞

∫
Ωn\BR

hndx ≥ −δ. (3.14)

For any fixed R > 0, let ξR(x) ∈ C∞0 (R3,R) be a cut-off function such that

ξR(x) =

{
0 for |x| ≤ R− 1,
1, for |x| ≥ R,

and |∇ξR(x)| ≤ C
R for all x ∈ R3 and C > 0 is a constant.

We use wn = ξRvn ∈ H1(Ωn) as a test function for J ′n(vn) = 0 to obtain

0 = J ′n(vn)wn = En +
∫

Ωn\BR
(2hn + gn)dx+

∫
Ωn\BR

φvnv
2
ndx

≤ En +
∫

Ωn\BR
2hndx+

∫
Ωn\BR

φvnv
2
ndx,

(3.15)

where gn = 2G(xn + εnx, vn)− g(xn + εnx, vn)vn, and En is given by

En =
∫
BR\BR−1

[∇vn∇(ξRvn) + V (xn + εnx)ξRv2
n + φvnv

2
nξR]dx

=
∫
BR\BR−1

g(xn + εnx, vn)ξRvndx.
(3.16)

Since vn is bounded in H1(R3), it follows that
∫

R3 φvnv
2
ndx ≤ C‖un‖4. The fact

that v ∈ H1(R3) implies that for given δ > 0, there exists R > 0 sufficiently large
such that

lim
n→∞

|En| ≤ δ,
∫

Ωn\BR
φvnv

2
ndx ≤ δ.

On the other hand, the definition of g together with the properties of f give that
gn ≤ 0. Using this in (3.15), (3.14) follows, and the proof of step2 is complete.
Step3: Now, we are ready to obtain a contradiction with (3.8). Since v is a critical
point of J̄ , and ḡ satisfies (A9), we have that

J̄(v) = max
t>0

J̄(tv). (3.17)

Then since f(s) ≥ f̃(s) for all s > 0 we have

J̄(v) ≥ inf
u∈H1(R3)\{0}

sup
τ>0

I∗(τu)∆qc∗, (3.18)

where

I∗(u) =
1
2

∫
R3

[|∇u|2 + V (x∗)u2]dx+
1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx. (3.19)

But, since V (x∗) > V0, we have c∗ > c0; hence J̄(v) > c∗, which contradicts step 2,
and the proof of the claim, i.e. (3.8) is follows.

To conclude the proof of proposition 3.2, we show that uε has at most one
maximum point in Λ. The proofs rely on the the arguments carried out in step2
and so we sketch it. By contradiction, assume that, the existence of sequence εn → 0
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such that uεn has two distinct maxima x1
n and x2

n in Λ. Set vn(x) = uεn(x1
n + εnx),

and it is easy to check that ε−1
n (x2

n − x1
n) is a maximum point of vn(x), two cases

occur.
Case 1: ε−1

n (x2
n − x1

n) is bounded. From (3.2) and elliptic estimates, up to a
subsequence, vn → v uniformly over compacts, where v ∈ H1(R3) maximizes at zero
and solves −∆v+ V (x1)v+ φvv = f(v), here x1 = limn→∞ x1

n. Since ε−1
n (x2

n − x1
n)

is bounded and hence, up to a subsequence, it converges to some p ∈ R3. So we
conclude that p = 0; therefore ε−1

n (x2
n − x1

n) ∈ Br for n large enough, which is
impossible since 0 is the only critical point of v in Br.
Case2: ε−1

n (x2
n − x1

n) is unbounded. Let ṽn(x) = uεn(εnx+ x2
n), then there exists

ṽ such that ṽ is the solution of −∆v+V (x2)v+φvv = f(v), here x2 = limn→∞ x2
n.

Note that |ε−1
n (x2

n − x1
n)| → +∞, then for any R > 0 the balls B̃R ∩ B̄ε = ∅, where

B̄ε = B̃R(ε−1
n (x2

n − x1
n)), repeat the arguments of step2, we find that for any ν > 0

it is possible to choose that R > 0 large enough such that

lim
n→∞

∫
B̄ε
hndx ≥ J̃(ṽ)− ν, (3.20)

where

J̃(u) =
1
2

∫
R3

(|∇u|2 + V (x2)u2)dx+
1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx,

and

lim
n→∞

∫
R3\(BR∪Bε)

hndx ≥ −ν. (3.21)

Similar to the argument in (3.13), we obtain

lim
n→∞

∫
BR

hndx ≥ J1(v)− δ, (3.22)

where

J1(u) =
1
2

∫
R3

(|∇u|2 + V (x1)u2)dx+
1
4

∫
R3
φuu

2dx−
∫

R3
F (u)dx.

From (3.22),(3.20) and (3.21) we conclude that

lim
n→∞

∫
R3
hndx ≥ J1(v) + J̃(ṽ)− 3ν. (3.23)

Since ν is arbitrary we find that

ε−3
n Jεn(uεn) = lim

n→∞
Jn(vn) ≥ J1(v) + J̃(ṽ) ≥ 2c0,

which contradicts (3.1). The proof of proposition 3.2 is now complete. �

4. Proof of Theorem 1.1

In this section, we shall prove the existence, concentration, and exponential decay
of ground state solution of (1.3) for small ε.

Proof of Theorem 1.1. By proposition 3.2, there exists ε0 such that for 0 < ε < ε0,

uε(x) < a for all x ∈ ∂Λ. (4.1)

The function uε ∈ H solves the equation

− ε2∆u+ V (x)u+ ε−2φuu = g(x, u). (4.2)
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Choose (uε − a)+ as a test function in (4.2), after integration by parts one gets∫
R3\{Λ}

[
ε2|∇(uε − a)+|2 + c(x)(uε − a)2

+ + ε−2φuεuε(uε − a)+

+ c(x)a(uε − a)+

]
dx = 0,

(4.3)

where

c(x) = V (x)− g(x, uε(x))
uε(x)

.

The definition of g yields that c(x) > 0 in R3\{Λ}, hence all terms in (4.3) are zero.
We conclude in particular

uε(x) ≤ a for all R3\{Λ}.
Consequently, uε is a solution to equation (1.3), and by proposition 3.2, we know
that the maximum value of uε is achieved at a point xε ∈ Λ and it is away from
zero. To obtain (1.4), we need the following proposition, which is a very particular
version of [15, Theorem 8.17]. �

Proposition 4.1 ([15]). Suppose that t > 3, h ∈ Lt/2(Ω) and u ∈ H1(Ω) satisfies
in the weak sense

−∆u ≤ h(x) in Ω,
where Ω is an open subset of R3. Then, for any ball B2R(y) ⊂ Ω,

sup
x∈BR(y)

u(x) ≤ C(‖u+‖L2(B2R(y)) + ‖h‖Lt/2(B2R(y))),

where C depends on t and R.

Lemma 4.2. Let vε(x) = uε(xε+ εx), where xε is the unique maximum of uε, then
there exists ε∗ > 0 such that lim|x|→∞ vε(x) = 0 uniformly on ε ∈ (0, ε∗).

Proof. Since uε(x) is the solution of (1.3), by (3.2) then

‖vε‖H ≤ C, (4.4)

and also vε(x) satisfies

−∆vε + V (xε + εx)vε(x) + φvεvε = f(vε).

Now, for any sequence εn → 0, there is a subsequence such that

xεn → x̄;V (x̄) = V0.

From (4.4) and elliptic estimates, we know that this subsequence can be chosen in
such a way that vεn → v uniformly over compacts, where v ∈ H1(R3) solves

−∆v + V0v + φv = f(v). (4.5)

Next, we prove that vεn → v ∈ H1(R3). Since f̃(s) ≤ f(s) for all s ≥ 0, by (3.1)
we have

In(vεn) ≤ ε−3
n Jεn(uεn) ≤ c0,

where
In(u) =

1
2

∫
Ωn

[|∇u|2 + V (xεn + εnx)u2]dx+
1
4

∫
Ωn

φuu
2dx

−
∫

Ωn

F (xεn + εnx, u)dx,Ωn

= ε−1
n {R3 − xεn}.

(4.6)
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On the other hand, using Fatou’s lemma and the weak limit of vεn ,

In(vεn) = In(vεn)− 1
4
〈I ′n(vεn), vεn〉

=
1
4

∫
Ωn

[|∇vεn |2 + V (xεn + εnx)v2
εn ]dx+

1
4

∫
Ωn

[f(vεn)vεn − 4F (vεn)]dx

≥ 1
4

∫
Ωn

[|∇vεn |2 + V0v
2
εn ]dx+

1
4

∫
Ωn

[f(vεn)vεn − 4F (vεn)]dx

≥ 1
4

∫
R3

[|∇v|2 + V0v
2]dx+

1
4

∫
R3

[f(v)v − 4F (v)]dx

= I0(v)− 1
4
〈I ′0(v), v〉 ≥ c0.

So, In(vεn)→ c0 as n→∞, and it is easy to verify from the above inequalities,

lim
n→∞

∫
R3

(|∇vεn |2 + V0v
2
εn)dx =

∫
R3

(|∇v|2 + V0v
2)dx.

Therefore, using that vεn ⇀ v weakly in H1(R3), we conclude vεn → v in H1(R3).
As a consequence of the above limit, we have

lim
R→∞

∫
|x|≥R

v2
εndx = 0. (4.7)

Applying proposition 4.1 in the inequality

−∆vεn ≤ −∆vεn + V (εnx+ xεn)vεn + φvεn vεn = hn(x)∆qf(vεn) in R3,

we have that for some t > 3, ‖hn‖ t
2
≤ C for all n. Moreover,

sup
x∈BR(y)

vεn(x) ≤ C(‖vεn‖L2(B2R(y)) + ‖hn‖Lt/2(B2R(y))) for all y ∈ R3,

which implies that ‖vεn‖L∞(R3) is uniformly bounded. Then by (4.7), we have

lim
|x|→∞

vεn(x) = 0 uniformly on n ∈ N.

Consequently, there exists ε∗ > 0 such that

lim
|x|→∞

vε(x) = 0 uniformly on ε ∈ (0, ε∗) .

�

To show the exponential decay of uε, we only need the following result involving
of vε.

Lemma 4.3. There exist constants C > 0 and c > 0 such that

vε(x) ≤ Ce−c|x| for all x ∈ R3.

Proof. By lemma 4.2 and (A2), there exists R1 > 0 such that

f(vε(x))
vε(x)

≤ V0

2
for all |x| ≥ R1, ε ∈ (0, ε∗). (4.8)

Fix ω(x) = Ce−c|x| with c2 < V0/2 and Ce−cR1 ≥ vε for all |x| = R1. It is easy to
check that

∆ω ≤ c2ω for all |x| 6= 0. (4.9)
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So

−∆vε + V0vε ≤ −∆vε + V0vε + φvεvε = f(vε) ≤
V0

2
vε for all |x| > R1. (4.10)

Define ωε = ω − vε. Using (4.10) and (4.9), we obtain

−∆ωε +
V0

2
ωε ≥ 0, in |x| ≤ R1, ωε ≥ 0, on |x| = R1, lim

|x|→∞
ωε(x) = 0.

The classical maximum principle implies that ωε ≥ 0 in |x| ≥ R1 and by the work
in [19], we conclude that

vε(x) ≤ Ce−c|x| for all |x| ≥ R1, ε ∈ (0, ε∗).

By the definition of vε and lemma 4.3, we have

uε(x) = vε(
x− xε
ε

) ≤ Cexp(−c |x− xε|
ε

)

for all x ∈ R3, ε ∈ (0, ε∗). The proof of Theorem 1.1 is complete. �
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