
SPEAR: SEARCH PERSONALIZATION WITH EDITABLE PROFILES

by

Binyam A. Zemede, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
December 2013

Committee Members:

Byron J. Gao, Chair

Anne H.H. Ngu

Yijuan Lu

COPYRIGHT

by

Binyam A. Zemede

2013

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is
not allowed.

Duplication Permission

As the copyright holder of this work I, Binyam A. Zemede, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

I dedicate this to my wife, Helen Afework, my mother, Abebech Tekele and my

father, Abebe Zemede.

ACKNOWLEDGEMENTS

Foremost, I would like to thank Dr. Byron J. Gao, who inspired and

motivated me to carry out and complete the thesis. Dr. Gao has always made

himself available and has been a source of constructive feedback. I would also like to

thank Dr. Anne H.H. Ngu and Dr. Yijuan Lu for their involvement in the thesis

committee during the thesis process. I acknowledge my manager, Rick Aberle, for

his support throughout my Master’s degree studies. I would like to thank Teodros

Zemedie, Brian Jackson and Christina Jackson for their participation in

proofreading the thesis. I would also like to thank my family and friends for their

support and encouragement. Finally, I would like to thank my beautiful wife, Helen

Afework, for her support and patience throughout the thesis process. I am grateful

to GOD for all the blessings in my life.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

ABSTRACT . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Information Overload and Search Ambiguity 1

1.2 Search Personalization . 2

1.3 The SPEAR Approach . 3

2. BACKGROUND . 9

2.1 Information Retrieval . 9

2.2 Vector Space Model . 11

2.3 Information Retrieval System Evaluation 15

2.4 Semantic Similarity . 19

3. LITERATURE SURVEY . 20

3.1 Search Personalization . 20

3.2 Social Search . 23

4. THE SPEAR APPROACH . 25

4.1 SPEAR Architecture . 25

4.1.1 Profile Management Module 27

4.1.2 Social Network Feed Module 32

4.1.3 Query Processing Module 33

4.1.4 Search History Module . 33

vi

4.1.5 Personalization Module . 33

5. SPEAR IMPLEMENTATION . 35

5.1 Database Design . 36

5.2 Object Relational Mapping . 37

5.3 Web Services . 38

5.3.1 Personalization Service . 38

5.3.2 CRUD Service . 39

5.4 Web Pages . 40

6. EVALUATION . 41

6.1 Test Cases . 43

6.2 Results . 45

6.2.1 11-Point Interpolated Average Precision 45

6.2.2 Precision at K . 46

6.2.3 Recall at K . 47

6.2.4 MAP (Mean Average Precision) 48

6.3 Discussion . 49

7. CONCLUSION . 50

APPENDIX A. SPEAR INSTALLATION AND ADMINISTRATION 51

REFERENCES . 54

vii

LIST OF TABLES

Table Page

6.1 Test profiles . 43

6.2 Test cases . 44

6.3 MAP values . 48

A.1 SPEAR system requirements . 51

viii

LIST OF FIGURES

Figure Page

1.1 A sample search in SPEAR . 4

2.1 Inverted index construction . 10

2.2 Precision/recall graph . 17

4.1 SPEAR functional modules . 26

4.2 Profile page anatomy . 30

5.1 SPEAR database entity relationship diagram 36

6.1 11-point interpolated average precision . 45

6.2 Precision at K . 46

6.3 Recall at K . 47

6.4 MAP . 48

ix

LIST OF ABBREVIATIONS

Abbreviation Description

AJAX - Asynchronous JavaScript and XML A Web development technique for asyn-

chronous Web applications

API - Application Programming Interface A description of functionality that defines

interfaces between software components

IR - Information Retrieval A computer science discipline that focuses

on search techniques for documents of

unstructured nature

HTML - Hyper Text Markup Language A language for describing Web pages

JSON - Java Script Object Notation An electronic data format popular in Web

applications

SQL - Structured Query Language A programming language to manage data

in a relational database

URL - Uniform Resource Locator A Web address

WCF - Windows Communication Foundation A set of APIs for building service oriented

applications in the .NET framework

XML - Extensible Markup Language Structured data description language

x

ABSTRACT

Search personalization is an important technique for improving search

performance. Existing approaches work in a black box, where users have no clue on

how it works and how to customize it. This lack of user control and flexibility can

often be inconvenient and counter-productive. In this thesis we propose SPEAR, a

transparent search personalization framework that enables full user control and

manipulation. In SPEAR, a user can own multiple profiles and each can be modified

arbitrarily. Profile terms can be manually entered or automatically generated from

search history or social network feeds. Furthermore, the terms can be automatically

expanded by adding their semantically related derivatives. Negative terms are

allowed for specification of negative preferences, which can be very useful in filtering

out undesirable results. The in-use profile will help re-rank search results based on

how consistent they are with respect to the profile. We implement SPEAR in the

context of a Web search using Google Web search API and Facebook Graph API,

demonstrating the promise and potential of the approach.

xi

CHAPTER 1

INTRODUCTION

With wide availability and popularity of the Web, the digital information generated

by the world is growing at an exponential rate. In 2000 alone, the world produced

an estimated 1.5 exabytes1 of digital information. In 2011, that number grew to a

staggering 1.8 zettabytes2 of new digital information produced [Gantz and Reinsel,

2011]. That is a 100,000% increase in just over 10 years. This rate of increase is

expected to continue in the next decade.

1.1 Information Overload and Search Ambiguity

The unprecedented growth of digital resources across the Web has resulted in

information overload. The overwhelming amount of information has become

increasingly unmanageable and created a “poverty of attention and a need to

allocate that attention efficiently” [Simon, 1971]. Information overload presents new

challenges that continue to draw increasing attention from the information retrieval

and data mining communities hoping to innovate new techniques to tackle these

new challenges [Dou et al., 2007; Jeh and Widom, 2003a; Ma et al., 2007; Micarelli

et al., 2007; Pretschner and Gauch, 1999; Radlinski and Dumais, 2006; Shen et al.,

2005; Sieg et al., 2007; Speretta and Gauch, 2005].

Web searches are constantly challenged by the information overload problem.

11 exabyte = 1018 bytes
21 zettabyte = 1021 bytes

1

Query terms are inherently ambiguous due to polysemy and most queries are short

[Jansen et al., 2000]. Thus, queries are prone to ambiguity of user intent or

information needs, resulting in retrieval of many irrelevant documents. As the Web

grows exponentially, ambiguity becomes very common and users are in greater need

of effective means of disambiguation.

The ambiguity problem can be observed when searching for individuals on the

Web. For example, there are 17 entries in Wikipedia for different renown individuals

under the same name of “Jim Gray”, including a computer scientist, a sportscaster,

a zoologist, a politician, a film director, a cricketer, and so on [Anastasiu et al.,

2013]. Similarly, a search query for “Michael Jordan” may refer to the legendary

basketball player with six NBA championship titles. It may also refer to a very

famous computer scientist. When issuing a query in Google for this famous name in

computer science, the first relevant document is his profile page at UC Berkeley

which is found in page three ranked 23rd in overall search results.

1.2 Search Personalization

Search personalization is one of the effective ways to address the search ambiguity

problem. Search personalization allows tailoring and fine-tuning of search results

based on individual preferences. Search personalization usually involves building a

profile for users resulting in a more accurate search result based on the user’s

preferences. Search personalization has become one of the hot topics in the

information retrieval (IR) research community [Dou et al., 2007; Jeh and Widom,

2

2003a; Ma et al., 2007].

Most researches on search personalization make use of techniques that

automatically build search profiles from a user search history [Jiang et al., 2011; Liu

et al., 2002; Radlinski and Dumais, 2006]. Currently, major Web search engines

such as Google3 and Yahoo!4 also provide personalized search services. Search

personalization techniques used by these major Web search engines typically work

in a black box by building user profiles from user search history [Jiang et al., 2011;

Liu et al., 2002; Radlinski and Dumais, 2006]. This lack of user control and

flexibility can often be inconvenient and counter-productive. For example, such

profiles usually capture long-term preferences and would fail to produce good results

for short-term information needs [Bennett et al., 2012b; Zamir and Etzioni, 1998].

In addition, multiple categories of preferences, if used together, would compete and

work against one another for a particular query, given that queries are inherently

and increasingly ambiguous.

1.3 The SPEAR Approach

We introduce a novel approach in search personalization that is transparent and

allows full user control and manipulation. The Search personalization with editable

profiles (SPEAR) framework personalizes search results by using one of many user

based profiles maintained by users. A profile in SPEAR is a logical category that

represents some specific area of interest, usually represented by a set of terms. The
3https://history.google.com
4http://myWeb.yahoo.com

3

Figure 1.1: A sample search in SPEAR

terms in a profile are phrases that specify user interests. Some examples of profile

terms are “car”, “basketball”, “movie theater” and so on. SPEAR re-ranks results

retrieved from a search provider by comparing the result documents with the user’s

profile.

Figure 1.1 shows a screenshot of a search instance in which a user issues a

query for “Michael Jordan” using a science profile and SPEAR re-ranks results

about “Michael Jordan” the computer scientist higher than its original rank.

There are various challenges when implementing a transparent search

personalization approach.

The first challenge is how to build the search personalization profiles. It will

4

be very difficult for a user to list all preferences and interests. To solve this

challenge, SPEAR uses multiple alternative ways to collect user interests to reduce

the burden on a user on listing each and every interest. In addition to building

profiles from direct user input, SPEAR also provides a way to automatically build

profiles from search history and from user’s social network feeds.

Furthermore, a specific interest can be expressed in many different ways with

different terms. An example would be an interest in “cars”. This interest can be

expressed with terms like “cars”, “auto”, “automobile”, “track”, “Vehicle” and so on.

When building profiles, the system needs to handle different terms that express the

same interest. To solve this problem, SPEAR expands terms to include semantically

similar derivatives. The automatically generated semantically similar terms, have

proven to comprehensively capture user preferences with less input from the user.

Another challenge is how to make profiles easily manageable by users. When

giving users full control of profiles, managing large number of profiles and profile

terms might be overwhelming. SPEAR provides robust filtering and sorting user

interface that makes managing large set of data manageable. SPEAR also provides

two levels of profile management; basic profile management and advanced profile

management. The basic profile management provides an interface for basic profile

management tasks like adding and removing profiles, whereas the advanced profile

management provides advanced features like controlling how semantically similar

terms are generated and managing stop-words. The basic profile management

makes the application attractive for a larger audience while the advanced profile

5

management provides advanced features for more savvy users.

After a profile is built, the next challenge is how to make use of the profile.

The basic approach will be trying to compare the search profile with search result

documents. Coming up with a comparison algorithm that will use the profile and

produce better results is a challenge. If we just use an approach where the algorithm

favors only results that contain profile terms, it might have undesirable effects where

non-relevant documents that just contain profile terms are ranked higher.

To solve this problem, SPEAR implements an algorithm that builds an

inverted index from the profile terms and performs a cosine similarity with the

result set following the vector space model approach. The algorithm also takes into

account the original global ranking returned by the search provider when producing

the new ranking.

SPEAR breaks the black box approach widely used in search personalization

techniques and exposes the personalization engine to users. By following a

transparent approach in search personalization and giving users full control of how

profiles are built, SPEAR has introduced new important features in search

personalization.

In SPEAR, users can quickly build a functional profile by adding weighted

terms. This is helpful in capturing user’s short-term interest [Bennett et al., 2012a;

Zamir and Etzioni, 1998] where the traditional technique fails as it would take time

for such a system to learn user preferences. SPEAR also solves the lack of flexibility

exhibited in the commonly used search personalization techniques by providing a

6

framework where users can create and maintain multiple profiles. Users get to select

an appropriate profile when performing a search. Users can also specify a default

profile, minimizing the level of effort required to use the system.

In SPEAR, users can specify negative preferences by assigning negative weight

to terms. Term weights range from -10 to 10, where 10 being most favored and -10

least favored. Search results containing the most positively weighted terms will be

promoted whereas search results with negative terms will be penalized and are

ranked lower.

SPEAR uses three methods to collect data and build users search profiles

resulting in more comprehensive profiles that capture the users’ preferences better.

1. Direct user input - Users in SPEAR can enter individual profile terms to the

system using the profile management interface. When adding individual profile

terms, users get to assign the associated weight for the term. The weight

measures the importance of a given profile term. As it might be impractical

for users to add all important terms into a profile, SPEAR helps by expanding

terms to include semantically similar derivatives using a lexical database.

2. From social network feeds - In the last decade, social networks have evolved to

become an integral part of the Web. Social networks represent logical groups

of people that share similar characteristics like background, profession,

physical location, interest and more. This logical grouping of people with

similar characteristics can be harvested to provide better personalized results

7

for users. Hypothetically, results that are relevant for a member in the group

will most likely be relevant for others in the group as members share

similarities which can translate to similar search result preferences. SPEAR

has a feature to retrieve feeds from a social network to build out search

profiles.

3. From a user search history - SPEAR also supports the traditional way of

building profiles automatically from user’s search history. SPEAR also gives

users control over the automatically generated profile.

In summary, SPEAR introduces a novel approach for search personalization that is

transparent and is mainly based on editable profiles that are controlled by users. To

demonstrate and validate this approach, SPEAR implements all techniques and

algorithms discussed as a Web search application utilizing Google search provider

and Facebook graph API as a social network feed provider.

8

CHAPTER 2

BACKGROUND

2.1 Information Retrieval

Information retrieval (IR) is defined as finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from within

large collections (usually stored on computers). The keyword “Unstructured”, in

this definition, describes the nature of text documents ranging from Web pages to

user files involved in information retrieval [Manning et al., 2008]. This distinguishes

information retrieval from accessing data in structured relational databases.

Information retrieval may apply data mining concepts like clustering and

classification to structure documents or document results based on the user’s

information need.

Information retrieval systems can be categorized based on the document

collection size to be searched. Web Search deals with documents available in the

ever-growing Web. For Web search, scalability is an important aspect where the

system should be able to serve millions of users searching from billions of documents

available on the Web. Web search also needs to consider the structure of HTML

documents to link and evaluate relevance of documents. Personal Search provides

instant search for users searching their own personal data stored locally as

document files or remotely as email and cloud data. There are information retrieval

systems that provide search results from a specific domain or enterprise network.

9

This kind of information retrieval systems are similar to Web search but the

document collection size to be searched are fewer compared to a Web search.

Figure 2.1: Inverted index construction1

At the heart of an information retrieval system is an inverted index, the key

data structure supporting efficient query processing. An inverted index consists of a

dictionary, alphabetically sorted terms, and postings, a collection of postings list.

Each term in a dictionary will point to a posting list. A posting list contains all

1image courtesy of http://nlp.stanford.edu

10

documents that contain a term in the dictionary. Figure 2.1 illustrates how to build

an inverted index. Building an inverted index can be divided into four steps.

1. Identifying the documents to be indexed.

2. Tokenizing the documents by creating a list of terms from each document.

3. Linguistic preprocessing on the list to reduce the list keeping only important

terms. Tokenization, removing stop-words, normalization, stemming and

lemmatization are some of the main techniques used to produce a list of

normalized tokens.

4. Generate the inverted index by creating the dictionary and the posting.

Detailed information on how to build inverted indexes for an information retrieval

model can be found in Goker and Davies [2009] and Manning et al. [2008].

2.2 Vector Space Model

An information retrieval model specifies details of document representation, query

representation and retrieval function of an information retrieval system. Boolean

model and vector space model are the two popular retrieval models. A Boolean

information retrieval model is based on a set theory where all documents containing

query terms are returned. Boolean information retrieval systems lack ranking of

query results. Any document that satisfies the Boolean query will be returned in a

non-ordered format. This is not ideal, especially when searching large number of

documents as is the case in a Web search. Users may have to go through thousands

11

of documents to find relevant documents as results are not ranked based on

relevance. A Boolean information retrieval model is an exact-match model where

only documents that satisfy the Boolean query are returned.

The Vector space retrieval model addresses the main problems mentioned as

limitations of the Boolean information retrieval model. This includes:

• Being able to process a free text query instead of just returning exact-match

documents.

• Being able to rank the search results instead of just returning matching

documents.

The document representation in a vector space model supports saving the frequency

of terms in each document. This change in document representation introduces

ranking to the information retrieval model by promoting documents containing

higher frequency of query terms.

Some of the most important concepts in a vector space retrieval model include:

• A term frequency denoted by tft,d is the number of occurrence of a term t in

document d

• A document frequency denoted by dft is the number of documents in the

collection that contains the term t

• An inverse document frequency denoted by idft is given by the formula

idft = log |N |
dft

, where |N | is the document collection size

12

The term frequency is clearly important for weighting a document against a specific

term. A document with high term frequency will be more relevant than a document

with lower term frequency for a given query. On the other hand, a document

frequency has an inverse relation to the weight of a document with respect to the

term. A document that contains a less frequent query term will be more relevant

than a document containing a more frequent common query term. For example if

we consider the search query “year BMW” in context of a Web search, we want to

rank documents that contain the term “BMW” more relevant than documents

containing the term “year”, as there will be a lot of documents containing the term

“year” making “BMW” the more selective keyword in the query.

The inverse document frequency quantifies this inverse relationship between

the document frequency and the term weight. The log function is used to dampen

the inverse effect of the document frequency on the weight. By combining the two

weighting schemas, tft,d and idft, we can introduce a comprehensive weighting

scheme tf-idft,d given by the formula

tf − idft,d = tft,d × idft

The tf-idft,d represents the weight of the term t in the document d. With a

weighting schema in place, we can represent a document as a vector where the

dictionary terms representing each dimension.

~V (dj) = w1,j~t1 + w2,j~t2 + w3,j~t3 + ...+ wi,j~ti

where wi,j is the weight of the term ti in document dj.

13

This weight is usually calculated using the tf-idf scheme. This way of

representing documents as vectors of term weights is refered in information retrieval

as vector space model. Similarity between two vectors can be calculated by

measuring the angle between them. If we have two vectors, ~a and ~b , the dot

product between the two vectors is given by the formula

~a.~b = ‖~a‖‖~b‖ cos θ

In the above equation, θ represents the angle between the two vectors. The two

vectors are said to be similar when the angle between them is small. In the case

when the two vectors are identical, the angle between them is 0 and hence cos θ will

be 1.

From this observation; we can see that cos θ measures the similarity between

the two vectors.

similarity(~a,~b) = cos θ = ~a.~b

‖~a‖‖~b‖

We can think of a query as a bag of words represented in a vector form.

~V (q) = w1~t1 + w2~t2 + w2~t2 + ...+ wi~ti

where wi is the weight of a term ti in the query. The weight of a term in a query is

usually calculated taking the idf of the term in the document collection. After the

query is represented as a vector, cosine similarity between the query vector and each

document in the collection can be calculated.

similarity(~q, ~dj) = ~q.~dj

‖~q‖‖~dj‖

14

We can then rank search results based on their cosine similarity value. Documents

with high cosine similarity when compared with the query vector will be ranked at

the top.

2.3 Information Retrieval System Evaluation

To evaluate the effectiveness of an information retrieval system, there are

methodologies developed to measure the effectiveness quantitatively. Information

retrieval system evaluation usually utilizes the relevant or irrelevant property of a

document in a search result set. A document is said to be relevant in the search

result set if it satisfies the user’s information need. In unranked systems, an

information retrieval system evaluation model will classify information retrieval

systems that return more relevant documents as more effective. With ranked

information retrieval systems, we also need to consider where in the search results

the relevant documents are ranked.

There are two key attributes used in information retrieval system evaluation

that are used to measure the effectiveness of the system. Precision of an

information retrieval system quantifies what fraction of the returned results is

relevant to the information need.

Precision = Number of relevant items retrieved

Number of retrieved items

Recall on the other hand measures what fraction of the relevant documents in the

15

collection is returned by the system.

Recall = Number of relevant items retrieved

Number of relevant items

Ideally we want an information retrieval system with a very high precision and

recall. In reality, these two attributes of an information retrieval system are

inversely proportional.

An information retrieval system that returns all documents in the collection

will have the highest recall. Whereas an information retrieval system that does not

return any result will have the highest precision value. Clearly precision or recall

alone does not give a good measure for an information retrieval. Hence, precision

and recall need to be used in combination when measuring an information retrieval

system.

F measure is a single measure that uses the weighted harmonic mean of a

precision P and recall R.

F = 1
α 1
P

+ (1− α) 1
R

= (β2 + 1)PR
β2P +R

, where β2 = 1− α
α

The value of β in the F measure indicates whether precision or recall is given more

emphasis. When β > 1 then it indicates that more emphasis is given to the recall.

While β < 1 in the F measure formula indicates emphasis being given to precision.

In the special case where equal emphasis is given for both precision and recall, β

will have a value of 1 and the F measure formula can be reduced to

Fβ=1 = 2PR
P +R

16

Figure 2.2: Precision/recall graph 2

Precision, recall and the F measure are used to measure the quality of an unranked

system. In ranked systems where usually results are returned in a top k fashion,

precision and recall are calculated for each set. The precision-recall curve is a

graphical representation of the precision and recall values collected from each set.

As seen from Figure 2.2, the precision-recall curve contains sets of points with the

same recall followed by a sharp increase in precision. This is due to the fact that

when adding one more irrelevant document to a result set, the precision suffers

whereas the recall remains unchanged. The interpolated precision is given as

pinterp(r) = max
r‘≥r

p(r′)

simplifies the precision-recall curve graph where for a given recall, only the highest

precision value for all recall values greater or equal to the give recall value is

considered.

The Interpolated precision measures precision at all recall levels. For a lot of
2image courtesy of http://nlp.stanford.edu

17

information retrieval applications, especially for Web searches, this might not be a

very important measure as what matters to users is how many good results appear

on the first few pages. This quality of information retrieval systems is referred as

precision at k. Precision at k measures precision at fixed low level of retrieved

results. The levels used usually range from 10 to 100. Precision at k measure has an

advantage on large data sets as it doesn’t require knowledge of the size of all

relevant documents.

Similar to precision at k, there is a similar measure for recall that measures the

recall values at fixed low level of retrieved results. This measure is known as recall

at k. This is a good measure for Web search applications as it shows the percentage

or retrieved documents on the first couple of pages which is important to users.

Another common measure used to measure ranked retrieval systems is the

Mean Average Precision (MAP). MAP is calculated by averaging the precision over

a number of queries. The average precision in each query is calculated by summing

up precisions at each relevant document retrieved and dividing it by the number of

relevant documents retrieved. When there are no relevant documents retrieved, the

precision assigned a value 0. Since MAP only considers precision points where a

new relevant document is retrieved, it is sometimes called “average precision at seen

relevant documents”.

MAP = 1
N

N∑
j=1

1
Qj

Qj∑
i=1

P (doci), where

Qj is the number of relevant documents for query j

N is the number of queries over which the average precision is going to be calculated

18

P(doci) is the precision at the ith relevant document

2.4 Semantic Similarity

Semantic similarity between terms measures the likeness of the meaning between

terms [Fellbaum, 1998; Miller, 1995]. Synonyms represent a group of words that

have similar meaning or according to the semantic similarity definition, words with

high semantic similarity value. Since a typical language has more than one way of

expressing intent, understanding and applying semantic similarity analysis is an

important aspect of an information retrieval system. For example, when a user

searches for “car”, a good information retrieval system needs to understand the

intent of the query and include results for “automobile” automatically.

In SPEAR, search profile terms are automatically expanded to include top

semantically similar terms in the search profile. This will help build a better profile

with little direct input from the user by expanding the search personalization profile

to include concepts similar to what is directly entered by the user.

WordNet3, which is a large lexical database of English language, groups words

into sets of synonyms which are interlinked to form a semantic similarity tree. In

SPEAR, we consider synonyms and “synonyms-of-synonyms” of a word. Based on

user preference, either only synonyms or synonyms and “synonyms-of-synonyms”

are used to expand user profile terms.

3http://wordnet.princeton.edu

19

CHAPTER 3

LITERATURE SURVEY

With the exponential growth in digital data generated by the world, the need for

search engines to dig through this huge amount of data to provide relevant

documents is very apparent. As a result, Web search engines have become an

integral part of the Web. Despite their popularity, Web search engines commonly

provide a “one size fits all” solution with a global ranking algorithm [Allan et al.,

2003]. For example, the Google search engine uses page rank algorithm [Page et al.,

1999] that exploits the linkage structure of the Web to compute global “importance”

score. There have been efforts to extend the page rank algorithm to create a

personalized view of the Web, redefining importance according to user preference.

But it is noted that, it is extremely difficult to realize this approach in practice

because of the enormous size of the Web and how the page rank algorithm works

[Jeh and Widom, 2003b].

Although, using a global ranking algorithm produces good results in general, it

lacks or has inadequate support for personalized results specific to individual users

preferences [Maeda et al., 2000].

3.1 Search Personalization

Search personalization is a technique used to filter and re-rank search results using

personalization data that is collected implicitly [Dou et al., 2007; Jeh and Widom,

2003a; Ma et al., 2007; Micarelli et al., 2007; Pretschner and Gauch, 1999] or

20

explicitly [Noll and Meinel, 2008]. Implicitly collected personalization data includes

users search history [Matthijs and Radlinski, 2011], users click through and any

personalization data collected in the background. Explicitly collected

personalization data includes documents marking with relevant or irrelevant tags

and search profiles that are built and maintained explicitly by users. When building

personalization profiles implicitly from users search history, there is usually a

concern about violating users privacy [Qiu and Cho, 2006; Shen et al., 2005; Sieg

et al., 2007; Speretta and Gauch, 2005; Sun et al., 2005]. By giving users the power

to remove and add search personalization data, we can achieve a transparent system

where users have full control.

There has been a lot of effort from the research community to study and

propose innovative ways to provide personalized search results for users [Bao et al.,

2007; Jeh and Widom, 2003a]. The challenge in designing a search personalization

system is that, it is very difficult to accurately capture users’ interest as it is

somewhat a moving target. A user’s information need for a given query may vary

depending on where and when the user issued the query.

For example, a user might issue a search query for “mouse”. The search results

may contain resources about a computer peripheral “mouse” or it could be about

the small mammal “mouse”. If we are using a search profile and we know that the

user is interested in Biology, we may rank search results about the small mammal

“mouse” higher. However, what if this user who is interested in Biology is shopping

for a computer at the time when the search query is issued? So when building a

21

search profile for search personalization, it is very important to capture both

short-term and long-term interests [Bennett et al., 2012a].

Most of the researches on search personalization focus on search

personalization techniques that use implicitly collected data [Sugiyama et al., 2004;

Teevan et al., 2005]. In fact, popular search engines like Google and Yahoo follow

this approach to provide personalized search results for their users. The implicitly

collected data is usually users search history. With this approach, the search engine

collects users search history by capturing the query submitted and links that are

clicked. When a user issues a query, the URLs previously clicked on by the same

user for the same query are promoted [Dou et al., 2007; Matthijs and Radlinski,

2011].

Although, this approach has the advantage of not requiring a lot of effort from

the user, it has some drawbacks due to the lack of control on profiles. Profiles

constructed with this approach usually capture long-term preferences and would fail

to produce good results for short-term information needs [Bennett et al., 2012a;

Zamir and Etzioni, 1998]. Moreover, the profiles built with these techniques fail to

systematically or manually capture users’ negative preferences which can be very

useful in filtering out undesirable results. These techniques also lack flexibility to

accommodate users’ interest changes as they provide only one search profile per user.

There have been more researches on search personalization approaches that use

implicitly collected data than researches involving search personalization approaches

that use explicitly collected data [Noll and Meinel, 2008]. Noll and Meinel’s

22

approach to Web search personalization consists of social bookmarking and tagging.

In this approach, a user will explicitly bookmark important links. A user also gets

to tag these resources with keywords. The bookmarks and tags are then used to

re-rank search results. Although, this approach has user-controlled bookmarks and

tags, it does not support negative preferences. It also does not have a way to

automatically expand keywords. SPEAR addresses these two concerns by means of

negative weights for terms and automatically adding semantically related terms.

3.2 Social Search

Millions of users around the world have integrated social networking sites into their

daily routines [Backstrom et al., 2006]. Social networks represent connections

among people that share similarities. Individual and group behaviors can be mined

from social networks. This provides a great opportunity for many researchers in

various fields.

A social graph represents a social network as a graph. In which, the vertices

represent the users and the edges on a social graph represent the relationships

among users [Ugander et al., 2011]. Social search uses the power of social networks

to provide a personalized search result to users [Bao et al., 2007; Carmel et al.,

2009; Noll and Meinel, 2008].

The collaboration in social search can be explicit or implicit. Users can

explicitly annotate results and the annotations are used to re-rank results [Bao

et al., 2007]. Search results clicked by users are collected and are used to personalize

23

search results of other users in the social circle. A profile can also be constructed

from users’ social network feeds. Users’ social network feeds include resources

shared by other users in the social graph or direct posts made by the user.

The authoritative power of a specific resource depends on how popular the

resource is in the social network. One of the challenges in search personalization

using user’s profile is how to handle a query request issued for the first time outside

the user’s profile domain knowledge. This problem can be solved by using social

networks to build search personalization profiles that derive unlearnt preferences

from other users.

24

CHAPTER 4

THE SPEAR APPROACH

The SPEAR approach for search personalization requires designing and

implementing a Web application with a back-end database. The framework utilizes

Google search API and Facebook graph API. Google and Facebook are selected for

their popularity. The implementation is independent of the search and social

network feed providers. SPEAR can be easily adapted to other providers. The

quality of SPEAR is measured using standard information retrieval system

evaluation measures discussed in section 2.3 (Information Retrieval System

Evaluation). This section will discuss the architecture of SPEAR and its modules.

4.1 SPEAR Architecture

The SPEAR design consists of five functional modules, the profile management

module, the query processing module, the search history module, the social network

feed module and the personalization module. When a user issues a search query q to

SPEAR, the query processing module makes an API call to the search provider1 and

retrieves multiple paged results. The results returned from the search provider are

aggregated and passed to the personalization module. If the user has the “Extract

Terms from Search History” setting enabled, the search query q is passed to the

search history module. After applying stop-word removal, the search history module

generates a set of terms t and passes it to the profile management module. If a

1Google search provider is used for demonstration and it returns a maximum of 64 search results.

25

Query
Processing

Module

Personalization

Module

Terms t

Results r
Re-Ranked

Results r’ Query q

Search

History
Module

Social
Network

Feed Module

Terms t

Profile

Management

Module

Profile p

Retrieve feed f

r e

Figure 4.1: SPEAR functional modules

profile p is selected when issuing the search query, the profile management module

constructs an inverted index from the selected profile using term weights.

In SPEAR, profiles are constructed from three sources. If the social network

integration setting is enabled for the user, the social network feed module will

retrieve live feeds from the social network linked to the user account. The social

network feed module then cleans the data by applying stop-word removal and

constructs an inverted index from the feeds. Then the top ranked terms t are passed

to the profile management module. Users also contribute to the profile construction

directly by adding, modifying and deleting profile data. The profile management

module provides the user interface and functionalities needed to manipulate and

manage profiles.

The personalization module takes the search results r and the profile data p

26

generated by the profile management module to produce a new ranking. Search

results are re-ranked and a new search results r’ are generated by doing a cosine

similarity analysis between the search results r and profile data p.

4.1.1 Profile Management Module

The profile management module provides a way to create and manipulate profiles.

A profile is a logical category that represents some specific area of interests. An

example can be a “Science” profile. A user in SPEAR can have multiple profiles and

can select a specific profile when performing a search. A profile contains terms,

which are specific topics that a user likes or dislikes. A user can choose an initial

weight for a term, which can range from -10 to 10. Documents containing terms

with higher weight are ranked higher. A negative weight for terms indicates that the

user would prefer to rank search results that contain the term lower.

When creating a profile, the user will get to choose to either extract profile

terms from a social network or from a search history. When adding terms to a

profile, SPEAR automatically adds semantically related terms with a distance

threshold of 1 to the profile. The weight of these automatically added terms depend

on their distance from the main term in a semantic similarity tree. i.e. if a term t

has a weight w, then the weight of a semantically related term t’ at distance of h

from t in the semantic similarity tree will have a weight of w’, where w’ is given by

the formula

w′ = w

h

27

In SPEAR, profiles are constructed from three sources.

1. Direct users input - a user in SPEAR can enter individual profile terms to the

system using the profile management interface. When adding individual

profile terms, the user gets to assign the associated weight for the term. The

weight measures the importance of a given profile term. In the advanced

profile management section, the user can configure how the application

automatically adds semantically similar terms.

2. Social network feeds - SPEAR has a feature to retrieve feeds from a social

network to build profiles. If a user has the social network integration setting

enabled, the SPEAR system automatically gets feeds from the user’s social

network and updates the profile. For demonstration purpose, SPEAR

supports integration with Facebook social network. The advanced profile

management section in SPEAR lets a user define a profile level set of

stop-words. When analyzing a feeds from a social network, SPEAR applies

the set of stop-words and constructs an inverted index from the feeds using

the lucene indexing framework. The weight of a term t in a social network

post p is calculated based on the weighting formula

wtp = tftp × log
(

#likesp + #commentsp
dp

)
, where

wtp is the weight of the term

tftp is the term frequency of the term in the post

#likes is the number of likes of the post

28

#comments is the number of comments of the post

dp is the distance of the owner of the post from the user in the social graph

The term weighting formula used tries to capture the most frequent terms in

popular posts from close friends. Popularity in a social network post can be

determined by the number of “likes” and “comments” the post receives. The

log function is used to dampen the effect of the number of “likes” and

“comments” on the term weight. After the weight for each term has been

calculated, then most important terms with higher weights are added to the

profile.

3. Users search history - SPEAR also supports a way to build profiles

automatically from a user’s search history when the setting to extract search

history is enabled. When extracting profile terms from users search history, an

inverted index is constructed from the search history after removing

stop-words. The frequency of the term in the inverted index is taken as the

weight of the term in the profile.

The profile management module combines the profile terms from the three sources

to generate a search profile. A vector is constructed from terms in the profile along

with their weight. Then, the constructed vector is passed to the personalization

module to re-rank search results.

29

Figure 4.2: Profile page anatomy

1. Add profile - This presents users with an interface to add a new search profile.

2. Profile name - Profiles have unique names that will identify them. The names

are entered when creating a new profile and can also be changed later.

3. Profile privacy setting - This setting allows users to control the privacy of

their profiles. When profiles are marked as private, they are not shared by

other users.

4. Social network integration - When Facebook integration is enabled, profile

terms are extracted from the social network feeds.

5. Search history tracking - When users enable this setting, SPEAR will analyze

users’ search history and uses the information extracted to build search

profiles.

6. Manage profile link - This takes users to a page where they can add, edit or

delete profile terms.

30

7. Delete profile - Users can delete profiles that they don’t need any more.

Deleting a profile removes the associated terms and stop-words.

8. Save changes - All user interfaces in the profile management module implement

transactional changes. Save changes commits changes made to profiles.

9. Cancel changes - All user interfaces in the profile management module

implement transactional changes. Cancel changes rolls back changes made to

profiles.

The Profile Management Module consists of three main sections.

1. Profiles Management Section - In this section, SPEAR provides a user

interface for adding, deleting and modifying profiles. SPEAR maintains a

transaction for user changes applied to profiles. Changes will be committed

only when the “Save changes” command is issued. Changes can be rolled back

by issuing a “Cancel changes” command.

2. Profile Detail Section - The profile detail section provides a user interface for

managing profile terms. A user can add, delete, modify or mark terms as

stop-words.

3. Advanced Profile Settings Section - The advanced profile settings section

provides a user interface for controlling the advanced features in SPEAR. The

advanced features include controlling the distance threshold for semantically

generated terms and managing stop-words.

31

4.1.2 Social Network Feed Module

The social network feed module is responsible for extracting feeds from users’ social

network. In order for SPEAR to be able to extract feeds, users need to link SPEAR

with their Facebook account. This can be done by either logging in to SPEAR with

a Facebook account or by adding Facebook account information in SPEAR’s user

account information section. SPEAR periodically scans users’ social network to

retrieve new feeds. New feeds are retrieved using the Facebook graph API2. SPEAR

analyzes the feeds and extracts important terms. Stop-words are used to remove

common terms and an inverted index is built from the feeds. SPEAR creates an

inverted index using lucene 3 by assigning weights according to the formula.

wtp = tftp × log
(

#likesp + #commentsp
dp

)
, where

wtp is the weight of the term

tftp is the term frequency of the term in the post

#likes is the number of likes of the post

#comments is the number of comments of the post

dp is the distance of the owner of the post from the user in the social graph

The formula favors resources that are popular in the user’s social network. Once the

terms are ranked according to their weight, the highest ranked terms are passed to

the profile management module to be added to the user profile.

2https://developers.facebook.com/docs/graph-api
3Lucene is an open-source project for indexing and searching documents. More information

about lucene is found at http://lucene.apache.org/

32

4.1.3 Query Processing Module

The query processing module takes a query q and gets Web search results using a

search engine (e.g. Google). For better performance, the search API is accessed

from the client side using JavaScript instead of executing the search on the server

side and returning the result to the browser. If no profile is used, then the result

returned from the search engine is directly displayed to the user. On the other

hand, if a profile is used, then the personalization module takes the search results

along with the profile data and returns the re-ranked results.

4.1.4 Search History Module

The search history module takes a query q to generate profile terms. After removing

stop-words, the search history module normalize, stem and lemmatize query terms

using the lucene indexing framework to generate a set of terms t. The terms

generated are then passed to the profile management module to be added to the

user profile.

4.1.5 Personalization Module

The personalization module uses a tf-idf weighting scheme. A vector space model is

constructed from the search results by calculating the frequency of each term in the

selected profile within each document in the search results. Each search result’s

snippet and title forms the document content for each result. For the profile, the

weight of each term is used as the tf-idf weight of that term in the profile document.

33

The personalization module uses cosine similarity to find the similarity between the

profile and the search results. The results are re-ranked based on the similarity

score evaluated. The original document rank returned from the search provider is

considered by SPEAR when re-ranking results.

wdp = cosinesimilarity(d, p)× log |N |
dr

wdp is the new weight of a document d with respect to a profile p

p is the profile used

dr is the rank of the document in the original search results

N is the number of documents returned in the original search results

34

CHAPTER 5

SPEAR IMPLEMENTATION

SPEAR is implemented in a context of a Web search. A web search application is

built to demonstrate the approach. The Web search application will use a Google

search provider. The search personalization framework uses Facebook as a social

graph provider. As the re-ranking of the search results based on the user profile

needs to happen for each search request, performance is really important. The

similarity comparison algorithm is optimized to re-rank the results efficiently. In

this section, we will discuss the detailed implementation of SPEAR including

programming languages, databases, and frameworks used.

SPEAR is implemented as a client server solution with services using popular

Web technologies like WCF, ASP.NET, AJAX, JQuery, JSON and other similar

web technologies. SPEAR uses JavaScript for client side scripting. For server side

code, SPEAR implemented a Microsoft .NET solution with C# as the preferred

choice of programming language. For a local repository, SPEAR uses a database

that runs in Microsoft SQL Server 2008 Express Edition. An instance of SPEAR

application is installed on a Texas State University Computer Science Department’s

Web Server. The application is available at http://dh231b01.cs.txstate.edu/spear.

This Web site is accessible within the Texas State University network.

35

Figure 5.1: SPEAR database entity relationship diagram

5.1 Database Design

The design includes a database system that is used to store users’ information and

search profiles. The database design also supports a way to store search results and

36

relevance feedback from users. It contains nine tables which are related via different

relationships. The main database entities in the system include:

• SEARCH USERS - This entity represents SPEAR users. Users can create and

maintain one or more search profiles and friends.

• SEARCH PROFILE - The search profile is the most important entity in the

system. It represents the logical unit of users’ search interest. A profile groups

a list of terms that are important in the search context.

• SEARCH COMPARISON SYSTEM - The search comparison system entity

represents the various IR systems, including the SPEAR system, used in

evaluating the framework. The systems used to compare SPEAR include, the

Google search provider and the Google personalized search provider systems.

5.2 Object Relational Mapping

For object relational mapping, SPEAR uses ADO.NET Entity Framework. Entity

Framework allows mapping relational data using domain specific objects. This

approach eliminates the need to write SQL statements for most of the data access

layer. Entity Framework also removes the dependency between the domain specific

objects and the data access implementation details, making the choice of the

database used very flexible.

37

5.3 Web Services

SPEAR follows a service oriented client server architecture where the application

provides Web services for accessing and manipulating data. By removing the Web

layer from any data access code and exposing that functionality through Web

services, a separation of concern was achieved. This also produced a reusable service

that can be consumed from any client applications. There are two main Web

services that expose the data layer: Personalization service and CRUD service.

5.3.1 Personalization Service

The personalization service exposes functionalities that are related to SPEAR’s

personalization functions. This includes getting formatted search profile data,

generating semantically similar terms and so on. The service is implemented as a

WCF (Windows Communication Foundation) service that returns JSON serialized

objects. The WSDL (Web Services Description Language) for the service is found at

http://dh231b01.cs.txstate.edu/SPEAR/SearchProfileService.svc?singleWsdl. Some

of the important methods exposed through the Web service include:

• List<ProfileTerm> GetSelectedProfileTerms(int profileId, string queryTerm,

bool trackSearchQuery) - This method is called from the search page through

a JavaScript proxy class generated to access the Web service. It passes the

profileId that uniquely identifies the profile used along with the search query

terms. Then, the system builds a list of terms along with their calculated

weights. The list is then serialized as a JSON object and is returned to the

38

Web client.

• string TrackQueryTerm(int profileId, string queryTerm) - This method, as the

name suggests, adds a search query term to a user search profile.

• void UpdateFaceBookProfile(List<FaceBookFeed> feeds) - This method

accepts a list of feeds retrieved from Facebook for a user. The method

analyzes the feeds and extracts important terms.

5.3.2 CRUD Service

The CRUD service exposes create, update and delete functionalities for the SPEAR

data entities. This includes adding, updating and deleting profiles, profile terms,

stop-words and so on. The service is implemented as a WCF (Windows

Communication Foundation) Service that returns JSON serialized objects. The

WSDL (Web Services Description Language) for the service is found at

http://dh231b01.cs.txstate.edu/SPEAR/CRUDService.svc?singleWsdl. Some of the

important methods exposed through the Web service include:

• IEnumerable<SearchProfile> CreateProfile(IEnumerable<SearchProfile>

profiles) - This method creates a new profile.

• DataSourceResult ReadProfile(int skip, int take, IEnumerable<Sort> sort,

Filter filter) - This method returns a list of available profiles.

• string UpdateProfile(IEnumerable<SearchProfile> profiles) - This method

updates an existing profile.

39

• string DestroyProfile(IEnumerable<SearchProfile> profiles) - This method

deletes a profile.

• IEnumerable<StopWord> CreateProfileStopWord(IEnumerable<StopWord>

profileStopWords) - This method creates a new stop-word.

• DataSourceResult ReadProfileStopWord(int skip, int take,

IEnumerable<Sort> sort, Filter filter) - This method returns a list of available

stop-words.

• IEnumerable<StopWord> UpdateProfileStopWord(IEnumerable<StopWord>

profileStopWords) - This method updates an existing stop-word.

• string DestroyProfileStopWord(IEnumerable<StopWord> profileStopWords) -

This method deletes a stop-word.

5.4 Web Pages

The Web pages in SPEAR are built using ASP.NET. The ASPX files mainly define

the layout for the Web pages. They have the session validation server side code to

track the user’s identity. Most of the interactions on the page are handled with a

client side JavaScript that will call a WCF service for any server side actions.

40

CHAPTER 6

EVALUATION

The SPEAR evaluation involved generating test queries and performing standard

information retrieval system evaluation methods discussed in section 2.3

(Information Retrieval System Evaluation). For comparison purpose, test queries

were run in three systems: Google Non-Personalized, Google Personalized and

SPEAR. Results from each system were captured and stored in the SPEAR

database for analysis purpose. 11-point interpolated average precision, precision at

K, recall at K and MAP (Mean Average Precision) were calculated and analyzed to

compare SPEAR with the other systems.

• Google Non-Personalized - The Google Non-Personalized system was one of

the systems evaluated using the test cases. The Google Non-Personalized

system refers to the standard Google search available without logging in to the

Google system. It is also the same system that returns search results when

using Google search API. It returns search results based on a global ranking

algorithm. All users using Google Non-Personalized system will see the same

result when issuing same search queries.

• Google Personalized - The Google Personalized system was a comparable

system to measure SPEAR as it provides personalized search results. The

Google Personalized system is available for users with Google account who are

logged into Google when performing a search. Google tracks a user’s search

41

history. When a user requests the same search query, Google ranks results that

the user has previously visited higher. Although, we do not know the internals

of the search personalization algorithm used by Google, its behavior suggests it

is favoring links that a user has visited with a previous search. Logged in users

in Google can view their search history by going to the search settings page1.

The Google test account used for the Google Personalized search is an active

account that was created over 5 years ago. The account had over 9,960 Google

searches captured in the Google search history. The search categories in the

search history were diverse. Some search queries in the history were

informational queries like “Miami”, “Wedding” and so on. Others were

navigational queries like “Texas state university”, “Texas DMV” and so on.

There were also transactional queries like “download antivirus”, “purchase

data mining text book” and so on.

• SPEAR - An instance of the Web search personalization application that was

built to demonstrate SPEAR was installed on the Texas State University

Computer Science Department Web server2. A demo user account was created

with four profiles: Entertainment, Politics, Science and Sports. These profiles

were built with direct user inputs in less than five minutes. Each profile

contains about six terms on average. A complete list of the profiles used for

testing is shown in Table 6.1.

1https://history.google.com
2http://dh231b01.cs.txstate.edu/spear

42

Table 6.1: Test profiles

Profile Terms

Entertainment Actor, Artist, Band, Comedian, Grammy, Journalist, Movie, Music,

Oscar, Sing, Song

Politics Congress, Democrat, Election, Minister, Parliament, Politics, Republican

Science Biology, Computer, Graph, Machine, Physics, Research, Science

Sports Baseball, Basketball, Fifa, Football, MLB, NBA, NFL, Soccer, Sport

6.1 Test Cases

To collect feedback on the search results, SPEAR’s search interface was updated so

that a user can mark relevant documents and submit search results feedback.

Twenty test cases were run on the three different systems. The test case search

queries were selected from a pull of ambiguous popular people names3. Ambiguous

queries are important in measuring search personalization systems as they represent

more than one topic. The personalization module then tries to select the

appropriate topic based on the user’s profile.

3http://www.worldwideinterWeb.com/item/5548-pro-athletes-with-the-same-name-as-

celebrities.html

43

Table 6.2: Test cases

Search query Profile used Information need detail

Dave Clark Sports About a baseball player

Dave Clark Entertainment About a lead singer of a band

Tito Jackson Entertainment About a singer from Jackson five

Tito Jackson Politics About a politician

Dave Stewart Sports About a baseball player

Dave Stewart Entertainment About a singer from the 80‘s

Kevin McHale Sports About a basketball player and coach

Kevin McHale Entertainment About an actor

Allan Campbell Science About a biologist

Allan Campbell Sports About a rowing sports person

Ted Williams Entertainment About a homeless voice over artist

Ted Williams Sports About a baseball player

Davy Jones Entertainment About a musician

Davy Jones Sports About a baseball player

Mike Wallace Entertainment About a journalist

Mike Wallace Sports About an American football player

Adam Scott Entertainment About a TV star

Adam Scott Sports About a golfer

Michael Jordan Science About a person who is famous in machine learning field

Michael Jordan Sports About a basketball player
44

6.2 Results

After test queries were run and results were captured, graphs were plotted to

visualize and study the results. When analyzing results, the search results from

Google search API are considered as the document collection for the three systems

to be evaluated.

6.2.1 11-Point Interpolated Average Precision

Figure 6.1: 11-point interpolated average precision

Figure 6.1 shows the 11-point interpolated average precision graph for the

three systems: Google Non-Personalized, Google Personalized and SPEAR. We can

clearly observe that for each recall point in the recall axis, Google Personalized has

a higher precision value than Google Non-Personalized. We also see that SPEAR

has the highest precision value for each recall point compared to both Google

Non-Personalized and Google Personalized systems. When SPEAR re-ranks search

45

results from Google Non-Personalized system, it moves more relevant results to the

top, resulting in a higher precision for each relevant document retrieved.

6.2.2 Precision at K

Figure 6.2: Precision at K

Figure 6.2 shows the average precision at each top K items retrieved for the

three systems evaluated: Google Non-Personalized, Google Personalized and

SPEAR. K ranges from 5 to 50. From the graph, we can see the typical trend

observed in a Precision at K graphs where the precision is inversely proportional to

the number of documents retrieved. In a typical Web search, relevant documents

are usually found mostly in the first couple of pages. Due to this behavior, as more

documents are retrieved the proportion of relevant documents to the total

documents retrieved decreases.

From the graph, we can also observe that until K = 30, SPEAR on average

46

has a higher precision value compared to both Google Non-Personalized and Google

Personalized. Google Personalized has a slightly higher precision than Google

Non-Personalized. The result shows that, SPEAR brings more relevant documents

at the top compared to Google Non-Personalized. We also see that SPEAR

produces better personalized search results compared to Google Personalized.

For K ≥ 30 in the graph, all three systems start to converge and have more or

less similar precision values. This is due to the fact that the personalization

framework uses the same set of search results. SPEAR rearranges the search results

by bringing more relevant documents at the top and almost all relevant documents

are found within the first three pages. For K ≥ 30, all three systems have equal

number of relevant documents as they share the same document collection.

6.2.3 Recall at K

Figure 6.3: Recall at K

47

Figure 6.3 shows the average recall for the test case queries at each top K

items retrieved for the three systems evaluated: Google Non-Personalized, Google

Personalized and SPEAR. K ranges from 5 to 50. From the graph, we can see the

typical trend observed in a recall at K graphs where the recall is directly

proportional to the number of documents retrieved. Since recall is only concerned

with the percentage of the relevant documents retrieved, adding more documents

usually increases the recall until all relevant documents are retrieved.

From the graph, we can also observe that until K = 30, SPEAR on average

has a higher recall value compared to both Google Non-Personalized and Google

Personalized. Google Personalized has a slightly higher recall than Google

Non-Personalized. On the K ≥ 30 section of the graph, we can see that all three

systems start to converge to the maximum recall value of 1 as all relevant

documents are more or less retrieved.

6.2.4 MAP (Mean Average Precision)

Table 6.3: MAP values

MAP

Google Non-Personalized 0.4475

Google Personalized 0.5234

SPEAR 0.6504 Figure 6.4: MAP

48

Table 6.3 shows the MAP (Mean Average Precision) for the three systems. We

can observe that SPEAR has the highest mean average precision value whereas

Google Non-Personalized has the lowest. Google Personalized has slightly higher

mean average precision value than Google Non-Personalized.

6.3 Discussion

Test results show that SPEAR produces better personalized search results compared

to Google Personalized search results, demonstrating the potential of SPEAR.

Possible improvements to SPEAR include enhancing the profile terms

extraction from a social network. The approach used by SPEAR to extract profile

terms from a social network involves identifying most frequent terms in popular

posts from close friends. This approach is prone to mistakenly label irrelevant terms

as relevant just because they are frequent. Although, applying stop-word removal

when extracting terms from social network feeds reduces the amount of irrelevant

terms extracted, it is not a complete solution. A better approach could be trying to

summarize posts to capture important phrases using an approach similar to Sharifi

et al. [2010].

49

CHAPTER 7

CONCLUSION

With wide availability and popularity of the Web, the digital information generated

by the world is growing at an exponential rate. With this growth rate, the need to

deliver quality information to users has become the main focus of the information

retrieval community. There has been a lot of progress in providing quality search

results. Most of the work has been focused on implementing a global “one size fits

all” ranking algorithm. There has also been significant amount of work done in

providing personalized search results for users. These approaches, although

producing better results than their corresponding non-personalized versions, work in

a black box and are far from being perfect.

We propose SPEAR, a transparent search personalization framework that

gives users full control over how profiles are built. SPEAR also combines different

sources for users’ profile data generation. Being able to extract users’ preferences

from a social network is promising and can be studied in more detail in the future.

The SPEAR approach has produced very promising results and could be evaluated

and adopted on a larger scale. SPEAR’s ability to support negative preferences is

another promising direction that needs to be pursued.

50

APPENDIX A

SPEAR INSTALLATION AND ADMINISTRATION

This section explains how to install and administer SPEAR. The installation and

administration section lists the system requirements and describes how to install

SPEAR on a windows operating system.

Table A.1: SPEAR system requirements

Requirements

Operating System x86 or x64 Windows 7 (Professional, Enterprise and Ultimate), Any

edition of Windows 8, x86 or x64 Windows Server 2008 or above.

Processor Type x64 Processor: AMD Opteron, AMD Athlon 64, Intel Xeon with Intel

EM64T support, Intel Pentium IV with EM64T support

x86 Processor: Pentium III-compatible processor or faster

Processor Speed x86 Processor: 1.0 GHz or faster

x64 Processor: 1.4 GHz or faster

Memory 1GB or more

.NET Framework NET 4.0 or above installed on the system

Database Any edition of SQL Server 2008 or above.

IIS IIS 7 or above with WCF installed and configured

SPEAR is implemented to run in a windows environment. The application is

developed using Microsoft .NET Framework 4.0 and runs in a Windows Internet

51

Information Services (IIS) server. The system requirements to install and run

SPEAR are listed in Table A.1.

Steps to follow when installing SPEAR

1. Download the source code from

http://dh231b01.cs.txstate.edu/spear/source.zip

2. Extract downloaded source code to a local folder. E.g. C:\SpearSouceCode

3. Install the SPEAR database by opening the command prompt and running

the command, “sqlcmd -S myServer\master -i C:\SpearSouceCode\spear.sql”.

Where myServer refers to the instance of the SQL server you want to install

the SPEAR database to.

4. Go to the folder you extracted the source code to and edit the web.config file.

Update the “PersonalizedSearchEntities” connection string with a user

credential that has access to the newly created SPEAR database.

5. Check the database installation making sure the login used in the web.config

file has access to the SPEAR database. You can verify the database login by

running the command “sqlcmd -U UserLogin -S myServer\spear”

6. Open the command prompt and run msbuild command for the SPEAR

solution.

“msbuild C:\SpearSouceCode\PersonalizedWebSearch.sln

/p:Configuration=Release /p:DeployOnBuild=True

52

/p:DeployDefaultTarget=WebPublish /p:WebPublishMethod=FileSystem

/p:DeleteExistingFiles=True /p:publishUrl=c:\Spear”

7. Stop IIS by running the command “net stop WAS”

8. Install the SPEAR web application by running the appcmd add command.

E.g. To install SPEAR under the default web site, run “appcmd add app

/site.name:“Default Web Site” /path:/spear /physicalPath:c:\Spear”

9. Start IIS by running the command “net start W3SVC”

10. Check the installation by going to http://<yourhostname>/spear. For

example if SPEAR is installed under the “Default Web Site”, the URL will be

http://localhost/spear .

53

REFERENCES

Allan, J., Aslam, J., Belkin, N., Buckley, C., Callan, J., Croft, B., Dumais, S., Fuhr,
N., Harman, D., Harper, D. J., et al. (2003). Challenges in information retrieval
and language modeling: report of a workshop held at the center for intelligent
information retrieval, university of massachusetts amherst, september 2002. In
ACM SIGIR Forum, volume 37, pages 31–47. ACM.

Anastasiu, D. C., Gao, B. J., Jiang, X., and Karypis, G. (2013). A novel two-box
search paradigm for query disambiguation. World Wide Web, 16(1):1–29.

Backstrom, L., Huttenlocher, D., Kleinberg, J., and Lan, X. (2006). Group
formation in large social networks: Membership, growth, and evolution. In
Proceedings of the 12th International Conference on Knowledge Discovery and
Data Mining (KDD), KDD ’06, pages 226–231.

Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., and Su, Z. (2007). Optimizing web search
using social annotations. In Proceedings of the 16th international conference on
World Wide Web, WWW ’07, pages 501–510, New York, NY, USA. ACM.

Bennett, P., White, R., Chu, W., Dumais, S., Bailey, P., Borisyuk, F., and Cui, X.
(2012a). Modeling and measuring the impact of short and long-term behavior on
search personalization. In Proceedings of the 35th annual international ACM
SIGIR conference on Research and development in information retrieval, SIGIR
’12, pages 185–194.

Bennett, P. N., White, R. W., Chu, W., Dumais, S. T., Bailey, P., Borisyuk, F., and
Cui, X. (2012b). Modeling the impact of short-and long-term behavior on search
personalization. In Proceedings of the 35th international ACM SIGIR conference
on Research and development in information retrieval, pages 185–194. ACM.

Carmel, D., Zwerdling, N., Guy, I., Koifman, S. O., Har’el, N., Ronen, I., Uziel, E.,
Yogev, S., and Chernov, S. (2009). Personalized social search based on the user’s
social network. In Proceeding of the 18th ACM conference on Information and
knowledge management, CIKM ’09, pages 1227–1236, New York, NY, USA. ACM.

Dou, Z., Song, R., and Wen, J. (2007). A large-scale evaluation and analysis of
personalized search. In Proceedings of the 16th international conference on World
Wide Web, WWW ’07, pages 581–590.

54

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. MIT Press,
Cambridge, MA.

Gantz, J. and Reinsel, D. (2011). Extracting value from chaos. IDC iView, pages
1–12.

Goker, A. and Davies, J. (2009). Information Retrieval: Searching in the 21st
Century. Wiley.

Jansen, B. J., Spink, A., and Saracevic, T. (2000). Real life, real users, and real
needs: a study and analysis of user queries on the web. Information processing &
management, 36(2):207–227.

Jeh, G. and Widom, J. (2003a). Scaling personalized web search. In Proceedings of
the 12th international conference on World Wide Web, WWW ’03, pages 271–279.

Jeh, G. and Widom, J. (2003b). Scaling personalized web search. In Proceedings of
the 12th international conference on World Wide Web, pages 271–279. ACM.

Jiang, D., Leung, K., and Ng, W. (2011). Context-aware search personalization with
concept preference. In Proceedings of the 17th international conference on
Information and knowledge management, CIKM ’11, pages 563–572.

Liu, F., Yu, C., and Meng, W. (2002). Personalized web search by mapping user
queries to categories. In Proceedings of the 8th international conference on
Information and knowledge management, CIKM ’02, pages 558–565. ACM.

Ma, Z., Pant, G., and Sheng, O. (2007). Interest-based personalized search. ACM
Transactions on Information Systems (TOIS), 25:5:1–5:25.

Maeda, A., Sadat, F., Yoshikawa, M., and Uemura, S. (2000). Query term
disambiguation for web cross-language information retrieval using a search engine.
In Proceedings of the fifth international workshop on on Information retrieval with
Asian languages, pages 25–32. ACM.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press, Cambridge, MA.

Matthijs, N. and Radlinski, F. (2011). Personalizing web search using long term
browsing history. In Proceedings of the fourth ACM international conference on
Web search and data mining, pages 25–34. ACM.

55

Micarelli, A., Gasparetti, F., Sciarrone, F., and Gauch, S. (2007). Personalized
Search on the World Wide Web The Adaptive Web. In Brusilovsky, P., Kobsa, A.,
and Nejdl, W., editors, The Adaptive Web, volume 4321 of Lecture Notes in
Computer Science, chapter 6, pages 195–230. Springer Berlin / Heidelberg, Berlin,
Heidelberg.

Miller, G. A. (1995). WordNet: a lexical database for English. Commun. ACM,
38(11):39–41.

Noll, M. and Meinel, C. (2008). Web search personalization via social bookmarking
and tagging. pages 367–380.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: bringing order to the web.

Pretschner, A. and Gauch, S. (1999). Ontology based personalized search. In
Proceedings of the 11th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI ’99, pages 391–398, Washington, DC, USA. IEEE Computer
Society.

Qiu, F. and Cho, J. (2006). Automatic identification of user interest for
personalized search. In Proceedings of the 15th international conference on World
Wide Web, WWW ’06, pages 727–736.

Radlinski, F. and Dumais, S. (2006). Improving personalized web search using
result diversification. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’06,
pages 691–692, New York, NY, USA. ACM.

Sharifi, B., Hutton, M.-A., and Kalita, J. (2010). Summarizing microblogs
automatically. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
pages 685–688. Association for Computational Linguistics.

Shen, X., Tan, B., and Zhai, C. (2005). Implicit user modeling for personalized
search. In CIKM ’05: Proceedings of the 14th ACM international conference on
Information and knowledge management, pages 824–831, New York, NY, USA.
ACM.

56

Sieg, A., Mobasher, B., and Burke, R. (2007). Web search personalization with
ontological user profiles. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, CIKM ’07, pages
525–534, New York, NY, USA. ACM.

Simon, H. (1971). Designing organizations for an information-rich world.
Computers, communications and the public interest, Johns Hopkins Press,
Baltimore, pages 38–52.

Speretta, M. and Gauch, S. (2005). Personalized search based on user search
histories. In Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM
International Conference on, pages 622–628.

Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004). Adaptive web search based
on user profile constructed without any effort from users. In Proceedings of the
13th international conference on World Wide Web, pages 675–684. ACM.

Sun, J., Zeng, H., Liu, H., Lu, Y., and Chen, Z. (2005). Cubesvd: A novel approach
to personalized web search. In Proceedings of the 14th international conference on
World Wide Web, WWW ’05, pages 382–390.

Teevan, J., Dumais, S. T., and Horvitz, E. (2005). Personalizing search via
automated analysis of interests and activities. In Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 449–456. ACM.

Ugander, J., Karrer, B., Backstrom, L., and Marlow, C. (2011). The anatomy of the
facebook social graph. CoRR, abs/1111.4503.

Zamir, O. and Etzioni, O. (1998). Web document clustering: A feasibility
demonstration. In Proceeding of the 21th international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’98, pages 46–54, New
York, NY, USA. ACM.

57

