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Introduction 
The Balcones Escarpment in Central Texas is often referred to as “Flash Flood Alley” in part due 

to the topography, intense precipitation events, and other geophysical characteristics which lead 

to rapid runoff, high stream discharges, and fast on-setting flood events. Travis County’s seat, 

the City of Austin, Texas is one of many municipalities located along U.S. Interstate 35 which 

roughly follows the Balcones Escarpment through Central Texas. Along the Interstate 35 

corridor, municipal development is outpacing water resource planning, one component of which 

is flood mitigation and management. 

 

Figure 1: Illustration of the topographic relief contributing to Flash Flood Alley (Frech 2018) 

Historically, calculations that yield estimates of precipitation events assume that any given 

precipitation event is point-based in nature. In practice, precipitation event estimates have been 

formed from data collected at stations dispersed across the U.S. using long periods of record. 

These estimates act as design values allowing water resource managers to plan for the future. 

Combining climatological records and calculated precipitation estimates allows for the creation 



3 
 

of recurrence intervals which can help estimate the frequency of occurrence of precipitation 

events of certain magnitudes. Improvements in understanding the complexity of precipitation 

events allow for even more beneficial application of these design values.  

 

As many geophysical and meteorological variables including air pressure, humidity, temperature, 

topographic relief, proximity of major water bodies, ground cover, etc. contribute to how 

precipitation events manifest across the landscape, further exploration and research of microscale 

and mesoscale precipitation event characteristics are becoming more prevalent. Floodplain 

management in Texas is typically conducted at the county level, therefore assessing precipitation 

estimates across the county is rational. A recent research project through a case study of Fort 

Collins and Boulder, Colorado has developed a new “hyperlocal” technique to calculate 

potentially more accurate precipitation estimates that better account for microscale and 

mesoscale variability. The “hyperlocal” technique developed essentially suggests that 

precipitation events are heterogeneous across the landscape and that estimates should be derived 

from numerous data sources rather than individual point sources. The proliferation of 

volunteered geographic data has increased its reliability and has been proven to aid in data 

acquisition. 
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Problem Statement 
Basing estimates on the traditional assumption that precipitation events are point-based (i.e. at 

weather station or gauge scale) fails to account for variability of a precipitation event across the 

landscape. Failure to account for the areal (relating to the area of interest) diversity of the events 

can lead to misrepresentations of precipitation event frequencies and subsequently 

underestimated design values. Decisions made using deficient design values can cause numerous 

problems such as implementing policies like dam flood operation levels, road closures, etc. or 

engineering projects that do not adequately mitigate flooding. The treatment of precipitation 

events as areal phenomena rather than point-based phenomena and subsequent incorporation of 

estimates derived from the areal perspective should be considered for use as design values to 

improve the decision-making power for infrastructure development, policy planning, and general 

water resource management practices in the future.  

Purpose Statement 
The purpose of this research is to demonstrate why volunteered geographic information and a 

“hyperlocal design value method” like the one developed in Mattingly, Seymour, and Miller 

(2017), hereafter MSM, should be considered as necessary components for future water resource 

management plans due to the heterogeneic expression of precipitation events across a region. 

Volunteered geographic data was obtained from the Community Collaborative Rain Hail & Snow 

Network (CoCoRaHS) stations as well as the two primary Global Historical Climatology 

Network (GHCN) stations in Travis County. The data was used to find and analyze correlation 

coefficients between CoCoRaHS and GHCN station observations as they correspond to four 

historic flood events between 2010 and 2019. Additionally, to emphasize the results of the 

analysis and contribute to the discussion, visualizations were created in ArcMap that 

incorporated volunteered geographic information.   
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Research Question 
In a case study of Travis County, Texas, using the largest flood events within the past 10 years 

on the three largest tributaries of the Colorado River within the county, how did 24hr and 48hr 

precipitation values recorded by GHCN’s Camp Mabry and Austin-Bergstrom International 

Airport stations correlate to values recorded at CoCoRaHS stations within the county, and what 

spatial conclusions can be drawn from analysis of these correlations? 

 

Background 
Following the devastating floods on the Guadalupe River in 1998 and 2002, PBS raised 

awareness of the natural flooding hazards of Central Texas through its NOVA documentary, 

“Flood Alley,” released in 2005 (Frech 2010). Since the release of the film there have been 

several more major flood events that have caused damage far surpassing what many Central 

Texas residents ever thought possible and all within time frames not previously predicted. Many 

of these recent floods were products of storms that produced record levels of precipitation within 

24hr to 48hr time frames. Four of these major events have been chosen for examination in this 

work. Three of these events were chosen due to their impact on the three largest streams within 

Travis County that are tributaries of the Lower Colorado River and their geospatial displacement 

across the county.  

 

In chronological order, the first event was the peak flow of record within the past 10 years on 

Bull Creek, recorded September 8, 2010. This event was produced by Tropical Storm Hermine. 

The second event is the peak flow of record within the past 10 years on Onion Creek, recorded 

October 31, 2013. The third event was chosen as it represents the peak 24hr precipitation event 

within the last 10 years for the long term GHCN station at Austin Bergstrom International 
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Airport (ABIA), one of the two GHCN stations under examination in this work. The ABIA 

station’s 24hr precipitation maximum was recorded October 30, 2015. For the other GHCN 

station, Camp Mabry, the peak 24hr precipitation event within the last 10 years coincides with 

Bull Creek’s peak flow in 2010. The fourth and last event to be included is the peak flow of 

record within the past 10 years on Barton Creek, recorded May 4, 2019.  

 

Table 1 shows United States Geological Survey (USGS) stream gage information and 

observation data for each of the stations top five peak stream flows within the past 10 years. The 

date of the highest peak flow for each station in this table was used as the date of assessment in 

this research. Table 2 shows the highest 10 observations of 24hr precipitation for the two GHCN 

stations within the past 10 years. Table 3 shows 24hr precipitation observations from the two 

GHCN stations for the days surrounding each of the four events. Figure 2 shows the study area 

of Travis County, Texas, as well as the location of the relevant stations and gages to demonstrate 

the spatial distribution. While the inactive CoCoRaHS stations shown in Figure 2 no longer 

make new observations, their past reports are still useful to study. 
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TABLE 2 – Largest recorded precipitation amounts for two selected Austin NWS/NCEI 

Stations, 2010-2019 (USNCEI 2020) 

 

 

 

 

 

TABLE 3 – Recorded precipitation amounts for two selected Austin NWS/NCEI stations 

for Sept. 2010, May 2015, Oct. 2015, and Apr. 2019 Austin, TX floods (USNCEI 2020) 

 

 



9 
 

 

Fi
gu

re
 2

: M
ap

 o
f T

ra
vi

s C
ou

nt
y 

&
 R

el
ev

an
t S

ite
s 



10 
 

Literature Review  
Importance of Research 

Flooding hazards are one of the largest contributors to human casualties and monetary losses 

related to natural disasters and require ongoing research to better understand the causes and 

characteristics (Gourley et al. 2012; Brody 2014). Additionally, financial costs related to flood 

damages have been increasing over the past century (Pielke and Downton 2000; Ashley and 

Ashley 2008; Changnon 2008; Kundzewicz et al. 2014) further illustrating the need for research 

related to significant precipitation events and their heterogeneity across a given landscape. 

 

Traditional Methods 

Traditional methods used for the establishment of recurrence intervals or “return periods” utilize 

point-based calculations (Salas et al. 2012). The return periods are used in a wide range of policy 

decisions as design values for planning including flood mitigation. Gaps in data and general 

uncertainties are problematic with return periods created from point-based data (Klemeš 2000a, 

2000b). Historical statistical techniques such as establishing return periods have been applied for 

compensation with varying degrees of accuracy (Katz, Parlange, and Naveau 2002; 

Koutsoyiannis 2004). Extrapolation and interpolation through statistical analysis have 

traditionally been used as well to account for gaps in the data and to fill in for uncertainties. 

 

Transitional Methods 

Increasingly complex mathematical analysis combined with data from regionally homogenous 

climatic environments or station models themselves have also been used to fill voids in data, 

however, the most intense precipitation observations are lost through the damping process of 

regionalization (Hosking and Wallis 2005; Perica et al. 2013). There is increasing support from 
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research that point-based methods underestimate magnitude and recurrence intervals of 

precipitation events due to assumptions made by traditional methods that precipitation is point-

based and uniform across the landscape (Blumenfeld and Skaggs 2011) rather than 

heterogeneous. Through fine resolution spatial scale studies, research suggests that precipitation 

events can vary dramatically across the landscape and that point-based records likely fail to 

capture the most influential, or highest intensity, areas of precipitation (Changnon and Vogel 

1981; Winkler 1988; Huff 1994; Villarini, Smith, and Vecchi 2013; Dzotsi et al. 2014; Zolina et 

al. 2014; Yang et al. 2016). 

 

New Perspectives 

Following Blumenfeld and Skaggs (2011), the treatment of precipitation events as non-discrete 

phenomena has been explored in recent research to assess precipitation events as spatially 

diverse for the purpose of design value calculations and improve the practicality for real-world 

decision making (Mattingly, Seymour, and Miller 2017). Research further suggests that 

increasing spatial density of data collection stations within a shorter period of record derives 

more accurate precipitation estimates compared to a longer period of record from single stations 

(Willmott, Robeson, and Janis 1996; Blumenfeld and Skaggs 2011). Spatially expansive 

estimates are more useful to decision makers and managers as their responsibilities are often 

regional. The potential use of CoCoRaHS data has been examined and argued to be beneficial for 

use in design value creation (Keighton et al. 2009; Kelly et al. 2012). Additionally, the use of 

publicly available data has been shown to be consistent with professionally operated or 

automated gages (Cifelli et al. 2005; Moon et al. 2009). 
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While government agency operated data-stations are assumed to follow semi-rigid and formulaic 

structure and patterns relating to the timing of observations and records, volunteered data of any 

variety will inherently provide problems and potentially skewed data due to variances in timings 

of reports. For research that relies on observations within certain time frames, delays in reports 

are likely to skew data or cause false-positives or negatives in analysis.  

 

Data Background & Coverage 

Following MSM (2017), daily observations of precipitation data obtained from the GHCN are 

best used to assess the traditional precipitation event estimation methods as GHCN stations are 

rigorously inspected and maintained for quality control purposes (Menne, Durre, Vose, et al. 

2012). While the GHCN and CoCoRaHS datasets are publicly accessible, the majority of high-

density datasets are not publicly available or are precluded from use due to extreme financial 

costs required to obtain them (X. Wang et al. 2008; Habib, Larson, and Graschel 2009; Dzotsi et 

al. 2014; Rafieeinasab et al. 2015). Studies show that CoCoRaHS has recently taken the lead as 

the most expansive, publicly available, daily precipitation observation system in the United 

States (Muller et al. 2015). 

 

The GHCN utilizes stations from around the globe that are professionally monitored and 

calibrated to collect precipitation data on a daily basis as well as many other 

meteorological variables. The first of two, long standing, Travis County stations that 

provide data for traditional methods for precipitation estimates is station ID – 

GHCND:US00013958, “Austin Camp Mabry, TX” located at 30.3208°N, 97.7604°W. 

This station has been in place and recording daily data since July 1, 1948 with 
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approximately 100% data coverage according to the National Oceanic and Atmospheric 

Administration’s (NOAA), National Centers for Environmental Information (NCEI). The 

other primary station used by the GHCN is GHCND:US00013904, “Austin Bergstrom 

International Airport, TX” located at 30.1831°N, 97.6799°W. This station has been in 

place and recording daily data since January 1, 1949 with approximately 83% data 

coverage according to NOAA. While the period of record for these stations is substantial, 

these two stations are roughly 11 miles apart where numerous landscape characteristics 

that contribute to the onset and intensity of precipitation events vary drastically from 

topographic relief, to land cover and other physical, geophysical, and environmental 

variables. 

 

The CoCoRaHS network, an organization that collects daily average, 24-hour, precipitation data 

voluntarily from the public users associated with the organization, began collecting data in 1998 

through the Colorado Climate Center at Colorado State University. Prior significant flash 

flooding in Fort Collins, Colorado prompted the initiative to establish an enhanced dataset to 

better understand precipitation characteristics. The state of Texas began contributing data to the 

network in 2005 and the network now receives data entries from all 50 states of the U.S. 

Although there are now thousands of collaborators across the network, not every participant 

records an entry on a daily basis and many regions are slower to develop a quantity of quality 

collaborators. Figure 2 illustrates the density of CoCoRaHS users (both active and inactive) in 

the Travis County as well as indicates where the USGS Gages, GHCN Stations, and case study 

stream segments are located.  



14 
 

Limitations of Data 

As previously acknowledged, the quality of volunteered data can already rival that of 

professionally operated networks (Keighton et al. 2009; Kelly et al. 2012) and are only 

increasing in spatial density, in spatial expanse, and in period of record. However, to ensure that 

the quality of the volunteered data is maintained, research suggests that 80 percent of time 

recording thresholds are established and that these thresholds are consistent with other 

climatological studies (Dulière, Zhang, and Salathé 2013). One limitation regarding the data used 

in this work is related to this threshold. Strictly adhering to this 80 percent threshold would have 

greatly reduced the number of CoCoRaHS station candidates for inclusion in this study due to 

the infancy of the CoCoRaHS program in Texas. The effect on the correlations between 

CoCoRaHS and GHCN stations due to missing observations beyond the aforementioned 

threshold was identified and included as one of the independent variables used in the regression 

analysis. Another limitation regarding the methods applied is that the sample size chosen for 

correlation analysis between two data sources is n=4, the number of major events. 

 

Assumptions of Data 

Three considerations were made in this work regarding data due to potential issues related to the 

timing of and actual reporting of volunteered geographic data. As volunteered geographic data is 

inherently amateur in nature, guidelines regarding the timing of and reporting of observations are 

less strict than those of professionally operated stations like the GHCN. The FAQ section on 

CoCoRaHS’s website acknowledges this with the following and demonstrates why 

considerations must be made: 
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Do I have to check my rain gauge at 7am? No, but we would prefer it if you 

did. If you check your gauge at other times, your data may not be directly 

comparable to other data. If you check your gauge at night, your data will be in 

our reports but won't show up on our maps. We only map data that is collected 

within two hours of 7am. (CoCoRaHS) 

The three considerations regarding the volunteered geographic data due to the actual date of 

observation reporting are, A) lag-time between precipitation observation dates and their effect on 

stream flow gages might exist, B) lag-time between CoCoRaHS observations and GHCN 

observations might exist, and C) there might exist discrepancies between a 24hr time-frame 

observation from any given CoCoRaHS station and a 24hr time-frame observation from the 

GHCN stations. 

 

Research Methods 
Methods Background & Outline 

This case study of Travis County, Texas was largely inspired by the work conducted in MSM 

(2017), and its case studies of Fort Collins and Boulder, Colorado. The “hyperlocal” method 

established in MSM (2017) is a quantitative approach to systematically identify precipitation 

observations and enhance the creation of estimations, from many spatially dense observations 

using the CoCoRaHS network within a given representative precipitation region (RPR).  

 

This work’s methods differed from those in MSM (2017) due to the difference of purposes 

between the research. While the methods used in MSM (2017) supported the exploration of 

developing new precipitation event estimation criteria, the following methods and data used in 
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this case study were intended to examine why the MSM (2017) approach might be necessary. 

Specifically, the methods used in this research are outlined as follows and explained in more 

detail in the Application of Methods section: 1) determination of rough Pearson correlations 

between CoCoRaHS and GHCN station observations, 2) identification of a preliminary set of 

independent variables that potentially impact the correlations, 3) computation of multivariate 

linear regression analyses in order to assess the independent variables’ impact on the correlations 

between CoCoRaHS and GHCN station observations, and 4) incorporation of CoCoRaHS station 

observations with GHCN station observations in creating visual representations of 48hr 

precipitation estimates for each of the four major events. 

 

In MSM (2017), qualified CoCoRaHS station observations “compete” against each other in order 

to estimate an individual monthly maximum precipitation amount for each month of the period 

of record. The identified monthly maximums represent the potential for an event of the 

magnitude to occur somewhere within the RPR. The MSM (2017) “hyperlocal” method uses a 

circular RPR with a 6 km (3.7 mi) radius and an area of roughly 113 km2 (43.6 mi2), similar to 

that of the 100 km2 (38.6  mi2) grid supported by Blumenfeld and Skaggs (2011). In this case 

study, however, the entirety of Travis County was used as the RPR because it corresponds to the 

region of responsibility for the local government’s flood management. Using the entirety of 

Travis County yielded and RPR size of approximately 2,650 km2 (1008 mi2). Although this RPR 

is nearly 25 times larger, it was chosen for use as it represents the actual area managed for floods 

that historically used only two locations of historical data for precipitation estimates within the 

entire region, Camp Mabry and Austin-Bergstrom International Airport.  
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Limitations & Assumptions of Methods 

Considerable assumptions are made in this work related to the size of the region of study or the 

RPR, and as mentioned earlier, the reliability of volunteered geographic information. While the 

literature uses much smaller RPR’s compared to this study, it is assumed in this work that the 

RPR is more significant as it relates to real-world application due to how political boundaries 

affect decision making. Additionally, for future research, RPR’s restricted to certain areal sizes 

would likely neglect how watershed boundaries actually manifest themselves within a perfect 

circle and likely lead to the exclusion of observation sites that potentially have real impact on the 

desired study region.  

 

Reflecting back on the reliability of volunteered geographic information an assumption was 

made that using statistical interpolation across the entire region, similarly to MSM (2017), would 

not dampen outlier observations when creating visualizations to demonstrate the heterogeneity of 

precipitation events across the region. MSM (2017) distinguished between their developed 

technique and the NWS techniques by describing how the NWS techniques utilize 

regionalization through interpolation. Interpolation lessens the significance of the most extreme 

precipitation events at any particular station within a region so as to maintain spatial 

homogeneity in recurrence interval estimations (Mattingly, Seymour, Miller 2017). While the 

“hyperlocal” technique also uses regionalization for statistical interpolation, it is applied 

throughout the entire region of sourced data and does not dampen extreme observations as 

traditional methods do. The techniques also differ in the use of monthly maximums instead of 

annual maximums as the period of record for CoCoRaHS would limit the number of available 

annual observations. MSM (2017) also determined that maximum likelihood estimation was 

preferred in the field of mathematical statistical inference as opposed to the use of L-moments to 
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fit the distributions citing Wackerly, Mendenhall, and Scheaffer (2008) and Casella and Berger 

(2002).  

 

One limitation regarding the methods used is the acknowledgement that more rigorous and 

suitable regressions likely exist which would more accurately depict the impact of the 

independent variables on the correlations.  From this limitation, several assumptions were made 

regarding the use of multivariate linear regression analysis in this work. The first assumption was 

that a linear relationship exists between the dependent and independent variables. The next 

assumption made was that there was little to no multicollinearity between the independent 

variables or rather that the independent variables are not highly correlated with each other. The 

next assumption made was that there was no autocorrelation. The last assumption made related 

to the use of multivariate linear regressions was that of homoscedasticity, or rather that there 

should be roughly equal variance among the predictions made by the produced regression model. 

 

Application of Methods 

Following the acquisition of data, the methods previously outlined were applied as detailed 

below. Table 5A, Table 5B, Table 6A, and Table 6B were created in the first two method steps 

and used by the third step for analyses. 

 

First step, Pearson correlations between GHCN and CoCoRaHS station observations were 

determined using greatest 24hr and total 48hr observation values calculated from Table 4. After 

acquiring the 24hr and 48hr precipitation values for each station and the associated, Pearson 

correlation coefficients were determined in Excel between each GHCN and CoCoRaHS station. 



19 
 

The resulting correlation coefficients are represented in the dependent variable columns for 

ABIA in Table 5A and Table 5B, and for Camp Mabry in Table 6A and Table 6B.  

 

Second step, preliminary independent variables were identified for use in regression analysis. It 

was acknowledged that numerous variables exist that potentially have more significant impact on 

station correlations, but the following independent variables were used as a seemingly decent 

starting point, the first independent variable chosen was the distance between each GHCN station 

and the CoCoRaHS stations. The Euclidean distances between the stations were calculated using 

ArcMap and their results added as the first independent variable column in Table 5A, Table 5B, 

Table 6A, and Table 6B. The second independent variable chosen was the elevation of each 

station. The station elevations were included with original data acquisition and their values 

entered as the second independent variable column in Table 5A, Table 5B, Table 6A, and Table 

6B. The third and last independent variable chosen for regression analysis in this work was the 

completeness of reports, or rather the percentage of days reported out of the 16 possible days of 

which data was collected. The null observations present in Table 4 were used to determine the 

ratios of completeness of reports and are added as the third independent variable column in Table 

5A, Table 5B, Table 6A, and Table 6B. 

 

Third step, multivariate linear regressions between the GHCN correlations and the independent 

variables were run using Excel. The interpretation of the regressions summaries is explored in 

the following Results section.  
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For ABIA, the multivariate linear regression with three independent variables was performed for 

the 24hr and 48hr observations and their resulting summaries are shown in Table 7A and Table 

7B respectively. As seen in Table 7A and Table 7B, the p-values for each independent variable 

indicate that none were statistically significant and thus no further regressions were performed.  

 

For Camp Mabry, the multivariate linear regression with three independent variables was 

performed for the 24hr and 48hr observations and their resulting summaries are shown in Table 

8A and Table 8B respectively. As seen in both Table 8A and Table 8B, the p-values for Report 

Completeness were not statistically significant while Distance to Mabry and Station Elevations 

were statistically significant. Following these result, in attempts to improve the ability to explain 

the variation in the correlations, another multivariate linear regression with the two significant 

independent variables was performed for each of the 24hr and 48hr observations and their 

resulting summaries are shown in Table 9A and Table 9B respectively. For both new regressions, 

as both p-values associated with the two independent variables indicated some level of statistical 

significance, no further regressions were performed. 

 

Last, using ArcMap’s Spatial Analyst Tools (SAT), visualizations of precipitation heterogeneity 

were created from CoCoRaHS and GHCN observations for each of the four major events. The 

ArcMap SAT Kriging tool used to create the visualizations is a geostatistical interpolation 

process which attempts to predict missing values across space utilizing given values and 

variances. Whereas only 18 CoCoRaHS stations were used in the correlations’ determination and 

regressions’ analyses, additional CoCoRaHS stations were included to create these 

visualizations. As a visualization was desired for each of the major events, CoCoRaHS stations 
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were included if their observations met the same stipulations for a 48hr window but did not need 

to have reported observations for each of the events. The rationale in this decision was that lack 

of reporting for the missing events likely mean that the station had not been established prior to 

the missing event or became defunct following the missing event. Additionally, by maintaining 

the stipulations to qualify for a 48hr event, some data integrity was maintained while allowing 

many more CoCoRaHS station observations to contribute to and likely improve the interpolation 

process used to create the visualizations of each event. The resulting visualizations are included 

and discussed in the following Results section. 
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Results & Analysis 
From these considerations of the uncertainty of the time of observation for CoCoRaHS stations, 

it was decided to use both the greatest 24hr value and the sum of two consecutive 24hr 

observations (for a total of 48hrs), where the later of the two 24hr observations was the highest 

reported value within each window around the event. This decision was based on an assumption 

that using both the 24hr and 48hr observation with the mentioned stipulation would alleviate 

discrepancies between CoCoRaHS and GHCN station observations due to the differences in 

observation times. An assumption was also made that due to the professionality associated with 

the GHCN stations, using the two 24hr reported observations for the date of the event and the 

date prior would suffice for use as their 48hr observation values.  

 

Data Acquisition 

Using ESRI’s ArcMap GIS software, the RPR was drawn and used to determine which 

CoCoRaHS stations fell within the desired area. Station data and geographical information were 

obtained through the online NOAA data portals for the GHCN, and the online CoCoRaHS 

database. For inclusion in the correlation determination and regression analyses, CoCoRaHS 

stations that reported 48hr observations (as stipulated previously in the assumptions section) for 

each of the four events were included and their precipitation observations are shown in Table 4. 

https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/locations/FIPS:48453/detail
https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx
https://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx
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Results 

Following the methods previously set forth, the correlation coefficients are included as follows 

where table references with A’s are for 24hr precipitation periods and table references with B’s 

are for 48hr precipitation periods. Table 5A, Table 5B, Table 6A, and Table 6B while the 

regression summaries are included for ABIA in Table 7A and Table 7B, and for Camp Mabry in 

Table 8A, Table 8B, Table 9A and Table 9B. The visualizations created using 48hr observations 

for the Bull Creek event, Onion Creek event, ABIA event, and Barton Creek event, are 

represented by Figure 3, Figure 4, Figure 5, and Figure 6 respectively. 

 

Table 5A and Table 5B represent the data used for the multivariate regression analysis conducted 

between the Pearson correlation coefficients (the dependent variable), and the three independent 

variables chosen for this study, the distance between each station and ABIA, the elevation of 

each station, and the completeness of reports where n is out of 16 possible days to report. The 

calculated Pearson coefficients between ABIA and the other stations interestingly resulted with 

nearly half of the correlations as negative with the majority of them being relatively weak. 

 

Table 6A and Table 6B represent the data used for the multivariate regression analysis conducted 

between the Pearson correlation coefficients (the dependent variable), and the three independent 

variables chosen for this study, the distance between each station and Camp Mabry, the elevation 

of each station, and the completeness of reports where n is out of 16 possible days to report. The 

calculated Pearson coefficients between Camp Mabry and the other stations were all positive and 

the majority of them relatively strong. 
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Table 7A, Table 8A, and Table 9A show the 24hr precipitation period, multivariate linear 

regression summaries for ABIA with three independent variables, Camp Mabry with three 

independent variables, and Camp Mabry with two independent variables, respectively. The 

values in these summaries were used to determine the impact each of the independent variables 

chosen had on the correlations between the GHCN stations and the CoCoRaHS stations. The first 

value examined in each of the tables is the adjusted R square value as it represents the 

approximate percentage of impact the collective independent variables chosen estimated to have 

on the correlations. The standard error shown under each adjusted R square value indicates the 

potential error in the estimation when using the predictions. The next value of import is the 

significance-F in each of the tables as it indicates the probability of the regression model to be 

incorrect. The significance-F value for the regression performed for ABIA suggests a 

significance level over 99%, while the significance-F value for the second regression performed 

for Camp Mabry suggests a significance level over 95%.  

 

Similar to the significance-F values, the p-values for each independent variable indicate the 

probability that the calculated coefficients within the regression are incorrect. For ABIA’s 

related regression, while the significance-F suggests the model is fairly reliable, the p-values for 

each of the independent variables have poor significance levels, the highest being that related to 

Station Elevation just above 0.05. For Camp Mabry, examining the p-values in Table 8A 

demonstrate why another multivariate linear regression was performed. While the p-values in 

Table 8A suggest significance levels smaller than 0.05 for both the Distance to Mabry and the 

Station Elevation, the Report Completeness significance level was very low and thus removed 

for the next regression in order to obtain a more accurate adjusted R square value. 
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Continuing with Table 9A, Camp Mabry’s multivariate regression performed with only two 

independent variables, the new significance-F value suggested that the regression model 

improved from that of the prior. Conversely, the p-values for the two independent variables 

degraded slightly yet still suggested significance levels above 95% for both Distance to Mabry 

and Station Elevation.  
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Table 7B, Table 8B, and Table 9B show the 48hr precipitation period, multivariate linear 

regression summaries for ABIA with three independent variables, Camp Mabry with three 

independent variables, and Camp Mabry with two independent variables, respectively. The 

values in these summaries were used to determine the impact each of the independent variables 

chosen had on the correlations between the GHCN stations and the CoCoRaHS stations. The first 

value examined in each of the tables is the adjusted R square value as it represents the 

approximate percentage of impact the collective independent variables chosen are estimated to 

have on the correlations. The standard error shown under each adjusted R square value indicates 

the potential error in the estimation when using the predictions. The next value of import is the 

significance-F in each of the tables as it indicates the probability of the regression model to be 

incorrect. Each of the significance-F values for the regressions suggest the regression models are 

accurate with significance levels equal to or above 99%.  

 

Similar to the significance-F values, the p-values for each independent variable indicate the 

probability that the calculated coefficients within the regression are incorrect. For ABIA’s 

related regression, while the significance-F suggests the model is fairly reliable, the p-values for 

each of the independent variables have poor significance levels, the highest being that related to 

Station Elevation at roughly 80%. For Camp Mabry, examining the p-values in Table 8B 

demonstrate why another multivariate linear regression was performed. While the p-values in 

Table 8B suggest significance-For the Distance to Mabry and the Station Elevation, the Report 

Completeness significance level was very low and thus removed for the next regression in order 

to obtain a more accurate adjusted R square value. 
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Continuing with Table 9B, Camp Mabry’s multivariate regression performed with only two 

independent variables, the new significance-F value suggested that the regression model greatly 

improved from that of the prior. Additionally, the p-values for the two independent variables 

improved slightly yet still suggested significance levels above 99% for both Distance to Mabry 

and Station Elevation.  
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The visualizations represented in Figure 3, Figure 4, Figure 5, and Figure 6, were created to 

represent how each of the four events precipitations varied spatially and how the incorporation of 

CoCoRaHS stations improved the level at which the variation could be conveyed. Whereas the 

previous correlations and regressions used only 18 CoCoRaHS stations due to stipulations 

discussed previously, each of the following visualizations used any CoCoRaHS station that 

provided observations related to the events, also stipulated previously. The interpolations 

performed in ArcMap provide more accurate predictions with more data points provided, thus 

the incorporation of more CoCoRaHS stations improved the visualizations. Chronologically, the 

visualization for Bull Creek’s event benefitted from 54 total stations, 52 CoCoRaHS and the two 

GHCN, the visualization for Onion Creek’s event benefitted from 70 total stations, 68 

CoCoRaHS and the two GHCN, the visualization for the ABIA record 24hr precipitation 

benefitted from 70 total stations, 68 CoCoRaHS and the two from GHCN, and lastly the 

visualization for Barton Creek’s event benefitted from 64 total stations, 62 from CoCoRaHS and 

the two GHCN.  

The visualizations show the location of the station observations used to create each visual, the 

interpolated precipitation across the region represented by the varying color bands, and the 

proportional peak stream flow for the three USGS gages related to the event, one on Bull Creek, 

one on Onion Creek, and the last on Barton Creek. While the gage number was left in place for 

reference, the USGS gage for Bull Creek did not have peak flows ranking in the top ten for the 

last ten years related to the ABIA and Barton Creek events and thus no proportional 

representation was shown. 
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Discussion 
How did the CoCoRaHS observations correlate with the GHCN observations? 

Upon initial review of the resulting correlation coefficients between ABIA and the other stations 

as shown in Table 5A and Table 5B, and before examining the regression analysis results, 

approximately half of the stations exhibited a negative correlation with ABIA’s observations 

with the majority of the stations having relatively weak correlation magnitudes with ABIA. 

Unlike ABIA, upon initial review of the resulting correlation coefficients between Camp Mabry 

and the other stations as shown in Table 6A and Table 6B, and before examining the regression 

analysis results, the all of the stations exhibited a positive correlation with Camp Mabry’s 

observations with nearly the all of the stations having relatively very strong correlation 

magnitudes with Camp Mabry. 

 

What do the results of the regression analyses indicate about the correlation coefficients? 

The null hypothesis of the performed regressions is that there is no relationship between the 

independent and dependent variables. Rejection of the null hypothesis in these regressions 

suggests that there is a relationship between the chosen independent variables and the Pearson 

coefficients and the stations. Examining both Table 7A and 7B for ABIA, the significance-F 

values of 0.0046 and 0.0096 respectively suggest rejection of both null hypotheses with a 

significance level of 0.01. Continuing, the adjusted R-Square value suggests that the independent 

variables are responsible for roughly 46% of the change in correlation values for ABIA using 

24hr observations and roughly 41% of the change in correlation values for ABIA using 48hr 

observations. The p-values for the independent variable coefficients do not support the 

coefficients’ reliability. With the smallest p-value, Station Elevations has the most support for 

being the strongest factor affecting ABIA correlations among the independent variables assessed. 
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Comparing the results for Camp Mabry, the significance-F value in Table 9A is 0.0252 with a 

significance level of 0.05 while the significance-F value in Table 9B is 0.00295 with a 

significance of 0.01. Both significance levels suggest rejection of both null hypotheses where the 

regression model for the 48hr observations has slightly stronger significance. Continuing with 

the comparison of the adjusted R-square values, the regression model for 24hr observations 

indicate that the independent variables are responsible roughly 27.5% of the change in 

correlation values for Camp Mabry, and the regression model for 48hr observations indicate that 

the independent variables are responsible for roughly 43.7% of the change in correlation values. 

The p-values for Distance to Mabry and Station Elevation coefficients both support their 

respective coefficient’s reliability with significance levels each of 0.05 for the 24hr observation 

regression model compared to the 48hr observation model results where both variables 

coefficient’s p-values support their reliability with significance levels of 0.01. Similar to the 

ABIA results, Station Elevation has the smallest p-values and therefore is marginally likely the 

strongest factor affecting Camp Mabry correlations among the independent variables assessed. 

 

What do the interpolated visualizations for each event demonstrate? 

By simply comparing the four visualizations altogether it should be clear that precipitation 

events express themselves heterogeneically across the region. Further examination shows that 

proximity of precipitation observations to USGS stream gages alone likely represents what 

relationship the two have.  

A useful final step in analyzing the four flood events is to compare the greatest 24hr and 48hr 

precipitation recorded for each of the four floods to the updated values in the new (2018) 

precipitation atlas for Texas (USNOAA 2018) (Table 10). When considered in light of these 
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precipitation frequency values, it can be seen that the 2010 flood on Bull Creek and the floods on 

Onion Creek were rare events with recurrence intervals of greater than 25 years whereas the 

2019 flood on Barton Creek was not an exceptional event.   For the 2010 and 2013 floods, the 

precipitation values of the NOAA stations grossly underestimated the recurrence interval for the 

precipitation that produced the floods.   
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Conclusions 
The importance of broadening the scope of inclusion for precipitation observations was made 

evident in the results of this work. The correlation analysis and regression results suggest that 

there are more variables that need to be considered other than distance, elevation, and the simple 

completeness of precipitation records. While the correlations between the volunteered 

geographic information stations and Camp Mabry were relatively strong and all positive, the 

resulting regression model indicates that other variables are at play between the stations’ 

correlations or that simple linear models do not suffice to represent their relationships.  

 

The visualizations provide further evidence if nothing else that the use of political boundaries is 

a poor choice for determining boundaries related to natural disaster management and mitigation. 

The Onion Creek event’s visualization clearly indicates extreme peak flow with relatively little 

precipitation within Travis County. The majority of its contributing watershed lies outside of 

Travis County, mostly in Hays County, and thus should also be incorporated not only in future 

planning, but also future research conducted on the use of volunteered geographic information. 

Reassessing RPRs should also be examined and likely based on need. RPRs for research likely 

differ from RPRs of real-world application and need to be considered depending on the goals of 

the stakeholders. 

 

When the CoCoRaHS precipitation values are considered with their recurrence intervals it 

demonstrates that the floods at two of the four USGS gages (9/8/2010 and 10/31/2013) in the 

county were produced by precipitation events with recurrence intervals of greater than 25 years 

and a third flood (10/31/2015) was produced by a storm with a greater than 10 year probability.  

The much lower recurrence intervals for precipitation at the NWS stations at Camp Mabry and 
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ABIA leads to a gross underestimation of the severity of the precipitation that produced those 

floods.  

 

Further research should include and consider other independent variables that likely influence 

how precipitation events express themselves related to stream flow gages such as hydrologic 

efficiency, land cover, watershed boundaries, soil moisture conditions, and research should also 

consider incorporation of other data sources such as the Lower Colorado River Authority’s 

Hydromet system (Lower Colorado River Authority).   

 

Summary 
This work examined correlations between volunteered geographic information observations and 

historically accepted professional observations of precipitation in Travis County across four 

major events related to precipitation. Correlation analysis suggests that the CoCoRaHS stations 

examined more closely correlate to Camp Mabry and that precipitation amounts at ABIA are 

often not related to major floods, or lack thereof, in Travis, County, which is somewhat logical as 

ABIA is located east/downstream of the watersheds that produce floods in Travis. County.    
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