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Abstract 
The relationship between the size of the 

hidden layer in a neural network and 
performance in a particular domain is currently 
an open research issue.  Often, the number of 
neurons in the hidden layer is chosen empirically 
and subsequently fixed for the training of the 
network.  Fixing the size of the hidden layer 
limits an inherent strength of neural networks – 
the ability to generalize experiences from one 
situation to another, to adapt to new situations, 
and to overcome the “brittleness” often 
associated with traditional artificial intelligence 
techniques.  This paper proposes an evolutionary 
algorithm to search for network sizes along with 
weights and connections between neurons.  The 
size of the networks simply becomes another 
search parameter for the evolutionary algorithm.  

This research builds upon the neuro-
evolution tool SANE, developed by David 
Moriarty.  SANE evolves neurons and networks 
simultaneously, and is modified in this work in 
several ways, including varying the hidden layer 
size, and evolving Elman recurrent neural 
networks for non-Markovian tasks.  These 
modifications allow the evolution of better 
performing and more consistent networks, and 
do so more efficiently and faster. 

SANE, modified with variable network 
sizing, learns to play modified casino blackjack 
and develops a successful card counting 
strategy.  The contributions of this research are 
up to 8.34% performance increases over fixed 
hidden layer size models while reducing hidden 
layer processing time by almost 10%, and a 
faster, more autonomous approach to the scaling 

of neuro-evolutionary techniques to solving 
larger and more difficult problems.  

1.  Introduction 
Neural networks have proven effective 

in a range of pattern recognition and association 
problems, and generalize well to new situations, 
often overcoming the “brittleness” of some other 
traditional artificial intelligence methods. 
Evolutionary or genetic algorithms have been 
applied to training neural networks, with the 
neuro-evolution approach significant in its 
ability to discover difficult, counter-intuitive 
strategies [2].  Evolutionary algorithms represent 
a candidate solution as a chromosome, and these 
potential solutions are evaluated and the 
operations of crossover and mutation are 
performed on them in a hill-climbing search for 
better solutions.  A critical aspect of 
evolutionary algorithms is maintaining diversity 
in the population, thus preventing the algorithm 
from falling into a local optimum and 
converging too early upon a sub-optimal 
solution. 

The hybrid neural and genetic approach 
takes advantage of the strengths of both.  By 
training neural networks with evolutionary 
algorithms, feedback from the environment does 
not have to occur at every network output, and a 
decision strategy can be based upon the 
evaluation of an entire series of decisions.    

 Often, neural networks are evolved with 
a fixed size, with the genetic algorithm adjusting 
connection weights to optimize network 
performance.  Choosing the correct size or 
number of neurons in the hidden layer for a 
neural network is problem dependent, and is 
currently an open research issue.  Commonly, 
networks are tested using different sized models, 
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and size is chosen empirically.  This paper 
presents a new approach to neuro-evolution, 
treating the size of the network as another 
parameter in the evolutionary algorithm.  This 
approach allows the network to grow in response 
to shifts in the problem, or more efficiently form 
a smaller network if this solution is more 
appropriate. 

This paper demonstrates a new method of 
efficiently automating the search for appropriate 
network size, with performance and efficiency 
increases due to increases in network population 
diversity, creation of Elman recurrent neural 
networks with SANE, and direction toward the 
goal of a more autonomous learning system. 

The remainder of this paper is organized as 
follows: Chapter 2 introduces neuro-evolution 
and a precursor to the SANE system.  Chapter 3 
is devoted to SANE, with Chapter 4 addressing 
modifications to SANE to vary the hidden layer 
size and permit Elman recurrent networks.  
Chapter 5 discusses the application of SANE to 
blackjack.  Chapter 6 gives the results of 
blackjack experiments on these recurrent 
models.  Chapter 7 presents some brief 
comments on the experiments, with a conclusion 
and future work in Chapter 8. 

2.  Neuro-Evolution Models 
A primary advantage of hybrid neuro-

evolution searches over more traditional 
gradient-descent searches is the ability to 
implement reinforcement learning rather than 
supervised learning.  Supervised learning 
methods (such as backpropagation) require a 
smooth, continuously differentiable activation 
function from which gradient information can be 
derived for the backpropagation of error signals 
for every iteration of the network.  For training 
purposes, the network must receive feedback as 
to its performance after every output.  In many 
domains, this output may not come until a 
sequence of events has occurred.  Training a 
neural network using backpropagation or other 
supervised learning methods to perform a 
sequential decision task requires a determination 
of which specific decisions were responsible for 
any errors based upon an evaluation of a series 
of such decisions.  This is Minsky’s credit 

assignment problem, and is at the center of many 
AI problems [1]. 

Reinforcement learning addresses the credit 
assignment problem by assigning a performance 
measure to an entire system, even after several 
decisions have been made.  A poker player, for 
example, could be evaluated after several hands 
have been played, and not by a statistical 
analysis of precisely the correct decision to take 
another card or stay at every possible decision 
point.  In poker, this analysis could be an 
estimation only, as the other player’s cards and 
the cards not yet dealt are not known.  In many 
harder tasks, this information is very difficult or 
impossible to obtain from the environment, and 
reinforcement learning becomes the natural 
choice for evaluating performance and selecting 
favorable agents. 

An additional advantage of not having to 
compute gradients for backpropagation is that 
recurrent neural networks can be evolved 
without requiring a more complex and 
computationally expensive algorithm [2].  
Supervised learning in recurrent networks can be 
performed.  However, existing algorithms are 
complex and difficult to extrapolate to new 
neural models.  In neuro-evolution, a network 
may be created, evolved by an EA, and 
evaluated, without regard for whether the 
network is feedforward or recurrent. 

2.1.  Marker Based Encoding 
Several authors have contributed to neuro-

evolution research in the direction of automating 
the size of the network.  Fullmer and 
Miikkulainen [3] explored marker based 
encoding of neural networks.  Using this 
strategy, networks are encoded in a single 
circular chromosome, with start and end markers 
indicating the beginning and end of neurons in 
the network.  Weight and connection 
information is encoded within the start and end 
markers, and the networks are recurrent.  The 
marker-based encoding is unique in that the 
interpretation of each allele is independent of its 
locus in the chromosome.  Each position is used 
in such a way that produces the maximum 
benefit for the network.  In the crossover 
operator, neurons may be added or taken away, 
and connections may feed back to other neurons 
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or even to themselves.  This encoding is very 
loose and dynamic, and the idea of growing a 
network to fit the problem at hand was used 
extensively in this research. 

  These authors did pioneering work in 
representing neural structures in an evolutionary 
algorithm, and applied the work to an object 
recognition task requiring exploration and 
discrimination of objects in a simulated 
environment.  Tests confirmed that agents were 
able to discriminate objects in an environment 
even when memory was required. 

Moriarty and Miikkulainen [4] 
continued the marker based encoding strategy by 
applying neuro-evolution to the domain of 
Othello play.  Othello is played on an 8 x 8 
board with pieces black on one side and white 
on the other.  Players may only move in 
unoccupied squares and must linearly surround 
the opponent’s piece or pieces horizontally, 
diagonally, or vertically.  After doing so, the 
player flips the opponent’s pieces to her color 
and play continues.  The game ends when there 
are no legal moves for either player, in which 
case the player with the most pieces of her color 
wins.  Tournament level players have developed 
a mobility strategy based on actually 
maintaining a low piece count, but holding 
strategic positions and forcing the opponent to 
make poor moves, surrendering good positions.   

Moriarty and Miikkulainen used the 
power of the marker based encoding strategy 
and refined its representation of the network.  
Only hidden layer neurons are represented in the 
chromosome, with connections to the output 
layer specifically encoded in the connection 
information.  In the earlier version, output nodes 
were explicitly defined. 

The network was pitted against a random 
player, a minmax search with α-β pruning, and 
finally against themselves.  With enough 
evolution (typically 24 hours on an IBM 
RS6000 25T workstation), the network defeated 
all three.  According to these authors, after 2000 
generations, the networks were employing a 
beginning mobility strategy.  

 

 

3.  SANE  

This paper presents an extension of the 
strength of the marker-based system and the 
work of David Moriarty. Moriarty developed 
SANE, a novel neuro-evolution tool that evolves 
neurons and networks simultaneously.  This co-
evolution of neurons and networks is an effort to 
maintain population diversity and encourage 
neurons to specialize or optimize one aspect of 
the problem and connect with other neurons that 
optimize another part of the problem.   

SANE encodes network and individual 
neuron information in chromosomes.  While the 
specific information to be encoded in the 
chromosome is domain dependent, the approach 
used in this paper is to encode connections and 
weights for hidden layer neurons. 

  Each neuron in the hidden layer is encoded 
in such a manner, and networks are formed of 
groups of such structures.  These chromosomes 
are then subjected to the crossover and mutation 
operators in a search for a globally optimal 
solution.   

The neuro-evolution approach is significant 
because of its ability to discover difficult, often 
counter-intuitive strategies [2].  Neuro-evolution 
also allows a flexibility in the encoding of the 
network, and allows the evolution of more 
complex behavior because of its ability to train 
under reinforcement learning. 

3.1.  SANE Implementation 
SANE is short for Symbiotic, Adaptive, 

Neuro-Evolution.  Almost every existing neuro-
evolution tool evolves network structures [5], 
but SANE is unique in that it uses an 
evolutionary algorithm to evolve neurons and 
network ‘blueprints’.  SANE evolves partial 
solutions to problems in neurons, combines the 
neurons into networks, and evolves the best 
network structures. 

 Sane encodes weight and connection 
information for each neuron in the neuron 
population.  These neurons are then combined 
and formed into networks.  The networks are 
evaluated in some domain, and the neurons are 
rated based on the best networks in which the 
neurons participated.  This neuron level 
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Figure 1 - Neuron level SANE operation. Reproduced from Moriarty (1997.) 

operation of SANE is shown in Figure 1, 
reproduced from Moriarty [2].  Figure 1 depicts 
one generation of neuron level evolution.  The 
best neurons are selected based on the network 
level evaluation of the networks that those 
neurons participated in.  When the best neurons 
are selected, crossover and mutation are 
performed to recombine neurons, which replace 
the lowest scoring individuals in the population 
and form the new neuron population for the next 
generation. 

The neurons are evolved in the context of 
the other neurons in the population.  This 
strategy allows the neurons to rely on other 
neuron ‘specializations’ that form in the 
population, and helps prevent premature 
convergence of the population.  Moriarty defines 
symbiotic in the SANE acronym as symbiotic 
evolution in which “individuals explicitly 
cooperate with each other and rely on the 
presence of other individuals for survival.” [2]. 

A layer of neural network blueprints is 
also evolved on top of the neuron population, 
with network blueprints maintained as a separate 
population.  These blueprints are collections of 
neurons grouped together to form a hidden layer 
of a neural network.  Since the number of input 
neurons and output neurons are fixed in a 
particular environment in SANE, an entire 
network can be defined by the hidden layer 
neurons and their weighted connections to the 
input and output layer.  The blueprint population 
is evaluated, and the crossover and mutation 
operations are performed on this network 
population as the genetic search for the best 
network progresses.  

Each member of the network blueprint 
population specifies a number of pointers to 
members of the neuron population equal to the 
hidden layer size.  Neurons are combined 
systematically based on past performance, and 

are thus grouped in network structures with 
neurons that perform well together.   

In traditional network evolution, the 
evolutionary search focuses on a single, 
dominant individual, and can often converge 
prematurely on local optima.  Networks that 
perform well are bred with other networks that 
perform well, and the population of networks 
often becomes very homogeneous, which 
decreases population diversity and discourages 
alternative and possibly higher scoring 
approaches to the network architecture. 

A traditional approach to maintaining 
population diversity has been to increase the 
mutation rate.  This approach injects new 
genetic material into the population, but only 
rarely produces better individuals, and follows 
no specific heuristic to improve performance.  A 
better approach, introduced by Kenneth DeJong, 
has spawned many similar versions [6].  In 
DeJong style crowding, when two chromosomes 
are crossed-over, the children become new 
individual genotypes.  These new children 
replace the members of the population most 
similar to them.  This preserves more varied 
members of the population, and improves 
overall diversity.  More powerful techniques, 
including those that identify chromosomes that 
contribute to low scoring solutions are available.  
However, these techniques are costly and add 
CPU time to a system already very 
computationally expensive.  An approach such 
as SANE is ideal - building diversity pressures 
into the system while requiring little or no 
additional processing. 

By evolving neurons, which are partial 
solutions to the problem to be solved by the 
resulting networks, SANE automatically 
maintains diversity in the population [2].   
SANE restricts the scope of each individual to a 
single neuron, with each neuron optimizing a 
particular sub-task of the network [2].  If one 
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neuron is a member of one or more particularly 
high scoring networks, its genetic material will 
begin to permeate throughout the neuron 
population.  In that case, networks evolve that 
contain several copies of this neuron.  These 
networks will rarely perform well, as difficult 
tasks often require several different types or 
“specializations” of neurons.  This poor 
performance will garner a low fitness rating, and 
lower the chance that the dominant neuron will 
reproduce in subsequent generations, thus 
restoring diversity to the population. 

This is one of the major contributions of 
SANE over previous neuro-evolution tools and 
is one of its major strengths.  Although EAs are 
inherently stochastic techniques, effectively and 
intelligently guiding evolution toward global 
optima is the main goal of current trends in 
evolutionary algorithms.  A primary advantage 
of EAs over gradient descent methods is the 
search is not inherently biased toward a locally 
optimal solution.  However, EAs differ from 
purely random sampling algorithms due to their 
ability to direct the search toward relatively 
“prospective” regions in the search space [7]. 

3.2.  SANE Results 
SANE achieves very good results in 

sequential decision tasks.  It has been applied to 
a number of domains, including the game of Go 
[8].  It has been used to evolve a network for 
controlling a robotic arm [2], balancing an 
inverted pendulum [2], balancing 2 inverted 
pendulums [9], and capturing simulated prey 
[10].  In almost every simulation, SANE has 
been shown to evolve networks more quickly, 
keep a more diverse population of neurons and 
networks, and outperform other neuro-evolution 
strategies.  

Richards, et al. applied SANE to the 
game of Go.  Computers have had limited 
success in the game of Go.  Despite its simple 
gameplay, Go is deceptively hard to master.  
Black and white stones are alternately placed on 
a board until both players mutually decide the 
game is over and pass, at which time the score is 
calculated and a winner determined. 

Go is largely pattern based, which 
makes it particularly suited for implementation 

by a neural network.  SANE was used to evolve 
a feedforward network with two input neurons 
and one output neuron for each board position.  
Input neuron one is fed a boolean value 
indicating the presence or absence of a black 
stone, and input neuron two represents a white 
stone.  The output neurons are fuzzy values 
indicating a range of relative ‘goodness’ of a 
move to a particular board position. 

SANE achieved quite good results in 
evolving Go playing networks.  SANE was able 
to defeat a publicly available Go program called 
Wally, developed by Bill Newman, on small 
boards.  SANE was able to defeat Wally up to a 
9 x 9 board, but took 5 days of CPU time.  The 
authors estimated the time to evolve a successful 
network on a full sized 19x19 board at over a 
year.   

An important conclusion of that 
experiment was an insight into neural networks 
and evolutionary algorithms.  SANE evolved to 
defeat deterministic opponents quite quickly, but 
“…learned little about playing Go and only 
learned what was necessary to win against that 
particular opponent.” [8].  When 10% non-
determinism was applied to the Wally opponent 
in the form of random legal moves, SANE 
actually required more generations to defeat the 
opponent.  Richards, et al. concluded that SANE 
was finding holes in the deterministic 
opponent’s strategy, but actually learning Go 
strategy against the non-deterministic opponent.  
The non-determinism of blackjack makes the 
experiment in this paper a more interesting test. 

3.3.  Modifications to SANE 
SANE 2.0 has been modified by several 

people.  The primary modifications involve sub-
populations, recurrency, and delta-coding.  This 
research uses the sub-population modification of 
Faustino Gomez and Risto Miikkulainen, and 
introduces hidden layer growth, and Elman 
recurrency (a variant of the recurrency 
introduced by Gomez).  

In unmodified SANE, the neurons are in 
one large population, and a network may be 
made of neurons from the entire population.  As 
Moriarty [2] showed, in the advanced stages of 
evolution, instead of converging to a single 
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individual as a standard evolutionary algorithm 
would, the neuron population forms groups of 
individuals (neurons) that perform “specialized 
functions in the target behavior.”  These neurons 
specialize to perform a specific feature of the 
task, combining into networks to form effective 
solutions to the entire problem.   

Sub-population modifications split the 
neuron population into sub-populations.  A sub-
population is maintained for each neuron that 
may be in a hidden layer, and neurons are only 
replaced in a network from this respective sub-
population.  This is in an effort to circumscribe 
the “species” which evolve in advanced stages 
of SANE evolution, and thus speed up the 
evolutionary process.  This modification also 
allows each neuron to be evaluated on how well 
it performs in the context of the other neurons.  
Neuron specialization, which is hopefully 
contained in each sub-population, is not 
hindered or contaminated by recombination 
across specialization or sub-population. 

 Sub-populations also increase the 
performance and allow for more effective 
creation of recurrent networks.  The 
effectiveness of a neuron is more critically 
dependent on the neurons to which it is 
connected in a recurrent network.  The 
specialization of neurons in each sub-population 
allows recurrent neurons to rely more upon the 
type of neuron to which they are connected, and 
the performance of a recurrent network is 
boosted [10]. 

4.  Variable Hidden Layer Sizing 

Varying the size of the hidden layer in a 
neural network is achieved by varying the 
number of neurons in the hidden layer.  Since 
the input and output neurons have semantics in 
the environment, the size of the input and output 
layers are usually fixed in a neural network 
implementation.   

The optimal size of the hidden layer in a 
neural network has been the topic of much 
debate and is still very much an open research 
issue.  A common heuristic has been “a harder 
problem requires a larger hidden layer size”, but 
the number of neurons in the hidden layer of the 

network is often left to guesswork, or trying 
several sizes until acceptable results are 
achieved empirically. 

There have traditionally been three 
approaches to attempting to automate the hidden 
layer size in a network.  One may build a large 
network and prune it, start with a small network 
and add to it as needed, or start with a 
‘sufficient’ size, and add or subtract and retrain.  
Finding an appropriate size for the hidden layer 
is important.  If the hidden layer is too small, the 
network may not have sufficient ability to 
encode parameters of the problem.  Hidden 
layers that are too large may require much 
longer to train and can require unnecessary 
processing.  

 This paper proposes a new solution working 
in conjunction with the genetic selection 
inherent in the training and creation of networks 
created with SANE.  The size of a single hidden 
layer becomes another parameter in the genetic 
search for weights and connections, and 
networks are evolved with hidden layer size as a 
genotype along with weight and connection 
information.  Network size is another trait of the 
individuals in the network population. 

4.1.  Motivation 

Varying the hidden layer size creates a more 
autonomous learning system and eliminates 
some of the guesswork associated with finding 
the proper hidden layer size, thus decreasing 
development time.   

Variable hidden layer sizes (VHLS) are also 
motivated by the earlier work of Moriarty, 
Miikkulainen, and Fullmer, who developed the 
marker based encoding strategy.  They achieved 
good results by allowing recurrent networks to 
assume any size necessary.  A strength of 
reinforcement learning when combined with 
EAs is the ability to vary network parameters 
and architecture easily while selecting those 
individuals that perform the best, regardless of 
size. 

An additional motivation for VHLS is the 
ability to explore larger networks that may be 
required to solve a particular problem, and 
automating the empirical search for the best 
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network size.  Complex problems may require 
larger hidden layers.  The ability to evolve a 
population to more closely match this 
requirement is an important consideration in any 
learning system.    Alternately, if a smaller 
hidden layer size can provide better 
performance, processing will be saved.  This 
important benefit is discussed more fully in 
Chapter 6.       

As mentioned earlier, maintaining 
population diversity is critical to the effective 
performance of any evolutionary algorithm.  By 
forcing variable sized networks, a measure of 
diversity is introduced into the network 
population.  Varying the number of neurons in 
the hidden layer makes the population of 
networks more diverse.  Network “blueprints” 
not only explore different combinations of 
neurons, but different quantities as well.  Adding 
and removing neuron specializations 
dynamically increases the dimensionality of the 
network evolution.  Diversity is increased in the 
network population by evolving networks that 
combine different numbers of neurons (or 
specializations.)      

4.2.  VHLS Implementation 
 

It is important to note that varying the 
hidden layer size does not inherently give the 
networks more power.  Networks with hidden 
layers from 10 to 20 neurons are no more 
effective than networks with a fixed size of 20 
neurons, since the fixed network may evolve 
zero valued weights for the 10 to 0 extra 
neurons.  In addition, the fixed network may not 
evolve connections to the extra neurons at all, 
and effectively becomes a network with fewer 

hidden layer neurons.  This could be seen as the 
traditional approach of starting with a large 
network and pruning ‘useless’ connections. 

Pruning is often accomplished by searching 
for nodes whose associated connection weights 
have very small magnitude, or running a lesion 
study to find connections whose existence does 
not significantly affect network outputs.  If 
∂o/∂w is negligible for a given node, where o is 
the output and w is the weight for a connection, 
this node may be pruned. 

The advantages of dynamic, evolutionary 
hidden layer sizing are the elimination of 
searches for ‘prunable’ nodes, increases in 
network population diversity, implicit 
elimination of excess nodes, extensibility to Δ-
coding (discussed in Chapter 8), and 
performance increases for the experiments in 
this study. 

By including various sized networks in the 
population of candidate solutions, networks are 
more efficiently sized for the task at hand.  
Allowing a larger network to evolve zero 
weights or connections to certain neurons slows 
the search.  Allowing a hidden layer size 
genotype in the genetic representation of the 
neuron forces networks to explore different 
sizes, as networks rarely evolve all zero weights 
and connections for a neuron.  A population of 
various sized networks also aggregates to fewer 
CPU cycles than a population of networks that 
are all at the upper limit of this size range.  
Evaluating the fitness of a network with a 
smaller hidden layer size (and later applying that 
network to the task) requires less CPU time and 
storage than a larger sized network. 

Networks evolved under variable sizing are 

Figure 2 – Variable and fixed (standard SANE) network sizing 
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possible with a large fixed hidden layer model, 
but specifically removing a neuron is rarely 
explored by a fixed network architecture.  That 
is to say, a neuron in the hidden layer rarely 
evolves with all zero connections and weights to 
other neurons under a fixed architecture.  
Varying the size of the hidden layer forces this 
evolution, and increases the dimensionality of 
the search, not only exploring different 
combinations of specializations, but different 
quantities as well.  By maintaining a population 
of networks with different sizes, the network 
population is more diverse.  This diversity helps 
prevent pre-mature convergence.  Figure 2 
shows standard and variable network sizing 
under SANE.  The figure demonstrates the 
network level representation of individual 
networks as groups of pointers to members of 
the neuron population.  Variable sized networks 
are composed of different numbers of pointers to 
the neuron population. 

With variable hidden layer sizing, the 
equation for each output neuron becomes: 

ƒ(Σ(Σwj)xi)
qn

j=1i=1  
xi is the output of hidden layer neuron i, and 

w is the weight matrix for connections between 
hidden layer and output neurons.  The only 
difference between this equation and the 
equation for a standard output neuron is that n 
may now assume variable values.  The 
innermost summation is present because SANE 
allows the evolution of multiple connections (q) 
between 2 distinct neurons in adjacent layers. 

The enhancements provided by variable 
hidden layer sizing are similar to those 
introduced by enforced sub-populations.  Sub-
populations form in SANE after several 
generations, due to neuron specialization [2].  
By forcing sub-populations, however, the 
formation of sub-populations is speeded and 
performance improves, particularly in recurrent 
networks.  Including those features from the 
start that evolve naturally gives the system a 
“head start” and allows the evolutionary search 
to focus on optimal solutions rather than forming 
specializations first and then optimizing.  
Having variable sized networks, the 

evolutionary algorithm eliminates the search for 
possibly beneficial null connections in a larger 
network.  

Variable hidden layer models require slight 
modifications to the crossover and mutation 
operators found in the outer loop evolutionary 
algorithm of SANE.  Since the network sizes are 
initialized randomly, the crossover operator 
often performs crossover between two networks 
of different sizes.  Networks are initialized to a 
random size between two user-defined numbers.  
A minimum size and maximum size are included 
to refine searches, as very broad ranges of size 
require a very large and often unfeasible 
network population to achieve good results.  The 
following equation generally produced the best 
results for the tests in this research, although this 
is domain dependent.  

5 ≤ (Max_Net_Size - Min_Net_Size) ≤ 10  

  A crossover point is selected to be 
somewhere between the start and the end of the 
shorter network chromosome, and crossover is 
performed as usual.  One child assumes the size 
of the shorter length parent and one assumes the 
length of the larger parent, as shown in Figure 3.  
Other crossover techniques were tried, such as 
picking an independent crossover point on each 
parent.  Performing crossover and producing 
radically different sized children seemed to 
introduce too much diversity and led to poor 
performance, however.    

Chromosome 2

Chromosome 1

Crossover Point

Child 2

Child 1

Crossover Point

Figure 3 - Crossover operator 

  The mutation operator is also modified 
slightly to explore larger networks.  Instead of 
traditional mutation, in which a bit is flipped, or 
a connection or weight value in a chromosome is 
randomly altered, mutation in variable hidden 
layer sizing was performed by adding a neuron 
to each chromosome (if the length of the 
chromosome is less than Max_Net_Size).  This 
operator is performed on a user-defined 
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Figure 4 - The mutation operator 

percentage of the network population per 
generation to further explore the search space, as 
shown in Figure 4.  The diagram illustrates a bit 
string representation for simplicity, but in 
SANE, a complete single neuron encoding 
including weights and connections is added to 
the end of a network chromosome during 
mutation. 

Figure 5 - Simplified Elman network 

 

4.3.  Using VHLS in Elman Recurrent 
Networks 
Elman [11] explored recurrent neural 

networks that provide the system with memory.  
This is done in the context of giving the system 
“dynamic properties that are responsive to 
temporal sequences.”  These networks include a 
time parameter, which necessitated a new 
network model for representing inputs to the 
system in previous time steps.  Elman added 
context units to a standard feedforward neural 
architecture as shown in Figure 5.  These context 
units function similarly to input units, but 
receive their input from the output of the hidden 
layer in the previous iteration. 

 Elman notes that in feedforward 
networks, the hidden units develop internal 
representations of input patterns and recode 
those patterns to produce the correct output for 
any given input.  The hidden units in the Elman 
model thus have the dual task of mapping both 
an external input and the previous internal state 
saved in the context units.  The internal 
representations that develop thus have an 
implicit temporal property [11].  

In order to provide the network with 
short-term memory and give the network the 
ability to define the problem domain in simpler 
terms, tests were run with an Elman recurrent 
neural network.  The short-term memory gives 

recurrent networks information from previous 
iterations.  In our case, this provides the 
information about previous cards played. 

In SANE, the recurrent network is free 
to ignore this information and evolve zero 
weights for the feedback connections, provided 
the information does not improve the 
performance of the networks.  Hence, the 
network functions as a feedforward network.  
However, the previous state information 
provided by recurrent networks is essential in 
non-Markovian tasks, where recurrent networks 
provide significant feedback for decomposing 
difficult tasks.   

The number of examples needed to train 
a neural network to learn a function increases 
roughly exponentially with the input dimension 
[12].    Game playing typically requires at least 
two input neurons per game square, and most 
interesting problems have a high input 
dimension.  Recurrent networks can decompose 
a high dimensional function into many lower 
dimensional functions connected in a feedback 
loop, and reduce the difficulty of the problem 
[13]. 

5. Applying Neuro-Evolution to 
Blackjack 

SANE was modified with sub-
populations, hidden layer growth, and Elman 
recurrency, and applied to the game of 
blackjack.  The environment is a partially 
observable Markov decision problem.  
Blackjack provides a unique test, as recurrent 
networks are applied to the task with the 
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opportunity to evolve into more complex agents, 
taking advantage of previous state information.  
By using knowledge of cards played in previous 
hands, the network can gather more information 
from the environment, or in a more formal 
sense, the network can make the environment 
more accessible. Russell and Norvig [14] 
describe one property of environments as 
accessible vs. inaccessible.  Accessible 
environments provide an agent with a complete 
state of the environment.  Despite increases in 
accessibility through information of previously 
played cards from recurrent connections, the 
environment still remains inaccessible because 
there are some cards the network will never see, 
and thus some uncertainty in the environment.  
This problem is interesting because making the 
problem easier or more accessible can be a goal 
of the network evolution, by evolving useful 
recurrent connections.  Blackjack is also the 
only casino game in which a player can gain a 
statistical edge over the house by using 
information from previous hands [15]. 

For this paper, blackjack was played with a 
single deck, with standard rules.  Pair splitting, 
insurance, and doubling down were not allowed.  
The player and the dealer were initially dealt 
two cards, with the player aware of one of the 
dealer’s cards (the up card).  The network was 
aware of the total of its (the player’s) hand, and 
the dealer up card.  The network is then 
activated, and can decide to hit or stand.  Hitting 
gives another card, with the goal of reaching 21.  
Cards are worth their face value, with 10s, 
Kings, Queens, and Jacks worth 10 points.  An 
ace is worth 1 or 11, and a player with a hand 
containing an ace has an option of using the ace 
as 1 or 11 (if using the ace as an 11 does not 
make the total more than 21).  A hand with this 
option is referred to as ‘soft’.  For example, a 
hand consisting of {A,5} is a soft 16, because 
hitting and receiving a Jack for {A,5,J} is still 
16, although now it is a hard 16.  The network 
(player) wins if it has a higher point total than 
the dealer, without going over 21 (busting).  An 
initial deal of a 10 value card and an ace is an 
automatic victory for the player (assuming the 
dealer does not also have 21), and is referred to 
as a ‘natural.’  Ties in blackjack are referred to 
as a ‘push’, and the player’s bet is returned. 

A diagram of the actual network 
implementation is given in Figure 6.  The 
networks consist of 41 input neurons for the 
player’s point total (separate neurons for hard 
and soft totals) and the dealer’s up card.  For 
example, a player receiving {10,6} with a dealer 
up card of {8} activates the hard 16 input neuron 
and the dealer’s 8th neuron.  The networks have 
4 output neurons, 2 for hit and stand.  If the hit 
neuron’s output is higher, the network hits, and 
vice versa.  Networks were outfitted with two 
additional output neurons for raising or lowering 
the bet on the next hand. 

Input Layer Hidden Layer Output Layer
Player
Point
Total

(Hard)

Player
Point
Total
(Soft)

Dealer
Up

Card

By varying bets, the network can 
influence its monetary outcome based on the 
additional information and accessibility from 
recurrent connections and weights conveying 
previous decision information.  From a domain 
specific standpoint, this can be thought of as 
counting cards, or changing present behavior 
based on previous states and previous cards 
played.   

Card counting is a strategy employed by 
blackjack professionals to significantly improve 
the player’s odds.  Simply stated, the more 10 
value cards remaining in the deck, the more 
favorable future hands will be to the player.  
Similarly, if all of the face cards and 10s are 
dealt out early, later hands will favor the dealer.  
A recurrent network that increases its bets when 
the deck becomes favorable demonstrates an 

Figure 6 - Blackjack network structure 

Hit

Stand

Increase Next Bet

Decrease Next Bet

CONTEXT
NEURONS

Most
Connections
Not Shown
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effective use of the additional information 
provided by the feedback connections.  
Advanced blackjack players usually try to track 
individual cards, whereas the network employs a 
slightly different strategy of using the point total 
from previous hands to influence present 
decisions.    

     The inputs of the model depend on 
the hidden layer activation of the previous 
iteration, as well as card total of the player and 
the dealer up card.  Test parameters are given in 
Figure 7.  Most parameters were empirically 
discovered based on preliminary trials. As an 
interesting corollary, very early generations 
evolved networks employing the “always stand” 
strategy, a very beginning and ineffective 
strategy found in some human players, and also 
known as the “dealer bust” strategy [15]. 

  These parameters were established as 
producing networks that emulated known 
blackjack strategy and avoided the “always 
stand” strategy.  Providing a sufficiently large 
neuron population size was the most important 
factor in producing intelligent network play. 

There are widely available blackjack 
tables, which indicate the correct hit/stand 
decision for each possible point total in a 
player’s hand, based upon the dealer’s up card.  
No previously dealt cards are considered in the 
tables.  The dealer in blackjack has no choices – 
the dealer must hit a 16 or below, and must stay 
on 17 or higher.  In these experiments, the dealer 
does hit a soft 17, as in some casinos.  This was 
the only dealer rule variant introduced in the 
experiment, to make play slightly harder for the 
network.  Since the dealer’s down card is 
revealed after the network has made a decision, 
the network is never aware of the dealer’s down 
card, which is not standard in normal blackjack 

play.  This makes keeping track of unplayed 
cards more difficult for the network. 

 One test evolved networks with a 
variable hidden layer size, and one test evolved 
networks with a fixed hidden layer size.  The 
fixed model had 25 neurons in the hidden layer, 
while the variable model could have 20 to 25 
neurons in the hidden layer.  With a 25 neuron 
fixed hidden layer, the fixed model could evolve 
all of the networks the variable model could.  
Evolving zero weights for the connections to 
extra neurons effectively makes the fixed model 
the same size as a smaller network.  The fixed 
model was just as powerful as the flexible 
model, spending more time optimizing its fixed 
network structure rather than finding the optimal 
network size.  By comparison, the variable sized 
networks had more built-in population diversity 
in terms of the network structures, but had to 
spend generations exploring appropriate network 
size as well as finding appropriate weights.    

TEST PARAMETER fixed variable
Decks of play per network eval. 35 35
Number of decks (shue size) 1 1
Hidden layer size 25 20-25
# of Context Neurons 20 20
Network population size 140 140
Neuron population size 5000 5000
Sub-population size 200 200
Adding neuron mutation rate 2% 2%

Figure 7 - Blackjack test parameters 

 The network could learn the remaining 
contents of the deck and use this information to 
increase the bet on the next hand when the deck 
becomes ‘favorable’ (more high cards left in the 
deck), or lower the bet when the deck is 
‘unfavorable’ (more non-10 value cards 
remaining in the deck.)  In this sense, if the 
system evolves networks that take advantage of 
this additional information, the problem 
becomes more accessible – that is, more 
information from the environment is available to 
the agent, and performance will improve. 

Both network architectures were evaluated 
based upon the mean of the amount of money at 
the end of 35 decks of blackjack, and the 
percentage of correct hit/stand decisions made 
by the network, as defined by known blackjack 
tables.  The network player started with a 
bankroll of 100 units, and could dynamically 
determine the next bet in the range of 1 unit to 5 
units. Performance based on an average of 
money remaining and mathematically correct 
decisions was deemed appropriate.  This 
measure was used to balance the ‘real-life’ goal 
of competitive blackjack – to make money, 
while preventing lucky high bets on the part of 
the recurrent network by requiring that half of 
performance be based on the correct decisions 
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according to a blackjack table.  Initial tests were 
conducted exclusively with money remaining as 
the performance measure.  While many 
networks made intelligent decisions, some 
ineffective but lucky "always stand" networks 
performed well on shuffles that were more 
forgiving of this strategy.  

6.  Experimental Results 
Overall, blackjack networks both fixed 

and variable in hidden layer size, performed well 
by making intelligent decisions and evolved a 
strategy similar to a player utilizing the 
blackjack tables.  Given the rules of the game 
used for these tests, with no doubling down or 
pair splitting, no insurance, and dealer hitting 
soft 17, the ‘house edge’ was 3.28% [15].  When 
the best network in the entire testing series was 
run over 20 decks of test play, the network had 
$116, after starting with $100.  Due to the house 
edge and an average of 8 hands per deck, a non 
card-counting player playing exactly according 
to blackjack tables should have only $94.75.  It 
is important to note that this best network was 
evolved with variable hidden layer sizing. 

 All tests consisted of trials until 
statistical significance of scores was established 
at or beyond a 95% probability of significant 
difference. Due to extremely computationally 
expensive tests, SANE was run for 200 
generations, and the score achieved at generation 
200 taken as the score for the best network on 
that trial.  The average generation is the 
generation at which the highest scoring network 
was evolved.  Between this generation (and up 
to 200 generations, when the test was halted), no 
higher scoring networks were evolved.  
Although interesting for observation, the 
generation measures had a very high standard 
deviation and are not statistically significant. 

6.1. VHLS Results in Recurrent Networks 
Figure 8 shows the results of the trials.    

A detailed analysis of actual blackjack play by 
the networks indicated that to a certain extent, 
networks were using previous decisions to 
improve performance.  Only a small number of 
networks varied their bets, however.  This means 
that most networks used feedback information to 

refine the hit/stand decision rather than 
attempting to bet more when the deck was 
favorable.  The networks that did modify their 
betting strategy did so very successfully.  This 
was a very advanced trait and evolved in 2% of 
network tests.  Networks that did vary bets had 
an average 64% success rate.  That is, when a 
network decided to raise its next bet, it won the 
next hand an average of 64% of the time.  A non 
card-counting player following the blackjack 
table, as defined in this test, would have won 
only 47.72% of the time.  

Variable Hidden Layer Size Fixed Hidden Layer Size
Average Size 22.641 Average Size 25.000
Average Score 78.104 Average Score 72.092
Average Generation 95.333 Average Generation 84.729
Standard Dev. of Score 10.386 Standard Dev. of Score 16.183

Recurrent Blackjack Tests

Figure 8 - Test results 

Trends in the test results demonstrated 
that VHLS provides a higher score and more 
consistency in the form of lower standard 
deviation of score. VHLS models performed 
better, and had an average hidden layer size of 
22.641 instead of 25.  Thus, VHLS provided an 
average reduction of 9.436% in CPU time for 
hidden layer processing.  The resulting network 
thus performed 8.339% better and required 
almost 10% fewer CPU cycles under VHLS.    

7.  Comments 
This research has demonstrated a new 

modification to the SANE neuro-evolution tool 
and established the effectiveness of evolving 
Elman recurrent networks.  In addition, 
performance enhancements in the form of more 
consistent network evolution, and higher score 
increases were also achieved.  This conclusion 
was confirmed over tests in the domain of 
partially observable Markov decision problems. 

Allowing the evolutionary algorithm to 
modify the number of hidden layer neurons in 
the networks increased the average scores over 
the domain of blackjack. The networks, with 
variable hidden layer size, were higher scoring, 
more consistent in performance (lower standard 
deviation of scores), and reduced CPU time for 
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hidden layer processing by an average of 
9.436%. 

This research extended the domain of 
SANE applications to partially observable 
Markov decision problems.  SANE evolved a 
network capable of predicting cards in future 
blackjack hands and evolved to make it’s 
environment more accessible by using previous 
state information.  

It has only been recently that neuro-
evolution has evolved the power to solve non-
Markovian problems [9].  SANE has 
demonstrated effectiveness in these domains and 
varying the size of the hidden layer has 
improved performance and created higher 
performing networks with lower computational 
requirements.     

For the domain of blackjack play, 
recurrent networks displayed predictive abilities.   
Elman recurrent networks were shown to be an 
effective and efficient addition to SANE, as they 
require little modification to the internals of the 
system.  A distinction is simply made in the 
connection of a neuron to indicate a connection 
to a context neuron.  Context neurons then 
function as input units, and SANE can be 
applied to many new domains. 

This research has also made some 
headway into creating neuro-evolution models 
capable of “scaling up” to larger and more 
complex domains.  Tests in this paper have 
confirmed that growing or varying the hidden 
layer size is an effective technique for creating 
larger neural models, and may improve 
performance, efficiency, and automation of 
network sizing for many domains. 

Although SANE with the hidden layer 
size modifications did evolve better networks 
more efficiently, the standard version provided 
acceptable results. Hidden layer size evolution 
may be necessary for acceptable performance, 
when combined with Δ-coding on non-
Markovian tasks, and for the esoteric ideal of 
creating truly automated learning systems. 

8.  Future Work and Conclusion 
The goal of dynamic construction of 

neural networks supports a reduction in 

development time and is toward, in the general 
sense, a more autonomous learning system [16].  
Automating the selection of hidden layer size 
augments this goal and simply becomes another 
search criterion for the evolutionary algorithm.  
For the domains in this research, varying the 
hidden layer size has been shown to improve the 
score of the network and provide a direction 
toward that autonomy. 

Future directions for neuro-evolution 
research include refining and modifying the very 
effective SANE model and adding functionality 
and applicability to newer and more difficult 
classes of problems.  An interesting area of 
future research is in augmenting the work of 
Gomez and Miikkulainen in incrementally 
evolving behaviors.  Networks under 
incremental evolution are not evolved from a 
random population of neurons and networks, but 
rather start evolution by building upon 
previously evolved decision strategies.      

 The idea of incremental evolution and 
Δ-coding is to start with simpler tasks and 
evolve more sophisticated behavior on top of the 
existing knowledge.  Starting with smaller goals, 
more complex behavior can generally be 
evolved than starting from scratch. 

Delta-coding was not included in the 
experiments in this paper, but merits discussion 
due to its importance in hidden layer growth and 
future work.  Originally included in SANE by 
Faustino Gomez, Delta-coding is a method 
developed by Whitley et al. [5].  The concept of 
Delta-coding is to search the neighborhood 
around the best solution found so far.  

Delta-coding is similar to evolving a 
network population, arriving at the highest 
scoring network, and then starting over, using 
this best network as a starting point.  Gomez and 
Miikkulainen [10] showed that Delta-coding can 
be used to implement incremental evolution by 
successively evolving more complex prey 
capture behavior. 

After many generations, the population of 
neurons will become more homogeneous, and 
the evolutionary algorithm will perform poorly 
or fail to find a global optimum.  When the 
neuron sub-population has reached a minimum 
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diversity (defined by the designer), the best 
network chromosome so far is saved.  New sub-
populations are then initialized with Δ-values 
representing small differences in the connection 
weights for each neuron in the best network 
found so far.  Thus, each neuron in the best 
network has a specific sub-population of neuron 
Delta-chromosomes designed to improve this 
neuron specifically.  Delta values are added to 
the connection weights in the best solution and 
the resulting chromosomes are termed Δ-
chromosomes.  Those Delta-chromosomes that 
improve performance are kept and bred. 

In each step of this incremental evolution, 
the difficulty of the task increases and the 
network requires more power.  Varying or 
growing the hidden layer size may provide 
additional power to the network evolving more 
difficult decision strategies. 

Delta-coding and hidden layer size variation 
are together significant in incremental evolution, 
since they are both methods that can be used 
when a population has converged.  Delta-coding 
has been shown to be effective in incremental 
evolution.  Hidden layer growth could be 
combined with Delta-coding to provide more 
power to networks attempting to achieve higher 
scores in difficult, non-Markovian tasks.  Delta-
coding increases the diversity of the candidate 
solutions, and hidden layer growth increases the 
dimensionality of the solution.  Exploring this 
combination for solving non-Markovian tasks is 
an interesting consideration for future research. 

Another future area for exploration is on-
line learning.  For experiments in this paper, 
network weights and connections were not 
modified after training.  Growing the hidden 
layer size under on-line learning is another 
interesting investigation, as networks that learn 
on-line must be more adaptable and robust.  
Input to the network during on-line learning may 
be outside the range anticipated by the 
designer’s training inputs.  As a result, networks 
using on-line learning must be able to adapt to 
these changes.  Variable hidden layer sizing 
could help in this adaptability. 
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