
Variable Hidden Layer Sizing in Elman Recurrent Neuro-Evolution

Khosrow Kaikhah and Ryan Garlick
Department of Computer Science
Southwest Texas State University

San Marcos, TX 78666
kk02@swt.edu, ryang@seas.smu.edu

Abstract
The relationship between the size of the

hidden layer in a neural network and
performance in a particular domain is currently
an open research issue. Often, the number of
neurons in the hidden layer is chosen empirically
and subsequently fixed for the training of the
network. Fixing the size of the hidden layer
limits an inherent strength of neural networks –
the ability to generalize experiences from one
situation to another, to adapt to new situations,
and to overcome the “brittleness” often
associated with traditional artificial intelligence
techniques. This paper proposes an evolutionary
algorithm to search for network sizes along with
weights and connections between neurons. The
size of the networks simply becomes another
search parameter for the evolutionary algorithm.

This research builds upon the neuro-
evolution tool SANE, developed by David
Moriarty. SANE evolves neurons and networks
simultaneously, and is modified in this work in
several ways, including varying the hidden layer
size, and evolving Elman recurrent neural
networks for non-Markovian tasks. These
modifications allow the evolution of better
performing and more consistent networks, and
do so more efficiently and faster.

SANE, modified with variable network
sizing, learns to play modified casino blackjack
and develops a successful card counting
strategy. The contributions of this research are
up to 8.34% performance increases over fixed
hidden layer size models while reducing hidden
layer processing time by almost 10%, and a
faster, more autonomous approach to the scaling

of neuro-evolutionary techniques to solving
larger and more difficult problems.

1. Introduction
Neural networks have proven effective

in a range of pattern recognition and association
problems, and generalize well to new situations,
often overcoming the “brittleness” of some other
traditional artificial intelligence methods.
Evolutionary or genetic algorithms have been
applied to training neural networks, with the
neuro-evolution approach significant in its
ability to discover difficult, counter-intuitive
strategies [2]. Evolutionary algorithms represent
a candidate solution as a chromosome, and these
potential solutions are evaluated and the
operations of crossover and mutation are
performed on them in a hill-climbing search for
better solutions. A critical aspect of
evolutionary algorithms is maintaining diversity
in the population, thus preventing the algorithm
from falling into a local optimum and
converging too early upon a sub-optimal
solution.

The hybrid neural and genetic approach
takes advantage of the strengths of both. By
training neural networks with evolutionary
algorithms, feedback from the environment does
not have to occur at every network output, and a
decision strategy can be based upon the
evaluation of an entire series of decisions.

 Often, neural networks are evolved with
a fixed size, with the genetic algorithm adjusting
connection weights to optimize network
performance. Choosing the correct size or
number of neurons in the hidden layer for a
neural network is problem dependent, and is
currently an open research issue. Commonly,
networks are tested using different sized models,

 1

and size is chosen empirically. This paper
presents a new approach to neuro-evolution,
treating the size of the network as another
parameter in the evolutionary algorithm. This
approach allows the network to grow in response
to shifts in the problem, or more efficiently form
a smaller network if this solution is more
appropriate.

This paper demonstrates a new method of
efficiently automating the search for appropriate
network size, with performance and efficiency
increases due to increases in network population
diversity, creation of Elman recurrent neural
networks with SANE, and direction toward the
goal of a more autonomous learning system.

The remainder of this paper is organized as
follows: Chapter 2 introduces neuro-evolution
and a precursor to the SANE system. Chapter 3
is devoted to SANE, with Chapter 4 addressing
modifications to SANE to vary the hidden layer
size and permit Elman recurrent networks.
Chapter 5 discusses the application of SANE to
blackjack. Chapter 6 gives the results of
blackjack experiments on these recurrent
models. Chapter 7 presents some brief
comments on the experiments, with a conclusion
and future work in Chapter 8.

2. Neuro-Evolution Models
A primary advantage of hybrid neuro-

evolution searches over more traditional
gradient-descent searches is the ability to
implement reinforcement learning rather than
supervised learning. Supervised learning
methods (such as backpropagation) require a
smooth, continuously differentiable activation
function from which gradient information can be
derived for the backpropagation of error signals
for every iteration of the network. For training
purposes, the network must receive feedback as
to its performance after every output. In many
domains, this output may not come until a
sequence of events has occurred. Training a
neural network using backpropagation or other
supervised learning methods to perform a
sequential decision task requires a determination
of which specific decisions were responsible for
any errors based upon an evaluation of a series
of such decisions. This is Minsky’s credit

assignment problem, and is at the center of many
AI problems [1].

Reinforcement learning addresses the credit
assignment problem by assigning a performance
measure to an entire system, even after several
decisions have been made. A poker player, for
example, could be evaluated after several hands
have been played, and not by a statistical
analysis of precisely the correct decision to take
another card or stay at every possible decision
point. In poker, this analysis could be an
estimation only, as the other player’s cards and
the cards not yet dealt are not known. In many
harder tasks, this information is very difficult or
impossible to obtain from the environment, and
reinforcement learning becomes the natural
choice for evaluating performance and selecting
favorable agents.

An additional advantage of not having to
compute gradients for backpropagation is that
recurrent neural networks can be evolved
without requiring a more complex and
computationally expensive algorithm [2].
Supervised learning in recurrent networks can be
performed. However, existing algorithms are
complex and difficult to extrapolate to new
neural models. In neuro-evolution, a network
may be created, evolved by an EA, and
evaluated, without regard for whether the
network is feedforward or recurrent.

2.1. Marker Based Encoding
Several authors have contributed to neuro-

evolution research in the direction of automating
the size of the network. Fullmer and
Miikkulainen [3] explored marker based
encoding of neural networks. Using this
strategy, networks are encoded in a single
circular chromosome, with start and end markers
indicating the beginning and end of neurons in
the network. Weight and connection
information is encoded within the start and end
markers, and the networks are recurrent. The
marker-based encoding is unique in that the
interpretation of each allele is independent of its
locus in the chromosome. Each position is used
in such a way that produces the maximum
benefit for the network. In the crossover
operator, neurons may be added or taken away,
and connections may feed back to other neurons

 2

or even to themselves. This encoding is very
loose and dynamic, and the idea of growing a
network to fit the problem at hand was used
extensively in this research.

 These authors did pioneering work in
representing neural structures in an evolutionary
algorithm, and applied the work to an object
recognition task requiring exploration and
discrimination of objects in a simulated
environment. Tests confirmed that agents were
able to discriminate objects in an environment
even when memory was required.

Moriarty and Miikkulainen [4]
continued the marker based encoding strategy by
applying neuro-evolution to the domain of
Othello play. Othello is played on an 8 x 8
board with pieces black on one side and white
on the other. Players may only move in
unoccupied squares and must linearly surround
the opponent’s piece or pieces horizontally,
diagonally, or vertically. After doing so, the
player flips the opponent’s pieces to her color
and play continues. The game ends when there
are no legal moves for either player, in which
case the player with the most pieces of her color
wins. Tournament level players have developed
a mobility strategy based on actually
maintaining a low piece count, but holding
strategic positions and forcing the opponent to
make poor moves, surrendering good positions.

Moriarty and Miikkulainen used the
power of the marker based encoding strategy
and refined its representation of the network.
Only hidden layer neurons are represented in the
chromosome, with connections to the output
layer specifically encoded in the connection
information. In the earlier version, output nodes
were explicitly defined.

The network was pitted against a random
player, a minmax search with α-β pruning, and
finally against themselves. With enough
evolution (typically 24 hours on an IBM
RS6000 25T workstation), the network defeated
all three. According to these authors, after 2000
generations, the networks were employing a
beginning mobility strategy.

3. SANE

This paper presents an extension of the
strength of the marker-based system and the
work of David Moriarty. Moriarty developed
SANE, a novel neuro-evolution tool that evolves
neurons and networks simultaneously. This co-
evolution of neurons and networks is an effort to
maintain population diversity and encourage
neurons to specialize or optimize one aspect of
the problem and connect with other neurons that
optimize another part of the problem.

SANE encodes network and individual
neuron information in chromosomes. While the
specific information to be encoded in the
chromosome is domain dependent, the approach
used in this paper is to encode connections and
weights for hidden layer neurons.

 Each neuron in the hidden layer is encoded
in such a manner, and networks are formed of
groups of such structures. These chromosomes
are then subjected to the crossover and mutation
operators in a search for a globally optimal
solution.

The neuro-evolution approach is significant
because of its ability to discover difficult, often
counter-intuitive strategies [2]. Neuro-evolution
also allows a flexibility in the encoding of the
network, and allows the evolution of more
complex behavior because of its ability to train
under reinforcement learning.

3.1. SANE Implementation
SANE is short for Symbiotic, Adaptive,

Neuro-Evolution. Almost every existing neuro-
evolution tool evolves network structures [5],
but SANE is unique in that it uses an
evolutionary algorithm to evolve neurons and
network ‘blueprints’. SANE evolves partial
solutions to problems in neurons, combines the
neurons into networks, and evolves the best
network structures.

 Sane encodes weight and connection
information for each neuron in the neuron
population. These neurons are then combined
and formed into networks. The networks are
evaluated in some domain, and the neurons are
rated based on the best networks in which the
neurons participated. This neuron level

 3

NEURONS

COMBINATION
 INTO

NETWORKS

NETWORK

EVALUATION

SELECTION
AND

RECOMBINATION

NEW NEURONS

Figure 1 - Neuron level SANE operation. Reproduced from Moriarty (1997.)

operation of SANE is shown in Figure 1,
reproduced from Moriarty [2]. Figure 1 depicts
one generation of neuron level evolution. The
best neurons are selected based on the network
level evaluation of the networks that those
neurons participated in. When the best neurons
are selected, crossover and mutation are
performed to recombine neurons, which replace
the lowest scoring individuals in the population
and form the new neuron population for the next
generation.

The neurons are evolved in the context of
the other neurons in the population. This
strategy allows the neurons to rely on other
neuron ‘specializations’ that form in the
population, and helps prevent premature
convergence of the population. Moriarty defines
symbiotic in the SANE acronym as symbiotic
evolution in which “individuals explicitly
cooperate with each other and rely on the
presence of other individuals for survival.” [2].

A layer of neural network blueprints is
also evolved on top of the neuron population,
with network blueprints maintained as a separate
population. These blueprints are collections of
neurons grouped together to form a hidden layer
of a neural network. Since the number of input
neurons and output neurons are fixed in a
particular environment in SANE, an entire
network can be defined by the hidden layer
neurons and their weighted connections to the
input and output layer. The blueprint population
is evaluated, and the crossover and mutation
operations are performed on this network
population as the genetic search for the best
network progresses.

Each member of the network blueprint
population specifies a number of pointers to
members of the neuron population equal to the
hidden layer size. Neurons are combined
systematically based on past performance, and

are thus grouped in network structures with
neurons that perform well together.

In traditional network evolution, the
evolutionary search focuses on a single,
dominant individual, and can often converge
prematurely on local optima. Networks that
perform well are bred with other networks that
perform well, and the population of networks
often becomes very homogeneous, which
decreases population diversity and discourages
alternative and possibly higher scoring
approaches to the network architecture.

A traditional approach to maintaining
population diversity has been to increase the
mutation rate. This approach injects new
genetic material into the population, but only
rarely produces better individuals, and follows
no specific heuristic to improve performance. A
better approach, introduced by Kenneth DeJong,
has spawned many similar versions [6]. In
DeJong style crowding, when two chromosomes
are crossed-over, the children become new
individual genotypes. These new children
replace the members of the population most
similar to them. This preserves more varied
members of the population, and improves
overall diversity. More powerful techniques,
including those that identify chromosomes that
contribute to low scoring solutions are available.
However, these techniques are costly and add
CPU time to a system already very
computationally expensive. An approach such
as SANE is ideal - building diversity pressures
into the system while requiring little or no
additional processing.

By evolving neurons, which are partial
solutions to the problem to be solved by the
resulting networks, SANE automatically
maintains diversity in the population [2].
SANE restricts the scope of each individual to a
single neuron, with each neuron optimizing a
particular sub-task of the network [2]. If one

 4

neuron is a member of one or more particularly
high scoring networks, its genetic material will
begin to permeate throughout the neuron
population. In that case, networks evolve that
contain several copies of this neuron. These
networks will rarely perform well, as difficult
tasks often require several different types or
“specializations” of neurons. This poor
performance will garner a low fitness rating, and
lower the chance that the dominant neuron will
reproduce in subsequent generations, thus
restoring diversity to the population.

This is one of the major contributions of
SANE over previous neuro-evolution tools and
is one of its major strengths. Although EAs are
inherently stochastic techniques, effectively and
intelligently guiding evolution toward global
optima is the main goal of current trends in
evolutionary algorithms. A primary advantage
of EAs over gradient descent methods is the
search is not inherently biased toward a locally
optimal solution. However, EAs differ from
purely random sampling algorithms due to their
ability to direct the search toward relatively
“prospective” regions in the search space [7].

3.2. SANE Results
SANE achieves very good results in

sequential decision tasks. It has been applied to
a number of domains, including the game of Go
[8]. It has been used to evolve a network for
controlling a robotic arm [2], balancing an
inverted pendulum [2], balancing 2 inverted
pendulums [9], and capturing simulated prey
[10]. In almost every simulation, SANE has
been shown to evolve networks more quickly,
keep a more diverse population of neurons and
networks, and outperform other neuro-evolution
strategies.

Richards, et al. applied SANE to the
game of Go. Computers have had limited
success in the game of Go. Despite its simple
gameplay, Go is deceptively hard to master.
Black and white stones are alternately placed on
a board until both players mutually decide the
game is over and pass, at which time the score is
calculated and a winner determined.

Go is largely pattern based, which
makes it particularly suited for implementation

by a neural network. SANE was used to evolve
a feedforward network with two input neurons
and one output neuron for each board position.
Input neuron one is fed a boolean value
indicating the presence or absence of a black
stone, and input neuron two represents a white
stone. The output neurons are fuzzy values
indicating a range of relative ‘goodness’ of a
move to a particular board position.

SANE achieved quite good results in
evolving Go playing networks. SANE was able
to defeat a publicly available Go program called
Wally, developed by Bill Newman, on small
boards. SANE was able to defeat Wally up to a
9 x 9 board, but took 5 days of CPU time. The
authors estimated the time to evolve a successful
network on a full sized 19x19 board at over a
year.

An important conclusion of that
experiment was an insight into neural networks
and evolutionary algorithms. SANE evolved to
defeat deterministic opponents quite quickly, but
“…learned little about playing Go and only
learned what was necessary to win against that
particular opponent.” [8]. When 10% non-
determinism was applied to the Wally opponent
in the form of random legal moves, SANE
actually required more generations to defeat the
opponent. Richards, et al. concluded that SANE
was finding holes in the deterministic
opponent’s strategy, but actually learning Go
strategy against the non-deterministic opponent.
The non-determinism of blackjack makes the
experiment in this paper a more interesting test.

3.3. Modifications to SANE
SANE 2.0 has been modified by several

people. The primary modifications involve sub-
populations, recurrency, and delta-coding. This
research uses the sub-population modification of
Faustino Gomez and Risto Miikkulainen, and
introduces hidden layer growth, and Elman
recurrency (a variant of the recurrency
introduced by Gomez).

In unmodified SANE, the neurons are in
one large population, and a network may be
made of neurons from the entire population. As
Moriarty [2] showed, in the advanced stages of
evolution, instead of converging to a single

 5

individual as a standard evolutionary algorithm
would, the neuron population forms groups of
individuals (neurons) that perform “specialized
functions in the target behavior.” These neurons
specialize to perform a specific feature of the
task, combining into networks to form effective
solutions to the entire problem.

Sub-population modifications split the
neuron population into sub-populations. A sub-
population is maintained for each neuron that
may be in a hidden layer, and neurons are only
replaced in a network from this respective sub-
population. This is in an effort to circumscribe
the “species” which evolve in advanced stages
of SANE evolution, and thus speed up the
evolutionary process. This modification also
allows each neuron to be evaluated on how well
it performs in the context of the other neurons.
Neuron specialization, which is hopefully
contained in each sub-population, is not
hindered or contaminated by recombination
across specialization or sub-population.

 Sub-populations also increase the
performance and allow for more effective
creation of recurrent networks. The
effectiveness of a neuron is more critically
dependent on the neurons to which it is
connected in a recurrent network. The
specialization of neurons in each sub-population
allows recurrent neurons to rely more upon the
type of neuron to which they are connected, and
the performance of a recurrent network is
boosted [10].

4. Variable Hidden Layer Sizing

Varying the size of the hidden layer in a
neural network is achieved by varying the
number of neurons in the hidden layer. Since
the input and output neurons have semantics in
the environment, the size of the input and output
layers are usually fixed in a neural network
implementation.

The optimal size of the hidden layer in a
neural network has been the topic of much
debate and is still very much an open research
issue. A common heuristic has been “a harder
problem requires a larger hidden layer size”, but
the number of neurons in the hidden layer of the

network is often left to guesswork, or trying
several sizes until acceptable results are
achieved empirically.

There have traditionally been three
approaches to attempting to automate the hidden
layer size in a network. One may build a large
network and prune it, start with a small network
and add to it as needed, or start with a
‘sufficient’ size, and add or subtract and retrain.
Finding an appropriate size for the hidden layer
is important. If the hidden layer is too small, the
network may not have sufficient ability to
encode parameters of the problem. Hidden
layers that are too large may require much
longer to train and can require unnecessary
processing.

 This paper proposes a new solution working
in conjunction with the genetic selection
inherent in the training and creation of networks
created with SANE. The size of a single hidden
layer becomes another parameter in the genetic
search for weights and connections, and
networks are evolved with hidden layer size as a
genotype along with weight and connection
information. Network size is another trait of the
individuals in the network population.

4.1. Motivation

Varying the hidden layer size creates a more
autonomous learning system and eliminates
some of the guesswork associated with finding
the proper hidden layer size, thus decreasing
development time.

Variable hidden layer sizes (VHLS) are also
motivated by the earlier work of Moriarty,
Miikkulainen, and Fullmer, who developed the
marker based encoding strategy. They achieved
good results by allowing recurrent networks to
assume any size necessary. A strength of
reinforcement learning when combined with
EAs is the ability to vary network parameters
and architecture easily while selecting those
individuals that perform the best, regardless of
size.

An additional motivation for VHLS is the
ability to explore larger networks that may be
required to solve a particular problem, and
automating the empirical search for the best

 6

network size. Complex problems may require
larger hidden layers. The ability to evolve a
population to more closely match this
requirement is an important consideration in any
learning system. Alternately, if a smaller
hidden layer size can provide better
performance, processing will be saved. This
important benefit is discussed more fully in
Chapter 6.

As mentioned earlier, maintaining
population diversity is critical to the effective
performance of any evolutionary algorithm. By
forcing variable sized networks, a measure of
diversity is introduced into the network
population. Varying the number of neurons in
the hidden layer makes the population of
networks more diverse. Network “blueprints”
not only explore different combinations of
neurons, but different quantities as well. Adding
and removing neuron specializations
dynamically increases the dimensionality of the
network evolution. Diversity is increased in the
network population by evolving networks that
combine different numbers of neurons (or
specializations.)

4.2. VHLS Implementation

It is important to note that varying the
hidden layer size does not inherently give the
networks more power. Networks with hidden
layers from 10 to 20 neurons are no more
effective than networks with a fixed size of 20
neurons, since the fixed network may evolve
zero valued weights for the 10 to 0 extra
neurons. In addition, the fixed network may not
evolve connections to the extra neurons at all,
and effectively becomes a network with fewer

hidden layer neurons. This could be seen as the
traditional approach of starting with a large
network and pruning ‘useless’ connections.

Pruning is often accomplished by searching
for nodes whose associated connection weights
have very small magnitude, or running a lesion
study to find connections whose existence does
not significantly affect network outputs. If
∂o/∂w is negligible for a given node, where o is
the output and w is the weight for a connection,
this node may be pruned.

The advantages of dynamic, evolutionary
hidden layer sizing are the elimination of
searches for ‘prunable’ nodes, increases in
network population diversity, implicit
elimination of excess nodes, extensibility to Δ-
coding (discussed in Chapter 8), and
performance increases for the experiments in
this study.

By including various sized networks in the
population of candidate solutions, networks are
more efficiently sized for the task at hand.
Allowing a larger network to evolve zero
weights or connections to certain neurons slows
the search. Allowing a hidden layer size
genotype in the genetic representation of the
neuron forces networks to explore different
sizes, as networks rarely evolve all zero weights
and connections for a neuron. A population of
various sized networks also aggregates to fewer
CPU cycles than a population of networks that
are all at the upper limit of this size range.
Evaluating the fitness of a network with a
smaller hidden layer size (and later applying that
network to the task) requires less CPU time and
storage than a larger sized network.

Networks evolved under variable sizing are

Figure 2 – Variable and fixed (standard SANE) network sizing

Network Population

CW C CW W

Con
ne

cti
on

W
eig

ht

Neuron Population

CW C CW W

CW C CW W

CW C CW W

CW C CW W

CW C CW W

Variably Sized Networks under SANE

Network Population

CW C CW W

Con
ne

cti
on

W
eig

ht

Neuron Population

Fixed Sized Networks under SANE

CW C CW W

CW C CW W

CW C CW W

CW C CW W

CW C CW W

 7

possible with a large fixed hidden layer model,
but specifically removing a neuron is rarely
explored by a fixed network architecture. That
is to say, a neuron in the hidden layer rarely
evolves with all zero connections and weights to
other neurons under a fixed architecture.
Varying the size of the hidden layer forces this
evolution, and increases the dimensionality of
the search, not only exploring different
combinations of specializations, but different
quantities as well. By maintaining a population
of networks with different sizes, the network
population is more diverse. This diversity helps
prevent pre-mature convergence. Figure 2
shows standard and variable network sizing
under SANE. The figure demonstrates the
network level representation of individual
networks as groups of pointers to members of
the neuron population. Variable sized networks
are composed of different numbers of pointers to
the neuron population.

With variable hidden layer sizing, the
equation for each output neuron becomes:

ƒ(Σ(Σwj)xi)
qn

j=1i=1
xi is the output of hidden layer neuron i, and

w is the weight matrix for connections between
hidden layer and output neurons. The only
difference between this equation and the
equation for a standard output neuron is that n
may now assume variable values. The
innermost summation is present because SANE
allows the evolution of multiple connections (q)
between 2 distinct neurons in adjacent layers.

The enhancements provided by variable
hidden layer sizing are similar to those
introduced by enforced sub-populations. Sub-
populations form in SANE after several
generations, due to neuron specialization [2].
By forcing sub-populations, however, the
formation of sub-populations is speeded and
performance improves, particularly in recurrent
networks. Including those features from the
start that evolve naturally gives the system a
“head start” and allows the evolutionary search
to focus on optimal solutions rather than forming
specializations first and then optimizing.
Having variable sized networks, the

evolutionary algorithm eliminates the search for
possibly beneficial null connections in a larger
network.

Variable hidden layer models require slight
modifications to the crossover and mutation
operators found in the outer loop evolutionary
algorithm of SANE. Since the network sizes are
initialized randomly, the crossover operator
often performs crossover between two networks
of different sizes. Networks are initialized to a
random size between two user-defined numbers.
A minimum size and maximum size are included
to refine searches, as very broad ranges of size
require a very large and often unfeasible
network population to achieve good results. The
following equation generally produced the best
results for the tests in this research, although this
is domain dependent.

5 ≤ (Max_Net_Size - Min_Net_Size) ≤ 10

 A crossover point is selected to be
somewhere between the start and the end of the
shorter network chromosome, and crossover is
performed as usual. One child assumes the size
of the shorter length parent and one assumes the
length of the larger parent, as shown in Figure 3.
Other crossover techniques were tried, such as
picking an independent crossover point on each
parent. Performing crossover and producing
radically different sized children seemed to
introduce too much diversity and led to poor
performance, however.

Chromosome 2

Chromosome 1

Crossover Point

Child 2

Child 1

Crossover Point

Figure 3 - Crossover operator

 The mutation operator is also modified
slightly to explore larger networks. Instead of
traditional mutation, in which a bit is flipped, or
a connection or weight value in a chromosome is
randomly altered, mutation in variable hidden
layer sizing was performed by adding a neuron
to each chromosome (if the length of the
chromosome is less than Max_Net_Size). This
operator is performed on a user-defined

 8

Hidden Layer

Input Units Context Units

Output Units
0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1

0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0

Mutation

Figure 4 - The mutation operator

percentage of the network population per
generation to further explore the search space, as
shown in Figure 4. The diagram illustrates a bit
string representation for simplicity, but in
SANE, a complete single neuron encoding
including weights and connections is added to
the end of a network chromosome during
mutation.

Figure 5 - Simplified Elman network

4.3. Using VHLS in Elman Recurrent
Networks
Elman [11] explored recurrent neural

networks that provide the system with memory.
This is done in the context of giving the system
“dynamic properties that are responsive to
temporal sequences.” These networks include a
time parameter, which necessitated a new
network model for representing inputs to the
system in previous time steps. Elman added
context units to a standard feedforward neural
architecture as shown in Figure 5. These context
units function similarly to input units, but
receive their input from the output of the hidden
layer in the previous iteration.

 Elman notes that in feedforward
networks, the hidden units develop internal
representations of input patterns and recode
those patterns to produce the correct output for
any given input. The hidden units in the Elman
model thus have the dual task of mapping both
an external input and the previous internal state
saved in the context units. The internal
representations that develop thus have an
implicit temporal property [11].

In order to provide the network with
short-term memory and give the network the
ability to define the problem domain in simpler
terms, tests were run with an Elman recurrent
neural network. The short-term memory gives

recurrent networks information from previous
iterations. In our case, this provides the
information about previous cards played.

In SANE, the recurrent network is free
to ignore this information and evolve zero
weights for the feedback connections, provided
the information does not improve the
performance of the networks. Hence, the
network functions as a feedforward network.
However, the previous state information
provided by recurrent networks is essential in
non-Markovian tasks, where recurrent networks
provide significant feedback for decomposing
difficult tasks.

The number of examples needed to train
a neural network to learn a function increases
roughly exponentially with the input dimension
[12]. Game playing typically requires at least
two input neurons per game square, and most
interesting problems have a high input
dimension. Recurrent networks can decompose
a high dimensional function into many lower
dimensional functions connected in a feedback
loop, and reduce the difficulty of the problem
[13].

5. Applying Neuro-Evolution to
Blackjack

SANE was modified with sub-
populations, hidden layer growth, and Elman
recurrency, and applied to the game of
blackjack. The environment is a partially
observable Markov decision problem.
Blackjack provides a unique test, as recurrent
networks are applied to the task with the

 9

opportunity to evolve into more complex agents,
taking advantage of previous state information.
By using knowledge of cards played in previous
hands, the network can gather more information
from the environment, or in a more formal
sense, the network can make the environment
more accessible. Russell and Norvig [14]
describe one property of environments as
accessible vs. inaccessible. Accessible
environments provide an agent with a complete
state of the environment. Despite increases in
accessibility through information of previously
played cards from recurrent connections, the
environment still remains inaccessible because
there are some cards the network will never see,
and thus some uncertainty in the environment.
This problem is interesting because making the
problem easier or more accessible can be a goal
of the network evolution, by evolving useful
recurrent connections. Blackjack is also the
only casino game in which a player can gain a
statistical edge over the house by using
information from previous hands [15].

For this paper, blackjack was played with a
single deck, with standard rules. Pair splitting,
insurance, and doubling down were not allowed.
The player and the dealer were initially dealt
two cards, with the player aware of one of the
dealer’s cards (the up card). The network was
aware of the total of its (the player’s) hand, and
the dealer up card. The network is then
activated, and can decide to hit or stand. Hitting
gives another card, with the goal of reaching 21.
Cards are worth their face value, with 10s,
Kings, Queens, and Jacks worth 10 points. An
ace is worth 1 or 11, and a player with a hand
containing an ace has an option of using the ace
as 1 or 11 (if using the ace as an 11 does not
make the total more than 21). A hand with this
option is referred to as ‘soft’. For example, a
hand consisting of {A,5} is a soft 16, because
hitting and receiving a Jack for {A,5,J} is still
16, although now it is a hard 16. The network
(player) wins if it has a higher point total than
the dealer, without going over 21 (busting). An
initial deal of a 10 value card and an ace is an
automatic victory for the player (assuming the
dealer does not also have 21), and is referred to
as a ‘natural.’ Ties in blackjack are referred to
as a ‘push’, and the player’s bet is returned.

A diagram of the actual network
implementation is given in Figure 6. The
networks consist of 41 input neurons for the
player’s point total (separate neurons for hard
and soft totals) and the dealer’s up card. For
example, a player receiving {10,6} with a dealer
up card of {8} activates the hard 16 input neuron
and the dealer’s 8th neuron. The networks have
4 output neurons, 2 for hit and stand. If the hit
neuron’s output is higher, the network hits, and
vice versa. Networks were outfitted with two
additional output neurons for raising or lowering
the bet on the next hand.

Input Layer Hidden Layer Output Layer
Player
Point
Total

(Hard)

Player
Point
Total
(Soft)

Dealer
Up

Card

By varying bets, the network can
influence its monetary outcome based on the
additional information and accessibility from
recurrent connections and weights conveying
previous decision information. From a domain
specific standpoint, this can be thought of as
counting cards, or changing present behavior
based on previous states and previous cards
played.

Card counting is a strategy employed by
blackjack professionals to significantly improve
the player’s odds. Simply stated, the more 10
value cards remaining in the deck, the more
favorable future hands will be to the player.
Similarly, if all of the face cards and 10s are
dealt out early, later hands will favor the dealer.
A recurrent network that increases its bets when
the deck becomes favorable demonstrates an

Figure 6 - Blackjack network structure

Hit

Stand

Increase Next Bet

Decrease Next Bet

CONTEXT
NEURONS

Most
Connections
Not Shown

 10

effective use of the additional information
provided by the feedback connections.
Advanced blackjack players usually try to track
individual cards, whereas the network employs a
slightly different strategy of using the point total
from previous hands to influence present
decisions.

 The inputs of the model depend on
the hidden layer activation of the previous
iteration, as well as card total of the player and
the dealer up card. Test parameters are given in
Figure 7. Most parameters were empirically
discovered based on preliminary trials. As an
interesting corollary, very early generations
evolved networks employing the “always stand”
strategy, a very beginning and ineffective
strategy found in some human players, and also
known as the “dealer bust” strategy [15].

 These parameters were established as
producing networks that emulated known
blackjack strategy and avoided the “always
stand” strategy. Providing a sufficiently large
neuron population size was the most important
factor in producing intelligent network play.

There are widely available blackjack
tables, which indicate the correct hit/stand
decision for each possible point total in a
player’s hand, based upon the dealer’s up card.
No previously dealt cards are considered in the
tables. The dealer in blackjack has no choices –
the dealer must hit a 16 or below, and must stay
on 17 or higher. In these experiments, the dealer
does hit a soft 17, as in some casinos. This was
the only dealer rule variant introduced in the
experiment, to make play slightly harder for the
network. Since the dealer’s down card is
revealed after the network has made a decision,
the network is never aware of the dealer’s down
card, which is not standard in normal blackjack

play. This makes keeping track of unplayed
cards more difficult for the network.

 One test evolved networks with a
variable hidden layer size, and one test evolved
networks with a fixed hidden layer size. The
fixed model had 25 neurons in the hidden layer,
while the variable model could have 20 to 25
neurons in the hidden layer. With a 25 neuron
fixed hidden layer, the fixed model could evolve
all of the networks the variable model could.
Evolving zero weights for the connections to
extra neurons effectively makes the fixed model
the same size as a smaller network. The fixed
model was just as powerful as the flexible
model, spending more time optimizing its fixed
network structure rather than finding the optimal
network size. By comparison, the variable sized
networks had more built-in population diversity
in terms of the network structures, but had to
spend generations exploring appropriate network
size as well as finding appropriate weights.

TEST PARAMETER fixed variable
Decks of play per network eval. 35 35
Number of decks (shue size) 1 1
Hidden layer size 25 20-25
of Context Neurons 20 20
Network population size 140 140
Neuron population size 5000 5000
Sub-population size 200 200
Adding neuron mutation rate 2% 2%

Figure 7 - Blackjack test parameters

 The network could learn the remaining
contents of the deck and use this information to
increase the bet on the next hand when the deck
becomes ‘favorable’ (more high cards left in the
deck), or lower the bet when the deck is
‘unfavorable’ (more non-10 value cards
remaining in the deck.) In this sense, if the
system evolves networks that take advantage of
this additional information, the problem
becomes more accessible – that is, more
information from the environment is available to
the agent, and performance will improve.

Both network architectures were evaluated
based upon the mean of the amount of money at
the end of 35 decks of blackjack, and the
percentage of correct hit/stand decisions made
by the network, as defined by known blackjack
tables. The network player started with a
bankroll of 100 units, and could dynamically
determine the next bet in the range of 1 unit to 5
units. Performance based on an average of
money remaining and mathematically correct
decisions was deemed appropriate. This
measure was used to balance the ‘real-life’ goal
of competitive blackjack – to make money,
while preventing lucky high bets on the part of
the recurrent network by requiring that half of
performance be based on the correct decisions

 11

according to a blackjack table. Initial tests were
conducted exclusively with money remaining as
the performance measure. While many
networks made intelligent decisions, some
ineffective but lucky "always stand" networks
performed well on shuffles that were more
forgiving of this strategy.

6. Experimental Results
Overall, blackjack networks both fixed

and variable in hidden layer size, performed well
by making intelligent decisions and evolved a
strategy similar to a player utilizing the
blackjack tables. Given the rules of the game
used for these tests, with no doubling down or
pair splitting, no insurance, and dealer hitting
soft 17, the ‘house edge’ was 3.28% [15]. When
the best network in the entire testing series was
run over 20 decks of test play, the network had
$116, after starting with $100. Due to the house
edge and an average of 8 hands per deck, a non
card-counting player playing exactly according
to blackjack tables should have only $94.75. It
is important to note that this best network was
evolved with variable hidden layer sizing.

 All tests consisted of trials until
statistical significance of scores was established
at or beyond a 95% probability of significant
difference. Due to extremely computationally
expensive tests, SANE was run for 200
generations, and the score achieved at generation
200 taken as the score for the best network on
that trial. The average generation is the
generation at which the highest scoring network
was evolved. Between this generation (and up
to 200 generations, when the test was halted), no
higher scoring networks were evolved.
Although interesting for observation, the
generation measures had a very high standard
deviation and are not statistically significant.

6.1. VHLS Results in Recurrent Networks
Figure 8 shows the results of the trials.

A detailed analysis of actual blackjack play by
the networks indicated that to a certain extent,
networks were using previous decisions to
improve performance. Only a small number of
networks varied their bets, however. This means
that most networks used feedback information to

refine the hit/stand decision rather than
attempting to bet more when the deck was
favorable. The networks that did modify their
betting strategy did so very successfully. This
was a very advanced trait and evolved in 2% of
network tests. Networks that did vary bets had
an average 64% success rate. That is, when a
network decided to raise its next bet, it won the
next hand an average of 64% of the time. A non
card-counting player following the blackjack
table, as defined in this test, would have won
only 47.72% of the time.

Variable Hidden Layer Size Fixed Hidden Layer Size
Average Size 22.641 Average Size 25.000
Average Score 78.104 Average Score 72.092
Average Generation 95.333 Average Generation 84.729
Standard Dev. of Score 10.386 Standard Dev. of Score 16.183

Recurrent Blackjack Tests

Figure 8 - Test results

Trends in the test results demonstrated
that VHLS provides a higher score and more
consistency in the form of lower standard
deviation of score. VHLS models performed
better, and had an average hidden layer size of
22.641 instead of 25. Thus, VHLS provided an
average reduction of 9.436% in CPU time for
hidden layer processing. The resulting network
thus performed 8.339% better and required
almost 10% fewer CPU cycles under VHLS.

7. Comments
This research has demonstrated a new

modification to the SANE neuro-evolution tool
and established the effectiveness of evolving
Elman recurrent networks. In addition,
performance enhancements in the form of more
consistent network evolution, and higher score
increases were also achieved. This conclusion
was confirmed over tests in the domain of
partially observable Markov decision problems.

Allowing the evolutionary algorithm to
modify the number of hidden layer neurons in
the networks increased the average scores over
the domain of blackjack. The networks, with
variable hidden layer size, were higher scoring,
more consistent in performance (lower standard
deviation of scores), and reduced CPU time for

 12

hidden layer processing by an average of
9.436%.

This research extended the domain of
SANE applications to partially observable
Markov decision problems. SANE evolved a
network capable of predicting cards in future
blackjack hands and evolved to make it’s
environment more accessible by using previous
state information.

It has only been recently that neuro-
evolution has evolved the power to solve non-
Markovian problems [9]. SANE has
demonstrated effectiveness in these domains and
varying the size of the hidden layer has
improved performance and created higher
performing networks with lower computational
requirements.

For the domain of blackjack play,
recurrent networks displayed predictive abilities.
Elman recurrent networks were shown to be an
effective and efficient addition to SANE, as they
require little modification to the internals of the
system. A distinction is simply made in the
connection of a neuron to indicate a connection
to a context neuron. Context neurons then
function as input units, and SANE can be
applied to many new domains.

This research has also made some
headway into creating neuro-evolution models
capable of “scaling up” to larger and more
complex domains. Tests in this paper have
confirmed that growing or varying the hidden
layer size is an effective technique for creating
larger neural models, and may improve
performance, efficiency, and automation of
network sizing for many domains.

Although SANE with the hidden layer
size modifications did evolve better networks
more efficiently, the standard version provided
acceptable results. Hidden layer size evolution
may be necessary for acceptable performance,
when combined with Δ-coding on non-
Markovian tasks, and for the esoteric ideal of
creating truly automated learning systems.

8. Future Work and Conclusion
The goal of dynamic construction of

neural networks supports a reduction in

development time and is toward, in the general
sense, a more autonomous learning system [16].
Automating the selection of hidden layer size
augments this goal and simply becomes another
search criterion for the evolutionary algorithm.
For the domains in this research, varying the
hidden layer size has been shown to improve the
score of the network and provide a direction
toward that autonomy.

Future directions for neuro-evolution
research include refining and modifying the very
effective SANE model and adding functionality
and applicability to newer and more difficult
classes of problems. An interesting area of
future research is in augmenting the work of
Gomez and Miikkulainen in incrementally
evolving behaviors. Networks under
incremental evolution are not evolved from a
random population of neurons and networks, but
rather start evolution by building upon
previously evolved decision strategies.

 The idea of incremental evolution and
Δ-coding is to start with simpler tasks and
evolve more sophisticated behavior on top of the
existing knowledge. Starting with smaller goals,
more complex behavior can generally be
evolved than starting from scratch.

Delta-coding was not included in the
experiments in this paper, but merits discussion
due to its importance in hidden layer growth and
future work. Originally included in SANE by
Faustino Gomez, Delta-coding is a method
developed by Whitley et al. [5]. The concept of
Delta-coding is to search the neighborhood
around the best solution found so far.

Delta-coding is similar to evolving a
network population, arriving at the highest
scoring network, and then starting over, using
this best network as a starting point. Gomez and
Miikkulainen [10] showed that Delta-coding can
be used to implement incremental evolution by
successively evolving more complex prey
capture behavior.

After many generations, the population of
neurons will become more homogeneous, and
the evolutionary algorithm will perform poorly
or fail to find a global optimum. When the
neuron sub-population has reached a minimum

 13

diversity (defined by the designer), the best
network chromosome so far is saved. New sub-
populations are then initialized with Δ-values
representing small differences in the connection
weights for each neuron in the best network
found so far. Thus, each neuron in the best
network has a specific sub-population of neuron
Delta-chromosomes designed to improve this
neuron specifically. Delta values are added to
the connection weights in the best solution and
the resulting chromosomes are termed Δ-
chromosomes. Those Delta-chromosomes that
improve performance are kept and bred.

In each step of this incremental evolution,
the difficulty of the task increases and the
network requires more power. Varying or
growing the hidden layer size may provide
additional power to the network evolving more
difficult decision strategies.

Delta-coding and hidden layer size variation
are together significant in incremental evolution,
since they are both methods that can be used
when a population has converged. Delta-coding
has been shown to be effective in incremental
evolution. Hidden layer growth could be
combined with Delta-coding to provide more
power to networks attempting to achieve higher
scores in difficult, non-Markovian tasks. Delta-
coding increases the diversity of the candidate
solutions, and hidden layer growth increases the
dimensionality of the solution. Exploring this
combination for solving non-Markovian tasks is
an interesting consideration for future research.

Another future area for exploration is on-
line learning. For experiments in this paper,
network weights and connections were not
modified after training. Growing the hidden
layer size under on-line learning is another
interesting investigation, as networks that learn
on-line must be more adaptable and robust.
Input to the network during on-line learning may
be outside the range anticipated by the
designer’s training inputs. As a result, networks
using on-line learning must be able to adapt to
these changes. Variable hidden layer sizing
could help in this adaptability.

References

1. M. Minsky, “Steps Toward Artificial
Intelligence,” Computers and Thought, edited by
E. Feigenbaum and J. Feldman, McGraw-Hill,
406-450, 1963.

2. D. Moriarty, “Symbiotic Evolution of Neural
Networks in Sequential Decision Tasks,” Dept.
Of Computer Science, University of Texas at
Austin, Ph.D. Dissertation, 1997.

3. B. Fullmer and R. Miikkulainen, “Using
Marker-Based Genetic Encoding of Neural
Networks to Evolve Finite-State Behavior,” in
Proceedings of the First European Conference
on Artificial Life, 1992, pp. 255-262.

4. D. Moriarty and R. Miikkulainen,
“Discovering Complex Othello Strategies
Through Evolutionary Neural Networks,”
Connection Science, 7(3), pp. 195-209, 1995.

5. D. Whitley, K. Mathias, and P. Fitzhorn,
“Delta-coding: An iterative search strategy for
genetic algorithms, in Proceedings of the Fourth
International Conference on Genetic
Algorithms, Los Altos, CA, Morgan Kaufmann,
1991.

6. M. A. Potter and K. De Jong, “Evolving
Neural Networks with Collaborative Species,”
Navy Center for Applied Research in Artificial
Intelligence, Technical Report, 1996.

7. L. Patnaik and S. Mandavilli, “Adaptation in
Genetic Algorithms,” in Genetic Algorithms for
Pattern Recognition, CRC Press, 1996.

8. N. Richards, D. Moriarty, and R.
Miikkulainen, “Evolving neural Networks to
Play Go,” in Applied Intelligence, Vol. 8, Issue
1, 1998.

9. F. Gomez and R. Miikkulainen, “Solving
Non-Markovian Control Tasks with Neuro-
Evolution,” Submitted to the International
Conference on Machine Learning, 1998.

10. F. Gomez and R. Miikkulainen,
“Incremental Evolution of Complex General

 14

 15

Behavior,” Adaptive Behavior, Vol. 5, pp. 317-
342, 1997.

11. J.L. Elman, “Finding Structure in Time,”
Cognitive Science 14, pp. 179-211, 1990.

12. E. Baum and D. Haussler, “What size
network gives valid generalization?,” Neural
Computation, 1(1), pp.151-160, 1994.

13. M. Jones, “Using Recurrent Networks for
Dimensionality Reduction,” Massachusetts
Institute of Technology, AI Technical Report
1396, 1992.

14. S. Russell and P. Norvig, Artificial
Intelligence, A Modern Approach, Prentice-Hall,
1994.

15. L. Humble and C. Cooper. The World’s
Greatest Blackjack Book, Doubleday, 1980.

16. S. Romaniuk, “Learning to Learn with
Evolutionary Growth Perceptrons,” in Genetic
Algorithms for Pattern Recognition, CRC Press,
1996.

	San Marcos, TX 78666
	4.1. Motivation

