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Transformation to Liénard form ∗

W. A. Albarakati, N. G. Lloyd, & J. M. Pearson

Abstract

We show that certain two-dimensional differential systems can be trans-
formed to a system of Liénard type. This enables known criteria for the
existence of a centre for Liénard systems to be exploited, so extending the
range of techniques which are available for proving that conditions which
are known to be necessary for a centre are also sufficient.

1 Introduction

In the investigation of two-dimensional dynamical systems

ẋ = P (x, y), ẏ = Q(x, y), (1)

the twin questions of the conditions under which a critical point is a centre
and the number of limit cycles are often encountered. Recall that a limit cycle
is an isolated closed orbit, while a critical point is a centre if all orbits in its
neighbourhood are closed.
Much of the published work refers to specific classes of systems. These may

be polynomial systems of a fixed degree (cubic systems, for example - that is,
systems in which P and Q are cubic polynomials) or they may be of a specific
form, for example

ẋ = y − F (x), ẏ = −g(x). (2)

Systems of this form are said to be of Liénard type. They are well understood,
and there is a very extensive literature on them, not least because they often
arise in applications.
Systems of the form (1) in which P and Q are polynomials are of particular

interest, and several authors have transformed such systems to Liénard form
in order to exploit the many known results on the existence of limit cycles
and their number. For example, Coppel [5,6] and Cherkas and Zhilevich [2]
transformed various quadratic systems in this way to prove that there is at most
one periodic orbit encircling the origin. Kooij [9] obtained the same conclusion
for some cubic systems in a similar fashion, though in this case a sequence of
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transformations was required. Other instances are found in [7] and [18], where
the results are relevant to models of ecological competition. These are just a few
of the examples in the literature and are indicative of the variety of instances
where the technique has proved useful. Our interest here is not so much in the
number of limit cycles, but rather in the use of transformation to a Liénard
form to prove that a critical point is a centre.
Experience has shown that in the search for centre conditions, necessity and

sufficiency should be treated separately; the literature is littered with incom-
plete sets of conditions which are claimed to be both necessary and sufficient.
Proof of necessity often involves extensive use of computer algebra, and it is
the availability of such systems which has led to many of the recent advances.
The eventual requirement is to eliminate variables from the focal values, which
are polynomials in the coefficients arising in P and Q. In many cases these are
polynomials of very high degree with coefficients which are very large integers.
As pointed out in [20] the computations are on occasion beyond the scope of
the available elimination algorithms. A particular instance is the system

ẋ = y,

ẏ = −x+ a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2 + a7y

3.
(3)

This system was first investigated by Kukles and has been the subject of a
number of papers, including [3,8,10,11 and 21].
A variety of methods have been developed for proving the sufficiency of

centre conditions, and in practice several are used in combination. The simplest
criterion for a centre is when the system is Hamiltonian:

Px +Qy = 0 (4)

in a neighbourhood of the origin. The other classical condition is that of sym-
metry. The origin is a centre if the system is invariant under the transformation
(x, y, t) 7−→ (−x, y,−t) or (x, y, t) 7−→ (x,−y,−t); the system is symmetric in
the y-axis in the first case and in the x-axis in the second. Clearly the same
conclusion holds if the system is symmetric in any line through the origin. This
is most easily tested when the system is written in complex form:

iż = −z +
∑
Ak,jzkz̄

j.

The origin is a centre if there exists θ such that Akje
i(k−j−1)θ is real for all k, j

(see [13]).
Condition (4) can be generalised. The origin is a centre if there is an integrat-

ing factor (sometimes called a Dulac function) B such that (BP )x+(BQ)y = 0
in a neighbourhood of the origin. Geometrically this happens when there is a
transformation of time, depending on the space variables x and y, to a Hamil-
tonian system. The task is to find an integrating factor and a systematic way of
doing so is described in [14]. A function C is said to be invariant if there exists
a polynomial L such that Ċ = CL. The idea is to find integrating factors which
are products of the form Ck11 C

k2
2 ..., where each Ci is an invariant polynomial or
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exponential of a polynomial. The original idea goes back to Darboux in the late
nineteenth century and systems with such an integrating factor are said to be
Darboux integrable. Though it would be attractive to develop a fully automatic
method to find such integrating factors it was found that a modicum of user
intervention is desirable and so the process described in [15] is semi-automatic
in the sense that a number of procedures are developed which the user calls as
required.
However, not all centre conditions can be proved to be sufficient by means of

the above approaches. A method was developed by Cherkas, and described in
[4], in which the polynomial system is transformed to Liénard form. As noted
above, because of the independent interest in Liénard systems, there is a very
large literature, and known results can then be used. In this paper we extend the
scope of the transformation described in [4] to cover a wider class of polynomial
systems, including the Kukles system (3). The transformed system need not be,
and is not usually, polynomial. This approach extends the range of techniques
which are available for proving that centre conditions which are known to be
necessary are also in fact sufficient.
The centre conditions for a Liénard system on which this method depends

are in fact derived, albeit at one remove, from the symmetry of a related system.
Systems which can be so transformed are sometimes said to display generalised
symmetry. Centres can be classified depending on whether they arise from
symmetry in a line (time-reversible systems) or are Darboux integrable or have
generalised symmetry.
System (2) is derived from the second order equation

ẍ+ f(x)ẋ+ g(x) = 0 (5)

with f(x) = F ′(x). It is usual to suppose that g(x)sgn x > 0 for x small and
x 6= 0. Sometimes the corresponding system in the phase plane is used:

ẋ = y, ẏ = −f(x)y − g(x). (6)

The relevant results on Liénard systems are summarised in the following, where
F (x) =

∫ x
0
f(ξ)dξ and G(x) =

∫ x
0
g(ξ)dξ.

Lemma 1 (i) The origin is a centre for (6) if and only if there is an analytic
function Φ with Φ(0) = 0 such that G(x) = Φ(F (x)).

(ii) The origin is a centre for (6) if and only if there is a function z(x) with
z′(0) < 0 such that

F (z) = F (x) and G(z) = G(x).

Proofs of these results are given in [4], for instance.

In some cases, it is possible to transform a polynomial system to a generalised
Liénard system:

ẋ = h(y)− F (x), ẏ = −g(x)

where h(0) = 0 and h′(0) 6= 0. Lemma 1 holds for this system.
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2 The Transformation

In this paper we consider polynomial systems of the general form

ẋ = Σpk(x)y
k, ẏ = Σqk(x)y

k (7)

where pk(x) and qk(x), (k = 0, ...) are polynomials. We could in exactly the
same way consider systems which are polynomial in x with coefficients which
are polynomials in y. The Kukles system (3) is a very specific instance of this
form.

Cherkas considered systems of this form with pk = 0 for k ≥ 2 and qk = 0
for k ≥ 3; his approach was discussed in [4], and is summarized as follows.

Lemma 2 Suppose that p1(x) 6= 0 for −α < x < β, where α, β > 0. For
−α < x < β the system

ẋ = p0(x) + p1(x)y, ẏ = q0(x) + q1(x)y + q2(x)y
2

can be transformed to a system of the form (6) with

f = −(p′0 − p0p
′
1 + q1 − 2p0q2p

−1
1 )φ ,

g = (p0q1 − q0p1 − p
2
0q2p

−1
1 )φ

2,

where φ(x) = (p1(x))
−1 exp

(
−
∫ x
0 q2(t)/p1(t)dt

)
.

The transformation can be achieved by a change of independent variable.
Let dt/dτ = φ(x); routine calculation then leads to the desired result. This
transformation was used in both [4] and [12] to confirm the sufficiency of the
centre conditions previously shown to be necessary. In [4] we used part (ii) of
Lemma 1, while in [12] we used part (i).

However, Lemma 2 does not cover systems such as

ẋ = p0 + p1y, ẏ = q0 + q1y + q2y
2 + q3y

3 (8)

(where, of course, the pk and qk are functions of x alone). Cherkas [1] was
able to transform such systems to Liénard form when p0 = 0 but required a
particular solution in order to be able to do so; the transformation he used was

y = Z(x)Y (Y + 1)−1

where Z is a particular solution of

dy

dx
=
q0 + q1y + q2y

2 + q3y
3

p1y
.

The transformation of such systems to Liénard form is also discussed by Sadovskii
[17].
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The purpose here is to present a different approach to systems of the form
(8). We use a transformation of the form

y =
a(x)Y

1 + b(x)Y
(9)

where a and b are differentiable functions to be chosen, with a(0) 6= 0. The
transformation is invertible in a neighbourhood of the origin. We consider sys-
tems

ẋ = p1(x)y,

ẏ = q0(x) + q1(x)y + q2(x)y
2 + q3(x)y

3,
(10)

where q0(0) = 0 (so the origin is a critical point). Since such systems generalise
the form (3), they are sometimes said to be of Kukles type. System (8) can
easily be transformed to (10), so our consideration of the latter is without loss
of generality.
A routine calculation leads to

ẋ = P1(x)Y,

Ẏ = Q0(x) +Q1(x)Y +Q2(x)Y
2 +Q3(x)Y

3,
(11)

where

P1 = ap1, Q0 = a
−1q0, Q1 = q1 + 3a

−1bq0,

Q2 = aq2 + 2bq1 + 3b
2a−1q0 − a

′p1

and

Q3 = a
2q3 + abq2 + b

2q1 + b
3a−1q0 + (ab

′ − a′b)p1.

If a, b are chosen so that Q3 = 0, then (11) can be further transformed to a
Liénard system in accordance with Lemma 2. This requires u = b/a to satisfy
the differential equation

u′p1 = −(q0u
3 + q1u

2 + q2u+ q3). (12)

We therefore lose no generality by taking a(x) ≡ 1. The difficulty is that it may
not be possible to solve equation (12) explicitly - and an explicit solution would
be required to be able to use results such as those given in Lemma 1. In some
situations, of course, an explicit solution can be found (a particular instance is
when q1 = q3 = 0).

Lemma 3 Suppose that b/a satisfies equation (12). Then the system (10) can
be transformed to Liénard form by means of (9).

System (11) is itself of Liénard form if both Q2 and Q3 are zero. The
functions a and b are then determined by a pair of differential equations. Again,
an explicit solution may not be possible.
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The remaining possibility is to choose a and b so that Q1 = Q2 = 0. The
transformed system is then of the form

ẋ = u,

u̇ = −g(x)− f(x)u3,
(13)

and the question arises whether results analogous to those given in Lemma 1
apply. The functions a and b are now given by the relations

lb = − 13q
−1
0 q1a,

a′ = ap−11
(
q2 −

1
3q
2
1q
−1
0

)
.

(14)

Thus

a(x) = exp

[∫ x
0

(3q0q2 − q
2
1)q
−1
0 p

−1
1

]
. (15)

We suppose that

(i) p1(0) 6= 0,

(ii) (q1(x))
2(q0(x))

−1 tends to a finite limit as x→ 0.

Both these are very natural conditions: (i) states that the y-axis is not
invariant, which must be the case if there are closed orbits surrounding the
origin, and (ii) is certainly satisfied by (3), for example.

Theorem 4 System (10) can be transformed to (13), with a, b given by (15)
and (14) respectively, where

g = −q0p
−1
1 a

−2

and

f = 1
3a

(
q1

q0

)′
− p−11 a

(
q3 −

1
3q1q2q

−1
0 +

2
27q
3
1q
−2
0

)
.

The origin is certainly a centre for (11) when the system is symmetric in the
x-axis. This requires Q1 = Q3 = 0, which exactly corresponds to f(x) = 0. The
following result is a straightforward observation.

Theorem 5 Suppose that the origin is a critical point of (10) of focus type.
Given p1, q0, q1, q2, the origin is a centre for (10) if

q3 =
1
3p1

(
q1

q0

)′
− 13q1q2q

−1
0 +

2
27q

3
1q
−2
0 .
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It might be expected that a transformation

y =
a(x)Y + c(x)

1 + b(x)Y

would lead to a more general result. This is not the case. The function c(x)
does not appear in Q3, and an additional term arises in the equation for ẋ:

ẋ = P0(x) + P1(x)Y.

Then c is determined by the need for P0(x) = 0, and no generalisation is
achieved.
We now turn to systems of the form (13); we consider

ẋ = y,
ẏ = −g(x)− f(x)φ(y),

(16)

where yφ(y) > 0. There is no analogue in this case of the form (2).
We suppose that f and g are C1, g(0) = 0 and g(x)sgn x > 0 for x 6= 0. Let

G(x) =
∫ x
0 g(ξ)dξ, and define

u =
√
2G(x) sgn g(x).

The transformation x 7−→ u has an inverse; let this be x = ξ(u). Let k(x) =
f(x)/g(x), and define k∗(u) = uk(ξ(u)). In terms of y and u, system (16) is

u̇ = u−1g(ξ(u))y,
ẏ = −g(ξ(u))− f(ξ(u))φ(y).

(17)

Now u−1g(ξ(u))→ 1 as u→ 0. The orbits of (17) are the same as those of

u̇ = y,
ẏ = −u− k∗(u)φ(y).

(18)

If k∗ is an odd function then (18) is unchanged under the transformation
(u, y, t) 7−→ (−u, y,−t); it follows that the origin is a centre.
Conversely, compare (18) with the system

u̇ = y, ẏ = −u−K(u)φ(y), (19)

where K(u) = 1
2 (k

∗(u) − k∗(−u)). The origin is a centre for (19), again by
symmetry in the y-axis. But system (18) is rotated with respect to (19) in a
neighbourhood of the origin. This follows from the fact that the vector product
of the two vector fields is 12yφ(y)(k

∗(u) + k∗(−u)), which is of one sign in a
neighbourhood of the origin. Hence, if the origin is a centre, k∗ is odd. It
follows, as in [4], that there is a unique function z(x) satisfying z′(0) < 0 and
z(0) = 0, such that

G(z) = G(x), k(z) = k(x).
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Theorem 6 Suppose that f, g, φ are C1 functions, with xg(x) > 0 (x small,
x 6= 0) and yφ(y) > 0 (y small, y 6= 0). Then the origin is a centre for system
(16) if and only if there is a unique function z(x) with z(0) = 0, z′(0) < 0, such
that

G(z) = G(x) and k(z) = k(x),

where G and k are as defined above.

It might be thought that the ideas described above could be used in relation
to systems more general than (10). The simplest example would be

ẋ = p1y + p2y
2, ẏ = q0 + q1y + q2y

2 + q3y
3 + q4y

4,

where the pk and qk are again functions of x. The transformation (9) gives

ẋ = P1(x)Y + P2(x)Y
2,

Ẏ = Q0(x) +Q1(x)Y +Q2(x)Y
2 +Q3(x)Y

3 +Q4(x)Y
4,

where

P1 = a
2p1, P2 = a

2(ap2 + bp1),

Q0 = q0, Q1 = aq1 + 4bq0,

Q2 = a
2q2 + 3abq1 + 6b

2q0 − aa
′p1,

Q3 = a
3q3 + 2a

2bq2 + 3ab
2q1 + 4b

3q0 − a(ap2 + bp1)a
′ + a(ab′ − a′b)p1,

Q4 = a
4q4 + a

3bq3 + a
2b2q2 + ab

3q1 + b
4q0 + a(ab

′ − a′b)(ap2 + bp1).

If we can choose a, b so that P2 = Q4 = 0, then we can use Theorem 4 to
obtain the desired form. We can ensure that P2 = 0 by choosing b = −ap2p

−1
1 .

However, then

Q4 = a
4(q4 − q3p2p

−1
1 + q2p

2
2p
−2
1 − q1p

3
2p
−3
1 + q0p

4
4p
−4
1 ).

We have Q4 = 0 only if

p41q4 − p
3
1p2q3 + p

2
1p
2
2q2 − p1p

3
2q1 − p

4
4q0 = 0,

a relation which is not usually satisfied. As noted previously no further benefit
is derived from using (16) instead of (9).
The approach which we have described is designed to extend the range of the

techniques available for proving that a critical point is a centre. We conclude
by giving a simple illustration of the use of the ideas which we have described.
Ordinary differential equations are used extensively to model biological popula-
tion dynamics (see [14] for example); they are appropriate when spatial detail
is less significant than changes in populations with time. The systems used of-
ten consist of polynomial equations, and their analysis is helped by considering
just two taxonomic categories (see [19]). In [16] a model in which intraprophic
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predation is taken into account is described and analysed. In nondimensional
form the differential system that arises is

x́ = xR(x, y), ẏ = yS(x, y),

where

R(x, y) = ξ(−κηx+ y)(1 + ηx+ y)−1 − δ,

S(x, y) = 1− εy − ξx(1 + ηx+ y)−1,

and ξ, κ, η, δ and ε are parameters.
After transforming the origin to a critical point in the first quadrant and

rescaling time the system is of the form

ẋ = p0(x) + yp1(x),

ẏ = q0(x) + yq1(x) + y
2q2(x) + y

3q3(x).

For simplicity, we choose κ so that p0 = 0. The functions p1 and qi(i = 0, ..., 3)
are all linear:

p1(x) = Cx+ k5, q0(x) = k4x, q1(x) = k2 + k3x,

q2(x) = k0 − k1x, q3(x) = −ε,

where C and the ki are functions of the parameters in R and S. The origin is
a critical point of focus type if k22 + 4k4k5 < 0. We can then use Theorem 5 to
deduce that it is a centre when

k2(2k
2
2 − 9k4k5) = 0

k2(2k2k3 − 3k0k4 − 3Ck4) = 0

2k2k
2
3 − 3k4(k0k3 − k1k2) + 9εk

2
4 = 0

k3(2k
2
3 + 9k1k4) = 0.

From the first of these equations, k2 = 0 or 2k
2
2 − 9k4k5 = 0. The latter is

inconsistent with the requirement that k22 + 4k4k5 < 0. Here we must have
k2 = 0. We conclude that the system has a centre if

k2 = 0, 2k
2
3 + 9k1k4 = 0, 3εk4 = k0k3.
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