
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 14, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

INVERSE PROBLEMS OF PERIODIC SPATIAL DISTRIBUTIONS
FOR A TIME FRACTIONAL DIFFUSION EQUATION

HALYNA LOPUSHANSKA, ANDRZEJ LOPUSHANSKY, OLGA MYAUS

Abstract. For a time fractional diffusion equation and a diffusion-wave equa-

tion with Caputo partial derivative we prove the inverse problem is well posed.
This problem consists in the restoration of the initial data of a classical so-

lution in time and with values in a space of periodic spatial distributions. A

time integral over-determination condition is used.

1. Introduction

Inverse problems to equations of fractional order with respect to time with differ-
ent unknown quantities (coefficients, right-hand sides, initial data), under different
over-determination conditions, are actively studied in connection with their appli-
cations (see, for instance, [1, 2, 4, 10, 11, 14, 17, 22, 25]). Sufficient conditions
of classical solvability of a time fractional Cauchy problem and the first boundary-
value problem to a time fractional diffusion equation were obtained, for example, in
[8, 13, 15, 24]. Comparison on correctness of the inverse problems for an equation
of fractional diffusion and its corresponding ordinary diffusion equation is made in
[6]. In particular, there was determined that the problem with reverse time to an
equation with a fractional derivative of order α ∈ (0, 1) is correct in contrast to
the corresponding problem for ordinary diffusion equation. Some studies of the in-
verse problems (see, for instance, [1, 5, 11]) use the integral type over-determination
condition.

In this article, for a time fractional diffusion equation and diffusion-wave equation
we study the inverse problem for restoration the initial data of a solution, classical
in time and with values in a space of periodic spatial distributions. We use a time
integral over-determination condition. Note that the solvability of some nonclassical
direct problems for partial differential equations with integral initial conditions, in
particular, in the space of periodic spatial variable functions have been established,
for example, in [9, 20, 21].
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2. Definitions and auxiliary results

Assume that N is a set of natural numbers, Z+ = N∪{0}, D(R) is the space of
indefinitely differentiable functions with compact supports, S(R) is the space of
rapidly decreasing indefinitely differentiable functions [23, p. 90], while D′(R) and
S ′(R) are the spaces of linear continuous functionals (distributions) respectively
over D(R) and S(R), and the symbol (f, ϕ) stands for the value of the distribu-
tion f on the test function ϕ. Note that S ′(R) is the space of slowly increasing
distributions. Let D′+(R) = {f ∈ D′(R) : f = 0 for t < 0}.

We denote by f ∗ g the convolution of the distributions f and g, and use the
function fλ ∈ D′+(R):

fλ(t) =


ϑ(t)tλ−1

Γ(λ) , λ > 0,

f ′1+λ(t), λ ≤ 0,

where Γ(λ) is the Gamma-function, ϑ(t) is the Heaviside function. Note that

fλ ∗ fµ = fλ+µ.

Recall that the Riemann-Liouville derivative v(α)
t (x, t) of order α > 0 is defined

[23, p. 87] as

v
(α)
t (x, t) = f−α(t) ∗ v(x, t),

the regularized fractional derivative (Caputo derivative, or Caputo-Djrbashian de-
rivative) is defined [3, 8, 19] by

cDα
t v(x, t) =

1
Γ(1− α)

[ ∂
∂t

∫ t

0

v(x, τ)
(t− τ)α

dτ − v(x, 0)
tα

]
for α ∈ (0, 1),

cDα
t v(x, t) =

1
Γ(2− α)

∫ t

0

vττ (x, τ)
(t− τ)α−1

dτ

=
1

Γ(2− α)

[ ∂
∂t

∫ t

0

uτ (x, τ)
(t− τ)α−1

dτ − ut(x, 0)
tα−1

]
for α ∈ (1, 2).

Then
cDα

t v(x, t) = v
(α)
t (x, t)− f1−α(t)v(x, 0), α ∈ (0, 1), (2.1)

cDα
t v(x, t) = v

(α)
t (x, t)− f1−α(t)v(x, 0)− f2−α(t)vt(x, 0), α ∈ (1, 2). (2.2)

We denote cD1
t v = ∂v

∂t , and use the Mittag-Leffler function [3],

Eα,µ(x) =
∞∑
p=0

zp

Γ(pα+ µ)
.

The function Eα,µ(−x) (x > 0) is infinitely differentiable for α ∈ (0, 2), µ ∈ R. It
satisfies the estimate [18],

Eα,µ(−x) ≤ rα,µ
1 + z

, x > 0,

where rα,µ is a positive constant, and has the asymptotic behavior

Eα,µ(−x) = O
( 1
x

)
, x→ +∞. (2.3)
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Let Xk(x) = sin kx, k ∈ N. Similarly to [23, p. 120], we denote by D′2π(R) the
space of periodic distributions, i.e., the space of v ∈ D′(R) such that

v(x+ 2π) = v(x) = −v(−x) ∀x ∈ R.

The formal series
∞∑
k=1

vkXk(x), x ∈ R (2.4)

is the Fourier series of the distribution v ∈ D′2π(R), and numbers

vk =
2
π

(v,Xk)2π =
2
π

(v, hXk)

are its Fourier coefficients. Here h(x) is even function from D(R) possessing the
properties:

h(x) =

{
1, x ∈ (−π + ε, π − ε)
0, x ∈ R \ (−π, π)

Note that 0 ≤ h(x) ≤ 1, and

vk =
2
π

∫ π

0

v(x)Xk(x)dx for v ∈ D′2π(R) ∩ L1
loc .

Then the series (2.4) is the classical Fourier series of v by the system Xk, k ∈ N.
As is known (see [23, p. 123]), D′2π(R) ⊂ S ′(R), the series (2.4) of v ∈ D′2π(R)

converges in S ′(R) to v, and the Fourier coefficients (clearly defined) satisfy

|vk| ≤ C0(m)C(v,m)(1 + k)m ∀k ∈ N

for some m ∈ Z+ where C0(m), C(v,m) are positive constants, the same for all
k ∈ N, in particular,

C(v,m) =
(∫

R
(1 + x2)−m/2|v(x)|dx

)1/2

.

The number m is called the order of the distribution v. Note that the order of a
regular periodic distribution is a non-positive number.

We assume that γ ∈ R and define

Hγ(R) = {v ∈ D′2π(R) : ‖v‖Hγ(R) = sup
k∈N
|vk|(1 + k)γ < +∞} .

Note that functions in Hγ(R) have the order −γ in the sense of the above definition.
Let C

(
[0, T ];Hγ(R)

)
be the space of functions v(x, t) that are continuous in t ∈

[0, T ], with values v(·, t) ∈ Hγ(R) endowed with the norm

‖v‖
C
(

[0,T ];Hγ(R)
) = max

t∈[0,T ]
‖v(·, t)‖Hγ(R) .

Let C2,α

(
[0, T ];Hγ(R)

)
= {v ∈ C

(
[0, T ];H2+γ(R)

)
: cDαv ∈ C

(
[0, T ];Hγ(R)

)
} be

the subspace endowed with the norm

‖v‖
C2,α

(
[0,T ];Hγ(R)

) = max{‖v‖
C
(

[0,T ];H2+γ(R)
), ‖cDαv‖

C
(

[0,T ];Hγ(R)
)}.

Note that Hγ+ε(R) ⊂ Hγ(R) for all ε > 0, γ ∈ R.
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3. Well posedness of the problem

In this section we study the problem
cDα

t u− uxx = F0(x, t), (x, t) ∈ QT := R× (0, T ], (3.1)

u(x, 0) = F1(x), ut(x, 0) = F2(x), x ∈ R, (3.2)∫ t0

0

u(x, t)dt = Φ(x), x ∈ R, t0 ∈ (0, T ] (3.3)

where α ∈ (0, 1) ∪ (1, 2), F0, F2, Φ are given functions, T is a given positive
number, F1 is an unknown function. The second condition in (3.2) is omitted when
α ∈ (0, 1).

We use the following assumptions:
(A1) γ ∈ R, θ ∈ (0, 1), F0 ∈ C

(
[0, T ];Hγ+2+2θ(R)

)
, F2 ∈ Hγ+2(R); F0 ∈

C
(
[0, T ];Hγ+2(R) and F2 = 0 if α ∈ (0, 1);

(A2) Φ ∈ Hγ+4(R) and, in addition, Eα,2(−k2tα0 ) 6= 0 for all k ∈ N if α ∈ (1, 2).
We remark that Eα,µ(−k2tα) > 0 for all t > 0, and µ ≥ α if α ∈ (0, 1) (see

[18]). In the case α ∈ (1, 2), the functions Eα,1(−z), Eα,2(−z) have a finite number
of real positive zeroes [18], therefore, there exists a certain t0 ∈ (0, T ] such that
Eα,2(−k2tα0 ) 6= 0 for all k ∈ N.

Note that the existence of a solution to the fractional Cauchy problem, which
is classical in time and belongs to Bessel potential classes in space variables, was
proved in [12], the existence and uniqueness theorems to the boundary-value prob-
lems for partial differential equations in Sobolev spaces were obtained by Yu.
Berezansky, Ya. Roitberg, J.-L. Lions, E. Magenes, V. A. Mikhailets, A. A. Murach
and others (see [16] and references therein).

Decompose the functions F0(x, t), Fj(x), j ∈ {1, 2}, Φ(x) in formal Fourier
series by the system Xk(x), k ∈ N:

F0(x, t) =
∞∑
k=1

F0k(t)Xk(x), (x, t) ∈ QT ,

Fj(x) =
∞∑
k=1

FjkXk(x), x ∈ R, j = 1, 2,

Φ(x) =
∞∑
k=1

ΦkXk(x), x ∈ R.

(3.4)

Definition 3.1. A pair of functions

(u, F1) ∈Mα,γ := C2,α

(
[0, T ];Hγ(R)

)
×Hγ+2(R)

given by the series

u(x, t) =
∞∑
k=1

uk(t)Xk(x), (x, t) ∈ QT (3.5)

and (3.4) with j = 1, satisfying the equation (3.1) in S ′(R) and the conditions (3.2),
(3.3), is called a solution of the problem (3.1)–(3.3) under assumptions (A1), (A2).

Substituting the function (3.5) in (3.1) and conditions (3.2), (3.3), we obtain the
problems

cDαuk + k2uk = F0k(t), t ∈ (0, T ], uk(0) = F1k, u
′
k(0) = F2k, (3.6)
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0

uk(t)dt = Φk, k ∈ N (3.7)

for the unknown uk(t), k ∈ N. Given the link (2.2) between the derivatives in the
sense of Riemann-Liouville and Caputo–Djrbashian, we write the problems (3.6) in
the form

u
(α)
k + k2uk = F0k(t) + f1−α(t)F1k + f2−α(t)F2k, t ∈ (0, T ], k ∈ N. (3.8)

So, the pairs (uk(t), F1k) (k ∈ N) of the Fourier coefficients of the problem’s solution
satisfy the equations (3.8) and the conditions (3.7).

Theorem 3.2. Assume that γ ∈ R, θ ∈ (0, 1), F0 ∈ C
(
[0, T ];Hγ+2θ(R)

)
, Fj ∈

Hγ+2(R), j = 1, 2, if α ∈ (1, 2); and F0 ∈ C
(
[0, T ];Hγ(R)

)
, F1 ∈ Hγ+2(R),

F2 = 0, if α ∈ (0, 1]. Then there exists a unique solution u ∈ C2,α

(
[0, T ];Hγ(R)

)
to the direct problem (3.1),(3.2). It is given by (3.5) where

uk(t) = tα−1Eα,α(−k2tα) ∗ F0k(t) + F1kEα,1(−k2tα)

+ F2ktEα,2(−k2tα), t ∈ [0, T ], k ∈ N.
(3.9)

The solution depends continuously on the data (F0, F1, F2), and the following
inequality of coercivity holds:

‖u‖
C2,α

(
[0,T ];Hγ(R)

) ≤ a0‖F0‖
C
(

[0,T ];Hγ+2θ(R)
) +

2∑
j=1

aj‖Fj‖Hγ+2(R), (3.10)

where aj, j ∈ {0, 1, 2} are positive constants independent of data, F2 = 0 and θ = 0
in (3.10) if α ∈ (0, 1].

Proof. By the method of successive approximations one can find each solution (3.9)
of equations (3.8). Uniqueness of a solution follows from the convolution properties
in D′+(R). Let us explain that u ∈ C2,α

(
[0, T ];Hγ(R)

)
.

Assume that α ∈ (1, 2), uk0(t) = tα−1Eα,α(−k2tα) ∗ F0k(t). Then

|uk0(t)| ≤ sup
t∈(0,T ]

|F0k(t)|
∫ t

0

τα−1|Eα,α(−k2τα)|dτ

≤ rα,α sup
t∈(0,T ]

|F0k(t)|
∫ t

0

τα−1dτ

1 + k2τα

=
rα,α
αk2

sup
t∈(0,T ]

|F0k(t)|ln(1 + k2tα)

≤ rα,α
α

sup
t∈(0,T ]

|F0k(t)|tsαk2s−2 ∀s > 0.

In what follows, Kj = Kj(α, γ), j ∈ {0, 1, 2}, will be positive constants. For s = θ,
using the inequality

kγ ≤ c(γ)(1 + k)γ , c(γ) =

{
1, γ ≥ 0,
2−γ , γ < 0,

one obtains

(1 + k)γ+2|uk0(t)| ≤ K0 sup
t∈(0,T ]

|F0k(t)|(1 + k)γ+2θ, t ∈ [0, T ], k ∈ N.
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Using the boundedness of Eα,j(−k2tα), j = 1, 2, one obtains

tj−1|FjkEα,j(−k2tα)|(1+k)γ+2 ≤ Kj |Fjk|(1+k)γ+2, t ∈ [0, T ], j ∈ {1, 2}, k ∈ N.

So, the function (3.5) belongs to C
(
[0, T ];Hγ(R)

)
and the following inequality of

coercivity follows from (3.5) and (3.9):

‖u‖
C([0,T ];Hγ+2(R)

) ≤ â0‖F0‖
C
(

[0,T ];Hγ+2θ(R)
) +

2∑
j=1

âj‖Fj‖Hγ+2(R), (3.11)

where âj , j ∈ {0, 1, 2} are positive constants independent of the data in this prob-
lem.

From (3.6), it follows the existence of continuous derivatives cDαuk(t), t ∈ (0, T ],
and the following estimates:

|cDαuk(t)| ≤ k2|uk(t)|+ |F0k(t)|, k ∈ N,
‖cDαu‖

C([0,T ];Hγ(R)
)

= max
t∈[0,T ]

sup
k∈N
|cDαuk(t)|(1 + k)γ

≤ max
t∈[0,T ]

[
sup
k∈N

k2|uk(t)|(1 + k)γ + sup
k∈N
|F0k(t)|(1 + k)γ+2θ(1 + k)−2θ

]
≤ ‖u‖

C([0,T ];Hγ+2(R)
) + ‖F0‖

C
(

[0,T ];Hγ+2θ(R)
).

So, u ∈ C2,α([0, T ];Hγ(0, l)
)
. By using the last inequality and (3.11), we obtain

(3.10).
In the case α ∈ (0, 1), we have Eα,µ(−x) > 0 for x > 0, µ ≥ α and∫ t

0

τα−1Eα,α(−k2τα)dτ =
∫ t

0

∞∑
p=0

(−1)pk2pτpα+α−1dτ

Γ(pα+ α)

=
∞∑
p=0

(−1)pk2ptpα+α

Γ(pα+ α+ 1)

= Eα,α+1(−k2tα).

Then |uk0(t)| ≤ K0 supt∈(0,T ] |F0k(t)| and

(1 + k)γ+2|uk0(t)| ≤ K0 sup
t∈(0,T ]

|F0k(t)|(1 + k)γ+2, t ∈ [0, T ], k ∈ N.

Father, as for α ∈ (1, 2), we obtain that u ∈ C2,α([0, T ];Hγ(R)
)
.

The inequality (3.10) implies that a solution of the problem is unique and de-
pends continuously on the data. �

Theorem 3.3. Assume that (A1) and (A2) hold. Then there exists s unique solu-
tion (u, F1) ∈ Mα,γ of the inverse problem (3.1)–(3.3). It is given by the Fourier
series (3.5) and (3.4) with j = 1 where

F1k =
Φk −

∫ t0
0

[
tα−1Eα,α(−k2tα) ∗ F0k(t) + F2ktEα,2(−k2tα)

]
dt∫ t0

0
Eα,1(−k2tα)dt

, k ∈ N.

(3.12)
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The solution depends continuously on the data F0, F2, Φ and the following inequal-
ity of coercivity holds:

‖u‖
C2,α

(
[0,T ];Hγ(R)

) + ‖F1‖Hγ+2(R)

≤ b0‖F0‖
C
(

[0,T ];Hγ+2+2θ(R)
) + b1‖Φ‖Hγ+4(R) + b2‖F2‖Hγ+2(R),

(3.13)

where bj, j ∈ {0, 1, 2} are positive constants independent of data (F0, F2, Φ) and
F2 = 0, θ = 0 in (3.13) if α ∈ (0, 1).

Proof. Using (3.9), we write the conditions (3.7) as follows∫ t0

0

[
tα−1Eα,α(−k2tα) ∗ F0k(t) + F1kEα,1(−k2tα)

+ F2ktEα,2(−k2tα)
]
dt = Φk, k ∈ N.

So, to find the unknown coefficients F1k, one obtains

F1k

∫ t0

0

Eα,1(−k2tα)dt

= Φk −
∫ t0

0

[
tα−1Eα,α(−k2tα) ∗ F0k(t) + F2ktEα,2(−k2tα)

]
dt, k ∈ N.

(3.14)

Note that ∫ t0

0

Eα,1(−k2tα)dt =
1

αk2/α

∫ k2t0
α

0

Eα,1(−z)z 1
α−1dz

=
1

αk2/α

∫ k2t0
α

0

∞∑
p=0

(−1)pzp+
1
α−1dz

Γ(pα+ 1)

=
1

k2/α

∞∑
p=0

(−1)pzp+
1
α

Γ(pα+ 1)(pα+ 1)

∣∣∣
z=k2t0α

=
1

k2/α

∞∑
p=0

(−1)p(k2t0
α)p+

1
α

Γ(pα+ 2)

= t0Eα,2(−k2t0
α), k ∈ N.

From (3.14), according to the assumption (A2), we find the expressions (3.12) of
the unknown Fourier coefficients F1k, k ∈ N. Let us show that the founded solution
belongs to Mα,γ .

For F0 ∈ C
(
[0, T ];Hγ+2θ(R)

)
, in the proof of the theorem 3.2, the estimates

|uk0(t)| ≤ K0 sup
t∈(0,T ]

|F0k(t)|k2θ−2 if α ∈ (1, 2),

|uk0(t)| ≤ K0 sup
t∈(0,T ]

|F0k(t)| if α ∈ (0, 1)

were obtained.
Given that the functions Eα,µ(−k2tα) (µ ∈ {1, α, 2}) have the same behavior

(2.3) for large k and given the formulas (3.12) into account, one obtains

(1 + k)γ+2|F1k| ≤ c0
[

sup
t∈(0,T ]

|F0k(t)|(1 + k)γ+2θ+2 + |Φk|(1 + k)γ+2

+ |F2k|(1 + k)γ+2
]
, α ∈ (1, 2),
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(1 + k)γ+2|F1k| ≤ c0
[

sup
t∈(0,T ]

|F0k(t)|(1 + k)γ+2 + |Φk|(1 + k)γ+2

+ |F2k|(1 + k)γ+2
]
, α ∈ (0, 1), k ∈ N

where c0 is a positive constant. So, under the assumptions, F1 ∈ Hγ+2(R). As in
the proof of theorem 3.2 we obtain the inequality (3.13). This inequality implies
that a solution of the problem is unique and depends continuously on the data. �

The uniqueness of the solution of the inverse problem (3.1)–(3.3) is obtained
without any conditions on the data, for all t0 ∈ (0, T ], in the case α ∈ (0, 1) and
only under assumption on t0 in the case α ∈ (1, 2).

The obtained result can be transferred to the case of the boundary value problem
(with homogeneous boundary conditions) to equations

cDα
t u−A(x,D)u = F0(x, t), (x, t) ∈ Ω× (0, T ]

on bounded domain Ω ⊂ Rn where A(x,D) is an elliptic differential expression with
infinitely differentiable coefficients, and when the corresponding Sturm-Liouville
problem has positive eigenvalues.
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useful discussions.

References

[1] T. S. Aleroev, M. Kirane, S. A. Malik; Determination of a source term for a time frac-

tional diffusion equation with an integral type over-determination condition, Electronic J. of
Differential Equations, 2013 (2013), no 270, 1–16.

[2] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki; Uniqueness in an inverse problem
for a one-dimentional fractional diffusion equation, Inverse problems, 25 (2000), 1–16.

[3] M. M. Djrbashian, A. B. Nersessyan; Fractional derivatives and Cauchy problem for differ-

entials of fractional order, Izv. AN Arm. SSR. Matematika, 3 (1968), 3-29.
[4] Y. Hatano, J. Nakagawa, Sh. Wang, M. Yamamoto; Determination of order in fractional

diffusion equation, Journal of Math-for-Industry, 5A, (2013), 51–57.

[5] M. Ivanchov; Inverse problems for equations of parabolic type, Math. Studies: Monograph
Ser., Lviv, VNTL Publ., 2003.

[6] B. Jim, W. Rundell; A turorial on inverse problems for anomalous diffusion processes, Inverse

Problems, 31 (2015), 035003(40pp).–doi:10.1088/0266-5611/31/3/035003.
[7] A. A. Kilbas, M. Sajgo; H-Transforms: Theory and Applications, Boca-Raton: Chapman

and Hall/CRC, 2004.

[8] A. N. Kochubei, S. D. Eidelman; Equations of one-dimentional fractional-order diffusion,
Dop. NAS of Ukraine, 12 (2003), 11-16.

[9] A. M. Kuz; The problem with integral conditions for factorable parabolic operator with vari-

able coefficients, Visnyk of National University ”Lviv Polytechnic” , Phys.-mat. nauky, 740
(2012), 24-34.

[10] Z. Li, M. Yamamoto; Initial boundary-value problems for linear diffusion equation with mul-
tiple time-fractional derivatives. – arXiv:1306.2778v1[math.AP] 12 Jun 2013, 1-28.

[11] H. Lopushanska, V. Rapita; Inverse coefficient problem for semi-linear fractional telegraph

equation, Electronic J. of Differential Equations, 2015 (2015), no 153, 1-13.
[12] A. O. Lopushansky; The Cauchy problem for an equation with fractional derivatives in Bessel

potential spaces, Sib. Math. J., 55 (2014), no 6, 1089-1097 – DOI:10.1134/30037446614060111.
[13] Yu. Luchko; Boundary value problem for the generalized time-fractional diffusion equation

of distributed order, Fract. Calc. Appl. Anal., 12 (2009), no 4, 409-422.
[14] Yu. Luchko Yu., W. Rundell, M. Yamamoto, L. Zuo; Uniqueness and reconstruction of an

unknoun semilinear term in a time-fractional reaction-diffusion equation, Inverse Problems,
29 (2013), 065019.



EJDE-2016/14 INVERSE PROBLEMS OF PERIODIC SPATIAL DISTRIBUTIONS 9

[15] M. M. Meerschaert, Nane Erkan, P. Vallaisamy; Fractional Cauchy problems on bounded

domains, Ann. Probab., 37 (2009), 979-1007.

[16] V. A. Mikhailets, A. A. Murach; Hormander spaces, unterpokation, and elliptic problems,
Birkhauser, Basel, 2014. – xii+297 p.

[17] J. Nakagawa, K. Sakamoto and M. Yamamoto; Overview to mathematical analysis for frac-

tional diffusion equation – new mathematical aspects motivated by industrial collaboration,
Journal of Math-for-Industry, 2A (2010), 99–108.

[18] H. Pollard; The completely monotonic character of the Mittag-Leffler function Eα(−x), Bull.

Amer. Math. Soc., 68 (1948), no 5, 602-613.
[19] Y. Povstenko; Linear fractional diffusion-wave equation for scientists and engineers, New-

York, Birkhauser, 2015. – 460 p. ISBN: 978-3-319-17953-7.

[20] B. Y. Ptashnyk, V. S. Ilkiv, I. Ya. Kmit, V. M. Polishchuk; Nonlocal boundary-value problems
for equations with partial derivatives, Kiev, Naukova dumka, 2002.

[21] L. S. Pulkina; Nonlocal problem for equation of heat-conducting, Nonclassical problems of
mathematical physics, IM SO A, Novosibirsk, 2005, 231-239.

[22] W. Rundell, X. Xu, L. Zuo; The determination of an unknown boundary condition in frac-

tional diffusion equation, Applicable Analysis, 1 (2012), 1–16.
[23] V. S. Vladimirov; Generelized functions in mathematical physycs, Nauka, Moskow, 1981.

[24] A. A. Voroshylov, A. A. Kilbas; Conditions of the existence of classical solution of the Cauchy

problem for diffusion-wave equation with Caputo partial derivative, Dokl. Ak. Nauk., 414
(2007), no 4, 1-4.

[25] Y. Zhang and X. Xu; Inverse source problem for a fractional diffusion equation, Inverse

problems, 27 (2011), 1–12.

Halyna Lopushanska
Department of Differential Equations, Ivan Franko National University of Lviv, Ukraine

E-mail address: lhp@ukr.net

Andrzej Lopushansky

Rzeszów University, Rejtana str., 16A, 35-310 Rzeszów, Poland

E-mail address: alopushanskyj@gmail.com

Olga Myaus

Department of Higher Mathematics, National University ”Lviv Polytechnic”, Ukraine
E-mail address: myausolya@mail.ru


	1. Introduction
	2. Definitions and auxiliary results
	3. Well posedness of the problem
	Aknowledgments

	References

