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STABILITY OF CONVERGENT CONTINUOUS DESCENT
METHODS

SERGIU AIZICOVICI, SIMEON REICH, ALEXANDER J. ZASLAVSKI

Abstract. We consider continuous descent methods for the minimization of

convex functions defined on a general Banach space. In our previous work we
showed that most of them (in the sense of Baire category) converged. In the

present paper we show that convergent continuous descent methods are stable

under small perturbations.

1. Introduction

The study of discrete and continuous descent methods is an important topic in
optimization theory and in dynamical systems. See, for example, [1, 2, 4, 6, 7, 8, 9,
10, 11]. Given a continuous convex function f on a Banach space X, we associate
with f a complete metric space of vector fields V : X → X such that f0(x, V x) ≤ 0
for all x ∈ X. Here f0(x, u) is the right-hand derivative of f at x in the direction
of u ∈ X. To each such vector field there correspond two gradient-like iterative
processes. In the papers [8, 9], it is shown that for most of these vector fields, both
iterative processes generate sequences {xn}∞n=1 such that the sequences {f(xn)}∞n=1

tend to inf(f) as n →∞. Here by “most” we mean an everywhere dense Gδ subset
of the space of vector fields (cf., for example, [5, 8, 12]). In the recent paper [2], we
studied the convergence of the trajectories of an analogous continuous dynamical
system governed by such vector fields to the point where the function f attains its
infimum. The first attempt to examine such continuous descent methods was made
in [11]. However, it is assumed there that the convex function f is Lipschitz on all
bounded subsets of X. No such assumption was made in [2]. We remark in passing
that continuous descent methods for the minimization of Lipschitz (not necessarily
convex) functions are studied in [1].

In the present paper, we show that convergent continuous descent methods are
stable under small perturbations (see Theorem 1.3 below).

More precisely, let (X, ‖ · ‖) be a Banach space and let f : X → R1 be a convex
continuous function which satisfies the following conditions:

C(i) lim‖x‖→∞ f(x) = ∞;
C(ii) there is a point x̄ ∈ X such that f(x̄) ≤ f(x) for all x ∈ X;
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C(iii) if {xn}∞n=1 ⊂ X and limn→∞ f(xn) = f(x̄), then limn→∞ xn = x̄.

By C(iii), the point x̄, where the minimum of f is attained, is unique.
For each x ∈ X, let

f0(x, u) = lim
t→0+

[f(x + tu)− f(x)]/t, u ∈ X. (1.1)

For each x ∈ X and r > 0, set

B(x, r) = {z ∈ X : ‖z − x‖ ≤ r}, B(r) = B(0, r). (1.2)

For each mapping A : X → X and each r > 0, put

Lip(A, r) = sup{‖Ax−Ay‖/‖x− y‖ : x, y ∈ B(r), and x 6= y}. (1.3)

Denote by Al the set of all mappings V : X → X such that Lip(V, r) < ∞ for
each positive r (this means that the restriction of V to any bounded subset of X is
Lipschitz) and f0(x, V x) ≤ 0 for all x ∈ X.

For the set Al we consider the uniformity determined by the base

Es(n, ε) =
{
(V1, V2) ∈ Al ×Al : Lip(V1 − V2, n) ≤ ε

and ‖V1x− V2x‖ ≤ ε for all x ∈ B(n)
}
.

(1.4)

Clearly, this uniform space Al is metrizable and complete. The topology induced
by this uniformity in Al will be called the strong topology.

We will also equip the space Al with the uniformity determined by the base

Ew(n, ε) = {(V1, V2) ∈ Al ×Al : ‖V1x− V2x‖ ≤ ε for all x ∈ B(n)} (1.5)

where n, ε > 0. The topology induced by this uniformity will be called the weak
topology.

The following existence result was proved in [2, Section 3].

Proposition 1.1. Let x0 ∈ X and V ∈ Al. Then there exists a unique continuously
differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞),

x(0) = x0.

We now recall the main result of [2].

Theorem 1.2. There exists a set F ⊂ Al which is a countable intersection of open
(in the weak topology) everywhere dense (in the strong topology) subsets of Al such
that for each V ∈ F , the following property holds:

For each ε > 0 and each n > 0, there exist Tε,n > 0 and a neighborhood U of
V in Al with the weak topology such that for each W ∈ U and each differentiable
mapping y : [0,∞) → X satisfying

|f(y(0))| ≤ n and y′(t) = Wy(t) for all t ≥ 0,

the inequality ‖y(t)− x̄‖ ≤ ε holds for all t ≥ Tε,n.

Denote by F∗ the set of all V ∈ Al which have the following property:
(P1) For each ε > 0 and each n > 0, there exists Tε,n > 0 such that for each

differentiable mapping y : [0,∞) → X satisfying

|f(y(0))| ≤ n and y′(t) = V y(t) for all t ≥ 0,

the inequality ‖y(t)− x̄‖ ≤ ε holds for some t ∈ [0, Tε,n].
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By Theorem 1.2, F∗ contains a subset which is a countable intersection of open (in
the weak topology) everywhere dense (in the strong topology) subsets of Al.

We denote by A the set of all mappings V : X → X which are bounded on
bounded subsets of X and satisfy f0(x, V x) ≤ 0 for all x ∈ X. Clearly, Al ⊂ A.

For the set A we consider the uniformity determined by the base

Gw(n, ε) = {(V1, V2) ∈ A×A : ‖V1x− V2x‖ ≤ ε ∀x ∈ B(n)}, (1.6)

where n, ε > 0. Clearly, the space A with this uniformity is metrizable. We are
now ready to formulate the main result of the present paper.

Theorem 1.3. Let V ∈ F∗ and n, ε > 0. Then there exist Tε,n > 0 and a
neighborhood U of V in A such that for each W ∈ U , each T ≥ Tε,n and each
x ∈ W 1,1(0, T ;X) satisfying

x′(t) = Wx(t), t ∈ [0, T ] a.e., (1.7)

and

|f(x(0))| ≤ n, (1.8)

the inequality ‖x(t)− x̄‖ ≤ ε holds for all t ∈ [Tε,n, T ].

Our paper is organized as follows. An auxiliary result, Proposition 2.1, is pre-
sented in Section 2. Our main result, Theorem 1.3, is proved in Section 3.

2. An auxiliary result

Let the mapping x belong to the Sobolev space W 1,1(0, T ;X), i.e. (see, e.g., [3]),

x(t) = x0 +
∫ t

0

u(s)ds, t ∈ [0, T ],

where T > 0, x0 ∈ X and u ∈ L1(0, T ;X). Then x : [0, T ] → X is absolutely
continuous and x′(t) = u(t) for a.e. t ∈ [0, T ]. Recall that the function f : X → R1

is assumed to be convex and continuous and therefore it is, in fact, locally Lipschitz.
It follows that its restriction to the set {x(t) : t ∈ [0, T ]} is Lipschitz. Indeed, since
this set is compact, the restriction of f to it is Lipschitz.

Hence the function (f ◦ x)(t) := f(x(t)), t ∈ [0, T ], is absolutely continuous. It
follows that for almost every t ∈ [0, T ], both the derivatives x′(t) and (f ◦ x)′(t)
exist:

x′(t) = lim
h→0

h−1[x(t + h)− x(t)],

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t + h))− f(x(t))].

We now quote [11, Proposition 3.1].

Proposition 2.1. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f ◦ x)′(t) exist. Then

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t))− f(x(t))].
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3. Proof of Theorem 1.3

By C(i), there is n1 > n such that

if z ∈ X and f(z) ≤ n, then ‖z‖ ≤ n1. (3.1)

By C(iii), there is δ1 > 0 such that

if z ∈ X and f(z) ≤ f(x̄) + δ1, then ‖z − x̄‖ ≤ ε. (3.2)

Since f is continuous, there is ε1 > 0 such that

|f(x̄)− f(z)| ≤ δ1 for each z ∈ X satisfying ‖z − x̄‖ ≤ ε1. (3.3)

Since V ∈ Al, there is L > 1 such that

‖V z1 − V z2‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ B(n1). (3.4)

By (P1), there is T0 > 0 such that the following property holds:

(P2) For each differentiable mapping y : [0,∞) → X satisfying

|f(y(0))| ≤ n and y′(t) = V y(t) for all t ≥ 0, (3.5)

the inequality ‖y(t)− x̄‖ ≤ ε1/4 holds for some t ∈ [0, T0].

Choose a positive number ∆ such that

∆(T0 + 1)eLT0 ≤ ε1/4 (3.6)

and set
U = {W ∈ A : ‖Wz − V z‖ ≤ ∆ for all z ∈ B(n1)}. (3.7)

Assume that
W ∈ U , (3.8)

T ≥ T0 and that x ∈ W 1,1(0, T ;X) satisfies both (1.7) and (1.8).
We show that

‖x(t)− x̄‖ ≤ ε for all t ∈ [T0, T ]. (3.9)

By Proposition 1.1, there exists a differentiable mapping y : [0,∞) → X which
satisfies

y′(t) = V y(t), t ∈ [0,∞), (3.10)

and
y(0) = x(0). (3.11)

In view of Proposition 2.1 and the inclusions V,W ∈ A, the function f ◦ x is
decreasing on [0, T ] and the function f ◦ y is decreasing on [0,∞). Together with
(1.8) and (3.11), this implies that

f(x(t)) ≤ n, t ∈ [0, T ], and f(y(t)) ≤ n, t ∈ [0,∞). (3.12)

When combined with (3.1), this inequality implies

‖x(t)‖, ‖y(t)‖ ≤ n1 for all t ∈ [0, T ]. (3.13)

By property (P2), (1.8), (3.10) and (3.11), there is a number τ such that

τ ∈ [0, T0] and ‖y(τ)− x̄‖ ≤ ε1/4. (3.14)
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Now we will estimate ‖y(τ) − x(τ)‖. It follows from (1.7), (3.10) and (3.11) that
for each s ∈ [0, τ ],

‖y(s)− x(s)‖ = ‖y(0) +
∫ s

0

V y(t)dt− (x(0) +
∫ s

0

Wx(t)dt)‖

= ‖
∫ s

0

(V y(t)−Wx(t))dt‖

≤
∫ s

0

‖V y(t)−Wx(t)‖dt

≤
∫ s

0

‖V y(t)− V x(t)‖dt +
∫ s

0

‖V x(t)−Wx(t)‖dt.

(3.15)

By (3.13), (3.7) and (3.8), for each s ∈ (0, τ ], we have∫ s

0

‖V x(t)−Wx(t)‖dt ≤
∫ s

0

∆dt ≤ ∆s ≤ ∆τ. (3.16)

By (3.15), (3.16), (3.13) and (3.4), for each s ∈ [0, τ ],

‖y(s)− x(s)‖ ≤ ∆τ +
∫ s

0

‖V y(t)− V x(t)‖dt ≤ ∆τ + L

∫ s

0

‖y(t)− x(t)‖dt.

Applying Gronwall’s inequality, we obtain that

‖y(τ)− x(τ)‖ ≤ ∆τe
R τ
0 Ldt = ∆τeLτ .

Since τ ≤ T0, we conclude, by using (3.6), that

‖y(τ)− x(τ)‖ ≤ ∆T0e
LT0 < ε1/4.

Together with (3.14), this inequality implies that ‖x(τ)− x̄‖ ≤ ε1/2. It follows from
this last inequality and (3.3) that f(x(τ)) ≤ f(x̄) + δ1. Since the function f ◦ x is
decreasing, we infer that

f(x(t)) ≤ f(x̄) + δ1 for all t ∈ [τ, T ].

When combined with (3.2), this inequality implies that

‖x(t)− x̄‖ ≤ ε for all t ∈ [τ, T ].

The proof of Theorem 1.3 is complete.
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